University of Stavanger DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE						
Studieprogram/ spesialisering:	V ²					
Konstruksjoner og materialer/ Konstruksjonsteknikk	Vårsemesteret, 2016					
Konsuuksjonsteknikk	Åpen					
Forfatter: Håkon Nilssen	Signatur forfatter)					
Fagansvarlig: Mudiyansele Sar	nindi Manjula K Samarakoon					
Veiledere: Eduardo Carlos I	Hennings-Marianyi					
Birgit Marie Teie	en Bryne					
Tittel på masteroppgaven: Revurdering av gaml	e bruers kapasitet					
Engelsk tittel: Re-evaluation of older bridges' o	capacities					
Studiepoeng: 30						
 Emneord: Oppjustering av bruklasse Mindre konservative brudekker med ikke lineare beregningsmetoder Bruer fra før 1970 	Sidetall: <u>49</u> + vedlegg/annet: <u>39</u> Stavanger, <u>15.06.2017</u> Date/year					

1 Sammendrag

I denne rapporten har to ulike brudekker blitt evaluert ved hjelp av lineare metoder og ikke lineare metoder. Brudekkene ble kalkulert etter ønske fra Statens Vegvesen som ønsker å utvide bruksområdet for gamle bruer typisk bygd før 1970-tallet. Hensikten med å beregne gamle bruer med ikke lineare metoder er at det er mer kostnadseffektivt enn å bygge nye bruer. Forholdsvis små justeringer kan være nok for å kunne benytte seg av mindre konservative analysemetoder.

De ikke lineare metodene som er benyttet er «Compressive Membran Action», CMA, en analysemetode som blir brukt i Storbritannia og i Canada, og bruddlinjemetoden. Standard for bruk av CMA til brukonstruksjoner er fritt tilgjengelig via Britenes statlige nettsteder. Bruddlinjeteorien er godt etablert og tilgjengelig i en rekke fagbøker.

Dårlig valg av håndberegningsmetoder førte til veldig store momenter ved bruk av den lineare metoden, noe som hadde gått fint hadde det blitt brukt et dimensjoneringsprogram i stedet. Bruddlinjeteorien, som er en ikke linear metode for analyse, gav gode resultater.

Selv om bruddlinjeteorien gav en kapasitet høyere enn belastningen, er det viktig å tenke på at brudekkene er gamle, og at viktige, men i en viss grad ukjente, parametere som betongstyrke, overdekning og generell standard på bruen vil kunne ha en stor innvirkning på den virkelige kapasiteten.

2 Innholdsfortegnelse

1	Sar	nmer	ndrag	2
2	Inn	holds	sfortegnelse	3
	2.1	List	e over tabeller	5
	2.2	List	e over figurer	6
3	Inti	roduk	ssjon	7
	3.1	Bak	grunn	7
	3.2	Opp	ogavens rammer	7
4	Teo	ori		8
	4.1	Bru	ddgrensetilstanden	8
	4.1	.1	Horisontale laster	8
	4.1	.2	Momentkapasitet	8
	4.1	.3	Skjærkraftkapasitet	1
	4.1	.4	Stripemetoden	12
	4.2	Bru	ddlinjeteorien 1	13
	4.2	.1	Fordeler og ulemper	14
	4.2	.2	Bruddlinjene 1	14
	4.2	.3	Formlene	6
	4.3	«Co	mpressive membrane action»	8
	4.3	.1	CMA i henhold til BD 81/02	8
	4.4	Bru	ksgrensetilstanden	9
	4.4	.1	Nedbøyningskontroll	20
	4.4	.2	Rissviddekontroll	20
	4.5	Last	ter og materialer	21
	4.5	.1	Trafikklaster	21
	4.5	.2	Permanente laster	24
	4.5	.3	Snølast	24
	4.5	.4	Vindlast	24
	4.5	.5	Kryp	25
	4.5	.6	Materialegenskaper, materialfaktorer og lastfaktorer	26
5	Brı	iene.		29
	5.1	Kile	en bru i Suldal	29
	5.2	Fos	s bru i Hyllestad	31
6	Fre	emgar	ngsmåte	33
	6.1	De l	lineare metodene	33
	6.2	Bru	ddlinjemetoden	36
7	Res	sultat	t 2	10
	7.1	Kile	en bru i Suldal ²	10
				~

7.1.1	Bruddgrensetilstanden	40
7.1.2	Bruddlinjemetoden	41
7.1.3	СМА	41
7.1.4	Bruksgrense	42
7.2 Fos	ss bru i Hyllestad	42
7.2.1	Bruddgrensetilstanden	42
7.2.2	Bruddlinjemetoden	43
7.2.3	СМА	44
7.2.4	Bruksgrense	44
8 Diskusj	on	45
8.1 Kil	en bru	45
8.2 Fos	s bru	45
8.3 Dul	ktilitet og bestandighet	45
9 Konklu	sjon	48
10 Referan	iser	49
11 Vedlegg	g	50
11.1 K	۲ilen bru	50
11.1.1	Laster	51
11.1.2	Bruddlinjemetoden	52
11.2 F	Soss bru	66
11.2.1	Laster	68
11.2.2	Bruddlinjemetoden	69
11.2.3	Duktilitetstets	82
11.2.4	СМА	83
11.2.5	Bruksgrensen	84

2.1 Liste over tabeller

Tabell 4.5.1: Trafikklaster for de ulike bruksklassene. Lastene må regnes om til linjelaster og	
fordelte laster etter behov.	. 23
Tabell 4.5.2: Tabell over bremselaster for de ulike bruksklassene. For spenn mellom 10 og 40	
meter finnes kreftene gjennom linear interpolasjon	. 24
Tabell 4.5.3: Tabell for C for vindkrefter i x-retning	. 25
Tabell 4.5.4: Materialegenskaper for betong i henhold til HB R412	. 26
Tabell 4.5.5: Materialegenskaper for stål i henhold til HB R412	. 27
Tabell 4.5.6: Materialfaktorer i henhold til HB R412	. 27
Tabell 4.5.7: Lastfaktorer i henhold til HB R412.	. 27
Tabell 4.5.8: Lastfaktorer for bruddgrensetilstanden.	. 28
Tabell 4.5.9: Lastfaktor til bruk for bruksgrensetilstanden.	. 28
Tabell 7.1.1: Dimensjonerende last på Kilen bru	. 40
Tabell 7.1.2: Skjærkraftkapasitet for Kilen bru	. 41
Tabell 7.1.3: Ytre arbeid påført Kilen bru	. 41
Tabell 7.1.4: Påført nedbøyningsmoment på Kilen bru i x-retning	. 42
Tabell 7.1.5: Påført nedbøyningsmoment på Kilen bru i y-retning	. 42
Tabell 7.1.6: Nedbøyning av Kilen bru.	. 42
Tabell 7.1.7: Rissvidde under Kilen bru	. 42
Tabell 7.2.1: Belastning av Foss bru i bruddgrensetilstanden.	. 42
Tabell 7.2.2: Skjærkraftkapasiteten til Foss bru	. 43
Tabell 7.2.3: Duktilitetskrav for bruk av bruddlinjemetoden. As i x-retning	. 43
Tabell 7.2.4: Duktilitetskrav for bruk av bruddlinjemetoden. As i y-retning	. 43
Tabell 7.2.5: Resultat av bruddlinjeteorien	. 44
Tabell 7.2.6: Nedbøyningsmoment i x-retning på Foss bru.	. 44
Tabell 7.2.7: Nedbøyningsmoment i y-retning på Foss bru	. 44
Tabell 7.2.8: Nedbøyning av Foss bru.	. 44
Tabell 7.2.9: Rissvidder under Foss bru.	. 44
Tabell 11.1.1: Laster for 1 meter stripe.	. 51
Tabell 11.1.2: Laster for 0,2 meter stripe.	. 51
Tabell 11.1.3: Trafikklast på 0,2 meter stripe kombinert den verste aksellasten og totalvekt	. 51
Tabell 11.2.1: Laster for 1 meter stripe.	. 68
Tabell 11.2.2: Laster for 0,2 meter stripe.	. 68
Tabell 11.2.3: Trafikklast på 0,2 meter stripe kombinert den verste aksellasten og totalvekt	. 68

2.2 Liste over figurer

Figur 4.1.1: Sammenheng mellom bru og koordinatsystem[1].	8
Figur 4.1.2: Bruddkriterium for ved påført trykk	9
Figur 4.1.3: Bruddkriterium for påført trykk og moment	9
Figur 4.1.4: Bruddkriterium for rent moment	. 10
Figur 4.1.5: Eksempel på et typisk M-N diagram	. 10
Figur 4.1.6: Omfordeling av vertikale krefter[4].	. 11
Figur 4.1.7: Lastfordeling på en plate fritt opplagt på alle kanter	. 12
Figur 4.1.8: Lastfordeling i de ulike snittene	. 13
Figur 4.1.9: Bjelkesegmenter hvor platen er fast innspent eller kontinuerlig på to ender	. 13
Figur 4.2.1: Illustrasjon av bruddmekanisme hvor platen er fritt opplagt	. 15
Figur 4.2.2: Illustrasjon over bruddmekanisme hvor platen er kontinuerlig eller fast innspent i	to
ender	. 15
Figur 4.2.3: En såkalt «fanning mechanism»	. 15
Figur 4.2.4: Frie ender kan rotere fritt, og det kan derfor dannes bruddmekanismer som illustre	rt
her	. 16
Figur 4.2.5: Illustrasjon til formel 4.2.16.	. 17
Figur 4.5.1: Bredde av lastfelt	. 22
Figur 4.5.2: Føringsavstand for to tunge kjøretøy begrenset av et gjerde og en føringskant	. 22
Figur 4.5.3: Bestemmelse av c _{fx} ut i fra diagram	. 25
Figur 5.1.1: Tverrsnitt av Kilen bru.	. 30
Figur 5.1.2: Armeringstegning av Kilen bru.	. 30
Figur 5.2.1: Tverrsnitt og armeringstegning for Foss bru	. 32
Figur 6.1.1: Statisk system for moment på bærebjelke ULS.	. 33
Figur 6.1.2: Statisk system for moment mellom bærebjelke ULS	. 33
Figur 6.1.3: Statisk system for moment i x-retning SLS	. 34
Figur 6.1.4: Statisk system for moment i y-retning SLS	. 34
Figur 6.1.5: Statisk system for moment på bærebjelke ULS	. 34
Figur 6.1.6: Statisk system for moment mellom bærebjelke ULS	. 35
Figur 6.1.7: Statisk system for moment i x-retning SLS	. 35
Figur 6.1.8: Statisk system for moment i y-retning SLS	. 35
Figur 6.2.1: Test 1	. 36
Figur 6.2.2: Test 2	. 36
Figur 6.2.3: Test 3	. 37
Figur 6.2.4: Test 4	. 37
Figur 6.2.5: Bruddmekanisme 1 mellom bærebjelkene	. 37
Figur 6.2.6: Bruddmekanisme 2 mellom bærebjelkene	. 38
Figur 6.2.7: Bruddmekanisme 3 mellom bærebjelkene	. 38
Figur 6.2.8: Bruddmekanisme 4 på utkraget dekke.	. 38
Figur 7.1.1: N-M diagram for plate mellom bærebjelker	. 40
Figur 7.1.2: N-M diagram for plate på bærebjelke.	. 40
Figur 7.2.1: N-M diagram for plate mellom bærebjelker	. 43
Figur 7.2.2: N-M diagram for plate på bærebjelke.	. 43
Figur 8.3.1: Effekt av korrosjon på bruddtøyning[13].	. 46
Figur 8.3.2: Krav til overdekning gjennom tidene. Statens vegvesens krav fra 1973 var noe bed	lre
enn for de andre norske standardene (30mm mot 25mm).[14]	. 46
Figur 8.3.3: Typisk kvalitet av plassering av armering i gamle bygg.[15]	. 46
Figur 11.1.1: Plantegningen til Kilen bru.	. 50
Figur 11.2.1: Plantegning til Foss bru.	. 66
Figur 11.2.2: Armeringsdetaljer for Foss bru.	. 67

3 Introduksjon

3.1 Bakgrunn

Denne masteroppgaven er skrevet som en avsluttende del av en toårig masterstudie i konstruksjoner og materialer gitt ved Universitet i Stavanger. Oppgaven er skrevet i samarbeid med Statens Vegvesen Bruseksjon region vest. Denne rapporten bygger rundt Statens Vegvesens ønske om å utvide bruksgrensen for gamle bruer på en kostnadseffektiv måte.

Mengden med trafikk har hatt en enorm vekst siden 1970-tallet, noe som slår dårlig ut for enkelte bruer bygd etter forskrifter før den tiden. Det har derfor i senere tid blitt et behov for å sortere slike bruer inn i kategorier for bærekapasitet og sette begrensning for tillatt aksellast og totalvekt. Å ha et vegnett med mange restriksjoner er en ulempe for trafikantene som blir berørt. Lange omveier fører til tapt tid, større reiseutgifter og dessuten mer klimagassutslipp.

Samtidig som Statens Vegvesen ønsker å ha et mer effektivt vegnett i Norge, blir det for dyrt å rive eksisterende gamle bruer og bygge nye. Et alternativ er å gjøre mindre konservative beregninger, og eventuelt gjøre små justeringer på bruene for å oppnå ønsket styrke. Det er slike alternativer som vil bli diskutert i denne rapporten.

3.2 Oppgavens rammer

I tillegg til linear teori, er to ikke-lineare metoder for plateberegninger valgt ut for nærmere undersøkelse; bryddlinjeteorien og teorien om det som på engelsk er kalt «compressive membrane action». Forutsetningene for bruken av disse metodene skal diskuteres, og, hvis det lar seg gjøres, skal disse metodene brukes på en gammel bru og sammenlignes med hverandre. Resultatene skal sammenlignes med den lineare metoden.

Oppgaven begrenses til å kun gjelde plateberegninger på bjelkebroer, beregninger av bjelkene som støtter plata frafaller.

4 Teori

4.1 Bruddgrensetilstanden

De lineare beregningene er gjort i henhold til NS-EN 1992-1-1:2004+NA:2008. Aktuelle formler for beregning av brudekket er formler for skjærkraftkapasitet og momentkapasitet. Momentfordelingene i platene er beregnet etter Arne Hillerborgs forenklede stripemetode.

Henvisninger til x-, y- og z-retninger følger for ordensskyld illustrasjonen gitt under.

Figur 4.1.1: Sammenheng mellom bru og koordinatsystem[1].

4.1.1 Horisontale laster

Det antas at horisontale laster påført brudekkets side i x-retning tas opp av første bærebjelke, og at de horisontale lastene påført mellom bærebjelkene fordeles mellom bærebjelkene etter følgende formel.

$$R_1 = -F * \frac{L_2}{L}, \qquad R_2 = -F * \frac{L_1}{L}$$
 4.1.1

Det antas at de horisontale kreftene i y-retning lager lokale soner med strekk- og trykkspenninger tilsvarende halve lasten fordelt på belastningsareal, og deretter tas opp av bærebjelkene.

Formelen for kapasiteten til aksielt trykk er gitt i følgende formel. ϵ_s er i dette tilfellet lik maksimal trykktøyning. For aksielt strekk, vil ikke betongen gi et bidrag til kapasiteten. Det antas da at brudd skjer ved stålets flytegrense.

$$N_{Rd} = f_{cd}(A_c - A_s) + E_s * A_s * \epsilon_s$$

$$4.1.2$$

4.1.2 Momentkapasitet

Kombinert aksiell belastning og bøyemoment blir løst ved å benytte seg av forenklede M-N diagrammer som presentert av Svein Ivar Sørensen[2]. Diagrammene er konstruert ved å plotte kapasiteten for moment- og aksialbelastning for tre ulike bruddkriterier.

Bruddkriterium 1 - brudd ved rent trykk

 N_1 er den samme som N_{Rd} fra formel 5.1.2. M_1 er null.

Bruddkriterium 2 - brudd ved trykk og moment med flyt i armeringsstålet

$$\alpha d = \frac{\epsilon_{cu}}{\epsilon_{cu} + \epsilon_{s1}} * d \tag{4.1.3}$$

$$\epsilon_{s2} = \frac{\alpha d - (h - d)}{\alpha d} * \epsilon_{cu}$$

$$4.1.4$$

Hvis $\epsilon_{s2} < \epsilon_{yd}$, så flyter ikke armeringsjernet tilhørende kraften S₂, da skal kraften regnes ut etter formel 5.1.25, ellers regnes S₂ på samme måte som S₁.

$$S_2 = A_{s2} * E_s * \epsilon_{s2} \tag{4.1.5}$$

$$S_1 = A_{s1} * f_{yd}$$
 4.1.6

$$T_c = 0.8 * f_{cd} * b * \alpha d$$
 4.1.7

$$N_2 = T_c - S_1 + S_2 \tag{4.1.8}$$

$$M_2 = T_c(0.5h - 0.4\alpha d) + S_1 * h'$$
4.1.9

9

Bruddkriterium 3 - brudd ved rent moment med stor tøyning i armeringsstålet

Bruddkriterum 3 forenkles ved å finne momentlikevekt om S_2 og ignorere T_c , da denne ligger så nært S_2 . Det ses bort fra N_3 som settes lik 0.

$$M_3 = f_{sd} * A_{s1} * h' 4.1.10$$

Maksimal verdi for aksialkraft reduseres, da det regnes med en viss eksentrisitet som gir et bidrag til moment. Øvre grense for aksialkraft finnes ved å finne skjæringspunktet mellom ligningen 5.1.11 og linjen som trekkes mellom punkt 1 og 2.

$$N = \frac{1}{e_o} * M \tag{4.1.11}$$

$$e_0 = \max\left[\frac{h}{30}; 20 \ mm\right]$$
 4.1.12

De ulike bruddkriteriene plottes i diagrammer som vist ovenfor. Hvis en plate er belastet slik at verdiene havner utenfor de heltrukne linjene, vil dette medføre brudd.

4.1.3 Skjærkraftkapasitet

Det antas at brudekkene ikke er spesifikt armert for skjærkrefter. Skjærkraftkapasiteten til et dekke uten skjærarmering er gitt i NS-EN 1992-1-1:2004 kapittel 6.2.2[3]. De relevante formlene er gitt under.

$$V_{Rd,c} = C_{Rd,c} * k * (100 * \rho_l * f_{ck})^{\frac{1}{3}} + k_1 * \sigma_{cp} \ge v_{min} + k_1 * \sigma_{cp}$$

$$4.1.13$$

$$C_{Rd,c} = \frac{k_2}{\gamma_c} \tag{4.1.14}$$

$$k = 1 + \sqrt{\frac{200}{d}} \le 2,0 \tag{4.1.15}$$

$$\rho_l = \sqrt{\rho_{lx} * \rho_{ly}} \le 0.02 \tag{4.1.16}$$

$$p_{lx} = \frac{A_{sx}}{b * d_x}$$
, $p_{ly} = \frac{A_{sy}}{b * d_y}$ 4.1.17

$$\sigma_{cp} = \frac{\sigma_{cx} + \sigma_{cy}}{2} \tag{4.1.18}$$

$$\sigma_{cx} = \frac{N_{Ed,x}}{A_{cx}}, \qquad \sigma_{cy} = \frac{N_{Ed,y}}{A_{cy}}$$

$$4.1.19$$

$$v_{min} = 0.035 * k^{\frac{3}{2}} * \sqrt{f_{ck}}$$
 4.1.20

Verdiene γ_c , k_2 , k_1 for trykkrefter og k_1 for strekkrefter er henholdsvis 1,5, 0,15, 0,3 og 0,1. σ_{cp} er negativt for strekk.

Eurokoden for trafikklaster på bruer gir tillatelse til å redusere konsentrerte laster på brudekket for lokale analyser som skjærkraftkapasitet. Dette skjer ved å utvide arealet til den konsentrerte lasten. Gjennom betong vil effektiv belastningsbredde og belastningslengde øke med halve betongplatetykkelse[4].

Figur 4.1.6: Omfordeling av vertikale krefter[4].

4.1.4 Stripemetoden

I NS-EN 1992-1-1:2004 kapittel 5.3.1 står det at plater kan anses å være enveisplater hvis forholdet mellom lengste og korteste spenn er 2 eller mer. Beregninger gjort av Svein Ivar Sørensen viser at en slik tilnærming kan være svært konservativ, og anbefaler at plater med lengdeforhold under 3 blir beregnet som toveisplater[2]. I denne rapporten vil slike tilfeller kalkuleres etter Arne Hillerborgs stripemetode.

Stripemetoden lansert av Arne Hillerborg er en metode for last og momentkalkulasjoner for toveisplater. Teorien går ut på at plater deles inn i flere platesegmenter avgrenset av linjer med null skjærkrefter. Disse platesegmentene fordeler last til tilhørende opplagere. Metoden er brukbar for alle lineare kalkulasjoner, og er anvendbar for ulike randbetingelser med både punkt og fordelt last.[5]

Linjene som dannes ved punktene med null skjærkrefter går i teorien i diagonaler fra hjørnene, ikke ulikt bruddmekanismene i neste kapittel, men prosedyren forenkles ved å dele platene inn i rektangler som vist under.

Figur 4.1.7: Lastfordeling på en plate fritt opplagt på alle kanter.

Figur 4.1.8: Lastfordeling i de ulike snittene.

I tilfeller hvor platen er kontinuerlig eller fast innspent, vil motstående bjelkesegment ha en redusert bredde. Bredden reduseres med faktoren α som anbefales å være mellom 0,35 og 0,39. Disse verdiene gir et forhold mellom negativt og positivt moment på forholdsvis 2,45 og 1,45.

Figur 4.1.9: Bjelkesegmenter hvor platen er fast innspent eller kontinuerlig på to ender.

4.2 Bruddlinjeteorien

Bruddlinjeteorien som den er i dag er i hovedsak kreditert til dansken K. W. Johansen som publiserte «Brudlinieteorier» i 1943[6]. Teorien benytter seg av stålets evne til å distribuere krefter etter at stålet har nådd sin plastiske momentgrense. Når stålarmeringen på et punkt når sin plastiske momentkapasitet vil det punktet oppføre seg som et ledd med et påført moment tilsvarende momentkapasiteten, dette kalles et plastisk ledd. Videre belastning fører til fri rotasjon i leddet, noe som betyr at kreftene må tas ett annet sted langs armeringsstålet. Plastiske ledd spres

fra et armeringsjern til et annet i det som kalles bruddlinjer, derav navnet bruddlinjeteori.

For at bruddlinjeteorien kan brukes, er det spesielt viktig at platene er duktile nok til at de kritiske bruddmekanismene kan forekomme. I NS-EN 1992-1-1:2004 kapittel 5.6.2 er følgende kriterier ramset opp[3]:

- $x_u/d \leq 0,25$ for betongklasse C50/60 eller lavere
- $x_u/d \leq 0,15$ for betongklasse C55/67 eller høyere
- Armeringsstålet må ha en bruddtøyning på over 5 %
- Forhold mellom plastisk opplagermoment og feltmoment må være mellom 0,5 og 2

Hvis ikke de nevnte kravene er tilfredsstilt må rotasjonskapasiteten spesifikt kontrolleres.

4.2.1 Fordeler og ulemper

Ulempene med bruddlinjeteorien er at det er en øvre grense teorem. Det vil si at den kritiske lasten som er funnet kan være lik eller høyere enn den sanne kritiske lasten. Dette medfører et risikomoment for dimensjoneringen. Hvis en har dårlig kunnskap til de ulike bruddmekanismene, kan man risikere at den mest kritiske bruddmekanismen ikke blir analysert. Det er vanlig praksis å legge til en sikkerhetsmargin på 10% på det plastiske momentet for å bøte med de nevnte usikkerhetsfaktorene[6].

En annen ulempe med bruddlinjeteorien er at den ikke er gjeldende for annet enn platas momentkapasitet. Aksielle laster fører ikke til nedbøyninger, noe som gjør at disse kreftene blir utelukket i denne analysemetoden. Ekstra kalkulasjoner på skjærkrefter og bruksgrensetilstander må også foretas[6].

Fordelene med bruddlinjeteorien er at det er en rask og enkel metode å beregne alle mulige plater på. Plater kalkulert etter bruddlinjeteorien er mindre konservative, og dermed mer økonomiske i forhold til de beregnet etter lineare analyser.

4.2.2 Bruddlinjene

I henhold til bruddlinjeteorien vil en kollaps forekomme når bruddlinjene danner et system hvor platen kan rotere om rotasjonsaksene tilnærmet fritt uten å påføres mer last. Dette blir kalt for en mekanisme. Fremgangsmåten for å kalkulere en plates kapasitet blir derfor å finne alle mulige bruddmekanismer og tilhørende kritiske laster. Bruddmekanismene er avhengig av platens randbetingelser og belastning.

Følgende regler beskriver hvordan bruddlinjer og rotasjonsakser plasseres i en betongplate[6]:

- Rotasjonsakser er plassert på bruddlinjer og på frie opplagere.
- Bruddlinjer og rotasjonsakser går i rette linjer.
- Bruddlinjer går langs faste opplagere og indre bærebjelker.
- Bruddlinjer går fra punkter hvor rotasjonsakser krysser.
- Fritt opplagte rander frastøter bruddlinjer.
- Faste opplagere og indre bærebjelker tiltrekker seg bruddlinjer.
- Bruddlinjene kan ende vilkårlig langs frie ender.
- I tilfeller med søyler vil rotasjonsakser gå over søylen.

Bruddlinjer oppstår der hvor betongplata har størst moment og på den siden av plata hvor stålet er under strekk. Dette innebærer at en kan ha bruddlinjer i underkant av betongplater hvor det er positivt moment, og i overkant hvor betongen er påvirket av et negativt moment. Bruddlinjer på grunn av negative momenter oppstår som regel over interne bjelker, men kan også oppstå i nærheten av en høy konsentrert last.

Hvis en plate belastes av en stor konsentrert last, kan en spesiell bruddmekanisme oppstå. Denne er kalt sirkelbrudd, eller «fan mechanism» på engelsk[2]. Et sirkelbrudd er en mekanisme hvor det dannes en sirkel av bruddlinje i overkant av platen med den konsentrerte lasten som sentrum. Fra sirkelens rand og innover går det bruddlinjer i underkant.

Under er det vist noen eksempler på bruddmekanismer. Blå linjer indikerer positive moment på betongens underside, mens røde linjer er negative moment på betongens overside.

Figur 4.2.1: Illustrasjon av bruddmekanisme hvor platen er fritt opplagt...

Figur 4.2.2: Illustrasjon over bruddmekanisme hvor platen er kontinuerlig eller fast innspent i to ender.

Figur 4.2.3: En såkalt «fanning mechanism».

4.2.3 Formlene

Formlene som blir brukt innen bruddlinjeteorien er utledet i henhold til teorien om virtuelt arbeid. Kreftene som fører til en deformasjon, δ , motvirkes av en tilsvarende rotasjon, θ , påført plastisk momentkapasitet. Ytre påført arbeid, E, motvirkes av indre arbeid, I[2].

$$E = \sum (P * z) + \int \int q * dz dl + \int \int \int Q * dz dA$$
4.2.2

I tilfeller hvor q og Q er konstant kan man forenkle 5.2.2. Arbeidet som da utføres av q og Q er henholdsvis q ganget defleksjonsarealet under q og Q ganget defleksjonsvolumet under Q.

$$E = \sum (P * z) + q * A + Q * V$$
 4.2.3

$$I = \sum (m_p * \theta * L) \tag{4.2.4}$$

De plastiske momentene blir kalkulert etter følgende formler. As brukes med benevning mm^2/m , slik at m_p får benevningen Nmm/m.

$$m_{px} = A_{sx} * f_{yd} * z_x, \qquad m_{py} = A_{sy} * f_{yd} * z_y$$
 4.2.5

$$z = d(1 - 0.4\alpha)$$
 4.2.6

 α finnes ved å finne statisk likevekt for kreftene i figur 4.1.4, hvor følgende formler kan hentes.

$$S_2 = A_{s2} * \epsilon_{s2} * E_s \tag{4.2.8}$$

$$T_c = 0.8 * \alpha db * f_{cd} \tag{4.2.9}$$

16

$$\epsilon_{s2} = \frac{\alpha d - c}{\alpha d} * \epsilon_{cu} \tag{4.2.10}$$

$$S_1 - (T_c + S_2) = 0 4.2.11$$

$$0.8f_{cd}bd^{2}\alpha^{2} + (A_{s2}E_{s}\epsilon_{cu} - A_{s1}f_{yd})d\alpha - A_{s2}E_{s}\epsilon_{cu}c = 0$$

$$4.2.12$$

$$\epsilon_{s1} = \frac{1-\alpha}{\alpha} \tag{4.2.13}$$

 ϵ_{cu} er bruddtøyning til betongen og c er h-d. α er også forholdet mellom x og d, og kriteriet for at buddlinjeteorien kan benyttes uten kontroll av rotasjonskapasitet er at α må være mindre enn 0,25. Dette innebærer at z ikke skal være mindre enn 0,9 * d. En må også sjekke at ϵ_{s1} ikke overstiger stålets bruddtøyning.

For tilfeller hvor bruddlinjene ikke går parallelt med x- eller y retning har man følgende formel.

$$m_{p\phi} = m_{px} * \sin^2 \phi + m_{py} * \cos^2 \phi$$
 4.2.14

Hvor ϕ er vinkelen mellom bruddlinje og retningen med mest armering. I følge formel 4.2.14 vil $m_{p\phi}$ være lik m_{px} og m_{py} , i tilfeller hvor m_{px} og m_{py} er like.

Rotasjonsvinkelen til bruddlinjene finnes ved å anta at δ er ubetydelig stor slik at følgende formel gjelder.

$$\theta = \tan\left(\frac{\delta}{L}\right) = \frac{\delta}{L}$$
 4.2.15

Rotasjonen til diagonale bruddlinjer finnes ved å bruke følgende formel.

$$\theta_D = \theta_{D1} + \theta_{D2} = \frac{\theta_1 * L_2 + \theta_2 * L_1}{L_D}$$

$$4.2.16$$

Figur 4.2.5: Illustrasjon til formel 4.2.16.

Indre arbeid som oppstår på grunn av et sirkelbrudd kalkuleres etter følgende formel[2]. Apostrofen i m_p indikerer at momentkapasiteten er i platas overkant.

$$E = 2\pi (m'_p + m_p)\delta$$

$$4.2.17$$

4.3 «Compressive membrane action»

Allan Joshua Ockleston fullførte i 1955 en rapport om et eksperiment hvor et sykehus i Johannesburg ble lastet til brudd[7]. Trenden fra forsøket var at bruddene oppstod ved tre til fire ganger større belastninger enn kalkulert bruddlast. Bruddlasten ble kalkulert i henhold til datidens bruddlinjeteori. Etter dette eksperimentet ble det en stor interesse for det som nå på engelsk er kalt «compressive membrane action», heretter CMA. Videre forskning førte til at kanadierne adopterte denne teorien inn i sin standard for brudesign i 1979. Nord-Irland fulgte etter i 1986, og til slutt Storbritannia i 2002.

Når en betongplate belastes, forflyttes nøytralaksen mot tverrsnittets trykksone. Dette fører til at platen ved halv høyde alltid er i strekk og forlenges. Hvis betongplaten ikke kan bevege seg sidelengs, eller hvis motstanden er relativt stor, vil det oppstå indre trykkrefter som motvirker belastningen av betongen. Det er dette som er mekanismen bak CMA[8].

Forutsetningene for at CMA kan benyttes er at platene er tilstrekkelig duktile og at de plane tøyningene motvirkes. Det hevdes at trykkreftene ikke oppstår før etter at en bruddlinjemekanisme har oppstått, noe som indikerer at CMA krever de samme duktile egenskapene som bruddlinjeteorien[9].

4.3.1 CMA i henhold til BD 81/02

Britene sin «Highways Agency» standard BD 81/02 gir formler og forutsetninger for bruk av CMA[10].

Deres forutsetninger for at CMA kan benyttes som kontrollberegning er:

- Tilstrekkelig fastspenning på alle fire sider av et platesegment.
- Kreves minst 0,3 % av brutto betongareal av armeringsstål oppe og nede i begge retninger.
- Senteravstand mellom armeringen skal ikke overstige 250 mm.
- Armeringsmengden skal ikke være mindre enn 750 mm²/m i x-retning.
- Lengdearmeringen over indre opplagere i kontinuerlige bruer skal i underkant ha en andel armering tilsvarende 30 % eller mer.
- Lengden mellom bærebjelkene skal ikke overstige 3,7 meter.
- Det må være et overheng på 1 meter fra bærebjelkens senterlinje. Hvis plata snevrer inn, eller hvis platas geometri endrer seg i kanten, må betongens areal over bærebjelkens senterlinje tilsvare arealet til 1 meter med vanlig tykkelse.
- Forholdet mellom spennvidden mellom bærebjelker og platas tykkelse må ikke overstige 15.
- Langs trafikkretning skal brudekket støttes av tverrbærere i eventuelle skjøter og ved endene.
- Det skal være tverrbærere eller tverrkryss ved alle opplagere i tillegg til opplagerne ved endepunktene. Det skal også være tverrbærere eller tverrkryss hver åttende meter eller midt mellom spennene.
- Ekstra forsterkninger kreves på bruens sidekanter hvis hovedarmeringen går langs

trafikken.

De kommende formlene omhandler brudekkets evne til å motstå de lokale effektene av hjullaster. Det antas at betongplatas styrke ikke er avhengig av mengden med armeringen, men heller betongens trykkapasitet. I tillegg må de globale effektene av lastene kalkuleres, da tas det hensyn til betongens armering.

Trykkfastheter skal ha benevningen MPa, lengder skal ha benevningen mm, og svarene får benevningen N.

I formlene benyttes betongens sylindriske trykkfasthet, f_{cd} . Denne kan kalkuleres i henhold til formel 5.5.11, hvor f_{cn} er den karakteristiske trykkfastheten for søyleprøver. ϵ_c kalkulert i formel 5.3.1 er betongens plastiske tøyning.

$$\epsilon_c = (-400 + 60f_{cd} - 0.33f_{cd}^2) * 10^{-6}$$

$$4.3.1$$

R i formel 6.3.3 er et forholdstall som sier litt om bruplaten er tilstrekkelig fastspent. For at formlene 6.3.4 til 6.3.7 skal være gyldige, må R være mindre enn 0,26. L_r er halve avstanden mellom bærebjelkene, og h er betongplatas høyde.

$$R = \frac{\epsilon_c * L_r^2}{h^2}$$
 4.3.2

$$k = 0,0525 \left(4,3 - 16,1\sqrt{3,3 * 10^{-4} + 0,1243 * R}\right)$$
 4.3.3

$$\rho_e = \frac{k * f_c * h^2}{240 * d^2} \tag{4.3.4}$$

$$P_{ps} = 1,52(\phi + d)d * \sqrt{f_c} * (100 * \rho_e)^{0.25}$$

$$4.3.5$$

$$P_{pd} = 0,65 P_{ps} 4.3.6$$

Variabelen d tilsvarer den gjennomsnittlige dybden til spennarmeringen fra trykksonen. Hjullasten virker på et sirkulært område i henhold til de britiske standardene, noe som motstrider Statens Vegvesens praksiser. Belastningsflatens diameter er ϕ . En kan se fra formel 5.3.5 at desto mindre ϕ er, desto lavere blir brudekkets styrke. P_{ps} er den kritiske single hjullasten, mens P_{pd} er den kritiske hjullasten hvis en seksjon av brudekket belastes med to dekk fra samme aksling, eller ett dekk fra to aksler, simultant.

4.4 Bruksgrensetilstanden

Håndbok R412 stiller ikke krav til deformasjon- eller spenningsbegrensninger, kun kontroll av rissvidder[11]. Videre står det at rissviddekontroll kan sløyfes hvis en av følgende tre kriterier er oppfylt:

- Armeringsjernets kapasitet er 90 % utnyttet ved bruddgrensetilstanden.
- Resterende levetid er mindre enn 25 år.
- Resterende levetid er mer enn 25 år samtidig som at bruen er i et miljø med neglisjerbar

kloridbelastning.

Håndbok N400 stiller krav til at største nedbøyning ikke skal overstige L/350, hvor L er spennets lengde[12].

4.4.1 Nedbøyningskontroll

Det antas at betongplatene er opprisset, og at arealtreghetsmomentet kalkuleres i henhold til opprisset tverrsnitt. Det regnes med en redusert E-modul grunnet kryp, se kapittel 5.5.5. Bøyestivheten blir da[2].

.

$$I_{cII} = \frac{1}{2}\alpha^2 \left(1 - \frac{\alpha}{3}\right) bd^3$$
 4.4.2

$$\alpha = \sqrt{(\eta\rho)^2 + 2\eta\rho} - \eta\rho \qquad 4.4.3$$

$$\eta = \frac{E_s}{E_{cm}} \tag{4.4.4}$$

$$\rho = \frac{A_s}{bd} \tag{4.4.5}$$

For å finne den største nedbøyningen benyttes enhetslastmetoden. Den er som følger.

$$\delta = \int_0^L \frac{M_1 M_0}{E I_L} dL \tag{4.4.6}$$

Enhetslastmetoden tillater variering i bøyestivheten hvis man deler opp integralet i flere intervaller. M_1 er i dette tilfellet funksjonen for det virtuelle momentet, og M_0 funksjonen for det aktive momentet.

4.4.2 Rissviddekontroll

Maksimal tillatt rissvidde er i NS-EN 1992-1-1 oppgitt som $0,30k_c$ for konstruksjoner med eksponeringsklasse XC1-XC4[3]. Hvor k_c er forholdet mellom overdekning, c_{nom} , og overdekning i henhold til bestandighetskravet, $c_{min,dur}$. Meningen med k_c er at det skal gi et positivt bidrag til rissviddekravet, med andre ord at $c_{nom} > c_{min,dur}$. Dette er nesten aldri tilfelle for gamle bruer, hvor unøyaktigheten under plassering av armering og utgåtte standarder har ført til veldig små overdekninger, se kapittel 8.3.

$$k_c = \frac{c_{nom}}{c_{min,dur}} \le 1,3 \tag{4.4.7}$$

 $c_{min.dur}$ er i henhold til Håndbok N400 60 mm for oversiden til brudekket, sidene til brudekket og 2 meter inn under brudekket og 50 mm for resten av undersiden av brudekket[12]. c_{nom} kan tas fra figur 8.3.2 hvis annet ikke er oppgitt.

Formlene for å finne rissvidde w_k er gitt i NS-EN-2-1, og er som følger[3].

$$w_k = s_{r,max}(\epsilon_{sm} - \epsilon_{cm}) \tag{4.4.8}$$

$$\epsilon_{sm} - \epsilon_{cm} = \frac{\sigma_s - k_t * \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \eta \rho_{p,eff})}{E_s} \ge 0.6 \frac{\sigma_s}{E_s}$$

$$4.4.9$$

$$\sigma_s = E_s \frac{M(1-\alpha)d}{EI}$$
4.4.10

Momentet M er i benevning Nmm.

$$\rho_{p,eff} = \frac{A_s}{A_{c,eff}} \tag{4.4.11}$$

$$A_{c,eff} = b * h_{c,eff}$$
 4.4.12

$$h_{c,eff} = \min\left[2,5(h-d); \frac{h-\alpha d}{3}; \frac{h}{2}\right] \ge h-d+1,5\phi$$
 4.4.13

 α og η er de samme som man finner i formlene 4.4.3 og 4.4.4.

Hvis senteravstand $\leq 5(c+\phi/2)$, hvor c er overdekning og ϕ er armeringsdiameter, skal S_{r,max} kalkulers i henhold til 4.4.14, ellers skal formel 4.4.15 benyttes.

$$S_{r,max} = k_3 c + k_1 k_2 k_4 \frac{\phi}{\rho_{p,eff}}$$
 4.4.14

$$S_{r,max} = 1,3(h - \alpha d)$$
 4.4.15

 k_t settes lik 0,4 for langvarige laster og 0,6 for kortvarige. k_1 er 0,8 for kamstål og 1,6 for glattstål. k_2 er 0,5 for bøying og 1,0 for rent strekk. k_3 og k_4 er henholdsvis 3,4 og 0,425.

4.5 Laster og materialer

Regler for laster, lastfaktorer, sikkerhetsfaktorer og materialegenskaper hentes hovedsakelig fra Statens Vegvesens Håndbok R412.

4.5.1 Trafikklaster

Gamle bruer blir sortert inn i bruksklasse i henhold til bruenes bærende kapasitet. Fra sterkest til svakest har vi gruppene Bk10, BkT8, Bk8 og Bk6. For hver av gruppene blir det stilt spesifikke

krav til kapasitet til å bære hjullast, H, aksellast, A, og totalvekt, V. Skulle en bru ikke oppnå kravene til å bli tildelt en gruppe, skal maksimal aksellast og maksimal totalvekt brukes til å definere bruas begrensninger. For små bruer er det normalt sett aksellaster og hjullaster som gir de verste effektene[11].

Illustrasjon av plassering av laster er gitt i figur 5.4.1. Hjullast skal påføres bruene som en fordelt last på en flate på 0,2 meter i trafikkretning x 0,6 meter i bredden. Aksellast påføres bruen som en linjelast med 2,0 meter bredde. Totalvekt påføres bruen med en bredde på 2,0 meter og med lengden oppgitt i tabell 5.4.1. Alle laster skal påføres bruen på den minst gunstige måten, såfremt plasseringene av lasten er mulig. Lastene skal også påføres med samme eksentrisitet.

Følgende regler gjelder for plassering av laster. Hvis en bru har tre kjørefelt eller mer, skal kun to av kjørefeltene belastes av brukslaster. Gjenværende kjørefelt skal belastes med en lett trafikklast på 6 kN/m langs trafikkretning fordelt på en bredde på 2 meter. For at to tunge kjøretøy og ett lett kjøretøy kan passere, må man regne en føringsavstand på 7,8 til 8 meter, 5,6 til 6 meter for to tunge kjøretøy og 8 til 4,8 meter for et tungt kjøretøy og et lett kjøretøy. Avstanden fra ytterpunkt av et kjøretøy inn til dekket antas å være 0,2 meter. Hvis kantene er så lave at kjøretøyene kan passere bruen med dekkene tett inntil kanten, gjelder de laveste føringsavstandene. Se figur 4.5.2 for eksempel.

Figur 4.5.2: Føringsavstand for to tunge kjøretøy begrenset av et gjerde og en føringskant.

		Bruksklasser				
Lasttype	Lastkonfigurasjon (*) H _{kN}		Bk10	BkT8	Bk8	Bk6
Hjullast		н	80	56	56	42
Aksellast		A	160	112	112	84
Boggilast	A₁kN A₂kN	A ₁	65	40	40	30
	(m)			112	112	84
		a	1,3	1,2	1,2	1,2
Trippelboggilast $A_1^{kN} = A_2^{kN} = A_1^{kN}$	A ₁ kN A ₂ kN A ₁ kN	Aı	70	60	50	40
	1 (m) 1 (m) 1		140	84	84	56
	Aksellastenes rekkefølge er vilkårlig	a	1,3	1,2	1,2	1,2
Kjøretøylast	AkN VkN Variabel	A	40	32	32	24
	7,0 m				220	180
Vogntoglast V _{kN} A kN Variabel p k		A	40	32	32	24
		v	500	400	320	280
	16,0 m	р	6	6	6	6

Tabell 4.5.1: Trafikklaster for de ulike bruksklassene. Lastene må regnes om til linjelaster og fordelte laster etter behov.

I tillegg til de vertikale lastene virker det også bremselaster og sidelaster. Bremselaster, B, virker på hele kjørefeltet parallelt med trafikken. Sidelast er lasten som oppstår ved ujevn bremsing. Sidelasten er vilkårlig plassert på brudekket og virker normalt på trafikkens retning. S er 25 % av B, og verdien av B er gitt i tabell 4.5.2.

Spann I	Bremselast [kN]				
Spenn, L	Bk 10	Bk T8	Bk 8	Bk 6	
$L \le 10 \text{ m}$	150	120	100	90	
10 m < L < 40 m	Interpolasjon	Interpolasjon	Interpolasjon	Interpolasjon	
$L \le 40 \text{ m}$	300	240	190	170	

Tabell 4.5.2: Tabell over bremselaster for de ulike bruksklassene. For spenn mellom 10 og 40 meter finnes kreftene gjennomlinear interpolasjon.

4.5.2 Permanente laster

Egenlast av ulike materialer:

-	Stål:	77	kN/m ³
-	Armert betong:	27	kN/m ³
-	Asfalt:	25	kN/m ³
-	Oljegrus:	25	kN/m ³
-	Stein:	22	kN/m ³
-	Grus:	25	kN/m ³
-	Leca, stabilisert:	8	kN/m ³
-	Tre:	8	kN/m ³
-	Stålrekkverk:	0,5	kN/m

Egenlasten til slitelag skal for mindre bruer være 3 kN/m² hvis ikke materiale er oppgitt.

4.5.3 Snølast

Snølaster skal normalt sett ikke tas med, da det antas at tung trafikk og mye snø ikke virker på brua samtidig.

4.5.4 Vindlast

Vindlaster bestemmes etter NS-EN 1991-1-4:2005+NA:2009. Dynamisk effekt av vind kan neglisjeres for bjelkebruer under 40 meter[12].

Følgende formel er den forenklede basisformelen for vindkraft på brudekket. ρ er lufttetthet, v_b er vindhastigheten i m/s, C er vindlastfaktoren og A_{ref} er påvirket areal. Vindkraften i x- og z-retning varierer fordi C og A_{ref} er ulik i de retningene. ρ er 1,25 kg/m³. v_b finnes i det nasjonale tillegget i tabell NA.4(901.1). Vindkrefter i y-retning ses vekk fra[1].

$$F_{w} = \frac{1}{2} * \rho * v_{b}^{2} * C * A_{ref}$$

$$4.5.1$$

$$C_x = c_e * c_{f,x}, \qquad C_z = c_e * c_{f,z}$$
 4.5.2

 C_x kan tas fra tabell 5.4.5. Her er z_e den største høyden under brua opp til midtpunktet av brudekket, b er bredden av brua og d_{tot} er summen av høyden til brubjelke og brudekke. Hvis brudekket har et åpent rekkverk, skal d_{tot} stige med 0,3 meter for hvert åpent rekkverk. Hvis brudekket har et vindtett rekkverk skal rekkverkets høyde tas med i d_{tot}.

Horisontale vindlaster virker også på trafikken. Det antas at trafikken har en høyde på 2 meter.

b/d _{tot}	$z_e \leq 20 m$	$20 \text{ m} < z_e < 50 \text{ m}$	$z_e \leq 50 \text{ m}$			
$b/d_{tot} \le 0.5$	6,7	Interpolasjon	8,3			
$0,5 < b/d_{tot} < 4,0$	Interpolasjon	Interpolasjon	Interpolasjon			
$4,0 \le b/d_{tot}$	3,6	Interpolasjon	4,5			

Tabell 4.5.3:	Tabell for	C for v	indkrefter	i x-retning.
---------------	------------	-----------	------------	--------------

Denne tabellen forutsetter at vindhastigheten ikke får bidrag fra omkringliggende daler, og at det er et nokså åpent terreng. I tillegg forutsettes det at $c_{f,x}$ tas fra figur 5.4.4. I og med at $c_{f,x}$ er kjent, kan tabell 5.4.5 brukes for å finne C_z ved å dele C_x på c_{fx} og gange med c_{fz} . c_{fz} kan settes lik ± 0.9 .

4.5.5 Kryp

Kryp er betegnelsen på tidsavhengige deformasjoner avhengig av belastning. Konstruksjoner under konstant belastning vil få en momentan deformasjon ved påføringen av lasten, etterfulgt av økende deformasjon over tid[2].

Kryp blir vurdert ved å redusere betongens E-modul etter følgende formler[3].

$$E_{cd,eff} = \frac{E_{cd}}{1 + \phi_{\infty,t0}} \tag{4.5.3}$$

$$E_{cd} = \frac{E_{cm}}{\gamma_{ce}}$$
 4.5.4

$$\phi_{t,t0} = \phi_0 * \beta_{c(t,t0)} \tag{4.5.5}$$

 $\beta_{c(t,t0)}$ blir tilnærmet 1 når t går mot ∞ .

$$\phi_0 = \phi_{RH} * \beta(f_{cm}) * \beta(t_0)$$

$$4.5.6$$

$$\phi_{RH} = 1 + \frac{1 - \frac{RH}{100}}{0.1 * h_0^{\frac{1}{3}}}$$

$$4.5.7$$

$$\beta(f_{cm}) = \frac{16.8}{(f_{cm})^{0.5}}$$

$$4.5.8$$

$$\beta(t_0) = \frac{1}{0.1 + t_0^{0.2}} \tag{4.5.9}$$

$$h_0 = 2\frac{A_c}{u} \tag{4.5.10}$$

Det antas at f_{cm} er under 35 MPa, og at kun egenlasten gir bidrag til kryp.

4.5.6 Materialegenskaper, materialfaktorer og lastfaktorer **Materialegenskaper for betong:**

Byggeår	NS 427 Fra 1939	NS 427A Fra 1962		NS 3473 Fra 1973		
	Betongkvalitet	Betongkvalitet	σ_c [kg/m ²]	Betongkvalitet	f _{cn} [N/mm ²]	
Før 1920	C-betong	B200	40	C 15	11,2	
1920-1945	B-betong	B250	45	C 20	14,0	
		B300	55	C 25	16,8	
		B350	60	C 30	19,6	
Etter 1945	A-betong	B400	70	C 35	22,4	
		B450	80	C 40	25,2	
				C 45	28,0	

Tabell 4.5.4: Materialegenskaper for betong i henhold til HB R412.

Har man oppgitt en viss betongkvalitet etter en vilkårlig standard, skal man bruke tabellen over og finne den ekvivalente verdien av f_{cn} . f_{cn} er den karakteristiske trykkfastheten. For bruer som er konstruert etter 1945, men uten oppgitt betongkvalitet, skal betongkvaliteten C 25 benyttes.

$$f_{cd} = \frac{f_{cn}}{\gamma_m} \tag{4.5.11}$$

Materialegenskaper for armeringsstål:

Byggeår	Armeringstype	Armeringskvalitet	Diameter [mm]	f _{sk} [N/mm ²]
Før 1958	Glattstål	St. 37	8-32	230
	Kamstål	Ka 40 og Ka 40 S	8-20	400
		KS 40 0g KS 40 S	25-32	380
		Ks 50 og Ks 50 S	8-16	500
E_{max} as mod 1059			20-32	480
Fra og med 1938		Ks 60 og Ks 60 S	8-16	600
		K400 S og K400 TS	8-32	400
		K500 S og K500 TS	8-32	500
		K500 TE	8-32	500

Tabell 4.5.5: Materialegenskaper for stål i henhold til HB R412.

For bygg etter 1958 skal armeringskvalitet Ks 40 benyttes hvis annet ikke er spesifisert. Et forsøk ble gjort på å finne ut om stålene er duktile nok til å benyttes i de ikke-lineare metodene, men klarte ikke å finne informasjon om bruddtøyning. Dimensjonerende flytegrense finnes ved å dele karakteristisk flytegrense på materialfaktoren til stålet.

$$f_{yd} = \frac{f_{sk}}{\gamma_m} \tag{4.5.12}$$

Materialfaktor for betong og armeringsstål:

Materiale		Materialfaktor, γ _m	
		ULS	SLS
Armert betong		1,40	1,0
Armering	Med rust	1,50	1,0
før 1920	Uten rust	1,25	1,0
Armering etter 1920		1,25	1,0

Tabell 4.5.6: Materialfaktorer i henhold til HB R412.

Lastfaktorer

Under er lastfaktorene for to ulike kombinasjoner for bruk i bruddgrensetilstanden gitt. Variable laster får lastfaktor 0 i tilfeller hvor dette gir en mer ugunstig effekt

Kombinasjon	Permanente laster	Deformasjonslaster	Variable laster
а	1,15	1,0	$\gamma_1 * \mathbf{Q}_1$
b	1,0	1,0	$\gamma_2 * Q_1 + 0, 8 * \sum Q_n$

Tabell 4.5.7: Lastfaktorer i henhold til HB R412.

 Q_1 er den karakteristiske verdien til den mest ugunstige variable lasten, og Q_n er resterende ugunstige variable laster.

	1,4	Brukslaster
γ1	1,2	Spesialtransport
	1,0	Temperaturlast
	1,6	Andre variable laster

	1,2	Brukslaster
γ2	1,1	Spesialtransport
	0,8	Temperaturlast
	1,3	Andre variable laster

Tabell 4.5.8: Lastfaktorer for bruddgrensetilstanden.

Under kommer lastfaktorene brukt i bruksgrensetilstanden.

Kombinasjon	Permanente laster	Deformasjonslaster	Variable laster
а	1,0	1,0	$Q_1 + 0,7 * \sum Q_n$
b	1,0	1,0	$\Psi * Q_1 + \Psi * 0,7 * \sum Q_n$

Tabell 4.5.9: Lastfaktor til bruk for bruksgrensetilstanden.

 Ψ er 0,5 for alle variable laster med unntak av ballast. Ballast er ikke vurdert i denne rapporten. Videre står det i HB R412 at kombinasjon a er brukt for å kontrollere lager og fugeforskyvninger, mens b er brukt for kontroll av rissvidder og typiske deformasjoner.

5 Bruene

I dette kapittelet vil to forskjellige bruer presenteres med tegning av tverrsnitt og opplysninger om dimensjoner, materialer og klima. Brutegningene er gitt av Statens Vegvesen og beregninger av krefter blir lagt ved som vedlegg, og resultatet blir presentert i kapittel 7. For overdekningene henvises det til kapittel 8.3.

5.1 Kilen bru i Suldal

Byggeår: 1962

Materiale:

- Brudekke i armert betong, armeringsmengde ukjent
- Slitelag med sand og grus, 2-5 cm.
- Betongkvalitet C25
- Stålkvalitet Ks 40, kamstål

Dimensjoner:

- Spenn: 18,63 m
- Bredde: 4,5 m
- Avstand mellom bærebjelke: 2,4 m
- Føringsavstand: 3,5 m
- Tykkelse: 0,2 m mellom bærebjelkene, 0,17 m utfor
- Høyde over terreng (z_e): 4,6 m
- Brudekkehøyde påvirket av vind medregnet to åpne rekkverk: 2,02 m
- Overdekning: 30 mm

Klima:

- Referansevindhastighet: 24 m/s
- RH: 70 %

Kryp:

- Antar to lik 7 dager
- Antar graf R

Kommentar:

Merk at det er sirklet rundt to av dimensjonene i bildet over. Dette på grunn av at de er endret. Dimensjonene i konstruksjonstegningene gitt av Statens Vegvesen går ikke opp med hverandre. Overdekningen er satt til å være 75 % av 40 mm. 75 % på grunn av trenden med dårlig plassering av armering og 40 mm på grunn av standarden i perioden 1939-1963.

Armeringstegninger er ikke gitt, derfor blir det valgt en på egenhånd. Det kan være interessant å anta en armeringsmengde som tillater bruk av CMA, og se hvordan betongplaten da fungere med linear teori og bruddlinjeteori.

Armeringsjern med diameter 12 mm og senteravstand 125 mm blir valgt. Dette tilsvarer en gjennomsnittlig armering på 904,78 mm²/m under, over og i hver retning.

5.2 Foss bru i Hyllestad

Byggeår: 1962

Materiale:

- Brudekke i armert betong.
- Ukjent slitelag.
- Betongkvalitet C25
- Stålkvalitet Ks 40, kamstål

Dimensjoner:

- Spenn: 2*15 m
- Bredde: 7,8 m
- Bredde mellom bærebjelke: 6,5 m
- Føringsavstand: 6,5 m
- Tykkelse: 0,22 m
- Høyde over terreng (z_e): 3,45 m
- Brudekkehøyde påvirket av vind medregnet to åpne rekkverk: 2,02 m
- Overdekning: 30 mm

Klima:

- Referansevindhastighet: 26 m/s
- RH: 70 %

Kryp:

- Antar t₀ lik 7 dager

Kommentar:

I armeringstegningene under er As' ikke nødvendigvis trykkarmering. Ved pilaren vil Asy' være strekkarmering og ved bærebjelkene vil Asx' være strekkarmering.

Bredden utfor bærebjelken varierer over brua, da brua svinger litt. Til tross for det, så virker det som om totalt areal over bærebjelken er tilfredsstilt i henhold til CMA.

Figur 5.2.1: Tverrsnitt og armeringstegning for Foss bru.

6 Fremgangsmåte

6.1 De lineare metodene

Platene ble beregnet som enveis-plater, da forholdet mellom spenn og bredde var høy. Momentene over bjelkene ble funnet ved å ta for seg en stripe i x-retning på 0,2 meter. De to verste tilfellene med belastning er da hjullast og aksellast/boggilast. Kun moment i x-retning ble beregnet for bruddgrensetilstanden, da det ble antatt at dette ville være det kritiske momentet. I bruksgrensetilstanden ble momentet i y-retning også beregnet.

Følgende fire figurer viser de statiske systemene som ble brukt for å finne momentene for Kilen bru.

Figur 6.1.1: Statisk system for moment på bærebjelke ULS.

Figur 6.1.2: Statisk system for moment mellom bærebjelke ULS.

Figur 6.1.4: Statisk system for moment i y-retning SLS.

Følgende fire figurer viser de statiske systemene som ble brukt for å finne momentene for Foss bru.

Figur 6.1.5: Statisk system for moment på bærebjelke ULS.

Figur 6.1.6: Statisk system for moment mellom bærebjelke ULS.

Figur 6.1.8: Statisk system for moment i y-retning SLS.

Ved beregning av nedbøyning antas det at momentene mellom bærebjelkene kan beskrives som

en annengradsformel etter følgende formel.

$$M(x) = M_s + 4 * \frac{M_s - M_f}{L^2} (x^2 - xL)$$
6.1.1

Hvor M_s er momentet over bærebjelkene med positiv verdi og M_f er momentet mellom bjelkene med negativ verdi. For enkelhets skyld settes momentene i y-retning konstant over hele integralet, da avstanden fra opplager til punktet hvor momentet jevnes ut er så lite.

6.2 Bruddlinjemetoden

Et lite eksperiment på en bjelke er gjort for å se hvordan plassering av plastiske ledd og hvordan plassering av krefter påvirker kapasiteten beregnet ut i fra bruddlinjemetoden. Følgende figurer viser de ulike scenarioene.

Figur 6.2.1: Test 1.

Figur 6.2.2: Test 2.

På test 1 var mekanisme 2 verst, på test 2 var mekanisme 1 og 2 like kritiske, på test 3 var mekanisme 1 mest kritisk og på test 4 var lastfordeling 1 mest kritisk. Test 2 med fordelt last gav kritisk mekanisme 1.

Følgende fire figurer viser de bruddmekanismene som antas å være de verste.

Figur 6.2.5: Bruddmekanisme 1 mellom bærebjelkene.

Figur 6.2.6: Bruddmekanisme 2 mellom bærebjelkene.

Figur 6.2.7: Bruddmekanisme 3 mellom bærebjelkene.

Figur 6.2.8: Bruddmekanisme 4 på utkraget dekke.

Bruddmekanismene 1-3 er plassert inn mot landkarene da det langs landkarene ikke vil oppstå negative moment. Det antas at distanse a er mest kritisk med verdier som inkluderer alle aksellastene. Det antas at vinkel fra hjørnet er 45 grader. Fra testene gjort med figur 6.2.1 til 6.2.4 ser det ut som at en må prøve seg frem med vilkårlige verdier for b.

For Kilen bru er det valgt en armeringsmengde som gir isotropiske egenskaper. Dette innebærer at plastisk moment er konstant i underkant og overkant. Dette tillater at en kan løse formel 5.2.1 med hensyn til m_p . En vil da finne det kritiske plastiske momentet, og ut fra det kan man finne nødvendig armering. Foss bru er armert slik at broen får en anisotropisk egenskap. Dermed går det ikke an å finne en kritisk armeringsmengde på samme måte som på Kilen bru, men en må heller se om summen av indre energi er større enn summen av ytre energi.

Den anisotropiske egenskapen til Foss bru gjør kalkulasjonen av indre energi innviklet spesielt for sirkelbrudd. En slags gjennomsnittlig plastisk kapasitet må etableres. Dette vil medføre en viss usikkerhet, og det bør derfor velges en kapasitet som heller er i overkant konservativ.

Antar z=0.9 d og velger å gange mp med 0.8 i stedet for 0.9.

7 Resultat

I vedlegg er det lagt med lastene som ble brukt til å gjennomføre beregningene. I tillegg er det tatt med ett dokument med bruddlinjeberegninger for begge bruene. Duktilitetstest, CMA og bruksgrense momenter og kapasitet for Foss bru er lagt med.

7.1 Kilen bru i Suldal

7.1.1 Bruddgrensetilstanden

		Bk10	BkT8	Bk8	Bk6	
	Μ	-78,77	-55,25	-55,25	-41,53	kNm
Mellom bærebjelkene	N _x (strekk)	21,12	16,9	15,08	12,36	1-NI
	N _y (strekk)	135.2	108,16	88,12	79,11	KIN
	М	29,17	24,14	20,57	16,07	kNm
På utkrageren	N _x (strekk)	61,97	49,57	40,39	36,25	1-NI
	N _y (strekk)	37,18	29,74	24,23	21,75	KIN

Tabell 7.1.1: Dimensjonerende last på Kilen bru.

Normalkraft i y-retning er fra hele bremselasten. Den blir delt på arealet under kjørefeltet til bruk for skjærkraftkapasitet kontrollen.

Momentkapasitet

De gitte N-M diagrammet er regnet med en platestripe på henholdsvis 200 og 170 mm bredde. De er gyldig for henholdsvis mellom bærebjelkene og på utkragerne.

Figur 7.1.1: N-M diagram for plate mellom bærebjelker.

Figur 7.1.2: N-M diagram for plate på bærebjelke.

Skjærkraftkapasitet

	Bk10	BkT8	Bk8	Bk6	
Mellom bærebjelkene	45,26	46,3	46,87	47,41	kN
På bærebjelke	40,65	43,13	45,29	46,17	kN
Redusert hjullast mellom bjelke	45,71	32	32	24	kN
Redusert hjullast på bjelke	49,82	34,42	34,42	25,82	kN

Tabell 7.1.2: Skjærkraftkapasitet for Kilen bru.

7.1.2 Bruddlinjemetoden

α verdien ble funnet til å være 0.20 mellom bærebjelkene og 0.248 på utsiden av bærebjelkene.

Krav til plastisk momentkapasitet

		Bk10	BkT8	Bk8	Bk6
Mellom	Mekanisme	3	3	3	3
bærebjelkene		Trippelboggi	Trippelboggi	Trippelboggi	Trippelboggi
	1.1 * mp	10,45	8,31	7,67	6,15
	[kNm/m]				
Utfor	Mekanisme	4	4	4	4
bærebjelkene		Hjullast	Hjullast	Hjullast	Hjullast
	1.1 * mp	15,04	11,68	11,68	9,823
	[kNm/m]				

Tabell 7.1.3: Ytre arbeid påført Kilen bru.

:

$$A_s = 904,78 \frac{mm^2}{m}, \quad f_{yd} = 320MPa, \quad z = 0.92 * 164 = 150,9$$

 $mp = \frac{904,78 * 320 * 150,9}{10^6} = 43,69 \ kNm/m$

Ved den minst mulige verdien for z får man plastisk moment på utkrager:

$$A_s = 904,78 \frac{mm^2}{m}, \quad f_{yd} = 320MPa, \quad z = 0.9 * d = 0.9 * 134 = 120.6 mm$$

 $mp = \frac{904,78 * 320 * 120.6}{10^6} = 34.92 \, kNm/m$

7.1.3 CMA

Det skraverte arealet i figur 6.1.1 er $22*10^4$ mm², mens arealet til 1 meter plate med tykkelse 200 mm er $20*10^4$ mm². Kravet om areal på utkrager er tilfredsstilt.

Kapasiteten som er kalkulert er på 301,99 kN og 196,30 kN for henholdsvis et og to dekk på bruplate

7.1.4 Bruksgrense

Nedbøyningsmomentene

x-retning	Bk10	BkT8	Bk8	Bk6	
Støttemoment	3,66	3,66	3,66	3,66	kNm/m
Feltmoment	-147,49	-104,64	-104,01	-79,23	kNm/m

Tabell 7.1.4: Påført nedbøyningsmoment på Kilen bru i x-retning.

y-retning	Bk10	BkT8	Bk8	Bk6	
Feltmoment	-0,29	-0,29	-0,29	-0,29	kNm/m

Tabell 7.1.5: Påført nedbøyningsmoment på Kilen bru i y-retning

Nedbøyning

Nedbøyningsgrense er på 53 mm.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Bk10	BkT8	Bk8	Bk6
δ _y [mm] 4,71 4,71 4,71 4,71	δ_x	[mm]	33.01	23,37	23,23	17,65
	δ_y	[mm]	4,71	4,71	4,71	4,71
δ _{total} [mm] 37,72 28,08 27,94 22,36	δ_{total}	[mm]	37,72	28,08	27,94	22,36

Tabell 7.1.6: Nedbøyning av Kilen bru.

Rissvidde

Rissviddegrense er på 0.15 mm.

Rissvidde 1.56 1.08 1.08 0.79 [mm]		Bk10	BkT8	Bk8	Bk6	
	Rissvidde	1.56	1.08	1.08	0.79	[mm]

Tabell 7.1.7: Rissvidde under Kilen bru.

7.2 Foss bru i Hyllestad

7.2.1 Bruddgrensetilstanden

		Bk10	BkT8	Bk8	Bk6	
	М	-204,9	-144,42	-144,42	-109,13	kNm
Mellom bærebjelkene	N _x (strekk)	32,14	25,57	21,18	18,99	1-NI
	Ny (strekk)	159,25	127,4	104,65	97,73	KIN
	М	91,75	64,87	64,87	49,18	kNm
På bærebjelke	N _x (strekk)	61,6	49	40,6	36,4	1-NI
	Ny (strekk)	67,38	53,9	44,28	39,66	KIN

Tabell 7.2.1: Belastning av Foss bru i bruddgrensetilstanden.

Normalkraft i y-retning er fra hele bremselasten. Den blir delt på arealet under kjørefeltet til bruk for skjærkraftkapasitet kontrollen.

Momentkapasitet

Figur 7.2.1: N-M diagram for plate mellom bærebjelker.

Figur 7.2.2: N-M diagram for plate på bærebjelke.

Skjærkraftkapasitet

	Bk10	BkT8	Bk8	Bk6	
Mellom bærebjelkene	52,74	52.75	52.75	52.75	kN
På utkrager	48,68	48,68	48,68	48,69	kN
Redusert hjullast	43,6	30,5	30,5	22,9	kN

Tabell 7.2.2: Skjærkraftkapasiteten til Foss bru.

7.2.2 Bruddlinjemetoden

Krav til duktilitet

A _{s1}	670	718	1602	1436	261	1436
A _{s2}	718	670	1436	1602	1436	261
α	0.22	0.22	0.32	0,30	0,20	0,34

Tabell 7.2.3: Duktilitetskrav for bruk av bruddlinjemetoden. As i x-retning.

A _{s1}	261/638	261/638	261/638	942	342	251
A _{s2}	251	342	942	261/638	261/638	261/638
α	0,13/0,19	0,15/0,18	0,19/0,22	0,24/0,25	0,15/0,18	0,14/0,17

Tabell 7.2.4: Duktilitetskrav for bruk av bruddlinjemetoden. As i y-retning.

		Bk10	BkT8	Bk8	Bk6
Mellom	Mekanisme	Mekanisme 2	Mekanisme 2	Mekanisme 2	Mekanisme 2
bærebjelkene		Kjøretøy	Kjøretøy	Kjøretøy	Kjøretøy
	0,8*I - E > 0	16.58	51,26	115,9	172,14
Utfor	Mekanisme	Mekanisme 4	Mekanisme 4	Mekanisme 4	Mekanisme 4
bærebjelkene		Hjul/Aksel	Boggilast	Hjul/Aksel	Hjul/Aksel
	0,8*I-E>0	103,61	142,70	116,18	123,51

Tabell 7.2.5: Resultat av bruddlinjeteorien.

7.2.3 CMA

Forholdet mellom lengde mellom bærebjelken og tykkelsen av brudekket overstiger 15. Dermed kan ikke CMA benyttes for denne brua.

7.2.4 Bruksgrense

Nedbøyningsmomentene

x-retning	Bk10	BkT8	Bk8	Bk6	
Støttemoment	12,8	11,65	11,65	10,95	kNm/m
Feltmoment	-339,6	-242,75	-224,15	-185,85	kNm/m

Tabell 7.2.6: Nedbøyningsmoment i x-retning på Foss bru.

y-retining	BKI0	BkT8	Bk8	Bk6	
Feltmoment	-3,35	-3,35	-3,35	-3,35	kNm/m

Tabell 7.2.7: Nedbøyningsmoment i y-retning på Foss bru

Nedbøyning

Nedbøyningsgrense er på 43 mm.

		Bk10	BkT8	Bk8	Bk6
δ_x	[mm]	155,21	110,71	102,15	84,5
δ_y	[mm]	26,41	26,41	26,41	26,41
δ_{total}	[mm]	181,6	137,1	128,6	110,9

Tabell 7.2.8: Nedbøyning av Foss bru.

Rissvidde

Rissviddegrense er på 0.18 mm.

	Bk10	BkT8	Bk8	Bk6	
Rissvidde	2,04	1,44	1.33	1,09	[mm]

Tabell 7.2.9: Rissvidder under Foss bru.

8 Diskusjon

8.1 Kilen bru

Dimensjonerende effektive moment sprenger grensene for kapasiteten.

Av alle kapasitetskontrollene for bruddgrensetilstanden var det kun skjærkraftkapasiteten for BkT8 og nedover som ble tilfredsstilt. Krav til minste nedbøyning var grei for alle bruksklassene, men rissviddene var for store.

Når det gjelder bruddlinjemetoden, så var alle bruddmekanismene under kritisk verdi, og duktilitetsgrensene var med smal margin overholdt. Den plastiske momentkapasiteten var på 43,69 kNm/m, noe som tilsvarer 8,74 kNm. Under rent moment var den elastiske momentkapasiteten på 7,41 kNm. Dette er en økning på 18 %. Det vil si at stålets evne til å omfordele lastene har en veldig stor betydning for betongplatens totale styrke. Den dårlige skjærkraftkapasiteten fører dessverre til at bruddlinjemetoden ikke kan benyttes i dette tilfellet.

Resultatene av CMA-beregningene gav en kritisk last som er betydelig større enn den største hjullasten i bruksklassene, og det er viktig å huske at denne kapasiteten også gjelder for skjærkrefter. Det kan derfor virke som om bruen er trygg å bruke for Bk10-laster.

For moroskyld ble den kritiske lasten fra CMA sammenlignet med kritisk last for et sirkelbrudd med samme armering og en plate på 200 mm. Formlene 5.2.2 og 5.2.10 gir følgende:

$$p_{cr} = 4\pi m_p = \frac{4\pi * 0.92 * 164 * 904 * 320}{10^6} = 548,5 \ kN$$

Dette er 246 kN mer enn kapasiteten gitt fra CMA.

8.2 Foss bru

Kalkulasjonene for Foss bru følger de samme trenden som Kilen bru med unntak av nedbøyningene, de var ekstreme.

Foss bru ser ut til å være litt for tungt armert, slik at det går på bekostning av duktiliteten. Skulle det etter kontroll vise seg at duktiliteten er god nok, vil broen etter bruddlinjemetoden tåle Bruksklasse 10.

Ved en eventuell økt bruklasse bør det kanskje vurderes om bærebjelkene skal forsterkes mot torsjon.

8.3 Duktilitet og bestandighet

Et veldig sentralt tema for bruk av CMA og bruddlinjeteorien er duktilitet. Forsøk har vist at korrosjon har en særdeles negativ effekt på duktiliteten[13]. Under er det vist et diagram over hvordan forholdet mellom bruddtøyning grunnet korrosjon og bruddtøyning uten korrosjon er avhengig av redusert ståltverrsnitt grunnet korrosjon.

Figur 8.3.1: Effekt av korrosjon på bruddtøyning[13].

Korrosjon i betong er avhengig av overdekning og kloridinnhold. Dessverre har de tidligere standardene hatt dårlige krav for både minimum kloridinnhold i betongen og overdekning. I tillegg har dårlig utførelse av plassering av armering ført til mindre overdekning enn det som står beskrevet i konstruksjonstegningene.

2028 målinger ble gjort på Gimsøystraumen bru, som ble bygget i perioden 1978-1981. Resultatet er representert i figur 8.3.3[15]. Gjennomsnittlig overdekning er tilsynelatende rundt 75 % av den ønskede overdekningen.

Konklusjonen når det gjelder duktilitet, er at den bør dokumenteres før en tar i bruk de ikkelineare metodene.

9 Konklusjon

Begge bruene bestod kontrollen i henhold til bruddlinjeteorien. For Kilen bru var det kritiske plastiske momentet mye lavere enn den som armeringsjerna gav. For Foss bru var indre energi større enn ytre energi. Etter redusert hjullast, ble skjærkraftkapasiteten tilstrekkelig stor til å kunne bære BkT8-laster. Det som setter grensene i disse to tilfellene er bruksgrensetilstanden.

Den store fordelen med bruddgrenseteorien er observert. Selv med bare litt større momentkapasitet ble total kapasitet mye større. Dette kan selvsagt ha med dårlig utførelse av de lineare analysene å gjøre.

Bruken av bruddlinjeteori bør ikke gjøres uten å utføre prøver på bruen, finne overdekning og korrosjonsrate, samt trykkspenning i betong og flytspenning og bruddtøyning til stål om mulig.

For å kunne benytte seg av CMA er det visse geometriske forutsetninger som må ligge til grunn først. Men hvis bredde-tykkelse forhold og utkragende dekke er mer enn 1 meter med dekkeareal, så burde det kunnes sette på avstivere mellom bærebjelkene slik at CMA blir gyldig.

10 Referanser

- [1] Eurokode 1: Laster på konstruksjoner Del 1-4 Almenne laster Vindlaster, 2009.
- [2] S. I. Sørensen, *Betongkonstruksjoner Beregning og dimensjonering etter Eurocode* 2, 2 ed. Trondheim: Akademika forlag, 2013.
- [3] *Eurokode 2: Prosjektering av betongkonstruksjoner Del 1-1: Allmenne regler og regler for bygninger*, 2008.
- [4] Eurokode 1 Laster på konstruksjoner Del 2 Trafikklast på bruer, 2010.
- [5] D. Darwin, C. Dolan, and A. Nilson, *Design of Concrete Structures*, 15th ed. McGraw-Hill Higher Education, 2015.
- [6] G. Kennedy and C. Goodchild, *Practical Yield Line Design*. Riverside House,4 Meadows Business Park,Station Approach,Blackwater,Camberley,Surrey GU17 9AB: The Concrete Centre, 2004.
- [7] F. J. Vecchio and K. Tang, "Membrane action in reinforced concrete slabs," 1989.
- [8] A. W. Beeby and F. Fathibitaraf, "Membrane effect in the reinforced concrete frames—a proposal for
- change in the design of frames structures," 1998.
- [9] D. P and A. B. Kulkarni, "Membrane action, deflections and cracking of two-way reinforced concrete slabs,"
- [10] Design manual for roads and bridges, 2007.
- [11] Håndbok R412, Bruklassifisering, 2014.
- [12] Håndbok N400, Bruprosjektering 2015.
- [13] W. Zhu, R. François, C. S. Poon, and J.-G. Dai, "Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement," *Construction and Building Materials*, vol. 148, pp. 297-306, 9/1/ 2017.
- [14] R. Kompen, "Betongbruer i et historisk perspektiv,"
- [15] R. Kompen, "Publikasjon nr. 78: Nye regler for sikring av overdekning,"

11 Vedlegg 11.1 Kilen bru

Figur 11.1.1: Plantegningen til Kilen bru.

11.1.1 Laster

Egenlast betong		5,4	kN/m ²
Egenlast grus		1,25	kN/m ²
Vindkraft x-retning		1,296	kN/m ²
Vindkraft z	z-retning	0,897	kN/m ²
	Bk10	193,15	
Dromaalast	BkT8	154,52	ŀN
Dremserast	Bk8	125,89	KIN
	Bk6	113,01	
	Bk10	48,29	
Cidalaat	BkT8	38,63	ŀN
Sidelast	Bk8	31,47	KIN
	Bk6	28,25	

Tabell 11.1.1: Laster for 1 meter stripe.

Egenlast betong		1,08	kN/m
Egenlas	t grus	0,25	kN/m
Vindkraft x-retning		0,26	kN/m
Vindkraft x-retning på 2x7 m bil med 4 dekk		4,536	kN/dekk
Vindkraft z	z-retning	0,179	kN/m
	Bk10	193,15	
Dromalast	BkT8	154,52	ĿN
Dremselast	Bk8	125,89	KIN
	Bk6	113,01	
	Bk10	48,29	
Sidelast	BkT8	38,63	1-NI
Sidelast	Bk8	31,47	KIN
	Bk6	28,25	

Tabell 11.1.2: Laster for 0,2 meter stripe.

	Hjullast	Aksellast	Boggilast	Trippelboggilast	Kjøretøylast	Vogntoglast	
Bk10	133,33	80	80	70	28,57	26,25	kN/m
BkT8	93,33	56	56	42	24	21	kN/m
Bk8	93,33	56	56	42	22	20	kN/m
Bk6	70	42	42	28	17	15,5	kN/m

Tabell 11.1.3: Trafikklast på 0,2 meter stripe kombinert den verste aksellasten og totalvekt

Aksellast og eventuelt hjullast gir verst effekt for moment i x-retning.

11.1.2 Bruddlinjemetoden

```
Bruddlinjemetoden: Kilen bru
Bruddmekanisme 1
> restart:
Laster

Laster

> q_vind:=0.897: g_betong:=5.4: g_grus:=1.25:

i kN/m^2 felles for alle bruddmekanismer
                                                               # Laster
> B1:=2.4: B2:=1.05: L:=18.63:
> lh:=0.9:
                                                               # Lengden
  inn til hjullast
> h:=delta*lh/(B1/2):
                                                               # Høyden
  til hjullast
> mp":=mp:
  Isotropi
> mpy:=mp:
> mpx:=mp:
> mpD:=mpx*cos(Pi/2)+mpy*sin(Pi/2):
> x:=(B1-b)/2:
> Ld:=(2*x^2)^0.5: theta1:=delta/x: theta2:=theta1: thetaD:=
  (theta1*x+theta2*x)/Ld:
Arealer og volumer
> Aa:=(B1-b)*delta/2+b*delta-(B1-2)/2*delta*(B1-2)/B1:
      # Areal under aksellast
> Vt:=Aa*(a+2*x):
     # Volum under totalvekt (konservativ)
> Vg:=a*(B1-b)*delta/2+B1*2*x*delta/3+a*b*delta:
      # Volum under vind, grus og betong.
Indre arbeid
> i:=4*Ld*thetaD*mpD+2*a*theta1*mp+2*(2*x+a)*theta1*mp"+2*b*theta2*
 mp+B1*theta2*mp":
Ytre arbeid
> E_p:=(q_vind+g_betong+g_grus)*Vg:
                                                             # Permanent
  del av ytre arbeid
> E_h:=H*h:
                                                             # Arbeid
  fra hjullast
> E a:=A/2*Aa:
                                                             # Arbeid
  fra aksellast
> E k:=A1/2*Aa+Vk/14*Vt:
                                                             # Arbeid
  fra kjøretøylast
> E v:=A1/2*Aa+Vv/32*Vt:
                                                             # Arbeid
 fra vogntoglast
> E b:=(A+A2)/2*Aa:
                                                             # Arbeid
  fra boggilast
> E_t:=(A3+2*A4)/2*Aa:
                                                             # Arbeid
 fra trippelboggilast
Bk10
> H:=80: A:=160: A1:=40: Vk:=300: Vv:=500: A2:=65: A3:=140: A4:=70:
 a:=0: b:=0:
> mp:=solve(i=E p+E h,mp);
  mp:='mp':
```

(1)

	mp := 5.320731429	(1)
^	<pre>mp:=solve(i=E_p+E_k,mp); mp:='mp':</pre>	
	mp := 6.987398096	(2)
^	<pre>mp:=solve(i=E_p+E_v,mp); mp:='mp':</pre>	
Ļ	mp := 5.826683810	(3)
>	<pre>mp:=solve(i=E_p+E_a,mp); mp:='mp':</pre>	
F	mp := 7.701683814	(4)
	<pre>a:=1.3: mp:=solve(i=E_p+E_b,mp); mp:='mp':</pre>	
L	mp := 8.591648724	(5)
>	<pre>a:=2*1.3: mp:=solve(i=E_p+E_t,mp); mp:='mp':</pre>	
	mn := 8.883980006	ക
Ē	4kT8	(0)
>	<pre>H:=56: A:=112: A1:=32: Vk:=280: Vv:=400: A2:=40: A3:=84: A4:=60: a:=0: b:=0:</pre>	
>	<pre>mp:=solve(i=E_p+E_h,mp); mp:='mp':</pre>	-
Ļ	mp := 4.03501/143	(7)
	<pre>mp:=solve(1=E_p+E_k,mp); mp:='mp': mp:= 6 268350478</pre>	(9)
F	mp := 0.00000478	(0)
	mp:='mp':	
Ļ	mp := 4.868350476	(9)
>	<pre>mp:=solve(i=E_p+E_a,mp); mp:='mp':</pre>	
Ļ	mp := 5.701683811	(10)
>	<pre>a:=1.2: mp:=solve(i=E_p+E_b,mp); mp:='mp':</pre>	
L	mp := 6.334699261	(11)
>	<pre>a:=2*1.2: mp:=solve(i=E_p+E_t,mp); mp:='mp':</pre>	
	mp := 7.055709091	(12)
Ē	Jk8	
[>	H:=56: A:=112: A1:=32: Vk:=220: Vv:=320: A2:=40: A3:=84: A4:=50: a:=0: b:=0:	
>	<pre>mp:=solve(i=E_p+E_h,mp); mp:='mp':</pre>	
Ļ	mp := 4.035017143	(13)
>	<pre>mp:=solve(i=E_p+E_k,mp);</pre>	

mp:='mp': (14) mp := 5.511207620> mp:=solve(i=E p+E v,mp); mp:='mp': mp := 4.368350477(15)> mp:=solve(i=E_p+E_a,mp); mp:='mp': mp := 5.701683811(16)> a:=1.2: mp:=solve(i=E_p+E_b,mp); mp:='mp': mp := 6.334699261(17) > a:=2*1.2: mp:=solve(i=E_p+E_t,mp); mp:='mp': *mp* := 6.525406064 (18) Bk6 > H:=42: A:=84: A1:=24: Vk:=180: Vv:=280: A2:=30: A3:=56: A4:=40: a:=0: b:=0: > mp:=solve(i=E p+E h,mp); mp:='mp': mp := 3.285017143(19) > mp:=solve(i=E_p+E_k,mp); mp:='mp': *mp* := 4.606445715 (20)> mp:=solve(i=E_p+E_v,mp); mp:='mp': mp := 3.785017144(21) > mp:=solve(i=E p+E a,mp); mp:='mp': mp := 4.535017144(22) > a:=1.2: mp:=solve(i=E_p+E_b,mp); mp:='mp': *mp* := 5.103217778 (23) > a:=2*1.2: mp:=solve(i=E_p+E_t,mp); mp:='mp': *mp* := 5.252678791 (24) Bruddmekanisme 2: > restart: Laster > q_vind:=0.897: g_betong:=5.4: g_grus:=1.25: i kN/m² felles for alle bruddmekanismer # Laster Dimensioner og vinkler og momentkapasitet B1:=2.4: B2:=1.05: L:=18.63:> lh:=0.9: # Lengden inn til hjullast

```
> h:=delta*lh/(B1/2):
                                                                 # Høyden
 til hjullast
> mp":=mp:
  Isotropi
> mpy:=mp:
[> mpx:=mp:
[> mpD:=mpx*sin(Pi/2)^2+mpy*cos(Pi/2)^2:
> r:=(B1-b)/2:
> theta1:=delta/r: theta2:=theta1:
Arealer og volumer
> Aa:=(B1-b)*delta/2+b*delta-(B1-2)/2*delta*(B1-2)/B1:
      # Areal under aksellast
> Vt:=Aa*(a+2*r):
      # Volum under totalvekt (konservativ)
> Vg:=a*Aa+b*r*delta+1/3*Pi*r^2*delta:
      # Volum under vind, grus og betong.
Indre arbeid
> i:=2*Pi* (mp"+mp) *delta+mp"*b*theta1+2*b*mp*theta1+2*a* (mp"+mp) *
  theta2:
Ytre arbeid
> E_p:=(q_vind+g_betong+g_grus)*Vg:
    del av ytre arbeid
                                                              # Permanent
> E h:=H*h:
                                                              # Arbeid
 fra hjullast
> E a:=A/2*Aa:
                                                              # Arbeid
  fra aksellast
> E k:=A1/2*Aa+Vk/14*Vt:
                                                              # Arbeid
 fra kjøretøylast
> E v:=A1/2*Aa+Vv/32*Vt:
                                                              # Arbeid
  fra vogntoglast
> E b:=(A+A2)/2*Aa:
                                                              # Arbeid
 fra boggilast
> E t:=(A3+2*A4)/2*Aa:
                                                              # Arbeid
  fra trippelboggilast
Bk10
> H:=80: A:=160: A1:=40: Vk:=300: Vv:=500: A2:=65: A3:=140: A4:=70:
a:=0: b:=0:
> mp:=solve(i=E_p+E_h,mp);
  mp:='mp':
                             mp := 5.680288293
                                                                          (25)
> mp:=solve(i=E_p+E_a,mp);
  mp:='mp':
                             mp := 8.332870679
                                                                          (26)
> mp:=solve(i=E_p+E_k,mp);
  mp:='mp':
                             mp := 7.537095963
                                                                          (27)
> mp:=solve(i=E p+E v,mp);
  mp:='mp':
                             mp := 6.243962050
                                                                          (28)
> a:=1.3:
```

	>	<pre>mp:=solve(i=E_p+E_b,mp) mp:='mp':</pre>	;	
		mp mp .	mp := 9.117135523	(29)
j	>	a:=2*1.3:		
	>	<pre>mp:=solve(i=E_p+E_t,mp) mp:='mp':</pre>	;	
			mp := 9.306558706	(30)
j	B	cT8		
	>	H:=56: A:=112: A1:=32: a:=0:	Vk:=280: Vv:=400: A2:=40: A3:=84: A4:=60:	
ĺ	>	<pre>mp:=solve(i=E p+E h,mp)</pre>	;	
		mp:='mp':		
	_		mp := 4.247893805	(31)
	>	<pre>mp:=solve(i=E_p+E_a,mp) mp:='mp':</pre>	;	
		mp:mp.	mp := 6.104701476	(32)
i	>	<pre>mp:=solve(i=E p+E k,mp)</pre>	;	()
		mp:='mp':		
ļ			mp := 6.847424544	(33)
	>	<pre>mp:=solve(i=E_p+E_v,mp)</pre>	;	
		mp:='mp':	mn = 5.176207640	(31)
ł	-	a1 2.	mp .= 5.176297646	(34)
i	5	mp:=solve(i=E p+E b.mp)		
		mp:='mp':	,	
			mp := 6.676964868	(35)
	>	a:=2*1.2:		
	>	<pre>mp:=solve(i=E_p+E_t,mp) mp:='mp':</pre>	;	
			mp := 7.366988115	(36)
ļ	B	c8		
	>	H:=56: A:=112: A1:=32: a:=0:	Vk:=220: Vv:=320: A2:=40: A3:=84: A4:=50:	
	>	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp':</pre>	;	
			mp := 4.247893805	(37)
	>	<pre>mp:=solve(i=E_p+E_a,mp) mp:='mp':</pre>	;	
	L		mp := 6.104701476	(38)
	>	<pre>mp:=solve(i=E_p+E_k,mp) mp:='mp':</pre>	;	
			mp := 5.892494885	(39)
ĺ	>	<pre>mp:=solve(i=E_p+E_v,mp) mp:='mp':</pre>	;	
			mp := 4.619255340	(40)
j	>	a:=1.2:		
	>	<pre>mp:=solve(i=E_p+E_b,mp)</pre>	;	
		mp:=:mp::	mn := 6.676964868	(41)
1	L,		mp. 0.070704000	(41)

>	a:=2*1.2:			
>	<pre>mp:=solve(i=E_p+E_t,mp); mp:='mp':</pre>			
	mp := 6.799719012			(42)
Īв	k6			
>	H:=42: A:=84: A1:=24: Vk:=180: Vv:=280: A2:=30: A3:=56: a:=0:	A	4:=40:	
>	<pre>mp:=solve(i=E_p+E_h,mp); mp:='mp':</pre>			
	mp := 3.412330354			(43)
>	<pre>mp:=solve(i=E_p+E_a,mp); mp:='mp':</pre>			()
	mp := 4.804936107			(44)
>	<pre>mp:=solve(i=E_p+E_k,mp); mp:='mp':</pre>			
L	mp := 4.884513578			(45)
>	<pre>mp:=solve(i=E_p+E_v,mp); mp:='mp':</pre>			
L	mp := 3.969372655			(46)
>	a:=1.2:			
>	<pre>mp:=solve(i=E_p+E_b,mp); mp:='mp':</pre>			
L	mp := 5.338912/86			(47)
>	a:=2*1.2:			
>	<pre>mp:=solve(i=E_p+E_t,mp);</pre>			
	mp:='mp':			
L	mp := 5.438273159			(48)
B	ruddmekanisme 3:			
>	restart:			
ĒL	aster			
	g vind:=0.897: g betong:=5.4: g grus:=1.25:	#	Laster	
	i kN/m^2 felles for alle bruddmekanismer			
Īр	imensioner			
>	B1:=2.4: B2:=1.05: L:=18.63:	#		
	Dimensjoner som er felles for alle bruddmekanismer			
>	lh:=0.9:	#	Lengde	n
L,	<pre>inn til hjullast h:=delta*lh/(B1/2):</pre>	#	Høvden	
Ľ	til hjullast	"	mpjuum	
>	$Ld:=(2*x^2)^0.5:$			
>	mp ["] :=mp:	#		
F	Isotropi			
>	mpy:=mp:			
 >	mpx:=mp:			
 >	$mpD:=mpx*sin(Pi/2)^2+mpy*cos(Pi/2)^2:$			
L	engder og vinkler			
>	r := (B1-b)/2:			
[>	x:=r:			

L> theta1:=delta/r: theta2:=theta1: thetaD:=(theta1*x+theta2*x)/Ld: Arealer og volumer > Aa:=(B1-b)*delta/2+b*delta-(B1-2)/2*delta*(B1-2)/B1: # Areal under aksellast > Vt:=Aa*(a+2*r): # Volum under totalvekt (konservativ) > Vg:=a*Aa+b*r*delta+1/6*Pi*r^2*delta+2*x*x*delta/3: # Volum under vind, grus og betong. Indre arbeid > i:=Pi*(mp"+mp)*delta+mp"*b*theta1+2*b*mp*theta1+2*((x+a)*mp"+a* mp) *theta2+2*Ld*thetaD*mpD: Ytre arbeid > E_p:=(q_vind+g_betong+g_grus)*Vg: del av ytre arbeid # Permanent > E h:=H*h: # Arbeid fra hjullast > E a:=A/2*Aa: # Arbeid fra aksellast > E k:=A1/2*Aa+Vk/14*Vt: # Arbeid fra kjøretøylast > E v:=A1/2*Aa+Vv/32*Vt: # Arbeid fra vogntoglast > E b:=(A+A2)/2*Aa: # Arbeid fra boggilast > E t:=(A3+2*A4)/2*Aa: # Arbeid fra trippelboggilast Bk10 > H:=80: A:=160: A1:=40: Vk:=300: Vv:=500: A2:=65: A3:=140: A4:=70: a:=0: b:=0: > mp:=solve(i=E_p+E_h,mp); mp:='mp':*mp* := 5.937826559 (49) > mp:=solve(i=E_p+E_a,mp); mp:='mp': *mp* := 8.651563473 (50)> mp:=solve(i=E p+E k,mp); mp:='mp': mp := 7.837442397(51) > mp:=solve(i=E_p+E_v,mp); mp:='mp': (52) *mp* := 6.514495652 > a:=1.3: > mp:=solve(i=E_p+E_b,mp); mp:='mp': mp := 9.366083874(53) > a:=2*1.3: > mp:=solve(i=E_p+E_t,mp); mp:='mp': mp := 9.506574283(54)

BkT8

>	H:=56: A:=112: A1:=32: a:=0:	Vk:=280: Vv:=400:	A2:=40: A3:=84:	A4:=60:
>	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp':</pre>	;		
L	mp. mp.	<i>mp</i> := 4.472408628		(55)
>	<pre>mp:=solve(i=E_p+E_a,mp) mp:='mp':</pre>	;		
L		<i>mp</i> := 6.372024465		(56)
>	<pre>mp:=solve(i=E_p+E_k,mp) mp:='mp':</pre>	;		
Ļ		mp := 7.131870801		(57)
>	<pre>mp:=solve(1=E_p+E_v,mp) mp:='mp':</pre>	;		
Ļ	1.0	mp := 5.422216546		(58)
>	a:=1.2: mp:=solve(i=E p+E b,mp)	;		
	mp:='mp':	mp := 6.888571771		(50)
>	a:=2*1.2:	mp := 0.000571771		(39)
>	<pre>mp:=solve(i=E_p+E_t,mp) mp:='mp':</pre>	;		
Ļ		<i>mp</i> := 7.546498325		(60)
L₿	k8			
>	H:=56: A:=112: A1:=32: a:=0:	Vk:=220: Vv:=320:	A2:=40: A3:=84:	A4:=50:
>	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp':</pre>	;		
>	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp':</pre>	; mp := 4.472408628		(61)
[^ 	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp':</pre>	; mp := 4.472408628 ;		(61)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp':</pre>	; mp := 4.472408628 ; mp := 6.372024465		(61) (62)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:=solve(i=E_p+E_k,mp) mp:='mp':</pre>	; mp := 4.472408628 ; mp := 6.372024465 ;		(61) (62)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:=solve(i=E_p+E_k,mp) mp:='mp': </pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512		(61) (62) (63)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:=solve(i=E_p+E_k,mp) mp:='mp': mp:=solve(i=E_p+E_v,mp) mp:='mp':</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ;		(61) (62) (63)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:=solve(i=E_p+E_k,mp) mp:='mp': mp:=solve(i=E_p+E_v,mp) mp:='mp':</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796		(61) (62) (63) (64)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp': mp:=solve(i=E_p+E_k,mp) mp:='mp': a:=1.2: a:=1.2:</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796		(61) (62) (63) (64)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp': mp:=solve(i=E_p+E_k,mp) mp:='mp': a:=1.2: mp:=solve(i=E_p+E_v,mp) mp:='mp':</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796 ;		(61) (62) (63) (64)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp': mp:=solve(i=E_p+E_k,mp) mp:='mp': a:=1.2: mp:=solve(i=E_p+E_b,mp) mp:='mp':</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796 ; mp := 6.888571771		(61) (62) (63) (64) (65)
יוליו ליוליו ליו ליו לי	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp': mp:=solve(i=E_p+E_k,mp) mp:='mp': a:=1.2: mp:=solve(i=E_p+E_v,mp) mp:='mp': a:=2*1.2:</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796 ; mp := 6.888571771		(61) (62) (63) (64) (65)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp': mp:=solve(i=E_p+E_k,mp) mp:='mp': a:=1.2: mp:=solve(i=E_p+E_v,mp) mp:='mp': a:=2*1.2: mp:=solve(i=E_p+E_t,mp) mp:='mp':</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796 ; mp := 6.888571771 ;		(61) (62) (63) (64) (65)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp': mp:=solve(i=E_p+E_k,mp) mp:='mp': a:=1.2: mp:=solve(i=E_p+E_v,mp) mp:='mp': a:=2*1.2: mp:=solve(i=E_p+E_t,mp) mp:='mp':</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796 ; mp := 6.888571771 ; mp := 6.971309250		(61) (62) (63) (64) (65) (66)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp': mp:=solve(i=E_p+E_k,mp) mp:='mp': a:=1.2: mp:=solve(i=E_p+E_v,mp) mp:='mp': a:=2*1.2: mp:=solve(i=E_p+E_t,mp) mp:='mp': k6</pre>	; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796 ; mp := 6.888571771 ; mp := 6.971309250		(61) (62) (63) (64) (65) (66)
	<pre>mp:=solve(i=E_p+E_h,mp) mp:='mp': mp:=solve(i=E_p+E_a,mp) mp:='mp': mp:=solve(i=E_p+E_k,mp) mp:='mp': a:=1.2: mp:=solve(i=E_p+E_v,mp) mp:='mp': a:=2*1.2: mp:=solve(i=E_p+E_t,mp) mp:='mp': k6 H:=42: A:=84: A1:=24: V a:=0:</pre>	<pre>; mp := 4.472408628 ; mp := 6.372024465 ; mp := 6.154925512 ; mp := 4.852331796 ; mp := 6.888571771 ; mp := 6.971309250 </pre>	A2:=30: A3:=56: .	 (61) (62) (63) (64) (65) (66) A4 :=40 :

mp:='mp': *mp* := 3.617581501 (67) > mp:=solve(i=E p+E a,mp); mp:='mp': mp := 5.042293380(68) > mp:=solve(i=E_p+E_k,mp); mp:='mp': mp := 5.123705487(69) > mp:=solve(i=E_p+E_v,mp); mp:='mp': mp := 4.187466253(70) > a:=1.2: > mp:=solve(i=E_p+E_b,mp); mp:='mp': mp := 5.527249260(71) > a:=2*1.2: > mp:=solve(i=E p+E t,mp); mp:='mp': mp := 5.590855461(72)Bruddmekanisme 4: > restart: Laster # Laster Dimensjoner og vinkler og momentkapasitet > B1:=2.4: B2:=1.05: L:=18.63: Dimensjoner som er felles for alle bruddmekanismer > 1h:=0.55: # Lengden inn til hjullast > h:=delta*lh/B2: # Høyden til hjullast > $Ld:=(B2^2+x^2)^0.5:$ > mp":=mp: # Isotropi > mpy:=mp: > mpx:=mp: > mpx":=mpx: > mpy":=mpy: > mpD":=mpx"*sin(phi)^2+mpy"*cos(phi)^2: > theta1:=delta/B2: > theta2:=delta/x: > phi:=arctan(x/B1): > thetaD:=delta/(sin(phi)*B1): Arealer og volumer > Aa:=lh*h/2: # Areal under aksellast > Vt:=Aa*(a+2*x): # Volum under totalvekt (konservativ)

> Vb:=delta*a*B2/2+2*x*B2*delta/3: # Volum under vind og betong. > Vg:=Aa*a+h*x*lh/B2*2/3: # Volum under slitelag Indre arbeid [> i:=2*mpD"*Ld*thetaD+2*theta2*B2*mp+theta1*a*mp": Ytre arbeid > E_p:=(q_vind+g_betong)*Vb+g_grus*Vg: del av ytre arbeid # Permanent > E h:=H*h: # Arbeid fra hjullast > E a:=A/2*Aa: # Arbeid fra aksellast > E k:=A1/2*Aa+Vk/14*Vt: # Arbeid fra kjøretøylast > E_v:=A1/2*Aa+Vv/32*Vt: # Arbeid fra vogntoglast > E b:=(A+A2)/2*Aa: # Arbeid fra boggilast > E t:=(A3+2*A4)/2*Aa: # Arbeid fra trippelboggilast Bk10 > H:=80: A:=160: A1:=40: Vk:=300: Vv:=500: A2:=65: A3:=140: A4:=70: a:=0: b:=0: > mp:=solve(i=E_p+E_h,mp): solve([diff(mp,x)=0,x>0],x); subs(%,mp); mp:='mp': $\{x = 3.023226903\}$ 13.64018078 (73) > mp:=solve(i=E p+E a,mp): solve([diff(mp,x)=0,x>0],x); subs(%,mp); mp:='mp': $\{x = 5.682119292\}$ 6.766278908 (74) > mp:=solve(i=E_p+E_k,mp): solve([diff(mp, x)=0, x>0], x); subs(%,mp); mp:='mp': $\{x = 44.77358124\}$ 13.01061788 (75) > mp:=solve(i=E p+E v,mp): solve([diff(mp,x)=0,x>0],x); subs(%,mp); mp:='mp': ${x = 37.88635173}$ 11.01125289 (76)> a:=1.3: > mp:=solve(i=E_p+E_b,mp):

mp:='mp': $\{x = 7.077270968\}$ 6.293303138 (84) Bk8 > H:=56: A:=112: A1:=32: Vk:=220: Vv:=320: A2:=40: A3:=84: A4:=50: a:=0: > mp:=solve(i=E_p+E_h,mp): solve([diff(mp,x)=0,x>0],x); subs(%,mp);
mp:='mp': $\{x = 3.394356968\}$ 10.61777699 (85) > mp:=solve(i=E_p+E_a,mp): solve([diff(mp,x)=0,x>0],x); subs(%,mp); mp:='mp': $\{x = 7.514687337\}$ 6.203235496 (86) > mp:=solve(i=E p+E k,mp): solve([diff(mp,x)=0,x>0],x); subs(%,mp); mp:='mp': $\{x = 47.43073783\}$ 11.02565888 (87) > mp:=solve(i=E_p+E_v,mp): solve([diff(mp,x)=0,x>0],x); subs(%,mp); mp:='mp': $\{x = 38.95209030\}$ 9.056490140 (88) > a:=1.2: > mp:=solve(i=E_p+E_b,mp): solve([diff(mp, x)=0, x>0], x);subs(%,mp);
mp:='mp': $\{x = 7.531612567\}$ 6.200101710 (89) > a:=2*1.2: > mp:=solve(i=E p+E t,mp): solve([diff(mp,x)=0,x>0],x); subs(%,mp); mp:='mp': $\{x = 7.907566394\}$ (90) 6.136175530 Bk6 > H:=42: A:=84: A1:=24: Vk:=180: Vv:=280: A2:=30: A3:=56: A4:=40: a:=0: > mp:=solve(i=E_p+E_h,mp): solve([diff(mp, x)=0, x>0], x); subs(%,mp);

11.2 Foss bru

Figur 11.2.1: Plantegning til Foss bru.

	al and the second
Armering i dekket Faither Soill Japas Verbarge M. 120	
E \$ 10 96 400	5.1
Theresnill (Brumidte) (Red all mol) on the Ved pilor. J fell.	
The second secon	2
Be francis and the second start and the second start and the second seco	4
147 (3) A 500 (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	
de d	
and and a set of the s	
P24, 54000 191 (3130 - 950)	10 46 200
	2
400 - 1110 4600 - 110 - 100 brumidla	ubs
10 2 vorige anit Lanas tverrbarere 444	14
Independ	154
- D#12 D#16 46 140 (Annathvert jern forskyves) Langde-snilt M-1:20	
THE THE State of t	30006
With the provide the second se	14 4.12 % 200
	4 2 1 1
	@
Overkant 28th nellem ass 3 Denne P. 5/h	
(Annelbert Jam Jacksygg)	12 1
52 /200 19%	
15000 15000 15000	300
vorhöyder s	0
1 3 2 7 9 8 7	E
	0 6
den overliger angilly overhight e. The second	201
Snill langs everybarer ved pel 37+50 angill i hvert 10 punkt av spennvideen.	
687	Overhöyden "h.
- Beak	
₩2##E6 I III III	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The 1000 4000 4000 1000	
	100
We and the stoppingen ov decked beins opp	
() i den angibe, rakkafålges fra Till III.	
Ca 1826 (Burney all part of the second part of the	1. A.
- 10/2/ 76 200 (0) 2 \$ 26 Detong xvallet D' 300. Hist, para-	S., 1
1 280 ch 280 ch 4623 ch 530 ch 650 ch 47K porte volume.	
<u> </u>	cket
Endetverbarer ved pel 34-50 ligger odetverber ved pel 37150 Foss bru	M. Tegn G.H
Segn a fjerden	2e 1:20 K/r.
in the second	BIVT 233/ci
From the line	unkie fistollel or

Figur 11.2.2: Armeringsdetaljer for Foss bru.

11.2.1 Laster

Egenlast betong		5,94	kN/m ²	
Egenlast slitelag		3	kN/m ²	
Vindkraft x-retning		1,574	kN/m ²	
Vindkraft z-retning		1,043	kN/m ²	
Bremselast	Bk10	175		
	BkT8	140	ŀN	
	Bk8	115	KIN	
	Bk6	103		
	Bk10	44		
Sidelast	BkT8	35	ŀN	
	Bk8	29	KIN	
	Bk6	26		

Tabell 11.2.1: Laster for 1 meter stripe.

Egenlast betong		1,19	kN/m
Egenlast slitelag		0,6	kN/m
Vindkraft x-retning		0,35	kN/m
Vindkraft x-retning på 2x7 m bil med 4 dekk		5,51	kN/dekk
Vindkraft z-retning		0,209	kN/m
Bremselast	Bk10	175	
	BkT8	140	1-NI
	Bk8	115	KIN
	Bk6	103	
Sidelast	Bk10	44	
	BkT8	35	LNI
	Bk8	29	KIN
	Bk6	26	

Tabell 11.2.2: Laster for 0,2 meter stripe.

	Hjullast	Aksellast	Boggilast	Trippelboggilast	Kjøretøylast	Vogntoglast	
Bk10	133,33	80	80	70	28,57	26,25	kN/m
BkT8	93,33	56	56	42	24	21	kN/m
Bk8	93,33	56	56	42	22	20	kN/m
Bk6	70	42	42	28	17	15,5	kN/m

Tabell 11.2.3: Trafikklast på 0,2 meter stripe kombinert den verste aksellasten og totalvekt

11.2.2 Bruddlinjemetoden

```
Bruddlinjemetoden: Foss bru
Bruddmekanisme 1
> restart:
Laster
> q_vind:=0.209: g_betong:=5.94: g_grus:=3:
    i kN/m^2 felles for alle bruddmekanismer
                                                                  # Laster
Dimensjoner og vinkler og momentkapasitet
> B1:=4.6: B2:=1.990: L:=15:
> lh:=1.8:
                                                                  # Lengden
 inn til hjullast
> h:=delta*lh/(B1/2):
                                                                  # Høyden
  til hjullast
> fyd:=320: d:=220-36: z:=0.9*d:
> mpx1:=1436*fyd*z/10^6;
                             mpx1 := 76.09651200
                                                                             (1)
> mpx1":=1602*fyd*z/10^6; mpx2":=261*fyd*z/10^6;
                             mpx1":= 84.89318400
                             mpx2" := 13.83091200
                                                                             (2)
> mpy1:=342*fyd*z/10^6; mpy2:=942*fyd*z/10^6;
                             mpy1 := 18.12326400
                             mpy2 := 49.91846400
                                                                             (3)
> mpy1":=638*fyd*z/10^6;
                             mpy1":= 33.80889600
                                                                             (4)
> mpD:=(mpx1)*cos(Pi/2)^2+(0.5*mpy1+0.5*mpy2)*sin(Pi/2);
                             mpD := 34.02086400
                                                                             (5)
> x:=(B1-b)/2:
> Ld:=(2*x^2)^0.5: theta1:=delta/x: theta2:=theta1: thetaD:=
  (theta1*x+theta2*x)/Ld:
Arealer og volumer
> Aa:=2*delta/2+1.6*delta*1.6/2/2:
     # Areal under aksellast
> Vt:=Aa*(a+2*x):
      # Volum under totalvekt (konservativ)
> Vg:=a*(B1-b)*delta/2+B1*2*x*delta/3+a*b*delta:
      # Volum under vind, slitelag og betong.
Indre arbeid
> i:=4*Ld*thetaD*mpD+2*a*theta1*(mpx1)+2*(2*x+a)*theta1*(mpx1")+2*
  b*theta2*(mpy2)+B1*theta2*(mpy1"):
Ytre arbeid
> E_p:=(q_vind+g_betong+g_grus)*Vg:
    del av ytre arbeid
                                                                # Permanent
> E h:=H*h:
                                                                # Arbeid
 fra hjullast
> E_a:=A/2*Aa:
                                                                # Arbeid
 fra aksellast
> E k:=A1/2*Aa+Vk/14*Vt:
                                                                # Arbeid
 fra kjøretøylast
> E v:=A1/2*Aa+Vv/32*Vt:
                                                                # Arbeid
```

Ļ	fra vogntoglast				
>	$E_b:=(A+A2)/2*Aa:$			# Arbe:	id
-	E t := (A3+2*A4)/2*Aa:			# Arbe:	id
L	fra trippelboggilast				
B	c10				
>	H:=2*80: A:=2*160: A1:=2*	40: Vk:=2*300:	Vv:=2*500:	A2:=2*65:	A3:=
E,	2^{-140} . A4. -2^{-70} . a. -0 . b. 0. 8*i - (E p+E b):	-0.			
-	0.01 (1_p.1_n,)	353,7376140 8			ക്ര
F,	$0.8 \pm i - (E.p \pm E.k)$				
1	0.0 1 (<u>L_p</u> , <u>L</u> , <u>r</u>),	90 04071972 8			(7)
F	0 + i = (F + F + F)	50.010/15/20			(1)
-	0.8"I=(E_D+E_V);	177 6050053 8			(8)
Ļ		177.00500550			(0)
>	0.8*1-(E_p+E_a);	216 5550052 \$			
F		210.3330033 0			(9)
>	a:=1.3: 0 $8 \pm i - (E p \pm E b)$				
	0.01 (1_p11_0),	228 1901768 8			(10)
F	a:-2*1 2:	220.1901700 0			(10)
1	a_{-2} , a_{-				
		256.2253485 δ			(11)
	~T8				()
	H:=2*56: A:=2*112: A1:=2*	32: Vk:=2*280:	Vv:=2*400:	A2:=2*40:	A3:=
L	2*84: A4:=2*60: a:=0: b:=	=0:			
>	$0.8 \star i - (E_p + E_h);$				
L		391.3028314 δ			(12)
>	0.8*i-(E_p+E_k);				
		124.7150054 δ			(13)
>	0.8*i-(E_p+E_v);				
		237.8750053 δ			(14)
>	$0.8 \star i - (E p + E a);$				
		295.2750053 δ			(15)
5	a:=1.2:				
	0.8*i-(E_p+E_b);				
		338.8151636 δ			(16)
>	a:=2*1.2:				
	0.8*i-(E_p+E_t);				
L		362.6753221 δ			(17)
-					
LB	<8				
>	H:= $2*56$: A:= $2*112$: A1:= $2*$ 2*84: A4:= $2*50$: a:=0: b:=	32: Vk:=2*220:	Vv:=2*320:	A2:=2*40:	A3:=
 >	$0.8 \pm i - (E p \pm E h)$:	····			
-	···· - (··//	391 3028314 8			(18)
L		571.50205170			(10)

<pre>> 0.8*i-(E_p+E_k);</pre>	189 3778625 8	(19)
	107.5770025 0	(1))
> 0.8*1-(E_p+E_V);		
L	275.5950053 δ	(20)
> 0.8*i-(E_p+E_a);		
	295.2750053 δ	(21)
L > a·=1 3·		()
$0.8 \pm i - (E p \pm E b)$:		
	347 0101768 8	(22)
	547.9101708 0	(22)
> a:=2*1.3:		
0.8*1-(E_p+E_t);		
	413.6653485 δ	(23)
LBk6		
> H:=2*42: A:=2*84: A1:=2*2	24: Vk:=2*180: Vv:=2*280: A	2:=2*30: A3:=
2*56: A4:=2*40: a:=0: b:=	=0:	
$> 0.8 \pm (E p + E h);$		
	413.2158749 δ	(24)
$ = \sum_{n=1}^{\infty} (\mathbf{E}_{n+1} \mathbf{E}_{n+1}) $		
> 0.8~1-(E_p+E_k);	215 (0(1220 5	
	245.6064339 0	(25)
$> 0.8 \pm (E_p + E_v);$		
	307.5750053 δ	(26)
$\geq 0.8 \pm i - (E. p \pm E. a)$		
· · · · · · · · (pu, /	241 1050052 8	(27)
	341.1930033 0	(27)
> a:=1.3:		
0.8*1-(E_p+E_b);		
	410.2301768 δ	(28)
> a:=2*1.3:		
0.8*i-(E_p+E_t);		
	492.3853485 δ	(29)
L		
[Pruddmakanisma 2:		
Laster	- E 04. a amus 2.	# Tester
i kN/m^2 felles for alle	-5.94. g_grus5. bruddmekanismer	# Laster
Dimensioner og vinkler og mementkan	asitat	
\square	5.	
$\sum 1h = 1.8$		# Lengden
inn til hjullast		# Lengden
$\sum h = delta * lh / (B1/2)$		# Høyden
til hjullast		# møyden
> fvd:=320: d:=220-36: z:=0	0.9*d:	
> mpx1:=1436*fvd*z/10^6:		
	pxl := 76.09651200	(30)
$\sum_{n=1}^{n} \frac{1}{n} = 1602 \pm \frac{1}{n} = \frac{1}{$	$m_{2}^{2} = 261 \pm f_{2} d \pm \pi / 10^{6}$	(50)
- mpsi1002-190-2/10 0, 1	"PAL 201 1yd" 2/10 0,	
1		

```
mpx1":= 84.89318400
                            mpx2":= 13.83091200
                                                                           (31)
> mpy1:=342*fyd*z/10^6; mpy2:=942*fyd*z/10^6;
                             mpy1 := 18.12326400
                             mpy2 := 49.91846400
                                                                           (32)
> mpy1":=638*fyd*z/10^6;
                            mpy1":= 33.80889600
                                                                           (33)
> mpD:=(mpx1)*cos(Pi/2)^2+(0.5*mpy1+0.5*mpy2)*sin(Pi/2);
                             mpD := 34.02086400
                                                                           (34)
> r:=(B1-b)/2:
> theta1:=delta/r: theta2:=theta1:
Arealer og volumer
> Aa:=2*delta/2+1.6*delta*1.6/2/2:
      # Areal under aksellast
> Vt:=Aa*(a+2*r):
      # Volum under totalvekt (konservativ)
> Vg:=evalf(a*Aa+b*r*delta+1/3*Pi*r^2*delta):
      # Volum under vind, grus og betong.
Indre arbeid
> i:=evalf(2*Pi*((0.4*mpx2"+0.1*mpx1"+0.5*mpy1")+(0.5*mpx1+0.4*
mpy2+0.1*mpy1))*delta+(mpy1")*b*theta1+2*b*mpy2*theta1+2*a*
   (mpx1"+mpx1) *theta2):
Ytre arbeid
> E_p:=(q_vind+g_betong+g_grus) *Vg:
                                                               # Permanent
 del av ytre arbeid
> E h:=H*h:
                                                               # Arbeid
  fra hjullast
> E a:=A/2*Aa:
                                                               # Arbeid
  fra aksellast
> E k:=A1/2*Aa+Vk/14*Vt:
                                                               # Arbeid
 fra kjøretøylast
> E v:=A1/2*Aa+Vv/32*Vt:
                                                               # Arbeid
 fra vogntoglast
> E b:=(A+A2)/2*Aa:
                                                               # Arbeid
  fra boggilast
> E_t:=(A3+2*A4)/2*Aa:
                                                               # Arbeid
 fra trippelboggilast
Bk10
> H:=2*80: A:=2*160: A1:=2*40: Vk:=2*300: Vv:=2*500: A2:=2*65: A3:=
  2*140: A4:=2*70: a:=0: b:=0:
> 0.8*i-(E p+E h);
                               280.2799799 δ
                                                                           (35)
> 0.8*i-(E_p+E_k);
                               16.58308562 δ
                                                                           (36)
> 0.8*i-(E_p+E_v);
                               104.1473712 δ
                                                                           (37)
  0.8*i-(E_p+E_a);
                                                                           (20)
```
			143.0	0973712 δ			(38)
	>	a:=1.3: 0.8*i-(E p+E b);					
			162.:	5823848 δ			(39)
	>	a:=2*1.3: 0.8*i-(E p+E t):					
		0.0 1 (1_p.1_0//	198.4	4673984 δ			(40)
ļ	B	KT8					- 0
	>	H:=2*56: A:=2*112: A1:=2* 2*84: A4:=2*60: a:=0: b:=	32: 0:	Vk:=2*280:	Vv:=2*400:	A2:=2*40:	A3:=
	>	0.8*i-(E_p+E_h);					
	_		317.	8451973 8			(41)
	>	0.8*i-(E_p+E_k);	51.2	5737132 δ			(42)
Ì	>	$0.8 \star i - (E p + E v);$					
	_		164.4	4173712 δ			(43)
	>	0.8*i-(E_p+E_a);	221	8173712 8			(44)
j	>	a:=1.2:	221.	01757120			(++)
		0.8*i-(E_p+E_b);					
ļ			272.0	6035376 δ			(45)
	>	a:=2*1.2: 0.8*i-(E p+E t);					
			303.	7097040 δ			(46)
ì	Гът	0					
	_ Bł	<pre>K8 H:=2*56: A:=2*112: A1:=2*</pre>	32:	Vk:=2*220:	Vv:=2*320:	A2:=2*40:	A3:=
	-	2*84: A4:=2*50: a:=0: b:=	:0				
	>	U.8^1-(E_P+E_n);	317	8451973 δ			(47)
Ì	>	0.8*i-(E p+E k);	5111				()

E Bk6 ▷ H:=2*42: A:=2*84: A1:=2*24: Vk:=2*180: Vv:=2*280: A2:=2*30: A3:=

115.9202284 δ

202.1373712 δ

221.8173712 δ

282.3023848 δ

355.9073984 δ

> 0.8*i-(E_p+E_v);

> 0.8*i-(E_p+E_a);

> a:=1.3: 0.8*i-(E_p+E_b);

> a:=2*1.3: 0.8*i-(E_p+E_t); (48)

(49)

(50)

(51)

(52)

2*56: A4:=2*40: a:=0: b:=0: > 0.8*i-(E_p+E_h); 339.7582408 δ (53) > 0.8*i-(E_p+E_k); 172.1487998 δ (54) 0.8*i-(E p+E v); 234.1173712 δ (55) > 0.8*i-(E p+E a); 267.7373712 δ (56) > a:=1.3: 0.8*i-(E_p+E_b); 344.6223848 δ (57) > a:=2*1.3: 0.8*i-(E_p+E_t); 434.6273984 δ (58) Bruddmekanisme 3: > restart: Laster > q_vind:=0.209: g_betong:=5.94: g_grus:=3: i kN/m^2 felles for alle bruddmekanismer # Laster Dimensjoner > B1:=4.6: B2:=1.990: L:=15: > lh:=1.8: # Lengden inn til hjullast > h:=delta*lh/(B1/2): # Høyden til hjullast > $Ld:=(2*x^2)^{0.5}$: > fyd:=320: d:=220-36: z:=0.9*d: > mpx1:=1436*fyd*z/10^6; *mpx1* := 76.09651200 (59) > mpx1":=1602*fyd*z/10^6; mpx2":=261*fyd*z/10^6; *mpx1*":= 84.89318400 mpx2" := 13.83091200(60) > mpy1:=342*fyd*z/10^6; mpy2:=942*fyd*z/10^6; mpy1 := 18.12326400mpy2 := 49.91846400(61) > mpy1":=638*fyd*z/10^6; *mpy1*":= 33.80889600 (62) > mpD:=(mpx1)*cos(Pi/2)^2+(0.5*mpy1+0.5*mpy2)*sin(Pi/2); mpD := 34.02086400(63) Lengder og vinkler > r:=(B1-b)/2:> x:=r: > theta1:=delta/r: theta2:=theta1: thetaD:=(theta1*x+theta2*x)/Ld:

Arealer og volumer > Aa:=2*delta/2+1.6*delta*1.6/2/2: # Areal under aksellast > Vt:=Aa*(a+2*r): # Volum under totalvekt (konservativ) > Vg:=evalf(a*Aa+b*r*delta+1/6*Pi*r^2*delta+2*x*x*delta/3): # Volum under vind, grus og betong. Indre arbeid > i:=evalf(Pi*((0.4*mpx2"+0.1*mpx1"+0.5*mpy1")+(0.5*mpx1+0.4* mpy2+0.1*mpy1))*delta+mpx2"*b*theta1+2*b*mpx1*theta1+2*((x+a)* mpx1"+a*mpx1)*theta2+2*Ld*thetaD*mpD): Ytre arbeid > E_p:=(q_vind+g_betong+g_grus)*Vg: del av ytre arbeid # Permanent > E h:=H*h: # Arbeid fra hjullast > E_a:=A/2*Aa: # Arbeid fra aksellast > E k:=A1/2*Aa+Vk/14*Vt: # Arbeid fra kjøretøylast > E v:=A1/2*Aa+Vv/32*Vt: # Arbeid fra vogntoglast > E b:=(A+A2)/2*Aa: # Arbeid fra boggilast > E t:=(A3+2*A4)/2*Aa: # Arbeid fra trippelboggilast Bk10 > H:=2*80: A:=2*160: A1:=2*40: Vk:=2*300: Vv:=2*500: A2:=2*65: A3:= 2*140: A4:=2*70: a:=0: b:=0: > 0.8*i-(E p+E h); 289.9616802 δ (64) > 0.8*i-(E_p+E_k); 26.26478588 δ (65) > 0.8*i-(E_p+E_v); 113.8290715 δ (66) > 0.8*i-(E_p+E_a); 152.7790715 δ (67) > a:=1.3: 0.8*i-(E_p+E_b); 172.2640851 δ (68) > a:=2*1.3: 0.8*i-(E p+E t); 208.1490987 δ (69) BkT8 > H:=2*56: A:=2*112: A1:=2*32: Vk:=2*280: Vv:=2*400: A2:=2*40: A3:= 2*84: A4:=2*60: a:=0: b:=0: > 0.8*i-(E p+E h);327.5268976 δ (70)

$> 0.8*i-(E_p+E_k);$		
	60.93907158 δ	(71)
> 0.8*i-(E_p+E_v);	174.0990715 δ	(72)
	231.4990715 δ	(73)
> a:=1.2:		
0.8*1-(E_p+E_b);	282 2852270 \$	(74)
	282.28323790	(74)
> a:=2*1.2: 0.8*i-(E p+E t);		
	313.3914043 δ	(75)

Ев	k8			
>	H:=2*56: A:=2*112: A1:=2*	32: Vk:=2*220: Vv	r:=2*320: A2:=2*	40: A3:=
F	2*84: A4:=2*50: a:=0: b:=	0:		
1	0.8*1-(E_p+E_n);	227 52(207(\$		
F		327.3208970 0		(70)
>	$0.8*i - (E_p + E_k);$	105 (010005 5		
Ļ		125.6019287 8		(77)
>	0.8*i-(E_p+E_v);			
L		211.8190715 δ		(78)
>	$0.8 \star i - (E_p + E_a);$			
L		231.4990715 δ		(79)
>	a:=1.3:			
	0.8*i-(E_p+E_b);			
L		291.9840851 δ		(80)
>	a:=2*1.3:			
	0.8*1-(E_p+E_t);	265 5000007 \$		(01)
F		365.58909870		(81)
B	k6			
>	H:=2*42: A:=2*84: A1:=2*2	4: Vk:=2*180: Vv:	=2*280: A2:=2*3	0: A3:=
۲,	$0.8 \pm i - (E p \pm E h)$:	0.		
		349,4399411 8		(82)
F	$0.8 \pm i - (E.p \pm E.k)$			(0-)
-	0.01 (1_p.12_x)/	181 8305001 8		(83)
F	$0 \ 9 \ \dot{t} = (r \ r)$	101.0505001 0		(05)
1	0.8*1=(E_P+E_V);	242 7000715 8		(84)
F.		245.79907150		(04)
>	0.0+: (7.17.)			
-	0.8*i-(E_p+E_a);	277 4100715 \$		
	0.8*i-(E_p+E_a);	277.4190715 δ		(85)
>	0.8*i-(E_p+E_a); a:=1.3:	277.4190715 δ		(85)
>	0.8*i-(E_p+E_a); a:=1.3: 0.8*i-(E_p+E_b);	277.4190715 δ		(85)

> a:=2*1.3: 0.8*i-(E_p+E_t); 444.3090987 δ (87) Bruddmekanisme 4: > restart: Laster > q_vind:=0.209: g_betong:=5.94: g_grus:=3: i kN/m^2 felles for alle bruddmekanismer # Laster Dimensjoner og vinkler og momentkapasitet > B1:=2.4: B2:=1.05: L:=18.63: Ħ Dimensjoner som er felles for alle bruddmekanismer > 1h:=0.55: # Lengden inn til hjullast > h:=delta*lh/B2: # Høyden til hjullast > Ld:=(B2^2+x^2)^0.5: > fyd:=320: d:=220-36: z:=0.9*d: > mpx1:=718*fyd*z/10^6; mpx1 := 38.04825600(88) > mpx1":=670*fyd*z/10^6; mpx2":=1602*fyd*z/10^6; *mpx1*":= 35.50464000 mpx2" := 84.89318400(89) > mpy1:=251*fyd*z/10^6; (90) mpy1 := 13.30099200> mpy1":=638*fyd*z/10^6; *mpy1*":= 33.80889600 (91) > mpD["]:=(0.5*mpx1["]+0.5*mpx2["])*sin(phi)^2+mpy1["]*cos(phi)^2: > theta1:=delta/B2: > theta2:=delta/x: > phi:=arctan(x/B1): > thetaD:=delta/(sin(phi)*B1): Arealer og volumer > Aa:=1h*h/2: # Areal under aksellast > Vt:=Aa*(a+2*x): # Volum under totalvekt (konservativ) > Vb:=delta*a*B2/2+2*x*B2*delta/3: # Volum under vind og betong. > Vg:=Aa*a+h*x*lh/B2*2/3: # Volum under slitelag Indre arbeid > i:=(2*mpD"*Ld*thetaD+2*theta2*B2*(0.5*mpx1"+0.5*mpx2")+theta1*a* mpy1")*0.8: Ytre arbeid > E_p:=(q_vind+g_betong)*Vb+g_grus*Vg: del av ytre arbeid # Permanent > E h:=H*h: # Arbeid fra hjullast

> E a:=A/2*Aa: # Arbeid fra aksellast > E k:=A1/2*Aa+Vk/14*Vt: # Arbeid fra kjøretøylast > E v:=A1/2*Aa+Vv/32*Vt: # Arbeid fra vogntoglast > E b:=(A+A2)/2*Aa: # Arbeid fra boggilast > E t:=(A3+2*A4)/2*Aa: # Arbeid fra trippelboggilast Bk10 > H:=80: A:=160: A1:=40: Vk:=300: Vv:=500: A2:=65: A3:=140: A4:=70: a:=0: b:=0: > simplify((i-(E_p+E_h))/delta): solve([diff(%,x)=0,x>0],x); subs(%,i-(E_p+E_h)); $\{x = 2.133173127\}$ 103.6076938 δ (92) > simplify((i-(E_p+E_a))/delta): solve([diff(%,x)=0,x>0],x); subs(%,i-(E_p+E_h)); $\{x = 2.133173127\}$ 103.6076938 δ (93) > simplify((i-(E_p+E_k))/delta): solve([diff(%,x)=0,x>0],x); subs(%,i-(E_p+E_h)); $\{x = 2.342914960\}$ 104.2851234 δ (94) > simplify((i-(E p+E v))/delta): solve([diff(%,x)=0,x>0],x); subs(%,i-(E_p+E_h)); $\{x = 2.280143296\}$ 103.9493746 δ (95) > a:=1.3: > simplify((i-(E p+E b))/delta): solve([diff(%,x)=0,x>0],x); subs(%,i-(E_p+E_h)); $\{x = 2.133173127\}$ 132.3361221 δ (96) > a:=2*1.3: > simplify((i-(E_p+E_t))/delta): solve([diff($\$, \mathbf{x}$)=0, x>0], x); subs(%,i-(E_p+E_h)); $\{x = 2.133173127\}$ 161.0645504 δ (97) BkT8 > H:=56: A:=112: A1:=32: Vk:=280: Vv:=400: A2:=40: A3:=84: A4:=60: > simplify((i-(E_p+E_h))/delta):

L	150.0310049 δ	(114)
[>	a:=2*1.2:	
>	<pre>simplify((i-(E_p+E_t))/delta): solve([diff(%,x)=0,x>0],x); subs(%,i-(E_p+E_h));</pre>	
	${x=2.133173127}$	
L	176.5495541 δ	(115)

11.2.3 Duktilitetstets

```
Duktilitetstest

> restart:

> S1:=fyd*As1:

S2:=Es*As2*epsilon_s2:

Tc:=.8*fcd*alpha*d*b:

epsilon_s2:=(alpha*d-c)/(alpha*d)*epsilon_cu2;

epsilon_s2:=(\alpha d - c) epsilon_cu2;

\alpha d
(1)

> As1:=942: As2:=638: fcd:=12: fyd:=320: epsilon_cu2:=0.002: b:=

1000: d:=170-c: Es:=2*10^{5}: c:=36: alpha:='alpha':

alpha:=solve(S2+Tc-S1=0, alpha)[1];

\alpha:=0.2495324860
(2)

> epsilon_s1:=epsilon_cu2/(alpha*d)*(d-alpha*d);

epsilon_s1:=epsilon_cu2/(alpha*d)*(d-alpha*d);

epsilon_s1/epsilon_yd;

epsilon_s1:=0.004188536680

epsilon_yd:=0.001600000000

2.617835425
(3)
```

11.2.4 CMA

```
Есма
> restart:
Dimensjoner
> B:=6500: h:=220: d:=h-36: rho:=200:
Materiale egenskaper
> gamma m:=1.4: fcn:=14:
Prosedyre for å kalkulere hjullast kapasitet.
> Pps:=proc(B,h,fcn,gamma_m,d,rho)
  local a, Pps, rho_e, k, R, fcd, epsilon_c:
  if B/h>15 then
    a:=("error, B/h > 15")
  else
    ("error, R > 0.26"):
      else
        k:=0.0525*(4.3-16.1*(3.3*10^(-4)+0.1243*R)^0.5):
        rho_e:=k*(fcd/240)*(h/d)^2:
        Pps:=1.52*(rho+d)*d*fcd^0.5*(100*rho e)^0.25:
      end if:
  end if;
  end proc:
> Pps:=Pps(B,h,fcn,gamma_m,d,rho);
  Ppd:=0.65*Pps;
                         Pps := "error, B/h > 15"
                       Ppd := 0.65 "error, B/h > 15"
```

83

(1)

Bruksgrensetilstand > restart: Mellom bærebjelke Egenvekt > M_b:=1.19*3.89^2/2-1.19*3.89*2.3; M s:=0.6*3.4^2/2-3.4*0.6*2.3; M b := -1.643330500 M s := -1.224000000(1) Vindlast > M_vz:=0.209*3.89*2/2-0.209*3.89*2.3; M vx:=-5.51*0.11+5.51*0.11/4.6*2.3; $M_y z := -0.288618550$ M_vx := -0.3030499999 (2) Hjullast > M h10:=-80*2*2.3+80*(0.5+2.5); M hT8:=-56*2*2.3+56*(0.5+2.5); M h8:=-56*2*2.3+56*(0.5+2.5); M h6:=-42*2*2.3+42*(0.5+2.5); M h10:= -128.0 M hT8 := -89.6M h8 := -89.6M h6 := -67.2(3) Aksellast > M_a10:=-80*2*2.3+80*2*1.5; M_aT8:=-56*2*2.3+56*2*1.5; M_a8:=-56*2*2.3+56*2*1.5; M_a6:=-42*2*2.3+42*2*1.5; M a10 := -128.0M aT8 := -89.6M a8 := -89.6M a6 := -67.2(4) Sidelast > M s10:=-44*0.11+44*0.11/4.6*2.3; M sT8:=-35*0.11+35*0.11/4.6*2.3; M_s8:=-29*0.11+29*0.11/4.6*2.3; M s6:=-26*0.11+26*0.11/4.6*2.3; $M_s 10 := -2.420000000$ $M \ sT8 := -1.925000000$ $M_s8 := -1.595000000$ M s6 := -1.430000000(5) Største moment > MEd_10:=M_b+M_s+0.5*M_a10+0.5*0.7*(M_s10+M_vx+M_vz); MEd T8:=M b+M s+0.5*M aT8+0.5*0.7* (M sT8+M vx+M vz); $\begin{array}{l} \texttt{MEd} \ \texttt{B}:=\texttt{M} \ \ \texttt{B}+\texttt{M} \ \ \texttt{s}+\texttt{0}.5\texttt{*}\texttt{M} \ \ \texttt{a}\texttt{8}+\texttt{0}.5\texttt{*}\texttt{0}.7\texttt{*} (\texttt{M} \ \ \texttt{s}\texttt{B}+\texttt{M} \ \ \texttt{v}\texttt{x}+\texttt{M} \ \ \texttt{v}\texttt{z});\\ \texttt{MEd} \ \texttt{G}:=\texttt{M} \ \ \texttt{b}+\texttt{M} \ \ \texttt{s}+\texttt{0}.5\texttt{*}\texttt{M} \ \ \texttt{a}\texttt{6}+\texttt{0}.5\texttt{*}\texttt{0}.7\texttt{*} (\texttt{M} \ \ \texttt{s}\texttt{B}+\texttt{M} \ \ \texttt{v}\texttt{x}+\texttt{M} \ \ \texttt{v}\texttt{z}); \end{array}$ MEd 10 := -67.92141449 MEd T8 := -48.54816449

84

$$\begin{array}{c} MEd_{a}S:=-48.43266449 \\ MEd_{a}G:=-37.17491449 \end{array} \tag{6} \\ På bærebjelke \\ \hline Egenvekt \\ > M_{b}:=1.19*1.49^{2}/2; \\ M_{=}S:=0.363000000 \end{array} \tag{7} \\ Vindlast \\ > M_{v}v::=0: \\ M_{v}v::=0: \\ M_{v}v::=0: \\ M_{v}v::=0: \\ M_{v}v::=0 \end{array} \tag{8} \\ \hline Hjullast \\ > M_{t}v::=0: \\ M_{t}v::=0: \\$$

$$MEd_8 := 2.325159658$$

$$MEd_6 := 2.185159658$$
(12)
Moment i y-retning
Egenvekt
$$M_b := 1.19^*.37^*4.6/2^*(7.5-.37^*4.6/2/2) - 1.19^*.37^*4.6/2^*7.5;$$

$$M_s := 0.6^*.37^*4.6/2^*(7.5-.37^*4.6/2/2) - 0.6^*.37^*4.6/2^*7.5;$$

$$M_b := -0.430899595$$

$$M_s := -0.217260300$$
(13)
Vindlast
$$M_v z := 0.209^*.37^*4.6/2^*(7.5-.37^*4.6/2/2) - 0.209^*.37^*4.6/2^*7.5;$$

$$M_v z := -0.075679004$$
(14)
Sum moment
$$M := M_b + M_s + 0.7^*0.5^* M_v z;$$

$$M := -0.6746475464$$
(15)

Bruksgrensetilstanden > restart: Materialfaktorer > Ecm:=30000: gamma_c:=1: Ecd:=Ecm/gamma_c: Es:=2*10^5: Dimensioner > B:=7800: h:=220: c:=30: Ø:=12: b:=1000: d:=h-(c+Ø/2): RH:=70: t 0:=7: fcm:=28: Ac:=B*h: u:=2*(h+B): h0:=2.*Ac/u; h0 := 213.9650873(1)Reduserer E-modulen > phi_(inf,t0):=phi_0: phi_RH:=1+(1-RH/100)/(0.1*h0(1/3)): beta_fcm:=16.8/(fcm)^0.5: beta_t0:=1/(0.1+t 0^0.2): phi 0:=phi RH*beta fcm*beta t0; Ecdeff:=evalf(Ecd/(1+phi_(inf,t0))): Ecdeff: phi 0 := 2.043071223 9858.461337 (2) Finner bøyestivheten > alpha:=((rho*eta)^2+2*rho*eta)^0.5-rho*eta: eta:=Es/Ecdeff: rho:=As/(b*d): Ic:=alpha^2/2*(1-alpha/3)*b*d^3: ei:=Ecdeff*Ic: Denne prosedyren beregner nedbøyningen forårsaket av momentet langs en retning, i er antall intervaller før nedbøyningspunktet og j er antall intervaller etter. > delta:=proc(i,j) local k,1: sum(Int(M1[1]*M0[k]/EI[k],x=L[k-1]..L[k]),k=1..i)+sum(Int(M1[2]* M0[1]/EI[1],x=L[1-1]..L[1]),1=i+1..j); evalf(%) end proc: Finner først nedbøyning i x-retning > 1:=4600: M0 er momentet som virker på konstruksjonen. > M_st:=11.65*10^6: M_ft:=-185.85*10^6: Ø:=16: M0[1]:=M_st+4*(M_st-M_ft)/1^2*(x^2-1*x): M0[2]:=M0[1]: M1 er det virtuelle momentet. Den endres kun etter nedbøyningsposisjonen. Dette tas hensyn til i prosedyren i stedet for â mâtte definere M1 for hvert intervall. > M1[1]:=-x/2: M1[2]:=(x-1)/2: EI er bøvestivheten. > EI[1]:=subs(As=1436,ei): EI[2]:=EI[1]: L[i-1] er startpunktet for intervall i, og L[i] er sluttpunktet for intervallet. Det trengs et intervall for hver

gang EI, M0 og M1 endres. Intervallene starter ved bærebjelkene, da M1 er null utfor.

```
> L[0]:=0: L[1]:=1/2: L[2]:=1:
> deltax:=delta(1,2);
                            deltax := 84.51499691
                                                                           (3)
Deretter nedbøyning i Y-retning
> 1:=15000: Ø:=12:
> M0[1]:=-3.35*10^6: M0[2]:=M0[1]:
> M1[1]:=-x/2: M1[2]:=(x-1)/2:
> EI[1]:=subs(As=942,ei): EI[2]:=EI[1]:
> L[0]:=0: L[1]:=1/2: L[2]:=1:
> deltay:=delta(1,2);
                            deltay := 26.41139216
                                                                           (4)
Total nedbøyning
> delta:=deltay+deltax;
                              \delta := 110.9263891
                                                                           (5)
Risskontroll
> As:=1436: M:=185.85*10^6: Ø:=16: s:=140: kt:=0.4: k1:=0.8: k2:=
   0.8: k3:=3.4: k4:=0.425: fcteff:=2.2: c_nom:=30: c_dur:=50:
> kc:=c nom/c dur:
  wk:=sr*(delta_epsilon): # delta_epsilon = epsilon_sm -
   epsilon_cm
  delta_epsilon:=max((sigma_s-kt*fcteff/rho_peff*(1+eta*rho_peff)
/Es),0.6*sigma_s/Es):
   sigma_s:=M*(1-alpha)*d/ei:
   rho_peff:=As/Aceff:
  Aceff:=b*hceff:
  hceff:=max(min(2.5*(h-d),(h-alpha*d)/3,h/2),h-d+1.5*Ø):
   if s<=5*(c+Ø/2) then
      sr:=k3*c+k1*k2*k4*Ø/rho peff;
     else
     sr:=1.3*(h-alpha*d);
   end if:
   wk;
                               1.086032251
                                                                           (6)
> 0.3*kc;
                               0.1800000000
                                                                           (7)
```