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Abstract

When producing hot fluid from a reservoir, the production well experiences changing
temperatures with depth for the different tubing, casing, cement and wellbore interfaces.
To what extent the temperatures change is depending on many factors. The production
flow rate, produced fluid specific heat capacity, thermal conductivity and viscosity
of the annular fluids, the Joule-Thomson effect on the produced fluid, radius of the
wellbore, annular clearance, and production time, are some of the parameters playing
an important role in determining the heat transfer across the wellbore between the
produced fluid and the formation.

A wellbore heat transfer model for a single phase oil production scenario, based on
the wellbore heat transfer model presented by Hasan, Kabir, and Wang (2009), has
been implemented in the MATLAB ® software. The model considers a fairly complex
wellbore configuration, consisting of five wellbore sections of different configuration,
with the possibility of natural/free convection taking place in three brine filled annulus.
Correlations taking temperature and/or pressure into consideration has been imple-
mented for all thermophysical properties in the wellbore, such as thermal conductivity
of tubing, casing, and cement, specific heat capacity, viscosity, thermal conductivity of
annular fluids, and densities of produced and annular fluids, to mention some. The
MATLAB program allows for custom well configurations, and is able to calculate the
temperatures at all the wellbore, casings and tubing interfaces, and has the ability to
use other fluid, casing/tubing, cement and formation properties than the ones used in
this study.
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Chapter 1

Introduction

1.1 Reaserch problem

Estimating correct casing and tubing temperatures in completed wells are of great
importance for multiple applications. To accurately carry out stress analysis of tubing/-
casing, and to select the appropriate materials to use in the wells, are some examples
of application areas where we need to have as correct as possible estimates of the
temperatures in the well. This is increasingly important as we drill deeper, with margins
becoming smaller. Correct temperature estimates are also important for geothermal
wells, due to many of the same reasons as for oil wells, but also to maximize the energy
extracted from the well.

The intention of this research is to implement a temperature model for a production
well into the MATLAB software, and to perform a sensitivity analysis of the finished
model to get a better understanding of the mechanisms controlling the heat transfer in
a well with a complex configuration consisting of multiple casings, multiple fluid filled
annulus, and changing fluid thermophysical properties.



2 Introduction

1.2 Literature review

Theoretical models for estimation of wellbore fluid temperatures have been around since
the sixties. Ramey (1962) presented the classic model for temperature estimation of
fluids, tubing and casing along the wellbore path, with the assumption of steady-state
heat transfer in the wellbore, and transient thermal behavior in the formation. The
model is simple, considering only single phase fluid or gas production, and neglects
thermal resistance of casing and tubing, frictional and kinetic energy effects. Willhite
(1967) developed a calculation procedure for wellbore temperature estimation for the
case of an injection well with a gas filled annulus, subjected to radiative, conductive
and free convection heat transfer mechanisms, also considering the model for transient
radial conduction in the formation by Ramey (1962). Willhite introduced natural
convection and radiation to the wellbore heat transfer calculations, and developed a
general definition for the overall heat transfer coefficient for wellbores. Alves, Alhanati,
and Shoham (1992) introduced a mechanistic approach to estimate the Joule-Thomson
coefficient, responsible for the heating or cooling of the produced fluid, resulting from
the pressure decreases as the produced fluid is transported upwards in the tubing. Hasan
and Kabir (1994) presented a model incorporating steady-state two-phase flow. They
also presented a new way of solving the transient thermal behavior of the formation, as
opposed to that of Ramey (1962). Hasan et al. (2009) presented an analytical steady-
state model, able to estimate the wellbore fluid temperature profiles, incorporating
wellbore inclination, varying geothermal gradient, and the Joule-Thomson effect.

Common for these studies are that the sample calculations provided assume sim-
ple well configurations, negligible thermal resistance of casing/tubing, and constant
thermophysical properties for the well. There is lacking publically available literature
on simulation models considering free convection in multiple fluid filled annulus for
complex well configurations.
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1.3 Structure of thesis

Chapter 1 presents the introduction, consisting of the reaserch problem, literature
review, and this section. Chapter 2 takes us through the different modes of heat
transfer, how to calculate the overall heat transfer coefficient for a given wellbore
configuration, an introduction to the thermophysical properties, the Joule-Thomson
effect on the produced fluid, formation thermal properties and transient temperature
estimation, and the estimation of the convective heat transfer coefficient for forced
and free/natural convection. Chapter 3 contains the derivation of the temperature
model, the well configuration and the definition of the different overall heat transfer
coefficients for the different well sections, the definition of the convective and the
free/natural convection coefficients for the tubing and annulus respectively, and the
calculation of the wellbore trajectory as function of inclination. It also contains the
thermophysical properties used in the model, the calculation procedure to establish
the overall heat transfer coefficient for the individual cell, and example calculations
of the the temperatures at the different interfaces. Chapter 4 contains the sensitivity
analysis of the model. Chapter 5 contains the conclusion. Appendix A presents parts
of the MATLAB code, with some essential parts removed due to copy protection, but
still deemed sufficient enough to give a rough overview of the calculations carried out.





Chapter 2

Heat transfer theory

2.1 Introduction

Heat transfer can be defined as thermal energy in transit due to a spatial temperature
difference to temperature differences (Bergman, Incropera, DeWitt, and Lavine, 2011).
As long as the temperature of the systems are unequal, energy exchange takes place, and
the internal energy of the objects changes according to the first law of thermodynamics.
If there are no temperature differences, there will be no exchange of heat between the
systems.

Heat itself is not a measure of energy stored in a system but rather a measure of
the quantity of energy being transferred from a system of higher temperature to a
system of lower temperature. The heat transfer leads to change in the systems state
functions such as temperature and internal energy.



6 Heat transfer theory

2.2 The different modes of heat transfer

There are three possible means of which heat may be transferred, referred to as modes.
The modes are conduction, convection and radiation, explained in the following. The
heat transfer rate is generally denoted as Q [W or Js−1].

2.2.1 Conduction

Conduction can be defined as the transfer of heat energy through direct contact between
substances (solids or stationary fluids) in which there exists a temperature gradient. By
transferring heat energy to a system, the systems temperature rises as the vibrational
energy of its particles such as atoms or molecules increases. For fluids the temperature
gradient will change as the highly vibrating particles collide with nearby lower energy
particles. For solids the energy transfer is due to lattice vibrations. The net energy
transfer is called diffusion of energy.

T(x)

x

T1

T2dT

dx

qx

L

Fig. 2.1. 1-D conduction

The heat flux by conduction in the x-dimension, or rate of heat transferred per unit
area, qx [Wm−2], through a plane wall as shown in Fig. 2.1 is given as:

qx = −k
dT

dx
(2.1)

where dT

dx
is the temperature gradient in x-direction [Km−1], A is the area of the

surface normal to the direction heat is transferred, and k is the thermal conductivity
of the substance [Wm−1 K−1], known as the transport property of the substance. This



2.2 The different modes of heat transfer 7

equation is also known as Fourier’s law of heat conduction. The negative sign implies
that the direction of heat flow is from hot to cold along the temperature gradient. As
the temperature slope dT

dx
is constant through the plane wall thickness, L, dT

dx
can be

written as T2 −T1
L−0 = −T1 −T2

L
= −∆T

L
, giving:

qx = − k

L
∆T (2.2)

To find the heat rate by conduction for a plane wall, Q [W], one simply multiply
the heat flux, qx by the plane wall area, A, and obtain the following expression:

Q = −kA

L
∆T (2.3)

Heat rate transferred through a cylindrical shell geometry such as a pipe or tubing
wall is given in a different form, based on inside radius, r1, and outside radius, r2, of
the pipe or tubing wall. The heat rate conducted radially through the wall is given as
(Bergman et al., 2011):

Q = −kA
dT

dr
= −k(2πrL)dT

dr
(2.4)

where A = 2πrL is the area normal to the direction of heat transfer. Rearranging and
integrating yields:

Q = 2πLk(T1 −T2)
ln
(

r2
r1

) (2.5)

2.2.2 Convection

Convection is the transfer of heat between two surfaces by a fluid in motion through
molecular interaction. The heat transfer mechanisms involved are diffusion, as for
conduction, and advection, which is energy transfer through fluid bulk movement if a
temperature gradient is present. There are two types of convective heat transfer:

1. Forced convection where the fluid flow is forcefully passed by a surface. A typical
example is a fan.
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2. Natural- or free convection where the cooling or heating of the fluid generates
buoyancy effects through change in density due to temperature change. A typical
example is heating of water in a pot.

x

y

u∞ T∞

Boundary layer

u(y) T(y)

TsCool fluid
Hot surface

q

Fig. 2.2. Convective heat transfer with boundary layer

The convective heat flux, q [Wm−2], is given by:

q = h(T∞ −Ts) = h∆T (2.6)

where: T∞ : Temperature of the free stream outside the velocity boundary layer (◦C)
Ts : Temperature of the surface on which convection is considered (◦C)

This equation is also known as Newton’s law of cooling. The convective heat transfer
rate is given as:

Q = qA = hA∆T (2.7)

Here a new term, h [Wm−2 K−1], is introduced. It is the convective heat transfer coef-
ficient (CHTC), which depends upon the geometry of the system, the thermodynamic
properties of the fluid, the thermal properties of the solid medium and the systems
boundary conditions. Estimation of CHTC is explained in section 2.10.1.

Bergman et al. (2011) states that as a fluid moves along a surface there will develop
a layer, the velocity boundary layer, where the fluid velocity varies between stagnant
at the surface, and increasing outwards from the surface until its velocity is equal to
the free stream fluid flow velocity. Further they state that if there exist a temperature
difference between the surface and the flowing fluid, a thermal boundary layer must
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develop. The temperature profile follows the velocity boundary layer, such that the
temperature of the stagnant fluid at the fluid/surface boundary is equal to that of the
surface, approaching the flowing fluid temperature as it moves away. This is called
the temperature boundary layer. The convection boundary layers are presented in
Fig. 2.2, where the layers are of the same magnitude (y in the figure represents the
distance inwards from the wall surface on which the boundary layers develop). This
is not always the case. The Pr number, presented in Subsubsection 2.10.1.3, gives a
measure of the relative thickness of the velocity and thermal boundary layers. The
velocity and thermal boundary layer profiles have the same shape, and their relative
distance is given by the Pr number. If Pr = 1 their thickness is identical. For a Pr > 1
the velocity boundary layer is larger than the thermal boundary layer, and vice versa
(Bergman et al., 2011).

2.2.2.1 Free/natural convection

Free or natural convection is heat transfer due to internal movement in a fluid due
to buoyancy forces driven by a temperature difference. A fluid experiencing heating
or cooling will expand or contract respectively. As a fluid is heated and expands,
its density is decreased, and vice versa for cooling. If we consider a fluid in a cubic
cell where the walls opposite of one another are of different temperatures, the fluid
near the hot surface will rise because of buoyancy forces due to decreased density,
in agreement with Archimedes’ principle. The hot fluid transports the heat energy
upwards, exchanging heat energy directly with surrounding colder fluid as it rises, and
new cold fluid fills the free space. This new cold fluid is also in turn heated, expands,
and rises, and so on. The fluid that was driven up due to bouyancy forces is gradually
cooled down to the temperature of its surrounding fluid, and starts descending due to
the continuous supply of hot and less dense fluid rising up and taking its space. This
pattern will continue as long as there exists a temperature gradient in the fluid, and
the result is a circulation of the fluid. The process is shown in Fig. 2.3
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proportionality factor k" is termed the thermal conduc-
tivity of the medium. In the radial system of the wellbore, 

dT 
Q = - 2-rrr k" dr 6L . . (5) 

Integration of Eq. 5 with Q constant gives Eqs. 6 through 
8 for conduction through the tubing wall, casing wall 
and cement sheath. 

T . Q -_ 27rk'nb. (Tti-T'o)b.L Ublllg, 

r ti 

C 27rk,."", (T,,, - T,,) b.L ement, Q =--------

rco 

(6) 

(7) 

(8) 

Three modes of heat transfer are present in the casing 
annulus. Heat is conducted through the air contained in 
the annulus. Radiation and natural convection also occur. 
When a body is heated, radiant energy is emitted at a 
rate dependent on the temperature of the body. The 
amount of radiant energy transported between the tubing 
and casing depends on the view the surfaces have of each 
other and the emitting and absorbing characteristics of 
their surfaces. Heat transfer by natural convection in the 
annulus between the tubing and casing is caused by fluid 
motion resulting from the variation of density with tem-
perature. Hot fluid near the tubing wall is less dense than 
the fluid in the center of the annulus and tends to rise. 
Similarly, the fluid near the casing wall is cooler (and 
denser) than in the center of the annulus and tends to 
fall. Fig. 2 is an interpretation of fluid motion in the cas-
ing annulus.' 

Radiation, natural convection and conduction are in-
dependent heat transfer mechanisms. Thus, the total heat 
flow in the annulus is the sum of the heat transferred by 
each of the above mechanisms. In practice, it is conven-
ient to define the heat transfer rate through the annulus 
in terms of the heat transfer coefficients h, (natural con-

Tt 

FLOWING 
FLUID 

TUBING 

',: - ... " .•... FORMATION 
.:- -j ., 

Fig. I-Temperature distribution in an annular completion. 

608 

vection and conduction) and hr (radiation). These coeffi-
cients are based on the outside surface area of the tubing 
(27rr,o ,6L) and the temperature difference between the 
outside tubing surface and the inside casing surface. Thus, 

Q = 2-rrr" (h,+h,) (T,,,-T,,) ,6L . (9) 
We can now "assemble" V to from its component terms. 

Note that 
Tf-T" = (Tf-T ti ) + (T" -Tt,) + (T,,,-T,,) 

+(T'i-T",) + (Lo-Th ) • (10) 
Since heat flow in the well completion is assumed to be 
steady state at any particular time, the values of Q in 
Eqs. 4 and 6 through 9 are equal. Solving for the respec-
tive temperature differences in these equations and substi-
tuting them into Eq. 10 gives Eq. 11. 

[ 
Q 1 r" 1 rei 

Tf-T,,=----+--+ +--27rb.L rt;h f k'nh. r,.,(h,,+h,) k",,,. 

n-I r" 1 + r,,, . (11) 
k('('lll. 

Comparison with Eq. 2 shows that 

[ 

rt 1',. 
rt" In-' 1 rto In-

V, = + r" + + _c--_r_'_i 
" rUh f k'nb. (h,+h,) k,,,,. 

I' '0 In -"--
+ 

I' ]-' roo . (12) 
kcem• 

In a similar manner, an expression for V'o can be written 
to include the case when the injection tubing is insulated 
with commefCiial insulation of th'ickness AI' and thermal 
conductivity kin, .. Let rin,. - 1"0 = b.r. Then, 

[ rti + 
r"h f k'nb. 

I r'ns. r to n--
1', 0 + _-:c;-r-;,0c-;-;-;-;: 

kins. Tins. (hc'+h/) 

+ 
r,o In _1"_' r,o In _r_" ]_' 

rei + _.....,._r,_,,, 
k("Ufl. k("(>IlL. 

(13) 
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VELOCITY 
D I STR I BUT ION 

Fig. 2-Natural convection in the casing annulus.' 

JOURNAL OF PETROLEUM TECHNOLOGY 
Fig. 2.3. Natural convection in casing annulus (Figure from Willhite (1967))

When comparing the velocity profile from Fig. 2.3 with forced convection velocity
boundary layer in Fig. 2.2, there are some distinct differences. The forced convection
velocity boundary layer is zero at the wall, increasing outwards. For the natural
convection case it is seen that the velocity boundary layer is zero at the wall, increases,
and then goes back towards zero again. For the natural convection case this corresponds
to the buoyancy effect resulting from heating of fluid close to the wall. Fig. 2.4 shows
the flow vectors in an concentric annulus where the inner wall is hotter than the outer
wall.
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ii. Results of the Simulation  

 
The FLUENT software package was used to determine 

heat transfer across annulus, provide information on the 

streamline and isotherm contours. The Nusselt number, 

Nu, of the air at different segments of the system was 

calculated at the segment average temperature; Results 

are shown below. 

 

TABLE 4. NU RESULTS OBTAINED FROM THE CFD SIMULATION 

Well 

Depth 

(m) 

Average 

Annulus 

Air Temp. 

(K) 

Heat 

transfer 

across 

annulus  

(w/m2) 

Nusselt 

Number, 

Nu 

0 300.778 1.793 1.232 

152.4 303.000 2.047 1.196 

304.8 304.667 2.041 1.189 

457.2 306.056 1.852 1.158 

609.6 307.444 1.675 1.129 

762 308.833 1.493 1.094 

914.4 310.222 1.330 1.067 

1066.8 311.333 1.022 1.022 

1219.2 312.444 0.738 0.982 

1371.6 313.556 0.475 0.946 

1524 314.667 0.230 0.911 

 

Fig.9 was drawn based on data in Table 4. Here Nusselt 

number started at around 1.23 on the surface of the 

wellbore and dropped throughout the wellbore. 

 

 

 
 

Figure 9. Predicted Nusselt values of annulus fluid, by CFD 

simulation 

Predicted velocity vector field for an 8.0 m wellbore 

segment is presented in Fig.10. These results show that 

the flow around the annulus is symmetrical. The 

movement of the fluid inside the annulus is due to the 

temperature gradient. The fluid close to the inner hot 

surface (tubing) has lower density than that near the 

outer cold surface, i.e. casing. Thus, the fluid near the 

inner surface moves upward while the relatively heavy 

fluid near the casing moves downward. 

 
 
 
 
 
 
 

 
 

Figure 10. Velocity vector showing the flow direction along the 
depth of the well 

 

 

 

 

Fig. 11 presents isotherm contours for the wellbore 

segment. Isotherms indicate that the heat transfer 

regime is convection.   

 

 

Fig. 2.4. Flow vectors inside an annulus (Figure from Shoushtari, Al-Kayiem, and
Aja (2011))

Where the velocity boundary layers for forced convection is constricted to laminar
flow, the natural convection boundary layers are not. The flow regime is decided by
the relative magnitude of the buoyancy to the viscous forces in the fluid. The shift in
flow regimes has a large impact on the heat transfer, and the occurrence of transition
between flow regimes can be determined by the Ra number (See Section 2.10 for a
definition of Ra number).

2.2.3 Radiation

Where heat conduction and convection happens with the aid of a solid or liquid
substance, the radiative heat transfer takes place by electromagnetic radiation through
regions with perfect vacuum (Holman, 2010). This electromagnetic radiation, if taking
place due to temperature differences between surfaces, is called thermal radiation. A
blackbody is considered an ideal thermal radiator. The rate at which energy is emitted
from the blackbody is proportional to the fourth power of the absolute temperature
of the blackbody, and proportional to the blackbody surface area, and given by the
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Stefan-Boltzmann law of thermal radiation (Holman, 2010):

Qemitted = σAT 4 (2.8)

where σ is the proportionality constant, also known as the Stefan-Boltzmann constant
with a value of 5.669×10−8 W/m2 K4. A blackbody may for example be a metal piece
coated with carbon black, where this black metal piece approximates the blackbody
behavior described by the Stefan-Boltzmann law.

When two surfaces exchange radiation, the net radiant exchange is given by (Holman,
2010):

Qnet exchange
A

∝ σ(T 4
1 −T 4

2 ) (2.9)

Surfaces may not be ideal as a blackbody. For such cases as e.g. white or gray coated
surfaces with polished or glossy textures, so called gray-body, the radiative behavior
described by the Stefan-Boltzmann law, Eq. (2.8), is depending on an additional factor
called the emissivity, ϵ. Besides the emissivity, a term called the geometric view factor
is added. It accounts for the radiation lost between the surfaces due to the geometry of
the objects, as radiation only travels in straight lines. So for gray-bodies, the radiant
heat exchange is (Holman, 2010):

Q = FϵFGσA(T 4
1 −T 4

2 ) (2.10)

where Fϵ and FG are the emissivity and view factor functions respectively. The
emissivity is a material specific property and varies between 0 and 1. Emissivity for
a blackbody is 1, whereas polished stainless steel is 0.074, and roofing paper is 0.91
(Holman, 2010).

For the case of a surface, As, at temperature Ts, completely covered or surrounded
by, or enclosed in a much larger surface, Asurr, at temperature Tsurr, the radiant
heat exchange is given as (Holman, 2010):

Q = ϵsσAs(T 4
s −T 4

surr) (2.11)

where: As : Surface area of the smaller body surrounded by a larger body [m2].
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As thermal radiation hits a surface, some energy is reflected, some is absorbed and
some is transmitted through the material, as shown in Fig. 2.5:
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also considered as one that absorbs all radiation incident upon it. Eb is called the emissive
power of a blackbody.

It is important to note at this point that the “blackness” of a surface to thermal radiation
can be quite deceiving insofar as visual observations are concerned. A surface coated with
lampblack appears black to the eye and turns out to be black for the thermal-radiation
spectrum. On the other hand, snow and ice appear quite bright to the eye but are essentially
“black” for long-wavelength thermal radiation. Many white paints are also essentially black
for long-wavelength radiation. This point will be discussed further in later sections.

8-3 RADIATION PROPERTIES
When radiant energy strikes a material surface, part of the radiation is reflected, part is
absorbed, and part is transmitted, as shown in Figure 8-2. We define the reflectivity ρ as
the fraction reflected, the absorptivity α as the fraction absorbed, and the transmissivity τ
as the fraction transmitted. Thus

ρ+α+ τ= 1 [8-4]

Most solid bodies do not transmit thermal radiation, so that for many applied problems the
transmissivity may be taken as zero. Then

ρ+α= 1

Two types of reflection phenomena may be observed when radiation strikes a surface.
If the angle of incidence is equal to the angle of reflection, the reflection is called spec-
ular. On the other hand, when an incident beam is distributed uniformly in all directions
after reflection, the reflection is called diffuse. These two types of reflection are depicted

Figure 8-2 Sketch showing effects of
incident radiation.

Incident radiation Reflection

Absorbed

Transmitted

Figure 8-3 (a) Specular (φ1 =φ2) and (b) diffuse reflection.

Reflected
rays

SourceSource

Mirror image
of source

2φ φ1

(a) (b)

Fig. 2.5. Effect of incident radiation (Figure from Holman (2010, p. 381))

The reflected radiation may be diffuse (reflects in all directions) or specular (the
reflection exits at an angle equal to the incident angle), depending on the surface
(Holman, 2010). Specular reflection of visible light is what we see in a mirror.
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2.3 Thermal resistance analogy

An analogy comparing the conduction of heat with conduction of electricity is often
used when studying heat transfer through multiple layers of matter. The resistance of
electrical conduction is given by Ohms law as:

R = V

I
(2.12)

where R is the electrical resistance, V is the voltage, and I is the electrical current.
When comparing to 1-D heat transfer, the heat flux, q, is the analogue to the electrical
current, I. For the case of conduction, given by Eq. (2.3), the thermal resistance
through a solid, R is given as:

Rcond = ∆T

Q
= L

kA
(2.13)

which gives:

Qconv = 1
Rcond

∆T (2.14)

Similarly the convective heat transfer by a liquid, given by Eq. (2.7), can be written
in terms of R:

Rconv = ∆T

Q
= 1

hA
(2.15)

which gives:

Qconv = 1
Rconv

∆T (2.16)

Just as combining a series of resistances in an electrical circuit will lower the electrical
current which can be easily calculated, combining different thermal resistances, in the
form of fluid or solid layers, will affect the rate of heat transfer. The heat transfer
rate through an object, e.g. a plate separating opposite hot and cold fluid flows, is
depending on the thermophysical properties of the materials through which the heat is
transferred, and of the fluid transferring heat to and away from the plate.
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Hence, from Equation 2.2, it follows that, for one-dimensional, steady-state conduction in
a plane wall with no heat generation, the heat �ux is a constant, independent of x. If the
thermal conductivity of the wall material is assumed to be constant, the equation may be
integrated twice to obtain the general solution

(3.2)

To obtain the constants of integration, C1 and C2, boundary conditions must be introduced.
We choose to apply conditions of the first kind at x ! 0 and x ! L, in which case

Applying the condition at x ! 0 to the general solution, it follows that

Similarly, at x ! L,

in which case

Substituting into the general solution, the temperature distribution is then

(3.3)T(x) ! (Ts,2 " Ts,1) 
x
L

# Ts,1

Ts,2 " Ts,1

L
! C1

Ts,2 ! C1L # C2 ! C1L # Ts,1

Ts,1 ! C2

T(0) ! Ts,1   and  T(L) ! Ts,2

T(x) ! C1x # C2

3.1 ! The Plane Wall 113

FIGURE 3.1 Heat transfer through a
plane wall. (a) Temperature distribution.
(b) Equivalent thermal circuit.

T∞,1 Ts,1

qx
1____

h1A
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kA
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h2A

Ts,2 T∞,2
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Ts,2

T∞,1

T∞,2

Cold fluid
T∞,2, h2

Hot fluid
T∞,1, h1

x x = L

qx

(a)

(b)

CH003.qxd  2/24/11  12:25 PM  Page 113

Fig. 2.6. Thermal resistance analogy (b) for heat transfer through a plane wall (a)
(Figure from Bergman, Incropera, DeWitt, and Lavine (2011, p. 113))

Assuming no heat generation or storage in the system, the heat transfer is constant.
Considering a system consisting of, from left to right, convection by hot fluid, conduction
through solid, and convection by cold fluid:

Q = T∞,1 −Ts,1
1/h1A

= Ts,1 −Ts,2
L/kA

= Ts,2 −T∞,2
1/h2A

(2.17)

When considering the total thermal resistance, the systems heat transfer can be
expressed as:

Q = T∞,1 −T∞,2
Rtotal

(2.18)
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where the total heat transfer resistance, Rtotal, is given by

Rtotal = 1
h1A

+ L

kA
+ 1

h2A
(2.19)

With each new layer of matter considered, a new resistance term must be added to
Rtotal.

We may write Rtotal as:

Rtotal =
∑

R = ∆T

Q
= 1

UA
(2.20)

where: U : Overall heat transfer coefficient [Wm−2 K−1]
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2.4 Overall heat transfer coefficient

To make calculations more manageable when considering heat transfer through a
system of several different layers, like a composite wall, it is favorable to define an
overall heat transfer coefficient, U , analogous to Newton’s law of cooling, and defined
by (Bergman et al., 2011):

Q ≡ UA∆T (2.21)

where from Eq. (2.20), we have:

U = 1
RtotalA

(2.22)

2.4.1 Overall heat transfer coefficient for plane wall geometry

For the case of a plane wall geometry where the area of the plane wall, A, is constant
throughout the wall, we see that U , by Eq. (2.19) and Eq. (2.22) is given by:

U = 1
RtotalA

=
[ 1
h1

+ L

k
+ 1

h2

]−1
(2.23)

2.4.2 Overall heat transfer coefficient for cylindrical geome-
try

For cylindrical geometry, U is obtained in a similar fashion. Considering the radial
heat flow across a pipe due to fluids of different temperature flowing along the axial
direction of the pipe both inside and outside, the conductive heat transfer through the
pipe can be expressed as (See Section 2.5 for definition of conductivity, k):

Q = 2πLk∆T

ln
(

r2
r1

) (2.24)

which gives the following expression for the conductive resistance, Rcond, for radial
geometry:

Rcond = ∆T

Q
=

ln
(

r2
r1

)
2πr1Lk

(2.25)
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Similarly the convective resistance, Rconv, for radial geometry:

Rconv = ∆T

Q
= 1

hA
= 1

2πrLh
(2.26)

where the area, A, is the surface at which the convection is considered, e.g. pipe inside
or outside area.

The total radial heat transfer rate through the pipe can now be expressed as:

Q = ∆T

Rtotal
= T∞,1 −T∞,2

1
2πr1Lh1

+ ln(r2/r1)
2πLk + 1

2πr2Lh2

(2.27)

where T∞,1 and T∞,2 is the inside and outside average flow temperatures.
The overall heat transfer coefficient, U , in this case defined in terms of pipe inside

area, A1 = 2πr1L, may be expressed as:

U1 = 1
RtotalA1

=
 1

h1
+

r1 ln
(

r2
r1

)
k

+ r1
r2

1
h2

−1

(2.28)

For each additional layer considered, a new resistance term is added in a similar fashion,
and the respective overall heat transfer coefficient, U , is obtained.
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2.5 Thermophysical properties

The thermophysical properties are the properties of the matter that changes with
temperature. Thermophysical properties may be categorized in transport properties and
thermodynamic properties. Viscosity and thermal conductivity are transport properties,
while density and specific heat are thermodynamic properties which describe the state
of a system (Bergman et al., 2011). The knowledge of how these properties vary with
temperature is of prime importance as they are present in heat transfer calculations.
Neglecting the temperature dependence may lead to inaccurate calculations.

2.5.1 Thermal conductivity

Thermal conductivity is a material specific transport property which is included in
Fourier’s law, and in that context tells us something about the energy transfer rate in
the diffusion process (Bergman et al., 2011). According to Bergman and Incropera the
thermal conductivity of matter may vary with both pressure and temperature, and its
behavior is decided by the physical structure of the material related to the state of
matter. The thermal conductivity, k, is given as:

k = − q

∂T/∂x
(2.29)

which for an isotropic material is the same in all directions. If the thermal conductivity
increases, so does the heat flux, q. According to Bergman et al. (2011), the thermal
conductivity may vary greatly with the state of matter. Generally speaking, the
thermal conductivity of a solid is larger than a liquid, and that of a liquid larger than
that of a gas. Bergman and Incropera also states that the energy transport is less
effective in fluids and gases, largely due to a larger intermolecular distance and more
random movement of molecules, separating fluid and gas states from the solid state
when considering energy transport.

For the solid state, the energy transport happens by lattice vibrational waves and
migration of free electrons. For gases he relates the thermal conductivity behavior to
the kinetic theory of gases, which gives a directly proportional relationship between
the thermal conductivity and the gas density, the mean molecular speed, and the
average distance a molecule can travel before colliding with an other molecule, namely
the mean free path. The physics behind thermal conductivity of fluids are not well
understood (Bergman et al., 2011).
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The thermal conductivity behavior with changing temperature for some alloys,
and for water and engine oil, are presented in Fig. 2.7 and Fig. 2.8 respectively. The
thermal conductivity of fluids is said to decrease with both increasing molecule weight
and temperature, with water and engine oil being amongst the exceptions for the latter
(Bergman et al., 2011).
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Fig. 2.7. Thermal conductivity temperature dependence for some alloys (Plot created
with correlations from Furrer and Semiatin (2010))

2.5.2 Specific Heat Capacity

The specific heat capacity, cp, of a material is related to its ability to store heat as
kinetic or vibrational energy on an atomic level. There are a lot of factors to be
considered when talking about the specific heat capacity of solids; lattice vibration
spectrum, electron distribution, interaction of particles and phase transitions (Reed,
1983), but that is out of the scope of this thesis. Fig. 2.9 shows the temperature effect
on the cp for some alloys.

The specific heat capacity is an intensive property, which means that it does not
change with the size of the system or the amount of material present in the system.
It is defined as the amount of energy needed to raise the temperature of 1 gram of a
substance by 1 K, and has the units Jkg−1 K−1. The relationship is commonly referred
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Fig. 2.8. Thermal conductivity temperature dependence for some liquids (Plot created
with tabulated values from Bergman, Incropera, DeWitt, and Lavine (2011))

to as the simplified steady-flow thermal energy equation:

Q = cpm∆T (2.30)

The heat capacity of gases and solids are well understood and documented in
literature, but the physics behind the heat capacity of liquids is not really understood
(Bergman et al., 2011). A liquid has strong molecular and system specific interactions,
which depend on the type of liquid, thus making calculation in general form impossible
(Bolmatov, Brazhkin, and Trachenko, 2012). Therefor we mostly have to rely on
empirical correlations obtained through experiments when calculating the specific heat
capacity for liquids subjected to different temperatures and pressures.

At room temperature and 1 atm pressure (101325 Pa), water has a cp of 4181
Jkg−1 K−1, and unused engine oil has a cp of around 1888 Jkg−1 K−1. Fig. 2.10 shows
a comparison between saturated water and engine oil specific heat capacities, and how
they vary as a function temperature.

As an example we will see what role the specific heat capacity plays, and what the
temperature decreases to if we remove 4000 joules of heat energy from 1 kg of engine
oil vs 1 kg of water at 25 ◦C (298.15 K). From Eq. (2.30):
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Fig. 2.9. cp vs temperature for some alloys (Correlations from Furrer (2010))

Engine oil:

T2 = Q

cp(Engine oil)m
+T1 = −4000 joules

1888 Jkg−1K−1 ×1 kg
+298.15 K = 296 K = 23 ◦C

Water:

T2 = Q

cP (W ater)m
+T1 = −4000 joules

4181 Jkg−1K−1 ×1 kg
+298.15 K = 297.19 K = 24 ◦C

It is clear from this example that water, due to its high specific heat capacity, can give
away more energy with less impact on its initial temperature compared to engine oil.

It is sometimes useful to speak of the heat capacity per unit volume of a substance,
which is termed the volumetric heat capacity, cV , and has the units Jm−3 K−1. It may
also be expressed as the product of the density and the specific heat capacity, ρcp. In
chemistry applications the molar heat capacity, cmol (Jmol−1 K−1) is often used.

The specific or volumetric heat capacity is not to be confused with heat capacity,
C, which is the ratio of heat added or removed from a system to the resulting change
of temperature. The heat capacity is an extensive property, i.e. changing with system
size, and is measured in joules per kelvin, JK−1.
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Fig. 2.10. cp vs temperature for some saturated liquids (Plot created with tabulated
values from Bergman, Incropera, DeWitt, and Lavine (2011))

2.5.3 Thermal diffusivity

According to Bergman et al. (2011), thermal diffusivity is defined as the ratio of thermal
conductivity to the product of the density and specific heat capacity (also known as
the volumetric heat capacity, cV ), which is basically the materials ability to conduct
energy relative to its ability to store energy. It gives a measure of the heat transfer
rate through a material, and is measured in m2/s.

α = k

ρcp
(2.31)

A material with a small α implies its ability to store energy is dominating (ρcp is
larger), and for large α its ability to conduct energy is dominating (k is larger). When
the ability to store energy is dominating (small α), the material respond slowly to
changes in temperature. When the ability to conduct energy is dominating (large α),
the material may respond quickly to temperature changes.
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2.5.4 Viscosity

The viscosity is an important parameter of fluids as it expresses its resistance to flow.
The rheological behavior of a fluid system, and thus the viscosity, depends upon the
particles suspended in it. A fluid system with suspended unsymmetrical particles will
have a viscosity depending on the fluid velocity, said to behave non-Newtonian, while
a simple and clean fluid system composed of particles no bigger than molecule size
particles will behave as a Newtonian fluid (Skjeggestad, 1989). The viscosity of a fluid
is given by its ratio of shear stress, τ (Pa), to the share rate, γ̇ (1/s):

µ = τ

γ̇
(2.32)

where: µ : Viscosity [Pas]

Fluids may be described by two ideal theoretical fluid behaviors, namely Newtonian
and Bingham plastic, which may be described by simple models (Skjeggestad, 1989).
For Newtonian fluids the viscosity does not change and stays the same for all shear
rates. For Bingham plastic fluids the viscosity is not linearly related to the shear rate
(Skalle, 2015), because the fluid is required to overcome an initial shear stress, a yield
point, to start moving. After passing the yield point it behaves like a Newtonian fluid.
A Newtonian fluid can also be shear thickening or shear thinning, which means that
it experiences increased or decreased resistance to move with shear rate. Similarly
a Bingham fluid experiencing a shear thinning with shear rate is called a Bingham
pseudoplastic fluid. These fluid behaviors can be seen in Fig. 2.11.
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Fig. 2.11. Typical behavior Newtonian and non-Newtonian fluids

For drilling applications, rheological models have been developed to closely describe
a drilling fluids non-Newtonian behavior under different shear rates. The most common
models are (Skalle, 2015):

• Newtonian model

τ = µγ̇ (2.33)

• Bingham plastic model

τ = τy +µplγ̇ (2.34)

• Power law model

τ = Kγ̇n (2.35)

• Herschel & Bulkley model

τ = τy +Kγ̇n (2.36)

The model characteristics are shown in Fig. 2.12.
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Fig. 2.12. Common drilling fluid rheology models

2.5.5 Density

The density, ρ, of a substance is the rato of its mass, m, to its volume, V :

ρ = m

V
(2.37)

where: ρ : Density [kgm−3]
m : Mass [kg]
V : Volume [m3]

For a homogenous material, the density is defined as the volumetric mass density
like we have just seen. For e.g. a porous material, its density is really the density of
the substance filling the pore space plus the porous material. This is defined as the
bulk density. The bulk density may as well be a fluid composed of multiple phases such
as a water/oil mixture with gas bubbles, or a drilling fluid with suspended particles
such as barite.

Different materials have different densities which vary with both temperature and
pressure. Increasing the pressure will compress the material such that it has less
volume but the same mass, thus increasing its density. Increasing the temperature of a
material generally increases its volume, reducing its density.
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If we assume a density, ρ, equal to the average density of a fluid column, the
hydrostatic pressure at the bottom may be calculated as:

P = ρgz (2.38)

where: P : Pressure [Pa]
g : Gravitational acceleration [ms−2]
z : Height of fluid column [m]

As the fluid is heated, the density decreases, and thus the hydrostatic pressure at the
bottom of the fluid column also decreases.
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2.6 Joule-Thomson effect

2.6.1 Pressure loss calculations in the wellbore

Now considering a small differential fluid element, dL, in the flow along the stream lines
through the tubing, at steady state, considered Newtonian and incompressible over
the element, with no work done, and at an inclination θ from the vertical. Assuming
mechanical energy conservation over the element, the change in energy:

dp

ρ
+ dv2

2 +g cosθdL = −fD
dL

d

v2

2 (2.39)

where: p : Pressure [Pa]
ρ : Fluid density [kgm−3]
v : Fluid velocity [ms−1]
z : Vertical displacement over the element [m]
fD : Darcy friction factor
d : Inside diameter of pipe [m2]

The terms, left to right respectively, is: Pressure, kinetic, potential and frictional

energy changes through the fluid element. As dv2

2 = vdv, solving for dP

dL
gives:

− dp

dL
= fDv2ρ

2d
+ρv

dv

dL
+ρg cosθ (2.40)

The left hand side is the total pressure loss for fluid flowing upwards through the
tubing, which is equal to the right hand side terms, given as friction, momentum and
static pressure losses respectively:(

dp

dL

)
Total

=
(

dp

dL

)
Friction

+
(

dp

dL

)
Static

+
(

dp

dL

)
Momentum

(2.41)

2.6.2 The Joule-Thomson coefficient

The enthalpy (H) of a fluid flowing through a restriction such as a throttling valve
may be considered to remain approximately unchanged (H ≈ constant). The fluid
experiences a pressure drop and a change in temperature. The temperature may
decrease, remain unchanged or increase. As the reservoir fluid moves up the tubing
towards the surface, the surrounding pressure decreases and a resulting temperature
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change takes place. This effect is called the Joule-Thomson effect, defined as (Cengel
and Boles, 2006):

µJT =
(

∂T

∂P

)
H

(2.42)

where: µJT : Joule-Thomson coefficient [KPa−1]

Whether the temperature increases or decreases depends on the composition of the
fluid. Real gases generally tend to cool as the pressure drops, while the opposite is
generally said to be happening to fluids (Cengel et al., 2006). A mixture of oil and gas
may experience heating from the oil phase, and cooling from the gas phase. Depending
on the mixture volume fractions of each component, and their response to pressure
changes, a net temperature increase or decrease may take place (Hasan et al., 2009).

µJT


< 0 temperature increases

= 0 no temperature change

> 0 temperature decreases

(2.43)

The expression for µJT, Eq. (2.42), represents the slopes of the constant enthalpy lines
on a P-T diagram (Cengel et al., 2006). From Fig. 2.13 (note that h in the figure
is the same as enthalpy H as defined in this text) it is seen that the slopes of some
of the lines are zero at some point. By passing a line through these points of zero
slope, the inversion line, we define the values (P,T ) for which a negative µJT exists.
Any temperature where the constant enthalpy lines intersects with the inversion line
is called the inversion temperature. The upper intersection point at zero pressure is
called the maximum inversion temperature.
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12–5 ■ THE JOULE-THOMSON COEFFICIENT
When a fluid passes through a restriction such as a porous plug, a capillary
tube, or an ordinary valve, its pressure decreases. As we have shown in
Chap. 5, the enthalpy of the fluid remains approximately constant during
such a throttling process. You will remember that a fluid may experience a
large drop in its temperature as a result of throttling, which forms the basis
of operation for refrigerators and air conditioners. This is not always the
case, however. The temperature of the fluid may remain unchanged, or it
may even increase during a throttling process (Fig. 12–12).

The temperature behavior of a fluid during a throttling (h ! constant)
process is described by the Joule-Thomson coefficient, defined as

(12–51)

Thus the Joule-Thomson coefficient is a measure of the change in tempera-
ture with pressure during a constant-enthalpy process. Notice that if

during a throttling process.
A careful look at its defining equation reveals that the Joule-Thomson

coefficient represents the slope of h ! constant lines on a T-P diagram.
Such diagrams can be easily constructed from temperature and pressure
measurements alone during throttling processes. A fluid at a fixed tempera-
ture and pressure T1 and P1 (thus fixed enthalpy) is forced to flow through a
porous plug, and its temperature and pressure downstream (T2 and P2) are
measured. The experiment is repeated for different sizes of porous plugs,
each giving a different set of T2 and P2. Plotting the temperatures against
the pressures gives us an h ! constant line on a T-P diagram, as shown in
Fig. 12–13. Repeating the experiment for different sets of inlet pressure and
temperature and plotting the results, we can construct a T-P diagram for a
substance with several h ! constant lines, as shown in Fig. 12–14.

Some constant-enthalpy lines on the T-P diagram pass through a point of
zero slope or zero Joule-Thomson coefficient. The line that passes through
these points is called the inversion line, and the temperature at a point
where a constant-enthalpy line intersects the inversion line is called the
inversion temperature. The temperature at the intersection of the P ! 0
line (ordinate) and the upper part of the inversion line is called the maxi-
mum inversion temperature. Notice that the slopes of the h ! constant
lines are negative (mJT " 0) at states to the right of the inversion line and
positive (mJT # 0) to the left of the inversion line.

A throttling process proceeds along a constant-enthalpy line in the direc-
tion of decreasing pressure, that is, from right to left. Therefore, the tempera-
ture of a fluid increases during a throttling process that takes place on the
right-hand side of the inversion line. However, the fluid temperature
decreases during a throttling process that takes place on the left-hand side of
the inversion line. It is clear from this diagram that a cooling effect cannot
be achieved by throttling unless the fluid is below its maximum inversion

m JT • 6 0 ¬temperature increases
! 0 ¬temperature remains constant
7 0 ¬temperature decreases

m ! a 0T
0P
b

h

668 | Thermodynamics

T1 = 20°C T2 = 20°C>
<

P1 = 800 kPa P2 = 200 kPa

FIGURE 12–12
The temperature of a fluid may
increase, decrease, or remain constant
during a throttling process.
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Fig. 2.13. "Constant-enthalpy lines of a substance on a T-P diagram" (Cengel and
Boles, 2006)

Considering a fluid experiencing a decreasing pressure, it is expected to experience
heating as long as we are to the right of the inversion line (µJT < 0). As seen from the
figure, the inversion line is not always crossed.
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2.7 Formation thermal properties

The thermal conductivity of North Sea sedimentary rocks was measured by Evans
(1977). The rock samples taken was both from washed cutting and core samples,
and the results for the wells are presented in Fig. 2.14. From Fig. 2.14 and Fig. 2.15
it is obvious that the thermal conductivity is not constant throughout the wellbore,
and differ quite a bit depending on lithology. Evans (1977) points out an increase in
conductivity with depth for the chalk due to burial diagenesis, hardening and loss of
porosity, and also a similar trend for the sequence between Jurassic and Triassic.

TABLE 1 

Thermal Conductivity o f  North Sea Sedimentary Aocke 

Formation 

Post Paleocene 

Paleocene 

U. Cretaceous - . 

L. Paleozoic - 
I W  
I Number o f  samples measured i n  brackets 

K, = exp. [log ( K J l G )  / ( I  - + 1 (1) have been grouped by formation and/or age. The values 
quoted are arithmetic means and standard deviations, 

Several obvious points emerge from Table I. The various 
lithologic units, particularly the Chalk, the Jurassic and the 
Zechstein, have both uniform (small standard deviations) and 
comparable (from well to well) conductivities. The Jurassic 
conductivity values are, at a weighted mean of 1.49 W m-l 
K- 1 ,  very low; cf. results for similar lithologies summarized in 
Kappelmeyer and Haenel (1 974). The carbonate/evaparite 

= %&’ K r 1 - b  (2) Zechstein results are, as expected, high. The ten lower 
Paleozoic core samples from the 27/3-1 well gave a surprisingly 
highmeanof3.89W.m-l - K-I.  

where K, and + are the conductivity and volume fraction of 
water respectively. However, the rock conductivity, K,, deter- 
mined by Equation 1 is a nonporous or grain value; the porous 
conductivity is given by, 

K, r 

where + is the natural rock porosity. 

,. THERMAL CONDUCTIVITY PROFILES, 
BHTs AND HEAT FLOW Values of rock porosity were determined from a number 

of different logs; BHCS, SNP, FDC, as well as a CORIBAND 
analysis. It is common practise in heat flow studies to consider the 

thermal conductivity profde in conjunction with the forma- 
tion temperature and in particular the geothermal gradient. 
The product of the parameters, conductivity (K) and geo- 
thermal gradient (aT/aX), is defined as the heat flow, Q. 

THERMAL CONDUCTIVITY RESULTS 

The measured conductivities for the samples from the 
three wells are presented in Table I, where individual values Q = K - aT/aX (3) 

THE LOG ANALYST 5 

\ I - .  8 I - ,  ..- 

Fig. 2.14. Thermal conductivity of formation for North Sea sedimentary rocks (Figure
from Evans (1977))
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Where and when a state of thermal equilibrium exists, Q will 
be a constant at all points in the well. Note that we are only 
considering one component of heat flow-along the axis of the 
well. 

CHRLK 

Clearly conductivity is not constant in the variable lithol- 
ogies of the North Sea. In order to compute a heat flow value 
we employ the so-called resistance-integral method of Bullard 
(1 939h 

U .  CRET 

T(z) = T(o) + Q T: 1 zi/Ki. (4) 

6 

I 
I 

where zi is the interval of depth of thermal conductivity Ki, 
T(z) is the BHT at depth z and T(o) is the surface temperature. 
Q, the heat flow, is computed from a least squares analysis of 
T(z) and T: zi/&. 

1 

H R L I l E / R N H Y O R I T E  
0 0 L O M l T E  

The intervals of depth, zi, were the midpoints between 
the conductivity samples except where a major lithologic 
boundary intervened. The BHT values used were, in all cases, 
the last recorded values at each depth. These values, the closest 
to equilibrium, will typically yield temperature gradients 
within 10% of equilibrium (Harper 1971, Evans and Coleman 

4 
! SRNOSTONE/SHRLE 

1974). Additionally, a surface temperature was also incor- 
porated in the computation of Equation 4, values being deter- 
mined from the mean annual depth relation for the central 
North Sea given by Defant (1 96 1). 

CRRBONI  F 

Figures 3 and 4 are composite temperature- 
conductivity-heat flow-lithology plots for the 7/3- 1 and 
well-x wells respectively. The plot for the 27/3-1 well has been 
omitted. The dashed line on the temperature graph is the 
predicted trend from relation (Equation 4) for constant heat 
flow for all the temperature data. The heat flow value for all 
the temperature data is shown as a solid line; the error bars 
correspond to plus and minus two standard deviations of fit of 
Equation 4. The two dashed lines on the heat flow plot corre- 
spond to Q values determined over the shallowest to middle 
and middle to deepest temperature points. 

The conductivity profiles indicate a number of interesting 
points. Note the increase of thermal conductivity with depth 
of the well-x and 7/3-1 chalk samples; this is consistent with 
the burial diagenesis and progressive loss of porosity, harden- 
ing, and decrease of transit time noted by Hancock and 
Scholle (1  975) and Byrd (1 975). A similar though less defini- 
tive trend is also noted for the clastic Jurassic-Triassic se- 
quence of well-x. 

WELL-x C O U N T R Y - N O R T H  S E R  L R T -  
C O M P R N Y -  L O N G -  
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I Y . / n . D E C . K .  I I N H . / l l . M .  I 

T E M P E R R T U R E  
l 0 E G . C .  I 

10 20 30 40  50 60 7 0  80 90 I00 I 2 3 4 5 25 50 7 5  100 125 150 

400. 

600. 

800. 

1000. 

1200- 

5 1400- 

W 1600. 
a: 
0 -  

1800- 

2000- 

2200. 

2400. 

2600. 

2800- 

3000- 

I I 
S H R L E / S R N O S l O N E  J U R R S S l  C 

I SHRLE I U TRlRSSlC 

L TRIRSSIC 
SHALE 

O O L O M l T E I R N H Y O R I l E  
SRNOSTONE r l L .  P E R M .  r , 

FIGURE 3 

6 

- 

MARCH-APRIL, 1977 

Fig. 2.15. Composite temperature-conductivity-heat flow-lithology plot (Figure from
Evans (1977))
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2.8 Formation temperature

As hot fluid is produced and transported up the tubing, and as time goes, it will
heat up the formation surrounding the well. Heat diffusion in the formation is a
three-dimensional problem. By assuming symmetry around the heat source, being
the heated wellbore, it may be treated as a two-dimensional problem (Hasan and
Kabir, 1991). By also considering a considerable small increment in the axial direction,
the problem further reduces to a one-dimensional one. The resulting problem is a
one-dimensional diffusion problem, as vertical heat diffusion is ignored due to the
assumption of very small axial increments.

Assuming constant heat flux from the wellbore, and considering very a small section
of the wellbore, in a short time step, the 1-D radial heat diffusion problem is given by
the following partial differential equation in cylindrical coordinates:

∂2Te
∂r2 + 1

r

∂Te
∂r

= ceρe
ke

∂Te
∂t

(2.44)

where: t : Time [s]
Te : Formation temperature at time t (◦C)
r : Radial distance from the center of the wellbore [m]
ce : Specific heat capacity of formation [Jkg−1 K−1]
ρe : Density of formation [kgm−3]
ke : Thermal conductivity of formation [Wm−1 K]
ceρr

ke
: Thermal diffusivity of formation, αe [m2 s−1]

The dimensionless radius and time are defined as, respectively:

rD = r

rwb
(2.45)

tD = αet

r2
wb

(2.46)

where: rwb : Wellbore radius [m]

The initial formation temperature at any depth is constant, giving:

lim
t→0

Te = Tei (2.47)

where: Tei : Far away undisturbed formation temperature (◦C)
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The undisturbed formation temperature at the outer temperature boundary does not
change with radial distance from the well:

lim
r→∞

∂Te
∂r

= 0 (2.48)

The heat flow rate from produced fluid per unit length of the well:

Q = −2πke
w

r∂Te
∂r

|r=rwb (2.49)

where: w : Mass flow rate of produced fluid [kgs−1]

Now applying dimensional variables and boundary conditions, Eq. (2.44) can be
rewritten:

∂2Te
∂r2

D
+ 1

rD

∂Te
∂rD

= ∂Te
∂tD

(2.50)

Eq. (2.48) and Eq. (2.49) becomes:

lim
rD→∞

∂Te
∂rD

= 0 (2.51)

∂Te
∂rD

|rD=1 = − wQ

2πke
(2.52)

Applying Laplace transform to solve the equations, wellbore interface temperature is
given as:

Twb = Tei +
wQ

π2ke
I (2.53)

I =
∫ ∞

0

1− e−u2tD

u2
Y1(u)−J1(u)Y0(u)

J2
1 (u)+Y 2

1 (u) du (2.54)

where: u : Dummy variable
J0,J1 : Zero and first-order Bessel functions of first kind
Y0,Y1 : Zero and first-order modified Bessel functions of first kind
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Dimensionless temperature is now defined as:

TD = −2πke
wQ

(Twb −Tei) (2.55)

Now Eq. (2.53) can be rewritten:

TD = −2I

π
(2.56)

Hasan and Kabir applied the principle of superposition to the wellbore, thus reducing
I and Twb expressions (Eq. (2.53) and Eq. (2.54) respectively) from integrals involving
Bessel functions of zero and first orders over the limit of zero to infinity for u, to definite
integrals as a function of tD alone. They evaluated TD vs tD and found the following
relations: For small t, TD is proportional to the square root of the dimensionless time,
tD, and for large tD, TD is log-linear with tD. The following expressions define TD for
small and large values of tD respectively:

TD = 1.1281
√

tD[1−0.3]
√

tD if tD ≤ 1.5 (2.57)

TD = [0.4063+0.5ln(tD)]
[
1+ 0.6

tD

]
if tD > 1.5 (2.58)

These expressions are discontinuous, and as a result Hasan and Kabir later formulated
an improved continuous expression which they have been using more recently (Izgec,
Hasan, Lin, and Kabir, 2010):

TD = ln[e−0.2tD +(1.5−0.3719e−tD)
√

tD] (2.59)

Fig. 2.16 shows the solutions plotted vs tD.
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2.9 Relaxation distance

As fluid is produced at some depth and flows up through the tubing, it cools by heat
loss to the surroundings. After some distance it will be close to, or reach equilibrium,
thus approaching an asymptote parallel to the geothermal gradient (Ipek, Smith, and
Bassiouni, 2002). The relaxation distance, Ad, is the distance between the point
at which the flowing temperature gradient can first be estimated by the geothermal
gradient, and the point of production/inflow. This asymptote offset from the geothermal
gradient is controlled by flowing fluid thermal properties, flow rate, how long time the
well have been producing, and well geometry (Ipek et al., 2002). The asymptote is
shown in Fig. 2.17a, and the relaxation distance is shown in Fig. 2.17b. The relaxation
distance appears in the equation for the produced fluid temperature, Eq. (3.37), and is
defined in Eq. (3.21)

SPE 77476 ESTIMATION OF UNDERGROUND BLOWOUT MAGNITUDE USING TEMPERATURE LOGS 5 

Figure 1- Schematic of temperature profile in a well producing 
liquid at point “M” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2- Schematic of temperature profile in a well producing gas 
at point “M” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3- Temperature profile in cases of water and gas upward flow between two subsurface zones 
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Figure A-1- Heat transfer model

Figure A-2- A schematic of temperature profile showing the relaxation distance 
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Fig. 2.17. Temperature profile and relaxation distance in a producing well (Figures
from Ipek, Smith, and Bassiouni (2002))
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2.10 Heat transfer in wellbore

When considering heat transfer in a fluid filled wellbore, heat transfer by radiation
may be neglected as the contribution from conduction and convection transfer modes
are considered to be dominating. The contribution from radiative heat transfer is only
meaningful in gas filled annuli (Zhou and Zheng, 2015).

2.10.1 Convective Heat Transfer Coefficient

The Nusselt (Nu) number and its associated Prandtl (Pr), Reynolds (Re) and Rayleigh
(Ra) numbers are all dimensionless numbers used in solving convective (forced and
naturaal/free) heat transfer problems. In the following their definitions are presented
and their significance discussed.

2.10.1.1 Nusselt number

The Nusselt number, Nu, is the ratio of total to conductive heat transfer rate (Santoyo-
Gutierrez, 1997). According to Bergman et al. (2011) "the Nusselt number is to the
thermal boundary layer what the friction coefficient is to the velocity boundary layer".
For forced convection it is a function of the Reynold’s, Re, and the Prandtl, Pr,
numbers. For free convection it is a function of the Grashof, Gr, and the Pr numbers.
The Nu is often estimated by correlations obtained experimentally or analytically.

The Nu for forced convection in circular pipes is related to the CHTC in the
following way (Bergman et al., 2011):

Nu = Total heat transfer
Conductive heat transfer (2.60)

Nu = h2r

k
(2.61)

where: h : Conductive heat transfer coefficient [Wm−2 K−1]
r : Pipe wall inside radius at which the heat transfer is considered [m]
k : Thermal conductivity of the fluid [Wm−1 K−1]

The Nu for free convection in concentric pipe annulus is related to the CHTC in the
following way (Hasan et al., 2009):

Nu = h

k
ri ln

(
ro

ri

)
(2.62)
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where: r(i,o) : Inner and outer radius of the annulus [m]

To obtain the equation for the CHTC for pipe (Eq. (2.63)), and concentric pipe annulus
(Eq. (2.64)), respectively, Eq. (2.61) is solved for h, and the appropriate Nu correlation
is used.

h = k

2r
Nu (2.63)

h = k

ri ln
(

ro
ri

)Nu (2.64)

A recent study (García, Santoyo, and Espinosa, 2006) observed large differences in
CHTC between Newtonian and non-Newtonian fluids, and underlines the importance
of using non-Newtonian viscosity Nu correlations when estimating the CHTC for such
fluid systems.

The convective heat transfer can be due to free/natural or forced convection, and
correlations to estimate their coefficient is presented in Subsubsection 2.10.1.7.

2.10.1.2 Reynold’s number

The Reynold’s number, Re, is used to predict the flow behavior of the fluid, or rather
the onset of laminar, transitional or turbulent flow. The laminar region is for Re ≤ 2300,
the transitional region is for 2300 < Re ≤ 4000, and the turbulent region is for Re > 4000.
The Re number is the ratio of inertia to viscous force and is defined as (Bergman et al.,
2011):

Re = ρvD

µ
(2.65)

where: µ : Dynamic fluid viscosity [Pa]
D : Hydraulic diameter (do −di for annulus, di for pipe) [m]
ρ : Fluid density [kgm−3]
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2.10.1.3 Prandtl number

The Prandtl number, Pr, is the ratio of momentum diffusion rate to thermal diffusion
rate. It is fully a fluid property, and it is given as (Bergman et al., 2011):

Pr = ν

α
= µ/ρ

k/cpρ
= µcp

k
(2.66)

where: ν : Fluid momentum diffusivity (kinematic viscosity) [m3 s−1]
α : Fluid thermal diffusivity [m3 s−1]

2.10.1.4 Grashof number

The Grashof number, Gr, is a measure of the ratio of the buoyancy forces to the viscous
forces in the velocity boundary layer. When it comes to determination of flow regime
in natural convection, the Gr number is for free convection what the Re number is for
forced convection. Comparing two fluids at the same temperature, the more viscous
fluid, implying restricted movement, will have a smaller Gr number. The Gr number
is given as (Bergman et al., 2011):

gβ(Ts −T∞)ρ2L3

µ2 (2.67)

where: β : Thermal expansion coefficient [K−1]
L : Characteristic length [m]
Ts : Surface temperature (◦C)
T∞ : Fluid temperature just outside the boundary layer (◦C)

2.10.1.5 Rayleigh number

The Ra number is associated with free/natural convection, and tells us how the transfer
of heat throughout a fluid occurs. Fluid can only transfer heat through conduction
and convection in the presence of a temperature gradient. The Ra number tells us
which of the modes dominates the heat transfer. If Ra number is less than critical
value the heat transfer happens through conduction, and if the Ra number is higher
the heat transfer happens through convection. It is given as (Bergman et al., 2011):
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Ra = GrPr (2.68)

2.10.1.6 Correlations for the convective heat transfer coefficient

The relationship between convection and conduction for fluid flow through circular
tubes, where there exists a temperature difference between the flowing fluid temperature
and the tube walls, may be estimated through correlations obtained experimentally.
Such correlations have been made out for various flow conditions and geometry. The
most common CHTC correlations for forced convection in circular tubes are presented
in Table 2.1, both for turbulent and laminar flow regimes.

Nusselt correlation Author
Parameter and
flow conditions

Turbulent flow:

Nu = 0.023Re4/5Prn Dittus and Boelter (1930)
0.7 ≤ Pr ≤ 160
Re ≥ 10000
L/D ≥ 10

Nu = 0.027Re4/5Pr1/3
(

µ

µs

)0.14
Seider and Tate (1936)

0.7 ≤ Pr ≤ 16700
Re ≥ 10000
L/D ≥ 10

Nu = (fD/8)(Re−1000)Pr

1+12.7(fD/8)1/2
(
Pr2/3 −1

) Gnielinski (1976)
0.5 < Pr < 2000
2300 < Re < 5×106

Laminar flow:

Nu = 4.36 Re < 2300
Table 2.1. Various forced convection correlations for circular tubes (Correlations
presented in (Bergman, Incropera, DeWitt, and Lavine, 2011))

Dittus and Boelter correlation:

• Based on whether the fluid is subjected to heating or cooling, the correlation
coefficient n is defined respectively as n = 0.4 (for surface temperature larger than
mean fluid bulk temperature, Ts > Tm) or 0.3 (for mean fluid bulk temperature
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larger than surface temperature, Ts < Tm). This correlation may be applicable
for small to moderate temperature differences. The fluid properties should be
evaluated at Tm. Errors may be as large as 25%. (Bergman et al., 2011)

Sieder and Tate correlation:

• Applicable for larger temperature differences than the Dittus and Boelter. It

includes a term,
(

µ

µs

)0.14
, which accounts for viscosity variations between the

pipe wall temperature, Ts and the mean bulk fluid temperature, Tm. µs is
evaluated at Ts. All other properties evaluated at mean bulk temperature Tm.
Errors may be as large as 25%. (Bergman et al., 2011).

Gnielinski correlation:

• Applicable for both turbulent and the transition flow regime (large Re range),
and with lower errors (less than 10%) than Dittus and Boelter and the Seider
and Tate correlations. The fluid properties should be evaluated at Tm. (Bergman
et al., 2011)

2.10.1.7 Correlations for free/natural convective heat transfer coefficient
in enclosed spaces

The Dropkin and Somerscales correlation (Dropkin and Somerscales, 1965) have been
used in natural convection calculations in annulus (Hasan et al. (1994), Willhite (1967),
Zhou et al. (2015) amongst others), and are presented in Table 2.2. Developed for liquids
(experiment conducted on water and silicone oil) confined between two parallel plates at
varying angles of inclination, the correlations are of the form Nu = C(Ra)1/3(Pr)0.074

where C is the coefficient of inclination.
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Nusselt correlation Inclination θ
Parameter and
flow conditions

Nu = 0.049(Ra)1/3Pr0.074 0 deg
0.02 ≤ Pr ≤ 11560
5×104 < Ra < 2.5×108

Nu = 0.057(Ra)1/3Pr0.074 30 deg
0.02 ≤ Pr ≤ 11560
1.5×105 < Ra < 2.5×108

Nu = 0.059(Ra)1/3Pr0.074 45 deg
0.02 ≤ Pr ≤ 11560
1.5×105 < Ra < 2.5×108

Nu = 0.065(Ra)1/3Pr0.074 60 deg
0.02 ≤ Pr ≤ 11560
1.5×105 < Ra < 2.5×108

Nu = 0.069(Ra)1/3Pr0.074 90 deg
0.02 ≤ Pr ≤ 11560
1.5×105 < Ra < 7.5×108

Table 2.2. Compilation of the free/natural convection correlations for concentric
annulus for various inclinations (Equations from Dropkin and Somerscales (1965))

The lower value of the Ra range is where the flow is transitioning from turbulent to
transient flow. For lower Ra values than the specified range, other correlations may be
used. According to Holman (2010), for Ra < 2000, the internal movement in the fluid
is very low, meaning that the heat transfer is mainly conduction through the fluid.

For 104 < Ra < 107 and 1 < Pr < 2×104, Holman (2010) recommends using:

Nu = 0.42(Ra)1/4(Pr)0.012(L

δ
)−0.30 (2.69)

where: δ : Annular clearance, ro − ri [m]

Further, in lack of correlations incorporating inclination, he suggests to substitute g

for g′ in the grashof number, where:

g′ = g sinθ (2.70)

where: θ : The horizontal projection of the heated surface

The pitfall by using this correlation is the small δ range. Validity outside this range is
questionable.
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To use correlations developed for free convection between plates, one must neglect
the curvature of the annulus, such that the general expression for the CHTC for annular
geometry, may be expressed as:

hca = kaNu

ri ln ri
ro

(2.71)

where: (i,o) : Inner and outer walls of the annulus respectively

Common for these kinds of correlations are the use of equivalent thermal conductivity
(See Subsection 3.2.4).



Chapter 3

Temperature model

3.1 Temperature model for production scenario

We now consider a small control volume, dz, in the wellbore at a distance z from the
top of the well (z = 0 at the top of the well, and z = zbh at the bottom of the well),
spanning between z and (z −∆z). The heat transfer across the wellbore is considered
constant, and the heat transfer from formation is considered transient. As the hot
reservoir fluid is produced, considered single phase, it rises up along the tubing. The
produced fluid, assumed to be hotter than the temperature across the annulus, casing,
cement and formation at all depths except at the bottom point of the well, transports
heat, Q(z), in to the control volume at z, and heat out of the control volume, Q(z−∆z),
at distance z − dz. The difference in heat in and out of the control volume must be
equal to the amount of heat transferred to the formation.

Qin −Qout = Heat transferred to the formation (3.1)

The heat transferred to the formation, Q, is equal to the change in internal heat of the
control volume. The heat change over dz is given as:

Q(z) −Q(z−∆z) = Q (3.2)

The energy balance for the system, assuming steady state, can be written as:[
(wH)z − (wH)z−∆z

]
+ 1

2

[
(wv2)z − (wv2)z−∆z

]
+
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[
z(wg cosθ)z − (z −∆z)(wg cosθ)z−∆z

]
= Q∆z (3.3)

where: w : Rate of mass flow per unit area [kgs−1]
H : Fluid enthalpy [J]
v : Fluid velocity [ms−1]
g : Gravitational accelerations, 9.81 [ms−2]
θ : Inclination from vertical (Degrees)
∆z : Control volume length [m]
Q : Heat transferred to the formation [J]

By dividing Eq. (3.3) by ∆z and evaluating the expression as lim
∆z→0

, and rearranging,
we obtain the following expression:

dH

dz
+g cosθ +v

dv

dz
= Q

w
(3.4)

The Q

w
expresses the heat transfer rate from the produced fluid.

The generalized relation for enthalpy change is given as (Cengel et al., 2006):

dH = cpldT +
[
V −T

(
∂V

∂T

)
P

]
dP (3.5)

where: cpl : Specific heat capacity of the produced fluid [Jkg−1 K−1]
V : Specific volume, or the inverse of density of the produced fluid [m3 kg−1]

The Joule-Thomson coefficient, µJT, is defined as:

µJT =
(

∂T

∂P

)
H

= − 1
cpl

[
V −T

(
∂V

∂T

)
P

]
(3.6)

Assuming that the fluid does not undergo any change of phase during its rise towards
the surface, enthalpy for the fluid as a function of temperature and pressure is thus
given by:

dH = cpldT − cplµJTdP (3.7)
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Inserting Eq. (3.7) in to Eq. (3.4) and rearranging to give the expression for the
change of fluid temperature, Tf with depth, z:

dTf
dz

= µJT
dp

dz
+ 1

cpl

(
Q

w
−g cosθ −v

dv

dz

)
(3.8)

where: Tf : Temperature of the produced fluid (◦C)

The heat transferred from the formation to the wellbore is given as (Hasan et al., 1994):

Q = −2πke
TD

(Twb −Tei) (3.9)

where: Tei : Far away undisturbed earth temperature at the considered depth (◦C)
Twb : Temperature at the wellbore interface (◦C)
TD : Dimensionless temperature

The algebraic approximation of TD in Eq. (3.9) is given by the continuous formation
temperature approximation Eq. (2.59):

TD = ln[e−0.2tD +(1.5−0.3719e−tD)
√

tD] (3.10)

where tD is dimensionless time, given as:

tD = αet

r2
wb

(3.11)

where: αe : Thermal diffusion of the formation [m3 s−1]
t : Time [s]

αe is given as:

αe = ke
ρecpe

(3.12)

where: ke : Thermal conductivity of formation [Wm−1 K−1]
ρe : Density of formation [kgm−3]
cpe : Specific heat capacity of formation [Jkg−1 K]



48 Temperature model

The total heat transferred across the well from the wellbore interface to the tubing
fluid is given as:

Qtotal = −2πLrtiUti(Tf −Twb) (3.13)

where: Qtotal : Total heat flow rate per unit length of well [Js−1 m−1]
rti : Tubing inside area [m]
Uti : Overall heat transfer coefficient based on tubing inside area [Wm−2 K−1]
L : Wellbore length [m]

Assuming the heat transferred from the formation to the wellbore (Eq. (3.9)) is
equal to the total heat transferred across the well from the wellbore interface to the
tubing (Eq. (3.13)), such that:

Qtotal = Q = −2πrtiUti(Tf −Twb) = −2πke
TD

(Twb −Tei) (3.14)

Qtotal −Q = −2πrtiUti(Tf −Twb)+ 2πke
TD

(Twb −Tei) = 0 (3.15)

Cancelling out and rearranging:

−rtiUtiTDTf + rtiUtiTDTwb +keTwb −keTei = 0 (3.16)

The wellbore temperature, Twb, is now given by:

Twb = keTei + rtiUtiTDTf
ke + rtiUtiTD

(3.17)

Inserting Eq. (3.17) in to Eq. (3.9) removes the Twb term, yielding the following
expression for total heat conducted from the formation to the produced fluid:

Q = −2πke
TD

(Twb −Tei) (3.18)

= 2πke
TD

(
Tei −

keTei + rtiUtiTDTf
ke + rtiUtiTD

)
(3.19)

Q = 2πrtiUtike
ke + rtiUtiTD

(Tei −Tf) (3.20)
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Defining Ad as:

Ad = cplw

2π

[
ke +(rtiUtiTD)

rtiUtike

]
(3.21)

where: Ad : The relaxation distance (See Section 2.9) [m]

The flowing fluid specific heat capacity, cpl, is in the case of water cut, given as:

cpl =
(

qo
qo+qw

)
cpo +

(
1− qo

qo+qw

)
cpw (3.22)

For single phase oil, assuming no water cut, cpl = cpo

Equation Eq. (3.20) and Eq. (3.21) can now be put into Eq. (3.8). We get the
following expression:

dTf
dz

= Tei −Tf
Ad

− g cosθ

cpl
+µJT

dp

dz
− v

cpl

dv

dz
(3.23)

If we now assume that the last two terms of Eq. (3.23) does not vary with depth within
the considered control volume, dz, we obtain the following linear differential equation:

dTf
dz

= Tei −Tf
Ad

− g cosθ

cpl
+ϕ (3.24)

where ϕ is assumed constant throughout the small control element, and given by:

ϕ = µJT
dp

dz
− v

cpl

dv

dz
(3.25)

The Joul-Thomson coefficient, µJT, is for a single phase fluid, defined as Eq. (3.6):

µJT = − 1
cpl

[
V −T

(
∂V

∂T

)
P

]
(3.26)

It can be expressed as:

µJT = − V

cpl
(1−Tβ) (3.27)
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where: V : Fluid specific volume [m3 kg−1]
β : Thermal expansion coefficient of the produced fluid [K−1]
T : Temperature (◦C)

β is given as:

β ≡ −1
ρ

(
∂ρ

∂T

)
P

(3.28)

and can be estimated by two different density values at different temperatures for
constant pressure.

According to Hasan et al. (2009), when considering single phase liquid flow, the
product Tβ in Eq. (3.27) may be neglected, which would further simplify Eq. (3.27):

µJT ≈ − 1
ρcpl

(3.29)

Even though the approximation of the Tβ term being very small and nearly constant
may be useful for simple and fast calculations, this simplification is not implemented
in the model.

The ϕ parameter may now be calculated by:

ϕ = − 1
cpl

[
V (1−Tβ)dp

dz
+v

dv

dz

]
(3.30)

where the pressure losses up along the tubing is given by:

−dp

dz
=
(

dp

dz

)
Friction

+
(

dp

dz

)
Static

+
(

dp

dz

)
Momentum

(3.31)

where the friction, static and momentum pressure losses are given as, respectively (See
Subsection 2.6.1):

(
dp

dz

)
Friction

= fDv2ρ

2d
(3.32)(

dp

dz

)
Static

= ρg cosθ (3.33)(
dp

dz

)
Momentum

= ρv
dv

dz
(3.34)

where: fD : Darcy-Weisbach friction factor
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According to Hasan et al. (2009) the density of single phase oil does not vary significantly
with depth, resulting in a negligible static-head change with depth, such that we
may neglect the kinetic-energy loss term in Eq. (3.25), which would lead to ϕ being
approximated by:

ϕ = µJT

[(
dp

dz

)
F

+
(

dp

dz

)
H

]
(3.35)

Even though this approximation yields faster calculations, it is not implemented in the
model.

As we are calculating from the bottom towards the top, the undisturbed formation
temperature in the current cell, Tei(i), is equal to that of the previous cell, (i − 1),
minus the temperature reduction given by the geothermal gradient. The cosθ term
takes care of the inclination of the wellbore:

Tei(i) = Tei(i−1)−gG cosθ(i)dz (3.36)

This expression is valid for varying inclination and geothermal gradient.
Assuming all terms but Tf is staying unchanged along the length of the considered

control volume, dz, Eq. (3.24) can be integrated with appropriate boundary conditions
applied, yielding an equation of the following form (Hasan et al., 1994):

Tf(i) = Tei(i)+Ad(i)
[
1− e−dz/Ad(i)

](
gG cosθ(i)+ϕ(i)− g cosθ(i)

cpl(i)

)

+e−dz/Ad(i)
(

Tf(i−1)−Tei(i−1)
) (3.37)

This is a bottom-up calculation, where each subsequent calculation step is based
on the fluid temperature of the former step as a boundary condition. The first step
starting from the bottom of the well assumes the temperature of the produced fluid to
be equal to the in-situ formation temperature, Tf = Tbh = Tei, thus eliminating the last
term of Eq. (3.37) for the first cell.

The parameters cpl(i), ϕ(i) and the relaxation distance for the current cell, Ad(i),
is evaluated at the previous cell conditions. The same is true for cpl(i). The current
cell inclination, θ(i), is calculated for each cell prior to the temperature calculations.
The geothermal gradient, gG, is assumed constant with depth in the model. The



52 Temperature model

thermophysical properties used in the model is given in Section 3.3. See also Section 3.4
for details of the calculation procedure.
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3.2 Model parameters for simulating production
scenario

3.2.1 The well configuration

To calculate the heat transfer throughout the well, some assumptions regarding the
well configuration is made:

• The well consists of 5 casings and one production tubing.

• The casing strings are numbered from 1 to 5, with 1 being the deepest set casing.

• All casing strings are suspended within the wellhead.

• All casing strings are cemented at least up to the previous casing shoe.

• All casing strings are considered to be made of the same alloy.

• The three innermost annulus are considered to be filled with 3.5%wt NaCl brine.

• Pressure build-up in annulus is not considered.

• Any changes in well configuration dimensions due to temperature changes are
not considered.

• Natural or free convection is considered to take place in the three fluid filled
annulus, if the temperature conditions allow for such conditions are to arise.

• The three outermost casing strings are cemented to surface.
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SECTION

Annulus	2 Annulus	3Annulus	1

5
4

3

2

1

Fig. 3.1. Well configuration

As it is the lateral lineup of resistance terms that dictates the Uti, a new Uti have
to be defined for each section where there is a change in well configuration, such as an
additional casing, cement, etc. To calculate the Uti for the entire length of the well,
the well is divided into 5 sections:

1. Casing shoe 1 to casing shoe 2

2. Casing shoe 2 to casing shoe 3

3. Casing shoe 3 to casing shoe 4

4. Casing shoe 4 to casing shoe 5

5. Casing shoe 5 to top of well (wellhead)
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3.2.2 Calculation of the overall heat transfer coefficient for
the different well sections

Following is the definitions of Uti given for each section. The parameters used in the
definitions are:
hti : Tubing CHTC [Wm−2 K−1]
ktbg : Thermal conductivity of the tubing [Wm−1 K−1]
hca(1,2,3) : Annulus 1, 2 and 3 natural CHTC [Wm−2 K−1]
kcsg(1,2,3,4,5) : Thermal conductivity of the casing [Wm−1 K−1]
kcem(1,2,3,4,5) : Cement layer thermal conductivity [Wm−1 K−1]
rti : Tubing wall inside radius [m]
rto : Tubing wall outside radius [m]
rci(1,2,3,4,5) : Casing wall inside radius [m]
rco(1,2,3,4,5) : Casing wall outside radius [m]
rwb(1,2,3,4,5) : Wellbore wall radius [m]
1,2,3,4,5 : Subscripts for element representing its position in the wellbore

3.2.2.1 Section 1 (casing shoe 1 to casing shoe 2)

Section 1 consist of the following resistances, left to right:

(i) The thin stagnant fluid film on the inside of the production tubing

(ii) The tubing wall

(iii) The fluid in annulus 1

(iv) The casing 1 wall

(v) The cement 1 sheath
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oil brine cement Formation

Tubing Casing	1 Wellbore

Section	
1

annulus	1
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Fig. 3.2. Temperature distribution throughout the wellbore cross section for section 1

Rtotal1 = 1
2πrtiLhti

+
ln
(

rto
rti

)
2πLktbg

+ 1
2πrtoLhca1

+
ln
(

rco1
rci1

)
2πLkcsg1

+
ln
(

rwb1
rco1

)
2πLkcem1

(3.38)

Thus, Uti1 is given as:

Uti1 = 1
Rtotal1Ati

Uti1 =
 1

hti
+

rti ln
(

rto
rti

)
ktbg

+ rti
rtohca1

+
rti ln

(
rco1
rci1

)
kcsg1

+
rti ln

(
rwb1
rco1

)
kcem1

−1

(3.39)

3.2.2.2 Section 2 (casing shoe 2 to casing shoe 3)

Section 2 consist of the following resistances, left to right:

(i) The thin stagnant fluid film on the inside of the production tubing

(ii) The tubing wall

(iii) The fluid in annulus 1

(iv) The casing 1 wall

(v) The fluid in annulus 2

(vi) The casing 2 wall
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(vii) The cement 2 sheath

oil brine brine cement Formation

Tubing Casing	1 Casing	2 Wellbore

Section	
2

annulus	1 annulus	2
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Fig. 3.3. Temperature distribution throughout the wellbore cross section for section 2

Rtotal2 = 1
2πrtiLhti

+
ln
(

rto
rti

)
2πLktbg

+ 1
2πrtoLhca1

+
ln
(

rco1
rci1

)
2πLkcsg1

+ 1
2πrco1Lhca2

+
ln
(

rwb2
rco2

)
2πLkcem2

(3.40)

Thus, Uti2 is given as:

Uti2 = 1
Rtotal2Ati

Uti2 =
 1

hti
+

rti ln
(

rto
rti

)
ktbg

+ rti
rtohca1

+
rti ln

(
rco1
rci1

)
kcsg1

+ rti
rco1hca2

+
rti ln

(
rco2
rci2

)
kcsg2

+
rti ln

(
rwb2
rco2

)
kcem2

−1 (3.41)

3.2.2.3 Section 3 (casing shoe 3 to casing shoe 4)

Section 3 consist of the following resistances, left to right:

(i) The thin stagnant fluid film on the inside of the production tubing

(ii) The tubing wall

(iii) The fluid in annulus 1
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(iv) The casing 1 wall

(v) The fluid in annulus 2

(vi) The casing 2 wall

(vii) The fluid in annulus 3

(viii) The casing 3 wall

(ix) The cement 3 sheath

oil

Tubing Casing	1 Casing	2 WellboreCasing	3

brine brine brine cement Formation
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Fig. 3.4. Temperature distribution throughout the wellbore cross section for section 3

Rtotal3 = 1
2πrtiLhti

+
ln
(

rto
rti

)
2πLktbg

+ 1
2πrtoLhca1

+
ln
(

rco1
rci1

)
2πLkcsg1

+ 1
2πrco1Lhca2

+
ln
(

rco2
rci2

)
2πLkcsg2

+ 1
2πrco2Lhca3

+
ln
(

rco3
rci3

)
2πLkcsg3

+
ln
(

rwb3
rco3

)
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(3.42)

Thus, Uti3 is given as:

Uti3 = 1
Rtotal3Ati
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(3.43)

3.2.2.4 Section 4 (casing shoe 4 to casing shoe 5)

Section 4 consist of the following resistances, left to right:

(i) The thin stagnant fluid film on the inside of the production tubing

(ii) The tubing wall

(iii) The fluid in annulus 1

(iv) The casing 1 wall

(v) The fluid in annulus 2

(vi) The casing 2 wall

(vii) The fluid in annulus 3

(viii) The casing 3 wall

(ix) The cement 3 sheath

(x) The casing 4 wall

(xi) The cement 4 sheath
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Fig. 3.5. Temperature distribution throughout the wellbore cross section for section 4
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(3.44)

Thus, Uti4 is given as:

Uti4 = 1
Rtotal4Ati
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(3.45)

3.2.2.5 Section 5 (casing shoe 5 to wellhead)

Section 5 consist of the following resistances, left to right:

(i) The thin stagnant fluid film on the inside of the production tubing
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(ii) The tubing wall

(iii) The fluid in annulus 1

(iv) The casing 1 wall

(v) The fluid in annulus 2

(vi) The casing 2 wall

(vii) The fluid in annulus 3

(viii) The casing 3 wall

(ix) The cement 3 sheath

(x) The casing 4 wall

(xi) The cement 4 sheath

(xii) The casing 5 wall

(xiii) The cement 5 sheath
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Fig. 3.6. Temperature distribution throughout the wellbore cross section for section 5
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Thus, Uti5 is given as:

Uti5 = 1
Rtotal5Ati
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3.2.3 The convective heat transfer coefficient for the tubing
inside wall

The convective heat transfer coefficient for the tubing inside, hti, is estimated by the
Nu given by the Gnielinski correlation (See Table 2.1).

hti =
 (fD/8)(Re−1000)Pr

1+12.7(fD/8)0.5
(
Pr2/3 −1

)
 kt

2rti
(3.48)
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It is valid for 2300 < Re < 5×106 and 0.5 < Pr < 2000. The Pr for the tubing is given
by:

Prt = cplµl
kl

(3.49)

where: µl : Viscosity of the produced fluid [Pas]
kl : Thermal conductivity of the produced fluid [Wm−1 K−1]

The Gnielinski correlation applies to both turbulent and transition flow regimes. For
laminar flow, Re < 2300, Nu = 4.36 (Table 2.1) is used.

3.2.4 The free/natural convective heat transfer coefficient for
fluid filled annulus

When calculating free or natural convective heat transfer through annulus it may be
beneficial to express the heat transfer in terms of fictitious stationary fluid, where the
equivalent thermal conductivity, khc is used instead of the normal thermal conductivity
(Bergman et al., 2011, p. 625). khc can be defined as:

khc
ka

= Nu (3.50)

Note that there is both conduction through fluid and natural convection taking place
in the annulus. The equivalent thermal conductivity, khc, can not be less than the
thermal conductivity of the annulus fluid, ka, alone. Thus khc must be set equal to ka

if khc/ka < 1. The heat transfer through this fictitious fluid can be considered to be
the same as for the real free convection case (Bergman et al., 2011, p. 625), and thus
reducing the case of free convection to a conductive heat transfer problem.

In the following example, equations representing the innermost annulus (1) between
the production tubing and casing is presented. The calculations are applicable to all
three fluid filled annulus.

The equivalent conductive heat transfer of the fluid filling the annulus between the
hot and cold opposite walls (in this example the tubing outside, rto and casing inside
rci1 wall respectively) is given as:

Q = 2πLkhc1 (Tto −Tci1)
ln
(

rci1
rto

) (3.51)
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The convective heat transfer in annulus 1 is given as:

Q = 2πrtoLhca1 (Tto −Tci1) (3.52)

where: (2πrtoL) : Tubing outside area (Ato) [m2]

The expression for khc1 can be obtained by combining Eq. (3.51) and Eq. (3.52):

hca1 = khc1

rto ln
(

rci1
rto

) (3.53)

By substituting the definition of khc1 from Eq. (3.50) into Eq. (3.53), we can see that:

hca1 = ka1Nu

rto ln
(

rci1
rto

) (3.54)

The Nu for free convection is a function of both Gr and Pr numbers, Nu = f(Gr,Pr)
(Holman, 2010). By choosing the appropriate free convection correlation, e.g. the
Dropkin and Somerscales correlation used by both Hasan et al. (1994) and Willhite
(1967), we can find an expression for hca1. The Dropkin and Somerscales correlation is
given as:

Nu = C(GrPr)1/3Pr0.074 (3.55)

where: C : Correction factor for wellbore inclination

See Subsubsection 2.10.1.7 for the inclination correction factors. The correlation is valid
in the range 5×104 < Ra < 7.5×108 with small variations depending on inclination
angle, and 0.02 ≤ Pr ≤ 11560 for all inclination angles. Representing the correlation in
the form of Eq. (3.54), hca1 is defined as:

hca1 = ka1C(Gra1Pra1)1/3Pr0.074
a1

rto ln
(

rci1
rto

) (3.56)

All parameters are evaluated at Ta1 = (Tto + Tci1)/2. The Grashof number for the
annulus, Gra1:

Gra1 = (rci1 − rto)3gρ2
a1β (Tto −Tci1)

µ2
a1

(3.57)
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where: βa1 : Thermal volumetric expansion coefficient of the fluid in annulus 1 [K−1]
ρa1 : Annulus 1 fluid density [kgm−3]
µa1 : Viscosity of the fluid in annulus 1 [Pas]

The Prandtl number for the annulus, Pra1:

Pra1 = cpa1µa1
ka1

(3.58)

where: cpa1 : Specific heat capacity of the annulus fluid [Jkg−1 K−1]
ka1 : Thermal conductivity of the annulus fluid [Wm−1 K−1]

3.2.5 Calculation of the wellbore trajectory

As the model takes into consideration the wellbore inclination angle, there is an option
to implement a wellbore trajectory.

For testing the inclination effects on the model, a simple wellbore trajectory is
implemented. The wellbore is divided into three sections; a vertical section, followed
by a build section, and then a sail section at a constant inclination equal to the dogleg
(DL) angle, as shown in Fig. 3.7.
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Fig. 3.7. Wellbore trajectory

The wellbore is divided into n cells of measured length, dz, along the wellbore
trajectory. Assuming zero azimuth, each cell is considered to have a constant inclination
with respect to the vertical, and a true vertical and horizontal length equal to the
vertical and horizontal projection of the cell respectively. Cell (i) is presented in
Fig. 3.8.
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Fig. 3.8. Wellbore cell (i)

After specifying individual section lengths and the DL, the dogleg severity (DLS)
is given as:

DLS = DL (deg)
Measured length of bending section (3.59)

The individual cell inclination in the bending section is given by increasing each
consecutive cells inclination by DLS×dz. As an example, the inclination of cell m is
given as:

θ(m) =
m∑

i=1
DLS×dz (3.60)

The inclination of the individual cells in the sail section is equal to the DL.
The vertical and horizontal dimensions of each individual cell are calculated, re-

spectively, as:

Vertical length(i) = cosθ(i)dz (3.61)

Horizontal length(i) = sinθ(i)dz (3.62)
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The true vertical depth (TVD) from the top of the well to the bottom of cell (i) is
given as the sum of the previous cells vertical extent:

TVD(i) =
n∑

i=1
cosθ(i)dz (3.63)

The true horizontal displacement (THD) of the bottom of cell (i) is given as:

THD(i) =
n∑

i=1
sinθ(i)dz (3.64)

The last cell of the TVD and THD vectors give the target coordinates, (THD(n),
TVD(n)).
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3.3 Thermophysical properties used in the model

3.3.1 Formation properties

To get values that are representable for formation rock, a dataset from Kutasov and
Eppelbaum (2015) (Found in Table 2.7 in the reference) for clay is used to represent
formation properties. The values for density, thermal conductivity and specific heat
capacity of clay is given as:

ρe = 2080[kgm−3] (3.65)

ke = 1.42[Wm−1 K−1] (3.66)

cpe = 2027[Jkg−1 K] (3.67)

3.3.2 Properties of fluid in annulus

Following are the temperature correlations for the annular fluid properties. Sadly,
some are not given in SI-units. Assuming a Newtonian fluid, similar in composition
to seawater to be filling up the annulus, the annular fluid thermal conductivity, ka,
and specific heat capacity, cpa, temperature dependency may be approximated by
correlations for aqueous NaCl solutions. According to Ozbek and Phillips (1979),
the thermal conductivity of aqueous NaCl solutions may be approximated by first
calculating the pure water thermal conductivity:

kw = −0.92247+2.8395×
(

T +273.15
273.15

)
−1.8007×

(
T +273.15

273.15

)2

+0.52577×
(

T +273.15
273.15

)3
−0.07344×

(
T +273.15

273.15

)4 (3.68)

where: T : Temperature (◦C)
kw : Thermal conductivity of pure water [Wm−1 K−1]

With the thermal conductivity for pure water, kw, we can calculate the thermal
conductivity of the aqueous NaCl solution. The saline solution thermal conductivity,
ka, is given by the following correlation (Range of validity: 20 to 330 ◦C):

ka
kw

= 1− (2.3434×10−3 −7.024×10−6T +3.924×10−8T 2)CS

+(1.06×10−5 −2×10−8T +1.2×10−10T 2)C2
S

(3.69)
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where: ka : Thermal conductivity of aqueous NaCl solution [Wm−1 K−1]
T : Temperature (◦C)
CS : Salt concentration, weight percent
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Fig. 3.9. Thermal conductivity of 3.5 wt% NaCl brine vs temperature

The following temperature correlation for sea water specific heat capacity, given by
Jamieson, Tudhope, Morris, and Cartwright (1969), is implemented.

cpa = (A1 +A2T +A3T 2 +A4T 3)×103 (3.70)

A1 = 5.328−9.76×10−2S +4.04∗10−4S2

A2 = −6.913×10−3 +7.351∗10−4 ∗S −3.15∗10−6S2

A3 = 9.6×10−6 −1.927×10−6S +8.23×10−9S2

A4 = 2.5×10−9 +1.666×10−9S −7.125×10−12S2

where: T : Temperature [K]
cpa : Specific heat capacity of NaCl solution [Jkg−1 K−1]
S : Salinity of aqueous NaCl solution [g/kg]
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Fig. 3.10. Specific heat capacity of 3.5 wt% NaCl brine vs temperature

The viscosity temperature behavior of brines can be described by a correlation
presented by Numbere, Brigham, and Standing (1977). It requires us to first define the
pure water viscosity as a function of temperature at saturation pressure. It is given as:

µw(T,Psat) = 241.4×10[ 247.8
T −140 ] (3.71)

where: µw(T,Psat) : Apparent viscosity of pure water at saturation pressure (cP)
T : Temperature (◦F)
Psat : Saturation pressure for pure water (psi)

The viscosity of the aqueous NaCl solution is a function of saturation pressure, given
by:

Psat = 0.468×
(

T
100

)4.52
(3.72)

where: Psat : Saturation pressure of aqueous NaCl solution (psi)

The viscosity of pure water at elevated pressures (above saturation pressure) is then
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given as:

µw(T,P ) =
[
1+ P −Psat

106 (1.046T −319.24)
]

×µw(T,Psat) (3.73)

where: µw(T,P ) : Viscosity of pure water above saturation pressure (cP)
P : Pressure (psi)

Finally, the viscosity of the brine as a function of salinity and temperature may be
calculated from:

µs =
([

−1.87×10−3C0.5
S +2.18×10−4C2.5

S +(T 0.5 −1.35×10−2T )

×(2.76×10−3CS −3.44×10−4C1.5
S )

]
+1

)
×µw

(3.74)

where: µs : Viscosity of the aqueous NaCl solution brine at P > Psat (cP)
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Fig. 3.11. Viscosity of 3.5 wt% NaCl brine vs temperature

The density of the fluid in the annulus as a function of temperature and pressure is
modeled by the following equation of state for NaCl brine at high pressure and high
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temperature conditions, presented by Kutasov et al. (2015):

ρ = ρ0 × e[αV P +β(T −Ts)+γ(T −Ts)2] (3.75)

where: ρ : Density of brine at P and T (ppg)
αV : Coefficient of compression (1/psig)
β : Thermal expansion coefficient (1/◦F)
γ : Thermal expansion coefficient (1/◦F2)
T : Temperature (◦F)
Ts : Temperature at surface (◦F)

For details on the calculation of the model coefficients, see Kutasov et al. (2015). The
model coefficient values obtained when selecting 3.5 wt% NaCl solution is presented
below:

ρ0 = 8.5025 (ppg)

α = 4.0770×10−6 (1/psig)

β = −1.6727×10−4 (1/◦F)

γ = −4.6568×10−7 (1/◦F2)

resulting in the following equation of state for the selected 3.5 wt% NaCl brine:

ρ = 8.5025× e[4.0770×10−6P −1.6727×10−4(T −Ts)−4.6568×10−7(T −Ts)2] (3.76)
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Fig. 3.12. Equation of state for NaCl brine

3.3.3 Properties of produced fluid in the tubing

The produced fluid is assumed to be single phase, Newtonian, and its properties may
be approximated by dead oil temperature correlations. Unfortunately, as for the brine
correlations, some of the dead oil correlations are also presented in other units than SI.

The thermal conductivity of crude oil may be estimated by Cragoe’s equation
(Mansure, 1996). It is given as:

ko = 1.62(1−0.0003[T −32])
γo

(3.77)

where: ko : Thermal conductivity of crude oil [Wm−1 K−1]
γo : Oil gravity (◦API)
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Fig. 3.13. Thermal conductivity of dead oil vs temperature

The dead oil specific heat capacity as a function of temperature can be calculated
by the following correlation equation obtained by Wright (2014):

cod =
[
(2×10−3T −1.429)sg +2.67×10−3T +3.049

]
×103 (3.78)

where: cod : Specific heat capacity of dead oil at T [Jkg−1 K−1]
sg : Specific gravity of dead oil
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Fig. 3.14. Specific heat capacity of dead oil vs temperature (sg = 0.8)

The dead oil viscosity as a function of temperature is given by the Beggs-Robinson
correlation (Beggs and Robinson, 1975):

µod = 10X −1 (3.79)

where the model coefficients:

X = yT −1.163

y = 10Z

Z = 3.0324−0.02023γo

where: µod : Dead oil viscosity at T (cP)
γo : Dead oil density (◦API)
T : Temperature (◦F)
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Fig. 3.15. Viscosity of dead oil vs temperature (sg = 0.8)

The density as a function of temperature and pressure may be described by the
following equation of state (Standing’s relationship, found in Sattarin, Modarresi,
Bayat, and Teymori (2007)):

ρ = ρsc +∆ρP −∆ρT (3.80)

where:

∆ρP =[0.167+16.181×10−0.0425ρsc ]
(

P

1000

)
∆ρT =[0.0133+152.4(ρsc +∆ρP )−2.45](T −520)

− [(8.1×10−6 −90.0622)×10−0.764(ρsc+∆ρP )](T −520)2

where: ρ : Density of oil at pressure and temperature (lbm/ft3)
ρsc : Density at standard conditions (lbm/ft3)
∆ρP : Density correction for compression (lbm/ft3)
∆ρT : Density correction for thermal expansion (lbm/ft3)
T : Temperature (◦R)
P : Pressure (psi)
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Fig. 3.16. Equation of state for dead oil

3.3.4 Thermal conductivity of tubing, casing and cement

Assuming the tubing and casing is made of Alloy 316, the thermal conduction temper-
ature behavior can be described by the following correlation from Furrer and Semiatin
(2010):

kA316 = 6.31+27.2×10−3T −7.0×10−6T 2 (3.81)

where: kA316 : Thermal conductivity of Alloy 316 as function of T [Wm−1 K−1]
T : Temperature [K]
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Fig. 3.17. Thermal conductivity of Alloy 316 vs temperature

For the cement between casing and wellbore wall a thermal conductivity correlation
for set cement is used, taken from Santoyo, García, Morales, Contreras, and Espinosa-
Paredes (2001). The reference provides correlations for six different cementing systems
in the temperature range of 20-280◦C, where system "D" in the reference is chosen.
System "D" is an API Cement G with some additional components. The thermal
conductivity is given as:

kcement = 0.50442+0.0003125T (3.82)

where: kcement : Thermal conductivity of set cement [Wm−1 K−1]
T : Temperature (◦C)
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Fig. 3.18. Thermal conductivity of set cement vs temperature
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3.4 Well temperature profile calculation procedure

Parameter for cell (i) Given in:

Produced fluid: Density ρo(i) Eq. (3.80)
Specific heat capacity cpo(i) Eq. (3.78)
Thermal conductivity ko(i) Eq. (3.77)
Viscosity µo(i) Eq. (3.79)

Fluid in annulus: Density ρa(1,2,3)(i) Eq. (3.76)
Specific heat capacity cpa(1,2,3)(i) Eq. (3.70)
Thermal conductivity ka(1,2,3)(i) Eq. (3.69)
Viscosity µa(1,2,3)(i) Eq. (3.74)

Tubing: Thermal conductivity ktbg(i) Eq. (3.81)
Casing: Thermal conductivity kcsg(1,2,3,4,5)(i) Eq. (3.81)
Cement: Thermal conductivity kcem(1,2,3,4,5)(i) Eq. (3.82)

Table 3.1. Model input parameters for cell (i)

The simplified calculation procedure:

1. Set starting parameters:

• Volume flow rate and produced oil density at standard conditions to calculate
the mass flow rate.

• Constant formation properties: ρe, ke, and cpe (see Subsection 3.3.1).

• Production time to calculate the transient wellbore temperature (see Equa-
tion 3.17).

• Well configurations (Setting depths and casing dimensions).

• Wellbore trajectory (DL and the vertical, bending, and sail section lengths).

• Surface earth temperature, Te(surface).

• Geothermal gradient, gG (see Subsection 3.3.1).

2. For each cell, starting from the bottom cell at the bottom of the well:

• Calculate thermophysical properties of produced and annular fluids, casings
and cement (see Table 3.1), according to the configuration of the well section
(see Subsection 3.2.2), at previous cell (i −1) conditions (approximation).
The first cell assumes all temperatures equal to the undisturbed bottomhole
formation temperature, Tei(bh).
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• Estimate Uti(i) for the current well section (1, 2, 3, 4 or 5) by iteration:

– For the first iteration assume produced fluid temperature equal to its
previous cell value, Tf(i) = Tf(i − 1) (see Equation 3.37), and overall
heat transfer coefficient for the current well section equal to its previous
cell value, Uti(i) = Uti(i−1) (see Subsection 3.2.2).

– Estimate the individual hca(i) (see Eq. (3.2.4)) for each separate annulus
in the current section based on Uti(i).

– Calculate hti(i) (see Subsection 3.2.3).
– Estimate new Uti(i).
– Check for Uti(i) convergence. As long as error is larger than a specified

tolerance, the calculated Uti(i) is fed in to the start of the loop as a
new starting value for the following iterative step, and we get new hti(i)
and hca(i) values for the next iteration of Uti(i) and so on.

• Calculate the current cell produced fluid temperature Tf(i) by Equation 3.37
based on the estimated Uti(i).

• Calculate the current cell temperatures of the different interfaces (tubing and
casing inside and outside walls, and the wellbore/formation interface) based
on the correct Uti(i) found by iteration (see Section 3.5 for the definition of
Uti)



3.5 Example calculation of temperatures at the different tubing, casing and wellbore
interfaces for Section 1 83

3.5 Example calculation of temperatures at the dif-
ferent tubing, casing and wellbore interfaces
for Section 1

As the heat transfer is considered to be steady state in the wellbore for each cell, the
heat transferred through each resistance term is equal to the total heat transferred
laterally across the well configuration between the tubing fluid and the wellbore for
each section, given by Eq. (3.13). After the value of Uti for the current well section is
found, the respective resistance terms of the cell in the section of interest is set equal
to the total heat transferred through the wellbore Eq. (3.85).

To show how the temperatures are calculated, the following example shows the
calculations for section 1.

After finding the Uti1 for the cell in question in section 1, the total heat transfer
across the wellbore is known. This must equal the heat transferred through the
individual thermal resistances such as casing wall, cement etc.

Working our way through the wellbore, from either side, the temperature at the
interfaces can be found, one by one. Starting by calculating the production fluid
temperature, Tf(i), given by Eq. (3.37). The temperature of the wellbore wall is found:

Twb(i) = ke(i)Tei(i)+ rtiUti(i)TD(i)Tf(i)
ke(i)+ rtiUti(i)TD(i) (3.83)

Calculating from the wellbore wall inwards towards the tubing, the temperature at
the casing outside, Tco1(i) is found by setting the heat transferred between wellbore
and casing outside through the cement equal to the total heat transferred, given that
Uti1(i) and hti(i) already have been calculated:

Q(rco1→rwb1)(i) = Qtotal(i) (3.84)
2πLkcem1(i)

ln
(

rwb1
rco1

) (Tco1(i)−Twb1(i)) = 2πLrtiUti(Tf(i)−Twb1(i)) (3.85)

Tco1(i) = Twb1(i)+ rtiUti1(i)
kcem1(i) ln

(
rwb1
rco1

)
(Tf(i)−Twb1(i))

(3.86)

To find the casing inside temperature, Tci1(i), the term for heat transfer through the
casing wall is set equal to the total heat transferred through the wellbore, and solved
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for Tci1(i):

Q(rci1→rco1)(i) = Qtotal(i) (3.87)
2πLkcsg1(i)

ln
(

rco1
rci1

) (Tci1(i)−Tco1(i)) = 2πLrtiUti1(i)(Tf(i)−Twb1(i)) (3.88)

Tci1(i) = Twb1(i)+ rtiUti1(i)
kcsg1(i) ln

(
rco1
rci1

)
(Tf(i)−Twb1(i)) (3.89)

We end up with the following expressions:

Twb1(i) = ke(i)Tei(i)+ rtiUti(i)TD(i)Tf(i)
ke(i)+ rtiUti1(i)TD(i) (3.90)

Tco1(i) = Twb1(i)+ rtiUti1(i)
kcem1(i) ln

(
rwb1
rco1

)
(Tf(i)−Twb1(i)) (3.91)

Tci1(i) = Tco1(i)+ rtiUti1(i)
kcsg1(i) ln

(
rco1
rci1

)
(Tf(i)−Twb1(i)) (3.92)

Tto(i) = Tci1(i)+ rtiUti1(i)
rtohca(i) (Tf(i)−Twb1(i)) (3.93)

Tti(i) = Tto(i)+ Uti1(i)
ktbg(i) ln

(
rto
rti

)
(Tf(i)−Twb1(i)) (3.94)

The direction of the calculations does not matter. Calculations may as well be
performed from the tubing inside wall towards the wellbore wall.



Chapter 4

Sensitivity analysis

4.1 Wellbore configuration for sensitivity analysis

The casing/tubing and wellbore dimensions, and the setting depths of casings are
shown in Table 4.1.

Section Hole size Casing Depth

5 0.9144 m (36 in) OD: 0.7620 m (30 in)
ID: 0.7112 m (28 in) 200 m

4 0.6604 m (30 in) OD: 0.5080 m (20 in)
ID: 0.4826 m (19 in) 800 m

3 0.4445 m (17 1/2 in) OD: 0.3397 m (13.375 in)
ID: 0.3093 m (12.175 in) 1400 m

2 0.3111 m (12 1/4 in) OD: 0.2445 m (9.625 in)
ID: 0.2168 m (8.545 in) 2600 m

1 0.2168 m (8 1/2 in)

OD: 0.1937 m (7.625 in)
ID: 0.1619 m (6.375 in)
Tubing:
OD: 0.1397 m (5.500 in)
ID: 0.1186 m (4.670 in)

3000 m

Table 4.1. Wellbore and casing/tubing dimensions for the well
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4.2 The base case

The thermophysical correlations used for the base case are listed in Section 3.3. Table 4.2
list constant model parameters used in the base case. Fig. 4.1 shows the temperature
profiles plot resulting from the base case properties. The overall heat transfer coefficient
profile for the base case is shown in Fig. 4.2. From Fig. 4.2 it is evident that the heat
transfer is largest in the deeper parts of the well.

Parameter: Value:
Formation (Clay): ρe 2080 [kgm−3]

ke 1.42 [Wm−1 K−1]
cpe 2127 [Jkg−1 K−1]

Geothermal gradient: gG 0.0455 (deg/m)
Surface formation
temperature Te 15 (◦C)

Produced fluid: ρo, sc 800 [kgm−3]
Flow rate, sc 0.01736 (1500) [m3 s−1] (m3 d−1)

Production time: t 48 hours (172800 s)
Inclination θ 0 (deg)

Table 4.2. Base case constant parameters
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Fig. 4.1. Base case: Temperature profile of the wellbore
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4.3 Flow rate

The production flow rate (at standard conditions) was varied in the following steps:
50, 100, 200, 500, 1500 and 4500 m3 d−1. As seen from the figures, the significance of
the flow rate is large. A large flow rate, implying a large mass and energy transport,
heats up the well, opposed to a small flow rate which in comparison has a significantly
smaller impact on the well temperatures.

Temperature [°C]
20 40 60 80 100 120 140

D
ep

th
, T

VD
 [m

]

0

500

1000

1500

2000

2500

3000

Tf
Tti
Tto
Tci1
Tco1
Tci2
Tco2
Tci3
Tco3
Tci4
Tco4
Tci5
Tco5
Twb
Tei

(a) 50 [m3 d−1]
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(b) 100 [m3 d−1]

Fig. 4.3. Flow rate vs temperature for 50 and 100 [m3 d−1]
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(a) 200 [m3 d−1]
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(b) 500 [m3 d−1]

Fig. 4.4. Flow rate vs temperature for 200 and 500 [m3 d−1]
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(a) 1500 [m3 d−1]
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Fig. 4.5. Flow rate vs temperature for 1500 and 4500 [m3 d−1]
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4.4 Production time

The production time was varied in the following steps (hours): 1, 2, 5, 10, 24, 48, 100,
1000, 2000, 10000. From the figures it is clear that as the production time goes, the
well is getting hotter and hotter. For increasing production time, the well temperatures
are growing towards a steady state, as seen in Fig. 4.8.
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Fig. 4.6. Temperature profiles for t = 1 hour production time
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Fig. 4.7. Temperature profiles for t = 10000 hours production time
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Fig. 4.8. Temperature profiles of produced fluid at different production times, t
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4.5 Wellbore inclination

The wellbore inclination was varied in the following steps (deg): 0, 15, 30, 45, 60, 75,
90. Fig. 4.9 shows the wellbore trajectory plotted vs TVD and MD. Fig. 4.10 shows
the produced fluid temperature profiles for different inclinations plotted vs TVD and
MD. Fig. 4.11 shows the wellbore wall temperature profiles for different inclinations
plotted vs TVD and MD.
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Fig. 4.9. Wellbore trajectory vs TVD and MD for various inclinations
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Fig. 4.10. Produced fluid temperature vs TVD and MD for various inclinations
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Fig. 4.11. Wellbore temperatures vs TVD and MD for various inclinations
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4.6 Density of produced fluid

As the density of the produced oil at standard conditions are used as an input in the
equation of state for the produced oil (Eq. (3.80)), the density of the produced fluid at
standard conditions (as an input to the EOS) was varied in the following steps: 780,
800, 850, 900, 950 [kgm−3]. Increasing the density also increases the mass flow rate, if
the production flow rate remains the same. Fig. 4.12 and Fig. 4.13 shows the resulting
plots from 780 and 950 kgm−3, and a comparison of the different density steps are
shown in Fig. 4.14. An increased temperature along the tubing length is observed with
increasing oil density.
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Fig. 4.12. Zoomed view of temperature profiles for ρo = 780 [kgm−3]



4.6 Density of produced fluid 95

Temperature [°C]
115 120 125 130 135 140 145 150

D
ep

th
, T

VD
 [m

]

0

500

1000

1500

2000

2500

3000

Tf
Tti
Tto
Tci1
Tco1
Tci2
Tco2
Tci3
Tco3
Tci4
Tco4
Tci5
Tco5
Twb
Tei

Fig. 4.13. Zoomed view of temperature profiles for ρo = 950 [kgm−3]
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Fig. 4.14. Temperature profiles of produced fluid at different ρo
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4.7 Joule-Thomson coefficient of the produced fluid

The Joule-Thomson coefficient is plotted versus the tubing pressure in Fig. 4.15. From
the plot it is clear that it decreases with increasing pressure, as one would expect.
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Fig. 4.15. The Joule-Thomson coefficient vs pressure for the produced fluid in tubing

In Fig. 4.16 the the produced fluid temperature of the base case is compared
to the produced fluid of the base case when neglecting the Joule-Thomson effect.
The figure also shows the Joule-Thomson temperature contribution resulting from
the pressure decrease. The Joule-Thomson coefficient, µJT, and its approximation
(µJT = −1/(ρocpo), see Eq. (3.29)) was plotted vs depth for the different oil densities
at standard conditions as presented in Section 4.6 (780, 800, 850, 900, 950 [kgm−3]).

From the plot in Fig. 4.17 it is observed that µJT decreases with increasing oil
density (see Section 4.6 for details of the densities), meaning decreased Joule-Thomson
heating effect within the fluid. The approximated µJT are fairly close to the real values.



4.7 Joule-Thomson coefficient of the produced fluid 97

Temperature [°C]
110 120 130 140 150 160

D
ep

th
, T

VD
 [m

]

0

500

1000

1500

2000

2500

3000

Tf(JT neglected)
Tf

Temperature [°C]
0 2 4 6 8 10

D
ep

th
, T

VD
 [m

]

0

500

1000

1500

2000

2500

3000

Tf-Tf(JT neglected)

Fig. 4.16. The Joule-Thomson heating effect on the produced fluid temperature
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4.8 Specific heat capacity of produced fluid

The specific heat of the produced fluid was assumed constant and the resulting
temperature profiles plotted for two values: 1000 and 4000 Jkg−1 K. It is observed
a significant change in temperature between the two cases, as seen when comparing
Fig. 4.18 and Fig. 4.19, implying that the specific heat of the produced fluid as a
important parameter.
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Fig. 4.18. Temperature profiles for a constant cpo = 1000 [Jkg−1 K]
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Fig. 4.19. Temperature profiles for a constant cpo = 4000 [Jkg−1 K]
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4.9 Thermal conductivity of produced fluid

The thermal conductivity was assumed constant and the resulting temperature profiles
plotted for two values of ko, 0.01 and 2 Wm−1 K−1. The difference in temperatures
are very small, as shown in Fig. 4.20. The temperature difference at the top was
only 0.62 ◦C. As the base case is producing at a flow rate of 1500 m3 d−1, the heat
transfer is mostly by forced convection in the tubing, thus minimizing the effect of
reducing the thermal conductivity of the fluid. Now plotting the temperature profiles
assuming a production flow rate of 200 m3 d−1 and the same thermal conductivities,
the temperature difference is significantly larger as observed from comparing Fig. 4.21
to Fig. 4.22.
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Fig. 4.20. Temperature profiles for a constant ko = 0.01 vs 2 [Jkg−1 K−1] for a flow
rate of 1500 [m3 d−1]
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Fig. 4.21. Temperature profiles for a constant ko = 0.01 [Jkg−1 K−1] for a production
flow rate of 200 [m3 d−1]
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Fig. 4.22. Temperature profiles for a constant ko = 2 [Jkg−1 K−1] for a production
flow rate of 200 [m3 d−1]
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4.10 Water as the produced fluid

Assuming 100 % of the produced fluid is water, the annular fluid properties (for
3.5%wt NaCl brine) is used to represent the produced fluid. Fig. 4.23 shows that
the temperature profiles have shifted right relative to the base case, indicating higher
produced fluid and well temperatures, as one would expect due mainly due to a much
larger specific heat capacity of water compared to oil. The large difference is easily
observed in the simplified temperature profile comparison in Fig. 4.24. The produced
fluid temperatures at the top of the well for oil and water was, respectively, 126.6 and
135.7 ◦C. The temperatures for various water cuts for this case could be expected to
be within this temperature interval.
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Fig. 4.23. Temperature profiles for water as the produced fluid
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Fig. 4.24. Simplified temperature profile comparison for the change in temperature
when producing water vs oil
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4.11 Specific heat capacity of annular fluid

Instead of the temperature correlation used for cpa in all three annulus, a constant
value of cpa obtained by evaluating the specific heat capacity temperature correlation
(Eq. (3.70)) at 15 ◦C (3997 Jkg−1 K−1), is used. Fig. 4.25 shows the temperature
change. A resulting temperature increase in the produced fluid, and a temperature
decrease in the three annulus, is observed. The difference in temperatures are relatively
small.
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Fig. 4.25. Resulting temperature change when assuming a constant cpa vs base case
cpa correlation

The temperature profiles was also plotted for the cases of constant cpa = 1000 and
4000 Jkg−1 K, shown in Fig. 4.26 and Fig. 4.27. It is seen that specific heat capacity
on its own has a small influence on the temperature profiles:
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Fig. 4.26. Temperature profiles for a constant cpa = 1000 [Jkg−1 K−1]
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Fig. 4.27. Temperature profiles for a constant cpa = 4000 [Jkg−1 K−1]
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4.12 Thermal conductivity of annular fluid

Instead of the temperature correlation used for ka in all three annulus, a constant value
of ka obtained by evaluating the thermal conductivity temperature correlation at 15
◦C (0.59 Wm−1 K−1), is used. Fig. 4.28 shows the temperature change. A resulting
temperature increase in the produced fluid, and a temperature decrease in the three
annulus, is observed. The difference in temperatures are relatively small, just as for
the heat capacity, even though it is one order of magnitude larger than the difference
in the specific heat capacity case (Fig. 4.25). The temperature profiles for constant
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Fig. 4.28. Resulting temperature change when assuming a constant ka vs base case
ka correlation

thermal conductivity of the annulus fluid for ka = 1, 0.1 and 0.01 Wm−1 K−1 are
shown in Fig. 4.29, Fig. 4.30 and Fig. 4.31 respectively. From the plots it can be
observed that the thermal conductivity of the fluids plays a central role in dictating
the well temperatures.
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Fig. 4.29. Temperature profiles for a constant ka = 1 [Wm−1 K−1]
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Fig. 4.30. Temperature profiles for a constant ka = 0.1 [Wm−1 K−1]
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Fig. 4.31. Temperature profiles for a constant ka = 0.01 [Wm−1 K−1]
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4.13 Free/natural convection vs pure conduction
in annulus

As internal movement in the fluid column of the annulus improves heat transfer, it
makes the effect of fluid thermal conductivity less impactful on the heat transfer.
Therefore, free convection was neglected, leaving pure conduction as the only means
of heat transfer. Fig. 4.32 shows the temperature profiles when neglecting the free
convection. By superimposing the overall heat transfer coefficient for the case of
neglecting the free convection, onto the overall heat transfer coefficient of the base
case (Fig. 4.2), presented in Fig. 4.33, the difference in heat transfer can be compared.
Fig. 4.33 shows a very large difference in heat transfer for the two cases, with around
50 % or larger heat transfer for the free convection case.
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Fig. 4.32. Temperature profiles when neglecting free/natural convection in the three
annulus
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Fig. 4.33. Overall heat transfer coefficient profiles for the cases of free convection vs
neglecting free convection
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4.14 Viscosity of annular fluid

The viscosity of the annular fluid was varied in two steps, µa = 0.001 (1) and 0.00001
(0.01) Pas (cP), and plotted in Fig. 4.34 and Fig. 4.35. By comparing the plots, it is
observed that a higher viscosity will slow down the heat transfer, while a lower viscosity
increases the heat transfer due to increased mobility of the fluid.

Temperature [°C]
20 40 60 80 100 120 140

D
ep

th
, T

VD
 [m

]

0

500

1000

1500

2000

2500

3000

Tf
Tti
Tto
Tci1
Tco1
Tci2
Tco2
Tci3
Tco3
Tci4
Tco4
Tci5
Tco5
Twb
Tei

Fig. 4.34. Temperature profiles for a constant µa = 0.001 [Pas]
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Fig. 4.35. Temperature profiles for a constant µa = 0.00001 [Pas]
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4.15 Annular clearance

The effect of annular clearance was tested by reconfiguring the casing sizes such that
the annular clearance was the same for all three annulus spaces, and equal to 0.0111 m
and 0.0211 m. The wall thickness of the tubing and casings was preserved. The base
case Nu profiles (Fig. 4.36) are shown first as a reference point. The reason for the
large Nu for annulus 3 is due to its large annular clearance being the controlling factor.
Fig. 4.37 shows the comparison of the two annular clearance values. It is clear that
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Fig. 4.36. Nusselt number for the three separate annulus spaces for the base case

increasing the clearance will increase the heat transfer through annulus, thus heating
the wellbore and cooling the produced fluid. This can be seen by comparing Fig. 4.39
to Fig. 4.40. The overall heat transfer coefficient for all sections, Uti, for the two cases
are represented in Fig. 4.38. A much larger Uti is observed for the 0.0211 m clearance
at the bottom. The effect of increased clearance tapers off towards the top of the well.
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Fig. 4.37. The effect of annular clearance on the Nusselt number of the three separate
annular spaces
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Fig. 4.38. The effect of annular clearance on the overall heat transfer coefficient when
setting equal clearance in all three separate annular spaces
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Fig. 4.39. Temperature profile resulting from annular clearance equal to 0.0111 m for
all annulus
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Fig. 4.40. Temperature profile resulting from annular clearance equal to 0.0211 m for
all annulus
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4.16 Formation parameters

The properties of four different formation rocks (Table 4.3) are implemented and the
resulting temperature profiles are plotted. The base case (Fig. 4.41) is added as a
reference for comparison. While the changes are generally small from clay to the water
saturated sandstone (Fig. 4.42) or the limestone (Fig. 4.43), it is seen that compacted
chalk (Fig. 4.44) has a fairly large impact on the wellbore and well temperatures.

Formation rock ρe cpe ke αe ×10−7

[kgm−3] [Jkg−1 K−1] [Wm−1 K−1] [m2 s−1]
Clay (Base case) 2080 2127 1.42 3.210
Sandstone, water saturated 2300 840 2.46 0.127
Limestone 2700 851 2.20 9.575
Chalk, compacted 1920 922 1.02 5.762

Table 4.3. Formation properties (Kutasov and Eppelbaum, 2015)
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Fig. 4.41. Temperature profiles for clay rock formation properties (base case)



4.16 Formation parameters 119

Temperature [°C]
20 40 60 80 100 120 140

D
ep

th
, T

VD
 [m

]

0

500

1000

1500

2000

2500

3000

Tf
Tti
Tto
Tci1
Tco1
Tci2
Tco2
Tci3
Tco3
Tci4
Tco4
Tci5
Tco5
Twb
Tei

Fig. 4.42. Temperature profiles for water saturated sandstone formation properties
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Fig. 4.43. Temperature profiles for limestone formation properties
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Fig. 4.44. Temperature profiles for compacted chalk formation properties
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4.17 Geothermal gradient

The effect of geothermal gradient on the undisturbed earth temperature, Tei, the
wellbore temperature, Twb, and the produced fluid temperature, Tf, was plotted for
three different geothermal gradients: 0.03 ◦C/m, 0.04 ◦C/m, and 0.05 ◦C/m. An
expected increase in temperatures when increasing the geothermal gradient is observed
in Fig. 4.45
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Fig. 4.45. Temperature profiles for different geothermal gradients





Chapter 5

Result and Conclusion

A temperature model for a single phase production scenario has been implemented in
MATLAB, carrying out a cell-by-cell piecewise calculation procedure, able to consider
consider complex well configurations, a simple inclined wellbore trajectory, varying
properties of annular and produced fluids, temperature and pressure dependence of
thermophysical parameters, and natural convection in multiple annulus. Given that the
overall heat transfer coefficient is found, the model is able to estimate the temperature
of the produced fluid and the temperatures at all interfaces in the well configuration,
also taking into consideration the Joule-Thomson heating effect on the produced fluid
temperature.

The heat transfer to the formation is largest in the deeper parts of the well. The
effect of production flow rate was found to have a large impact on the well temperatures,
increasing with increasing production rate. As the well is produced, and as time goes,
the temperature increases in the formation around the wellbore, growing towards a
steady state. The composition of the fluid being produced had a large impact on
the well temperatures, with the thermal conductivity of the produced fluid being
only important at low flow rates, and the specific heat capacity of the fluid as the
most influential parameter all over. Density variations within the available fluid
definition range of the dead oil density equation of state was found to have a significant
impact on the temperatures. For the annular fluid, specific heat capacity had a minor
impact on the temperatures, while thermal conductivity and viscosity had a larger
impact. When neglecting the free convection in annulus, the heat transfer through
annulus becomes purely conductive, leading to an underestimation of the casing and
annular temperatures. When assuming the same brine properties for the produced
fluid as used in the annulus, the temperatures for the whole well increased significantly,



124 Result and Conclusion

underlining the importance of knowing the composition of the produced fluid. Annular
clearance was investigated, revealing a larger heat transfer with increasing annular
clearance. Temperatures was found to vary significantly with varying formation
properties, underlining the importance of correct input parameters.

One possible pitfall for the calculation of heat transfer in the annulus is the adaption
of the free convection Nu correlation, developed by Dropkin et al. (1965). By adapting
this correlation one must neglect the effect of the curved annulus, seeing as the
correlation was originally developed for two parallel plates. The correlation is adapted
by other studies concerning free convection in annulus, and there is no, to the authors
knowledge, available correlations specifically developed for long concentric annulus of
various inclination.

An other limitation of this model is the range of validity for many of the thermophys-
ical properties. By simulating even deeper wells, one may end up with temperatures
outside the confirmed validity range of the properties, yielding uncertainties in the tem-
perature estimates. By replacing the current correlations for thermophysical properties
with ones developed for a broader range of temperatures and pressures, this problem
can be bypassed.

The simulator has yet to be verified against any real well data.
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Appendix A

MATLAB program codes

Some essential files have been left out, but the remaining code should be able to give an
overview of the program. The files are presented in chronological order of appearance
in the program.

1 clc

2 clear

3 close all

4

5 %%

6 %====================================================================%

7 %-------------------Casing and tubing dimensions:--------------------%

8 %====================================================================%

9

10 global r_ti1 r_to1 r_ci1 r_co1 r_wb1 r_ci2 r_co2 r_wb2 r_ci3 r_co3...

11 r_wb3 r_ci4 r_co4 r_wb4 r_ci5 r_co5 r_wb5

12

13 % Dimensions given directly by component radius % [m]

14

15 % Tubing int. radius:

16 r_ti1 = 0.11862/2; % (d = 4.670 in)

17

18 % Tubing ext. radius:

19 r_to1 = 0.1397/2; % (d = 5 1/2 in)

20

21 % Casing 1 int. radius:

22 r_ci1 = 0.16193/2; % (d = 6.375 in)

23
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24 % Casing 1 ext. radius:

25 r_co1 = 0.19368/2; % (d = 7 5/8 in)

26

27 % Wellbore 1 radius:

28 r_wb1 = 0.2159/2; % (d = 8 1/2 in)

29

30 % Casing 2 int. radius:

31 r_ci2 = 0.21679/2; % (d = 8.535 in)

32

33 % Casing 2 ext. radius:

34 r_co2 = 0.24448/2; % (d = 9 5/8 in)

35

36 % Wellbore 2 radius:

37 r_wb2 = 0.3111/2; % (d = 12 1/4 in)

38

39 % Casing 3 int. radius:

40 r_ci3 = 0.30925/2; % (d = 12.175 in)

41

42 % Casing 3 ext. radius:

43 r_co3 = 0.33973/2; % (d = 13 3/8 in)

44

45 % Wellbore 3 radius:

46 r_wb3 = 0.4445/2; % (d = 17 1/2 in)

47

48 % Casing 4 int. radius:

49 r_ci4 = 0.4826/2; % (d = 19 in)

50

51 % Casing 4 ext. radius:

52 r_co4 = 0.508/2; % (d = 20 in)

53

54 % Wellbore 4 radius:

55 r_wb4 = 0.6604/2; % (d = 26 in)

56

57 % Casing 5 int. radius:

58 r_ci5 = 0.7112/2; % (d = 28 in)

59

60 % Casing 5 ext. radius:

61 r_co5 = 0.762/2; % (d = 30 in)

62

63 % Wellbore 5 radius:

64 r_wb5 = 0.9144/2; % (d = 36 in)

65
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66

67 %====================================================================%

68 %--------------------Production time/rate/density:-------------------%

69 %====================================================================%

70

71 % Oil production flow rate through tubing: % [m^3/s]

72 flowrate_sc = 1500/(60*60*24);

73

74 % Density of produced fluid at standard conditions: % [kg/m^3]

75 rho_o_sc = 800;

76

77 % Circulation hours:

78 t = 48;

79

80 % Circulation time: % [s]

81 time = 3600*t;

82

83 %====================================================================%

84 %--------------------------Wellbore Trajectory:----------------------%

85 %====================================================================%

86

87 % Set the setting depth (MD) of casing shoes

88 % (1 is deepest set, 5 shallowest) % [m]

89 csg_shoe1 = 3000;

90 csg_shoe2 = 2600;

91 csg_shoe3 = 1400;

92 csg_shoe4 = 800;

93 csg_shoe5 = 200;

94

95 % Well measured depth at bottom: % [m]

96 MD_bh = csg_shoe1;

97

98 % Number of cells set equal to measured depth,

99 % yielding 1 m long cells along the wellbore.

100 number_cells = MD_bh;

101

102 % Set the dogleg angle: % (Deg)

103 DL = 0;

104

105 % Set the length of the different well sections: % [m]

106 vertical_section = 1000;

107 dogleg_section = 10*DL;
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108 sail_section = csg_shoe1 - vertical_section...

109 - dogleg_section;

110

111 % Inclination (deg), true horizontal and vertical

112 % displacement (THD,TVD):

113 [incl,TVD,THD] = well_trajectory(MD_bh,number_cells,...

114 DL,vertical_section,dogleg_section,sail_section);

115 %%

116 %====================================================================%

117 %--------------------------Temperature model:------------------------%

118 %====================================================================%

119

120 [Tf,Tti,Tto,Ta1,Ta2,Ta3,Tci1,Tco1,Twb1,Tci2,Tco2,Twb2,Tci3,Tco3,...

121 Twb3,Tci4,Tco4,Twb4,Tci5,Tco5,Twb5,Tei,Pressure_tubing,...

122 ploss_fric,ploss_stat,ploss_kin,rho_tub,rho_an1,rho_an2,...

123 rho_an3,h_ti,h_ca1,h_ca2,h_ca3,Nu1_plot,Nu2_plot,Nu3_plot,...

124 Ra1_plot,Ra2_plot,Ra3_plot,phi_plot,Cj_plot,U_ti]...

125 = temperature_tubing(flowrate_sc,rho_o_sc,TVD,number_cells,...

126 incl,time,csg_shoe1,csg_shoe2,csg_shoe3,csg_shoe4,csg_shoe5);

127

128 %%

129 %====================================================================%

130 %----------------------------Plotting:-------------------------------%

131 %====================================================================%

132

133 % Compiling WB vector

134 Twb1 = Twb1(~isnan(Twb1));
135 Twb2 = Twb2(~isnan(Twb2));
136 Twb3 = Twb3(~isnan(Twb3));
137 Twb4 = Twb4(~isnan(Twb4));
138 Twb5 = Twb5(~isnan(Twb5));
139 Twb = [Twb5;Twb4;Twb3;Twb2;Twb1];

140

141 %Plotting wellbore trajectory

142 figure

143 plot(THD,TVD,'b','LineWidth',2)

144 xstring = num2str(THD(end) );

145 ystring = num2str(TVD(end) );

146 set(gca,'YDir','Reverse')

147 xlim([0,THD(end)+1])

148 axis equal

149 axis tight
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150

151 % Plotting temperature profiles

152 plotcolors = [0,0,0; % Tf

153 0.9290,0.6940,0.1250; % Tti

154 0.9290,0.6940,0.1250; % Tto

155 %0,0.447,0.7410; % Ta1

156 0.4660,0.6740,0.1880; % Tci1

157 0.4660,0.6740,0.1880; % Tco1

158 %0,0.447,0.7410; % Ta2

159 0,0.447,0.7410; % Tci2

160 0,0.447,0.7410; % Tco2

161 %0,0.447,0.7410; % Ta3

162 0.85,0.325,0.098; % Tci3

163 0.85,0.325,0.098; % Tco3

164 0.5 0 0.5 % Tci4

165 0.5 0 0.5 % Tco4

166 0.6,0.6,1.0000 % Tci5

167 0.6,0.6,1.0000 % Tco5

168 0.6,0.6,0.6; % Twb

169 0,0,0]; % Tei

170

171 figure

172 MyColorOrder = plotcolors;

173 axes('NextPlot','replacechildren','ColorOrder',MyColorOrder);

174 plot(Tf,TVD,Tti,TVD,'--',Tto,TVD,Tci1,TVD,'--',Tco1,TVD,Tci2,...

175 TVD,'--',Tco2,TVD,Tci3,TVD,'--',Tco3,TVD,Tci4,TVD,'--',Tco4,...

176 TVD,Tci5,TVD,'--',Tco5,TVD,Twb,TVD,'-.','LineWidth',1.5);

177 grid on

178 hold on

179 plot(Tei,TVD,'--','LineWidth',1.75)

180 set(gca,'YDir','Reverse')

181 legend('Tf','Tti','Tto','Tci1','Tco1','Tci2','Tco2','Tci3',...

182 'Tco3','Tci4','Tco4','Tci5','Tco5','Twb','Tei','location',...

183 'southwest');

184 xlabel('Temperature [C]')

185 ylabel('Depth, TVD [m]')

186 set(0,'DefaultLegendFontSize',22)

187 xlim([min(Tei), max(Tf)+1]);

1 function [Tf_vector,Tti_vector,Tto_vector,Ta1_vector,Ta2_vector,...

2 Ta3_vector,Tci1_vector,Tco1_vector,Twb1_vector,Tci2_vector,...
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3 Tco2_vector,Twb2_vector,Tci3_vector,Tco3_vector,Twb3_vector,...

4 Tci4_vector,Tco4_vector,Twb4_vector,Tci5_vector,Tco5_vector,...

5 Twb5_vector,T_ei,Pressure_tubing,ploss_fric_total_vector,...

6 ploss_stat_total_vector,ploss_kin_total_vector,rho_f_t_vector,...

7 rho_an1_vector,rho_an2_vector,rho_an3_vector,h_ti_vector,...

8 h_ca1_vector,h_ca2_vector,h_ca3_vector,Nu1_vector,Nu2_vector,...

9 Nu3_vector,Ra1_vector,Ra2_vector,Ra3_vector,phi_vector,...

10 Cj_vector,Uti_vector] = temperature_tubing(flowrate_sc,...

11 rho_o_sc,TVD,number_cells,incl,t,csg_shoe1,csg_shoe2,csg_shoe3,...

12 csg_shoe4,csg_shoe5)

13

14 global r_ti1 r_to1 r_ci1 r_co1 r_wb1 r_ci2 r_co2 r_wb2 r_ci3 r_co3...

15 r_wb3 r_ci4 r_co4 r_wb4 r_ci5 r_co5 r_wb5

16

17 %================Thermophysical and other parameters:================%

18

19 % Produced fluid mass flow rate: % [kg/s]

20 w = flowrate_sc*rho_o_sc;

21

22 % Earth temperature at wellhead: % [C]

23 T_e = 15;

24

25 % Formation thermal conductivity: % [W/m-K]

26 k_e = 1.42;

27

28 % Formation specific heat capacity: % [J/kg-K]

29 c_e = 2127;

30

31 % Formation density: % [kg/m^3]

32 rho_e = 2080;

33

34 % Formation average geothermal gradient: % [C/m]

35 g_G = 0.0455;

36

37 % Gravitational acceleration: % [m/s^2]

38 g = 9.81;

39

40 % Specific gravity of produced fluid at standard

41 % conditions:

42 sg_o = rho_o_sc/1000;

43

44 %=========================Model Parameters:==========================%
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45

46 % Formation thermal diffusivity: % [m^2/s]

47 alpha = k_e/(c_e*rho_e);

48

49 % Dimensionless temperature for the different wellbore

50 % radiuses:

51 T_D1 = dimless_temp(alpha,t,r_wb1);

52 T_D2 = dimless_temp(alpha,t,r_wb2);

53 T_D3 = dimless_temp(alpha,t,r_wb3);

54 T_D4 = dimless_temp(alpha,t,r_wb4);

55 T_D5 = dimless_temp(alpha,t,r_wb5);

56

57 % Element measured length: % [m]

58 dz = csg_shoe1/number_cells;

59

60 % Creating the undisturbed earth temperature vector:

61 [T_ei,Tbom] = geograd(number_cells,T_e,g_G,dz,incl);

62

63 %% Creating empty vectors

64 % Empty vector of cells

65 cells = NaN(number_cells,1);

66

67 % Vectors assigned "NaN" values:

68 [rho_f_t_vector,rho_an1_vector,rho_an2_vector,rho_an3_vector] =...

69 deal(cells);

70

71 [Ra1_vector,Ra2_vector,Ra3_vector] = deal(cells);

72

73 [Nu1_vector,Nu2_vector,Nu3_vector] = deal(cells);

74

75 [h_ti_vector,h_ca1_vector,h_ca2_vector,h_ca3_vector] =...

76 deal(cells);

77

78 [Pressure_tubing,ploss_fric_total_vector,ploss_stat_total_vector,...

79 ploss_kin_total_vector] = deal(cells);

80

81 [Tci2_vector,Tco2_vector,Tci3_vector,Tco3_vector,Tci4_vector,...

82 Tco4_vector,Tci5_vector,Tco5_vector,Twb2_vector,Twb3_vector,...

83 Twb4_vector,Twb5_vector,Ta2_vector,Ta3_vector] = deal(cells);

84

85 [Twb2_vector(end),Twb3_vector(end),Twb4_vector(end),...

86 Twb5_vector(end)] = deal(NaN);
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87

88 Uti_vector = cells; Uti_vector(1)=NaN;

89 phi_vector = cells;

90 Cj_vector = cells;

91

92 % Updating cells vector with boundary condition:

93 cells(end)=Tbom;

94

95 % Empty vectors with boundary conditions for temperature

96 % in production flow,tubing inside wall, tubing outside

97 % wall, annulus, casing inside wall, casing outside wall,

98 % and wellbore wall:

99 [Tf_vector,Tti_vector,Tto_vector,Ta1_vector,Tci1_vector,...

100 Tco1_vector,Twb1_vector] = deal(cells);

101

102

103 %%

104 %=======================Stepwise calculation:========================%

105

106 % Calculating the temperature from the bottom cell towards

107 % the top:

108

109 for idx = number_cells:-1:1

110

111 if idx > 1;

112 %% Parameter values for the whole length of the well

113

114 % Previous cell produced fluid temp. % [C]

115 T_f_prev = Tf_vector(idx);

116

117 % Previous cell tubing temp. % [C]

118 T_ti_prev = Tti_vector(idx);

119 T_to_prev = Tto_vector(idx);

120

121 % Previous and current cell undisturbed

122 % formation temp. % [C]

123 T_ei_prev = T_ei(idx);

124 T_ei_current = T_ei(idx-1);

125

126 % Previous cell pressure:

127 P_prev(idx == number_cells)...

128 = 1030*g*TVD(number_cells);
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129 P_prev(idx < number_cells)...

130 = Pressure_tubing(idx);

131

132 ploss_fric_prev(idx == number_cells) = 0;

133 ploss_fric_prev(idx<number_cells) =...

134 ploss_fric_total_vector(idx);

135 ploss_stat_prev(idx == number_cells) = 0;

136 ploss_stat_prev(idx<number_cells) =...

137 ploss_stat_total_vector(idx);

138 ploss_kin_prev(idx == number_cells) = 0;

139 ploss_kin_prev(idx<number_cells) =...

140 ploss_kin_total_vector(idx);

141

142 % Convective heat transfer coefficients for

143 % annulus 1, 2 and 3. % [W/m-K]

144 h_ca1 = h_ca1_vector(idx);

145

146 if idx == csg_shoe2

147 h_ca2 = h_ca1;

148 else

149 h_ca2 = h_ca2_vector(idx);

150 end

151

152 if idx == csg_shoe3

153 h_ca3 = h_ca2;

154 else

155 h_ca3 = h_ca3_vector(idx);

156 end

157

158 % Previous cell Uti: % [W/m-K]

159 U_ti_prev = Uti_vector(idx);

160 U_ti_prev(idx == number_cells) = 60;

161

162 % Produced fluid density [kg/m^3], pressure

163 % losses [Pa/m], viscosity [Pa-s], Reynolds

164 % number, Darcy friction factor, and thermal

165 % expansion coefficient [1/K]:

166 [rho_f_t,visc_t,beta_t,P_current]= dens_visc_t(...

167 Tf_vector(idx),rho_o_sc,P_prev,...

168 ploss_fric_prev,ploss_stat_prev,...

169 ploss_kin_prev);

170



138 MATLAB program codes

171 % Reynold's number and friction factor in tubing

172 [~,Re,fmoody] = fricloss_tubing(w,visc_t,r_ti1,...

173 rho_f_t);

174

175 % Previous cell density % [kg/m^3]

176 rho_f_t_prev(idx==number_cells) = rho_f_t;

177 rho_f_t_vector(idx(idx==number_cells)) = rho_f_t;

178 rho_f_t_prev(idx<number_cells)...

179 = rho_f_t_vector(idx);

180

181 % Update parameters for produced fluid

182 k_f_t = kf_o(T_f_prev,sg_o); % [W/m-K]

183 c_f_t = cf_o(T_f_prev,sg_o); % [J/kg-K]

184 k_t = k_tbg((T_ti_prev+T_to_prev)/2); % [W/m-K]

185

186

187 %% Parameter values from casing shoe 1 and up:

188

189 % Previous cell casings 1, wellbore 1, and

190 % annulus 1 temp. % [C]

191 T_ci1_prev = Tci1_vector(idx);

192 T_co1_prev = Tco1_vector(idx);

193 T_wb1_prev = Twb1_vector(idx);

194 T_a1_prev = Ta1_vector(idx);

195

196 % Current cell parameters evaluated at

197 % Previous cell temperatures:

198 k_f_a1 = kf_a(T_a1_prev); % [W/m-K]

199 c_f_a1 = cf_a(T_a1_prev); % [J/kg-K]

200 k_c1 = k_csg((T_ci1_prev + T_co1_prev)/2); % [W/m-K]

201 k_cem1 = k_cement((T_co1_prev + T_wb1_prev)/2); % [W/m-K]

202

203 % Density [kg/m^3], viscosity [Pa-s], and

204 % thermal expansion coefficient [1/K]:

205 [rho_f_a1,visc_f_a1,beta_an1]...

206 = dens_visc_a(Ta1_vector(idx),TVD(idx));

207

208

209 %% Parameter values from casing shoe 2 and up:

210

211 % Previous cell temperatures: % [C]

212 T_ci2_prev = Tci2_vector(idx);
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213 T_co2_prev = Tco2_vector(idx);

214 T_wb2_prev = Twb2_vector(idx);

215 T_a2_prev = Ta2_vector(idx);

216

217 % Current cell parameters evaluated at

218 % Previous cell temperatures:

219 c_f_a2 = cf_a(T_a2_prev); % [J/kg-K]

220 k_f_a2 = kf_a(T_a2_prev); % [W/m-K]

221 k_c2 = k_csg((T_ci2_prev + T_co2_prev)/2); % [W/m-K]

222 k_cem2 = k_cement((T_co2_prev + T_wb2_prev)/2); % [W/m-K]

223

224 % Density [kg/m^3], viscosity [Pa-s], and

225 % thermal expansion coefficient [1/K]:

226 [rho_f_a2,visc_f_a2,beta_an2] ...

227 = dens_visc_a(Ta2_vector(idx),TVD(idx));

228

229 % Assuming parameters for the first cell

230 % in annulus 2 of new section are equal to

231 % parameters of annulus 1:

232 if idx == csg_shoe2;

233 rho_f_a2 = rho_f_a1; % [kg/m^3]

234 visc_f_a2 = visc_f_a1; % [Pa-s]

235 beta_an2 = beta_an1; % [1/K]

236 c_f_a2 = c_f_a1; % [J/kg-K]

237 k_f_a2 = k_f_a1; % [W/m-K]

238 k_c2 = k_c1; % [W/m-K]

239 k_cem2 = k_cem1; % [W/m-K]

240 end

241

242

243 %% Parameter values from casing shoe 3 and up:

244

245 % Previous cell temperatures % [C]

246 T_ci3_prev = Tci3_vector(idx);

247 T_co3_prev = Tco3_vector(idx);

248 T_wb3_prev = Twb3_vector(idx);

249 T_a3_prev = Ta3_vector(idx);

250

251 % Current cell parameters evaluated at

252 % Previous cell temperatures:

253 c_f_a3 = cf_a(T_a3_prev); % [J/kg-K]

254 k_f_a3 = kf_a(T_a3_prev); % [W/m-K]
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255 k_c3 = k_csg((T_ci3_prev + T_co3_prev)/2); % [W/m-K]

256 k_cem3 = k_cement((T_co3_prev + T_wb3_prev)/2); % [W/m-K]

257

258 % Density [kg/m^3], viscosity [Pa-s], and

259 % thermal expansion coefficient [1/K]:

260 [rho_f_a3,visc_f_a3,beta_an3] = ...

261 dens_visc_a(Ta3_vector(idx),TVD(idx));

262

263 % Assuming parameters for the first cell

264 % in annulus 3 of new section are equal to

265 % parameters of annulus 2:

266 if idx == csg_shoe3;

267 rho_f_a3 = rho_f_a2; % [kg/m^3]

268 visc_f_a3 = visc_f_a2; % [Pa-s]

269 beta_an3 = beta_an2; % [1/K]

270 c_f_a3 = c_f_a2; % [J/kg-K]

271 k_f_a3 = k_f_a2; % [W/m-K]

272 k_c3 = k_c2; % [W/m-K]

273 k_cem3 = k_cem2; % [W/m-K]

274 end

275

276

277 %% Parameter values from casing shoe 4 and up (cemented):

278

279 % Previous cell temperatures % [C]

280 T_ci4_prev = Tci4_vector(idx);

281 T_co4_prev = Tco4_vector(idx);

282 T_wb4_prev = Twb4_vector(idx);

283

284 % Current cell parameters evaluated at

285 % Previous cell temperatures:

286 k_c4 = k_csg((T_ci4_prev + T_co4_prev)/2); % [W/m-K]

287 k_cem4 = k_cement((T_co3_prev+T_wb4_prev)/2); % [W/m-K]

288

289 if idx == csg_shoe4;

290 k_c4 = k_c3; % [W/m-K]

291 k_cem4 = k_cem3; % [W/m-K]

292 end

293

294 if idx < csg_shoe4;

295 k_cem3 = k_cement((T_co3_prev...

296 + T_ci4_prev)/2); % [W/m-K]
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297 end

298

299

300 %% Parameter values from casing shoe 5 and up (cemented):

301

302 % Previous cell temperatures % [C]

303 T_ci5_prev = Tci5_vector(idx);

304 T_co5_prev = Tco5_vector(idx);

305 T_wb5_prev = Twb5_vector(idx);

306

307 % Current cell parameters evaluated at

308 % Previous cell temperatures:

309 k_c5 = k_csg((T_ci5_prev + T_co5_prev)/2); % [W/m-K]

310 k_cem5 = k_cement((T_co5_prev+T_wb5_prev)/2); % [W/m-K]

311

312 if idx == csg_shoe5;

313 k_c5 = k_c4; % [W/m-K]

314 k_cem5 = k_cem4; % [W/m-K]

315 end

316

317 if idx < csg_shoe5;

318 k_cem4 = k_cement((T_co4_prev...

319 + T_ci5_prev)/2); % [W/m-K]

320 end

321

322

323 %%

324 %============Estimating Overall Heat Transfer Coefficient:===========%

325

326 % Estimating the overall heat transfer

327 % coefficient based on tubing inside area,

328 % U_ti: % [W/m^2-K]

329 [U_ti,T_to,h_ca1,h_ca2,h_ca3,h_ti,Nu1,Nu2,Nu3,...

330 Ra_1,Ra_2,Ra_3] = U_ti_est(idx,incl(idx),...

331 U_ti_prev,T_f_prev,T_ei_current,visc_t,k_e,...

332 Re,fmoody,beta_an1,beta_an2,beta_an3,...

333 visc_f_a1,visc_f_a2,visc_f_a3,rho_f_a1,...

334 rho_f_a2,rho_f_a3,k_f_t,c_f_t,k_f_a1,...

335 k_f_a2,k_f_a3,c_f_a1,c_f_a2,c_f_a3,k_t,...

336 k_c1,k_c2,k_c3,k_c4,k_c5,k_cem1,k_cem2,...

337 k_cem3,k_cem4,k_cem5,T_D1,T_D2,T_D3,...

338 csg_shoe1,csg_shoe2,csg_shoe3,csg_shoe4,...
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339 csg_shoe5,h_ca1,h_ca2,h_ca3);

340

341

342 %%

343 %=====================Produced fluid parameters:=====================%

344

345 % Calculating the Joul-Thomson coefficient: % [K/Pa]

346 Cj = JT_coeff(rho_f_t,c_f_t,beta_t,T_f_prev);

347

348 % Calculating pressure drops in tubing: % [Pa/m]

349 [ploss_fric,ploss_stat,ploss_kin,v,v_prev] =...

350 p_loss_tbg(w,rho_f_t_prev,rho_f_t,visc_t,...

351 r_ti1,incl(idx));

352

353 % Calculating the "phi" parameter: % [K/m]

354 phi = phi_parameter(Cj,c_f_t,ploss_fric,...

355 ploss_stat,ploss_kin,v,v_prev);

356 %%

357 %========================Relaxation distance:========================%

358

359 % Dimensionless time for each section

360 if idx > csg_shoe2;

361 T_D = T_D1;

362 elseif idx <= csg_shoe2 && idx > csg_shoe3;

363 T_D = T_D2;

364 elseif idx <= csg_shoe3 && idx > csg_shoe4;

365 T_D = T_D3;

366 elseif idx <= csg_shoe4 && idx > csg_shoe5;

367 T_D = T_D4;

368 elseif idx <= csg_shoe5;

369 T_D = T_D5;

370 end

371

372 % Relaxation distance % [m]

373 A = ((c_f_t)*w/(2*pi))*...

374 (k_e+(r_ti1*U_ti*T_D))/...

375 (r_ti1*U_ti*k_e);

376

377 %%

378 %======================The temperature model:========================%

379

380 % The tubing temperature % [C]
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381 T_f = T_ei_current+A*(1-exp(-dz/A))...

382 *((g_G*cosd(incl(idx))) + phi...

383 - (g*cosd(incl(idx))/(c_f_t)))...

384 + exp(-dz/A)*(T_f_prev - T_ei_prev);

385

386 %%

387 %===============Calculating new wellbore temperatures:===============%

388

389 %%% Wellbore temperatures:

390

391 if idx > csg_shoe2;

392 % Wellbore 1 temperature

393 T_wb1 = (k_e*T_ei_current...

394 + r_ti1*U_ti*T_D1*T_f)...

395 /(k_e+r_ti1*U_ti*T_D1);

396 else T_wb1 = NaN;

397 end

398

399 if idx <= csg_shoe2 && idx > csg_shoe3;

400 % Wellbore 2 temperature

401 T_wb2 = (k_e*T_ei_current...

402 + r_ti1*U_ti*T_D2*T_f)...

403 /(k_e+r_ti1*U_ti*T_D2);

404 else T_wb2 = NaN;

405 end

406

407 if idx <= csg_shoe3 && idx > csg_shoe4;

408 % Wellbore 3 temperature:

409 T_wb3 = (k_e*T_ei_current...

410 +r_ti1*U_ti*T_D3*T_f)...

411 /(k_e+r_ti1*U_ti*T_D3);

412 else T_wb3 = NaN;

413 end

414

415 if idx <= csg_shoe4 && idx > csg_shoe5;

416 % Wellbore temperature

417 T_wb4 = (k_e*T_ei_current...

418 + r_ti1*U_ti*T_D4*T_f)...

419 /(k_e+r_ti1*U_ti*T_D4);

420 else T_wb4 = NaN;

421 end

422 if idx <= csg_shoe5;
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423 % Wellbore 5 temperature:

424 T_wb5 = (k_e*T_ei_current...

425 + r_ti1*U_ti*T_D5*T_f)...

426 /(k_e+r_ti1*U_ti*T_D5);

427 else T_wb5 = NaN;

428 end

429

430 %%% Temperatures for interfaces between casing

431 %%% shoe 1 and 2: % [C]

432

433 if idx > csg_shoe2;

434

435 % Tubing inside temperature:

436 T_ti = T_f - ((r_ti1*U_ti)/(r_ti1*h_ti))...

437 *(T_f-T_wb1);

438

439 % Tubing outside temperature:

440 T_to = T_ti - ((r_ti1*U_ti)/k_t)...

441 *log(r_to1/r_ti1)*(T_f-T_wb1);

442

443 % Tubing outside temperature:

444 T_ci1 = T_to - ((r_ti1*U_ti)/(r_to1*h_ca1))...

445 *(T_f-T_wb1);

446

447 % Annulus 1 temperature:

448 T_a1 = (T_to+T_ci1)/2;

449

450 % Casing 1 outer temperature:

451 T_co1 = T_ci1 - ((r_ti1*U_ti)/k_c1)...

452 *log(r_co1/r_ci1)*(T_f-T_wb1);

453 end

454

455 %%% Temperatures for interfaces between casing

456 %%% shoe 2 and 3: % [C]

457

458 if idx <= csg_shoe2 && idx > csg_shoe3;

459

460 % Tubing inside temperature:

461 T_ti = T_f - ((r_ti1*U_ti)/(r_ti1*h_ti))...

462 *(T_f-T_wb2);

463

464 % Tubing outside temperature:
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465 T_to = T_ti - ((r_ti1*U_ti)/k_t)...

466 *log(r_to1/r_ti1)*(T_f-T_wb2);

467

468 % Casing 1 inside temperature:

469 T_ci1 = T_to - ((r_ti1*U_ti)/(r_to1*h_ca1))...

470 *(T_f-T_wb2);

471

472 % Annulus 1 temperature:

473 T_a1 = (T_to+T_ci1)/2;

474

475 % Casing 1 outer temperature:

476 T_co1 = T_ci1 - ((r_ti1*U_ti)/k_c1)...

477 *log(r_co1/r_ci1)*(T_f-T_wb2);

478

479 % Casing 2 inside temperature:

480 T_ci2 = T_co1 - ((r_ti1*U_ti)*(1/(r_co1*h_ca2))...

481 *(T_f-T_wb2));

482

483 % Annulus 2 temperature:

484 T_a2 = (T_co1+T_ci2)/2;

485

486 % Casing 2 outer temperature:

487 T_co2 = T_ci2 - ((r_ti1*U_ti)/k_c2)...

488 *log(r_co2/r_ci2)*(T_f-T_wb2);

489 end

490

491 %%% Temperatures of interfaces between casing

492 %%% shoe 3 and 4: % [C]

493

494 if idx <= csg_shoe3 && idx > csg_shoe4;

495

496 % Tubing inside temperature:

497 T_ti = T_f - ((r_ti1*U_ti)/(r_ti1*h_ti))...

498 *(T_f-T_wb3);

499

500 % Tubing outside temperature

501 T_to = T_ti - ((r_ti1*U_ti)/k_t)...

502 *log(r_to1/r_ti1)*(T_f-T_wb3);

503

504 % Casing 1 inside temperature

505 T_ci1 = T_to - ((r_ti1*U_ti)/(r_to1*h_ca1))...

506 *(T_f-T_wb3);
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507

508 % Annulus 1 temperature

509 T_a1 = (T_to+T_ci1)/2;

510

511 % Casing 1 outer temperature

512 T_co1 = T_ci1 - ((r_ti1*U_ti)/k_c1)...

513 *log(r_co1/r_ci1)*(T_f-T_wb3);

514

515 % Casing 2 inside temperature

516 T_ci2 = T_co1 - ((r_ti1*U_ti)*(1/(r_co1*h_ca2))...

517 *(T_f-T_wb3));

518

519 % Annulus 2 temperature:

520 T_a2 = (T_co1+T_ci2)/2;

521

522 % Casing 2 outer temperature

523 T_co2 = T_ci2 - ((r_ti1*U_ti)/k_c2)...

524 *log(r_co2/r_ci2)*(T_f-T_wb3);

525

526 % Casing 3 inside temperature

527 T_ci3 = T_co2 - ((r_ti1*U_ti)*(1/(r_co2*h_ca3))...

528 *(T_f-T_wb3));

529

530 % Annulus 3 temperature:

531 T_a3 = (T_co2+T_ci3)/2;

532

533 % Casing 3 outer temperature

534 T_co3 = T_ci3 - ((r_ti1*U_ti)/k_c3)...

535 *log(r_co3/r_ci3)*(T_f-T_wb3);

536 end

537

538

539 %%% Temperatures of interfaces between casing

540 %%% shoe 4 and 5: % [C]

541

542 if idx <= csg_shoe4 && idx > csg_shoe5;

543

544 % Tubing inside temperature:

545 T_ti = T_f - ((r_ti1*U_ti)/(r_ti1*h_ti))...

546 *(T_f-T_wb4);

547

548 % Tubing outside temperature
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549 T_to = T_ti - ((r_ti1*U_ti)/k_t)...

550 *log(r_to1/r_ti1)*(T_f-T_wb4);

551

552 % Casing 1 inside temperature

553 T_ci1 = T_to - ((r_ti1*U_ti)/(r_to1*h_ca1))...

554 *(T_f-T_wb4);

555

556 % Annulus 1 temperature

557 T_a1 = (T_to+T_ci1)/2;

558

559 % Casing 1 outer temperature

560 T_co1 = T_ci1 - ((r_ti1*U_ti)/k_c1)...

561 *log(r_co1/r_ci1)*(T_f-T_wb4);

562

563 % Casing 2 inside temperature

564 T_ci2 = T_co1 - ((r_ti1*U_ti)*(1/(r_co1*h_ca2))...

565 *(T_f-T_wb4));

566

567 % Annulus 2 temperature:

568 T_a2 = (T_co1+T_ci2)/2;

569

570 % Casing 2 outer temperature

571 T_co2 = T_ci2 - ((r_ti1*U_ti)/k_c2)...

572 *log(r_co2/r_ci2)*(T_f-T_wb4);

573

574 % Casing 3 inside temperature

575 T_ci3 = T_co2 - ((r_ti1*U_ti)*(1/(r_co2*h_ca3))...

576 *(T_f-T_wb4));

577

578 % Annulus 3 temperature:

579 T_a3 = (T_co2+T_ci3)/2;

580

581 % Casing 3 outer temperature:

582 T_co3 = T_ci3 - ((r_ti1*U_ti)/k_c3)...

583 *log(r_co3/r_ci3)*(T_f-T_wb4);

584

585 % Casing 4 inner temperature;

586 T_ci4 = T_co3 - ((r_ti1*U_ti)/k_cem3)...

587 *log(r_ci4/r_co3)*(T_f-T_wb4);

588

589 % Casing 4 outer temperature:

590 T_co4 = T_ci4 - ((r_ti1*U_ti)/k_c4)...
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591 *log(r_co4/r_ci4)*(T_f-T_wb4);

592 end

593

594

595 %%% Temperatures of interfaces between casing

596 %%% shoe 5 and WH: % [C]

597

598 if idx <= csg_shoe5;

599

600 % Tubing inside temperature:

601 T_ti = T_f - ((r_ti1*U_ti)/(r_ti1*h_ti))...

602 *(T_f-T_wb5);

603

604 % Tubing outside temperature

605 T_to = T_ti - ((r_ti1*U_ti)/k_t)...

606 *log(r_to1/r_ti1)*(T_f-T_wb5);

607

608 % Casing 1 inside temperature

609 T_ci1 = T_to - ((r_ti1*U_ti)/(r_to1*h_ca1))...

610 *(T_f-T_wb5);

611

612 % Annulus 1 temperature

613 T_a1 = (T_to+T_ci1)/2;

614

615 % Casing 1 outer temperature

616 T_co1 = T_ci1 - ((r_ti1*U_ti)/k_c1)...

617 *log(r_co1/r_ci1)*(T_f-T_wb5);

618

619 % Casing 2 inside temperature

620 T_ci2 = T_co1 - ((r_ti1*U_ti)*(1/(r_co1*h_ca2))...

621 *(T_f-T_wb5));

622

623 % Annulus 2 temperature:

624 T_a2 = (T_co1+T_ci2)/2;

625

626 % Casing 2 outer temperature

627 T_co2 = T_ci2 - ((r_ti1*U_ti)/k_c2)...

628 *log(r_co2/r_ci2)*(T_f-T_wb5);

629

630 % Casing 3 inside temperature

631 T_ci3 = T_co2 - ((r_ti1*U_ti)*(1/(r_co2*h_ca3))...

632 *(T_f-T_wb5));
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633

634 % Annulus 3 temperature:

635 T_a3 = (T_co2+T_ci3)/2;

636

637 % Casing 3 outer temperature:

638 T_co3 = T_ci3 - ((r_ti1*U_ti)/k_c3)...

639 *log(r_co3/r_ci3)*(T_f-T_wb5);

640

641 % Casing 4 inner temperature;

642 T_ci4 = T_co3 - ((r_ti1*U_ti)/k_cem3)...

643 *log(r_ci4/r_co3)*(T_f-T_wb5);

644

645 % Casing 4 outer temperature:

646 T_co4 = T_ci4 - ((r_ti1*U_ti)/k_c4)...

647 *log(r_co4/r_ci4)*(T_f-T_wb5);

648

649 % Casing 5 inner temperature:

650 T_ci5 = T_co4 - ((r_ti1*U_ti)/k_cem4)...

651 *log(r_ci5/r_co4)*(T_f-T_wb5);

652

653 % Casing 5 outer temperature:

654 T_co5 = T_ci5 - ((r_ti1*U_ti)/k_c5)...

655 *log(r_co5/r_ci5)*(T_f-T_wb5);

656 end

657

658 %%

659 %===================Gathering values in vectors:=====================%

660

661 % If temperature variable undefined, take on

662 % a "NaN" value:

663

664 T_a2(exist('T_a2','var')==0)=NaN;

665 T_ci2(exist('T_ci2','var')==0)=NaN;

666 T_co2(exist('T_co2','var')==0)=NaN;

667 Twb2_vector(exist('Twb2','var')==0)=NaN;

668

669 T_a3(exist('T_a3','var')==0)=NaN;

670 T_ci3(exist('T_ci3','var')==0)=NaN;

671 T_co3(exist('T_co3','var')==0)=NaN;

672 T_wb3(exist('T_wb3','var')==0)=NaN;

673

674 T_ci4(exist('T_ci4','var')==0)=NaN;
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675 T_co4(exist('T_co4','var')==0)=NaN;

676 T_wb4(exist('T_wb4','var')==0)=NaN;

677

678 T_wb5(exist('T_wb5','var')==0)=NaN;

679 T_ci5(exist('T_ci5','var')==0)=NaN;

680 T_co5(exist('T_co5','var')==0)=NaN;

681

682 % Temperatures: % (C)

683 Tf_vector(idx-1) = T_f;

684 Tto_vector(idx-1) = T_to;

685 Tti_vector(idx-1) = T_ti;

686 Ta1_vector(idx-1) = T_a1;

687 Tci1_vector(idx-1) = T_ci1;

688 Tco1_vector(idx-1) = T_co1;

689 Twb1_vector(idx-1) = T_wb1;

690 Tci2_vector(idx-1) = T_ci2;

691 Tco2_vector(idx-1) = T_co2;

692 Ta2_vector(idx-1) = T_a2;

693 Twb2_vector(idx-1) = T_wb2;

694 Tci3_vector(idx-1) = T_ci3;

695 Tco3_vector(idx-1) = T_co3;

696 Ta3_vector(idx-1) = T_a3;

697 Twb3_vector(idx-1) = T_wb3;

698 Tci4_vector(idx-1) = T_ci4;

699 Tco4_vector(idx-1) = T_co4;

700 Twb4_vector(idx-1) = T_wb4;

701 Tci5_vector(idx-1) = T_ci5;

702 Tco5_vector(idx-1) = T_co5;

703 Twb5_vector(idx-1) = T_wb5;

704

705 % Overall heat transfer coefficient: % [W/m^2-K]

706 Uti_vector(idx-1) = U_ti;

707

708 % CHTC for natural convection in annulus: % [W/m^2-K]

709 h_ca1_vector(idx-1) = h_ca1;

710 h_ca2_vector(idx-1) = h_ca2;

711 h_ca3_vector(idx-1) = h_ca3;

712

713 % CHTC for tubing % [W/m^2-K]

714 h_ti_vector(idx-1) = h_ti;

715

716 % Density of fluid in tubing: % [kg/m^3]
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717 rho_f_t_vector(idx-1) = rho_f_t;

718

719 % Joul-Thomson coeffecient: % [K/Pa]

720 Cj_vector(idx-1) = Cj;

721

722 % Phi parameter: % [K/m]

723 phi_vector(idx-1) = phi;

724

725 % Pressure in tubing: % [Pa]

726 Pressure_tubing(idx-1) = P_current;

727

728 % Pressure losses: % [Pa/m]

729 ploss_fric_total_vector(idx-1) = ploss_fric;

730 ploss_stat_total_vector(idx-1) = ploss_stat;

731 ploss_kin_total_vector(idx-1) = ploss_kin;

732

733 % Nusselt numbers for annulus:

734 Nu1_vector(idx-1) = Nu1;

735 Nu2_vector(idx-1) = Nu2;

736 Nu3_vector(idx-1) = Nu3;

737

738 % Rayleigh numbers for annulus:

739 Ra1_vector(idx-1) = Ra_1;

740 Ra2_vector(idx-1) = Ra_2;

741 Ra3_vector(idx-1) = Ra_3;

742

743 end

744

745 % Density of fluid in annulus % [kg/m^3]

746 rho_an1_vector(idx) = rho_f_a1;

747 rho_an2_vector(idx) = rho_f_a2;

748 rho_an3_vector(idx) = rho_f_a3;

749 end

750 end

1 function k_o = kf_o(T,sg)

2

3 % % Model: Mansure (1996): Cragoe correlation,

4 % % thermal conductivity of petroleum based liquids.

5 % % Range: 0.78 to 0.95 sg.

6
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7 % Convert temperature from Celcius to Fahrenheit: % (F)

8 T = T*9/5+32;

9

10 % Calculating API gravity of crude oil: % (API)

11 API = (141.5/sg)-131.5;

12

13 % Calculate thermal conductivity of crude oil

14 % as fn of T and API: % (BTU/F-hr-ft)

15 k_o = 1.62*(1-0.0003*(T-32))/API*12;

16

17 % Convert thermal conductivity from BTU/F-hr-ft

18 % to W/m-K: % [W/m-K]

19 k_o = k_o * 1.7295772056;

1 function c_f_t=cf_o(T,sg)

2

3 % % Model: Wright (2014): Dead oil specific heat capacity

4 % % temperature correlation.

5

6 % Calculating specific heat capacity as function of T % [J/kg-K]

7 c_f_t = ((2*10^-3*T - 1.429)*sg...

8 + (2.67*10^-3)*T + 3.049)*10^3;

1 function k = k_tbg(T)

2

3 % % Model: Furrer (2010): Thermal conductivity

4 % % correlation for alloy 316 stainless steel:

5

6 % Convert temperature from Celcius to Kelvin: % [K]

7 T = T + 273.15;

8

9 % Thermal conductivity as function of temperature. % [W/m-K]

10 k = 6.31 + 27.2*10^(-3)*T - 7*10^(-6)*T^2;

1 function k_a=kf_a(T)

2

3 % % Models: Ozbek and Phillips (1979)

4
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5 % Pure water conductivity: % [W/m-K]

6 x = (T + 273.15)/273.15;

7 k_w = -0.92247 + 2.8395*x - 1.8007*x^2....

8 + 0.52577*x^3 - 0.07344*x^4;

9

10 % Weight percent NaCl in aqueous solution % (Wt%)

11 Cs = 3.5;

12

13 % Thermal conductivity of aqueous NaCl Solution: % [W/m-K]

14 k_a = (1 - (2.3434*10^-3 - 7.924*10^-6*T...

15 + 3.924*10^-8*T^2)*Cs + (1.06*10^-5....

16 - 2*10^-8*T + 1.2*10^-10*T^2)*Cs^2)*k_w;

1 function c_f_a = cf_a(T)

2 % % Model: Jamieson (1969): Specific heat capacity of

3 % % sea water correlation.

4

5 % The salinity for (Cs = 3.5 wt%) NaCl in solution: % [g/kg]

6 S = 35;

7

8 % Convert temperature: % [K]

9 T = T+273.15;

10

11 % Model coefficients:

12 a1 = 5.328 - 9.76*10^-2*S + 4.04*10^-4*S^2;

13 a2 = -6.913*10^-3 + 7.351*10^-4*S - 3.15*10^-6*S^2;

14 a3 = 9.6*10^-6 - 1.927*10^-6*S + 8.23*10^-9*S^2;

15 a4 = 2.5*10^-9 + 1.666*10^-9*S - 7.125*10^-12*S^2;

16

17 % Calculating the annulus fluid specific heat capacity: % [J/kg-K]

18 c_f_a = (a1 + a2*T + a3*T^2 + a4*T^3)*10^3;

1 function k = k_csg(T)

2

3 % % Model: Furrer (2010): Thermal conductivity correlation for

4 % % alloy 316 stainless steel:

5

6 % Convert temperature from Celcius to Kelvin: % [K]

7 T = T + 273.15;
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8

9 % Thermal conductivity as function of temperature. % [W/m-K]

10 k = 6.31 + 27.2*10^(-3)*T - 7*10^(-6)*T^2;

1 function k = k_cement(T)

2

3 % % Model: Santoyo et al. (2001b): Thermal conductivity

4 % % temperature correlation for set cement

5 % % ("Cement system D")

6

7 % Convert temperature: % [K]

8 T = T + 273.15;

9

10 % Calculate thermal conductivity of cement: % [W/m-K]

11 k = 0.50442 + 0.0003125*T;

1 function Cj = JT_coeff(rho_f_t,c_f_t,beta_o,T_f)

2

3 % Calculating Joul-Thompson coefficient, Cj: % [K/Pa]

4 Cj = -(1/(rho_f_t*c_f_t))*(1-T_f*beta_o);

1 function phi = phi_parameter(Cj,c_f_t,deltaP_fric,deltaP_stat,...

2 deltaP_kin,v,v_prev)

3

4 % The pressure loss per length pipe: % [Pa/m]

5 deltaP = deltaP_fric+deltaP_stat+deltaP_kin;

6

7 % Calculating the "phi" parameter: % [K/m]

8 phi = Cj*deltaP-(v/c_f_t)*(v-v_prev);
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