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Abstract 

With the development of economy and growth of population, we are constantly facing the 

challenge of decreasing fish population and increasing needs in the fish market. Aquaculture 

is a practical way to fulfill this demand. Due to limited coastal area for fish farming, the fish 

farms are moving to deeper sea with harsher wave and current condition.  

This thesis focuses on the numerical analysis on the responses of the most commonly used 

gravity based fish cage under various wave and current conditions using ABAQUS program.  

Firstly, the behavior of a simple beam element and the single circular floater in waves and 

currents are investigated before studying the complex responses of the fish cage. The purpose 

is to understand the dynamics of the simple fish cage components and lay a foundation for 

modelling of the whole fish cage system.  

Secondly, the responses of a model scaled fish cage are studied using two commonly used 

numerical models for fish cage modelling: truss model and mass spring model. Convergence 

study and sensitivity study are conducted and responses in terms of volume reduction and 

hydrodynamic forces are compared using the two models. These numerical results are also 

validated with the numerical and experimental results from previous study.  

Thirdly, truss model is further applied to the full scale fish cage. The interaction of the net and 

the floater are studied. More sensitivity studies related to solidity ratio, bottom weight and 

wave-current condition are performed with the improved truss model to study the responses 

of volume reduction, hydrodynamic force, mooring tension, and critical stresses.  

The conclusions are that the current velocity is the dominating factor which affects the 

responses of the fish cage. The hydrodynamic force and deformation are closely influenced 

with each other, so the hydrodynamic force in reality may have some deviations with that 

calculated from Morison’s equation. The interaction of the floater to the net should not be 

overlooked when studying the responses of the whole fish cage. The solidity ratio, bottom 

weight, wave condition can also influence the responses of the fish cage.  

Key words: fish cage, numerical simulation, dynamic responses, wave and current 
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1. Introduction 

1.1 Background 

Ever since the late 1980s, aquaculture has represented the growth in the supply of fish for 

human consumption. As we can see from figure 1-1, in 1974 aquaculture industry provides 

only 4 million tonnes fish for human consumption (3% of the total fish consumption), this 

share has increased to 26 million tonnes in 1994 (17% of the total fish consumption) and 82 

million tonnes in 2014 (47% of the total fish consumption). China has played a major role in 

this growth as it represents more than 60 percent of world aquaculture production.  

Aquaculture is the fastest growing sector of the world food economy. It is estimated by 2030 

aquaculture will provide nearly two thirds of global food fish consumption (Msangi et al., 

2013). That is because wild fish resources are being over exploited, and very challenging for 

sustainable development. At the same time, with the growth of the world population, demands 

are increasing rapidly.  

 

Figure 1-1  Production of captured fish and aquaculture (Fisheries, 2016) 

With the pollution and more frequent human activity of near sea area, the fish farm is moving 

to deep sea, where the sea water is cleaner with no frequent human activities, and the fishes 

are of high survival rate. However, deep sea is usually with harsh environmental conditions, 

thus more severe dynamic response for the fish cage will be induces. This is a big challenge 

for the design of the cage structure. 

Norway has a coast with 21,000 km of length, and 90,000 km
2
 of sea, compared to 

approximately 1/3 of the total land area, so the potential for aquaculture is huge. Norway is 

the world’s leading producer of Atlantic salmon and the second largest seafood exporter in the 

world. The Norwegian aquaculture industry is a major industry for the country. Norway’s 

long coastline is surrounded by cold seawater which provides excellent conditions for 
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aquaculture activities (Eurofish, 2014).  

1.2 Structure and type of floating fish cages 

The fish cages are mainly composed of the floater, the net structure, weight system and 

mooring system. Now the most widely used anti-storm types are gravity type cages, 

saucer-shaped cages and tension leg cages. Below is the introduction of these types of cage.  

1.2.1 Gravity type fish cage 

As in figure 1-2, gravity based fish cage is a cylinder shaped fish cages composed of floater, 

net, weight system and mooring system. Gravity cages mainly rely on the weight system and 

the buoyancy of floater to tension the net and maintain a certain volume.   

The net structure is made of nylon and HDPE (abbreviation for high-density polyethylene), 

very flexible and easy to deform under wave and current. The floater is made up of 2 to 3 

high-strength HDPE pipe of around 0.25m diameter to provide the buoyancy for the whole 

cage. The operators can walk on it for daily operations and maintenances. Usually it has a 

perimeter of 60 to 110 meters, the maximum can reaches up to 180 m. The maximum depth is 

40 m, and the fish cage with capacity of 200 tons can be used up to 10 years.  

This type of fish cage is widely used in China, US, Canada, Japan and some other countries, 

for its simple structure, easy operation and limited investment. It also has its limitations, as it 

cannot withstand too harsh environment condition, for example, the relative volume will 

reduce more than 60% in current (v≥1m/s) when the fishes inside are hard to survive (Fei, 

2014). 

 

Figure 1-2  Gravity based fish cages (BadinottiGroup, 2011) 

1.2.2 Saucer-shaped fish cage 

Saucer-shaped fish cage is also known as Marine station cages or double cone-shaped 

settlement cages. It consists floating ring, floating bar, net system, weight system, offshore 

floating floater 

bottom ring 

net 

mooring lines 
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work platforms and lifting control system. Typically, a rigid floating rod in the middle of the 

cage is 15 meters in length, the diameter of the floating ring is 25 meters. Cage maintains its 

shape through its resilience and self-supporting. The working platform can slide along the 

central floating rod, therefore change the capacity of the cage. Floating ring can also float to 

sea surface in order for fish feeding and harvesting (Fei, 2014). It can withstand larger wave 

and current than gravity based fish cage, so in harsh ocean area, marine station is the first 

choice to raise fish. However, it is not so widely applied because of its limited effective 

volume. With the same height and diameter, the effective volume is only 1/3 of the gravity 

based fish cage, so it is not so economical.  

 
Figure 1-3  Saucer-shaped cage (Ellmer, 2011) 

1.2.3 Tension leg cage 

Tension leg cage (TLC) is proposed in Norway. It has the same mooring lines as the tension 

leg oil platform. It consists of six telescopic ropes, which are connected with six piles of the 

seabed through the tension leg. Each corner of the hexagon cage connects to a pillar to ensure 

a stable volume. Tension leg cage is strong in resisting extreme wind, wave and current 

condition. In storm and large current condition, the TLC submerges by itself, and the volume 

reduction is less than 10% (Refamed, 2010). Usually, the dimension of the cage volume is 16 

meter in diameter, 20 meter in depth. Its limited size makes it only stay in early commercial 

stage. 
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Figure 1-4  Tension leg cage (Refamed, 2010) 

There are also other new concepts of fish cage, such as flexible floating cages or egg shaped 

fish cage. However, currently these concepts are not so economical to apply. Gravity based 

fish cage is still in the dominating place, taking up nearly 90% of the fish cages now being 

used worldwide (Li, 2013). It is very practical to study the dynamic responses under various 

environmental conditions in order to design the reliable cage structure under harsh wave and 

current condition. This thesis focuses on the dynamic responses of the gravity based fish cage.  

1.3 Previous work on dynamic response study of the fish cage 

The dynamic response of the fish cage in deep ocean area is a very complex problem. Norway 

is the leading country in fish farm research, and now it is still a very hot topic in the 

universities and companies. 

The most significant influence of the fish cage comes from wave and current. The current can 

reduce the net pen volume, thus endanger the fish inside. The floater constrained by the 

mooring line, deforms with the wave and current. The wave can give the cage structure with a 

force variation, leading to possible fatigue damage of the structure. The adding bottom weight 

can reduce the responses caused by the wave and current. Therefore, we can see responses 

under wave and current is the primary concern when designing the cage structure. Lots of 

researchers have devoted their attentions on different research topics of the fish cage under 

wave and current. The main conclusions from their studies are summarized as follows: 

1) Hydrodynamic force on the floater under wave and current will induce the deformation 

and fatigue problem to the floater. 

2) The current force on the flexible net will cause deformation, thus reduce the net volume. 

3) Bio-fouling increases the drag on the net and decreases the net volume. 

4) Max mooring tension is the key operational parameter to choose the suitable mooring 

line. 
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5) Bottom weight (or bottom ring) has an impact on the hydrodynamic force and net 

volume.  

6) The responses of the fish cage under wave and current separately and concurrently are 

also a big issue when designing the fish cage. 

There are mainly two ways to study dynamic responses of the fish cage system: model 

experiment and numerical analysis. These two methods need to be validated with each other 

in various conditions. In numerical analysis of the flexible fish nets, 3 typical models are 

widely applied: truss model, mass spring model (also known as lumped mass model) and net 

panel model (also called as screen model). There are also other FEM methods to study the 

responses of fish cage, such as Aqua FE program. 

Moe et al. (2010) modeled the net as truss model and performed the analysis on the drag force 

and volume reduction under influence of the current speed, weight and gravity. They 

compared the simulation results with the model experiment done by Lader and Enerhaug 

(2005), and got similar results with experiment. Then they applied the truss model to predict 

the hydrodynamic force and relative volume with the full size fish cage. They found that drag 

load was dependent on the net cage size and weight system. Both drag and lift force were 

proportional to the current velocity when the velocity was larger than 0.2 m/s.  

Lee et al. (2008) modeled the fish cage as a mass spring model (figure 1-5). They verified the 

model with the experiments by Lader and Enerhaug (2005). Then they validated the 

numerical model by experiments in the water tank. The validations were performed focusing 

on four aspects: the velocity reduction ratio under various attack angles, the cage deformation 

under different current speed, responses from the wave with different heights and periods, the 

volume reduction ratio and drag forces under various current speeds and sinkers. The 

comparisons successfully proved the reliability of the mass spring model. 

 

Figure 1-5  Model of fish cage, net, mooring line and floater 

Zhao et al. (2007) modeled the net system as a mass spring model and the floater as a 
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double-column pipe system. Then the wave and current force were calculated on each 

mini-segment of the floater model by Morison’s equation. The results from numerical 

simulations (hydrodynamic forces and displacements) were very close to those from 

experiments. They also found that the forces and motions of the floater were dependent on the 

net responses by the mutual mass points that were attached to both the net and the floater. 

Huang et al. (2008) investigated the combined effect of wave and current on the gravity-type 

cage using lumped-mass method. They found that the responses from current on the volume 

of net-cage system was more important than those due to waves only. They concluded that 

farming sites should not be situated in areas where the current speed exceeds 1 m/s, and 

recommended that the ideal water depth for net-cage implementation in the open sea is 

between 30 and 50 m. 

Lader and Fredheim (2006) used the numerical net panel model which was to divide the net 

model into super elements (figure 1-6), and to calculate the structural and hydrodynamic 

forces for each element. They also proposed five critical parameters in studying the responses 

of fish cage under wave and current: floater movement, wave period/height, current velocity, 

net solidity and bottom weight. In addition, he found that the current tended to enlarge the 

effect of the wave loads. Increasing net solidity would result in larger force on the net. The 

increase of the bottom weight would increase the hydrodynamic force.  

 

Figure 1-6  Plane net model (Lader and Fredheim, 2006) 

Kristiansen and Faltinsen (2012) applied the screen model to look into the viscous 

hydrodynamic load on nets. The screen model assumed that the net was divided into a number 

of flat net panels, or screens. The net structure was modeled as a truss model as in figure 1-7. 

They presented comparisons to experiments with circular net cages in steady current, and got 

satisfactory agreement between experimental and numerical prediction of the drag and lift. 
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Figure 1-7  Division of a planar net into an equivalent truss model and net panels represented by 

shaded areas of arbitrary quadrilateral shape 

Berstad et al. (2005) used the AquaSim program to simulate the model of fish cage. They 

studied the load and stress of mooring lines and the volume change with currents and waves. 

At last, they proposed some practical suggestions for operation by conducting preliminary 

risk assessment. They concluded that the force and stress increased significantly when the 

mooring system was skewed. The current played an important role on the volume reduction, 

as also verified in other papers. The effect whether the wave could induce the volume 

deduction needed to be verified. Some hazardous operations related the net change, such as 

boat operation needed to be observed.  

Another effective analysis method is model experiment. Model experiment is to test a small 

scaled fish cage in water, and measure the parameters that can predict the responses of the fish 

cage. There are some other researches mainly focus on the model experiment. Compared with 

numerical results, sometimes overlooked problems can be found. 

Lader and Enerhaug (2005) investigated the force and deformation of a flexible circular net 

with different weights under pure current condition by experimental method. They concluded 

that the hydrodynamic force and deformation were mutually dependent on each other. The 

drag formula tended to overestimate the drag compared with the experimental results. The 

drag force was also dependent on Reynold number. Numerical model should take into 

consideration the dependence of force and deformation. 

Lader et al. (2007) studied wave force on a flexible net through experiments. They made the 

net panel in the flume tank with 3 different solidities under regular wave of different heights 

and periods. They found that the horizontal force was roughly 10 times larger than the vertical 

force, and the force increased with increasing net solidity and increasing wave energy. The 

experiment measurements were also compared with the numerical simulation results, and 

reached a good agreement.  

DeCew et al. (2010) focused on the responses of the single moored submerged fish cage 
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under current. They used both numerical simulation (Aqua FE) and model experiment to set 

the solidity ratio as a variable, and investigated the responses related to the submerged depth 

and mooring tension. They found that Froude scale physical testing could overestimate drag 

forces at high water velocities, as a larger coefficient of drag was induced in laminar flow. 

Fredriksson et al. (2006) used the experimental method to collect the data of the current 

velocities and mooring system tensions in a 20-unit net pen fish farm near Bay of Fundy in 

USA. They investigated the flow characteristics in 3 distinct solidities conditions; clean nets 

for smolts, clean nets for standard grow out and fouled net. They also measured the loads on 

some important anchor legs and conducted the tidal analysis. Their studies were important for 

the fish farm engineering, especially for studies on combinations of nets and levels of 

bio-fouling. 

These researches have provided a good understanding of the dynamic responses of gravity 

based fish cage, especially meaningful for designing the reliable structure of fish cage under 

rigorous deep ocean area. 

1.4 Objective and scope 

The thesis tends to perform numerical analysis of the gravity based fish cage under various 

environmental conditions. The objective is to study the response of the floater, compare the 

truss and mass spring model, and predict the responses of a full scale fish cage under various 

conditions.  

The thesis is presented in 7 chapters. 

Chapter 1 is the general description of the development of fish cage, and progress of research 

methodology on the dynamic responses.  

In chapter 2, basic theory related to the hydrodynamic force calculation are presented, 

including application of Morison equation, force analysis related to the truss model and mass 

spring model, and FEM method of solving nonlinear response equations.  

In chapter 3, numerical program ABAQUS is introduced. In FEM methods, the net is taken as 

a set of slender cylinders. This chapter begins with the hydrodynamic force calculations on a 

simple beam under wave and current separately, to validate the methodology in hydrodynamic 

force calculation and make preparation for further study. Wave properties are decided by Airy 

wave theory.  

In chapter 4, the single floater model is simulated under wave and current, the responses of 

the displacement, deformation and stress are addressed.  

In chapter 5, two fish cage models (truss model and mass spring model) are studied with a 
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model scaled fish cage, convergence and sensitive study will be presented. Numerical results 

will be compared with the experimental results from previous study to test which model is 

better for further research.  

In chapter 6, a full scale fish cage is modeled and analyzed using the truss model. The 

interaction of the floater and the net are investigated and the truss model will be improved 

considering the interaction effect. Sensitivity studies on solidity ratio, bottom weight and 

wave-current condition will be studied. Hydrodynamic force, deformation, max mooring 

tension and critical stress are compared.  

Chapter 7, which is the last chapter, is the conclusion, error source and future work.   

The highlight of this thesis lies in that two fish cage models are applied and tested under 

various waves and currents conditions, equivalent calculations are used to accelerate the 

calculation. The numerical results are also compared with experimental results to validate the 

reliability of these two models.  

1.5 Summary 

This chapter briefly introduced the development of the aquaculture industry. The prospect is 

prosperous, but there are many challenges. Several main types of the fish cages were 

illustrated here, such as gravity based floating type, saucer-shaped, and tension leg cage. 

Gravity based floating fish cage is the most widely used type. 

The dynamic response of the fish cage is a popular topic among researchers and scientists. 

Model experiment and numerical simulation are the most common methods to study the 

dynamic responses. They mainly focused on the responses of hydrodynamic force, mooring 

tension, displacement and deformation. Based on these responses, sensitivity study on bottom 

weight, solidity ratio, attack angles under wave and current were studied.  
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2. Basic theories on models and methods 

2.1 Background 

In this chapter, the theories related to the dynamic analysis of the fish cage will be stated. The 

hydrodynamic force calculation is the main issue. There are two hydrodynamic force models 

presented briefly in this chapter, Morison type force model and screen model. Then Morison’s 

equation is applied to calculate the hydrodynamic force on the fish cage. Force analysis on the 

truss model and mass spring model are addressed separately. Morison’s equation will be 

adjusted according to different situations in Morison type force model. Hydrodynamic 

coefficients are the main issues to decide the hydrodynamic force on the fish cage. Wave 

velocity, acceleration and stretching method are key issues to get accurate wave force. The 

wave properties are all based on airy wave theory. In addition, the FEM methods in solving 

nonlinear calculation are stated.   

2.2 Hydrodynamic force calculation  

To analyze the forces on the aquaculture net, two hydrodynamic force models (Morison type 

force model and screen model) are widely used. Then Morison’s equation is applied to 

calculate the hydrodynamic force on slender element.  

2.2.1 Morison type force model 

In Morison type force model (as figure 2-1), the net can be taken as the sum of many net 

cylinders, hydrodynamic force on each net cylinder is calculated through Morison’s equation. 

According to Kristiansen and Faltinsen (2012), the total normal and drag forces predicted by 

the Morison formulation, FN ∝ U∞
2 (cosθ + cos2 θ) and FD ∝ U∞

2 (1+cos3 θ), and these 

two equations could not be applied in the following situations: (1) a drag model based on the 

cross flow principle could not be justified when the inflow angle was larger than about 45°, 

and (2) the interaction between the twines were not accounted into.   
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Figure 2-1  Sketch of Morison type force model of net (Kristiansen & Faltinsen, 2012) 

2.2.2 Screen model 

Kristiansen and Faltinsen (2012) took the fish cage as a truss model, described the truss as a 

number of flat panels. The geometry and the force of panel can be seen in figure 2-2, the force 

coefficients as functions of solidity ratio Sn, Reynolds number Re and in flow angle y.  

CD=CD (Sn, Rn, y), CL = CL (Sn, Rn, y)                     (2-1) 

 

Figure 2-2  General panel with arbitrary orientation (a) and two-dimensional panel (b). 

(FD is drag force, FL is lift force, FN is normal component and FT is tangential component).  

The calculation results were compared with those from the experiments, and have achieved 

good results. However the net panel model also has its limitation. It cannot be applied when 

the net is highly deformed. In addition, responses under wave condition are too complicated 

for the screen model to get the accurate results, as the attack angle is changing all the time. 

2.2.3 Application of Morison’s equation  

To calculate the wave and current force on slender elements, Morison’s equation is applied. 

Induced by Morison from University of California in 1950, it is empirical equation derived 

from numerical experiments. In this thesis, Morison’s equation is applied to calculate the 

force on the floater, net and bottom weights.  

According to Morison equation, hydrodynamic force has two components, inertia force (FM) 
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and drag force (FD). Inertia force is induced by the added mass that additional flow which 

stays originally at the position of the slender cylinder. The hydrodynamic force per unit length 

can be written as: 

f(z, t) = 𝑓𝑀 + 𝑓𝐷 =
πD2

4
ρCMu̇ + 

ρ

2
CDDu|u|                 (2-2) 

Here, D is the diameter of the cylinder, CM is the inertia coefficient, u̇ is the acceleration, u 

is the velocity, CD is the drag coefficient, ρ is the density. 

For the steady current velocity, the inertia force is 0, there is only drag force. 

In case of wave, the cylinder will experience the combination of accelerations and velocities 

from wave particles. So both drag force and inertia force need to be taken into consideration. 

The above Morison’s equation is for slender cylinder, if we take the cylinder with other cross 

section shape other than circle, the Morison’s equation can be written as: 

f(z, t) = 𝑓𝑀 + 𝑓𝐷 = ∆ρCMu̇ + 
ρ

2
CDAu|u|                      (2-3) 

Here, ∆ is the cross-sectional area, A is the projected area (Gudmestad, 2015). 

1. Assumptions of Morison’s equation 

There are some assumptions needed to be fulfilled in order to use Morison’s equation. In deep 

water regular waves break when the ratio of wave height H and wave length L is less than 

0.14, a slamming load will happen. The acceleration should not change much over the 

cylinder. In addition, the amplitude a of the motion of the cylinder should not be too big. So 

to apply Morison’s equation, the following conditions need to be satisfied (Gudmestad, 2015): 

a) H/L<0.14 

b) D/L< 0.2 

c) a/D<0.2 

Here H is the wave height, L is the wave length, D is the diameter of the beam, a is the 

motion of the cylinder. 

The net twines in fish cage model are taken as slender cylinders, and the above assumptions 

are all satisfied. 

2. Definition of CM and CD 

There are two unknown parameters in deciding the hydrodynamic force, drag coefficient and 

mass coefficient.  

To get the wave force by Morison’s equation is only applicable for KC≥2, with CD and CM 

given as functions of the Reynold's number, the KC number and relative roughness. Figure 
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2-6 shows that drag coefficient CD changes with different Re and roughness k under critical 

flow regime. 

 

Figure 2-3  Drag coefficient for fixed circular cylinder for steady flow in critical flow regime, for 

various roughness (DNV, 2008). 

A lot of researches related with the drag coefficients have been done. Among them, there are 

some typical ones in modeling and simulation, and are divided into two different kinds of CD: 

CD for net panel model and CD for Morison model. 

a) Drag coefficients of the net panel model 

The drag and lift coefficients were calculated using formulas derived by Løland (1991). These 

formulas were based on both theoretical work and comprehensive model tests. CD and CL 

were given by: 

𝐶𝐷(𝑆𝑛, 𝜃) = 0.04 + (−0.04 + 𝑆𝑛 − 1.24𝑆𝑛
2 + 13.7𝑆𝑛

3)cos (𝛼)             (2-4) 

𝐶𝐿(𝑆𝑛, 𝜃) = (−0.05𝑆𝑛 + 2.3𝑆𝑛
2 − 1.76𝑆𝑛

3)sin (2𝛼)               (2-5) 

Here, Sn is the solidity of the net, 𝛼 is the angle of attack. The model tests on which the 

formulas were based were for Reynolds numbers in the range from 1400 to 1800 and Sn 

within [0.13, 0.317]. Further, these formulas were strictly valid for stationary flow only. 

Estimates of drag coefficient for square meshes of the net provided by Milne (1972) are : 

𝐶𝐷 = 1.0 + 2.73 (
𝑑

𝐿
) + 3.12 (

𝑑

𝐿
)
2
, for knotless net            (2-6) 

𝐶𝐷 = 1.0 + 3.77 (
𝑑

𝐿
) + 9.37 (

𝑑

𝐿
)
2
, for knotted net             (2-7) 

Where d is the diameter of the strand and L is the mesh bar length. 
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b) Drag coefficients of Morison model: 

Zhao et al. (2007) mentioned for cylinder, the drag coefficient could be calculated by 

applying the following equations: 

𝐶𝑛 =

{
 
 

 
 

8𝜋

𝑅𝑒𝑛𝑠
(1 − 0.87𝑠−2),        (0 < 𝑅𝑒𝑛 ≤ 1)

1.45 + 8.55𝑅𝑒𝑛
−0.9,           (0 < 𝑅𝑒𝑛 ≤ 30)

1.1 + 4𝑅𝑒𝑛
−0.5,                  (0 < 𝑅𝑒𝑛 ≤ 10

5)

                  (2-8) 

𝐶𝜏 = 𝜋𝜇(0.55𝑅𝑒𝑛
0.5 + 0.084𝑅𝑒𝑛

2/3)                    (2-9) 

Where Ren=VD/v, s=-0.07721565+ln(8/Ren), 𝐶𝑛  and 𝐶𝜏  are normal and tangential drag 

coefficients for mesh bars, V is the normal component of the fluid velocity relative to the 

mesh bar, v is the kinematic viscosity, v =1.15×10
-6

m
2
/s for sea water. Further, he mentioned, 

the drag force coefficient Cd in the combined wave-current flows was usually less than that in 

waves only.  

c) Mass coefficient 

For mass coefficient CM,   

CM=1+CA                              (2-10) 

Here CA is added mass coefficients. 

So to find CM, we need to get CA. CA is also related to KC number and roughness k. 

a) For KC < 3, CA can be assumed to be independent of KC number, CA = 1.0 for both 

smooth and rough cylinders. 

b) For KC > 3, the added mass coefficient can be found from the formula  

CA=max {
1 − 0.044(KC − 3)
0.6 − (CDS − 0.65)

}                        (2-11) 

Where CDS= 0.65 for smooth CDS = 1.05 for rough cylinder, for intermediate roughness the 

values were found by linear interpolation between the curves for smooth and rough cylinder 

corresponding to CDS = 0.65 and CDS = 1.05. The variation of CA with KC for smooth (CDS = 

0.65) and rough (CDS = 1.05) cylinder is shown in Figure 2-6.  
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Figure 2-4  Added mass coefficient change with KC for smooth and rough cylinders (DNV, 2008) 

c) For large KC-number, the drag force is dominating compared with the inertia force. Then 

CA for large KC-number are: 

CA={
 0.6     for smooth cylinder
0.2      for rough cylinder

                       (2-12) 

 

For small cylinders, CM can be taken as 2 according to previous experience in figure 2-5 

(Gudmestad, 2015). 

 

Figure 2-5  The relation between CM and D/L 

3. Forces on a moving cylinder under wave and current 

When we consider the structure in the open sea, the structure is hard to stay still under large 

force caused by wave and current. To take consider in the relative movement of the structure, 

the Morison’s equation about the hydrodynamic force per unit length cylinder can be 

modified as (Li, 2013): 

f(z, t) = 𝑓𝑀 + 𝑓𝐷 =
πD2

4
ρCM(u̇ ± ap) + 

ρ

2
CDD(u ± vp)|u ± vp|              (2-13) 

Here, D is the diameter of the cylinder, CM  and CD  are inertia and drag coefficient 

respectively, ρ is the density of the sea water, u is the velocity of the water particle, u̇ is 

the acceleration of the water particle, ap and vp is the vector of acceleration and velocity of 
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the structure respectively. 

In the open sea, the wave and current usually happen at the same time. If we consider the 

effect of current in addition to the relative movement of the structure and water particles, 

Morison’s equation about the hydrodynamic force in unit length cylinder can be revised 

continuously (Li, 2013): 

f(z, t) =
πD2

4
ρCM(u̇ ± ap) + 

ρ

2
CDD(u ± vp ± U)|u ± vp ± U|             (2-14) 

Here U is the vector of the velocity of the current.  

2.3 Force analysis on fish cage model 

There are two fish cage models in the thesis, truss model and mass spring model. Forces on 

the model element are studied. 

2.3.1 Truss model 

In truss model, net twines can be seen as the slender cylinders. The hydrodynamic force on 

the net is equal to the sum of that on each cylinder. 

The dynamic motion equation for the fish cage can be written as: 

[M][𝑋̈] + [𝐶][𝑋̇] + [𝐾][𝑋] = [𝐹𝐷] + [𝐹𝑀] + [𝐹𝑏] + [𝑊]                (2-15) 

Here [M], [C], [K] are the mass matrix, damping matrix and stiffness matrix respectively, [X] 

is the matrix of displacement vector, and [𝐹𝐷] is the matrix of drag force, [𝐹𝑀] is the matrix 

for inertia force, [𝐹𝑏] is the matrix for buoyance force, [𝑊] is the matrix for gravity.  

1. Wave forces on a vertical slender cylinder  

Assume a slender cylinder in the sea, and all the conditions are satisfied to apply Morison’s 

equation. So the hydrodynamic force of a vertical element per unit length is:  

f(z, t) =
πD2

4
ρCMu̇+

ρ

2
CDDu|u|                      (2-16) 

Where 𝐮̇ is the acceleration of the fluid particles, u is the velocity of the fluid particles, D is 

the diameter of the cylinder, ρ is the density of the fluid, CM is the inertia coefficient (or 

mass coefficient), CD  is the drag coefficient. CM  and CD  are different for different 

structures. 

So the total force acting on the slender cylinder is (Gudmestad, 2015): 

F(z, t) = ∫ 𝑓𝑀𝑑𝑧
𝜀0
−𝑑

+ ∫ 𝑓𝐷𝑑𝑧
𝜀0
−𝑑

= ∫
πD2

4
ρCMu̇𝑑𝑧

𝜀0
−𝑑

 +∫
ρ

2
CDDu|u|𝑑𝑧

𝜀0
−𝑑

        (2-17) 

Here 𝜀0 is the surface elevation of the wave, d is the sea depth, CM is the inertia coefficient, 
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u̇ is the acceleration, u is the velocity, CD is the drag coefficient, ρ is the density. 

2. Wave forces on an inclined slender cylinder  

When the net deforms under wave and current, the net twines will be inclined. Morison’s 

equation can also be applied in the inclined slender cylinder. When we apply Morison’s 

equation into the inclined cylinder, we need to take into consideration of all velocity 

components normal to the cylinder.  

As in figure 2-6, an inclined cylinder submerged in waves, with angle θ to plane XOZ, and 

angle φ to Z axis, the wave velocity is U. We divide U into Usinθ (component parallel to the 

cylinder plane) and Ucosθ (component normal to the cylinder plane). Then we continue 

divide Ucosθ  into Ucosθcosφ (component parallel to the cylinder) and Ucosθ sinφ  

(component parallel to the cylinder) (Li, 2013).  

 

 

 

 

 

 

 

 

 

So now there are two velocity components Usinθ and Ucosθsinφ that are vertical to the 

cylinder, and the total force per unit length in the direction in X axis is the summation of these 

two force vectors. 

fx= fx1+ fx2 =

πD2

4
ρCMu sinθ+

ρ

2
CDDusinθ|u sinθ|+

πD2

4
ρCMucosφcosθ 

+
ρ

2
CDDucosφcosθ|ucosφcosθ|                 (2-18) 

So finally, the wave force per unit length for an inclined cylinder is:  

fx(z, t) =
πD2

4
ρCMu̇

2 (sin2θ + cos2φcos2θ) 

+
ρ

2
CDDu|u|(sinθ|sinθ| + cosφcosθ|cosφcosθ|)      (2-19) 

x 

y 

z 

φ 

θ 

Ucosθsinφ 

Uwave 

Ucosθ 

Usinθ 

Ucosθ 

Ucosθcosφ 

Figure 2-6  Inclined cylinder subjected to the wave, the wave velocity is finally decomposed into 

three velocity components (red arrows) 
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2.3.2 Mass spring model 

By applying lumped mass method, the net can be seen as the combination of many mass 

points and springs. Lumped mass points are set at the knot and in the middle of the twine. 

Between the mass points, springs without mass are used to connect them. Lump mass method 

can reduce the load of calculation compared to beam element model, thus accelerate the 

calculation. 

 

 

o  

(a)                               (b) 

 

 

 

In figure 2-7, T1 and T2 are the internal force of the net, which are spring forces in mass 

spring model. There are possible internal force T3 and T4 in Y axis or T5 and T6 in z axis for 

knot mass point. Fb is the buoyancy force, G is the gravity force, FD and FM is the drag and 

inertia force respectively.  

According to Newton’s law, the motion equation for lumped mass i can be written by 

(𝑀𝑖 + ∆𝑀)𝑎⃗ = 𝑇𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐹𝐷⃗⃗ ⃗⃗⃗ + 𝐹𝑀⃗⃗⃗⃗⃗⃗ + 𝐹𝑏⃗⃗⃗⃗⃗ + 𝑊⃗⃗⃗⃗                      (2-20) 

Where 𝑀𝑖 is the lumped mass, ∆𝑚 is the added mass, 𝒂⃗⃗⃗ is the acceleration of the lumped 

mass point, 𝑇𝑖𝑛𝑡 is the internal force act by other mass points, 𝐹𝐷 is the drag force, 𝐹𝑀 is 

the inertia force, 𝐹𝑏 is the buoyancy force, W is the gravity force of the lumped mass. The 

added mass of the mass point is given as: 

∆𝑀 =  𝜌𝑉𝑚𝐶𝐴                             (2-21) 

Here, 𝜌 is the density of the water, 𝑉𝑚 is the volume of the mass point, and 𝐶𝐴 is the added 

mass coefficient. 

Internal force Tint is applied to the net and the rope in the direction of tension and compression. 

The length of the spring elongates or reduces in the direction of tension or compression 

respectively, is assumed to be linearly proportional to the internal force. The internal force 

G

Fb

FD+FM
T1T2

z

x

y

i 

Figure 2-7  Schematic diagram of the mass spring model (a) and forces on the twine mass point i (b) 

(red rectangles signify the mass point of knot cylinder, green rectangles represent the mass point of twine 

cylinder) 
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applied to the mass point is as follows:  

𝑇𝑖𝑛𝑡 = −∑𝑘𝑖𝑛𝑖(

𝑛

𝑖=1

𝑙𝑖 − 𝑙0𝑖) 

(2-22) 

Here, 𝑘𝑖 is the stiffness of the springs comprising the structure, 𝑛𝑖 the unit vector along the 

line of the spring, 𝑙𝑖 is the elongated spring length, 𝑙0𝑖 is the initial length of the spring.  

The relationship between tension and elongation on the spring can be expressed as:  

k =
𝐸𝐴

𝑙0
 

(2-23) 

Here E is the Young modulus, A is the effective area of the material, 𝑙0 is the initial spring 

(or twine) length (Zhao et al., 2007). 

Then the displacement of the mass point can be calculated with the following equations: 

𝑀𝑖𝑋̈ =∑𝐹𝑥𝑖 

MiŸ =∑Fyi 

𝑀𝑖𝑍̈ =∑𝐹𝑧𝑖  

(2-24) 

Here, Mi is the point mass, 𝑋̈, 𝑌,̈  𝑍̈ are the accelerations of the mass point,  𝑋, 𝑌, 𝑍 are the 

displacements of the mass point. 

In this thesis, we apply Airy wave theory for all of the wave cases analysis. To get the wave 

force on the beam is to apply the Morison’s equation and integrate from the sea bottom to the 

instantaneous free surface (as in as in equation 2-15).  

2.4 Airy wave theory 

Airy wave theory is a linearized theory based on irrotational flow of an inviscid 

incompressible fluid (Gudmestad, 2015). Here the velocity potential can be written as  

φ(x, z, t) =
𝜀0𝑔

𝜔

cosh𝑘(𝑧 + 𝑑)

cosh𝑘𝑑
cos (𝑤𝑡 − 𝑘𝑥) 

 (2-25) 

Here d is the water depth, k is the wave number, 𝜀0 is the amplitude, ω is the wave frequency, 

t is the time, g is the gravity constant, x is the horizontal position, z is the vertical position. It 

is assumed that the fluid is incompressible and irrotational. 

The horizontal water particle velocity function is 
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𝑢 =
𝜕𝜑

𝜕𝑥
=
𝜀0𝑘𝑔

𝜔

cosh𝑘(𝑧 + 𝑑)

cosh𝑘𝑑
sin (𝑤𝑡 − 𝑘𝑥) 

(2-26) 

The horizontal water particle acceleration function is 

𝑢̇ =
𝜕𝑢

𝜕𝑡
= 𝜀0𝑘𝑔

cosh𝑘(𝑧 + 𝑑)

cosh𝑘𝑑
cos (𝑤𝑡 − 𝑘𝑥) 

(2-27) 

For the case of deep water, simplification is made 

cosh𝑘(𝑧 + 𝑑)

cosh𝑘𝑑
=
𝑒𝑘(𝑧+𝑑)

𝑒𝑘𝑑
= 𝑒𝑘𝑧 

(2-28) 

So for deep water, the potential function can be written as 

φ(x, z, t) =
𝜀0𝑔

𝜔
𝑒𝑘𝑧cos (𝑤𝑡 − 𝑘𝑥) 

(2-29) 

The horizontal water particle velocity function is 

𝑢𝑑𝑒𝑒𝑝 =
𝜕𝜑

𝜕𝑥
=
𝜀0𝑘𝑔

𝜔
𝑒𝑘𝑧sin (𝑤𝑡 − 𝑘𝑥) 

(2-30) 

The horizontal water particle acceleration function is 

𝑢̇𝑑𝑒𝑒𝑝 =
𝜕𝑢

𝜕𝑡
= 𝜀0𝑘𝑔𝑒

𝑘𝑧cos (𝑤𝑡 − 𝑘𝑥) 

(2-31) 

For shallow water, ekz ≈ 1, the potential function can be written as 

φ(x, z, t) =
𝜀0𝑔

𝜔
cos (𝑤𝑡 − 𝑘𝑥) 

(2-32) 

The horizontal water particle velocity function is 

𝑢𝑠ℎ𝑎𝑙𝑙𝑜𝑤 =
𝜕𝜑

𝜕𝑥
=
𝜀0𝑘𝑔

𝜔
sin (𝑤𝑡 − 𝑘𝑥) 

(2-33) 

The horizontal water particle acceleration function is 

𝑢̇𝑠ℎ𝑎𝑙𝑙𝑜𝑤 =
𝜕𝑢

𝜕𝑡
= 𝜀0𝑘𝑔𝑒

𝑘𝑧cos (𝑤𝑡 − 𝑘𝑥) 

(2-34) 

As the instantaneous free surface is uneven, to get the wave force accurate above the wave 

trough, linear stretching is applied. There are two linear stretching methods mentioned here. 

The linearization is achieved by assuming the wave height is small compared to the wave 

length and the still water depth. It is also assumed that the fluid is of uniform depth; however, 

the wave amplitude can be large compared with the size of a structure. Therefore we must 

make an assumption about the wave kinematics below a crest and above the mean water level.  
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Above the mean surface level the velocity, and acceleration are extrapolated from their values 

at the mean surface level (linear stretching 1 in figure 2-8). Hence, for zs<z<η, 

v = v|zs, a = a|zs                         (2-35) 

Here zs is the mean surface level (Systémes, 2013). 

There is another linear stretching method (linear stretching 2 in figure 2-8). Velocity, 

acceleration, and dynamic pressure are extrapolated to the wave crest.  

When a gravity wave is defined, the penetration of the structure into the fluid must be 

calculated. Although the Airy wave theory assumes that the fluid displacements are small with 

respect to the wavelength and the fluid depth, they cannot be small with respect to the 

dimensions of the structure immersed in the fluid. Hence, the instantaneous water surface is 

used to determine if a point on the structure sees loads due to the presence of the water 

(Systémes, 2013). These two linear stretching methods will be verified later. 

 

Figure 2-8  Two different stretching methods used to get wave force 

2.5 Method of solving nonlinear dynamic equations 

The method presented in this section is used to solve nonlinear dynamic equations (Systémes, 

2013). 

The dynamic response of the structure can be solved by: 

[M][Ẍ]+[C][Ẋ]+[K][X]=[F(t)]                           (2-36) 

Here [M], [C], [K] are the mass matrix, damping matrix and stiffness matrix respectively, [X] 

is the matrix of displacement vector, and [F(t)] is the matrix of force vector. 

The deformed structure will cause damping, either linear or non-linear. Normally we use 

X 

x = ε0sinωt 
Z 

linear stretching 1 

linear stretching 2 

-d 
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Rayleigh damping assumption to express as follows (Cook et al., 2002): 

[C]= α[M] + β[K]                               (2-37) 

Here α is the mass-proportional damping coefficient, β is the stiffness-proportional damping 

coefficient. That means the damping is the linear combination of mass matrix and stiffness 

matrix.  

ξn = 
1

2ωn
α +

ωn

2
β                               (2-38) 

Where ξn is the critical-damping ratio, and ωn is the natural frequency (ωn = 2πfn). Here, the 

critical-damping ratio varies with natural frequency. The values of α and β are usually 

selected, according to engineering judgement.  

ABAQUS/Standard uses Newton's method and modified Newton (quasi-Newton methods), to 

solve the nonlinear equilibrium equations. 

The finite element models generated in ABAQUS are usually nonlinear and involve a lot of 

variables. The equilibrium obtained from the virtual works equation is: 

FN(uM) = 0                             (2-39) 

Where FN is the force component conjugated to the Nth variable in the problem and uM is the 

value of the Mth variable. 

Many of the problems which ABAQUS will be applied to are history-dependent, so the 

solution must be developed by a series of “small” increments. Two issues arise: how the 

discrete equilibrium statement (equation 2-26) is to be solved at each increment, and how the 

increment size is chosen. 

2.5.1 Newton's method  

In this thesis, the displacement of fish cage is large, and the displacement and force relations 

are no longer linear. ABAQUS/Standard generally uses Newton's method as a numerical 

technique for solving the nonlinear equilibrium equations. The basic formalism of Newton's 

method is as follows: 

Assume that, after an iteration i, an approximation ui
M, to the solution has been obtained. 

Let ci+1
M  be the difference between this solution and the exact solution to the discrete 

equilibrium equation 2-29. This means that 

FN(ui
M + ci+1

M ) = 0                            (2-40) 

Expanding the left-hand side of this equation in a Taylor series gives 

FN(ui
M) +

∂FN

∂uP
(ui

M)ci+1
P +

∂2FN

∂uP ∂uQ
(ui

M)ci+1
P ci+1

Q +⋯ = 0             (2-41) 
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If ui
M is a close approximation to the solution, the magnitude of each ci+1

M  will be small, and 

so all but the first two terms above can be neglected giving a linear system of equations: 

Ki
NP(ui

M + ci+1
P ) = −Fi

N                         (2-42) 

Where Ki
NP =

∂FN

∂uP
(ui

M) is the Jacobian matrix and Fi
N = FN(ui

M). 

The next approximation to the solution is then 

ui+1
M = ui

M + ci+1
M                           (2-43) 

and the iteration continues. 

Fi
N and all entries in ci+1

N  have to be sufficiently small in Newton’s method. There is a 

disadvantage of applying this method: it is usually avoided in large finite element codes, 

apparently for two reasons. First, the complete Jacobian matrix is sometimes difficult or 

impossible to formulate. Secondly, the method is expensive per iteration, because the 

Jacobian must be formed and solved at each iteration. The most commonly used alternative to 

Newton is the modified Newton method, in which the Jacobian is recalculated only 

occasionally or not at all. This method is attractive for mildly nonlinear problems but not 

suitable for severely nonlinear cases. 

2.5.2 Quasi-Newton method 

Another alternative is the quasi-Newton method, in which Eq. (2-37) is symbolically 

rewritten: 

ci+1
P = −[Ki

NP]−1Fi
N                         (2-44) 

and the inverse Jacobian is obtained by an iteration process. 

There are a wide range of quasi-Newton methods. The method applies very well even the 

most extremely nonlinear cases. While the savings in forming and solving the Jacobian might 

seem large, the savings might be offset by the additional arithmetic involved in the residual 

evaluations (that is, in calculating Fi), and in the cascading vector transformations associated 

with the quasi-Newton iterations. Thus, for some practical cases quasi-Newton methods are 

more economic than full Newton.  

When any iterative algorithm is applied to a history-dependent problem, the intermediate, 

non-converged solutions obtained during the iteration process are usually not on the actual 

solution path; thus, the integration of history-dependent variables must be performed 

completely over the increment at each iteration and not obtained as the sum of integrations 

associated with each Newton iteration, ci. In ABAQUS/Standard this is done by assuming that 

the basic nodal variables, u, vary linearly over the increment, so that 

http://50.16.225.63/texis/search/hilight2.html/+/stm/ch02s02ath14.html?CDB=v2016#stm-anl-nonlinearsol-eq2
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u(τ) = (1 −
τ

∆t
) u(t) +

τ

∆t
u(t + ∆t)                    (2-45) 

Here 0 ≤ τ ≤ ∆t represents “time” during the increment. Then, for any history-dependent 

variable, g(t), we compute Eq. (2-45) at each iteration. 

g(t + ∆t) = g(t) + ∫
dg

dτ

t+∆t

t
(τ)dτ                    (2-46) 

Quasi-Newton method is the fundamental and improvement of Newton’s method in solving 

practical non-linear problem. Here in this thesis, quasi-Newton is applied to solve the 

non-linear calculations. 

2.6 Summary 

The general method to solve the engineering problem is to set up the model, establish the 

theoretical formula and solve the formula. Chapter 2 introduced the theory of two 

hydrodynamic force models, Morison type force model and screen model. They both need to 

apply Morison’s equation to get the hydrodynamic force. Morison’s equation has different 

forms in different conditions. Drag coefficient and mass coefficient were the key parameters 

to decide the hydrodynamic force. Forces and motion on the truss and mass spring models 

were analyzed. The waves in the thesis were based on airy wave theory. Finally the method of 

solving nonlinear dynamic equations (Newton’s method) was presented.  
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3. Hydrodynamic force verification 

3.1 Background 

The main topic of the thesis is to discuss the dynamic responses of the fish cage under waves 

and currents. As the net is slender and flexible, the dynamic responses under waves and 

current are much more complicated. Here are some ways to simply the problem. Before 

studying the complex responses of the fish cage, a simple beam is considered to calculate 

hydrodynamic force by ABAQUS and MATLAB. So this chapter will begin with calculating 

the wave and current force on a vertical beam, then use MATLAB to verify the results from 

ABAQUS. The hydrodynamic force calculations are all based on non-linear equations. 

3.2 Brief introduction about the software 

To analyze dynamic responses of the fish cage, ABAQUS program are applied. Finite element 

applications in MATLAB are used to check the ABAQUS results. 

MATLAB is widely used in difficult calculation in the research and industry. MATLAB is 

particularly useful for solving linear algebra, differential equations and numerical integration. 

MATLAB also has powerful graphic tools and can produce nice pictures in both 2D and 3D 

(MathWorks, 2009).The computer program CALFEM is a MATLAB toolbox for finite 

element applications. It is mainly used for the finite element calculation. Here, we use the 

CALFEM to calculate the current force effect on the beam. 

ABAQUS is a software suite for finite element analysis and computer-aided engineering. 

ABAQUS is a suite of powerful engineering simulation programs, based on the finite element 

method, which can solve problems ranging from relatively simple linear analyses to the most 

challenging nonlinear simulations. ABAQUS offers a wide range of capabilities for 

simulation of linear and nonlinear applications. ABAQUS is widely used in the automotive, 

aerospace, and industrial products industries (SIMULIA, 2016).  

AQUA is a subset of ABAQUS. It is used to apply steady current, wave, and wind loading to 

submerged or partially submerged structures in problems such as the modeling of offshore 

piping installations or the analysis of marine risers. It can also be performed using the static, 

direct-integration dynamic, explicit dynamics, or eigen frequency extraction procedures. The 

AQUA can calculate drag, buoyancy, and inertia loading only for beam, pipe, elbow, truss, 

and certain rigid elements; In addition, it can include elements that model spud cans for 

jack-up foundation analysis in ABAQUS/Standard (Version, 2013). 

Here displacement induced by current force is calculated by ABAQUS/AQUA, and then 

verify the result in MATLAB/CALFEM program. The wave force of a beam calculated from 
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ABAQUS/AQUA program is checked with MATLAB results. To be clear, the program here is 

only valid for the beam, not for the floater and net. 

Hydrodynamic forces on the simple beam are shown in the programs mentioned above.  

3.3 Examples of calculating wave forces 

Assume a cylinder with diameter D=0.1m is fixed in the sea bottom on the seabed, the length 

of the cylinder is 12 meter. The water depth is chosen as wd=10m (figure 3-2). The cylinder is 

subjected to the wave force in horizontal direction. Three wave heights H1=1.5m, H2=0.5m, 

H3=0.15m with the same wave lengths L=12m are used for calculation. 

 

 

 

 

 

Figure 3-1  Vertical cylinder subjected to wave 

According to the description above, to apply Morison’s equation for wave force, first we need 

to investigate whether the assumptions are fulfilled (Gudmestad, 2015). 

a. Check whether it is deep water and decide velocity equation, for the velocity equation of 

the water particle in deep water is different from that in mediate or shallow water. 

The criterion for deep water is given with: 

 wd
L
=
10

12
>
1

2
  

b. Check whether the Morison’s equation is valid, we also need to find: 

 D

L
=
0.1

12
= 0.009 < 0.2 

c. Check the breaking wave criterion: 

H1

L
=

1.5

12
= 0.125 < 0.14, 

H2

L
=

0.15

12
= 0.025 < 0.14, 

 
H3

L
=

0.5

12
= 0.083 < 0.14, 

10m 12m 

Still water level 

Instanenous free surface 

 

Wave direction 
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 All these three waves do not break. 

d. Check whether a/D<0.2. Here as the beam is reinforced, so we assume the motion of the 

cylinder is less than 0.02 m. 

So Morison’s equation applies in all these three situations. 

Velocity in deep water:           u=
ε0kg

ω
ekzsin(ωt),                           (3-1) 

Acceleration:                   u̇ =ε0kge
kzcos(ωt),                         (3-2) 

fM(x, t) =
πD2

4
ρCMu̇,                         (3-3) 

fD(x, t) =
ρ

2
CDDu|u|                        (3-4) 

F = ∫ (
πD2

4
ρCMu̇ +

ρ

2
CDDu|u|)dz

ε0sinwt

−d
 

 = ∫ {
πD2

4
ρCM(ε0kg/ω)e

kzcos(ωt) +
ρ

2
CDD( ε0kg/ω)

2e2kzsin(ωt)|sin(ωt)|}dz
ε0sinwt

−d
   

FigureAccording to DNV R205, CD for rough cylinder is approximately 1.05, here for 

simplification we assume CD = 1, inertia coefficient CM = 2 based on previous experience 

according to figure 2-5. 

Figure 3-3 and 3-4 show the results from MATLAB (without any stretching) and ABAQUS 

when the wave height is 0.5m and 0.15m respectively, table 3-1 demonstrates the extreme 

values in the time domain analysis with two methods. 

wave force F/N Wave 3/H=0.5m Wave 2/H=0.15m 

MATLAB/max 39.4409 11.7558 

ABAQUS/max 39.5909 11.8257 

MATLAB/min -39.1991 -11.7597 

ABAQUS/min -40.8138 -11.8315 

Table 3-1  Wave force results from MATLAB (no stretching) and ABAQUS (H=0.5m, 0.15m) 

 

Figure 3-2  Wave force Comparison of MATLAB (no stretching) and ABAQUS results (H=0.5m) 
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Figure 3-3  Wave force Comparison of MATLAB (no stretching) and ABAQUS results (H=0.15m) 

In table 3-1, the maximum and minimum wave forces from MATLAB and ABAQUS are 

quite similar, the difference is less than 1%. Figure 3-3 and 3-4 shows that MATLAB 

(integrate to still water level) results and ABAQUS results fit very well. 

Figure 3-5 shows the wave force results under wave (H=1.5m). ABAQUS results are 

compared with MATLAB (no stretching) results. There exists large difference between the 

results of MATLAB (no stretching) and ABAQUS results. When the wave is large, the wave 

force without stretching is no longer accurate. 

 

Figure 3-4  Wave force comparison of MATLAB (no stretching) and ABAQUS results when H=1.5m 

The results from the MATLAB (two stretching methods mentioned in chapter 3.3) and 

ABAQUS are plotted in figure 3-6 respectively, and table 3-2 only shows the extreme values 

of the wave force (MATLAB scripts of two stretching methods are in Appendix 2). 

Wave 1/H=1.5m Wave force F/N 

MATLAB(linear streaching1)/max 118.4 

MATLAB(linear streaching2)/max 118.6 

ABAQUS/max 120.1 

MATLAB(linear streaching1)/min -273.8 

MATLAB(linear streaching2)/ min -327.3 

ABAQUS/min -273.3 
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Table 3-2  Wave force from MATLAB and ABAQUS (H=1.5m) 

 

Figure 3-5  Wave force comparison of MATLAB (stretching) and ABAQUS results when H=1.5m 

Compared with MATLAB (no stretching) results, the wave forces calculated from stretching 

methods are much closer to the ABAQUS results. Table 3-2 shows that three maximum 

values matched very well. However, there exists a nearly 20% deviation in the minimum 

values between MATLAB linear stretching 1 and 2, although MATLAB linear stretching 1 

and ABAQUS result are quite similar. This can also be seen in figure 3-2. In the crest of the 

curves, the results of these two stretching methods fit well with ABAQUS results except a 

little deviation. The ABAQUS results have less difference with MATLAB stretching 1, yet 

have a little more difference with MATLAB stretching 2. 

It can be concluded that ABAQUS applies linear stretching 1 to calculate the wave force. 

When the wave height is small compared with the structure size (H=0.15m or 0.5m in this 

thesis), the wave force can also be calculated by integrating to the still water level (no 

stretching). For the large wave problem (H=1.5m in this thesis), linear stretching 1 is more 

accurate for wave force calculation.  

3.5 Current force 

A vertical beam with both ends fixed is subjected to the uniform current force, the beam has a 

circular cross section. The diameter of the beam D=0.2m, and the length of the beam L=10m, 

CD=1. We define coordinate system as the vertical direction is Y axis, and horizontal direction 

is X axis, and the coordinate of bottom end is x=0, y=0. Assume the current speed is 0.5m/s. 

We can get the uniform pressure induced by the current from the following equation: 

q = CD
1

2
ρDu2 = 1 ×

1

2
× 1025 × 0.2 × 0.52 = 25.625 N/m 

The maximum displacement happened in the center of the beam is 0.4053e-4 meter. 

The maximum shear force happened in both ends is 128.125 N. (The CALFEM transcript is 
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in Appendix 2) 

From ABAQUS, we get the maximum displacement is in the center 0.4056e-4m. 

The deformations from MATLAB and ABAQUS are shown in figure 3-5. 

 

Figure 3-5  Comparison between results of MATLAB and ABAQUS 

3.6 Summary 

In this chapter, we got familiar with the programs MATLAB and ABAQUS, and relative 

modules that were best suit for these cases. To ensure the accuracy of subsequent calculations, 

example of hydrodynamic force calculations on a beam were proposed and verified by these 

two programs. 

The wave force can be calculated with no stretching when the wave height is small compared 

to the structure. If the wave height is large, we need to apply linear stretching 1 in order not to 

overestimate the wave force. The effect of current force on a vertical beam can be studied 

through the deformation. 
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4. Dynamic analysis of the floater under regular wave 

and current 

4.1 Background 

For fish cage in the open sea, it is subjected to the combination of wave force, current force, 

buoyancy force as well as gravity, which results in the displacements and deformation. The 

fish cage model consists of the floater, net and bottom weight. Before we start to analyze the 

dynamic response of the whole fish cage, the single floater is simulated under wave and 

current.  

4.2 Single floater model 

The dimension of the single floater is shown in table 4.1 (Li, 2013). 

Diameter of the floater(m) 40 

Diameter of the floater pipe(m) 0.3 

Thickness of the floater pipe(m) 0.048 

Young’s module(MPa) 950 

Density(Kg/m
3
) 953 

Stiffness of mooring lines(N/m) 6000(tension) 

Table 4-1  Properties of the single floater model 

According to the properties in table 4-1, the gravity of the floater is equal to the buoyancy 

when it is half submerged, but the floater is not stable in ABAQUS static analysis. In 

ABAQUS, the buoyancy is calculated under a closed-end loading condition. It recognizes 

only the location of the center line whether it is higher or lower than still water level. If the 

center line is under the free surface, it is recognized as fully submerged, or it is 0. It cannot 

predict correctly the true buoyancy value when the element is partly submerged in the water. 

The floater will continuously move up and down the waterline in ABAQUS.  

However, this problem does not affect much when the wave height is large. As when the wave 

height is large, the buoyancy force caused by the changing submerged cross section is much 

less than wave force. However, in small waves or pure current conditions when the force is 

small, it will be a problem. (Li, 2013) .  

The single floater model in ABAQUS is shown in figure 4-1. The nylon mooring lines can be 

modeled as the nonlinear spring which can only take tension not compression. One end of the 

mooring line connected with the floater and the other end fixed. The single floater is stable at 

the beginning position. According to the properties of the nylon mooring line, there is a small 
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pretension 8-12 N when it is modeled as the nonlinear spring (Tsukrov et al., 2005). In this 

thesis, pretension is set to 10 N. The force and displacement relation of the nonlinear spring is 

shown in figure 4.2. 

 
 

Figure 4-1  Single floater model 

 

 

 

 

 

 

 

 

4.3 Response of the floater under regular wave and current 

The single floater model was simulated under the regular wave (H=5m, T=8s) and current 

(v=1m/s) separately and concurrently for 24s. 

4.3.1 Responses of floater under regular wave condition 

Figure 4-3 shows time domain analysis under regular wave (H=5m, T=8s). The left ones are 

the top views of the floater, and the right ones are the side views. 

t=0s 

Displacement/m 

Force/N 

6000 

12000 

-1 -2 2 1 0 

10 

C point 

(0,-20,0) 

A point 

(0,20,0) 

B point 

(20,0,0) 

D point 

(-20,0,0) 

Wave direction  

Figure 4-2   The force-displacement relation of nonlinear spring 
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t=2s 

 

t=4s 

 

t=6s 

 

t=8s 
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Figure 4-3  Deformation under wave in different time during a period (H=5m, T=8s) 

From figure 4-3, it can be observed the floater not only moves like a rigid body, but also 

deforms due to the wave and spring force. To analyze the displacement of the floater, 4 points 

are chosen in varied positions (points show in figure 4.1). Figure 4-4 shows the displacements 

of point A, B, C, D on the floater. 
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Figure 4-4  Displacements of point A, B, C, D in the floater under regular wave 

In figure 4-4, it can be seen that the frequency of the floater motion is the same with the wave. 

In vertical direction, the displacement amplitude of the floater is identical with the wave. In 

horizontal direction, the floater is subjected to the nonlinear spring force and wave force, 

causing displacement and deformation on the floater.  

Figure 4-5 shows the trajectory of wave particles and point D on the floater under pure 

regular wave condition. The water particle in deep water moves with a 5m-diameter circle in 

XZ direction. The amplitude of point D in Z axis is the same with the water particle, but not 

in X axis, due to the combination effect of nonlinear spring force and wave force. That is 

because the floater is constraint horizontally, but free to move with water particle vertically. 

The mean position of point D is almost 0, so we can conclude that 5m height wave is a small 

wave to the 40 diameter floater, the mean wave force is about 0, similar to the wave force 

calculation in figure 3-4 and 3-5. 
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Figure 4-5  Comparison of trajectories between the wave particle motions and displacement of point 

D on the floater under wave 

4.3.2 Responses of the floater under combined regular wave and current 

condition 

The floater was simulated under the regular wave (H=5m, T=8s) and current (v=1m/s). Figure 

4-6 shows the screen snapshots in one wave period. The left ones are the top views of the 

floater, and the right ones are side views. Figure 4-7 shows the displacement of point A, B, C, 

D on the floater. 

t=2s 

     

t=4s 
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t=6s 

        

t=8s 

      

Figure 4-6  Deformation of floater under regular wave 
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Figure 4-7  Displacements of point A, B, C, D in the floater under regular wave and current 

In figure 4-6 and 4-7, the floater has larger deformation under current and wave than wave 

only condition. Compared the displacements between in figure 4-4 and 4-7, the current has 

significantly increased the displacement in X direction and aggravated the deformation. The 

displacements in Y and Z direction are not quite affected. Take point D for example, the 

maximum X displacement when the floater subjects to the wave only is 3.0 m, and the 

average Z displacement is around 0 m. However, when the floater is subjected to both wave 

and current, the maximum X displacement is 6.0m, twice of that when floater is subjectd 

wave only. The mean X displacement has increased approximately by 3 m. 

 

Figure 4-8  Comparison of trajectories between the wave particle motions and point D on the floater 

under wave and current 

In figure 4-8, the trajectory of point D on the floater is quite similar with the movement of the 

wave particle under wave and current. The amplitude of point D is the same with the water 

particle. Compared with figure 4-5, mean position of point D has moved along +X direction 

due to current effect. The movement in X direction is much larger in wave and current 



48 

condition than that in only wave condition. The stress variations on point D under pure wave 

and wave-current conditions are also compared in figure 4-9. 

 

Figure 4-9  Stress on point D under pure wave and wave-current conditions 

The stress variation is much larger in wave-current condition than in pure wave condition in 

figure 4-9. The maximum stress in wave-current condition is almost twice of that in pure 

wave condition. The stress in wave-current condition is more harmonic than that in wave only 

condition. The current has loaded the floater with more stress. The floater in wave and current 

combined condition is more prone to have fatigue or collapse problem than in wave only 

condition. 

4.4 Summary 

In this chapter, dynamic responses of single floater under regular wave and current has been 

simulated. The floater supposed to be half submerged in water was not stable during the static 

analysis in ABAQUS, because ABAQUS cannot give correct prediction about the buoyancy 

force. However, this is not a problem when the wave height is large. The floater moved with 

the same amplitude of the water particle vertically, but the horizontal movement varied. The 

current had aggravated the deformation of the floater, but it only influenced the displacement 

in X direction.  
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5. Comparison of truss model and mass spring model 

in model scaled size 

5.1 Background 

The net twine can be modeled as truss, spring and beam during numerical analysis. There are 

some researches that model the net as truss, for its simplicity to build and fast simulation. 

Some others model the net as spring, as it can solve the computational inefficiency and 

improve the numerical simulation accuracy when the net is modeled as beam (Ye et al., 2014). 

However, no one has compared these two models. In this chapter, these two models are 

presented and compared, the simulation results will be validated by numerical simulation and 

model experiment of a scaled fish cage from previous study to test which model is more 

accurate and efficient. In addition, convergence study will be performed to test the reliability 

of the equivalent process.  

In the models, the floater will be fixed with respect to the earth to be consistent with the 

experiment and simulation from previous study. The fish cage model will be analyzed in 

different current conditions. Response of hydrodynamic force and volume reduction are 

studied to test which model is better for further study.  

5.2 Numerical models 

In numerical models, the floater and bottom weight were modeled as beam element, the net 

was modeled as truss and mass spring respectively. Hydrodynamic forces were calculated 

through each net element (The ABAQUS transcript can be seen in Appendix 3). 

There are some principles when choosing to model the element as beam or truss. Beams can 

support loads and perform shear and bending. Six degrees of freedom (DOFs) including three 

forces and three moments, need to be taken into consideration (UX, UY, UZ, ROTZ, ROTY, 

ROTX). Truss is a purely axial member that can only used to transfer the loads axially. It 

cannot carry moment. Three DOFs need to be considered (UX, UY, UZ). There are also some 

other occasions that the truss element is suitable for. When the load becomes very big or the 

span is very long, utilizing a beam will be very expensive (Al-Hammoud, 2016).  

Truss model run much faster compared to the mass spring model under the same condition 

(overview of the simulation is in Appendix 1), although the mass spring model is said to 

accelerate the simulation. The mass points in mass spring model were still beam elements, so 

it cannot compete with the truss element in simulation speed. 

Table 5-1 shows the parameters of the fish cage.  
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Circumference 4.42 m Density of net material 1125 kg/m
3
 

Cage depth 1.41 m Drag coefficient CD 1.15 

Twine Diameter 2 mm Current velocity 0.34 m/s 

Half mesh width 17.6 mm Bottom weights 16 × 800 g 

Solidity 0.23 Net stiffness 82 Mpa 

Table 5-1  Parameters of the fish cage model (Moe et al., 2010) 

5.2.1 Truss model  

The truss model is widely used in fish cage simulation. In truss model, the net twine is 

modeled as 3-D nodes truss element, as it can perform nonlinear displacement as well as 

bending effect (as in figure 5-1).  

 

 

 

 

 

Figure 5-1  Nonlinear 3-D truss element (ABAQUS manual) 

It is time consuming to model the net twine as the actual size, so we apply equivalent 

calculation to let one truss represent several net twines. Convergence study is conducted using 

different mesh size to validate the accuracy of the equivalence. Figure 5-2 illustrates how to 

use one equivalent truss to represent four net twines. Additional node was added in the middle 

of each global truss element to perform the bending effect. 

The equivalent truss elements were given the combined properties of the represented four 

twines, i.e. the extension property of the truss element was equal to that of the represented 

twines combined. The hydrodynamic force and buoyancy force on the truss element were 

equal to that in the represent twines respectively.  

 

 

 

 

 

 

 

 

 

Figure 5-2  Equivalence of the net twines in truss model 

 (Blue lines signify the original fish net, while red lines signify the equivalent fish net) 

We combined four net twines into one truss element by satisfying three equivalent conditions 

to obtain the equivalent properties. 

3 
2 

1 

lb 

2lb 
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1. Buoyancy force equivalence 

The buoyancy force of the net twines was equal to that of the equivalent truss element in unit 

length.  

∑ F𝑏
4
𝑛=1 = F𝑏𝑒                              (5-1) 

∑ρgV

4

𝑛=1

= 𝜌𝑔𝑉𝑒  

                             ∑ V = Ve
4
n=1  

4(
πD2

4
) = (

πD𝑒
2

4
) 

4D2=D𝑒
2                              (5-2) 

Here, F𝑏 is the buoyancy force of each net twine;  

ρ is the density of water, V is the volume of each net twine;  

D is the diameter of each net twine;  

 F𝑏𝑒 is the buoyancy force of the equivalent truss element from four twines;  

 𝑉𝑒 is the volume of the equivalent truss element from four twines; 

   𝐷𝑒 is the diameter of the equivalent truss element from four twines;  

2. EA equivalence 

The stiffness of the net twines was equal to that of the equivalent truss element in unit length.  

  ∑ EA = 𝐸𝑒𝐴𝑒
4
𝑛=1                       (5-3) 

From the equation (5-2), we can easily get     ∑ A = 𝐴𝑒
4
𝑛=1                       (5-4) 

So,                               E=𝐸𝑒  

Here, E and A are elastic modulus and cross section of each twine respectively;  

𝐸𝑒 and 𝐴𝑒 are elastic modulus and cross section of the equivalent truss element from 

four twines respectively; 

l is the length of the net. 

3. Hydrodynamic force equivalence 

The hydrodynamic forces were calculated based on Morison’s equation, and the forces on 

four net twines were the same with that on the equivalent truss element. Therefore, 

∑ F = ∑ (
πD2

4
ρCMu̇ +

ρ

2
CDDu|u|)

4
n=1 =

πD𝑒
2

4
ρCMeu̇ +

ρ

2
CDeD𝑒u|u|

4
𝑛=1            (5-5) 

Here: F is the hydrodynamic force of the twine/bar subject to;  

D is the diameter of each net twine;  

CM and CD are the mass and drag coefficient of each net twine respectively;  

D𝑒 is the diameter of the equivalent truss element from four twines;  

CMe and CDe are the mass and drag coefficients of the equivalent truss element from 
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four twines respectively;  

Here it should be mentioned that the averaged water particle velocities and accelerations of 

the four net twines were assumed to be the same as those of the equivalent truss element.  

To satisfy Eq. (5-5), we need to make sure: 

4CMD
2 = CMe𝐷𝑒

2                             (5-6) 

4CDD = CDeD𝑒                              (5-7) 

From Eq. (5-2) and Eq. (5-7), we can get CM = CMe = 2, CDe=2CD=2.3. 

Table 5-2 shows the parameters of the truss model with coarse meshes and refined meshes:  

Items Refined  Coarse Items Refined  Coarse 

Truss length 17.6 mm 70.4 mm 
No. of elements in 

circumference 
252 63 

Twines per truss 1 4 No. of elements in depth 81 21 

Twine 

diameter/m 
0.002 0.004 CD for net 1.15 2.3 

CM 2 2 CD for bottom weights 1.15 1.15 

No. of nodes 20460 3907 No. of elements 40588 2599 

Table 5-2  Critical Parameters for two truss models  

Here it should be mentioned that additional points in the middle of the twines only added in 

coarse meshes truss model not in the refined meshes truss model. The number of elements has 

increased approximately 4 times both in circumference and depth from coarse meshes truss to 

the refined meshes truss, so the element number in refined meshes truss model is about 16 

times of that in coarse meshes truss model. The node number in refined meshes truss model 

should also be 16 times of that in coarse meshes truss model if there were no additional nodes. 

However, with additional nodes in coarse meshes truss, the number of the nodes nearly tripled. 

Then the number of nodes in refined meshes truss is approximately 5.3 (or 16/3) times of that 

in coarse meshes truss.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3  Truss model (left: truss model with coarse meshes. Black spots represent nodes. The 
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additional nodes in the middle of the twines to perform the bending effect) and truss model with refined 

meshes (right) 

5.2.2 Mass spring model 

Mass spring model can also represent the fish cage. Set lumped mass point at the knot and at 

the center of each bar (figure 5-4), then connect each mass point with nonlinear springs. The 

forces were calculated on equivalent mass points, in which the physical properties such as 

mass, volume, projected area and hydrodynamic coefficient were equivalent. The mass point 

at the center of the mesh bar was to represent the properties of the mesh bars and perform the 

bending of the bar (figure 5-6).  

Similar to the truss model, the real net has an enormous number of mass points. We can also 

apply the equivalent method to reduce the calculation loads, in which several actual meshes 

were bundled together into a virtual mathematical mesh with the same physical properties. 

The virtual mass points were considered as small cylinders, but were distinguished as bar 

cylinders and knot cylinders. The physical properties of the virtual bar cylinders equaled to 

the actual twines combined together, and physical properties of knot cylinders were the same 

as the actual knots added together. Here, the spring is without mass, volume or other physical 

properties, only spring forces need to be taken into consideration. (Lee et al., 2008).  

We derive the parameters of the equivalent mass spring model also by applying the equivalent 

calculation. The equivalent process was the same with truss model simplification. The 

buoyancy force and hydrodynamic force on four net twines were the same as that on the 

equivalent bar (or knot) cylinder.  

 

 

 

 

 

 

 

 

 

 

Figure 5-4  Equivalence of the net twines in mass spring model. 

 (Left side is the truss model, right side is the mass spring model, in mass spring model red rectangles 

represent the knot cylinder, the green ones mean the bar cylinder) 

Properties of nonlinear springs 

As the net can only take tension, not compression, we set the spring as nonlinear, as figure 

5-6. The stiffness of the spring, k , is given by: 

lb 

2lb 
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𝑘 =
𝐸𝐴

𝑙
                                   (5-8) 

Where E is the Young's modulus of the material, A is the cross section of the equivalent net 

cylinder from four net twines, l is the original length of the spring. 

Mooring lines were modeled as nonlinear spring. For simplification, we set the pretension of 

the nonlinear spring as 0. 

 

 

 

 

 

 

 

 

 

 

Figure 5-5  The force-displacement relation of nonlinear spring in mass spring model 

According to the parameters given in the table 5-2, l0=0.02483m, 

k =
𝐸𝐴

𝑙0
=
82 × 106 × 𝜋 × 0.0042/4

0.02483
≈ 41550𝑁/𝑚 

Equivalent calculation for mass spring model: 

1） Buoyancy force equivalence 

As mentioned in Eq. (5-1), we can get:  

∑V = Ve

4

n=1

 

Here, V is the volume of every twine;  

 𝑉𝑒 is the volume of the equivalent bar (or knot) cylinder from four twines (or knots); 

2） Hydrodynamic force equivalence 

Equation 5-5 was used for equivalent calculation of the hydrodynamic forces with the same 

length. For mass spring model, the hydrodynamic force of the twine was equal to that of the 

equivalent small cylinder with unequal length, so equation 5-5 was not suitable here. Instead, 

the reference area per unit cylinder length A represented D and cylinder volume per unit 

cylinder length V represented π𝐷2/4. As a result, F(t) is the total force per cylinder length 

under current condition:  

F(t) = 𝐹𝐷 + 𝐹𝐼 = ρVCMu̇ +
ρ

2
CDAu|u|                   (5-9) 

Displacement/m 

Force/N 

41550 

83100 

-1 -2 

 

2 1 0 
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For twine,  

∑ VC𝑀
4
𝑛=1 = V𝑒CMe ,      ∑ C𝑀

4
𝑛=1 𝜋𝐷2ℎ = CMe𝜋𝐷𝑒

2ℎ𝑒                  (5-10)  

∑ C𝐷
4
𝑛=1 A = CDeA𝑒,     ∑ C𝐷

4
𝑛=1 Dh = CDe𝐷𝑒ℎ𝑒                     (5-11)  

  CM = 2, CD = 1.15,  

Assume D = 0.004, h = 0.0704 

So CMe = 2, CDe = 4.6, 𝐷𝑒 = 0.008,  ℎ𝑒 = 0.0176 

For knot, the equivalent knot cylinder was obtained from four original knot cylinders. 

∑𝑉𝐶𝑀 = V𝑒CMe,      CM𝜋𝐷
3/4 = CMe𝜋𝐷𝑒

2ℎ𝑒/4                 (5-12) 

∑𝐶𝐷 𝐴 = CDeA𝑒,     CD𝐷
2 = CDe𝑑𝐷𝑒ℎ𝑒                  (5-13) 

Assume CM = 2, CD = 1.15, D = 0.004 

So CMe = 2, CDe = 1.15 𝐷𝑒 = 0.004,   ℎ𝑒 = 0.004 

Here, F is the hydrodynamic force of the twine/bar subject to;  

D is the diameter of every twine;  

CM and CD are the mass and drag coefficient of every twine respectively;  

V is the volume of the bar (or knot) cylinder; 

A is the area of the bar (or knot) cylinder; 

h is the height of the bar (or knot) cylinder; 

D𝑒 is the diameter of the equivalent bar (or knot) cylinder from four twines (or knots);  

CMe and CDe are the mass and drag coefficient of the equivalent bar (or knot) cylinder 

from four twines (or knots) respectively; 

Ve is the volume of the equivalent bar (or knot) cylinder; 

Ae is the area of the equivalent bar (or knot) cylinder; 

he is the height of the equivalent bar (or knot) cylinder; 

So summary of the parameters of the mass spring model: 

Equivalent twine cylinder Inertia coefficient CMe 2 

Drag coefficient CDe 4.6 

Cylinder diameter De/m 0.008 

Cylinder height he/m 0.0176 

Equivalent knot cylinder Inertia coefficient CMe 2 

Drag coefficient CDe 1.15 

Cylinder diameter De/m 0.004 

Cylinder height he/m 0.004 

Spring Stiffness 𝐤/ (𝑁/𝑚) 41550 (only tension) 

Original spring length 𝒍𝟎/m 0.02483 
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Table 5-3  Equivalent parameters for twines and knots in mass spring model 

 

Figure 5-6  Mass spring model 

(magnified part shows how the mass points and springs arrange in the model) 

5.3 Results and discussions 

5.3.1 Cage deformation 

The two truss models and mass spring model were simulated under the same conditions 

(current velocity 0.34 m/s). After 10 seconds simulation, all the models had reached to the 

balance state. An example can be shown in figure 5-7 when the truss model with 16*800g 

bottom weight was simulated under current velocity 0.34 m/s, the horizontal displacement of 

point A reached balance state after 10 seconds simulation.  

 

Figure 5-7  Horizontal displacement of point A in 10s simulation 

Figure 5-8 shows the deformation of the each numerical model compared with the 

experimental deformation (Lader & Enerhaug, 2005). 

A 
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a)                                           b) 

 

 

 

 

 

                     

 

 

 

 

 

 

                                      c) 

Figure 5-8  Fish cage deformation of the truss model with coarse meshes(a), the truss model with 

refined meshes (b), and mass spring model (c) compared with the experimental deformation from 

Lader and Enerhaug (2005) 

From figure 5-8, we can see that the three models all fit well with the deformation from 

experiments. The deformation of the truss with coarse meshes and mass spring model seems 

quite similar. The best fit with the experimental results is the truss model with refined meshes. 

The different size and position of bottom weights may be one of the reasons for the difference 

between the deformations from numerical models and experiment. 

5.3.2 Convergence study of the truss model 

The truss model of coarse meshes and refined meshes were simulated with the same bottom 

weight 16*800g under 3 different current velocities (0.2m/s, 0.34m/s, 0.5m/s). The 

hydrodynamic force and relative volume were compared. Here the volume of a deformed fish 

cage was calculated as the horizontal cross-section multiplied by the average thickness of the 

section layer (Moe et al., 2010). The MATLAB transcript of calculating the area of the 
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deformed cross section can be found in Appendix 2 “Polyarea”. The drag force was collected 

from the sum of horizontal reaction force at the fixed floater, and lift force was the difference 

between the sum of vertical reaction force and submerged weight.  

Figure 5-9 shows the results of the volume reduction and hydrodynamic force from 

convergence study.  

 

Figure 5-9  Simulation results of the truss model with coarse meshes(s) and refined meshes (o) 

From the figure 5-9, the drag and lift forces of the truss model with coarse meshes was 

approximately less than 1.5% smaller than the truss model with refined meshes, and the 

relative volume was less than 1.6% smaller when the truss model was refined. So we can 

conclude that the truss model with coarse meshes is reliable for further study.  

5.3.3 Comparison of hydrodynamic forces and volume reduction 

The truss model and mass spring model were simulated under different bottom weights 

(16*400g, 16*600g, 16*800g) and current velocities (0.2m/s, 0.34m/s, 0.6m/s). The 

hydrodynamic force and volume reduction between these two models were compared in 

figure 5-10 and 5-11.  
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Figure 5-10  Drag and lift force of truss model and mass spring model 

 

Figure 5-11  Volume reduction of truss model and mass spring model 

The hydrodynamic forces and relative volume were almost proportional with the current 

velocity when the velocity was larger than 0.2 m/s, which was contradict with Morison’s 

equation, the hydrodynamic force should be proportional to the velocity squared. This can be 

explained by the deformation of the net pen, which starts to become significant when the 

current velocity exceeds 0.1 m/s. Since the net structure is flexible, the relationship between 

current velocity and total forces becomes complex since the forces and deformations mutually 

depend on each other. Different areas in the net structure have different attack angle, and the 

effective solidity ratio may be altered due to changing forces on the net (Lader & Enerhaug, 

2005). 

With the increase of the current velocity, the drag and lift force increased significantly, while 

the volume decreased. The increase of the bottom weight tended to preserve the net volume 

and slightly increased the drag and lift forces. When the current velocity increased to 0.6m/s, 

the relative volume deducted significantly to 30%-60% of the original volume. 

There were very little differences (less than 3%) between the force and volume results of the 

truss model and mass spring model. Both truss model and mass spring model can model the 

net pen and present similar results. Since truss model simulation runs much faster than that of 
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mass spring, so due to the limited time of the thesis, truss model is chosen for the further 

simulation. 

Then the results of the truss model were compared with the simulation and experimental 

results from Moe at al.(2010). The hydrodynamic forces comparison is shown in figure 5-12, 

and relative volume results are in figure 5-13. 

 

 

 

Figure 5-12  Numerical drag and lift force comparison with the model test(m) and numerical 

simulation(n) from Moe et al. (2010) 

 

Figure 5-13  Volume reduction of truss model with numerical results from Moe et al. (2010) (red 

lines : the truss model in the thesis, blue lines: numerical results from Moe) 
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From figure 5-12 and 5-13, it can be seen that the hydrodynamic forces and the volume 

reduction are of the same trends, yet a little larger compared with simulation and experiment 

results from Moe’s paper. It is because the truss model in the thesis does not consider the 

effect of velocity reduction factor. In Moe’s truss model, she took the velocity reduction factor 

as 20% after passing the first net wall, in accordance with the experiments in Lader et al. 

(2005). 

5.4 Summary 

In this chapter, both truss and mass spring models were established to represent the fish cage, 

and the convergence study and sensitivity study were conducted to verify our simulation 

results with the simulation and experimental results from previous study. Responses of the 

hydrodynamic forces and volume reduction were compared and good agreements were 

achieved. Finally truss model was chosen for further study. 

From this chapter, we can learn that the drag and lift force increase with the increasing current 

speed, but decrease with increasing bottom weights. Inversely, the relative volume of the fish 

cage decrease with the increase of the current velocity, yet increase when the bottom weights 

increase. The drag, lift force and relative volume are approximately proportional to the 

current velocity when the velocity is larger than 0.2 m/s, while they should be proportional to 

the current velocity squared according to Morison’s equation.  
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6. Dynamic analysis of fish cage in full scale size 

6.1 Background 

A full scale fish cage is introduced in this chapter, truss model is used for the simulation of 

the full scale fish cage. The full scale fish cage is composed of the floater, the net and the 

bottom ring. 

In chapter 5, we fixed the rigid floater of the fish cage to study the dynamic responses of fish 

net in pure current conditions. However, in reality the floater is flexible and floating on the 

waterline, and it will move and deform with wave and current. By the fixed and rigid floater, 

it will give a larger estimation of the relative volume (Moe et al., 2010). So in this chapter, 

sensitivity study on the interaction of the net and the floater will be performed first. Then the 

truss model will be improved with flexible floater considering the interaction effect. 

Sensitivity study on different solidity ratios, bottom weights and wave-current conditions will 

be illustrated for further understanding of the dynamic responses in full size fish cage model. 

6.2 Numerical model 

In the full size fish cage, the floater is a polypropylene pipe with elastic modulus 950MPa and 

density 953 kg/m
3
, it is used to provide the buoyancy force for the whole fish cage. The 

bottom ring is a solid tube also made of polypropylene, but with a distinct density of 2000 

kg/m
3
. It is used to preserve the volume. The net with the material of nylon has a negligible 

bending stiffness. The net is close to neutrally buoyant in water, as its density (1140 kg/m
3
) is 

quite close to that of sea water (1025 kg/m
3
).  

In this paper, with the current speed from 0 to 0.5 m/s, Ren=VD/v, v =1.15×10
-6

m
2
/s for sea 

water, we can get the Reynolds number (0< Re <2174). As seen from Eq. (2-8), we can get 

the CD (1.1< Cd<1.29), for simplification, we set the drag coefficient as a constant mean 

value 1.2. As for inertia coefficient CM is approximately 2 according to previous experience 

(figure 2-5).  

The parameters of the fish cage are as follows:  

 Floater Net Bottom ring 

Whole fish cage field diameter(m) 20 

Whole fish cage field depth(m) 19.634 

Outer diameter(m) 0.3 0.005 0.1 

Thickness of pipe(m) 0.034   

Bar length/m  0.061  

Table 6-1   Dimensions of the full size fish cage model 
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To simplify the problem, we use equivalent calculations to let one equivalent twine represents 

16 actual twines. Table 6-2 is the net parameters of truss model.  

Twine diameter(m) 0.02 No. of twines (vertical) 64 

Elastic coefficient(MPa) 350 No. of twines (circumferential) 19 

Density (kg/m
3
 ) 1140 Cd 4.8 

Bar length(m) 0.980 Cm 2 

Solidity 0.16 Net stiffness(MPa) 350 

Table 6-2  Net parameters in the truss model 

Some points were chosen on the floater and nets for further analysis of the displacement and 

stress. Point A, B, C, D, E, F, M, N are all on the net. Point A and C are in the upstream of the 

net, while point B and D are in the downstream of the net. Point A and B are very close to the 

floater, point C and D are near the bottom ring. Point e is on the floater. Stress on net element 

AE, BF, CM and DN are very critical, as these are at the joints of the floater to the net and the 

net to the bottom ring. If the joints failed, the integrity of the whole fish cage would be 

demaged. Point A, C and E are the first points that contact with the wave and current, and 

very sensitive to the wave and current. Point B and D are points that are in the direct back of 

the point A and C. 

 

 

 

 

 

 

 

 

 

 

Figure 6-1  Illustration of the fish cage and critical points on the cage 

6.3 Sensitive study  

Sensitivity study on the interaction between the net and the floater was studied first, then 

more sensitivity studies on solidity ratio, bottom weight and wave-current condition were 

performed. The values for all parameters used in the sensitivity study are listed in table 6-3. 

Solidity 

ratio 

bottom weight 

/Submerged weight 
Wave-current 

Sn=0.16 Ws=4725 N H=1m, T=4s H=1m, T=8s H=1m, T=12s 

Sn=0.25 Ws=7145 N H=2m, T=4s H=2m, T=8s H=2m, T=12s 
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Sn=0.34 Ws=9566 N H=3m, T=4s H=3m, T=8s H=3m, T=12s 

Table 6-3  Sensitivity study on the full scale fish cage 

6.3.1 Interaction of the net and the floater 

The effect of the net to floater and the floater to the net will be investigated to see whether the 

interaction effect can affect the responses of the floater or the net. Three models were 

established to study the interaction, and their details are listed in Table 6-4, and M2 and M3 

are shown in Figure 6-2.  

Models Model compositions 
Floater 

condition 
Mooring system Boundary conditions 

M1 Only floater Flexible With  
Mooring system 

connected to fixed points 

M2 Floater+net+bottom Flexible  With  
Mooring system 

connected to fixed points 

M3 Floater+net+bottom Rigid Without Floater fixed 

Table 6-4  Models to study the interaction of the net and floater 

All these three models were put into pure regular wave condition (H=5m, T=8s), the 

displacement and stress were compared.  

        

Figure 6-2  Two fish cage models M2 and M3 (left: M2 Mooring system connected to fixed points 

and flexible floater, right: M3 rigid and fixed floater. Red points signify the boundary condition) 

1. Effect of the net to the floater  

Responses of M1 and M2 model were compared here through displacement of point e on the 

floater. Figure 6-3 shows the variation of horizontal and vertical displacements of point e.  
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a)  

b)  

Figure 6-3  Horizontal (a) and vertical (b) displacements of point e under pure regular wave condition 

(H=5m, T=8s) 

In figure 6-3, point e in M1 tends to have larger motion than M2 both horizontally and 

vertically. Horizontal displacement of point e of M2 is larger than that of M1 in +X direction. 

The mean position of point e in M2 has moved to about 1m in +X direction. This can be 

explained from figure 3-3, when the wave height is large compared to the structure size, the 

mean wave force on the fish cage is larger in the wave direction than in the opposite wave 

direction, thus moves the floater to a new mean position. Lader et al. (2007) also mentioned 

this phenomena from mechanics of a regular wave. The structure on the wave crest relative to 

the trough, the maximum horizontal velocity is larger, also the net area exposed to the fluid 

velocity is larger. 

The vertical displacement of point e in M2 is smaller than that of M1. The net induced large 

damping forces on the vertical motion, thus reduces the floater motion in vertical direction 

(Lader & Enerhaug, 2005). 

Figure 6-3 shows the stress variation of point e in two models. 
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Figure 6-4  Stress variations of point E in M1 and M2 

The stress of point e in M2 tends to change harmonically, while that of M1 does not act 

periodically, sometimes there are very large stresses. Mostly the stress of M2 is smaller than 

that of M1 except when there is large impact. This is because the only floater can offset some 

wave energy by large displacement and deformation. However for M2, vertical motion of the 

top point is closely related to the load on the net and bottom, thus increase the stress of point e 

on the floater.  

2. Interaction of the floater to the net  

Response of two fish cage model M2 and M3 were compared. Displacement and net stress on 

critical places were studied. Figure 6-5 shows the displacement variations in model M2 and 

M3 both horizontally and vertically.  

a)  

b)  

Figure 6-5  Horizontal (a) and vertical (b) displacement of point A in two fish cage models 

In figure 6-5, it can be easily detected that the displacement of point A in M2 is much larger 
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than M3 both horizontally and vertically. The displacement variations of point A both 

horizontally and vertically in M2 are almost twice as M3. The mean horizontal displacement 

of point A in M2 is about 1m in +X direction, while that in M3 is almost 0. That is because 

the motion of the net is closely related to the floater. In M2, the floater has moved to the new 

mean position of 1m in +X direction, while in M3, the floater is fixed with respect to the 

earth.  

There is almost no negative value in vertical displacement of M3. The motion of point A is 

constraint by the fixed floater, so it is impossible for the net to move downwards due to lift 

force. In M2, the floater is moored in horizontal directions, yet it is free to move in vertical 

directions, so vertical displacement of point A in M2 is larger than M3. It can be concluded 

that the motion of the floater can cause large displacement both horizontally and vertically on 

the net.  

Figure 6-5 shows the displacement variation of point C in M2 and M3 models. 

 

 

Figure 6-6  Horizontal (a) and vertical (b) displacement of point C in two fish cage models 

The mean position of point C moves in +X direction horizontally both in M2 and M3, but 

point C in M2 moves a little further than M3. For the displacement of M2 relative to that of 

M3, it is smaller both horizontally and vertically. The point C is lifted to a new position at 

around 1.5 meters in +Z direction in M3, while it stays at around 0 in M2. Compared with 

figure 6-5, it is easy to find that the vertical displacement of point C is smaller than that of 

point A. That is because the floater in M2 moves downward in figure 6-5 (b), and the net and 

the bottom ring move with it. This downward effect and the lifting effect finally make the 
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mean position of the bottom ring stay at 0. The floater in M3 is fixed, there is only lifting 

effect, so the bottom ring is lifted up to a new mean position in +Z direction.   

Figure 6-5 shows the stress variation of element AE, BF, CM and DN in two models. Stress 

on these elements are very important for the integrity of the fish cage.  

a)  

b)  

c)   

d)  

Figure 6-7  Stress at element AE(a), BF(b), CM(c), DN(d) in M2 and M3 
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In figure 6-7 the stresses in these four elements (AE, BF, CM, DN) are almost the same in M2, 

but the stresses varies in M3. Stress vibration near the floater (element AE and BF) in M3 is 

much larger than in M2. The stress near the floater in M3 sometimes goes to zero (figure 6-7 

b). This indicated there is slack on the net of M3, and large stresses are triggered. Apart from 

the extreme value caused by slack, the maximum stress of M2 is almost 3 times of that in M3. 

It can be due to that wave energy consumed by the large displacements in M2, which results 

in smaller stress in the net. The floater in M3 is constrained, the displacement of point A 

closely related to the floater is small, so some of the wave energy is used to extend the net, 

thus induces large stress on the net.  

Stresses at element CM and DN are a little larger in M2 than in M3 if the slack effect is not 

considered. Lifting force acts on the bottom ring and the net in M3, but in M2 the lifting force 

on the structure is used to lift the bottom ring, net and the floater, so stress in element CM in 

M2 is a little larger in M3.  

3. Improvement of the truss model  

The effect of the floater to the net is much larger than that of the net to the floater. So 

modelling the responses of the floater are very crucial for obtaining the accurate responses of 

the whole fish cage.  

ABAQUS cannot predict the buoyancy force correctly when the body is submerged(as 

discussed in chapter 4), so in ABAQUS the floater cannot stay half submerged in water as it 

should be in dynamic analysis, but will continually move up and down the waterline. This 

will give a heavy load to the calculation (for pure current condition, about 20 hours is needed 

for 24s simulation). To fix this problem, the buoyancy force were given a value in +Z 

direction according to the gravity minus the lift force (lift force can be obtained by trying 

from the lift force when the floater is fixed), then the simulation was much faster (for 500s 

simulation, it takes only 20 minutes or so, overview of the simulation is in Appendix 1).  

Figure 6-8 shows the vertical displacement of point e on the floater under 0.5 m/s with the 

improved truss model. At the beginning, the floater sank quickly, but with the increase of 

lifting force, it raised up gradually until the balanced position in the waterline. So the 

responses before the floater reached to the balanced position may have some deviations with 

its true responses, but the responses in the final balanced state can well represent responses in 

reality.  
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Figure 6-8  Vertical displacement of point E under current 0.5 m/s 

6.3.2 Sensitive study on solidity ratio 

Biofouling is a serious problem that has always troubled the fish farmers in recent years. 

Biofouling can grow very fast and thick. Not only it can affect the exchange rate of the fresh 

water within and outside the net pen, it can also be the fertilizer of some microorganism, 

which may endanger the health of the fish groups. In some cases, on the heavily fouled nets 

the drag can be increased by up to 900% in rough seas and high current conditions. This will 

significantly affect cage structure and behavior. The increased stress on the netting could 

weaken the netting and also endanger the safety of fish cages (Kassah, 2012).  

         

Figure 6-9  Comparison of biofouling with silicone coating and non-coated control netting 

http://www.crabproject.com/index.php/107/testing-materials/ 

Solidity ratio is the ratio between the solid area of the net As and the total area enclosed by the 

net A. Biofouling will increase the solid area of the net, and increase the Sn. Fouling can be 

modelled as an increase in the net solidity, and by comparing nets with different solidity ratios, 

the effect of bio-fouling can be estimated (Lader & Fredheim, 2006). Here we are going to 

compare the responses in 3 different solidity ratios: 0.16, 0.25, 0.34. Figure 6-10 shows the 
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dimension of one knotless mesh of the net pen, and the relation of Sn and the dimension of 

the mesh can be expressed in Eq. (6-1). 

    

 

 

 

 

 

 

Figure 6-10  One knotless mesh of the net pen 
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Here, d is the diameter of the twine, l is truss length. Then the relative diameter can be found 

from the Eq. 6-1 (shown in table 6-5).  

𝑆𝑛 𝑆𝑛1=0.16 𝑆𝑛2 =0.25 𝑆𝑛3 =0.34 

d d1=0.005m d2=0.007625m d3=0.01037m 

Table 6-5  Various solidity ratio with related twine diameter 

The models with different solidity ratio were simulated under current velocity from 0.1-0.5 

m/s for 500s, when the models in all states have reached to the balance state (overview of 

simulation in Appendix 1). The deformation, hydrodynamic force, mooring tension and 

stresses in critical place were studied. Figure 6-11 shows the deformation as a result of the 

numerical simulation with various solidity ratio and current velocities.  

Sn1                      Sn2                      Sn3 

v=0.1m/s 

                     

v=0.2m/s 

         

v=0.3m/s 

l 

d/2 
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v=0.4m/s 

 

v=0.5m/s 

 

Figure 6-11  Deformations of model cage as a result of the numerical simulation various solidity ratio 

and current velocities 

From figure 6-11, it can be seen that when the velocity is 0.1m/s, we can hardly see the 

deformation of the fish cage. However, with the increasing velocity speed, the relative volume 

of the fish cage decreases. The volume reduction reaches to approximately 50% of the 

original volume (from figure 6-11) when the velocity is 0.5 m/s, in which level the fishes 

would have low probability to survive. When the solidity ratio increases, the volume 

decreases a little, although the effect to the relative volume is not so obvious as the current 

velocity.  

Figure 6-12 shows the volume reduction, and figure 6-13 demonstrates the drag and lift 

forces. 

 

Figure 6-12  Volume reduction under various solidity ratio (Sn=0.16, 0.25, 0.34) and current velocities 

(0-0.5m/s) 
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Figure 6-13  Drag and lift force under various solidity ratio (Sn=0.16, 0.25, 0.34) and current 

velocities (0-0.5m/s) 

In figure 6-13, the drag and lift force seem to increase proportionally with the current velocity 

when the velocity is larger than 0.1 m/s. Figure 6-12 demonstrates that the relative volume 

decreases significantly, especially when the current velocity reaches to 0.5 m/s, the volume 

has deducted to around 40% of the original volume. The drag force tends to have larger 

increase than the lift force. It is also noticed that when the solidity ratio doubles (increase 

from 0.16 to 0.34), the drag force increases by 69% , the lift force increases by 52% under 

current velocity 0.5 m/s, yet the relative volume decreases by 11%. However, when the 

current velocity doubles (from 0.1m/s to 0.2m/s or 0.2m/s to 0.4m/s), the hydrodynamic 

forces and volume reduction almostly doubles, too. Then we can conclude that current 

velocity has a larger impact on the volume reduction than solidity ratio. Figure 6-14 shows 

how the maximum mooring tension changes with the current velocity and solidity ratio. 

 

Figure 6-14  Maximum mooring tension under various solidity ratio (Sn=0.16, 0.25, 0.34) and current 

velocities (0-0.5m/s) 

From figure 6-14, it can be observed that the maximum mooring tension is almost 

proportional to the current velocity when current velocity is more than 0.1 m/s, and increases 
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with the increasing current velocity and solidity ratio. When Sn=0.34, the mooring tension 

increases significantly by 9 times when current velocity increases from 0.1 m/s to 0.5 m/s. 

However, when the Sn almost doubles (increase from 0.16 to 0.34), mooring tension increases 

less than 57%. The current effect to the hydrodynamic force is much larger than solidity ratio. 

6.3.3 Sensitive study on bottom weights 

To investigate the effect of the various bottom weights to the fish cage, 3 different bottom 

weights were chosen. Here we increase the weight of bottom ring by its density, so that the 

hydrodynamic force in the bottom ring won’t change accordingly. The relative floater 

parameters also changed to let the floater half submerged in the water (Table 6-6).  

Models 

Floater Bottom weights 

Radius/m Thickness/m Radius/m Density/(kg/m
3
) 

Submerged 

weight/N 

b1(Original) 0.15 0.034 0.05 2000 4725 

b2 0.15 0.0293 0.05 2500 7145 

b3 0.15 0.0239 0.05 3000 9566 

Table 6-6  Parameters of the fish cage models 

The models with different bottom weights were simulated under current velocity from 0.1-0.5 

m/s for 500s, when all the models have reached to the balance state (overview of simulation 

in Appendix 1). The deformation, hydrodynamic force, mooring tension and stresses in 

critical place were studied. Figure 6-13 shows the deformation as a result of the numerical 

simulation with various solidity ratio and current velocities.  

b1                    b2                   b3 

v=0.1m/s 

                   

v=0.2m/s 

            

v=0.3m/s 
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v=0.4m/s 

   

v=0.5m/s 

  
Figure 6-15  Net pen deformations as a result of numerical simulation with three bottom weights and 

current velocities (0-0.5m/s)  

Figure 6-15 shows that the increasing bottom weights tends to preserve the volume, although 

this effect may not be so obvious. Current velocity seems to have much more obvious effect 

to the relative volume. Figure 6-16 shows the relative volume under various current velocity 

and bottom weight. Figure 6-17 compares the drag and lift force in various bottom weight 

condition.  

 

Figure 6-16  Volume reduction with three bottom weights and current velocities (0-0.5m/s) (bw 

represent bottom weight) 
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Figure 6-17  Drag and lift forces with three bottom weights and current velocities (0-0.5m/s) 

In figure 6-16, it can be seen that with the increase of the bottom weights, the drag force 

increases almost proportionally with the current velocity when current velocity is larger than 

0.1 m/s, but relative volume of the fish cage decreases proportionally with the current velocity 

when current velocity is larger than 0.2 m/s.  

Under the velocity less than 0.3m/s, the lift force with the smallest bottom weight is largest. 

With the increase of the bottom weight, the inclination of the net truss decreases, the relative 

lift force decreases with the decreasing inclination angle. However, when the current speed is 

larger than 0.3 m/s, the lift force increases with the increasing bottom weight. Both the drag 

and lift force increases with increasing current speed and are approximately proportional with 

the velocity larger than 0.1 m/s.  

When the bottom weight increases from bw1 to bw3 under the current velocity 0.5m/s, the 

drag force increases by 31%, and lift force increases by 42%, yet the relative volume has been 

enlarged by only 10% of the original volume. Compared with the sensitivity study on the 

solidity ratio, we can see that the interaction of the hydrodynamic force and deformation is 

complex. There is no direct relation with the hydrodynamic force and relative volume. The 

increase of the drag and lift force does not mean the relative volume will increase (or 

decrease). 

Figure 6-18 and 6-19 shows that the stresses in critical place changes with different bottom 

weights under various current conditions.  
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Figure 6-18  Stresses on the net element AE and BF near the floater with three bottom weights and 

current velocities (0-0.5m/s) 

 

Figure 6-19  Stresses on the net element CM and DN near the bottom of the bottom ring with three 

bottom weights and current velocities (0-0.5m/s) 

The stress at AE which is in the front net is larger than BF which lies in the rear net, and the 

difference goes larger as the current velocity increases. The stress at DN is a little larger than 

that at CM. That is due to the increasing lift force tends to incline the floater and bottom ring, 

the deformation will be enlarged when the current velocity increases, causing unequal stress 

on the net with the same height but different positions.  

Compared between the figure 6-18 and 6-19, it is easy to find the stress on the net near the 

floater increase significantly with the increase of the current velocity while that near the 

bottom ring does not change much. The motion of the floater is confined horizontally due to 

the mooring lines, so larger stress is induced when current velocity is high. However, the 

bottom ring is free to move both horizontally and vertically, so the wave energy on the bottom 

ring is transferred to the kinetic energy of the bottom ring without causing much stress 

variation on the net close to it. 
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The stress near the floater increases with the current velocity, and is nearly proportional to the 

current velocity squared. The stress near the bottom rings does not seem to change much in 

the front.  

Figure 6-20 illustrates the maximum mooring tension changes under three bottom weights 

and current (v=0-0.5m/s) conditions.  

 

Figure 6-20  Maximum mooring tensions for fish cage with three bottom weights and current 

velocities (0-0.5m/s) 

Figure 6-20 shows that the maximum mooring tension also increases with the current velocity 

and added weight of bottom ring. When the submerged weight of the bottom ring nearly 

doubles (from bw1 to bw3), the maximum mooring tension increases by 15% at the current 

velocity 0.5 m/s. The current velocity has a larger effect to maximum mooring tension than 

the added weight of the bottom ring. The mooring tension is approximately 0.7 times of the 

drag force, and it shares the similar trend as the drag force.  

6.3.4 Sensitive study on wave-current conditions 

When the fish cage is in the open sea, the wave and current usually happen together. Here the 

responses of the fish cage under waves (Table 6-7) and currents (v=0-0.5 m/s) were studied. 

The model was simulated in every condition for 500 seconds (overview of simulation in 

Appendix 1), when the models in all states have reached to balance. Response of deformation, 

hydrodynamic force, mooring tension and stresses in critical place were studied. Figure 6-19 

shows the deformation in one period as a result of the numerical simulation when the fish 

cage is under wave (H=3m, T=8s) and current (v=0.3m/s).  

Waves 

H=1m, T=4s H=1m, T=8s H=1m, T=12s 

H=2m, T=4s H=2m, T=8s H=2m, T=12s 

H=3m, T=4s H=3m, T=8s H=3m, T=12s 
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Table 6-7  Wave conditions with different heights and periods 

A. Deformation 

Figure 6-21 describes the deformation of the fish cage under wave (H=3m, T=8s) and current 

(v=0.3m/s) in one period when the fish cage has reached to balance. 

 

t =0T                       t =T/8                       t =2T/8 

 
t =3T/8                       t =4T/8                      t =5T/8   

 

t =6T/8                       t=7T/8                       t=T 

Figure 6-21  Deformation of fish cage under wave (H=3m, T=8s) and current (v=0.3m/s) in one wave 

period when the fish cage reached to balance 

Figure 6-21 shows that the deformation of the floater is very obvious, but the bottom ring 

does not deform much. It seems the net deformation does not synchronize with the floater, but 

the inclination of the net is very obvious at every time point. The net inclination is mainly due 

to the current effect. The shape of the cage is changing all the time in a wave period, but the 

volume of the fish cage does not seem to change much.  

B  Mooring tensions  

Mooring tension was estimated under wave and current. Figure 6-22 and 6-23 shows how the 

mooring tension reacts with different wave heights and periods after the model has reached to 

the balance state.  
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Figure 6-22  Mooring tension under wave (h=1m, 2m, 3m, t=8s) and current (v=0.4m/s) 

 

Figure 6-23  Mooring tension under wave (h=3m, t=4s, 8s, 12s) and current (v=0.4m/s) 

Under the same period, the mooring line with the largest wave height has the maximum 

mooring tension and maximum tension variation. If we set the wave height as a constant, the 

mooring tension has its maximum value when the period is shortest, and maximum variation 

when the period is largest. The variation of the mooring tension between the maximum value 

and the minimum value does not change much when the wave period increases from 8s to 12s. 

The mooring line suffers the tension variation when there is wave, which would induce 

fatigue problem for the mooring line. 

The maximum mooring tension is an important parameter when we study the failure of the 

mooring line. Figure 6-24 shows how the wave period has affected the maximum mooring 

tension when the wave height is set as a constant. 

a) 
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b) 

 

c) 

 

Figure 6-24  Maximum mooring tension under wave (different period) and current 

From the figure 6-24, we can detect that irrespective of the wave height, the maximum 

mooring tensions are quite similar under longer wave (T=8s, 12s) and current condition. 
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However, with the shorter period (T=4s), the maximum mooring tension increases 

significantly, and reaches its highest (2.67*10
4 
N) when the wave height is largest (H=3m). In 

this case, the shorter wave period could induce the largest maximum mooring tension, while 

the maximum mooring tension does not change much under wave with longer period and 

current condition.  

Figure 6-25 shows the how maximum mooring tension varies under wave and current when 

the wave height increases and the wave period is a constant. 

a) 

 

b) 

 

c) 
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Figure 6-25  Maximum mooring tension under wave (different heights) and current 

In figure 6-25, we can conclude that the higher the wave height is, the larger the maximum 

mooring tension is. Compared with figure 6-25, we could also find the wave height has larger 

impact to the maximum mooring line than wave period. 

In all, the wave with higher wave height and shorter period will have maximum mooring 

tension. Here higher wave height and longer period can also be explained as higher wave 

steepness (H/L), as the wave length is proportional to the wave period T according to the airy 

wave theory. This phenomenon can be explained from Morison’s equation (2-16). The 

shortest wave period has the fastest fluid particle speed, and the larger speed means the larger 

drag force which in turn will be transmitted to larger mooring tension.  

C   Maximum stress in critical place 

Figure 6-26 and 6-27 shows the maximum stress in element AE and BF under wave (different 

wave height) and current. When current velocity is 0, there is wave only.  

 

Figure 6-26  Maximum stresses in element AE under wave and current 
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Figure 6-27  Maximum stresses in element BF under wave and current 

Figure 6-26 shows steady increase of stress on element AE with current velocity and wave 

height. Stress is almost proportional to the current velocity squared. The stress increases by 

less than 59% when the wave height triples (from h=1m to 3m). In figure 6-27, the stress is 

larger in pure wave condition than in wave-current (v=0.1 m/s) condition, especially when the 

wave is large. It can be concluded that small current in wave-current (v=0.1 m/s) condition 

can help to reduce the stress in the rear part of the fish cage due to pure wave in large wave 

condition.  

There is severe slack under wave (H=3m, T=8s) and current (v=0.3m/s), which can be seen in 

figure 6-28. The net is more likely to have slack problem near the floater than near the bottom 

ring in large wave and current condition as the movement on the floater is much larger than 

the bottom ring. Slack is more likely to happen when the movement of the floater is too large. 

Slack can induce very large stress suddenly causing severe consequence to the net such as 

fatigue or even broken, especially on the joints of the floater and the net, which needs to be 

avoided in designing the fish cage.  
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Figure 6-28  Stress in element BF under wave (H=3m, T=8s) and current (v=0.3m/s) 

D   Hydrodynamic force 

As we know, the wave could increase the maximum hydrodynamic force for the net pen 

according to Morison’s equation. Figure 6-29 shows the maximum drag and lift force of the 

net pen under wave-current condition compared with that in pure current condition. The trend 

of the maximum drag and lift under wave-current conditon seemed to be parallel with that 

under pure current. That could be explained as the wave exerted the same hydrodynamic force 

to the net pen irrespective of current velocity. The wave induced larger drag force than lift 

force.  

 

Figure 6-29  Maximum drag and lift forces of the fish cage under wave (H=1m,T=8s) and current 

6.4 Summary 

In this chapter, the truss model was applied in the full scale fish cage. Sensitivity study on the 

interaction of the floater and the net was study first. It was found that the interaction was 

critical when predicting the responses of the whole fish cage. Then the truss model was 

improved using a flexible floater. Sensitivity study on different bottom weights, solidity ratios 

and wave-current conditions were discussed. Response of deformation, volume, 

hydrodynamic force, maximum mooring tension and stresses were compared.  

We can conclude that bio-fouling is a serious problem that can induce large hydrodynamic 

force and mooring tension, resulting in severe volume reduction. Added bottom weight can 

help to preserve the volume of the net. The wave can cause heavy load to the mooring tension, 

drag and stresses, yet has less influence to the net pen volume. The hierarchy of the 

parameters that affect the responses of the net pen is current velocity, wave height and wave 

period. 
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7. Conclusions and future work 

7.1 Conclusions 

This thesis has addressed the dynamic analysis of gravity based fish cage under various 

environment conditions. Firstly, this thesis illustrated the state-of-art technology development 

of fish cages and current research progress on the dynamic responses. Then the basis theories 

to analyze the dynamic responses of fish cage were presented. Before studying the complex 

responses of the fish cage, the methodology was verified with a simple beam. Response of the 

only floater under wave and current was studied, too. For the whole fish cage model, both 

truss and mass spring model were established to test the responses on a model scaled fish 

cage, and validated with the numerical and experimental results from previous study. Finally 

responses of the full scale fish cage were studied through truss model. Sensitivity study on the 

interaction of the floater and the net, solidity ratio, bottom weights, and wave-current 

condition were studied. The conclusions are as follows: 

1. Morison’s equation is the main method to calculate the hydrodynamic force on the fish 

cage. Drag and mass coefficient are very crucial to decide the hydrodynamic force. 

2. The single floater will move and deform under wave and current, and this will affect the 

responses of the net. Inversely, the responses of the net will also influence the floater. 

The interaction effect needs to be taken into consideration when studying the responses 

of the fish cage. 

3. Both truss model and mass spring model can well simulate the responses of a scaled fish 

cage under current. Numerical results are in accordance with the numerical and 

experimental results from previous study.  

4. Sensitivity study about a full scale model on solidity ratio, bottom weight and 

wave-current effect shows that the hydrodynamic force and deformation influence each 

other, and there is deviation between the simulation force results and that calculated from 

Morison’s equation. Increasing solidity ratio will enlarge the hydrodynamic force, and 

decrease the relative volume of net pen. Added bottom weight will increase both the 

hydrodynamic force and the relative volume of the net pen. The wave can cause heavy 

load to the mooring tension, drag and stresses, yet has less influence to the net pen 

volume. 

5. Compared the responses of the fish cage induced by current velocity, wave height and 

wave period seperately, the current velocity has the largest effect, then wave height. The 

wave period has least influence. 
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7.2 Error Sources 

Due to inexperience and limited knowledge, there are some possible errors in the thesis. 

1. When extracting the stress data from the truss model, the nodal stress value calculated 

from two adjacent elements were compared, there was deviation between two stress 

values at the same point. This indicates that the model mesh needs to be refined until the 

nodal stress values calculated from different element are close enough. 

2. During simulation, we take hydrodynamic coefficients as fixed values, but in reality it 

changes with different solidity ratio Sn, Reynolds number Re, and attack angle Ɵ, so the 

hydrodynamic force results may include some uncertainties.  

3. Truss model and mass spring model only compare in pure current condition with attack 

angle 90 degree, yet we do not know how these two models behave in other 

environmental conditions such as different attack angles, or wave conditions. More 

comparisons in various conditions are required. 

4. Current velocity will be reduced after it passed the front net in the cage. However, this 

velocity reduction factor is not considered in the thesis model, so the responses may have 

some deviations with its true response. 

5. Time domain curves showed in thesis may not quite smooth, and this may affect the 

maximum value. It is because the maximum increment size is set as 0.1, if the maximum 

increment size is to be set as 0.01 or smaller, the results will be much better, although the 

calculation will be much slower. 

7.3 Suggestions for future work 

This thesis has provided the preliminary study of the responses of fish cage under wave and 

current. In the future, the following work is recommended: 

1) The floater model needs to be updated in ABAQUS program to improve the buoyancy 

calculation when the structure is partly submerged. In ABAQUS the floater is not stable 

in static analysis as it should be when half submerged. Apart from the buoyancy 

distribution method, the user defined function may be a good solution for this problem. 

2) The drag coefficient CD and mass coefficient CM changes with different solidity ratio Sn, 

Reynolds number Re, and attack angle Ɵ. The hydrodynamic coefficients should be 

changing according to various conditions. To correctly define the hydrodynamic 

coefficient in ABAQUS is very crucial for the simulation. 
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3) More sensitivity study on wave condition, various attack angles or other conditions 

should be involved to decide which model between truss and mass spring is better for 

fish cage simulation.  

4) In the mass spring model, the knots are modeled as cylinders. Large error will come up 

when the flow angle is changed, and it will be more accurate if the knot cylinder is 

modeled as spherical, although in this thesis it matters not as we only simulate under the 

current with 90°attack angle.  

5) In this thesis, we have discussed the responses of fish cage in regular wave and current. 

However, regular wave rarely exists in reality; so study of responses in irregular wave is 

more significant for designing the structure in open ocean area. Response of fish cage in 

irregular wave and how the mooring lines behave with the responses will be studied in 

the future. 

6) A fish farm normally contains several fish cages with certain distances, and the 

responses of one cage will affect the responses of others. Or when a boat passes by a fish 

cage, responses of the fish cage will be affected. How large this will affect the responses 

of the fish cage and the layout of the fish farm need to be investigated. 

7) In the fish cage model, we have considered the horizontal mooring lines, but in fact, the 

mooring lines of the fish cages are consisted of horizontal mooring lines and vertical 

mooring lines (as in figure 1-2). The reaction of the vertical mooring lines will be 

included in the future. In the model that had been built, we take the horizontal mooring 

as a nonlinear spring to simplify the problem, but it cannot fully represent the dynamic 

behavior of the mooring line. The model of the mooring lines needs to be updated. 

8) Wake flow means flow velocity reduction will happen when the flow passes a piece of 

net, the drag force will be reduced, and deformation of the rear net will be less severe. 

How large this phenomenon has affected the deformation of the fish cage and how this 

effect will help decide the array of the fish farms will need to be studied further. 
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Appendices 

Appendix 1: Overview of the simulation 

All the simulations are done in a 8-cores work station with 32GB memories. The details of the simulations are listed as below.  

Items Models Responses 
Environment 

conditions 

Boundary 

conditions 
Incremental size Time 

Approximate 

time needed 

Response of the single 

floater 
Single floater 

Deformation/displacemen

t 

Wave(H=5m,T=8s) and 

current(v=1m/s) 
Mooring fixed 

Initial=0.0001,min

=10
-6

,max=0.01 
24s 20 mins 

Convergence study on 

model scaled fish cage 

Fish cage  

(truss) 

Deformation/drag/lift/vol

ume reduction 

Current (v= 

0.21,0.34,0.5 m/s) 
Floater fixed 

Initial=0.0001,min

=10
-6

,max=0.01 
10s 10-40 mins 

Sensitivity study on 

model scaled fish cage 

Fish cage (mass 

spring)  

Deformation/drag/lift/vol

ume reduction 

Current (v= 

0.12,0.21,0.34,0.52 

m/s) 

Floater fixed  
Initial=0.0001,min

=10
-6

,max=0.01 
10s 8-16 hours 

Sensitivity study on full 

scale cage (interaction 

of the net and floater) 

Single floater 

Displacement/Stress Wave(H=5m,T=8s) 

Mooring fixed 

Initial=0.0001,min

=10
-6

,max=0.1 

120s 3 hours 

Fish cage (truss) Mooring fixed 120s 24 hours 

Fish cage (truss) Floater fixed  120s 10-40 mins 

Sensitivity study on full 

scale cage (solidity 

ratio) 

Fish cage 

(improved truss) 

Deformation/drag/lift/vol

ume reduction/critical 

stress /mooring load 
Current (v= 0-0.5 m/s) Mooring fixed 

500s 10-40 mins 

Sensitivity study on full 

scale cage (bottom 

weights) 

Fish cage 

(improved truss) 

Deformation/drag/lift/vol

ume reduction//critical 

stress /mooring load 

500s 10-40 mins 

Sensitivity study on full 

scale cage 

(wave-current 

condition) 

Fish cage 

(improved truss) 

Deformation/drag/lift/stre

ss in critical/maximum 

mooring load 

Wave(H=1m,2m,3m,T=

4s,8s,12s) and 

current( v=0-0.5m/s) 

Mooring fixed 500s 2-6 hours 
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Appendix 2: MATLAB transcripts 

a) Current force 

This transcript uses MATLAB CALFEM module to calculate the current force on the beam. 

 

clear all 

close all 

clc 

Edof=[1 1 2 3 4 5 6;2 4 5 6 7 8 9] %define the dof of beams 

Ex1=[0 0] 

Ey1=[0 5] 

Ex2=[0 0] 

Ey2=[5 10]  

E=2.1e11%Elastic modulus, steel 

A=3.14e-4%cross section area of beam 

I=7.85e-9%inertia of beam 

ep=[E A I] 

eq=[0,-10.25]%uniform current force 

[Ke1,fe1]=beam2e(Ex1,Ey1,ep,eq)%% calculate stiffness and force of beam element1 

[Ke2,fe2]=beam2e(Ex2,Ey2,ep,eq)%% calculate stiffness and force of beam element2 

K=zeros(9)%% define the stiffness matrix 

f=zeros(9,1)%% define the matrix of force 

[K,f]=assem(Edof(1,:),K,Ke1,f,fe1)%% add the stiffness contr. from element 1 

[K,f]=assem(Edof(2,:),K,Ke2,f,fe2)%% add the stiffness contr. from element 2 

BC=[1 0;2 0;3 0;7 0;8 0;9 0]%Boundary conditions 

[a,r]=solveq(K,f,BC)%calculate the displacement 

r=K*a-f%get the reaction force 

Ed=extract(Edof,a)%add displacement 

es1=beam2s(Ex1,Ey1,ep,Ed(1,:),eq,11)%add displacement contr.  

es2=beam2s(Ex2,Ey2,ep,Ed(2,:),eq,11)%add displacement contr. 

figure(1) 

ploTar1=[2 4 1];ploTar2=[1 2 1] 

eldraw2(Ex1,Ey1,ploTar1)%draw the original element 1 

eldraw2(Ex2,Ey2,ploTar1)%draw the original element 2 

sfac=scalfact2(Ex2,Ey2,Ed(2,:),0.2)%define the vector of displacement 

eldisp2(Ex1,Ey1,Ed(1,:),ploTar2,sfac)%draw the deformed element 1 

eldisp2(Ex2,Ey2,Ed(2,:),ploTar2,sfac)%draw the deformed element 2 
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figure(2) 

ploTar2=[2 4] 

sfac=scalfact2(Ex2,Ey2,es2(:,2),0.2) 

eldia2(Ex1,Ey1,es1(:,2),ploTar2,sfac)%draw the shear force of element 1 

eldia2(Ex2,Ey2,es2(:,2),ploTar2,sfac)%draw the shear force of element 2 

figure(3) 

sfac=scalfact2(Ex2,Ey2,es2(:,2),0.2) 

eldia2(Ex1,Ey1,es1(:,3),ploTar2,sfac)%draw the moment of element 1 

eldia2(Ex2,Ey2,es2(:,3),ploTar2,sfac)%draw the moment of element 2 

 

b) wave force (linear stretching 1) 

This transcript is used to calculate the wave force using the linear stretching 1 method (as in 

figure 3-1). 

 

D=0.1;p=1025;CM=2;g=9.8;k=0.5236;w=2.2652;d=10;H=1.5; 

CD=1; 

syms z t; 

f1=(pi*(D^2)/4)*p*CM*(H/2)*g*k*exp(k*z)*cos(w*t); %inertia force 

f2=p*CD*D*((H/2)*g*k/w)^2*exp(2*k*z)*sin(w*t)*abs(sin(w*t))/2; %drag force 

f3=(pi*(D^2)/4)*p*CM*(H/2)*g*k*cos(w*t); 

f4=p*CD*D*((H/2)*g*k/w)^2*sin(w*t)*abs(sin(w*t))/2; 

  t=0:0.1:6; 

  if (sin(w*t) < 0) %linear stretching 

   f=int(f1+f2,z,'0.75*sin(2.2652*t)',-10); 

  else 

    f=int(f1+f2,z,0,-10)+int(f3+f4,z,'0.75*sin(2.2652*t)',0); 

  end; 

 F=subs(f); 

f5=f1+f2; 

t=0:0.1:6; 

f6=int(f5,z,'H*sin(w*t)/2',-10);   

F1=subs(f6); 

plot(t,F,t,F1,'--k','linewidth',2) 

xlabel('Time/s'); 

ylabel('Force/N'); 

title('Wave force when H=1.5m') 
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c) wave force (linear stretching 2) 

This transcript is used to calculate the wave force using the linear stretching 2 method (as in 

figure 3-1). 

 

D=0.3;p=1025;CM=2;g=9.8;k=0.063;w=0.785;d=60;H=*; 

CD=1; 

syms z t; 

f1=(pi*(D^2)/4)*p*CM*(H/2)*g*k*(exp(k*z))*cos(w*t); %inertia force 

f2=p*CD*D*((H/2)*g*k/w)^2*(exp(2*k*z))*sin(w*t)*abs(sin(w*t))/2; %drag force 

f=f1+f2; %wave force 

t=0:0.1:20; 

f3=int(f,z,0.5,-60); 

F=subs(f3); 

subplot(211) 

plot(t,F) 

xlabel('Time/s'), 

ylabel('Force/N'), 

title('Wave force when H=*m') 

maximum(F) 

 

 

d) Polyarea 

The relative volume is the sum of the horizontal cross-section multiplied by the average 

thickness of the section layer.  This transcript is used to calculate the area of the section 

layer.  

 

clear;clc; 

a=xlsread('test1.xlsx','10m'); % coordinates of all the points in the deformation fish cage 

for i=1:1:64 

X(i)=a(i,9); 

Y(i)=a(i,10); 

Z(i)=a(i,11);  

H(1)=sum(Z)/64; 

B(1)=polyarea(X,Y) % polyarea of the floater   

end     

for k=0:1:19 
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for i=1:1:128 

X(i)=a(i+128*k+64,9); 

Y(i)=a(i+128*k+64,10); 

Z(i)=a(i+128*k+64,11); 

end 

X(129)=a(1+128*k+64,9); 

Y(129)=a(1+128*k+64,10); 

H(k+2)=sum(Z)/128; % average height of every net layer 

B(k+2)=polyarea(X,Y) % polyarea of the every net layer 

end 
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Appendix 3: ABAQUS transcripts 

a) Scaled truss model 

This transcript is used to build the scaled truss fish cage model.  

 

*Heading 

** Job name: scaled truss model Model name: Model-1 

** Generated by: ABAQUS/CAE 6.11-1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Part-1 

*Node% define the coordinate of the nodes 

1,  0.7040,  0.0000,  0.0000 

2,  0.7005,  0.0701,  0.0000 

3,  0.6900,  0.1395,  0.0000 

……. 

3907, 0.6727, -0.2075, -1.5534 

*Element, type=B31 

1, 1, 2% define the element of thefloater 

 

2, 2, 3 

3, 3, 4 

…… 

63, 63, 1 

5136, 3860, 3876% define the element of the bottom ring 

5137, 3861, 3877 

5138, 3862, 3878 

5139, 3863, 3879 

5140, 3864, 3880 

…….. 

5166, 3890, 3906 

5167, 3891, 3907 

*Element, type=T3D3% define the element of the 3-D truss 

64, 64, 65, 66 

65, 66, 67, 68 
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66, 68, 69, 70 

67, 70, 71, 72 

……. 

2599, 2578, 3859, 3875 

*Nset, nset=floatingcollar, internal, generate 

   1,  63, 1 

*Elset, elset=floatingcollar, internal, generate 

   1,  63, 1 

 *Nset, nset=truss, internal, generate 

 64, 3843,1 

*Elset, elset=truss, internal, generate 

 64, 2599,1   

*Nset, nset=bottomweight, internal 

3860, 3861, 3862, 3863, 3864, 3865, 3866, 3867, 3868, 3869, 3870, 3871, 3872, 3873, 3874, 3875,  

3876, 3877, 3878, 3879, 3880, 3881, 3882, 3883, 3884, 3885, 3886, 3887, 3888, 3889, 3890, 3891,  

3892, 3893, 3894, 3895, 3896, 3897, 3898, 3899, 3900, 3901, 3902, 3903, 3904, 3905, 3906, 3907,  

*Elset, elset=bottomweight, internal 

5136, 5137, 5138, 5139, 5140, 5141, 5142, 5143, 5144, 5145, 5146, 5147, 5148, 5149, 5150, 5151,  

5152, 5153, 5154, 5155, 5156, 5157, 5158, 5159, 5160, 5161, 5162, 5163, 5164, 5165, 5166, 5167,  

** Section: Section-1  Profile: Profile-2 

*Solid Section, elset=truss, material=truss 

0.00001256 

** Section: Section-3  Profile: Profile-2 

*Beam Section, elset=bottomweight, material=bottomweight, temperature=GRADIENTS, 

section=CIRC 

0.0252 

0,1,0 

** Section: Section-1  Profile: Profile-1 

*Beam Section, elset=floatingcollar, material=floatingcollar, temperature=GRADIENTS, 

section=CIRC 

0.02 

0.,0.,-1. 

*End Part 

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 



99 

**   

*Instance, name=Part-1-1, part=Part-1 

          0.,           0.,          2. 

*End Instance 

** 

*Nset, nset=floatingcollar, instance=Part-1-1, generate 

   1,  63,  1 

*Elset, elset=floatingcollar, instance=Part-1-1, generate 

   1,  63,  1 

*Elset, elset=truss, instance=Part-1-1, generate 

 64,  2599,  1 

*Nset, nset=bottomweight, instance=Part-1-1 

3860, 3861, 3862, 3863, 3864, 3865, 3866, 3867, 3868, 3869, 3870, 3871, 3872, 3873, 3874, 3875,  

3876, 3877, 3878, 3879, 3880, 3881, 3882, 3883, 3884, 3885, 3886, 3887, 3888, 3889, 3890, 3891,  

3892, 3893, 3894, 3895, 3896, 3897, 3898, 3899, 3900, 3901, 3902, 3903, 3904, 3905, 3906, 3907,   

*Elset, elset=bottomweight, instance=Part-1-1 

5136, 5137, 5138, 5139, 5140, 5141, 5142, 5143, 5144, 5145, 5146, 5147, 5148, 5149, 5150, 5151,  

5152, 5153, 5154, 5155, 5156, 5157, 5158, 5159, 5160, 5161, 5162, 5163, 5164, 5165, 5166, 5167,   

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=floatingcollar 

*Density 

953., 

*Elastic 

 9.5e+8, 0.3 

*Material, name=truss 

*Density 

1125., 

*Elastic 

 8.2e+07, 0.3 

*Material, name=bottomweight 

*Density 

4000., 

*Elastic 
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9.5e+8, 0.3 

*AQUA 

-1,2,9.8,1025 

0.13,0,0,2 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, inc=100000000 

*Dynamic 

0.0001,10.,1e-6,0.1 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

floatingcollar, PINNED 

**  

** LOADS 

**  

** Name: Load-1   Type: Gravity 

*Dload 

bottomweight, GRAV, 9.8, 0., 0., -1. 

bottomweight, PB, 1, 0.0504 

bottomweight, FDD, 1, 0.0504, 2.3 

** Name: Load-2   Type: Gravity 

*Dload 

truss, GRAV, 9.8, 0., 0., -1. 

truss, PB, 1, 0.004 

truss, FDD, 1, 0.004, 2.3 

**  

** OUTUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTUT: F-OuTut-1 
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**  

*Output, field 

*Node Output 

RF, U 

**  

*End Step 

 

b) Scaled mass spring model 

This transcript is used to build the scaled mass spring fish cage model. 

 

**Heading 

** Job name: 0311 Model name: Model-2 

** Generated by: ABAQUS/CAE 6.10-1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Part-1 

*Node 

1,  0.7070,  0.0000,  1.9736 

2,  0.7070,  0.0000,  1.9648 

……… 

60,  0.7070,  0.0000,  0.6184%define the knot cylinder nodes 

*Element, type=B31 

1, 1, 2 

2, 2, 3 

……… 

40, 59, 60%define the knot cylinder elements 

*Nset, nset=_PickedSet20, internal, generate 

 1,  60,  1 

*Elset, elset=_PickedSet20, internal 

 1,  2,  3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13,  14,  15,  16,  

 17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32,  

 33,  34,  35,  36,  37,  38,  39,  40 

** Section: Section-1  Profile: Profile-1 

*Beam Section, elset=_PickedSet20, material=truss, temperature=GRADIENTS, section=CIRC 
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0.004 

0,1,0 

*End Part 

** 

*Part, name=Part-2 

*Node 

1,  0.7066,  0.0265,  1.9296 

2,  0.7061,  0.0352,  1.9296 

……… 

189,  0.7066, -0.0265,  1.9296%define the twine cylinder nodes 

*Element, type=B31 

1, 1, 2 

2, 2, 3 

……… 

126, 188, 189%define the twine cylinder elements 

 *Nset, nset=_PickedSet24, internal, generate 

 1,  189,  1 

*Elset, elset=_PickedSet24, internal, generate 

 1,  126, 1 

*Nset, nset=_PickedSet25, internal, generate 

 1,  189,  1 

*Elset, elset=_PickedSet25, internal, generate 

 1,  126, 1 

** Section: Section-1  Profile: Profile-1 

*Beam Section, elset=_PickedSet24, material=truss, temperature=GRADIENTS, section=CIRC 

0.004 

0, 0, -1 

*End Part 

**   

*Part, name=Part-3 

*Node 

1,  0.7070,  0.0000,  2.0000 

2,  0.7035,  0.0704,  2.0000 

……… 

63,  0.7035, -0.0704,  2.0000 

*Element, type=B31 



103 

  1,   1,   2 

  2,   2,   3 

……… 

 63,  63,  1 

*Nset, nset=_PickedSet3, internal, generate 

   1,  63, 1 

*Elset, elset=_PickedSet3, internal, generate 

   1,  63, 1 

** Section: Section-3  Profile: Profile-3 

*Beam Section, elset=_PickedSet3, material=floatingcollar, temperature=GRADIENTS, section=CIRC 

0.005, 

0.,0.,-1. 

*End Part 

**   

*Part, name=Part-4 

*Node 

1,  0.7070,  0.0000,  0.4966 

2,  0.6515,  0.2746,  0.4966 

……… 

48,  0.6756, -0.2084,  0.4466 

*Element, type=B31 

 1, 1, 17 

2, 2, 18 

……… 

32, 32, 48 

*Nset, nset=_PickedSet4, internal, generate 

   1,  48,  1  

*Elset, elset=_PickedSet4, internal, generate 

   1,  32,  1 

*Nset, nset=_PickedSet5, internal, generate 

   1,  48,  1  

*Elset, elset=_PickedSet5, internal, generate 

   1,  32,  1 

** Section: Section-3  Profile: Profile-3 

*Beam Section, elset=_PickedSet4, material=bottomweight, temperature=GRADIENTS, 

section=CIRC 

0.0252, 
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0.,1.,0. 

*End Part 

** 

*Part, name=Part-5 

*Node 

1, 0.7070, 0.0000, 1.9316 

2, 0.7070, 0.0000, 1.9296 

3, 0.7070, 0.0000, 1.9276 

……… 

60, 0.7070, 0.0000, 0.59 

*Element, type=B31 

1, 1, 2 

2, 2, 3 

3, 4, 5 

……… 

40, 59, 60 

*Nset, nset=_PickedSet20, internal, generate 

 1,  60,  1 

*Elset, elset=_PickedSet20, internal, generate 

 1,  40,  1 

** Section: Section-1  Profile: Profile-1 

*Beam Section, elset=_PickedSet20, material=truss, temperature=GRADIENTS, section=CIRC 

0.004 

0,1,0 

*End Part 

**     

** ASSEMBLY 

** 

*Assembly, name=Assembly 

** 

*Instance, name=Part-1-1, part=Part-1 

*End Instance 

**   

……… 

*Instance, name=Part-5-1-rad-63, part=Part-5 

0,0,0 
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0,0,0,0,0,1,354.2680 

*End Instance 

** 

*Nset, nset=mass1, internal, instance=Part-1-1, generate 

1,60,1 

……… 

*Nset, nset=mass2, internal, instance=Part-5-1-rad-63, generate% generate all the nodes 

1,60,1 

*Elset, elset=mass1, internal, instance=Part-1-1, generate 

1,40,1 

…… 

*Elset, elset=mass2, internal, instance=Part-5-1-rad-63, generate% generate all the elements 

1,40,1 

*Spring, elset=Springs/Dashpots-2-spring,nonlinear 

 

0,-1 

0,-0.5 

0,0 

41550,1 

83100,2 

*Element, type=SpringA, elset=Springs/Dashpots-2-spring% generate the springs  

1,Part-3-1.1,Part-1-1.1 

2,Part-3-1.2,Part-1-1-Rad-2.1 

3,Part-3-1.3,Part-1-1-Rad-3.1 

…….. 

5040,Part-5-1-Rad-63.59,Part-2-1-lin-20-1.187 

*Spring, elset=Springs/Dashpots-2-spring,nonlinear 

 

0,-1 

0,-0.5 

0,0 

8460,1 

16920,2 

*Element, type=SpringA, elset=Springs/Dashpots-2-spring 

5041,Part-5-1.60,Part-4-1.1 

5042,Part-5-1-rad-5.60,Part-4-1.2 
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…….. 

5056,Part-5-1-rad-61.60,Part-4-1.16% generate the springs used to hang the bottom weights 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=floatingcollar 

*Density 

953., 

*Elastic 

 9.5e+8, 0.3 

*Material, name=truss 

*Density 

1125., 

*Elastic 

 8.2e+07, 0.3 

*Material, name=bottomweight 

*Density 

4000., 

*Elastic 

9.5e+8, 0.3 

*AQUA 

-1,2,9.8,1025 

0.5,0,0,2 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, inc=1000000 

*Dynamic 

0.0001,10.,1e-8,0.01 

** 

** BOUNDARY CONDITIONS 

**  

** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 

*Boundary 
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floater, PINNED  

** LOADS 

**  

** Name: Load-1   Type: Gravity 

*Dload 

mass1, GRAV, 9.81, 0., 0., -1. % gravity for mass 1 

mass1, PB, 1, 0.008 %buoyancy for mass 1 

mass1, FDD, 1, 0.008, 4.6%drag for mass 1 

mass2, GRAV, 9.81, 0., 0., -1. 

mass2, PB, 1, 0.004 

mass2, FDD, 1, 0.004, 1.15 

bottom, GRAV, 9.81, 0., 0., -1. 

bottom, PB, 1, 0.0504 

bottom, FDD, 1, 0.0504, 1.15 

**  

** OUTUT REQUESTS 

**  

*Restart, write, frequency=50 

**  

** FIELD OUTUT: F-OuTut-1 

**  

*Output, field 

*Node Output 

RF, U 

**  

*End Step 
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