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I 

 

Abstract 

 

 The streaming potential method is a promising method to measure how surface potential 

change when different fluids are injected into a rock. The understanding of how and why the 

surface potential changes can give important information about the transport of oil and water, 

and which brines to use in a water flood to improve the oil recovery. The interpretation of 

streaming potential measurements are straightforward for single-phase flow in homogenous, 

porous rocks. In the presence of oil, the interpretation is much more complicated. Recent 

experimental studies claim that a change in the streaming potential is independent of saturation, 

and only indicates wettability change, while simple analytical models predict a correlation 

between fluid saturations and streaming potential. In this thesis, appropriate theory for the 

interpretation of streaming potential measurements are first presented. Further, the well-known 

Helmholtz-Smoluchowski equation for single phase streaming potential, in addition to simple 

analytical models of two-phase streaming potential developed by Sherwood (2007) are derived 

from first principles. The two-phase models are analysed and discussed in order to investigate 

the effects of an oil phase on the measured streaming potential. The results of the analysis 

indicate that the total streaming potential in a water-oil system most likely represents a 

combination of effects arising from wettability and movement of charged- and uncharged oil 

particles. The total effect is highly dependent on the interface properties at the particle surface.  

 

 

  



II 

 

 

  



III 

 

Acknowledgements 

 

I would like to thank my supervisor Professor Aksel Hiorth both for presenting me with 

this interesting and challenging topic, and for his guidance throughout the last semester. His 

scientific insight is inspiring and his feedback has been central for the quality of this thesis.  

 In addition, I would like to thank Associate Professor Anders Nermoen, Senior Research 

Scientist at IRIS Nils Harald Giske and fellow MSc student Bendik Horvei for valuable 

discussions during meetings this last semester.  

 Finally, I would like to thank my fellow MSc students for fruitful discussions, and my 

family and close friends for all their help and understanding.  

 

 

  



IV 

 

 

  



V 

 

Table of contents 
 

Abstract ....................................................................................................................................... I 

Acknowledgements .................................................................................................................. III 

Table of contents ....................................................................................................................... V 

List of Figures ......................................................................................................................... VII 

List of Tables ............................................................................................................................ IX 

Nomenclature ........................................................................................................................... XI 

Chapter 1. Introduction .............................................................................................................. 1 

1.1. Background and Objectives ............................................................................................ 1 

1.2. Thesis Outline ................................................................................................................. 2 

Chapter 2. Wettability ................................................................................................................ 3 

2.1. Wettability of Mineral Surfaces ...................................................................................... 3 

2.1.1. Acting Forces ........................................................................................................... 4 

2.1.2. Mathematical Description ........................................................................................ 6 

2.1.3. Measuring ................................................................................................................. 7 

2.2. Wettability of Porous Media ........................................................................................... 8 

2.2.1. Wettability Index for Porous Media ......................................................................... 8 

2.2.2. Recent Developments of Wettability Measurements ............................................... 9 

Chapter 3. Electrochemistry ..................................................................................................... 12 

3.1. Surface Charge .............................................................................................................. 12 

3.2. Poisson’s Equation ........................................................................................................ 14 

3.3. Electrical Double Layer ................................................................................................ 17 

3.3.1. Electrical Double Layer for Flat Surfaces .............................................................. 18 

3.4. Zeta Potential ................................................................................................................. 22 

3.5. Electrokinetic Phenomena ............................................................................................. 24 

Chapter 4. Fluid Flow ............................................................................................................... 26 

4.1. Navier-Stokes Equation ................................................................................................. 26 

4.2. Poiseuille’s Equation ..................................................................................................... 31 

Chapter 5. Streaming Potential ................................................................................................. 34 

5.1. Single Phase Streaming Potential .................................................................................. 34 

5.1.1. Helmholtz-Smoluchowski’s Equation for Single Phase Streaming Potential ........ 36 

5.2. Two-Phase Streaming Potential .................................................................................... 40 

5.2.1. Single Spherical Droplet in a Capillary .................................................................. 41 



VI 

 

5.2.2. A Line of Non-Interacting Spherical Particles ....................................................... 46 

Chapter 6. Analysis of the Two-Phase Models ........................................................................ 48 

6.1. Single Spherical Droplet Model .................................................................................... 48 

6.2. A Line of Non-Interacting Spherical Particles .............................................................. 54 

Chapter 7. Discussion ............................................................................................................... 58 

7.1. Results from Model Calculations and Experimental Data ............................................ 58 

7.2. The Effect of Particle (Drop) Boundary Condition ....................................................... 59 

Chapter 8. Conclusion .............................................................................................................. 61 

8.1. Concluding Remarks ..................................................................................................... 61 

8.2. Suggestions for Future Work ........................................................................................ 61 

References ................................................................................................................................ 62 

 

 

  



VII 

 

List of Figures 

Figure 2.1 Drop of oil on a preferentially water-wet surface A, neutral wet surface B, and 

preferentially oil-wet surface C, surrounded by water. The contact angles vary from 

respectively 𝜑 < 90°, 𝜑 = 90, and 𝜑 > 90°. Modified from Ziauddin et al. (2007). .............. 3 

Figure 2.2 Structure and Partial Charges of the Water Molecule. ............................................. 4 

Figure 2.3 Partial Wetting of Water on a Solid Surface. Modified from Ziauddin et al. (2007).

 .................................................................................................................................................... 6 

Figure 2.4 Partial Wetting of Oil on a Solid Surface. Modified from Ziauddin et al. (2007). ... 6 

Figure 2.5 Zeta potential as a function of water saturation aged with oil in (a) 2M NaCl and 

(b) formation brine. Empty circle denotes aging of oil-only, empty squares denote aged 

samples in presence of water, filled square denotes non-aged sample and diamond represents 

single phase water sample. From (Al-Mahrouqi, 2016), p. 121. .............................................. 10 

Figure 2.6 Zeta potential as a function of water wetting index saturated with 2M NaCl (NaB) 

or formation brine (FMB1) and residual oil saturation. Again, empty circle denotes aging of 

oil-only, empty squares denote aged samples in presence of water, filled square denotes non-

aged sample and diamond represents single phase water sample. From (Al-Mahrouqi, 2016), 

p.125. ........................................................................................................................................ 11 

Figure 3.1 A point charge with corresponding lines of force and equipotential surfaces. ....... 14 

Figure 3.2 Simple illustration of the electrical double layer at static conditions, with 

negatively charged quartz surface. Ideally, the two regions of the EDL balance the surface 

charge on the solid such that the total electric charge remains neutral. ................................... 18 

Figure 3.3 Illustration of zeta potential with respect to the shear plane and the electrical 

double layer for a quartz surface. The Stern layer can consist of different types of cations 

(marked green and blue). .......................................................................................................... 23 

Figure 4.1 Illustration of the velocity profile for laminar flow of a Newtonian fluid. A fluid 

element is indicated, this is further described in Figure 4.2. .................................................... 27 

Figure 4.2 Left: Illustration of arbitrary fluid elements with associated velocities. Right: 

Definition of the dimensions of an arbitrary fluid element. ..................................................... 28 

Figure 4.3 Three-dimensional fluid element with pressure difference ∆𝑝𝑧 = 𝑝1 − 𝑝2 

indicated. .................................................................................................................................. 29 

Figure 4.4 Capillary tube with length and radius indicated in addition to pressure difference, 

flow direction and direction of the pressure force and viscous force. ...................................... 31 

Figure 4.5 Left: The velocity gradient as expressed by equation (4.2.5). Right: The 

corresponding velocity profile in a tube. .................................................................................. 32 

Figure 5.1 Illustration of streaming potential. The streaming current 𝐼𝑠 forms in the EDL in 

the direction of fluid flow. The conduction current 𝐼𝑐 moves in the opposite direction through 

the bulk fluid. Total measured electric potential is the streaming potential. ............................ 35 

Figure 5.2 Fluid flow in a capillary tube. For simplicity reasons, 𝑥 denotes the distance from 

the capillary wall. Modified from Hunter (1981). .................................................................... 37 

Figure 5.3 Illustration of the spherical particle of radius 𝑅𝑝 in a capillary of radius 𝑅𝑐 = 𝑅𝑝 +

ℎ0. Lengths are not to scale. Modified from Sherwood (2007). .............................................. 41 

Figure 6.1 Definition of the local water saturation 𝑆𝑤′𝑅𝑐, 𝑅𝑝. Lengths are not to scale. ........ 51 

Figure 6.2 Normalised streaming potential vs. local water saturation for different capillary 

radii. .......................................................................................................................................... 52 



VIII 

 

Figure 6.3 Normalised streaming potential vs. (1 − 𝑅𝑝/𝑅𝑐), where 𝑅𝑝/𝑅𝑐 represents the 

droplet size compared to capillary radius. ................................................................................ 53 

Figure 6.4 Definition of water saturation for a capillary filled with a line of spherical 

particles 𝑆𝑤′𝑅𝑐, 𝑅𝑝, 𝐿𝑐, 𝑁. ....................................................................................................... 55 

Figure 6.5 Normalised streaming potential vs. water saturation for small and large droplets. In 

addition, the single phase water line is indicated. .................................................................... 56 

Figure 6.6 Normalised two-phase streaming potential vs. water saturation for different values 

of zeta potential on the particle (휁𝑝). ....................................................................................... 57 

Figure 7.1 Illustration of the surface of a charged particle of oil dispersed in water with 

corresponding fluid velocity profile. The small spheres on the surface represent polar head-

groups with a non-polar tail. The fluid moves in 𝑧-direction with velocity 𝑣𝑧. The polar head-

groups decrease the fluid velocity to zero close to the particle surface. .................................. 60 

 

 

  



IX 

 

List of Tables 

Table 1 Limiting values for lubrication theory. ....................................................................... 50 

Table 2 Values used for calculation of two-phase streaming potential (spherical model)....... 51 

 

 

  



X 

 

 

  



XI 

 

Nomenclature 

 

Symbol/Abbreviation Description      SI Unit 

𝑎    Acceleration      𝑚/𝑠2 

𝐴    Area       𝑚2 

𝑐0     Brine salinity      𝑚𝑜𝑙/𝑙 

𝐶𝑆𝑃     Streaming potential coupling coefficient  𝑉/𝑃𝑎 

𝐷    Volumetric mass density    𝑘𝑔/𝑚3 

𝑒    Electric charge of an electron    𝐶 

𝐸    Electric field strength     𝑉/𝑚 

𝐸𝑏𝑢𝑏𝑏𝑙𝑒    Two-phase streaming potential for uncharged 𝑉 

    spherical bubble 

𝐸𝑐     Streaming potential due to zeta-potential   𝑉 

    on the capillary wall 

𝐸𝑝    Streaming potential due to zeta-potential  𝑉  

    on the particle surface  

𝐸𝑠    Streaming potential     𝑉 

𝐸𝑙𝑖𝑛𝑒     Two-phase streaming potential for a line of  𝑉 

    rigid spherical particles 

𝐸𝑙𝑖𝑛𝑒,𝑛𝑜𝑟𝑚   Two-phase streaming potential for a line of  𝑉 

    rigid spherical particles, normalised 

 

𝐸𝑠𝑝     Two-phase streaming potential for rigid   𝑉 

    spherical particle    



XII 

 

𝐸𝑠𝑝,𝑛𝑜𝑟𝑚    Two-phase streaming potential for rigid   𝑉 

    spherical particle, normalised    

𝐹    Force       𝑁 

𝐹𝑒    Electromagnetic force     𝑁 

𝐹𝑝    Pressure force      𝑁 

𝐹𝑣    Viscous force      𝑁 

𝐺    Pressure gradient     𝑃𝑎/𝑚 

ℎ    Height       𝑚 

ℎ0     Minimum particle-capillary gap width  𝑚 

𝐼𝑠    Streaming current     𝐴 

𝐼𝑐    Conduction current     𝐴 

𝑘     Permeability      𝑚2 

𝑘𝐵    Boltzmann constant     𝐽/𝐾 

  

𝑙    Cylindrical length of a long drop   𝑚 

𝐿    Length       𝑚 

𝑀    Viscosity ratio      -  

𝑛     Porosity      -  

𝑛𝑖    Concentration of ions of type 𝑖   𝑚𝑜𝑙/𝐿  

𝑛𝑖
0     Concentration of ions of type 𝑖 in the bulk solution -  

𝑝    Pressure      𝑃𝑎 

𝑞     Volumetric flow rate     𝑚3

𝑠⁄   

𝑄    Electric charge     𝐶 

𝑟     Radius of investigation    𝑚 



XIII 

 

𝑅    Radius       𝑚 

𝑅𝑐     Radius of capillary     𝑚 

𝑅𝑝     Radius of particle     𝑚 

𝑆𝑤     Water saturation     -  

𝑆𝑤
′      Local water saturation     -  

𝑡     Time       𝑠 

𝑇    Absolute temperature     𝐾 

𝑢     Droplet velocity     𝑚/𝑠 

𝑣     Average fluid velocity    𝑚
𝑠⁄   

𝑣𝑧    Linear velocity in z-direction    𝑚
𝑠⁄  

𝑉    Volume      𝑚3 

𝑉𝑐     Volume of capillary tube    𝑚3 

𝑉0     Volume of oil phase     𝑚3 

𝑉𝑤     Volume of water phase    𝑚3 

𝑥     Distance from capillary wall     𝑚 

𝑧𝑖    Valence of ion 𝑖     − 

 

𝛾    Interfacial tension     𝑃𝑎 

𝛿     Coefficient of proportionality    - 

∆     Difference operator     - 

𝛻    Del operator      - 

휀    Permittivity      𝐹
𝑚⁄  

휀0    Permittivity in vacuo     𝐹
𝑚⁄  

휁    Zeta potential      𝑉 



XIV 

 

휁𝑐     Zeta potential on capillary wall   𝑉 

휁𝑝     Zeta potential on particle    𝑉 

휂     Dynamic viscosity     𝑃𝑎 ∙ 𝑠 

휂𝑑     Dynamic viscosity of drop    𝑃𝑎 ∙ 𝑠 

𝜅     Debye-Hückel parameter    𝑚−1 

𝜅−1    Debye length      𝑚 

𝜆0     Bulk conductivity     𝑆
𝑚⁄  

𝜆𝑠    Surface conductivity     𝑆
𝑚⁄  

𝜇    Chemical potential     𝐽 

𝜌     Electric charge density    𝐶/𝑚3 

𝜎     Shear stress      𝑃𝑎  

𝜏     Tortuosity      -  

𝜑    Angle      ° (𝐷𝑒𝑔𝑟𝑒𝑒𝑠) 

𝛹    Electric potential field     𝑉 

 

 

 

  



1 

 

Chapter 1. Introduction 

 

1.1. Background and Objectives 

Streaming potential is an electrical potential generated by fluids moving through a 

capillary or porous medium. The streaming potential method is a promising method to measure 

how surface potential change when different fluids are injected into a rock. This method has 

been known for some time, but only recently been applied to porous rocks at conditions relevant 

for petroleum production, which means that there are still significant uncertainties related to 

both measurements and interpretation of results. The understanding of how and why the surface 

potential changes can give important information about the transport of oil and water, and which 

brines to use in a water flood to improve the oil recovery. The interpretation of streaming 

potential experiments are straightforward for single-phase flow in homogenous, porous rocks. 

In the presence of oil, the interpretation is much more complicated.  

Recent experimental results show a correlation between measured streaming potential 

and the wetting state of reservoir rocks, independent of saturations, while simple analytical 

models predict a correlation between fluid saturations and streaming potential. This requires 

further research. This thesis will present derivations of two simple analytical models from first 

principles, and address the relationship between the model predictions and experimental results 

in order to achieve an understanding of how the presence of an oil phase affects the streaming 

potential.  
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1.2. Thesis Outline 

 The thesis is divided into eight chapters. Chapter 2 aims to build a theoretic foundation 

for our understanding of wettability in order to discuss how streaming potential can be related 

to wettability later in the thesis.  

Chapter 3 presents theoretical aspects of electrochemistry, which serves to explain the 

origin of electrokinetic phenomena, including streaming potential. This chapter also includes 

the derivation of Poisson’s equation which is used later in the derivation of Helmholtz-

Smoluchowski’s equation for streaming potential.  

Electrokinetic phenomena combine the effects of electrochemistry and fluid flow. 

Chapter 4 concerns fluid flow and includes the derivation of Poiseuille’s equation from first 

principles.  

In Chapter 5, the theory of streaming potential is presented both for single phase and 

two-phase flow. This chapter includes the derivations of Helmholtz-Smoluchowski’s equation 

and of the two-phase streaming potential models we will analyse further.  

The analysis of the two-phase models are presented in Chapter 6 and are further 

discussed in Chapter 7. Finally, concluding remarks and suggestions for future work are 

presented in Chapter 8.  
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Chapter 2. Wettability  

 

A basic understanding of wettability is important for the further discussions regarding 

streaming potential measurement as an indicator of rock wettability. Wettability is one of the 

most important parameters in order to determine how fluids are transported through a porous 

rock. The wetting of the pore surface determine which fluid it is in contact with. Wetting affects 

hydrocarbon reservoir behaviour and recovery (Ziauddin et al., 2007). Different methods have 

been developed in an attempt to estimate the exact wetting preference of reservoir rocks, as well 

as to alter the rock wettability (Ziauddin et al., 2007). The wetting state of a mineral surface 

can usually be determined by contact angle measurements, whereas the wetting state of a porous 

rock is usually related to the production of oil and water.  

 

2.1. Wettability of Mineral Surfaces 

By placing a drop on a surface the fluid will spread out on the surface and displace the 

initial liquid or gas to different degrees, depending on the wettability. The fluid spreads out 

until the solid-fluid angle reaches a specific value known as the contact angle. This angle is 

defined through the densest fluid in the system, and it essentially determines the wettability of 

the flat surface (Ziauddin et al., 2007).  

 

Figure 2.1 Drop of oil on a preferentially water-wet surface A, neutral wet surface B, and preferentially oil-wet surface C, 

surrounded by water. The contact angles vary from respectively 𝜑 < 90°, 𝜑 = 90, and 𝜑 > 90°. Modified from Ziauddin et 

al. (2007). 

The contact angle varies between zero and 180 degrees. In an oil-water system, the 

surface is said to be water-wet if the contact angle is less than 90°, and consequently oil-wet if 

it is larger than 90° (Berg, 1993). In the special case when the angle is exactly 90°, the surface 
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is referred to as neutral-wet, not to be confused with mixed wetting which will be described 

later (Berg, 1993; Ziauddin et al., 2007).  

 

2.1.1. Acting Forces 

There are two main forces that control wetting and the liquid-solid contact angle; 

cohesion and adhesion. They are the forces that determine how well liquid molecules ‘stick’ to 

themselves or to other substances respectively.  

The strong cohesive properties of water is mainly caused by the electric forces in the 

dipolar water molecule. The inclination between the two hydrogen atoms and the oxygen atom 

in the water molecule (Figure 2.2) causes the side with the hydrogen atoms to have a slight 

positive charge, and the side with the oxygen atom to have a slight negative charge. 

Consequently, the molecules will align and be attracted to each other by electrical forces, which 

causes cohesion (Campbell & Reece, 2002; Young, 1805). 

 

Figure 2.2 Structure and Partial Charges of the Water Molecule. 

Even though many crude oils contain polar components, which can give the oil some 

polar properties (Bastow, van Aarssen, & Lang, 2007), oil molecules themselves are non-polar. 

In the case of non-polar oil, no electrical forces act to stick the oil to itself. Instead, oil forms 

weak cohesion due to Van der Waals forces. These forces induce polarity in non-polar 

molecules. Van der Waals forces arise from statistical quantum mechanics and are relatively 

weak forces between molecules.  

Van der Waals forces can be divided into three subtypes: Keesom-, Debye- and London 

forces. Keesom forces are electrostatic interactions between permanent dipoles. Forces between 

one permanent dipole and a corresponding induced pole are called Debye forces. London forces 

arise from instantaneous polarization in molecules (Dzyaloshinskii, Lifshitz, & Pitaevskii, 

1961; Tadmor, 2001).  
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Adhesion is the ability of a substance or surface to be attracted to other, dissimilar 

substances. The actual mechanisms causing adhesion are not fully understood, nor explained 

by a single theory. Five main mechanisms have been put forward to describe adhesion:  

- Dispersive 

- Mechanical 

- Chemical  

- Electrostatic 

- Diffusive 

Dispersive adhesion, also called physisorption, is widely recognized as the most important 

mechanism of adhesion. Dispersive adhesion is the attraction between two substances due to 

van der Waals forces.   

Mechanical adhesion occurs when two adhesive materials form a mechanical bond by 

interlocking. Large scale examples of this are the hooks and loops in Velcro.  

Chemical adhesion takes place when two substances form a chemical compound bounded 

by covalent or ionic bonds.  

Electrostatic adhesion is when materials form an electric potential at the joint caused by 

difference in electrical charge. This form of adhesion is possible for electrically conductive 

materials. The two substances are then attracted by the electrostatic force.  

Diffusive adhesion refers to the net transport of atoms from one material to the other caused 

by random thermally activated movement. Leaking of helium through the walls of a balloon is 

an example of atomic diffusion. This can happen on a small scale to make two materials stick 

together as atoms of each material blend into each other.  

The stronger of the cohesive/adhesive forces for each solid-fluid system determine the 

wetting state. In a petroleum reservoir containing several different fluids, the fluid with the most 

adhesive properties (with respect to the reservoir rock) is referred to as the wetting phase 

(Israelachvili, 1985; Kendall, 1994; London, 1937).  
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2.1.2. Mathematical Description 

The most common equation used to describe the wetting properties of a flat rigid 

surface, or to predict the contact angle of a system is Young’s equation. It states the 

mathematical relation between the interfacial tension 𝛾 (of the liquid-gas, solid-gas and solid-

liquid respectively) and the contact angle 𝜑: 

  𝛾𝐿𝐺 ∙ 𝑐𝑜𝑠𝜑 = 𝛾𝑆𝐺 − 𝛾𝑆𝐿,     

assuming an ideal surface. Figure 2.3 below illustrates partial wetting of water on a 

solid surface (Butt, Graf, & Kappl, 2006).  

 

Figure 2.3 Partial Wetting of Water on a Solid Surface. Modified from Ziauddin et al. (2007). 

  For contact angles between 0 and 90°, 𝑐𝑜𝑠𝜑 is positive (and interfacial tensions are 

always positive), thus 𝛾𝑆𝐺 must be larger than 𝛾𝑆𝐿. In this case there is partial wetting of the 

liquid phase. Similarly, when gas is the wetting phase, 𝑐𝑜𝑠𝜑 is negative, which means that the 

solid-liquid interfacial tension is larger than the solid-gas interfacial tension. Thus, the wetting 

preference of the solid can be computed by determining the surface energy of each phase in the 

system.  

Young’s equation also applies when the surrounding fluid is a liquid, given that the two 

liquids are immiscible. In an oil-water-solid case as illustrated in Figure 2.4, the interpretation 

of equation (2.1.1) is similar as for the gas-water-solid case above.  

 

Figure 2.4 Partial Wetting of Oil on a Solid Surface. Modified from Ziauddin et al. (2007). 

 

(2.1.1) 
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2.1.3. Measuring  

One way of determining the wetting preference of a flat mineral surface is to measure 

the contact angle between the solid and the liquid. The most common way to do this is to 

observe a sessile drop (liquid droplet on a solid) with a telescope or microscope. The contact 

angle can then be measured directly with a goniometer, or the shape of the droplet can be 

matched by a computer using the Young-Laplace equation. The contact angle can also be 

calculated by measuring the height ℎ and radius 𝑟 of the droplet using the following equation, 

assuming that the droplet has a circular cross-section (Butt et al., 2006):  

  tan (
𝜑

2
) =

ℎ

𝑟
.   

 

 

  

(2.1.2) 
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2.2. Wettability of Porous Media 

Porous media wettability describes which fluid preferentially adheres to the solid 

surface in a system consisting of a solid porous medium and two or more fluid phases. The 

different physical forces discussed in chapter 2.1.1 determine how a fluid either spreads out on 

the surface or coheres to itself. Wetting forces are very important in the petroleum industry as 

they influence reservoir behaviour and hydrocarbon recovery (e.g. (Austad, 2013; Morrow, 

1990)).  

The wetting state of reservoir rocks in petroleum systems is complex. Inhomogeneous 

wetting may be caused by differences in chemical composition or migration of fluids. Even 

though the whole reservoir was initially water-wet, the parts of the rock that have only been 

exposed to water may remain water-wet, while parts of the rock that has been exposed to oil 

may become oil-wet. Typically, the most abundant minerals in reservoir rocks are water-wet. 

(Berg, 1993; Ziauddin et al., 2007).  

 

2.2.1. Wettability Index for Porous Media 

Perhaps the most widely used method for wettability classification of a porous rock is a 

test first described by Amott (1959). Here, wettability is measured as a function of the 

displacement properties of the system. The test is divided into four parts; spontaneous 

displacement of water by oil, forced displacement of water by oil, spontaneous displacement of 

oil by water, and forced displacement of oil by water. The ratios of spontaneous displacement 

volumes to the total displacement volumes determines the wettability indices for water (𝐼𝑤) and 

oil (𝐼𝑜).  

Another common method for measuring wettability is the USBM method, developed by 

the US Bureau of Mines. A core sample at irreducible water saturation is placed in a water-

filled tube and put in a centrifuge. Eventually, the sample reaches residual oil saturation. Then, 

the sample is placed in an oil-filled tube for further measurements. The USBM wettability index 

is given by the area under the capillary-pressure curves for the sample (Ziauddin et al., 2007).  
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2.2.2. Recent Developments of Wettability Measurements 

The challenge with the USBM and Amott wettability index is the fact that they assume 

that the rock wettability does not change during imbibition. However, in recent decades it has 

become more and more apparent that the injected brine can affect the wetting state of the rock 

(e.g. (Austad, 2013)). It is therefore extremely valuable to have some way of monitoring the 

wetting state in-situ during the imbibition process. It has been suggested in recent papers that 

there is a correlation between the measured streaming potential and two-phase wetting 

preference of reservoir rocks (Al-Mahrouqi, 2016; Jackson & Vinogradov, 2012; Rahbar et al., 

2017). Streaming potential measurements can provide valuable information about the 

electrokinetic properties of a solid-liquid interface, which seemingly can be correlated with rock 

wettability, and more specifically, the Amott wetting-index (Al-Mahrouqi, 2016).  

In Al-Mahrouqi’s experiments, the Amott water index and the zeta potential (휁) was 

interpreted for different water saturations of aged and non-aged core samples. Two different 

samples showed identical zeta potentials within experimental error for water-only and non-aged 

samples, indicating that the zeta potential is independent of saturation. For aged samples, the 

measured zeta potential decreased with decreasing water saturation (Figure 2.5). When 

compared to wettability, a linear regression was ascribed to each rock/brine/oil combination 

and expressed as 

  휁(𝐼𝑤) = 𝐶 ∙ log(𝐼𝑤) + 휁𝑆𝑤=1, 

for 

  𝐶 =
𝑑𝜁

𝑑(log(𝐼𝑤))
. 

The experimental results indicated that a decreasing water-wetness (𝐼𝑤) consistently yields 

more negative zeta potential (Figure 2.6).  
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Figure 2.5 Zeta potential as a function of water saturation aged with oil in (a) 2M NaCl and (b) formation brine. Empty 

circle denotes aging of oil-only, empty squares denote aged samples in presence of water, filled square denotes non-aged 

sample and diamond represents single phase water sample. From (Al-Mahrouqi, 2016), p. 121. 
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Figure 2.6 Zeta potential as a function of water wetting index saturated with 2M NaCl (NaB) or formation brine (FMB1) and 

residual oil saturation. Again, empty circle denotes aging of oil-only, empty squares denote aged samples in presence of 

water, filled square denotes non-aged sample and diamond represents single phase water sample. From (Al-Mahrouqi, 

2016), p.125. 
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Chapter 3. Electrochemistry 

 

This chapter will present theoretical aspects of electrochemistry, such as the development of 

surface charge, the electrical double layer, zeta potential, and electrokinetic phenomena, as 

presented by e.g. Hunter (1981) and Butt (2006). This is done to explain the origin of 

electrokinetic phenomena, including the streaming potential. In addition, mathematical 

descriptions such as Poisson’s equation for description of electrostatic interactions at solid-

liquid interfaces, and consequently a model for the electrical double layer at flat surfaces are 

presented and discussed. These equations will be used in further mathematical derivations, and 

in the physical interpretation of models for two-phase fluid flow.  

 

3.1. Surface Charge 

When a solid is immersed in a liquid, the solid surface acquires an electric charge. 

Simply put, this occurs because a very thin layer of the solid surface is dissolved in the liquid 

phase. The surface charge induces an electric field on the surface, which can affect many 

properties in the solid-fluid system (Butt et al., 2006).  

The formation of surface charge can be caused by different mechanisms. One of the 

mechanisms at play is dissociation. This is a process where chemical compounds separate into 

smaller particles, which can release charged particles (e.g. H+) in the fluid, leaving the surface 

with an electric charge. The relative concentration of dissolved H+ and OH- can determine the 

magnitude and sign of the surface charge. Thus, the surface charge is a function of solution pH 

(e.g. (Schindler & Stumm, 1987)). Another mechanism is when a molecule (e.g. a mineral in 

the solid) exchanges an atom with one that has a higher or lower number of ions than the original 

atom. An example of this is when the Si atom in SiO2 (quartz) is replaced by an Al atom. Since 

Al has less electrons than Si, the quartz surface acquires a negative electric charge. A third way 

surface charge is formed is by partial charges of the solid. The partial charges occur because 

the neutral atoms in the solid are chemically bound together. The atoms align themselves in a 

certain way to form the chemical bond, which causes them to acquire a partial charge (i.e. 

slightly more positively/negatively charged on one side). The partial charges on the surface 

attracts ions from the fluid to form the surface charge (Atkins & De Paula, 2010; Hiemenz & 

Rajagopalan, 1997; Stumm, 1992).  
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The formation of surface charge also depends on the type of fluid in the system. Water 

has high relative permittivity (relative to permittivity of vacuum), also known as dielectric 

constant ε (휀𝑤 ≈ 80 at 20°C, 휀𝑤 ≈ 58 at 90°C) (Malmberg & Maryott, 1956). Permittivity is a 

materials capacity to resist the electric field strength. The relative permittivity expresses how 

much the electric field between two point charges is decreased relative to vacuum. This means 

that water can more easily dissolve ions from a solid surface, than for example oil. 

Hydrocarbons have low relative permittivity (휀𝐻𝐶 ≈ 1.95 − 2.05 at 20°C and 휀𝐻𝐶 ≈ 1.85 −

2.00 at 90°C for C8-C16) (Carey & Hayzen, 2001). Oil can thus not as easily dissolve ions from 

a solid surface. The result is less surface charge for a porous medium immersed in oil (Butt et 

al., 2006).  

In a petroleum system, the mechanisms discussed applies to the porous reservoir rock 

to create an electrical surface charge of the formation. Petroleum reservoirs often have a large 

surface to volume ratio, which can make the effects of interfaces important. Typical reservoir 

rocks on the Norwegian continental shelf (NCS) are limestone and sandstone. Limestone 

consists of calcite (CaCO3) which acquires a positive or negative surface charge in water, 

depending on the pH. Sandstone is mainly comprised of quartz (SiO2) and often contains clay 

minerals, both of which becomes negatively charged when immersed in water.  
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3.2. Poisson’s Equation 

Poisson’s equation describes electrostatic interactions at a charged interface between a 

solid and an ionic solution. It relates the electric potential generated at the interface to the 

electric charge density and permittivity of the solution. The equation will be used to further 

describe electrostatic- and electrokinetic effects at interfaces.  

If we consider a point charge, the surrounding electrostatic potential is the same for all 

points on a sphere centred on the charge. All concentric spheres will represent an equipotential 

surface with decreasing potential as the spheres increase in size. Since the spheres are 

concentric, the lines of force from the point charge will be normal to the spheres. Furthermore, 

for a charge- or potential distribution, the equipotential surfaces will have a more complex 

shape (Hunter, 1981).  

 

Figure 3.1 A point charge with corresponding lines of force and equipotential surfaces. 

The gradient of the potential describes how the potential changes with respect to 

position, i.e. from one equipotential surface to another along the lines of force from the charge 

source. The gradient is often given the symbol 𝛻, known as the del, and represents the 

operator (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
). The gradient of a scalar field (e.g. 𝛹) generates a vector. The gradient of 

the electrical potential 𝛹 is related to the electric field strength 𝐸 in the following way 

  E = −∇ Ψ.   (3.2.1) 
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As the values of 𝐸 vary from one position to another, they form a vector field with direction 

determined by the lines of force (Hunter, 1981). 

The operator 𝛻 behaves like a vector and can form both a scalar (dot) product and a 

vector (cross) product. We can for instance take the scalar product of 𝛻 with the field strength 𝐸: 

  𝛻 ∙ 𝐸 =
𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑧
.        

This sum is invariant and the scalar product represents the flux per unit volume of the field 

strength 𝐸, which is referred to as the divergence of 𝐸 (Feynman, Leighton, & Sands, 1965).  

A common application of the divergence operator is the continuity equation, which 

shows that all material that flows into a given volume element also flows out, so the net flux of 

an incompressible fluid is zero: 

  𝛻 ∙ 𝑣 = 0,         

where 𝑣 represents the velocity of an incompressible fluid. The continuity equation can also be 

applied to 𝐸. The field strength, represented by the number of lines of force, is only affected by 

electric charges. Consequently, for a charge free region of space, the divergence of 𝐸 is also 

zero. As discussed, 𝐸 can be represented by the gradient of the scalar potential 𝛹. We then 

achieve: 

  𝛻 ∙ 𝐸 = 𝛻 ∙ (−𝛻𝛹) = − (
𝜕

𝜕𝑥
(

𝜕𝛹

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝛹

𝜕𝑦
) +

𝜕

𝜕𝑧
(

𝜕𝛹

𝜕𝑧
)), 

  𝛻 ∙ 𝐸 = − (
𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑦2
+

𝜕2𝛹

𝜕𝑧2
) = −𝛻 ∙ 𝛻 𝛹, 

  𝛻 ∙ 𝐸 = −𝛻2 𝛹,       

which in general would be a scalar, but in effect, the operator ∇ forms a scalar product with 

itself to produce a new scalar operator: 

  𝛻 ∙ 𝛻 ≡ 𝛻2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
.       

This operator is known as the Laplace operator or simply the Laplacian and means the 

divergence of the gradient (Feynman et al., 1965). As mentioned, for a charge free region of 

space, the divergence of 𝐸 is zero. This is known as Laplace’s equation: 

  𝛻2𝛹 = 0. 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 
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A dielectric medium is an electrical insulator that reduces the strength of the electric 

field. When a dielectric material is subjected to an electric field, the molecular dipoles align 

themselves to cancel part of the field. Water is an example of a dielectric medium (Hunter, 

1981). Permittivity is a materials capacity to affect (resist) the electric field strength, and is 

denoted by 휀. High permittivity leads to reduced electric field (or electric flux) (Spencer & 

Moore, 2001). The dielectric displacement 𝐷, is introduced to account for the effects of 

permittivity: 

  𝐷 = 휀𝐸.  

This is also known as the relative permittivity and can be expressed as  

  𝐷 = 휀/휀0,  

where ε0 is the permittivity in vacuo.  

Gauss’ law relates the electric charge density 𝜌 to the electric field 𝐸. The law states 

that: The net electric flux through any closed surface is equal to 1 휀⁄  times the net electric charge 

within that closed surface (Serway, Beichner, & Jewett, 2000). The law can be written in the 

differential form: 

  𝛻 ∙ 𝐸 =
𝜌

𝜀0
.         

If 휀 is assumed independent of spatial position, the corresponding equation for charges 

immersed in a dielectric medium (e.g. water) becomes 

  𝛻 ∙ 𝐷 = 𝜌 → 𝛻 ∙ 휀𝐸 = 𝜌,   

  𝛻 ∙ 𝐸 =
𝜌

𝜀
.         

This equation was first developed by Lagrange in 1773, and later by Gauss in 1813. It is known 

as Gauss’ law.  

By combining equation (3.2.6) with Gauss’ law, equation (3.2.12), we finally arrive at 

Poisson’s equation: 

  𝛻 ∙ 𝐸 = 𝑑𝑖𝑣 𝐸 = −𝛻2𝛹 =
𝜌

𝜀
, 

  𝛻2𝛹 = −
𝜌

𝜀
.  

  

(3.2.9) 

(3.2.10) 

(3.2.11) 

(3.2.12) 

(3.2.13) 

(3.2.14) 

(3.2.15) 
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3.3. Electrical Double Layer 

The charge development at a solid-liquid interface leads to formation of the electrical 

double layer (EDL). The electric field generated by the surface charge attracts counter ions from 

the liquid. The layer comprised of these charges and counter ions is known as the electrical 

double layer. It consists of two parallel layers of electric charge that surrounds the surface of 

the immersed object. The object may be a solid particle or particles, a porous medium, a bubble, 

or a droplet. In the following section, the theory of the electrical double layer independently 

developed by Gouy (1910) and Chapman (1913) is discussed as presented by, e.g. Butt (2006) 

and Hunter (1981).  

The innermost part of the double layer is known as the Stern layer (sometimes referred 

to as the Helmholtz layer). The Stern layer consists of counter charges adsorbed on the solid 

surface. These charges are thus immobile, and the Stern layer has a limited thickness on the 

order of a molecular layer. The counter ions in the Stern layer do often not balance the surface 

charge on the solid. This gives rise to the formation of the outer part of the double layer.  

The outer part of the EDL is called the Gouy-Chapman layer. The location and thickness 

of this layer is affected by the solid’s electrical attraction of ions as well as the thermal diffusive 

motion that drives ions away from the solid. The difference between the inner and the outer 

layer is that the ions in the outer layer are not attached to the solid surface. This part of the EDL 

is more loosely connected to the solid-liquid interface, and is thus also known as the diffuse 

layer. As the electric forces from the surface charge compete against the diffusive forces in the 

liquid, the concentration of counter ions decrease with increasing distance from the solid 

surface. The outer boundary of the diffuse layer is where the fluid reaches electrical neutrality.  
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Figure 3.2 Simple illustration of the electrical double layer at static conditions, with negatively charged quartz surface. 

Ideally, the two regions of the EDL balance the surface charge on the solid such that the total electric charge remains 

neutral. 

The effects of the electrical double layer become more significant as the 

pores/capillaries approach a scale of micro- to nanometres.  

 

3.3.1. Electrical Double Layer for Flat Surfaces 

In this section, the linearized form of Poisson’s equation used to model the electrical 

double layer for flat surfaces is derived based on the work of Hunter (1981) and Feynman et al. 

(1965). In the model for flat surfaces, a charged planar interface is considered. It is assumed 

that the plate is immersed in an electrolyte with uniform surface charge density 𝜌. The surface 

charge creates an electric potential, which generally depends on the distance 𝑥, normal to the 

surface. The electric potential at the surface is thus 𝛹0 = 𝛹(𝑥 = 0). In the solution, the counter 

ions are regarded as point charges in a dielectric medium (as discussed in Chapter 3.2). The 

charge density 𝜌 and the electric potential 𝛹 are related by Poisson’s equation (3.2.15):  

  𝛻2𝛹 = −
𝜌

𝜀
 .  

 

(3.3.1) 
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The change in Gibbs free energy for a chemical system is: 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 + �̅�𝑖𝑑𝑛𝑖,  

where �̅�𝑖  is the sum of the chemical potential and electrical potential: �̅�𝑖 = 𝜇 + 𝑧𝑖𝑒Ψ is the 

electrochemical potential and we for simplicity only consider one ion that in the initial state is 

far from a charged surface and in the final state close to the charged surface. We thus have for 

constant temperature, and pressure that:  

𝜇(𝑥) + 𝑧𝑖𝑒Ψ(x) = 𝜇(∞) + 𝑧𝑖𝑒Ψ(∞). 

From the definition of chemical potential, where 𝑛𝑖 is the number of ions of species 𝑖 

per unit volume (ion density), 𝑘𝐵 is the Boltzmann constant and 𝑇 is absolute temperature, we 

have 

  𝜇𝑖 = 𝜇𝑖
0 + 𝑘𝐵𝑇 ln 𝑛𝑖 .    

This equation combined with equation (3.3.3) leads to the Boltzmann equation: 

  𝑛𝑖 = 𝑛𝑖
0 ∙ exp (−

𝑧𝑖𝑒𝛹

𝑘𝐵𝑇
),  

where −𝑧𝑖𝑒𝛹 represents the electric work needed to bring an ion in the solution from the bulk 

to a fixed position close to the surface. In other words, this equation describes the ion density 

at a specific position, as a function of the ion density in the bulk liquid, the absolute temperature, 

and the amount of electric work required to transport an ion from an arbitrary position in the 

bulk to the specific position.  

If 𝛹 is negative (near a negatively charged surface), the concentration of cations at this 

position will be greater than in the bulk solution (𝑛+ > 𝑛+
0 ), whereas the concentration of anions 

will be smaller (𝑛− < 𝑛−
0 ).  

The electric charge density 𝜌 near the surface is given by the sum of the electric 

charge 𝑄 = 𝑧𝑖 ∙ 𝑒 over all species of ions:  

  𝜌 = ∑ 𝑛𝑖𝑧𝑖𝑒𝑖 .  

By substituting for equations (3.3.5) and (3.3.6), and inserting in Poisson’s equation 

(3.3.1), we arrive at the Poisson-Boltzmann equation:  

  𝛻2𝛹 =
𝑑2𝛹

𝑑𝑥2
= −

1

𝜀
∙ ∑ 𝑛𝑖

0𝑧𝑖𝑒 ∙ exp (−
𝑧𝑖𝑒𝛹

𝑘𝐵𝑇
)𝑖 .   

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

(3.3.7) 
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Note that the 𝛻2-operator is simplified to one dimension due to the symmetry assumptions made 

earlier. Equation (3.3.7) is a non-linear differential equation, which can be solved analytically 

for the model for flat surfaces. However, it can be greatly simplified using the so-called Debye-

Hückel approximation. This can be a useful tool for the Poisson-Boltzmann equation when 

solving for more complex geometries.  

The Debye-Hückel approximation refers to the simplifying assumption that 𝛹 is small 

in magnitude. In this case, small means that 𝑧𝑖𝑒𝛹 ≪ 𝑘𝐵𝑇. Using the approximation  𝑒−𝑥 ≈ 1 −

𝑥 for small values of 𝑥, we see that 

𝑒
−𝑧𝑖𝑒𝛹

𝑘𝐵𝑇⁄
≈ 1 −

−𝑧𝑖𝑒𝛹

𝑘𝐵𝑇
= 1 +

𝑧𝑖𝑒𝛹

𝑘𝐵𝑇
.  

Now, the summation term from equation (3.3.7) can be written 

  ∑ 𝑛𝑖
0𝑧𝑖𝑒 ∙ exp (−

𝑧𝑖𝑒𝛹

𝑘𝐵𝑇
)𝑖 ≈ ∑ 𝑛𝑖

0𝑧𝑖𝑒 + 𝑛𝑖
0𝑧𝑖𝑒 ∙

𝑧𝑖𝑒𝛹

𝑘𝐵𝑇𝑖  

  = ∑ 𝑛𝑖
0𝑧𝑖𝑒 + ∑ 𝑛𝑖

0 ∙
𝑧𝑖

2𝑒2𝛹

𝑘𝐵𝑇𝑖𝑖 ,  

and equation (3.3.7) is simplified to the linearized Poisson-Boltzmann equation:  

  𝛻2𝛹 =
𝑑2𝛹

𝑑𝑥
= −

1

𝜀
∙ (∑ 𝑛𝑖

0𝑧𝑖𝑒 + ∑ 𝑛𝑖
0 ∙

𝑧𝑖
2𝑒2𝛹

𝑘𝐵𝑇𝑖𝑖 ).   

Due to the neutral electric charge in the bulk liquid, the first summation term must be zero. 

Hence, for the flat surface model, we can express the equation in the following way: 

  𝛻2𝛹 =
𝑑2𝛹

𝑑𝑥
=

−𝑒2 ∑ 𝑛𝑖
0∙𝑧𝑖

2
𝑖

𝜀𝑘𝐵𝑇
𝛹.  

A more common notation is  

  𝛻2𝛹 =
𝑑2𝛹

𝑑𝑥
= 𝜅2 ∙ 𝛹, 

where  

  𝜅 = √
𝑒2

𝜀𝑘𝐵𝑇
∑ 𝑛𝑖

0 ∙ 𝑧𝑖
2

𝑖 .  

As this expression arises from the Debye-Hückel approximation, the parameter 𝜅 is known as 

the Debye-Hückel parameter. It has SI-unit 𝑚−1, and mainly depends on the salt 

concentration 𝑛𝑖
0.  

(3.3.8) 

(3.3.9) 

(3.3.10) 
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The length scale of the potential is given by 𝜅−1, and is referred to as the Debye length. 

The transition from the outer double layer to the bulk liquid is where the net charge becomes 

neutral, i.e. when the length ≫ 𝜅. As the Debye length is inversely proportional to the square 

root of the ion concentration, the electric potential 𝛹 decreases exponentially with distance 𝑥 

from the solid surface. This is illustrated in Figure 3.3 on page 23.  

Depending on the ionic strength, 𝜅−1 has values on the order of ~ 0.1 - 680 nm in 

aqueous solutions. 𝜅 increases with increasing salinity. An increase in 𝜅 leads to a more rapid 

decay of 𝛹 with distance, so the double layer is compressed with increasing ionic strength. The 

Debye length for a 0.1M NaCl solution is 0.96 nm, and it has a theoretical maximum of 680 nm 

in water because the ion concentration cannot decrease below 2𝑥10−7 𝑚𝑜𝑙/𝐿 (Butt et al., 

2006), because of the disassociation of 𝐻2𝑂 in 𝐻+ and 𝑂𝐻−. Practically, the Debye length 

ranges from 0.1 nm to 2 nm at reservoir conditions.  

It is important to stress that the Debye-Hückel approximation is only valid for small 

values of 𝛹. According to Butt et al. (2006), the approximation is generally valid for potentials 

up to 50-80 mV. In addition, the Debye length should not be interpreted as a length in the 

classical sense. It merely represents the scale of the EDL thickness.   
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3.4. Zeta Potential 

So far in this chapter only static surface charge has been discussed. Now we will 

consider the dynamic case when a pressure difference is applied to induce fluid flow over the 

charged surface. With relative tangential motion between the solid and liquid, some of the ions 

in the EDL will start to slip. Ions in the Stern layer are adsorbed to the surface and will remain 

immobile. However, in the diffuse layer the charges can move more freely. The plane closest 

to the solid where the charges start to become mobile is referred to as the slipping plane, or 

perhaps more commonly the shear plane. This is a theoretical boundary which is believed to 

lie close to the solid surface, within the diffuse part of the double layer (Hunter, 1981). The 

average electrokinetic potential at the shear plane is known as the zeta potential (ζ potential). 

Figure 3.3 illustrates the location of the shear plane and zeta potential as well as the electric 

potential decay with respect to the electrical double layer at a negatively charged quartz surface.  

The zeta potential is an important property to study because it can give valuable 

information about the electrical potential and surface charge of mineral surfaces. Electrostatic 

interactions between the surface and dissolved ions, between the surface and other charged 

interfaces, and between suspended particles are all controlled by the magnitude and sign of the 

zeta potential. In addition, experimental measurements of zeta potential are fairly 

straightforward compared to other methods for examining surface charge (Al-Mahrouqi, 2016). 

Important factors that can affect the zeta potential primarily include pH and the ionic 

strength of the fluid. Gustafsson et al. (2000) showed that zeta potential decreases with 

increasing pH, although the effect becomes smaller as salinity increases. Also according to 

these experiments, zeta potential decreases with increasing salinity for pH lower than around 

5.5, while the opposite is observed for pH values above 6.  

Zeta potential can be determined experimentally by utilizing electrokinetic phenomena, 

such as electrophoresis and streaming potential measurements.  
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Figure 3.3 Illustration of zeta potential with respect to the shear plane and the electrical double layer for a quartz surface. 

The Stern layer can consist of different types of cations (marked green and blue). 

Figure 3.3 illustrates the electrical double layer at a negatively charged mineral surface 

with the location of a shear plane and zeta potential. An immersed solid with negative surface 

charge will have a negative electrostatic potential with respect to the bulk fluid (Hunter, 1981). 

The potential will decrease until it becomes constant in the bulk fluid.  
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3.5. Electrokinetic Phenomena 

Electrokinetic phenomena (EKP) are different effects arising from relative tangential 

motion between two phases (e.g. capillary tube or porous media). It typically refers to a solid-

liquid interface, but electrical surface charge and double layers can also develop on liquid-liquid 

interfaces as long as both phases are polar or have polar components. However, electrokinetic 

effects at liquid-liquid interfaces are much less understood than those for solid-liquid interfaces 

(Al-Mahrouqi, 2016; Pascall & Squires, 2011). EKP can be divided into four distinct effects 

depending on the origin of the relative motion: electro-osmosis, electrophoresis, sedimentation 

potential, and streaming potential (Hunter, 1981). To achieve a more clear definition of 

electrokinetic phenomena, each of the four effects will be further explained, as presented by 

e.g. Lin et al. (2012) and Delgado et al. (2007). 

Electro-osmosis: As an electric field is applied to a system consisting of a solid (in the 

form of a porous plug or a capillary) and a liquid, the liquid can start to flow. This process is 

called electro-osmosis. The electric field causes ions in the liquid to move, dragging the liquid 

with them. The liquid velocity per unit current flow can be measured to give information about 

the charge environment in the vicinity of the solid-liquid interface.  

Electrophoresis: During electrophoresis, an electric field is applied to a fluid to induce 

flow through a porous plug or a capillary and the flow velocity is measured, similar to electro-

osmosis. In this case the fluid has suspended solid or liquid particles. During electrophoresis 

the suspended particles in the fluid drags with them the fluid and thus the mobile charges close 

to the solid surface. The fluid velocity is normalized by 𝐸 to yield the electrophoretic 

mobility 𝜇𝑒 =
𝑣

𝐸
, which is related to the zeta potential by the Helmholtz-Smoluchowski equation 

for electrophoresis: 

  𝜇𝑒 =
𝜀 𝜁

𝜂
.   

Sedimentation Potential: The electric potential difference generated as charged 

particles in a suspension settle under gravity, is called the sedimentation potential. The potential 

is detected by electrodes in the vertical direction. From the perspective of the particle, fluid is 

moving over the surface causing the atmosphere of mobile counter ions to be dragged in the 

direction of fluid flow. This creates a flow of counter ions in the opposite direction to the fluid 

flow.  

(3.5.1) 
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Streaming Potential: During streaming potential measurements, a pressure 

difference ∆𝑝 is applied to induce flow, and the resulting electric potential difference is 

measured. The process is similar to that for the sedimentation potential, only the fluid flow is 

induced by an external pressure difference. As the fluid flows over the solid surface, the mobile 

counter-ions are carried in the direction of fluid flow inducing a flow of charges in the opposite 

direction through the bulk of the fluid. The measured potential difference is related to the zeta 

potential by the Helmholtz-Smoluchowski equation for streaming potential (equation (5.1.20)): 

  𝐸𝑠 =
𝜀 𝜁 ∆𝑝

𝜂 𝜆
.  

This can be derived from a combination of electrochemical equations and equations describing 

fluid flow, and will be discussed in more detail in Chapter 5.  
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Chapter 4. Fluid Flow 

 

Electrokinetic phenomena combine the effects of electrochemistry and fluid flow. In 

this chapter, the motion of viscous fluid flow through a circular tube is described 

mathematically. The general Navier-Stokes equation is derived from first principles based on 

the work of Feynman et al. (1965) and Hunter (1981). Furthermore, Poiseuille’s equation is 

derived as a special case of Navier-Stokes’ equation, with support from White & Corfield 

(2006). The equations for viscous fluid flow will further be used in the derivation of the 

streaming potential equation in Chapter 5.  

 

4.1. Navier-Stokes Equation 

Navier-Stokes equation is a fundamental equation in fluid dynamics, used to describe 

viscous fluid flow. It is a balance equation that arises from Newton’s second law of motion. 

The following derivation is based on the lectures of Feynman et al. (1965), and Hunter (1981), 

although here, electromagnetic forces are also considered. The basis of the derivation is the 

balance between the net force acting on a parcel of fluid and its mass times acceleration:  

  ∑ 𝐹 = 𝑚 ∙ 𝑎.  

However, in fluid dynamics it is often more convenient to divide the equation by volume and 

use the fluid density 𝐷 =
𝑚

𝑉
: 

  ∑
𝐹

𝑉
= 𝐷 ∙ [𝑎],  

where  

  [𝑎] =
𝑎

𝑉
.  

The acting forces discussed here will be the viscous drag force 𝐹𝑣, the driving pressure force 

(pressure gradient) 𝐹𝑝 and the electromagnetic force 𝐹𝑒.  

In the first case of this derivation, there are three assumptions to consider; we are dealing 

with laminar flow of a Newtonian fluid with no-slip boundary condition. Laminar flow means 

that the fluid velocity changes exclusively in y-direction (radially for a cylinder) as illustrated 

in Figure 4.1. The next assumption is the so-called no-slip condition. It is an important 

(4.1.1) 

(4.1.2) 

(4.1.3) 
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experimental fact that the velocity of a fluid is exactly zero at the surface of a solid (for all 

ordinary fluids). This is also illustrated by the velocity profile of the laminar flow in Figure 4.1, 

where the velocity decreases to exactly zero at the interface between the fluid and the wall. The 

validity of these assumptions are briefly discussed in the end of this chapter.   

 

Figure 4.1 Illustration of the velocity profile for laminar flow of a Newtonian fluid. A fluid element is indicated, this is further 

described in Figure 4.2. 

The first force to consider will be the viscous drag force. For a Newtonian fluid, the 

shear rate 𝜏 is proportional to the fluids viscosity 휂 and can be expressed as a force divided by 

the area on which the force is acting:  

  𝜏 =
𝐹𝑣

𝐴
= −휂

∆𝑣𝑧

∆𝑦
 ,  

  𝐹𝑣 = −𝐴 ∙ 휂
∆𝑣𝑧

∆𝑦
.  

Where the viscous force is defined as negative as it opposes the fluid flow in positive z-

direction. The fluid in Figure 4.1 can be divided in several fluid elements with different 

velocities. The area that the viscous shear force is acting on is then defined by ∆𝑥 ∙ ∆𝑧 from 

Figure 4.2:  

(4.1.4) 

(4.1.5) 
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Figure 4.2 Left: Illustration of arbitrary fluid elements with associated velocities. Right: Definition of the dimensions of an 

arbitrary fluid element. 

Hence, the viscous force can be expressed as 

  𝐹𝑣 = −∆𝑥 ∙ ∆𝑧 ∙ 휂
∆𝑣𝑧

∆𝑦
,  

  𝐹𝑣 = −∆𝑥∆𝑧 휂 ∙ (
𝑣𝑖+1−𝑣𝑖

∆𝑦
+

𝑣𝑖−1−𝑣𝑖

∆𝑦
),   

where 

  
𝑣𝑖+1−𝑣𝑖

∆𝑦
+

𝑣𝑖−1−𝑣𝑖

∆𝑦
=

𝑣𝑖+1−2𝑣𝑖+𝑣𝑖−1

∆𝑦
= ∆𝑦

𝑑2𝑣

𝑑𝑦2.  

Furthermore, this can be series expanded using Taylor expansion on the form 

  𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥) +
1

1!
𝑓′(𝑥) ∙ ∆𝑥 +

1

2!
𝑓′′(𝑥) ∙ ∆𝑥2 + ⋯  

Applying the Taylor expansion to the expressions for 𝑣𝑖+1 and 𝑣𝑖−1 gives 

  𝑣𝑖+1 = 𝑣(𝑦 + ∆𝑦) = 𝑣(𝑦) +
𝑑𝑣

𝑑𝑦
∆𝑦 +

1

2

𝑑2𝑣

𝑑𝑦2
∆𝑦2 + ⋯  

  𝑣𝑖−1 = 𝑣(𝑦 − ∆𝑦) = 𝑣(𝑦) −
𝑑𝑣

𝑑𝑦
∆𝑦 +

1

2

𝑑2𝑣

𝑑𝑦2
∆𝑦2 + ⋯  

The general expression for the viscous forces 𝐹𝑣 becomes 

  𝐹𝑣 = −∆𝑥∆𝑦∆𝑧 휂
𝑑2𝑣

𝑑𝑦2.  

 

(4.1.6) 

(4.1.7) 

(4.1.8) 

(4.1.9) 

(4.1.10) 

(4.1.11) 

(4.1.12) 
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Expressed as force per unit volume, this becomes 

  
𝐹𝑣

𝑉
= −휂𝛻2𝑣.  

The fluid flow is driven by the pressure difference ∆𝑝 between 𝑝1 and 𝑝2 (Figure 4.1). 

Again, the fluid is divided in fluid elements as illustrated in Figure 4.2 and Figure 4.3. The 

driving pressure acts on the area defined by ∆𝑥 ∙ ∆𝑦 for each fluid element. Consequently, the 

total pressure force acting on the fluid can be expressed as  

 𝐹𝑝 = ∆𝑥∆𝑦∆𝑝.  

Note that the driving pressure force is defined as positive as it induces the fluid 

flow in positive z-direction. Again, expressed as force per unit volume, the equation becomes  

  
𝐹𝑝

𝑉
= 𝛻𝑝.  

 

Figure 4.3 Three-dimensional fluid element with pressure difference ∆𝑝(𝑧) = 𝑝1 − 𝑝2 indicated. 

Along with the pressure and viscous forces, we shall also consider the electromagnetic 

effects. The force per unit volume is given in terms of the electric potential and charge density 

by  

  
𝐹𝑒

𝑉
= 𝜌𝛻𝛹.  

All forces acting on the fluid can now be added and inserted in Newton’s law of motion 

for fluid flow (4.1.2): 

  
1

𝑉
(𝐹𝑣 + 𝐹𝑝 + 𝐹𝑒) = 𝐷 ∙ [𝑎], 

  −휂𝛻2𝑣 + 𝛻𝑝 + 𝜌𝛻𝛹 = 𝐷 ∙ [𝑎].  

(4.1.13) 

(4.1.14) 

(4.1.15) 

(4.1.16) 

(4.1.17) 

(4.1.18) 
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 For laminar flow, the inertial term 𝐷 ∙ [𝑎] will be zero because there is no acceleration 

of the bulk fluid nor of any particle in the fluid (centripetal acceleration). However, the general 

form of the Navier-Stokes equation considers inertial forces, so the next step will be to find an 

expression for the total fluid acceleration. 

The normal acceleration notation 
𝜕𝑣

𝜕𝑡
 refers to velocity changes for a fixed position in 

space. We are interested in the change in particle velocity. During a time step ∆𝑡, a particular 

particle moves a distance of ∆𝑥 = 𝑣𝑥∆𝑡 in 𝑥-direction, ∆𝑦 = 𝑣𝑦∆𝑡 in 𝑦-direction, and ∆𝑧 =

𝑣𝑧∆𝑡 in 𝑧-direction. If the velocity of the fluid particle at position (𝑥, 𝑦, 𝑧) and time 𝑡 

is 𝑣(𝑥, 𝑦, 𝑧, 𝑡), the particle velocity is given by 𝑣(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑧 + ∆𝑧, 𝑡 + ∆𝑡) (Butt et al., 

2006). With the given expressions for ∆𝑥, ∆𝑦 and ∆𝑧, the particle velocity can be expressed as  

  𝑣(𝑥 + 𝑣𝑥∆𝑡, 𝑦 + 𝑣𝑦∆𝑡, 𝑧 + 𝑣𝑧∆𝑡)  

  = 𝑣(𝑥, 𝑦, 𝑧, 𝑡) +
𝜕𝑣

𝜕𝑥
𝑣𝑥∆𝑡 +

𝜕𝑣

𝜕𝑦
𝑣𝑦∆𝑡 +

𝜕𝑣

𝜕𝑧
𝑣𝑧∆𝑡 +

𝜕𝑣

𝜕𝑡
∆𝑡.  

Furthermore, dividing the velocity by ∆𝑡 gives the particle acceleration: 

  𝑎 =
∆𝑣

∆𝑡
= 𝑣𝑥

𝜕𝑣

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣

𝜕𝑧
+

𝜕𝑣

𝜕𝑡
 ,  

which can be written  

  𝑎 = (𝑣 ∙ 𝛻)𝑣 +
𝜕𝑣

𝜕𝑡
, 

using the gradient notation.    

The importance of distinguishing between the fixed space acceleration and the particle 

acceleration becomes clear from equation (4.1.21). There can be a particle acceleration even 

if  
𝜕𝑣

𝜕𝑡
= 0, but only for rotational acceleration (centripetal acceleration), which can occur during 

turbulent flow. Hence, the inertial term for the general case becomes: 

  𝐷 ∙ [𝑎] = 𝐷 [(𝑣 ∙ 𝛻)𝑣 +
𝜕𝑣

𝜕𝑡
].   

By combining equations (4.1.18) with (4.1.22), we achieve a general expression of the Navier-

Stokes equation: 

  −휂𝛻2𝑣 + 𝛻𝑝 + 𝜌𝛻𝛹 = 𝐷 [(𝑣 ∙ 𝛻)𝑣 +
𝜕𝑣

𝜕𝑡
].  

  

(4.1.19) 

(4.1.20) 

(4.1.21) 

(4.1.22) 

(4.1.23) 
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4.2. Poiseuille’s Equation  

Poiseuille’s equation gives an exact solution to the Navier-Stokes equation, assuming 

axisymmetric, fully developed steady state flow with no-slip boundary condition. The following 

derivation is thus based on Navier-Stokes, in addition to the derivation presented by White & 

Corfield (2006). Poiseuille flow refers to laminar flow through a circular tube. This is illustrated 

in Figure 4.4.  

 

Figure 4.4 Capillary tube with length and radius indicated in addition to pressure difference, flow direction and direction of 

the pressure force and viscous force. 

For steady state laminar flow in a capillary tube for electrokinetic problems, the 

acceleration at a point in the fluid is zero and there is no centripetal acceleration, so the sum of 

all forces acting on a fluid element will add to zero: 𝐹𝑣 + 𝐹𝑝 + 𝐹𝑒 = 0. Consequently, the 

general form of the Navier-Stokes equation (4.1.23) for this special case reduces to  

 −휂𝛻2𝑣 + 𝛻𝑝 + 𝜌𝛻𝛹 = 0. 

Since the fluid velocity only varies in z-direction, we can write 

  −휂
𝑑2𝑣

𝑑𝑟2 +
∆𝑝

𝐿
+ 𝜌𝛻𝛹 = 0, 

  
𝑑2𝑣

𝑑𝑟2 =
∆𝑝

𝜂𝐿
+

𝜌

𝜂
𝛻𝛹,  

in cylindrical coordinates. Integrating equation (4.2.3) twice provides an expression for the fluid 

velocity 𝑣𝑧(𝑟) in the capillary tube:  

  ∫ ∫ 𝑑2𝑣
𝑣

0

𝑣

0
= ∫ ∫ (

∆𝑝

𝜂𝐿
+

𝜌

𝜂
𝛻𝛹) 𝑑𝑟2𝑟

0

𝑅

𝑟
,   

(4.2.1) 

(4.2.2) 

(4.2.3) 

(4.2.4) 
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  𝑣𝑧(𝑟) = (
∆𝑝

𝐿
+ 𝜌𝛻𝛹)

(𝑅2−𝑟2)

4𝜂
.  

Equation (4.2.5) is a parabolic equation that expresses the linear fluid velocity in z-direction as 

a function of distance r from the axis of the capillary tube. Figure 4.5 below illustrates the 

velocity gradient and the corresponding velocity profile.  

 

Figure 4.5 Left: The velocity gradient as expressed by equation (4.2.5). Right: The corresponding velocity profile in a tube. 

Poiseuille’s equation is expressed by volumetric flow rate 𝑞. In this case, the volumetric 

flow rate 
𝑑𝑉

𝑑𝑡
= 𝑞 is calculated by integrating the fluid velocity over the radius with respect to 

the cross sectional area of the cylinder: 

𝑑𝑉

𝑑𝑡
= ∫ 𝑣𝑧(𝑟) 𝑑𝐴,  

where  

𝑑𝐴 =
𝑑

𝑑𝑟
(𝜋𝑟2) = 2𝜋𝑟𝑑𝑟,  

and  

  𝑣𝑧(𝑟) = (
∆𝑝

𝐿
+ 𝜌𝛻𝛹)

(𝑅2−𝑟2)

4𝜂
,  

from equation (4.2.5). The following result is achieved: 

𝑑𝑉

𝑑𝑡
= ∫ (

∆𝑝

𝐿
+ 𝜌𝛻𝛹)

(𝑅2−𝑟2)

4𝜂
 2𝜋𝑟𝑑𝑟

𝑅

0
,  

𝑑𝑉

𝑑𝑡
= (

∆𝑝

𝐿
+ 𝜌𝛻𝛹)

𝜋

2𝜂
∫ (𝑅2𝑟 − 𝑟3) 𝑑𝑟 = (

∆𝑝

𝐿
+ 𝜌𝛻𝛹)

𝜋

2𝜂
(

𝑅4

2
−

𝑅4

4
)

𝑅

0
,  

𝑑𝑉

𝑑𝑡
=

𝜋𝑅4

8𝜂
(

∆𝑝

𝐿
+ 𝜌𝛻𝛹) = 𝑞.  

(4.2.5) 

(4.2.6) 

(4.2.7) 

(4.2.8) 

(4.2.9) 

(4.2.10) 
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This is Poiseuille’s equation for laminar fluid flow in a capillary tube, accounting for 

electromagnetic forces as well as viscous forces and the pressure gradient. It can alternatively 

be expressed by the pressure difference ∆𝑝:  

  ∆𝑝 =
8𝜂𝐿𝑞

𝜋𝑅4 − 𝐿𝜌𝛻𝛹.  

 A few simple assumptions were made to reach the expression for Poiseuille flow. As 

mentioned in chapter 4.1, the no-slip condition is confirmed by a large number of experiments 

for ordinary fluids at pressures of around one atmosphere and larger (Lauga, Brenner, & Stone, 

2007). It essentially means that adhesion is stronger than cohesion for particles close to the 

surface. For the assumption of laminar flow to be correct, the Reynolds number for the flow 

situation should be less than 1000 (Holman, 2002). The Reynolds number is the ratio between 

inertial forces and viscous forces and is defined as  

𝑅𝑒 =
𝐷𝑣𝑑

𝜂
,  

where 𝐷: fluid density, 𝑣: fluid velocity, 𝑑: grain diameter and 휂: dynamic viscosity. With some 

typical values from reservoirs on the Norwegian continental shelf  

𝐷 = 1000 𝑘𝑔/𝑚3, 𝑣 = 1 𝑚/𝑑𝑎𝑦 ≈ 10−5 𝑚/𝑠, 𝑑 = 10−6 𝑚, 휂 = 10−3 𝑃𝑎 ∙ 𝑠, 

The Reynolds number can be calculated to leading order: 

  𝑅𝑒 =
103∙10−5∙10−6

10−3 = 10−5 ≪ 1000.  

This confirms that the assumption of laminar flow is valid for this flow situation. At the start of 

fluid flow, or when a flowing fluid enters a tube, the velocity profile associated with laminar 

flow takes some time establishing. Fully developed flow is reached when the velocity profile 

remains constant.   

(4.2.11) 

(4.2.12) 

(4.2.13) 
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Chapter 5. Streaming Potential 

 

In this chapter we show that, at the interface between a charged phase (often a solid) 

and an electrolyte, a measurable electric potential difference can be set up by the flow of fluid 

induced by a pressure difference. To achieve an understanding of the concepts, single phase 

streaming potential is first considered. The established theory on this subject is presented, as 

well as the derivation of Helmholtz-Smoluchowski’s equation for single phase streaming 

potential from Poiseuille’s equation and Poisson’s equation. Furthermore, some recent theory 

on two-phase streaming potential is discussed. This includes simple mathematical models 

developed by Sherwood (2007) to predict how the streaming potential is affected by an oil 

phase. This lays the final foundation for the analysis of the models and experimental results that 

will be discussed in Chapter 6.  

 

5.1. Single Phase Streaming Potential 

 Streaming potential is the resulting potential difference that arises when a pressure 

difference ∆𝑝 is applied to induce flow in a capillary or porous media with a charged surface, 

at zero net current. When a solid surface is immersed in a dielectric fluid a layer of surface 

charge, and consequently an electrical double layer, is developed at the interface. As the fluid 

flows over the solid surface, some of the mobile ions in the diffuse part of the double layer are 

carried in the direction of fluid flow. I.e. the fluid flow establishes a streaming current along 

the shear plane in the EDL. As the charges are pulled away from their initial location, they 

eventually slip back into place through the bulk of the fluid. This generates an electric 

conduction current in the opposite direction of the streaming current. At equilibrium, the 

resulting electrostatic potential difference can be measured across the capillary or plug. This 

potential difference is termed the streaming potential (Delgado et al., 2007; Hunter, 1981; Revil, 

Schwaeger, Cathles, & Manhardt, 1999).  
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Figure 5.1 Illustration of streaming potential. The streaming current 𝐼𝑠 forms in the EDL in the direction of fluid flow. The 

conduction current 𝐼𝑐 moves in the opposite direction through the bulk fluid. Total measured electric potential is the 

streaming potential. 

 Streaming potential can be measured experimentally both in a lab and downhole in a 

well (Chen, Raghuraman, Bryant, & Supp, 2006). During lab measurements, a core sample is 

fitted inside a rubber sleeve with one electrode on each side. The core is flooded with a brine at 

constant rate or constant pressure. The electric potential difference between the two electrodes 

(the streaming potential) is registered. The streaming potential 𝐸𝑠 is often plotted against the 

pressure difference ∆𝑝 to determine the streaming potential coupling coefficient 𝐶𝑠𝑝, which is 

defined as 𝐶𝑠𝑝 =
𝐸𝑠

∆𝑝
 (This is further discussed in Chapter 5.1.1). Laboratory measurements of 

streaming potential can be performed both for single phase and multi-phase flow (Al-Mahrouqi, 

2016; Jackson, Vinogradov, Saunders, & Jaafar, 2011).  

 Successful field measurements of streaming potential was first conducted in 2006 by 

(Chen et al.). Electrodes placed in the borehole measured streaming potential arising from 

pressure transients. The field measurements can be used to monitor the water front during 

production and to create a geometric model of the moving fluid fronts. Jackson (2011) showed 

that SP measurements can detect moving water fronts at a significant distance (on the order of 

100 m) from the producing well.  

 Streaming potential measurements can also for instance be utilized to estimate the 

wetting preference of a petroleum reservoir. The streaming potential can be used to determine 

the average zeta potential of the rock surface. Since the zeta potential is the electric potential at 

the shear plane, and there is a difference in zeta potential for the different fluids, the average 

zeta potential of the rock can offer reliable information on the wetting state of the rock surface 
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(Rahbar et al., 2017). Al-Mahrouqi (2016) found a linear regression between the zeta potential 

from streaming potential measurements and the Amott water-wetting index for all five types of 

natural crude oils tested.  

 Streaming potential measurements also have other practical applications. E.g. SP 

measurements can detect gas-liquid interfaces during seismic. Seismic waves generate 

electrical signals that may be larger near a gas-liquid interface. The compressibility of the gas 

causes enhanced relative motion between the gas and rock, and the resulting electric signal can 

be detected by sensors (Chandler, 1981). Furthermore, Xie et al. (2011) have looked at the 

possibility of using two-phase SP for electric power generation.  

 There are some factors that can affect streaming potential measurements. The effect of 

surface conductivity is important to consider. If the surface conductivity of the capillary or 

porous medium is high, some of the conduction current will be transported within the electrical 

double layer close to the solid surface (Shaw, 1980). This can disrupt the streaming potential 

measurements. The effect of surface conductivity is most likely to affect measurements for low 

electrolyte concentrations, when the EDL is thick. Overlapping double layers can also cause 

problems for SP measurements. Double layer overlap may appear for sufficiently small 

capillary radii or thick EDLs. In this case, the transport of ions will be partially prevented, which 

will reduce the measured streaming potential (Ban, Lin, & Song, 2010; Butt et al., 2006). Clay 

particles in the formation have been shown to restrict movement of anions, and thereby affect 

the measured streaming potential (Appelo & Wersin, 2007).  

 

5.1.1. Helmholtz-Smoluchowski’s Equation for Single Phase Streaming Potential 

Streaming potential for single phase flow can be described by Helmholtz-

Smoluchowski’s equation. This equation combines the effects of fluid flow and electrostatic 

forces. It can be derived from Poiseuille’s equation for laminar fluid flow as a special case of 

the Navier-Stokes equations, in combination with Poisson’s equation for electrostatics. The 

following derivation is based on the work of Hunter (1981). As shown in chapter 4.2, 

Poiseuille’s equation (4.2.5) for linear fluid velocity in a capillary tube is  

𝑣𝑧(𝑟) =
∆𝑝

4𝜂𝐿
(𝑅2 − 𝑟2),  (5.1.1) 
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where 𝑟 is the distance from the axis of the capillary tube, 𝑅 is the radius of the tube, 𝐿 is the 

length of the tube, 휂 is dynamic fluid viscosity and ∆𝑝 is the pressure drop. For the sake of 

simplicity, the small effect of electromagnetic forces are now neglected.  

The streaming current 𝐼𝑠 arises from the movement of mobile ions in the diffuse part of 

the double layer and is defined as 

  𝐼𝑠 = ∫ 𝑣𝑧(𝑟) ∙ 𝜌(𝑟) 𝑑𝑉
1

𝑣𝑜𝑙𝑢𝑚𝑒
,  

  𝐼𝑠 = ∫ 2𝜋𝑟 ∙ 𝑣𝑧(𝑟) ∙ 𝜌(𝑟) 𝑑𝑟
𝑅

0
,  

where 𝜌(𝑟) is the charge density from Poisson’s equation (3.2.15). 

 

Figure 5.2 Fluid flow in a capillary tube. For simplicity reasons, 𝑥 denotes the distance from the capillary wall. Modified 

from Hunter (1981). 

The double layer is assumed restricted to a thin region near the wall of the capillary tube 

and the bulk fluid carries no net charge. Hence, only values of r close to R are relevant for 

determining the streaming current 𝐼𝑠. For simpler notation in the following derivation, the 

Debye length 𝜅−1 is here denoted by 𝑥 as in Figure 5.2. This allows us to substitute 𝑟 = (𝑅 −

𝑥). We then achieve  

𝑅2 − 𝑟2 = 2𝑅𝑥 − 𝑥2.  

Consequently, the Poiseuille equation for fluid velocity (5.1.1) becomes 

𝑣𝑧 = ∆𝑝 ∙
2𝑅𝑥−𝑥2

4𝜂𝐿
.  

 

 

(5.1.2) 

(5.1.3) 

(5.1.4) 

(5.1.5) 
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Since 𝑥 ≪ 𝑅, we can express 𝑣𝑧 as 

𝑣𝑧 ≈
∆𝑝𝑅𝑥

2𝜂𝐿
.   

Furthermore, 𝐼𝑠 becomes  

  𝐼𝑠 = −
𝜋∆𝑝𝑅

𝜂𝐿
∫ (𝑅 − 𝑥) ∙ 𝑥 ∙ 𝜌(𝑥) 𝑑𝑥

0

𝑅
.  

Again based on the assumption 𝑥 ≪ 𝑅, we have 

  
𝜋∆𝑝𝑅

𝜂𝐿
(𝑅 − 𝑥) ≈

𝜋∆𝑝𝑅

𝜂𝐿
𝑅, 

which leads to 

  𝐼𝑠 ≈ −
𝜋∆𝑝𝑅2

𝜂𝐿
∫ 𝑥 ∙ 𝜌(𝑥) 𝑑𝑥

0

𝑅
,   

where 𝜌(𝑥) from Poisson’s equation (3.2.15) is 

𝜌(𝑥) = −휀 𝛻2𝛹 = −휀 
𝑑2𝛹

𝑑𝑥2 .  

Next, substituting for 𝜌(𝑥) in equation (5.1.9) yields 

  𝐼𝑠 =
𝜋∆𝑝𝑅2

𝜂𝐿
∫ 𝑥 휀

𝑑2𝛹

𝑑𝑥2  𝑑𝑥
0

𝑅
. 

This equation can be solved from integration by parts: 

  𝐼𝑠 =
𝜋∆𝑝𝑅2𝜀

𝜂𝐿
([𝑥

𝑑𝛹

𝑑𝑥
]

𝑅

0

− ∫
𝑑𝛹

𝑑𝑥
 𝑑𝑥 

0

𝑅
), 

where 𝑥
𝑑𝛹

𝑑𝑥
= 0 for both limits. Next, the electric potential is integrated from 0 to 휁 

  𝐼𝑠 = −
𝜋∆𝑝𝑅2𝜀

𝜂𝐿
 ∫ 𝑑𝛹

𝜁

0
, 

  𝐼𝑠 = −
𝜀 𝜁

𝜂𝐿
 𝜋∆𝑝𝑅2.        

The conduction current is the flow of electrons through the bulk fluid due to potential 

difference created by the streaming current. Consequently, the two currents act in opposite 

directions. The conduction current is given by Ohm’s law 

 𝐼𝑐 = 𝐴𝜆
∆𝑉

𝐿
, 

 (5.1.6) 

(5.1.7) 

(5.1.8) 

(5.1.9) 

(5.1.10) 

(5.1.11) 

(5.1.12) 

(5.1.13) 

(5.1.14) 

(5.1.15) 
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where 𝐴 is the cross-sectional area, 𝐿 is the capillary length and ∆𝑉 is the streaming potential 

difference 𝐸𝑠: 

  𝐼𝑐 =
𝜋𝑅2𝐸𝑠∙𝜆0

𝐿
+

2𝜋𝑅𝐸𝑠∙𝜆𝑠

𝐿
.  

Here, 𝜆0 is the bulk conductivity and 𝜆𝑠 is the surface conductivity.  

At steady state conditions, the streaming- and conduction currents are equal in 

magnitude, acting in opposite directions: 

  
𝜀 𝜁

𝜂𝐿
∙ 𝜋∆𝑝𝑅2 =

𝜋𝑅2𝜆0

𝐿
∙ 𝐸𝑠 +

2𝜋𝑅𝜆𝑠

𝐿
∙ 𝐸𝑠.  

By solving for 𝐸𝑠, we achieve the equation known as the Helmholtz-Smoluchowski equation:  

  𝐸𝑠 =
𝜀𝜁∆𝑝

𝜂(𝜆0+2
𝜆𝑠
𝑅

)
. 

The streaming potential 𝐸𝑠 is often normalized by ∆𝑝 to give the streaming potential coupling 

coefficient  

𝐶𝑆𝑃 =
𝐸𝑠

∆𝑝
=

𝜀 𝜁

𝜂(𝜆0+2
𝜆𝑠
𝑅

)
,    

which is frequently used when determining the zeta potential from experimental measurements.  

A common simplification is to neglect the surface conductivity 𝜆𝑠. Alkafeef & Alajmi 

(2006) argued that this is valid if the fluid conductivity is high (> 0.6 𝑆/𝑚), or if the thickness 

of the EDL (𝜅−1) is less than the characteristic radius of curvature. Briggs (1928) assumed that 

effects of surface conductivity is negligible for electrolyte concentrations over 0.1 𝑚𝑜𝑙/𝑙. If 

this simplification is made, the Helmholtz-Smoluchowski equation can be expressed in the 

simpler form:  

  𝐸𝑠 =
𝜀 𝜁 ∆𝑝

𝜂 𝜆
. 

In this case, the streaming potential coupling coefficient of course also reduces to 

  𝐶𝑆𝑃 =
𝜀 𝜁

𝜂 𝜆
.  

  

(5.1.16) 

(5.1.17) 

(5.1.18) 

(5.1.19) 

(5.1.20) 

(5.1.21) 
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5.2. Two-Phase Streaming Potential 

Streaming potential caused by single phase aqueous fluids in capillaries and porous 

media are reasonably well understood. However, the interpretation of streaming potential 

measurements in the presence of an oil phase is much more complicated. To deal with this, 

model problems need to be considered. A few mathematical models have been developed in 

recent years. The most relevant ones for this thesis are the analytical model of a charged 

spherical particle in the centre of a water-wet capillary tube and the similar model for an 

uncharged spherical bubble, both developed by Sherwood (2007).  

Jackson (2008) considers a bundle of tubes model for investigating the effect of 

streaming potential. In the bundle of tubes model the porous media is represented as a 

distribution of circular tubes with different radii. In a water wet system, oil invades the largest 

pores first and the water resides in the smaller pores. The coupling coefficient in this case for a 

water-wet system is independent of saturation. This is because in the bundle of tubes model, 

the fluid configurations are trivial. As the capillaries are filled with oil the relative permeability 

for water drops, and the streaming potential decreases correspondingly. The model of Jackson 

(2008) is relevant for the case where two fluids flow at the same time. In this thesis we are more 

concerned with understanding the effect of the zeta potential when primarily water is flowing. 

In Al-Mahrouqi (2016), there is a claim that a change in the streaming potential is an indication 

of wettability change. Clearly, if oil is removed from the rock surface, the surface charge 

increases and the streaming potential will increase. But, if oil is slowly released as small 

droplets, can the presence of the oil phase itself gives observable changes in the streaming 

potential? In the following we will use the model of Sherwood (2007) to investigate this further. 

In addition to the models, experimental results and correlations can help us develop a 

better understanding of two-phase streaming potentials. Important experimental studies include 

those of Al-Mahrouqi (2016) and Rahbar et al. (2017). Both found an experimental correlation 

between measured streaming potential and rock wettability. In the following sections the 

models and experimental results will be presented and analysed in an effort to determine how 

the presence of an oil phase affects streaming potential measurements in relation to saturation 

and wettability. 
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5.2.1. Single Spherical Droplet in a Capillary  

 The model problem (i) presented by Sherwood (2007) considers a close-fitting rigid 

spherical particle in a circular capillary. The Debye length 𝜅−1 is assumed much smaller than 

the minimum gap width ℎ0 between the particle and the capillary wall. The particle is mobile 

and moves along the centreline of the capillary in response to the applied pressure 

difference ∆𝑝. The particle may represent a second fluid phase such as oil, or it could be a solid 

particle. This simple model attempts to predict the streaming potential as function of saturation 

in a water-wet capillary. In the following, a compressed version of the model derivation is 

presented, and the original author points out that the following analysis is valid only to leading 

order. The derivation generally follows the same procedure as in Chapter 5.1.1.   

 

Figure 5.3 Illustration of the spherical particle of radius 𝑅𝑝 in a capillary of radius 𝑅𝑐 = 𝑅𝑝 + ℎ0. Lengths are not to scale. 

Modified from Sherwood (2007). 

 It is assumed that the fluid flow can be described by Poiseuille’s equation as the previous 

case. From Chapter 4.2, we have Poiseuille’s equation for fluid flow without any particle: 

  ∆𝑝𝑤 =
8𝜂𝐿𝑞

𝜋𝑅𝑐
4 =

8𝜂𝐿𝑣

𝑅𝑐
2 .   

Expressed by the capillary radius 𝑅𝑐, not accounting for any electromagnetic forces.  

 When the particle is present, we need to consider the total pressure drop over the sphere 

in addition to the pressure drop along the capillary. With the sphere centre located at 𝑧 = 0, the 

gap between the sphere and the capillary wall can be expressed as: 

(5.2.1) 
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  (ℎ(𝑦) − (𝑅𝑝 + ℎ0))
2

+ 𝑧2 = 𝑅𝑝
2,  

  ℎ(𝑦) − (𝑅𝑝 + ℎ0) = −√𝑅𝑝
2 − 𝑧2,  

  ℎ(𝑦) = 𝑅𝑝 + ℎ0 − √𝑅𝑝
2 − 𝑧2,  

where the last term can be series-expanded to 

  √𝑅𝑝
2 − 𝑧2 = 𝑅𝑝 (1 −

1

2
(

𝑧

𝑅𝑝
)

2

+ ⋯ ).  

This leads to the following expression for the gap width 

  ℎ(𝑦) = ℎ0 +
𝑧2

2𝑅𝑝
+ ⋯ = ℎ0 (1 +

𝑧2

𝑑2 + ⋯ ), 

where  

  𝑑 = √2𝑅𝑝ℎ0. 

 We define a coordinate system that follows the particle, such that the capillary wall 

moves with a velocity of – 𝑣. The steady state Navier-Stokes equation takes the form 

  
𝑑2𝑣𝑝

𝑑𝑦2 =
𝐺

𝜂
.  

Since this is a rigid particle, the no-slip boundary condition can be utilized: 

  𝑣𝑝(0) = −𝑣, 

  𝑣𝑝(ℎ) = 0. 

Thus, Navier-Stokes equation can be integrated: 

  𝑣𝑝(𝑦) =
𝐺

𝜂

1

2
𝑦2 + 𝐶𝑦 + 𝐷. 

From the boundary conditions, we achieve 

  𝐷 = −𝑣, 

and 

  𝐶 =
1

ℎ
(𝑣 −

𝐺

2𝜂
 ℎ2). 

 

(5.2.2) 

(5.2.3) 

(5.2.4) 

(5.2.5) 

(5.2.6) 

(5.2.7) 

(5.2.8) 

(5.2.9) 

(5.2.10) 

(5.2.11) 

(5.2.12) 

(5.2.13) 
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Consequently, the particle velocity becomes 

  𝑣𝑝 =
𝐺

2𝜂
𝑦(𝑦 − ℎ) +

𝑣

ℎ
(𝑦 − ℎ). 

This leads to the following equation for the flux through the gap between the particle and 

capillary wall: 

  𝑞𝑝 = 2𝜋 ∫ (𝑅𝑐 − 𝑦)𝑣𝑝 𝑑𝑦
ℎ

𝑦=0
,  

  𝑞𝑝 = 2𝜋 ∫ ((𝑅𝑐 − 𝑦)
𝐺

2𝜂
 𝑦(𝑦 − ℎ) + (𝑅𝑐 − 𝑦)(𝑦 − ℎ)

𝑣

ℎ
)  𝑑𝑦

ℎ

0
, 

  𝑞𝑝 = −2𝜋 (
𝐺

𝜂
(

ℎ3𝑅𝑐

12
−

ℎ4

24
) + 𝑈 (

𝑅𝑐ℎ

2
−

ℎ2

6
)). 

Furthermore, this equation can be solved for 𝐺 to achieve an expression for the pressure drop 

over the sphere: 

  
𝑞𝑝

−2𝜋
− 𝑣 (

𝑅𝑐ℎ

2
−

ℎ2

6
) =

𝐺

𝜂
(

ℎ3𝑅𝑐

12
−

ℎ4

24
), 

  𝐺 = −
6𝜂

𝑅𝑐ℎ3 (
𝑞𝑝

𝜋
+ 𝑣𝑅𝑐ℎ (1 −

ℎ

3𝑅𝑐
)) (1 −

ℎ

2𝑅𝑐
)

−1

, 

There will be a significant shear stress on the capillary wall. The shear stress at 𝑦 = 0 is 

  𝜎𝑦𝑧 = 휂
𝜕𝑣𝑝

𝜕𝑦
= −

𝜂𝐺ℎ

2𝜂
+

𝑣

ℎ
휂, 

  𝜎𝑦𝑧 =
3𝜂

𝑅𝑐ℎ2 (
𝑞𝑝

𝜋
+ 𝑣𝑅𝑐ℎ) + 휂

𝑣

ℎ
, 

  𝜎𝑦𝑧 =
3𝑞𝑝𝜂

𝑅𝑐ℎ2𝜋
+

4𝜂𝑣

ℎ
. 

The total force on the cylindrical wall is 

  𝐹𝑐12 = 2𝜋𝑅𝑐 ∫ 𝜎𝑦𝑧𝑑𝑧 = 2𝜋𝑅𝑐휂 ∫ (
3𝑞𝑝

𝑅𝑐ℎ2𝜋
+

4𝑣

ℎ

𝑧2

𝑧1

𝑧2

𝑧1
)𝑑𝑧. 

With the known expression for ℎ inserted, this becomes 

  𝐹𝑐12 =
2𝜋𝑅𝑐𝜂

ℎ0
∫ (

3𝑞𝑝

ℎ0𝜋𝑅𝑐(1+
𝑧2

𝑑2)
2 +

4𝑣

1+
𝑧2

𝑑2

) 𝑑𝑧
𝑧2

𝑧1
. 

 

(5.2.14) 

(5.2.15) 

(5.2.16) 

(5.2.17) 

(5.2.18) 

(5.2.19) 

(5.2.20) 

(5.2.21) 

(5.2.22) 

(5.2.23) 

(5.2.24) 
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Bearing in mind that 𝑅𝑝 ≪ 𝑑, we achieve 

  𝐹𝑐12 = 8𝜋휂𝑅𝑐𝑣
𝑑

ℎ0
(𝜋 −

2𝑑

𝑅𝑝
) + 6𝑞𝑝

𝜋𝑑

2ℎ0
2. 

 Next, the force balance between the particle surface (𝐹𝑝) and the capillary wall (𝐹𝑐12) 

yields 

  𝑝1𝐴1 − 𝑝2𝐴2 − 𝐹𝑝 − 𝐹𝑐12 = 0, 

where 𝑝1 and 𝑝2 are the fluid pressures at 𝑧1 and 𝑧2, and 𝐴1 = 𝐴2 are the cross-sectional areas 

between the particle and the capillary wall. By solving for 𝑝2 − 𝑝1 and inserting the known 

expression for 𝐺, we achieve 

  𝑝2 − 𝑝1 = ∫ 𝐺𝑑𝑧
𝑅𝑝

−𝑅𝑝
= −6휂 ∫ (

𝑞𝑝

𝜋𝑅𝑐
(

1

ℎ3 +
1

2𝑅𝑐ℎ2) + 𝑣 (
1

ℎ2 +
1

6ℎ𝑅𝑐
)) 𝑑𝑧

𝑅𝑝

−𝑅𝑝
.  

 

We assume that the particle surface is force-free (𝐹𝑝 = 0). Consequently, 

  𝑞𝑝 = −
4

3
𝜋𝑅𝑐ℎ0𝑣 (1 −

5ℎ0

3𝑅𝑐
+ ⋯ ). 

The total pressure drop over the sphere is achieved by combining equations (5.2.27) and 

(5.2.28): 

  ∆𝑝𝑠𝑝 =
4𝜋𝜂𝑑𝑣

ℎ0𝑅𝑐
.  

Thus, the total pressure drop over the capillary tube containing a spherical particle is found by 

combining equations (5.2.1) and (5.2.29): 

  ∆𝑝 =
8𝜂𝑣

𝑅𝑐
2 (𝐿 − 2𝑅𝑝) +

4𝜋𝜂𝑑𝑣

ℎ0𝑅𝑐
.  

Now, the equation for streaming potential exclusively due to the zeta potential on the 

capillary wall (I.e. 휁𝑝 = 0, 휁𝑐 ≠ 0) is dealt with. This is essentially Helmholtz-Smoluchowski’s 

equation for single phase streaming potential derived from Poiseuille’s equation and Poisson’s 

equation, here expressed by the pressure gradient 𝐺 instead of the pressure difference ∆𝑝:  

  
𝑑𝐸𝑐

𝑑𝑧
=

𝜀𝜁𝑐𝐺

𝜂𝜆
,  

(5.2.25) 

(5.2.26) 

(5.2.27) 

(5.2.28) 

(5.2.29) 

(5.2.30) 

(5.2.31) 
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where 𝐸𝑐 is the streaming potential due to zeta potential on the capillary wall, and 휁𝑐 and 휁𝑝 are 

the zeta potentials on the capillary wall and on the spherical particle respectively.  

 When the spherical particle is present, the capillary fluid velocity is 𝑣𝑐 = 𝑣𝑝 + 𝑣, where 

the particle velocity is given by equation (5.2.14). Considering the streaming current 𝐼𝑠 is equal 

in magnitude and opposite direction of the conduction current 𝐼𝑐, we have  

  
𝑑𝐸𝑐

𝑑𝑧
= −

2𝜋𝑅𝑐𝜀𝜁𝑐

𝐴𝜆
(

4𝑣

ℎ
+

3𝑞𝑝

𝜋𝑅𝑐ℎ2),   

where 𝐴 is the cross-sectional area available for flow, expressed as 𝐴 = 𝜋(𝑅𝑐
2 − (𝑅𝑐 − ℎ)2) ≈

2𝜋𝑅𝑐ℎ when ℎ ≪ 𝑅𝑝, and 𝑞𝑝 is the flux through the gap. Thereby, the streaming potential over 

the sphere is obtained by integrating from −𝑅𝑝 to 𝑅𝑝:  

  𝐸𝑐 = − ∫
𝑑𝐸𝑐

𝑑𝑧
 𝑑𝑧

𝑅𝑝

−𝑅𝑝
=

𝜀𝜁𝑐

𝜆
∫ (

4𝑣

ℎ2
+

3𝑞𝑝

𝜋𝑅𝑐ℎ3
) 𝑑𝑧

𝑅𝑝

−𝑅𝑝
, 

  𝐸𝑐 ≈
𝜀𝜁𝑐𝑑𝜋𝑣

2𝜆ℎ0
2 .  

 Next, the streaming potential exclusively due to zeta potential on the spherical particle 

is considered (I.e. 휁𝑝 ≠ 0, 휁𝑐 = 0). The procedure for the derivation will be similar as for 

streaming potential on the capillary wall, but the resulting equation has negative sign: 

  
𝑑𝐸𝑝

𝑑𝑧
= −

𝜀𝜁𝑝𝐺

𝜂𝜆
,  

where 𝐸𝑝 is the streaming potential due to zeta potential on the particle surface. By following 

the same procedure as above, we find that the streaming potential is 

  𝐸𝑝 ≈ −
𝜀𝜁𝑝𝑑𝜋𝑣

2𝜆ℎ0
2 . 

Jackson (2008) showed that the correlation between single phase- and multi-phase 

streaming potentials are additive (i.e. 𝐸𝑠2 = 𝐸𝑐 + 𝐸𝑝). Thus, the total two-phase streaming 

potential for a single sphere becomes 

  𝐸𝑠𝑝 =
𝜀𝜁𝑐

𝜆𝜂
∆𝑝 +

𝜀𝜋𝑣(𝜁𝑐−𝜁𝑝)𝑑

2𝜆ℎ0
2 + 𝑂 (

𝜀𝜋𝑣𝜁𝑑

𝜆ℎ0𝑅𝑐
),  

where ∆𝑝 is expressed by equation (5.2.30), 𝑂 (
ℎ0

𝑅𝑐
) is an order term and the two-phase 

streaming potential is referred to as 𝐸𝑠𝑝. It can be shown that the order term is small by dividing 

it by the second term in the equation and treating 휁 as equal to (휁𝑐 − 휁𝑝), thereby 

(5.2.32) 

(5.2.33) 

(5.2.34) 

(5.2.35) 

(5.2.36) 

(5.2.37) 
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𝜀𝜋𝑣𝜁𝑑

𝜆ℎ0𝑅𝑐
∙

2𝜆ℎ0
2

𝜀𝜋𝑣(𝜁𝑐−𝜁𝑝)𝑑
=

ℎ0

𝑅𝑐
.  

As long as the capillary radius 𝑅𝑐 is much larger than the minimum gap width ℎ0, it is safe to 

neglect the order term. This leads to the simplified equation for the total streaming potential 

caused by a rigid spherical oil particle in a water-wet tube: 

  𝐸𝑠𝑝  =
𝜀𝜁𝑐∆𝑝

𝜆𝜂
+

𝜀𝜋𝑣(𝜁𝑐−𝜁𝑝)𝑑

2𝜆ℎ0
2 .  

With the known expression for 𝑑 inserted, this becomes 

  𝐸𝑠𝑝 =
𝜀𝜁𝑐∆𝑝

𝜆𝜂
+

𝜀𝜋𝑣

2𝜆
(휁𝑐 − 휁𝑝)√

2𝑅𝑝

ℎ3 .  

 It is customary normalise the two-phase streaming potential by the single-phase 

streaming potential in order to look at the deviation from the single-phase behaviour. The 

normalised equation becomes: 

  𝐸𝑠𝑝,𝑛𝑜𝑟𝑚 = 1 +
𝜋𝜂𝑣

2𝜁𝑐∆𝑝
(휁𝑐 − 휁𝑝)√

2𝑅𝑝

ℎ3 .  

 

5.2.2. A Line of Non-Interacting Spherical Particles 

Considering a capillary filled with a line of 𝑁 spherical particles, sufficiently separated 

so that they do not interact, equation (5.2.40) can be further developed. The behaviour of the 

zeta potential at the capillary wall and on the particles is assumed the same as for the previous 

case. The number of particles is considered to be 𝑁 ≪ 𝐿𝑐/𝑅𝑐. In this case, the expected total 

pressure drop (equation (5.2.30)) over the line of particles is expected to take the slightly 

different form: 

  ∆𝑝 =
8𝜂𝑣

𝑅𝑐
2  (𝐿𝑐 − 2𝑁𝑅𝑝) +

4𝑁𝜋𝜂𝑑𝑣

ℎ0𝑅𝑐
,  

accounting for the cumulative effect of all 𝑁 particles. By following the same derivation 

procedure as in the previous section, the total two-phase streaming potential becomes 

  𝐸𝑙𝑖𝑛𝑒 =
𝜀𝜁𝑐∆𝑝

𝜆𝜂
+

𝜀∆𝑝(𝜁𝑐−𝜁𝑝)𝑅𝑐
2𝑑𝜋

8𝜆𝜂ℎ0(2ℎ0(𝐿𝑐𝑁−1−2𝑅𝑝)+𝑅𝑐𝑑𝜋)
+ 𝑂 (

𝑁𝜀𝜁𝑑𝜋𝑣

𝜆ℎ0𝑅𝑐
). 

 

 

(5.2.38) 

(5.2.39) 

(5.2.40) 

(5.2.41) 

(5.2.42) 

(5.2.43) 
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Again, we can neglect the order term, which leads to the simpler form 

  𝐸𝑙𝑖𝑛𝑒 =
𝜀𝜁𝑐∆𝑝

𝜆𝜂
+

𝜀𝜁𝑐∆𝑝

𝜆𝜂
∙

(𝜁𝑐−𝜁𝑝)𝑅𝑐
2𝑑𝜋

8𝜁𝑐ℎ0(2ℎ0(𝐿𝑐𝑁−1−2𝑅𝑝)+𝑅𝑐𝑑𝜋)
.  

Inserting for the known expression for 𝑑 yields 

  𝐸𝑙𝑖𝑛𝑒 =
𝜀𝜁𝑐∆𝑝

𝜆𝜂
+

𝜀𝜁𝑐∆𝑝

𝜆𝜂
∙

𝜋𝑅𝑐
2(𝜁𝑐−𝜁𝑝)√2𝑅𝑝ℎ0

8𝜁𝑐ℎ0(2ℎ0(𝐿𝑐𝑁−1−2𝑅𝑝)+𝑅𝑐𝜋√2𝑅𝑝ℎ0)
, 

which can be normalised to  

  𝐸𝑙𝑖𝑛𝑒,𝑛𝑜𝑟𝑚 = 1 +
𝜋𝑅𝑐

2(𝜁𝑐−𝜁𝑝)√2𝑅𝑝ℎ0

8𝜁𝑐ℎ0(2ℎ0(𝐿𝑐𝑁−1−2𝑅𝑝)+𝑅𝑐𝜋√2𝑅𝑝ℎ0)
.  

 

 

  

(5.2.44) 

(5.2.45) 

(5.2.46) 



48 

 

Chapter 6. Analysis of the Two-Phase Models 

 

In this chapter, numerical solutions of the models for two-phase streaming potential are 

computed and analysed using appropriate parameter values from experimental results at 

relevant conditions. The range of validity for the models are discussed and the effects on the 

streaming potential by the second phase are deliberated. This chapter presents the results 

subjected to further discussions in Chapter 7, where they are compared to recent experimental 

results for two-phase streaming potential.  

 

6.1. Single Spherical Droplet Model 

The effect of a single spherical droplet in a capillary can be expressed by equation 

(5.2.41): 

  𝐸𝑠𝑝,𝑛𝑜𝑟𝑚 = 1 +
𝜋𝜂𝑣

2𝜁𝑐∆𝑝
(휁𝑐 − 휁𝑝)√

2𝑅𝑝

ℎ3 .  

The two-phase streaming potential as described by this model depends on zeta potentials of the 

two interfaces and applied pressure difference, as well as conductivity, permittivity and 

viscosity of the formation water. All these parameters can be considered constant for a given 

rock/brine composition. The oil droplet is assumed fully insulating, possibly with a surface 

charge, and the capillary is water-wet. The streaming potential can thereby change as a function 

of particle radius and gap width between the particle and the capillary. Since the size of the oil 

particle directly indicates saturation, the possible relationship between two-phase streaming 

potential and water saturation must be examined.   

In the derivation of the model first presented by Sherwood, it is assumed that lubrication 

theory can be applied. For this assumption to be valid, a few conditions must be met: The Debye 

length 𝜅−1 is much smaller than the minimum gap width ℎ0, which again is much smaller than 

the radius of the particle 𝑅𝑝. There is only a slight difference between the particle radius and 

capillary radius. I.e.:  

- 𝜅−1 ≪ ℎ0 

- ℎ0 ≪ 𝑅𝑝, ℎ0 ≪ 𝑅𝑐 
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The minimum value of ℎ0 is only limited by maximum Debye length. The mathematical 

expression for the Debye length comes from the linearized Poisson-Boltzmann equation, where 

we have, from equation (3.3.10):  

  𝜅−1 = (√
𝑒2

𝜀𝑘𝐵𝑇
∑ 𝑛𝑖

0 ∙ 𝑧𝑖
2

𝑖 )

−1

.  

For monovalent salts, this equation can be simplified to (Butt et al., 2006): 

  𝜅−1 = (√
2𝑐0𝑒2

𝜀𝑘𝐵𝑇
)

−1

, 

where 𝑐0 is the brine salinity in 𝑚𝑜𝑙/𝐿. If all factors are quantified for water at 400 𝐾, the 

Debye length can be expressed as  

  𝜅−1 =
3.41

√𝑐0
 𝑥10−10 𝑚.  

For formation brine salinity of 200 000 𝑝𝑝𝑚 NaCl (McCartney & Rein, 2005), the 

corresponding Debye length is 𝜅−1 ≈ 2𝑥10−10 𝑚. For minimum salinity of 1000 𝑝𝑝𝑚 NaCl 

used in low salinity water flooding (Austad, 2013), the corresponding Debye length is 𝜅−1 ≈

2𝑥10−9 𝑚. Assuming much less than means at least one order of magnitude, this leads to ℎ0 ≥

2𝑥10−8 𝑚.  

 The minimum and maximum values for capillary radius is limited by realistic reservoir 

permeability. Permeability can be related to capillary radius by the bundle of tubes model. This 

model estimates the reservoir rock as a bundle of capillary tubes of radius 𝑅𝑐 and length 𝐿. The 

pressure gradient acts over the length 𝐿0 of the porous medium. The permeability can be 

expressed as:  

  𝑘 =
𝑛𝑅𝑐

2

8𝜏2 ,  

where 𝑛 is the porosity and 𝜏 =
𝐿

𝐿0
 accounts for the tortuosity of the tubes. For the case with 

only one capillary tube, we have 𝜏 = 1 and 𝑛 = 1, which yields 

  𝑘 =
𝑅𝑐

2

8
,  

 

 

(6.1.1) 

(6.1.2) 

(6.1.3) 

(6.1.4) 



50 

 

or 

  𝑅𝑐 = √8𝑘.  

Permeability of producible oil reservoirs on the NCS typically range from 100 𝑚𝐷 up to the 

order of 10 𝐷. The capillary radius is thus limited by 𝑅𝑐𝑚𝑖𝑛 ≈ 10−6 𝑚 and 𝑅𝑐𝑚𝑎𝑥 ≈ 10−5 𝑚. 

At the same time, the particle radius must remain at least ten times greater than the minimum 

gap width.  

The limiting values to ensure that the conditions for the derivation are met are summarized 

in Table 1:  

Parameter Minimum Value Maximum Value Limited By 

𝜅−1 10−10 𝑚 2𝑥10−9 𝑚 Brine Salinity 

ℎ0 2𝑥10−8 𝑚 10−7 𝑚 (Low perm.) 

10−6 𝑚 (High perm.) 

Debye length, droplet 

size, capillary radius 

𝑅𝑐 10−6 𝑚 10−5 𝑚 Permeability 

𝑅𝑝/ℎ0 10 −  Lubrication theory 

Table 1 Limiting values for lubrication theory. 

In order to investigate a possible relationship between streaming potential and saturations 

for two-phase flow, we have to define the water saturation by the geometry of the sphere and 

the capillary. For one sphere in one capillary, the local water saturation can be defined as 

𝑆𝑤
′ =

𝑉𝑤

𝑉𝑐
,  

where 𝑉𝑤 is the volume of water and 𝑉𝑐 is volume of the capillary. The local water saturation is 

defined as the saturation in the capillary volume limited by the capillary walls and 3𝑅𝑐 as 

illustrated in Figure 6.1. The capillary volume is thus 𝑉𝑐 = 3𝜋𝑅𝑐
3. The droplet consists of oil 

and the surrounding phase is water. The local water saturation can further be expressed as 

  𝑆𝑤
′ =

𝑉𝑐−𝑉𝑜

𝑉𝑐
=

3𝜋𝑅𝑐
3−

4

3
𝜋𝑅𝑝

3

3𝜋𝑅𝑐
3 , 

  𝑆𝑤
′ (𝑅𝑐, 𝑅𝑝) =

𝑅𝑐
3−

4

9
𝑅𝑝

3

𝑅𝑐
3 . 

(6.1.5) 

(6.1.6) 

(6.1.7) 

(6.1.8) 
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Figure 6.1 Definition of the local water saturation 𝑆𝑤
′ (𝑅𝑐 , 𝑅𝑝). Lengths are not to scale. 

 To achieve an understanding of how the streaming potential varies with saturations, an 

example calculation of the model for spherical particle is carried out using typical values from 

experimental measurements performed by Vinogradov et al. (2010) and by Al-Mahrouqi (2016) 

in addition to Black et al. (2013).  

Parameter Value Comments 

휀𝐿𝑆 7𝑥10−10 𝐹/𝑚 𝐿𝑆: ~2000 𝑝𝑝𝑚 ≈ 0.04 𝑀 𝑁𝑎𝐶𝑙 

휀𝐻𝑆 2.7𝑥10−10 𝐹/𝑚 𝐻𝑆: ~200 000 𝑝𝑝𝑚 ≈ 4 𝑀 𝑁𝑎𝐶𝑙 

휁𝑐 −6𝑥10−3 𝑉  

휁𝑝 −10𝑥10−10 𝑉  

𝐿𝑐 0.07 𝑚  

𝑣 10−3 𝑚/𝑠 (12 𝑚𝑙/𝑚𝑖𝑛) For core dimensions 𝑅 = 1.9𝑐𝑚 𝐿 = 7𝑐𝑚 𝑛 =

0.18 

𝜆𝐿𝑆 0.5 𝑆/𝑚 𝐿𝑆: ~2000 𝑝𝑝𝑚 ≈ 0.04 𝑀 𝑁𝑎𝐶𝑙 

𝜆𝐻𝑆 25 𝑆/𝑚 𝐻𝑆: ~200 000 𝑝𝑝𝑚 ≈ 4 𝑀 𝑁𝑎𝐶𝑙 

휂 10−3 𝑃𝑎 ∙ 𝑠  

Table 2 Values used for calculation of two-phase streaming potential (spherical model). 
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 The electric potential at the interface between a sandstone and brine (휁𝑐) is often 

negatively charged. Potentials at solid-brine interfaces for carbonates are often positive, but can 

be negative depending on pH and dissolved ions in the brine. A negative 휁𝑝 at the oil-brine 

interface is common, and it is often more negative than the potential at the solid-brine interface 

(Al-Mahrouqi, 2016).  

The results are plotted for different capillary radii to illustrate different values of 

permeability, where 𝑅𝑐 = 1 𝜇𝑚 corresponds to 𝑘 ≈ 100 𝑚𝐷 and 𝑅𝑐 = 10 𝜇𝑚 corresponds 

to 𝑘 ≈ 10 𝐷. The first plot presented include the local water saturation as defined by equation 

(6.1.8) and Figure 6.1, where the lowest value of 𝑆𝑤
′  is limited by the minimum value of ℎ0 and 

the maximum value is limited by 𝑅𝑝/ℎ0.  

 

Figure 6.2 Normalised streaming potential vs. local water saturation for different capillary radii. 

This plot shows two-phase streaming potential by the model for a single spherical 

particle in a circular capillary. The different lines represent different capillary sizes. The so-

called local water saturation 𝑆𝑤
′  depends on the droplet- and capillary size. The normalised 

curves are equal for all salinities, since only permittivity and conductivity of the water phase 

changes (oil phase is assumed insulating). The effect of the oil phase generally seems to be 

largest for small capillaries, which could indicate a dependence on permeability. However, on 

closer inspection this effect appears because the local water saturation is not only a function of 

the particle radius, but also capillary radius and minimum gap width.  
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The oil saturation for a single particle could alternatively be expressed as the ratio 

between particle radius and capillary radius. Then, 1 −
𝑅𝑝

𝑅𝑐
 can express some sort of water 

saturation. In this case, we see that the streaming potential is independent of capillary size 

(permeability). This agrees with the experimental results of Sprunt et al. (1994).  

 

Figure 6.3 Normalised streaming potential vs. (1 − 𝑅𝑝/𝑅𝑐), where 𝑅𝑝/𝑅𝑐 represents the droplet size compared to capillary 

radius. 

For the fluid velocity and zeta potential difference applied here, there appears to be 

essentially no change in streaming potential for a water-wet capillary partially filled with oil. 

Even for a higher difference between 휁𝑐 and 휁𝑝, or for higher values of 𝑣, the change in 

streaming potential due to the non-wetting oil phase will be close to zero for realistic values 

of 휁𝑐, 휁𝑝 and 𝑣. However, there is a clear trend in the plots even though the changes in streaming 

potential are small. As the oil droplet size increases, the streaming potential decreases. As the 

droplets become small, the effect of the second phase seems to disappear and the two-phase 

streaming potential approaches the single-phase streaming potential. It is likely that the model 

for a single particle in a capillary is too simple to capture the full effect of the oil phase. It is 

therefore necessary to perform a similar analysis of the model for a line of particles to see if the 

cumulative effect of many non-interacting particles creates a greater impact on the streaming 

potential.   
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6.2. A Line of Non-Interacting Spherical Particles 

The change in streaming potential caused by a line of 𝑁 non-interacting rigid spherical 

particles relative to single-phase is given by equation (5.2.46): 

  𝐸𝑙𝑖𝑛𝑒,𝑛𝑜𝑟𝑚 = 1 +
𝜋𝑅𝑐

2(𝜁𝑐−𝜁𝑝)√2𝑅𝑝ℎ0

8𝜁𝑐ℎ0(2ℎ0(𝐿𝑐𝑁−1−2𝑅𝑝)+𝑅𝑐𝜋√2𝑅𝑝ℎ0)
.   

Similar to the model for a single spherical particle, the model for a line of particles also depends 

on zeta potential on the capillary wall and on the particle in addition to applied pressure 

difference and the properties of the formation water. Predictably, this model also depends on 

the number of particles in the capillary. In the derivation of this model, the number of particles 

is assumed to be 𝑁 ≤ 𝐿𝑐/2𝑅𝑐 so that the total length of the line of particles is no longer than 

the length of the capillary. Based on laboratory measurements, this is a quantifiable size as we 

have the core plug length and capillary radius corresponding to permeability by the bundle of 

tubes model. We will investigate the relationship between the number of particles and the two-

phase streaming potential, in addition to the effect of particle size. The factors limited by 

lubrication theory still apply and the same permeability (𝑅𝑐) values are utilized. Thus to begin 

with, the values both from Table 1 and Table 2 are still valid.  

To account for the line of particles, the definition of water saturation in the capillary 

must be redefined. The total fluid volume is now equal to the capillary volume 

  𝑉𝑐 = 𝜋𝑅𝑐
2𝐿𝑐, 

and the volume of the oil phase is the cumulative volume of all 𝑁 particles 

  𝑉𝑜 =
4

3
𝜋𝑁𝑅𝑝

3.  

This gives the expression for the water saturation in the capillary as a function of the geometrics 

of a sphere within a circular tube and the number of particles: 

  𝑆𝑤(𝑅𝑐, 𝑅𝑝, 𝐿𝑐, 𝑁) =
𝑅𝑐

2𝐿𝑐−
4

3
𝑁𝑅𝑝

3

𝑅𝑐
2𝐿𝑐

.  

To achieve and expression for the streaming potential as a function of water saturation, 

equation (6.2.3) can be solved for 𝑁 

  𝑁 =
3𝑅𝑐

2𝐿𝑐(1−𝑆𝑤)

4𝑅𝑝
3 ,  

 

(6.2.1) 

(6.2.2) 

(6.2.3) 

(6.2.4) 



55 

 

and inserted into equation (5.2.46) to yield 

  𝐸𝑙𝑖𝑛𝑒(𝑆𝑤) = 1 +
𝜋𝑅𝑐

2(𝜁𝑐−𝜁𝑝)√2𝑅𝑝ℎ0

8𝜁𝑐ℎ0(2ℎ0(
4𝑅𝑝

3

3𝑅𝑐
2(1−𝑆𝑤)

−2𝑅𝑝)+𝑅𝑐𝜋√2𝑅𝑝ℎ0)

.  

 

 

Figure 6.4 Definition of water saturation for a capillary filled with a line of spherical particles 𝑆𝑤
′ (𝑅𝑐 , 𝑅𝑝, 𝐿𝑐 , 𝑁). 

 Once again, a numerical computation is carried out to investigate the relationship 

between streaming potential and saturation in a water-wet capillary. The results are plotted for 

different particle sizes to investigate if this alters the streaming potential as for the single particle 

model. Figure 6.5 illustrates the reduction in streaming potential caused by a line of charged 

rigid particles in a capillary normalised by the single phase water saturation. The values used 

here can be found in Table 2. For decreasing water saturation, the streaming potential decreases 

towards zero. The model is limited by the maximum number of particles 𝑁𝑚𝑎𝑥 =
𝐿𝑐

2𝑅𝑝
, which 

means that the model applies to water saturations above 0.5. It could seem like the SP-line 

would become negative for lower water saturations, but this will not happen for reasonable 

values of the zeta potentials as long as the limiting condition is met.  

(6.2.5) 
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Figure 6.5 Normalised streaming potential vs. water saturation for small and large droplets. In addition, the single phase 

water line is indicated. 

Here, large droplet refers to the largest droplet size in Figure 6.3 (1 −
𝑅𝑝

𝑅𝑐
= 0.01) and 

small droplet refers to the smallest (1 −
𝑅𝑝

𝑅𝑐
= 0.09). When a water saturation of 1 is reached, 

only the single phase streaming potential (Helmholtz-Smoluchowski) equation applies.  

As expected, the accumulated effects of all 𝑁 particles yields a significant change in 

streaming potential. For a water saturation of 50%, the non-wetting phase causes a reduction of 

the streaming potential by 90% compared to single phase water SP. This plot shows that the 

normalised two-phase streaming potential is effectively independent of droplet size, within the 

limitations of the model. The reason for this is not entirely clear. It could be that there is a very 

small effect of droplet size, but that the effect is dominated by the number of particles because 

that parameter is much larger.  

To investigate the effects of different combinations of surface charge, a similar 

computation was completed for different electrokinetic potentials on the particle. The results 

are presented in Figure 6.6.   
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Figure 6.6 Normalised two-phase streaming potential vs. water saturation for different values of zeta potential on the 

particle (휁𝑝). 

 Figure 6.6 shows the normalised streaming potential for different zeta potentials on the 

particles (휁𝑝). The zeta potential on the capillary wall has a constant value of 휁𝑐 = −6 𝑚𝑉. The 

contribution to the streaming potential from the rigid particles is negative for values of 휁𝑝 < 휁𝑐 

and positive for values of 휁𝑝 > 휁𝑐. When 휁𝑝 = 휁𝑐, the contribution from the particles is zero. 

This behaviour is expected and quite intuitive from the factor (휁𝑐 − 휁𝑝) in equation (5.2.46).  
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Chapter 7. Discussion  

 

In this chapter, we discuss the results from Chapter 6 and some observations from other 

published material and experimental results. This is done in an effort to achieve a better 

understanding of how a second phase alters the measured streaming potential, and to 

characterize the importance of water saturation and wettability.  

 

7.1. Results from Model Calculations and Experimental Data 

The most apparent results from the computations in Chapter 6 is that the streaming 

potential can be highly affected by two-phase saturations, for a strongly water-wet system. It 

could be argued that the streaming potential is unaffected by the presence of an immobile 

droplet or particle. For an immobile droplet in a water-wet capillary, the water phase can move 

along the wall around the droplet as a response to an applied pressure difference. Thus, the 

streaming current, and consequently the streaming potential, can be developed without any 

influence from the droplet. Several experimental studies (e.g. (Al-Mahrouqi, 2016; Rahbar et 

al., 2017)) have claimed that the measurable change in streaming potential for two-phase flow 

is exclusively caused by alteration of wettability. The analysis and numerical computations of 

the simple models for two-phase streaming potential presented here indicate that the streaming 

potential may be affected by other processes in addition to wettability.  

These models predict that the effect of oil saturation in a water-wet system can give a 

significant contribution to the total measured streaming potential. These contributions will be 

largest for particles/droplets with a zeta potential sufficiently different from the zeta potential 

on the capillary wall. It is possible that the model for a line of particles predicts reorganizing of 

the particles within the porous medium, not necessarily production of the oil phase. If this is 

the case, the model calculations do not necessarily contradict the previous experimental results, 

and the total effect on the electrokinetic coupling can be assigned to a combining effect of 

wettability alteration and reorganizing of charged particles.  
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7.2. The Effect of Particle (Drop) Boundary Condition 

The results from the analysis of the two-phase models indicate that a particle with no 

surface charge can generate a large impact on the total streaming potential, as long as there is a 

difference in electrokinetic potential on the capillary wall and the particle surface. However, 

for an uncharged spherical particle, the results might be different. Sherwood’s paper (2007) 

also includes an analysis of a spherical bubble with an uncharged, stress-free surface. The main 

difference between the cases of charged and uncharged surface is the fluid velocity boundary 

conditions. For the charged rigid particle presented in Chapter 5.2.1, we assumed no-slip 

boundary condition, which means that the velocity gradient close to the particle-brine interface 

is very large. However, for an uncharged bubble, the velocity gradient at the particle-fluid 

interface is assumed to be zero. It appears that the two different boundary conditions can have 

large effects.  

The streaming potential equation for the uncharged bubble is developed in a similar way 

as for the rigid particle in Chapter 6, with different boundary conditions. The resulting equation 

for a single bubble becomes (Sherwood, 2007): 

  𝐸𝑏𝑢𝑏𝑏𝑙𝑒 =
𝜀𝜁𝑐

𝜆

2𝜋𝑣√2𝑅𝑝ℎ0

ℎ0𝑅𝑐
.  

This is a factor of  
4ℎ0

𝑅𝑐
 smaller than the equivalent result for a charged rigid particle. The 

assumption that ℎ0 ≪ 𝑅𝑐 indicates that the effect of an uncharged bubble may be as much as 

one thousand times smaller than the effect of a charged rigid particle (considering ℎ0𝑚𝑖𝑛 ≈

2𝑥10−8 𝑚, 𝑅𝑐𝑚𝑎𝑥 ≈ 10−5 𝑚). Therefore, the effect of a line of uncharged bubbles will likely 

be very small compared to a line of charged particles. For a stress free bubble, we have the fact 

that  
𝜇𝜕𝑢𝑝

𝜕𝑦
= 0 at the bubble interface. Clearly, this gives a low velocity gradient close to the 

surface at the bubble and a low shear of the double layer close to the bubble surface. 

Consequently, the streaming potential contribution is much lower than for a rigid particle. 

 So, what is the correct boundary condition to use in a realistic situation? This clearly 

depends on the chemical conditions at the particle/bubble surface. The surface of a an oil bubble 

in water can contain hydrophilic polar head-groups and hydrophobic non-polar tails (see Figure 

7.1) (e.g. Shah (2012)). The roughness created by the hydrophilic head-group will create a large 

fluid velocity gradient near the interface. This will stretch the ions in the EDL, which will 

increase the effect on the streaming potential. For an uncharged surface with no velocity 

(7.2.1) 
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gradient near the interface, this stretching of the EDL will not occur to a similar degree, and the 

impact on the total streaming potential will consequently be much smaller. Therefore the 

analysis presented here indicates that mobilized oil in the pores may give an observable 

contribution to the streaming potential if the oil is charged (as most crude oil are), and a very 

low contribution if the oil is uncharged. This can be tested in experiments.  

 

 

Figure 7.1 Illustration of the surface of a charged particle of oil dispersed in water with corresponding fluid velocity profile. 

The small spheres on the surface represent polar head-groups with a non-polar tail. The fluid moves in 𝑧-direction with 

velocity 𝑣𝑧. The polar head-groups decrease the fluid velocity to zero close to the particle surface. 
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Chapter 8. Conclusion 

 

8.1. Concluding Remarks 

The total streaming potential in a water-oil system is likely a combination of effects 

from wetting, movement of charged particles (drops) and movement of uncharged particles 

(drops). The total effect depends on the interface properties, and in particular, the electrokinetic 

potential and surface charge on the particles. The effect of saturation probably lies somewhere 

between the large effect of charged particles and the small effect of the uncharged particles. 

Depending on boundary conditions, this can affect the total streaming potential significantly.  

 

8.2. Suggestions for Future Work 

In order to explain the effects of two-phase streaming potential in further detail, we 

propose that effects of the boundary conditions for charged and uncharged particles be further 

examined. This is important to investigate, as these conditions appear to be very important for 

the effect of oil saturation on two-phase streaming potential. In this thesis we have not 

considered the effect of two phase streaming potential in more realistic networks of pores. To 

our knowledge this has not been done, and would be valuable to pursue. These models must 

(most likely) be solved numerically, and then it is extremely important how the boundary 

conditions at the surface of the bubble is implemented. In addition, it would be very interesting 

to investigate the behaviour of the streaming potential in micromodels, both with a non-polar 

and a polar oil.  
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