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Abstract 

During severe oil price downturns, many operating companies reduce or eliminate large 

investments with long time horizons such as exploratory drilling campaigns. This reduction in 

investments forces rig and drilling services providers to reduce their bids to be competitive. The 

result of this is lower initial investment in the oil and gas projects. In this research, a valuation 

approach is implemented to study the impact of this investment reduction on the decision-making 

process for executing exploratory drilling campaigns during low oil price periods. It is 

demonstrated that postponing exploration campaigns during low oil price periods does not 

necessary maximize value creation.  

Value creation from investment in low price periods results from the combination of uncertainty 

and flexibility. The analysis of the value of flexibility (optionality) is usually referred to as Real 

Options Valuation (ROV). In this work, one of the most versatile approach for valuing options is 

applied: The Least-Square Monte Carlo Method (LSM). Two uncertainties were considered: oil 

price and drilling cost. Among the different oil price models, the two-factor stochastic price 

process developed by Schwartz and Smith (2000) was chosen because of its balance between 

realism and ease of communication to the managers. Drilling cost is modeled as a Geometric 

Brownian Motion process. By implementing a delayed correlation between the drilling cost and 

the oil price, the cost reduction observed in the market is accounted for.  

In this research, it is shown how real option valuation can be used to determine the optimal time 

to start the exploratory drilling campaign. Furthermore, it is demonstrated that by including the 

correlation between the drilling cost and the oil price, the optimal time to execute the investment 

is during the year with the lowest expected oil price. The impact of this correlation is studied 

through the use of sensitivity analyses of the project value with respect to the correlation factor 

and the parameters in the stochastic price model. It is concluded that considering this correlation 

leads to more realistic project value estimations, resulting in portfolio decisions that maximize 

stakeholder value.       

The key contribution of this thesis is the use of option valuating methods to demonstrate that value 

will be created by initiating the exploratory drilling campaigns during low oil price periods. The 
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real option model developed in this research is applicable to all types of exploration projects in the 

petroleum industry.  
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1. Introduction 

The price of crude oil, as other commodities, is governed by the supply–demand relationship in 

the markets. Low oil prices are signs of higher supply than demand, resulting from increased 

production levels or weakened demand (Geman, 2005). Current oil prices will consequently affect 

the investment policies of operating companies, forcing them to abandon expensive means of 

production. Among the companies’ portfolio, large investments that involve high uncertainty such 

as exploratory drilling campaigns are avoided. Rig providers and services companies observe a 

substantial decrement in the operational activity, and they are forced to reduce the bidding cost to 

subsist in such competitive market. This in turn will have a ripple effect of reducing the exploration 

cost within the industry. 

The exploration cost is a major expense for offshore projects. Therefore, a decline in the cost may 

have a major impact on the initial capital investment, positively impacting the overall value of the 

project. Although the correlation between oil price and drilling cost is clearly observed in the 

market, its effect on the project valuation has, to our knowledge, not been explicitly studied.  In 

this research, this correlation is implemented to appraise its impact on the decision-making process 

for executing exploratory drilling campaigns during low oil price periods. The objective is to 

investigate if postponing exploration investments, as most companies do, is a value maximizing 

decision.  

Prospects that involve high uncertainty are classified as “high-risk” in companies’ portfolio. 

However, uncertainty also implies the possibility of having better than expected outcomes. 

Rejecting projects that involve significant downside risk could prevent capital lost, but at the same 

time, by not investing in uncertain projects the company removes the opportunity of investing in 

a prospect with a positive expected value. Ignoring project uncertainties do not lead to portfolio 

decisions that maximize the stakeholder value. As discussed in Begg et al. (2002) among others, 

the traditional deterministic Discount Cash Flow (DCF) method fails to reflect these uncertainties, 

and assumes that the investment is a now-or-never decision, which does not reflect the flexibility 

that managers have of making future decisions with the future knowledge from revealed 

uncertainties during the project lifetime. Value creation from investment in low price periods 
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results from the combination of uncertainty and flexibility. The analysis of the value of flexibility 

is usually referred to as Real Options Valuation (ROV).  

ROV techniques have been applied before for studying the decision-making process in Oil and 

Gas (O&G) projects during oil downturns. For instance, Begg at al. (2004) implemented one of 

these methods to assess the abandonment decision during periods that oil price falls below the 

break-even value. They demonstrated that the return of investment can be increased when the 

uncertainties are included in the decision-making process. In this research, the most promising 

ROV method for solving real-world problems is implemented: The Least Squares Monte Carlo 

(LSM) approach developed by Longstaff and Schwartz (2001). This method is versatile and 

computationally efficient when multiple sources of uncertainty are considered.  

Uncertainties changing over time are addressed in the evaluation of capital investment by using 

stochastic processes. These are implemented within the ROV method to model uncertain variables 

in the cash flow.  The two uncertainties that typically have the largest impact on the Net Present 

Value (NPV) were considered in this study: the oil price and drilling cost. The two-factor stochastic 

price process developed by Schwartz and Smith (2000) was used to describe the behavior of oil 

prices because of its balance between realism and ease of communication. The drilling cost was 

modeled using a Geometric Brownian Motion (GBM) process, and it was assumed to be the main 

driver of the exploratory drilling campaign cost.  

By implementing the LSM approach, the optimal time to start the exploratory drilling campaign 

in an offshore study case is evaluated. This method has been used in previous studies to evaluate 

optimal decisions in O&G projects: Thomas and Bratvold (2015) illustrated the implementation of 

this method to find the optimal blowdown decision, whereas Alkhatib and King (2011) used it to 

determine the optimal time to start surfactant flooding in Enhanced Oil Recovery (EOR) projects.   

This research contributes to the literature of petroleum asset valuation in two aspects. First, it 

presents a ROV model for exploration projects that reflects the observed market correlation 

between the drilling cost and the oil price. Second, it implements the developed ROV model to 

demonstrate that value will be created by initiating the exploratory drilling campaigns during low 

oil price periods.  
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The first part of this dissertation illustrates the decision-making process in the exploration license. 

In the second section, the stochastic processes used for the oil price and the drilling cost, along 

with their correlation, are described. This is followed by the introduction of the ROV methods, 

including the LSM approach. Later the characteristics of the study case are specified, and the LSM 

implementation is defined. Finally, the findings, analysis, and conclusion are stated.  
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2. Offshore Exploration Projects Framework 

As discussed in the introduction, uncertainty combined with flexibility may lead to value creation. 

The first step in the process of building a ROV model is identifying the variables that the decision-

maker considers uncertain in the project, along with the flexibilities. In this chapter, decision trees 

are used to illustrate uncertainties inherent in the exploration projects, and the flexibilities the 

managers have along the exploration license. 

Hydrocarbon resources are usually explored through investment vehicles called partnerships. In 

this arrangement, investors provide capital and a selected member, called the operator, operates 

and manages the projects. Exploration licenses are usually awarded on a fixed–term basis. The 

partnership formed by a group of companies has the option to drill the identified prospects until 

the contract maturity. If commercial hydrocarbons are discovered, the partnership may decide to 

extend the license. Otherwise, the license is returned to the authorities (Jafarizadeh and Bratvold, 

2015).  

Every milestone during the lifetime of the exploration project has associated different 

uncertainties. These projects require comprehensive strategic analysis because they include three 

types of uncertainties. First, the technical uncertainties such as reservoir properties. Second, the 

economic uncertainties that impact the value of the field, and finally, the strategic uncertainty 

related to the action of competitors in the near-area to be explored (Dias, 1997)1. Available 

information is never enough to remove these uncertainties, leading to the implementation of 

probabilistic models. A decision tree illustrating the main decisions and uncertainties for an 

exploration project is shown in the Figure 1. The decision to invest in exploration wells comprises 

the uncertainties of the existence and volume of hydrocarbons. Geological information is used to 

assess a probability of success, which may be different for every single well. As the main purpose 

of the exploratory wells is to reduce or reveal the subsurface uncertainties, they represent 

investments in new information. These wells will be tested for some months, and then, plugged 

and abandoned. The decision to drill an exploration well should be based on its expected value, 

________ 
1 Dias (1997) illustrated that the operators have the option to postpone the execution of the exploratory campaign until 

results from other exploratory campaigns in the neighborhood are revealed. He implemented the game theory to argue 

that this may create an impact in the value of the exploration project. 
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calculated using the available information (Jafarizadeh and Bratvold, 2015). If economical feasible 

volume of hydrocarbons is discovered, the company should make the decision whether develop 

the field or sell the ownership of the license. Different development strategies are evaluated, 

considering the uncertainties in the production rates and the oil prices2.  

 

Figure 1 Decision tree representing the main decisions and uncertainties relevant for an 

exploration opportunity. Modified from Jafarizadeh and Bratvold (2015) 

Along the time to maturity of the exploration license, the partnership has the flexibility to decide 

when to execute the exploratory drilling campaign. This is known as waiting option in the ROV 

context, and it is illustrated in the Figure 2. Every year, the partnership should decide on whether 

to start the drilling campaign, or to wait until the next year and observe the behavior of the oil price 

over that period. The same decision will be faced the following year if they choose to wait, but 

then, the uncertainty in the oil price of that year will be revealed, impacting the estimations of the 

Net Present Value (NPV).     

________ 
2 Uncertainty in the oil price and production rates are represented as semi-circles in the Figure 1, indicating that they 

are modeled using continuous probability density functions. 
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Figure 2 Exploration decision tree illustrating the waiting option 

The NPV for each end–node is assessed by calculating cash flows from forward oil prices, 

production forecasts, tax rates, and costs. Figure 3 shows a typical cash flow diagram for 

development of a hydrocarbon discovery. The exploratory campaign represents the initial 

investment. After commerciality is determined, the company prepares the plan for development 

and operations, and delivers it to the government for approval3. The development expense includes 

the cost of facilities construction, drilling of production wells, and preparing downstream 

infrastructure. This expense depends on the size of the field, production strategy, number of 

production wells to be drilled, reservoir characteristics and distance to nearby fields, among others.  

After a period of development commonly called the lead time, first oil comes and positive cash 

flow starts to accumulate. Continuous operations require operational expenditure (OPEX), which 

consists of a fixed and a variable portion4.  

________ 
3 Regulations may change depending on the government. In the Norwegian Continental Shelf (NCS) the government 

shall approve the Plan for Development and Operations (PDO) before execution. 
4 Variable cost depends on the production rate and include processing and lifting cost, among others. Fixed OPEX’s 

are independent of the production rate, and involves expenses such as tariffs or labor cost 
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Figure 3 Typical cash flow diagram for an offshore exploration project 
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3. Stochastic processes 

Probability distributions are used to quantify the lack of knowledge on a system variable. Its 

implementation entails the shift from deterministic calculations to a probabilistic form, that allows 

to address the uncertainty inherent in the outcomes. For time-dependent uncertain variables, a 

probability distribution must be assigned for every single time-step along the interval to be 

evaluated. Hence, stochastic processes are implemented, and they are used in the evaluation of 

capital investment to describe uncertain variables in the cash flow model including the oil price, 

the operational cost, drilling cost, and the capital expenditure.   

The most commonly used stochastic process is the Geometric Brownian Motion (GBM). Initially, 

it was used in finance to model the stock price in the Black-Scholes model5, but now it has been 

implemented in different areas. It assumes that at the time t, the uncertain variable has a log-normal 

probability distribution with a variance that increases with the time, and the expected value grows 

or declines exponentially with a constant drift. An example for the value of a developed field is 

shown in the Figure 4. 

 

Figure 4 Example of GBM process for a developed field value. Taken from Dias (2004). 

However, the GBM process fails to reflect the price behavior of some commodities in the market. 

In a liquid market, when the price of a commodity is above the long-term equilibrium, the 

________ 
5 Introduced in 1973 by Fischer Black and Myron Scholes, the Black-Scholes model addressed the issue of estimating 

the value of European options. It is now implemented for stock and derivatives value estimations. 
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producers increase the investment in their production assets, raising the supply level. This 

production increment lowers the price to a long-term equilibrium. Similar effect is observed when 

the price is lower than the equilibrium level, driving down the supply level which leads to the 

increment in the commodity price. Thus, there is a mean-reverting force that is proportional to the 

difference between the spot price and the equilibrium level (Dias, 2004). The first mean-reverting 

model was introduced by Uhlenbeck and Ornstein (1930). It has been applied in several areas of 

study, and more recently for commodities pricing and petroleum valuation. As the GBM process, 

the uncertain variable has a lognormal distribution, but the difference is that the variance rises until 

a certain time, as shown in the Figure 5 for an oil price example. For this case, the variance grows 

until the time ti and then remains constant. The expected value decreases from a value Po towards 

the equilibrium price.  

 

Figure 5 Example of a mean-reverting process for an oil price case. Taken from Dias 

(2004). 

3.1. Oil price model  

Both stochastic models previously discussed have advantages and disadvantages when it comes to 

their implementation for oil price modeling. The GBM process is simple to implement and use, 

but it fails to reflect the mean-reverting behavior observed in the market. The Uhlenbeck-Ornstein 

(OU) model address this issue, but it assumes that there is not uncertainty in the long-term 

equilibrium. Pindyck (1999) studied the historical data of the oil price for 127 years, and concluded 

that the oil price is a mean-reversion process, that reverts to a long-term equilibrium that itself is 
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a stochastic process. Schwartz (1997) compared the performance of four models for describing the 

oil price behavior: GBM, UO model, two-factor model, and three-factor model. He demonstrated 

that the two-factor model outperformed the one-factor models (GBM and UO models).   

More recently, the short-term/long term (STLT) stochastic process developed by Schwartz and 

Smith (2000) has been the preferred approach in many implementations (Jafarizadeh and Bratvold, 

2012, 2013, 2015; Ozorio et al., 2013; Hahn et al., 2014; Thomas and Bratvold, 2015, 2017). This 

STLT model has been chosen for this work because it provides consistency and relative ease of 

implementation. It states that the oil price follows a stochastic process that consists of two 

uncertain variables, a short-term factor and a long-term variable. The former works as a mean-

reverting process to describe deviations from the equilibrium price (i.e. temporary supply 

disruptions), whereas the latter is defined as a GBM procedure which reflects the expectations of 

consumption of current reserves, the discovery of new reserves, or a technological change like the 

introduction of improved fracking methods. In this model, the log of spot oil price is the sum of 

the two uncertain elements:  

 t t tS exp                                                                   (1) 

where 𝑆𝑡 is the spot oil price, 𝜒𝑡 is the short-term component, and  𝜉𝑡 represents the long-term 

element. The short term is modeled as a mean-reverting process described in the risk-neutral 

version6 as: 

  *

t td dt dz                                                                (2) 

The short-term is a function of the volatility 𝜎𝜒,  risk premium 𝜆𝜒, and the mean-reversion 

coefficient 𝜅 that represents the rate that the short-term deviations will vanish. The long-term factor 

(𝜉𝑡) is modeled as a GBM process described in the risk-neutral version as: 

    *

td dt dz                                                                   (3) 

________ 
6 In traditional valuation, the discount factor applied accounts for risk and time. In the risk-neutral valuation introduced 

by Cox and Ross (1976), the stochastic processes of the uncertainties in the model are risk-adjusted, so the discount 

rate applied will only account for time value. This is done in the STLT model by subtracting the risk premium (λ).  
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The long-term is a function of the volatility 𝜎𝜉, risk premium 𝜆𝜉, and the drift 𝜇𝜉 which describes 

the rate that the long-term is expected to grow along the time, In the equation (2) and (3), 𝑑𝑧𝜒 and 

𝑑𝑧𝜉 are parameters that describe how the processes are incrementing along the time following a 

random process called the Browmian-motion. They are called increments of standard Brownian-

motion process, and they are correlated as: 

* *dz dz dt                                                                      (4) 

where 𝜌𝜒𝜉  is the correlation coeeficient between the two factors. To simulate the short-term and 

long-term factors, it is required to discretize equations (2) and (3).  Jafarizadeh and Bratvold 

(2012), and Davis (2012) proposed two different discretization methods. Although the methods 

differ in the formulation, they lead to the same simulated values. In this study, the discretization 

presented by Jafarizadeh and Bratvold (2012) is implemented. Hence, the discretize forms of the 

two factors are: 

 Δ Δt t t t t                                               (5) 

  
2 Δ

Δ Δ 1
1 Δ

2

t
t t

t t t

e
e e t


 

 


   

 


 




                          (6) 

where 𝜀𝜒 and 𝜀𝜉 are standard normal random variables, correlated by 𝜌𝜒𝜉 . In other words, when 

implementing this discretization, 𝜀𝜉 and 𝜀𝜒 are random numbers that are generated, and correlated 

between them. The model has a total of seven parameters, along with two initial conditions 

(𝜒𝑜 , 𝜉0), to be estimated.  

3.1.1. Calibration 

The parameters of the short-term and long-term equations are not directly observed in the market. 

To estimate them, a calibration method must be implemented that can deal with unobservable 

parameters.  Three calibrations methods for the STLT price process have recently been studied: 

The Kalman Filter, Sequential optimization, and Implied Estimation. Thomas and Bratvold (2017) 

compared the performance of the calibration methods, and concluded that the operating company 
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should select the method that reflect its point of view on the future oil prices. The Kalman filter or 

Sequential optimization methods is preferred if the company considers that the future oil price is 

better described by using historical and current futures data. On the other hand, the Implied 

Estimation should be chosen if the decision maker considers that the oil price model should portray 

the current market beliefs about the future oil price.  

In this work, we assume that the decision maker is a public company7.The overall value of the 

company is the financial market value of its assets. These values depend on uncertainties; hence, 

the stochastic models used in their valuation should reflect the market beliefs on the underlying 

uncertainties (Thomas and Bratvold, 2017). The Implied Estimation method was chosen in this 

investigation to calibrate the STLT model. Thus, the oil price uncertainty will embed the market 

beliefs regarding its future behavior, and an economical evaluation based on this, will lead to a 

value of the exploration prospect that is consistent with the current financial market concerns and 

expectations. This approach uses current market information about future price levels. In the 

market, crude is traded through spot contracts and future contracts8. Additional market information 

can be obtained from financial tools as the options on future contracts9. If an efficient market is 

assumed, this information reflects the perception of the participants in the market about the supply-

demand relation in the future. Schwartz and Smith (2000) mentioned that the far-maturity future 

contracts can provide an insight about the long-term factor, and the spot and near-maturity future 

contracts provide information about the short-term factor. Using the STLT model, they derived the 

mathematical framework for valuing a future contract as follows: 

    ,0 0 0

T

Tln F e A T                                                            (7) 

where A(T) is given by: 

________ 
7 The shares of a public company are traded at a public exchange such as NYMEX or the Oslo Stock Exchange. 
8 Spot contracts are set for delivering the crude immediately. Future contracts are set for delivering the crude in a 

specific time, with pre-determined oil price.  
9 An option is a financial derivative whose value depends on an underlying variable, in this case, a future oil contract. 

It gives the buyer the right, but not the obligation, to buy or sell a predetermined asset. 
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         
2

T 2 T 21
1 1 2 1

2 2

TA T T e e T e
      

  

    
  

  

  
 

          
 

            (8) 

The value of the future contract with time to maturity T in the time zero (t=0) is denoted as 𝐹𝑇,0. 

Based on Schwartz and Smith’ ideas (Schwartz and Smith, 2000), Jafarizadeh and Bratvold (2012) 

developed and implemented a method to calibrate the STLT model based on current spot contracts, 

future contracts and options on future contracts. This method is implemented using market data 

information observed on 19 October 2016. Details of the implementation are shown in Appendix 

1. Results from the calibration are shown in the Table 1 and illustrated in the Figure 6.   

Table 1 Parameters for the Two-factor price process  

Parameter Value 

𝜎𝜀 7% 

𝜇𝜀
∗ 0,96% 

𝜅 1,16 

𝜎𝑥 33,50% 

𝜌𝜀𝜒 0,34 

𝜆𝑥 0 

𝜉0 4,03 

𝜒0 -0,11 
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Figure 6 Oil price probabilistic model calibrated with data from 19 October 2016  

3.2. Drilling Cost  

The expenditures for drilling campaigns consist of the rig cost, drilling service fees, and man-hour 

expenses. These projects usually have low to medium capital requirements in a company’s 

portfolio compared with the costs of major field developments. Yet perhaps because of 

uncertainties in finding hydrocarbons, such projects are often the first to undergo budget cuts 

during unfavorable economic conditions. During low price periods drilling campaigns are 

suspended, causing a decrease in demand for rigs and drilling services. This will in turn force the 

rig and service providers to reduce their rates. This correlation is clearly observed in the market.  

For instance, the demand of rigs with respect to the oil price is illustrated in Figure 7, where the 

international rig counts and the oil price from January 1995 to February 2017 is displayed.  
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Figure 7 International Rig count. Taken from: http://www.wtrg.com/rotaryrigs.html 

Willigers (2009) studied the relation between rig rates and oil price from 1995 to 2008. He 

determined correlation factors analyzing two types of rigs (Jack up and semi-submersible) in the 

Gulf of Mexico and the North Sea. The highest correlation factor was observed between the rig 

rates and the oil prices of the year before (close to 0.9), whereas the correlation factor without the 

time offset was less than 0.8. Results are shown in the Figure 8, where the rig rates are offset by 

one year with respect to the oil price.  

 

Figure 8 Historical development of oil price, rig rates and steel prices in the US market. 

Taken from Willigers (2009) 
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In the risk–neutral valuation model, uncertainties can be categorized as market uncertainties (that 

can be hedged in the market, such as oil price) or private uncertainties (that cannot be hedged using 

market instruments, such as production levels). The market uncertainties are modeled using risk-

adjusted probabilities and private uncertainties using assessed probabilities based on expert’s 

beliefs or preferences (Smith and Nau, 1995). Drilling cost is a private uncertainty that also 

depends on oil market conditions, and its modelling includes the estimation of subjective 

probability10 conditional on the oil price (Smith, 2005). In this research, the total cost of the drilling 

campaign is modeled using a GBM process, described by the following differential equation:  

𝑑𝜃 = 𝜇𝜃𝜃𝑑𝑡 + 𝜎𝜃𝜃𝑑𝑧𝜃                                                         (9) 

where 𝜃 represents the cost of the exploratory drilling campaign, 𝜇𝜃 is the drift, 𝜎𝜃  is the volatility, 

and 𝑑𝑧𝜃 represents the Brownian increment. As discussed by Lima et al. (2005), the Equation 9 

can be discretized as:  

𝜃𝑡+1 = 𝜃𝑡𝑒
[(𝜇𝜃−0.5𝜎𝜃

2)𝛥𝑡+𝜎𝜃𝜀𝜃√𝛥𝑡]                                              (10) 

where 𝛥𝑡 represents the time increment, and 𝜀𝜃 is the standard normal random variable. The 

exploration cost is a private uncertainty that depend on the market. Smith (2005) stated that the 

stochastic process that describes this type of uncertainties should be assessed based on expert’s 

opinion, and directly correlated with the market uncertainty (i.e. the oil price). Parameters for the 

cost of the exploratory drilling campaign in this research are shown in Table 2. The values of these 

parameters are determined by the local market, and the type of field.  For instance, the supply-

demand relationship of drilling services is not the same in a broad market such the North Sea, 

compare with a narrow market, i.e. the Caribbean Sea in Colombia. In addition, the calibration 

should account for the type of field to be explored, since the market conditions for land fields are 

different than for offshore prospects.  

 

 

________ 
10 Subjective probabilities are estimated based on expert’s opinion (not the information offered by the market) and 

they can explicit consider the effect of risk (Jafarizadeh and Bratvold, 2009).  
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Table 2 Parameters for the GBM process for the cost of the exploratory drilling campaign.  

Parameter Value 

𝜃0 280 Million 

𝜇𝜃 3% 

𝜎𝜃 20% 

3.2.1. Correlation 

As mentioned before, the exploration cost uncertainty is correlated with oil price. However, the 

oil price is composed of two uncertain variables that are themselves correlated: the short and long-

term factors. The changes in the exploration cost are more affected by the variations in the short-

term component in the spot price, than by the long-term equilibrium factor, because the exploratory 

drilling campaign can only be executed until the exploration license maturity11, which is a 

relatively short time frame. For that reason, the stochastic process of the exploration cost (Eq. 10) 

will be correlated with the short-term factor (Eq. 6). This is implemented by correlating the normal 

random variables of the processes (𝜀) as described by Wiersema (2008): 

𝜀𝜃 = 𝜀𝜒𝜌𝜃𝜒 + 𝜀√1 − 𝜌𝜃𝜒
2                                                   (11) 

Same equation is used to correlate the short-term factor with the long-term factor in the STLT 

model. The correlation factor found by Willigers (2009) is used in this research (𝜌𝜃𝜒 = 0.89). 

Nevertheless, this correlation factor was estimated for the North Sea and the Gulf of Mexico, and 

it may be different depending on the market location. Hence, a sensitivity analysis for the 

correlation factor is included in this research.   

________ 
11 The duration of the exploration license is different for every country. In this research, the exploration license is 

assumed to be five years.  
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4. Real Option Valuation (ROV) 

The dissatisfaction of corporate strategists and some academics with the traditional techniques of 

capital budgeting stimulated the search for new solutions as the ROV techniques (Trigeorgis, 

1996). They realized traditional methods, as the Discount Cash Flow (DCF), fail to account for the 

flexibility that managers have for making decisions in the face of revealed uncertainties. The DCF 

method assumes the investment is a go/no-go decision, considering a passive strategic attitude 

from the manager, in the base of an expected cash flow.  These assumptions differ from the 

corporate reality, where an uncertain cash flow is a function of underlying uncertainties. As new 

information arrives and the uncertainties start to be revealed, the managers have the flexibility to 

change their initial strategy, seeking for increasing the value of the project or mitigating possible 

losses. Managers often consider this operating flexibility as valuable as direct cash flow 

(Donaldson and Lorsch, 1983).   

The term Real Options was introduced by Stewart C. Myers in 1977 (Myers, 1977), who suggested 

that valuation techniques for financial options can be applied to evaluate corporate projects. A call 

option12 is a financial contract that offers the buyer the right, but not the obligation, to pursuit a 

stock by a pre-determined price (Exercise price). The time that the buyer can exercise the option 

depends on the type of option. American options can be exercised anytime until the option expires, 

whereas European options can only be exercised at the maturity time. It is a financial derivative 

used for hedging the risk that the underlying stock price falls. The strategy pattern observed in 

most of O&G projects, including the study case in this thesis, is similar to the American option 

pattern. When an operating company is awarded with an exploration license, it has the right, but 

not the obligation, to perform exploration activities in a specific area, until the license expires. The 

operating company has the flexibility to start the exploration campaign any year along the license. 

This flexibility is comparable to the flexibility of the financial option’s buyer. The decision to 

exercise the financial option depends on the uncertain stock value, while the decision to start the 

exploration campaigns depends on the uncertain cash flow of the project.  

________ 
12 Financial options are divided in call and put options. Call option gives the buyer the right to buy the stock, whereas 

the Put option gives to the holder the right to sell it.  
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The major breakthrough in the valuation of financial options was done by Black, Scholes and 

Merton in 1973 with the introduction of their Nobel-prized formula for valuation of European 

options. Early ROV methods were built based on that. However, two main issues arise in their 

implementation to the corporate field. First, the European option can only be exercised at the end 

of the maturity time, which is not the case for projects where strategic decisions are made anytime 

during the project life-time; and secondly, the formula assumes that the underlying stock price 

follows a GBM process. This is not applicable for O&G projects since their value depend on the 

oil price which is not described by a Brownian Motion. In this chapter, it is described how these 

issues were overcome, leading to the development of the ROV methods available nowadays. 

Moreover, the different numerical solutions will be shortly explained, to finally focus on the Least-

Squares Monte Carlo method, which will be applied in this dissertation.  

4.1. ROV Methods 

Classic Approach 

Early ROV models were developed based on valuation of the European Options using the Black-

Scholes formula. This formula assumes that if two financial assets embed the same risk, and have 

the same cash-flow pattern, they should be traded with the same price in the market. Thus, the 

value of the financial option can be indirectly estimated if a portfolio of known traded assets with 

similar behavior is found. This assumption is appropriate for financial options, but it is improper 

for corporate assets. For valuing the real option, a replicate portfolio of financial assets that reflect 

the cash-flow behavior of the corporate project should be built. For most of the O&G cases, the 

return of the real option cannot be mimicked by a portfolio of traded assets. In addition, as 

mentioned before, the Black-Scholes formula assumes that the underlying asset price follows a 

GBM process, which does not apply for projects in the petroleum industry. Further attempts to 

overcome the issue of reliance on market information lead to the development of a “subjective 

approach”. This relies on the same assumptions of the classic approach, but it replaced the market 

information for subjective information (experts’ opinion). Nevertheless, this method was not well 

accepted since it combines assumptions of the replicating portfolio method, with subjective input 

that is not based on such portfolio (Borison, 2005, Jafarizadeh and Bratvold, 2009).  
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Marketed Asset Disclaimer Approach 

Copeland and Antikarov (2001) proposed the Marketed Asset Disclaimer (MAD) method to 

overcome the challenges of the replicating portfolio approach. They stated that if the real option is 

traded in the market, the present value of future cash flows without considering flexibility is the 

best unbiased estimation of its market value. Subjective information is used initially to calculate 

the NPV, and a single probability distribution is calculated based on expert’s opinion (Copeland 

and Antikarov, 2001). The resulted distribution is then implemented in a binomial lattice. 

Implementation of binomial lattices is expanded in the next section of this chapter.  

The only market information used in this approach is the market stablished discount rate to 

calculate the NPV without flexibility. The rest of the information is based on experts’ opinion. 

Jafarizadeh and Bratvold (2009) summarized the disadvantages and advantages of this method.   

The main drawbacks of this method are: 

1. The extensive use of subjective information.  

2. It ignores the fact some uncertainties depend on capital market information. Therefore, this 

method is suitable for projects involving uncertainties unrelated with the market.  

3. The assumption that the project value follows a GBM process. As Jafarizadeh and Bratvold 

(2009) stated, there are not arguments to believe that the subjective evaluation in the MAD 

approach can lead to results that follow a Brownian motion.  

4. Aggregating all market uncertainties into a single volatility makes it hard to do sensitivity 

analysis on individual uncertainties 

They stated this method has two main advantages: as argued by Smith (2005), it is eminently 

applicable for some particular ROV situations (scaling options). Second, it closely mimics the 

well-known classical DCF approach, making it relatively easily accessible to practitioners familiar 

with the DCF approach 

The integrated Approach 

Projects in the O&G industry combine different type of uncertainties as illustrated previously in 

the Chapter 2. They can be categorized as: technical uncertainties (i.e. production levels); 
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uncertainties that can be hedge in the market (as the oil price); or private uncertainties that depend 

on the market (i.e. drilling cost). Such characterization of the uncertainties is the base for the 

Integrated Approach. It was elaborated by Smith and Nau (1995), Smith and McCardle (1999), 

Smith (2005), and Brandao et al. (2005b). It combines the decision analysis paradigms with option 

pricing methods.  

Market uncertainties are assessed using probabilities derived from traded instruments. Thus, since 

these probabilities are calibrated using market instruments, the resulting parameters include the 

market’s “view” of risk. These are called “risk-neutral” probabilities, and adding risk adjustment 

to the resulting probability distribution would be to “double-dip” in risk (Thomas, 2017). Private 

uncertainties are evaluated using experts’ opinion, and they will also embed the associated risk. 

Uncertainties that fall between private and market uncertainties, are evaluated using subjective 

probabilities conditional on market conditions (Smith, 2005). As the probability distributions of 

the modeled uncertainties includes the relevant risks, the cash flow calculated based on them 

should be discounted using a rate that accounts for the time-value of money only, usually referred 

to as the “risk-free rate”.  

4.2. Numerical solutions for ROV 

Prior to implementing a ROV method, two steps should be performed (Thomas, 2017):  

1. Determining flexibilities in the project, meaning decisions, or options, that can be exercised 

when uncertainties are revealed  

2. Identification and quantification of uncertainties in the model13.   

As discussed earlier, the Black-Scholes formula is an inadequate tool for modeling and valuing 

real world options. These limitations have led to research and improved implementation of 

numerical procedures for calculating the value of the options. In the following, the main 

approaches are discussed.  

________ 
13 For the current research study, flexibilities were illustrated in Chapter 2, and the uncertainties were identified and 

quantified in Chapter 3.  
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Finite Difference Methods 

The finite difference approach can be applied if the time development of the option value is 

described by a set of partial differential equations (Schulmerich, 2005). Numerically, by the use 

of finite difference methods, solving these equations provides the option value. In the finite 

difference methods, the differential equation is discretized in a grid. Initial and boundary 

conditions are determined. Trigeorgis (1996) defined the Finite Difference Method as more 

mechanical, requiring less intuition than lattice approaches, with the disadvantage that if the partial 

differential equations describing the value of the real option cannot be specified, this method 

becomes incompetent.  

Decision Tree Approach 

Decision trees are tools used to structure decision-making contexts. They can be employed to solve 

dynamic programming problems in the ROV methods. Hence, they are implemented to price 

sequential investment decision in which management decisions and the uncertainties are resolved 

at discrete points of time (Schulmerich, 2005). They provide advantages over the Finite Difference 

methods. First, they illustrate the uncertainties and decision nodes in the ROV problem, providing 

clarity and communication. Second, as Brandao et al. (2005a) argued, the decision tree approach 

is easier to inspect than more complex models, allowing a faster identification of issues in the 

model. Third, different authors have recognized that decision trees are more intuitive than the finite 

difference approach (Trigeorgis, 1996; Schulmerich, 2005; Brandao et al., 2005a; Bratvold and 

Begg, 2010).  

Copeland and Antikarov (2001), and Brandao et al. (2005a) converged in the following steps to 

build a decision tree for a ROV problem. Start by calculating the NPV of the project without 

flexibilities. Second, evaluate the uncertainties in the model based experts’ opinion, and combine 

them to calculate the variability of the NPV. Brandao et al. (2005b) proposed a method to 

incorporate the uncertainties into a single stochastic process for the expected value of the project. 

Finally, the distribution of the NPV is used to build a risk-neutral binomial tree (Brandao-Hahn-
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Dyer approach), or a binomial lattice (MAD approach)14.  The option price is calculated at each 

node of the tree, and the overall real option value is estimated using a roll-back procedure15. The 

previous steps account for market uncertainties. If private uncertainties are included, a chance node 

per every private uncertainty should be included. This constitutes one of the disadvantage of the 

decision tree approach. If the model includes several private uncertainties, the approach suffers 

dimensionality issues. The second drawback is the challenge to incorporate different market 

uncertainties in one single stochastic process, especially when those market uncertainties are 

described by high dimensional stochastic process (Smith, 2005; Brandao et al., 2005b).  

Monte Carlo Simulation Approach 

Monte Carlo (MC) simulation is widely used in the O&G industry for solving problems where the 

input values are uncertainties with probability distributions. It is based on performing the 

calculations N times, sampling different values from the probability functions used to represent 

the uncertain variables. In the ROV context, N trajectories for each uncertainty in the cash flow 

are simulated, and then, they are used to estimate a probability distribution for the value of the real 

option. The MC approach is appropriate for valuing options that are path-dependent or involve 

many underlying uncertainties (Willigers and Bratvold, 2009).  

Boyle (1977) introduced the implementation of MC approach for valuing European options. 

However, this approach cannot be implemented for corporate options in which the optimal strategy 

is unknown. Therefore, more recent researches have been focused in the valuation of options that 

can be exercised anytime during the maturity time, where the MC approach allows for asset 

optimization (i.e. determining the optimal decision policy16) to be separated from the price-

evolution model (Willigers et al., 2011). The optimal solution is calculated comparing the expected 

future value of the different alternatives at each decision point, conditioned in the revealed 

uncertainties up to that time. This recursive optimization approach, usually referred as dynamic 

________ 
14 Decision trees (DT) differ from Binomial Lattices (BL) in that the decision nodes are illustrated in the DT whereas 

those are implicit in the BL. Furthermore, the BL assumes a Markov process which means that it does not matter how 

you reach a given node in the lattice, the resulting value will be the same (Bratvold and Begg, 2010).  
15 The rolling back is the common procedure to solve dynamic programing using a decision tress structure. It starts 

with the rightest part of the tree. Then it moves backwards, calculating the expected value and the optimal decision. 

(Bratvold and Begg, 2010)   
16 The term “Optimal policy” is used to define the decision that yields the highest value of the project.  
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programming (Dixit and Pindyck, 1994), uses the same principle than the “rolling back” procedure 

implemented in the decision tree approach. However, as Cortazar (2000) argued, the advantage of 

the MC method is the ability to handle the uncertainties, even when they involved complex 

stochastic models.  

4.2.1. Least Squares Monte Carlo  

Early MC approaches were developed for real options that are exercised in a pre-determined date 

(as the European Options). Later work was focused on options that are exercised anytime during 

the life-time of the project, which better reflects corporate reality. Introduced by Longstaff and 

Schwartz (2001), the Least-Squares Monte Carlo (LSM) has been the most used approach in the 

O&G industry during the last years (Smith, 2005; Willigers and Bratvold, 2009; Hem, at al. 2011; 

Willigers, et al, 2011; Alkhatib and King, 2011; Jafarizadeh and Bratvold 2012, 2013; Thomas 

and Bratvold, 2015). It starts by building a Monte Carlo simulation model that includes all relevant 

uncertainties in the model. Running the Monte Carlo model generates a range of outcomes for the 

possible values of the project without options. Then, the optimal policy is determined in every 

decision node by comparing the expected NPV if the option is exercised at the time t, with the 

expected value if the decision is to wait. The expected value of waiting, usually referred as the 

continuation value, is calculated by using a least-squares regression, where the dependent variable 

is the NPV if the option is exercised in the time t+1, and the independent variables are the 

underlying uncertainties revealed at time t. The LSM algorithm is illustrated using the research 

case in the chapter 6, LSM implementation. 

Thomas (2017) summarized the five main advantages of this method:  

1. It has been proved its accuracy in valuing options (Clement et al., 2002; Moreno and Navas, 

2003; Stentoft 2004a, 2004b).  

2. The decision structure can be represented using decision trees to improve communication 

and clarity.  

3. High-dimensional stochastic process for modeling the underlying uncertainties can be 

easily combine into the model by simulating them individually (Brandao et al., 2005b; 

Smith, 2005).  
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4. Compared to the decision tree approach, it does not suffer from the curse of dimensionality, 

which means that it can incorporate several uncertainties and decision nodes (Willigers and 

Bratvold, 2009).  

5. It provides different tools for asset optimization such as decision maps, or optimal-time 

histograms17, that creates an additional insight of the decision-making process to managers.  

Nevertheless, the method has some disadvantages compared with the decision tree approach. 

Brandao et al. (2005b) described the drawbacks of the LSM approach. First, it is more prone to 

include programming errors, but these can be minimized by using decision trees to state the 

problem, thus avoiding modeling errors; and secondly, the mathematical framework is more 

complicated, and it may seem as a “black box” to the managers. The advantages of this method 

were the reason to choose it for this work. Moreover, it will provide an additional value for 

estimating the optimal time to start the exploratory drilling campaign, by using the optimal-year 

histograms.   

  

________ 
17 Charts where the frequency of the optimal time to exercise the option is displayed.  
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5. Study case 

An offshore exploration license located in an unexplored area is awarded to an oil company. The 

expiration date is five years out. The current market conditions are unfavorable. Due to the 

relatively low oil price, oil companies are implementing cost-cutting policies and expensive 

investments are being postponed. The company must decide whether to start the exploration 

campaign now, or wait to see if the oil price improves. This was illustrated previously in Figure 2. 

The estimated lead time is 10 years. Based on seismic data, geologists have estimated the 

probability of success of 20% for the wildcat well.  The company used available information to 

estimate the prospect properties shown in the Table 3. Besides, it decided to use a risk-free rate of 

5%. The cash flow model was described in the Figure 3, and its calculation is detailed in the next 

chapter.  

Table 3 Properties of the study case 

Parameter Value 

Reserves 100 MSTB 

Variable OPEX 15 USD/bbl 

Fixed OPEX 10 MUSD/year 

Production life 30 years 

Development cost 500 MUSD 

The managers have observed that rig providers and drilling services companies are willing to 

reduce their cost, to maintain a minimum level of operations during the current market conditions. 

Motivated by this significant reduction in the investment, the company wants to evaluate the 

optimal time to start the exploratory drilling campaign, considering that if the oil price increases, 

the investment would also increase, and the overall value of the project might be affected.  

Even if the prospect has an attractive value, not all operators would be able to make the investment. 

The financial position of the company influences the investment policies in its portfolio. Large 

investments that involved high uncertainty as the exploration campaigns are classified as “high-

risk” projects, and may not be considered in the portfolio of small companies, or companies with 
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a limited cash-reserve. In that case, the exploration campaign may make a larger dent in its overall 

viability and value, leading to a risk-averse attitude of the company. 

In this work, we assume that the operator has access to good prospects and has a high overall value 

and large cash reserves (compared to the investment on the exploration campaign). This is the 

group of companies that can create value during the low-oil price, and they are usually involved 

in large merges and acquisitions, seeking opportunities to take advantage of the crisis to increase 

their assets. Therefore, an offshore drilling campaign represents a small percentage of their 

portfolio, and in the valuation context, their decision-makers can be assumed to be risk-neutral 

(Bratvold and Begg, 2010).     
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6. LSM implementation 

Every year, the company face the decision of whether to start the exploratory drilling campaign, 

or wait until next years to execute it. This decision should be made based on the expected value of 

the two alternatives. Therefore, calculating the total expected value of the project implies that the 

optimal decision policy over time has been evaluated using a dynamic programming solution. The 

step-by-step implementation of the LSM algorithm is described in this chapter. In this work, the 

algorithm has been implemented using MATLAB ®. The developed codes are illustrated in the 

Appendix 2. 

1. Simulate the uncertainties 

N paths for the uncertainties involved in the problem are simulated from time zero until the end of 

the exploration license (5 years). This is done by using the selected stochastic processes for the 

two uncertainties considered in the model: the oil price and the drilling cost. In this research, the 

Monte Carlo simulation is run with at least 100,000 samples (N≥100,000) to minimize the 

sampling error. The oil price uncertainty paths are simulated as a STLT process, using equations 

(1), (5) and (6), and can be represented for the five-year exploration license by:  

𝑆 =

[
 
 
 
𝑆𝑡=1

𝑖=1 𝑆𝑡=2
𝑖=1 𝑆𝑡=3

𝑖=1 𝑆𝑡=4
𝑖=1 𝑆𝑡=5

𝑖=1

𝑆𝑡=1
𝑖=2 𝑆𝑡=2

𝑖=2 𝑆𝑡=3
𝑖=2 𝑆𝑡=4

𝑖=2 𝑆𝑡=5
𝑖=2

⋮ ⋮ ⋮ ⋮ ⋮
𝑆𝑡=1

𝑖=𝑁 𝑆𝑡=2
𝑖=𝑁 𝑆𝑡=3

𝑖=𝑁 𝑆𝑡=4
𝑖=𝑁 𝑆𝑡=5

𝑖=𝑁]
 
 
 

 

where 𝑖 represents each independent path of the MCS, and 𝑡 the time in years. The second uncertain 

variable is the exploration cost, and includes the expenses from the exploratory drilling campaign, 

which are assumed to be completely driven by the drilling cost. This is simulated as a GBM 

process, using equations (10) and (11), and it can be represented by:  

𝐷 =

[
 
 
 
𝐷𝑡=1

𝑖=1 𝐷𝑡=2
𝑖=1 𝐷𝑡=3

𝑖=1 𝐷𝑡=4
𝑖=1 𝐷𝑡=5

𝑖=1

𝐷𝑡=1
𝑖=2 𝐷𝑡=2

𝑖=2 𝐷𝑡=3
𝑖=2 𝐷𝑡=4

𝑖=2 𝐷𝑡=5
𝑖=2

⋮ ⋮ ⋮ ⋮ ⋮
𝐷𝑡=1

𝑖=𝑁 𝐷𝑡=2
𝑖=𝑁 𝐷𝑡=3

𝑖=𝑁 𝐷𝑡=4
𝑖=𝑁 𝐷𝑡=5

𝑖=𝑁]
 
 
 

 

2. Estimate the cash flow and NPV 
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With the simulated paths, the NPV is estimated for every single element of the trajectories, thus, a 

matrix of discounted cash flows is built as: 

𝑁𝑃𝑉 = [
𝑁𝑃𝑉𝑡=1

𝑖=1 𝑁𝑃𝑉𝑡=2
𝑖=1 𝑁𝑃𝑉𝑡=3

𝑖=1 𝑁𝑃𝑉𝑡=4
𝑖=1 𝑁𝑃𝑉𝑡=5

𝑖=1

⋮ ⋮ ⋮ ⋮ ⋮
𝑁𝑃𝑉𝑡=1

𝑖=𝑁 𝑁𝑃𝑉𝑡=2
𝑖=𝑁 𝑁𝑃𝑉𝑡=3

𝑖=𝑁 𝑁𝑃𝑉𝑡=4
𝑖=𝑁 𝑁𝑃𝑉𝑡=5

𝑖=𝑁
] 

where the estimation of the element 𝑁𝑃𝑉𝑡
𝑖 uses the single values 𝑆𝑡

𝑖 and 𝐷𝑡
𝑖.   

The cash flow is estimated as: 

𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤𝑡 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑡 ∗ (𝑂𝑖𝑙𝑃𝑟𝑖𝑐𝑒𝑡 − 𝑉𝑎𝑟𝑖𝑎𝑏𝑂𝑝𝑒𝑥𝑡) − 𝐹𝑖𝑥𝑒𝑑𝑂𝑝𝑒𝑥𝑡 − 𝐶𝑎𝑝𝑒𝑥𝑡 (12) 

A production profile was estimated considering a peak profile, where the peak was assumed to 

occur after 3 years of production, and it is equivalent to the 15% of the total reserves. A logarithmic 

function was used for the incremental curve before the peak, whereas the decline curve after the 

peak was defined with an annual production rate set as the 10% of the remaining reserves.18 The 

oil price curve for the lifetime of the project is calculated using equations (7) and (8)19.The cost of 

the exploratory drilling campaign (𝐷𝑡
𝑖) is deducted in the year 1, whereas the development cost, 

that includes production drilling, facility construction and infrastructure development, is deducted 

in the year before productions starts (t=lead time-1). For simplicity, royalties and taxes are 

neglected in this research. All the cash flows are discounted using the risk-free rate to obtain 𝑁𝑃𝑉𝑡
𝑖. 

3. Calculate the expected value 

In this study, the LSM algorithm presented by Jafarizadeh and Bratvold (2015) for exploration 

projects is implemented, where the optimal decisions are based on the expected value of drilling, 

considering the probability of success of the prospect. The expected value of drilling (𝐸𝑑) is: 

𝐸𝑑 = 𝑃𝑠 ∗  𝑁𝑃𝑉𝑠
𝑖 + (1 − 𝑃𝑠) ∗ 𝑁𝑃𝑉𝑓

𝑖                                             (13) 

________ 
18 For more details about the production profile formulation please see the MATLAB® code “Pdecline” in the 

appendix 2. 
19 The initial values (𝜒0, 𝜉0) are the short term (𝜒) and long term (𝜉) calculated in the previous step using equations 

(5) and (6). These are the only values changing in the forward curve (Equation (7) and (8)), and for this reason, every  

𝑁𝑃𝑉𝑡
𝑖 estimation embeds a different oil price curve.  
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where 𝑃𝑠 denotes the probability of success, 𝑁𝑃𝑉𝑠
𝑖 is the net present value discovering commercial 

reserves, and 𝑁𝑃𝑉𝑓
𝑖 is the net present value for dry hole. Equation (13) represents value from the 

upper branch of Figure 2. Therefore, a matrix of expected values that will be used in the following 

steps is developed, as illustrated:  

𝐸𝑑 = [
𝐸𝑑𝑡=1

𝑖=1 𝐸𝑑𝑡=2
𝑖=1 𝐸𝑑𝑡=3

𝑖=1 𝐸𝑑𝑡=4
𝑖=1 𝐸𝑑𝑡=5

𝑖=1

⋮ ⋮ ⋮ ⋮ ⋮
𝐸𝑑𝑡=1

𝑖=𝑁 𝐸𝑑𝑡=2
𝑖=𝑁 𝐸𝑑𝑡=3

𝑖=𝑁 𝐸𝑑𝑡=4
𝑖=𝑁 𝐸𝑑𝑡=5

𝑖=𝑁
] 

4. Backward Induction 

a) Decision at expiration time (t=T) 

The backward induction is the dynamic programming to determine the optimal policy, and it is 

similar to the roll-back procedure used to evaluate decision trees (find the optimal decision). It 

starts at the rightmost part of the expected value matrix Ed, at the expiration date (𝑡 = 𝑇 = 5 ). At 

that time, the company must decide whether to drill or let the exploration license expire. This 

decision is based on the expected value of drilling. If the expected value 𝐸𝑑𝑡=5
𝑖  is zero or negative, 

the company should relinquish or let the license expire. On the other hand, if the expected value 

of drilling is positive the company should drill. The purpose of the backward induction is to 

determine the optimal decision in every path. Every path has its optimal policy and the optimal 

payoff associated with it. For instance, if the optimal decision in the path i is to start to drill at the 

year 3 of the exploration license, the optimal payoff would be expected value of drilling at this 

year (𝐸𝑑3
𝑖 ). To estimate the optimal payoff of every path, the algorithm uses a vector of optimal 

payoffs (𝐹), which is set initially with the values at the maturity time, and then updated during the 

following steps while implementing the backward induction. At the end, it will contain the optimal 

payoff of every MC path, that will depend on the optimal year to start to drill in that path. The 

initial values for the vector of optimal payoffs (𝐹) is set with the expected values at the maturity 

time, as shown in the following statement:  

𝐹𝑖 = {
𝐸𝑑5

𝑖 , 𝐸𝑑5
𝑖 > 0

0, 𝐸𝑑5
𝑖 ≤ 0

 

b) Optimal decision for t<T 
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Then, the algorithm moves to year 4 (𝑡 = 𝑇 − 1), where the optimal policy is determined for every 

MC trajectory by comparing the expected value of drilling at that year (𝐸𝑑𝑡=4
𝑖 ), with the expected 

value of continuation20. The challenge of calculating the expected continuation value is addressed 

by Longstaff and Schwartz (2001) using least-squares regression, where the continuation value is 

a function of the oil price and the exploration cost at time t:  

𝐶𝑡
𝑖 =∝1 𝑆𝑡

𝑖  +∝2 𝐷𝑡
𝑖 + 𝛼3(𝑆𝑡

𝑖)2 + 𝛼4(𝐷𝑡
𝑖)2 + 𝛼5(𝑆𝑡

𝑖)(𝐷𝑡
𝑖)                            (13) 

where 𝐶𝑡
𝑖 is the continuation value, 𝑆𝑡

𝑖 is the oil price, and 𝐷𝑡
𝑖 represents the exploration cost, for 

the 𝑖-th path in the year 𝑡.  𝛼𝑘 (with k=1, …,5) are the regression coefficients, and they are 

calculated using a regression where the dependent variable is the expected value of drilling at time 

𝑡 = 𝑡 + 1, and the independent variables are the oil price and exploration cost of the year 𝑡. For 

instance, for 𝑡 = 4 , the dependent variable is the expected value of drilling in year 5 (𝐸𝑑𝑡=5
𝑖 )21, 

and the independent variables are the exploration cost and the oil price of year 4 (𝐷𝑡=4
𝑖 , 𝑆𝑡=4

𝑖 ). The 

equation 13 is defined following the recommendation made by Jafarizadeh and Bratvold (2015). 

As mentioned by Longstaff and Schwartz (2001), this regression equation can contain fewer or 

more terms. When implemented in MATLAB, a matrix for the independent variables at time 𝑡 is 

generated:  

𝐼𝑛𝑑𝑒𝑝. 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝑋 = [
𝑆𝑡

1 𝐷𝑡
1 (𝑆𝑡

1)2 (𝐷𝑡
1)2 (𝑆𝑡

1)(𝐷𝑡
1)

⋮ ⋮ ⋮ ⋮ ⋮
𝑆𝑡

𝑁 𝐷𝑡
𝑁 (𝑆𝑡

𝑁)2 (𝐷𝑡
𝑁)2 (𝑆𝑡

𝑁)(𝐷𝑡
𝑁)

] 

The values of the expected values of drilling in the year t+1 are assigned to a vector:  

________ 
20 Longstaff and Schwartz (2001) defined the expected value of continuation as the best unbiased estimation of the 

value of waiting and possibly exercise the option in the future (i.e. wait and possible start to drill in the next years), 

given the uncertainty observed today. 
21 One of the differences of the LSM algorithm with respect to other similar approaches, is that the regression is 

performed using only positive values of  𝐸𝑑𝑡=𝑡+1
𝑖  to improve the efficiency of the model.  
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𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑌 = [
𝐸𝑑𝑡+1

1

⋮
𝐸𝑑𝑡+1

𝑁
] 

Then, the multiple regression can be performed using a MATLAB® function. In this thesis, the 

MATLAB solver “\” is used to find the coefficients22. It is implemented setting 𝛼 = 𝑋\𝑌, where 

X and Y are matrixes defined above, and 𝛼 is the vector of regression coefficients:  

𝛼 = [

𝛼1

⋮
𝛼5

] 

After finding the regression coefficients, an equation to calculate the continuation value is built 

with the form of the equation (13).  The continuation value is then calculated for every path in the 

year 𝑡:  

𝐶𝑡 = [
𝐶𝑡

1

⋮
𝐶𝑡

𝑁
]=[

𝑆𝑡
1 𝐷𝑡

1 (𝑆𝑡
1)2 (𝐷𝑡

1)2 (𝑆𝑡
1)(𝐷𝑡

1)
⋮ ⋮ ⋮ ⋮ ⋮

𝑆𝑡
𝑁 𝐷𝑡

𝑁 (𝑆𝑡
𝑁)2 (𝐷𝑡

𝑁)2 (𝑆𝑡
𝑁)(𝐷𝑡

𝑁)
] 𝑥 [

𝛼1

⋮
𝛼5

] 

Then, the optimal decision at the time 𝑡 is estimated for every path. If the discounted continuation 

value is higher than the expected value to drill, the optimal decision is to wait, otherwise the 

decision should be to drill in this year. For the year 4 (𝑡 = 𝑇 − 1), the optimal payoff vector is 

updated as: 

𝐹𝑖 = {
𝐸𝑑4

𝑖 , 𝐸𝑑4
𝑖 > 𝐶4

𝑖𝑒−𝑟

𝐹𝑖 , 𝐸𝑑4
𝑖 ≤ 𝐶4

𝑖𝑒−𝑟
 

This means that, if the expected value of the year 4 (𝐸𝑑4
𝑖 ) is higher than the discounted continuation 

value (𝐶4
𝑖𝑒−𝑟), the optimal decision is to drill, and the optimal payoff is the expected value of 

drilling in this year. If the expected value of drilling is less than the discounted continuation value, 

the optimal decision is to wait and drill in the year five, therefore the optimal payoff in this path 

________ 
22 The backslash \ solver gives 𝑚 unknowns for 𝑛 system of equations when 𝑛=𝑚. If 𝑛>𝑚 this function uses the linear 

least squares regression to estimate 𝑚. 
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would be the expect value of drilling in the year five 𝐸𝑑5
𝑖 , which was storage in this vector in the 

previous step.  This step is repeated moving backwards until it reaches 𝑡 = 1.  

5. Calculate the expected value of the project.  

The values in the optimal payoff vector (𝐹) are discounted to the year one considering the optimal 

exercise date of each path (𝐹𝑑𝑖𝑠). For instance, if the optimal decision in one of the paths was to 

start the exploration campaign in the year three, then the value saved in the optimal payoff vector 

(𝐹) is the expected value of drilling in this year (𝐸𝑑3
𝑖 ). By discounting this value to the year one 

using the risk-free rate (𝑟), the expected present value is found. The expected value of the project 

is calculated as the average of the discounted optimal payoff vector: 

𝐸(𝑃r𝑜𝑗𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) =
∑ 𝐹𝑑𝑖𝑠

𝑖
𝑁

𝑖=1

𝑁
                                                  (14) 

The vector values 𝐹𝑑𝑖𝑠 are also used to build the probability distribution curve of the overall 

expected value of the project. Furthermore, an optimal-time histogram is developed using the 

optimal time to start the exploratory campaign of each path, as illustrated in the next section.  
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7. Results and discussion 

The impact of the reduction of the exploration cost in the decision-making process of executing 

drilling campaigns during low oil price periods is evaluated by including a delayed correlation 

between the exploration cost and the oil price in the LSM approach. This is presented and discussed 

in four sub-sections. First, by using optimal-time histograms, the impact of the correlation on the 

optimal year to start to drill is illustrated. Then, it is shown how this correlation affects the 

probability distribution of the expected value of the project, assessing the sensitivity of the project 

value with respect to the correlation factor. Third, a sensitivity analysis of the parameters for the 

stochastic process of the exploration cost is presented, evaluating it with respect to the project 

value and the correlation factor. Finally, decision maps are introduced for offshore exploratory 

drilling campaigns.  

7.1. Optimal decision  

Most often, cash flow models of upstream petroleum projects assume constant or expected drilling 

costs along with uncertain oil prices. Therefore, the first LSM implementation is performed 

considering the exploration cost as constant, taking the oil price as the only uncertainty in the 

model. The optimal-time histogram from this implementation is shown in the Figure 9. The 

expected oil price grows as shown previously in Figure 6. Thus, during the exploration license, the 

year one has the lowest expected oil price, whereas the year 5 has the highest. Considering the oil 

price as the only uncertainty means that it is assumed that the exploration cost will not increase 

when the oil price rises, which does not reflect the typical market behavior.  
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Figure 9 Optimal-time histogram for constant exploration cost. 

The results show that, for many simulated paths, the most frequent optimal policy is to start the 

exploratory drilling campaign at the time of the highest expected oil price (year five). This 

illustrates the most common decision policy observed during low oil price periods: wait until the 

oil price increases to initiate the investment. These outcomes are a consequence of the positive 

slope in the long-term oil price. As the oil price is the only uncertainty, the production income (oil 

production rate times oil price) drives the cash flow and the value. Hence, the estimated NPVs in 

year five are higher because their production life will be in a time framework of higher expected 

oil prices, compared to the rest of the years of exploration license (𝑡 < 5). In other words, NPV 

will be highest in the final year of the license because oil prices are expected to continue to rise 

and costs are expected to be at their constant level. 

Now, it is assumed that the managers have decided to account for the fact that the cost of the 

exploratory campaign changes with time and, thus, include it as an uncertainty in the model. A 

GBM process is implemented as described in chapter 3 of this work. First, it is included without a 

correlation with the oil price, with the objective of discriminating between the impact of adding 

the cost uncertainty and the impact of the cost correlation with prices. Results are illustrated in 

Figure 10, where the line represents the mean exploration cost uncertainty. 
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Figure 10 Optimal-time histogram for uncertain exploration cost with no correlation 

Adding the non-correlated uncertainty impacts the optimal time to start the exploration campaign. 

Decision-makers may infer from Figure 10 that the value of the option is relatively independent of 

the time it is executed. Therefore, the optimal time to start the exploratory drilling campaign could 

be any year during the exploration license term. Even if the expected exploration cost grows with 

the oil price, this model does not reflect market reality, as it will be explained later.   

The idea of executing an exploration campaign during low oil price periods is investigated by 

including a correlation between the exploration cost and the oil price. This implies that for every 

MC trajectory, if the simulated oil price is low; there is a high probability that the exploration cost 

will be low as well. This mimics the observed market behavior. The correlation coefficient is set 

equal to the value found by Willigers (2009) (𝜌𝜃𝜒 = 0.89) with a 1-year delay; i.e., such that the 

correlation between the short-term price in year t and the cost in year t + 1 is 0.89. The results are 

shown in Figure 11.  
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Figure 11 Optimal-time histogram for exploration cost with correlation factor equal 0.89 

Unlike the common beliefs, as evidenced by actual decision making in the industry, the results 

indicate that the optimal time to start the exploratory drilling campaign is the year with the lowest 

expected oil price (year one). This is because the decrease of the investment in the exploration 

campaign increases the NPV’s at that year, making them higher than the expected values of 

waiting. Another reason is that the cash flow is sensitive enough to the exploration cost, to be 

affected by a variance in their values. If the weight of the exploration expense component in the 

cash flow model is not significant, the optimal decision may not be affected. This could be the case 

for other type of projects, for instance onshore fields, where the cost of drilling the exploration 

wells is substantial lower than offshore projects.   

Then, the full price-cost dependency is modeled by increasing the correlation coefficient to one 

(𝜌𝜃𝜒 = 1). The results are shown in Figure 12. The optimal time to start drilling is the year one. 

However, the frequencies of optimal initiation in the final years decreased and now the decision 

to start to explore within the first two years is the optimal for 76% of the samples. When there was 

no dependence (𝜌𝜃𝜒 = 0), shown in Figure 10, the frequencies in the last years were slightly lower 

than the early years. As the dependency was increased, these frequencies decrease more, whilst 

frequencies in the early years increased (Figure 11 and 12). Hence, as the dependency increases, 

the decision to drill when the expected oil price is low becomes more dominant. These results 
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indicate that executing the exploration campaign during the first year yields the highest expected 

project value.  

 

Figure 12 Optimal-time histogram for exploration cost with correlation factor equal 1 

From the results displayed in Figures 10, 11 and 12, the impact of including the correlation can be 

inferred.  In Figure 10, the exploration cost is included in the model using a stochastic process with 

a positive drift. It is observed that even if the positive slope reflects the increment in the drilling 

cost produced by the expected oil price, without the correlation, the model does not capture the 

observed cost-price dependency. Ignoring this dependence means that, in the simulated paths, low 

oil prices can be sampled with high exploration costs which does not reflect reality. The inclusion 

of the correlation leads to a model that is more realistic and the optimal-time histograms resulting 

from this model provide more useful and relevant insight to the decision-makers. 

7.2. Expected project value 

The expected value of the project is impacted by the correlation between the drilling cost and the 

oil price. Figure 13 compares the probability distribution for two of the cases: when the exploration 

cost is included as a constant, and when it is included as a correlated uncertainty with a correlation 

of 0.89. The expected project values are shown in the Table 4.  
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Table 4 Expected project values 

 Mean Expected Project Value (MUSD) 

Constant Exploration Cost 253 

Uncertain Correlated Exploration Cost 236 

 

 

Figure 13 Probability distribution for the expected project value 

Neglecting the cost-price dependency in the cash flow model leads to, on average, an overvaluation 

of the expected project value by 17 MUSD. Unbiased and consistent estimates of project values 

are key for making portfolio decisions that maximize capital efficiency and shareholder value. An 

over-estimation of expected value can incorrectly portray an exploration prospect as an attractive 

investment, or it can make the difference between relinquish, sell or pursue the exploration license. 

The dependency has a direct influence on the expected value of the project. As discussed in the 

chapter 3, the value of the correlation factor can vary with market locations. Therefore, a sensitivity 

analysis of the correlation coefficient on the expected project value was conducted with the results 

shown in Figure 14. 
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Figure 14 Sensitivity of the expected project value with respect to the correlation factor 

As the cost-price dependency increases, the expected project value decreases. Increasing the 

correlation reduces the overall uncertainty in the project, and therefore, it lowers the value of the 

real option. In the LSM algorithm, the project value estimation depends on the optimal policy 

determined. As demonstrated in the previous section, the optimal policy changes as the correlation 

factor is increased. Therefore, the decrease in the project value is a consequence of the change on 

the optimal decision as the correlation factor increases.  

In the MC simulation, if a low correlation coefficient is used, there will be some paths where the 

cash flow includes high oil prices along with low exploration cost, as well as the opposite case. 

These values affect the estimation of the decision strategy, and therefore, the project value.  They 

are considered biased since they do not represent market reality. Increasing the correlation factor 

declines the number of these estimations in the model, leading to a more realistic project value 

estimation. Nevertheless, the most accurate expected project value is achieved when the 

correlation factor applicable for the area to be explored is used in the model.  

7.3. Sensitivity of the exploration cost parameters 

The exploration cost was included as an uncertainty in the cash flow model by means of a GBM 

process. As this is a private uncertainty that is correlated with the market, the parameters of its 

stochastic process are estimated using subject matter experts, and then, a correlation factor is 
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chosen to describe its market dependency. However, these parameters depend on the type of field 

and the market location. The exploration cost does not grow at the same rate, nor does have the 

same volatility in all parts of world. Furthermore, the supply-demand relationship is not the same 

for offshore drilling services and for onshore projects. When implementing the methodology of 

this research on other type of projects, operators must observe and estimate these parameters for 

the relevant local market. This choice affects the value of the project, and therefore, its impact 

must be studied.  

Sensitivity analyses of the expected project value with respect to the drift and the volatility of the 

exploration cost were performed. As it has been observed during this investigation that the 

inclusion of the cost-price dependency influences the project value and decisions, these analyses 

were performed for three different correlation coefficients (𝜌𝜃𝜒 = 0, 0.5, 1). 

Results from the sensitivity analysis for a zero correlation (𝜌𝜃𝜒 = 0) are shown in Figure 15. 

Brandao et al. (2005a) stated that the volatility of a project value depends on the volatilities of the 

underlying uncertainties. Thus, if the volatility of one of its uncertainties increases, the project 

value volatility does as well. A higher project value volatility implies a higher value of the real 

option. This behavior is observed in Figure 15, where the project value increases when the 

exploration cost volatility grows.   The drift has an opposite effect on the project value. Increasing 

the drift means that the values of the exploration cost will be higher over the time, thus decreasing 

the expected project value. 
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Figure 15 Sensitivity analysis of exploration cost parameters for 𝝆𝜽𝝌 = 𝟎 

 

Figure 16 Sensitivity analysis of exploration cost parameters for 𝝆𝜽𝝌 = 𝟎. 𝟓 



43 

 

The same surface is now generated using a correlation coefficient 𝜌𝜃𝜒 = 0.5 and the results are 

shown in Figure 16. The drift effect on the project value does not change when increasing the 

correlation factor. Hence, an increment in the drift has still negative repercussions on the expected 

project value. However, increasing the correlation factor modifies the behavior with respect to the 

volatility. As shown, the project value is relatively independent on changes in the exploration cost 

volatility for this correlation level.  

 

Figure 17 Sensitivity analysis of exploration cost parameters for 𝝆𝜽𝝌 = 𝟏 

Finally, a correlation coefficient of one (𝜌𝜃𝜒 = 1) is used. The results are displayed in Figure 17. 

By analyzing the Figures 15, 16 and 17, it can be concluded that the drift impact in the project 

value is independent of the cost-price dependency. A maximum of 4% reduction in the project 

value was observed during the sensibility analyses performed. This percentage was constant as the 

correlation factor was increased.    

The sensitivity of the project value with respect to the exploration cost volatility is dependent on 

the correlation factor. An increment in the volatility implies a positive effect on the project value 
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for a correlation factor of zero. As this correlation increases, the project value behavior changes. 

It could be concluded that the positive consequences on the project value when the volatility grows 

vanishes as the correlation coefficient increases from zero to 0.5, at which point the expected 

project value is independent of volatility changes in the range investigated. Beyond a correlation 

of 0.5, an increase in the volatility decreases the value of the project, and its most significant 

sensitivity is found when the correlation factor is equal to one. 

For a better understanding of how sensitive the expected project value is on the volatility, consider 

the simulated data points in Table 5. Two estimations in a MC simulation with a cost volatility of 

20% have been selected. They illustrate the scenarios where there is no dependency, and complete 

dependency. For the first case, the uncertainties are uncorrelated, therefore, the MC approach will 

have some simulated paths where the cash flow includes high oil price and low exploration cost.  

The oil price displayed is the initial value for the futures curve23, thus, a high value entails high 

production incomes, leading to large estimations of NPV’s. Having a low exploration cost 

increases these estimations. Still, if the volatility is increased in this case, it may find lower values 

of exploration cost associate with similar oil prices, which brings higher NPV’s, explaining the 

behavior observed in the Figure 15.  

Table 5 Example of data points for high exploration cost volatility 

Correlation 

factor 

Oil price (USD/BBL) 

[𝑺𝒕
𝒊] 

Exploration Cost (MMUSD) 

[𝑫𝒕
𝒊] 

𝜌𝜃𝜒 = 0 98 116 

𝜌𝜃𝜒 = 1 96 502 

When the correlation factor is equal to one, a high exploration cost is simulated when the oil price 

is high. Now, the NPV’s will be lower because the investment decreases the value. This reflects 

the observed market reality, and as noted before, a calculated project value based on these 

estimations is considered a more realistic approach. In this case, if the volatility is increased, it will 

________ 
23 Oil price curve used to be multiplied by the production rate to calculate the production income. 
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lead to lower estimated NPV’s, and this will drive negative effects in the expected project value, 

as the behavior displayed in the Figure 17.  

In the LSM algorithm, the project value depends directly on two factors: the optimal decision 

policy determined by the dynamic programming, and its vector of optimal payoff (as discussed in 

the section 5 of the chapter 6). In the MC simulation, for the case of uncorrelated uncertainties, 

there will be also biased NPV estimations resulted from low oil price and high exploration cost, 

which not represent the market reality. These estimations are lower compared to the rest since they 

entail lower production income and higher investment. They impact the estimation of the decision 

policy, but they may not be part of the vector of optimal payoff because this is composed by the 

highest NPV’s of each path. That is the reason why they were not mentioned in the analysis above.  

In addition, the effect of the correlation factor on the project value can be also analyzed in the 

figures above, since all the points on the surface decreases, except from the points on the line 

where the volatility is equal to zero, which remained constant. 

7.4. Decision Maps 

Decision maps is one of the possible decision support tools that can be extracted when the LSM 

approach is used to value options. The regression equations are used to create surfaces that provide 

insight to the decision-making process. To develop these maps, two linear equations are estimated: 

the expected value of drilling, and the continuation value. These regression equations will change 

for every year of the exploration license. Surfaces are then created from these equations as 

illustrated for year one in the Figure 18. A correlation factor 𝜌𝜃𝜒 = 0.89 was used.  
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Figure 18 3D Decision Map for the year one 

The exploration cost constitutes the initial investment in the project. Therefore, an increment in 

this value decreases the expected value of the project. This is illustrated in the Figure 18, where 

the expected value of drilling decreases as the exploration cost increases.  Furthermore, the 

expected value of investing is a linear function of the oil price: as the oil price increases, the 

expected value of investing increases as well.  For scenarios with low oil price and high exploration 

cost, the company should wait until the next year. The decision maps for the years 2, 3 and 4 using 

the same correlation are shown in the Figures 19, 20 and 21.  
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Figure 19 3D Decision Map for the year two 

 

Figure 20 3D Decision Map for the year three 
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Figure 21 3D Decision Map for the year four 

For a better understanding, decision maps are usually display in two dimensions, as shown in the 

Figure 22 for the first four years of exploration license. For the year 1, the figure provides an 

insight of the favorable conditions to execute the drilling campaign, besides the market conditions 

where the company should wait. As time progresses, the portion of the area that represents the 

decision to wait decreases. This is consistent with the expected oil price shown in the Figure 6. 

Executing the investment in late years of the exploration license implies that the production life 

would be in a time period of higher expected oil prices, compared with the previous years, 

increasing the area where the optimal decision is to invest.   
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                              a)  year 1                                                                 b) year 2 

 

                               c) year 3                                                                     d) year 4 

Figure 22 Decision maps for the four years                   
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8. Conclusions  

During low oil price periods, operating companies tend to avoid large investment. Oil downturns 

make companies more risk-averse than the high-price periods. The operator’s common belief is 

that postponing the investment during this time will maximize the share-holder value. Yet, they do 

not seem to realize that the investment risk of some projects is lower in low-price than in high-

price periods.  

In this work, a ROV model has been implemented to demonstrate value can be created from 

investing in offshore exploratory drilling campaigns during low oil prices. Uncertainties in the oil 

price and the exploration cost were included in the model using stochastic processes. To reflect 

market reality, these uncertainties were correlated, and the impact of the correlation on the 

valuation and decision-making was studied. It was observed that the inclusion of the correlation 

contributes to a more realistic project value estimation, leading to portfolio decisions that create 

value.  

There are different reasons for the common behavior of postponing investments during low oil 

price periods. First, the companies are concerned about their short-term cash flow and its impact 

in the share value. Second, the companies often fail to consider, and properly value, future 

flexibilities. In this work, optimal-time histograms were used to illustrate that this market belief is 

also a consequence of assuming that the oil price is the only uncertainty in the cash flow model. 

Including the uncertainty in the exploration cost impacted the optimal time to start the exploration 

campaign. However, if the correlation observed in the market between the drilling cost and the oil 

price is ignored, this may lead to suboptimal estimation of the optimal policy. By including the 

cost-price dependency, the decreasing effect of exploration cost during low oil price periods is 

accounted. For projects where the exploratory drilling campaign cost constitutes a substantial part 

of the cash flow, a reduction in this cost clearly impacts the optimal decision policy. This is the 

case of the offshore prospect studied in this thesis, where the optimal time to start the exploratory 

drilling campaign is the year with the lowest expected oil price, differing from the common 

operators’ belief. 
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In this thesis, project valuations were performed to assess the impact of the cost-price dependency 

on the expected project value for a specific case. It was concluded that implementing the LSM 

method without this dependency will lead to over-valuation of the project. By including the cost-

price correlation, the overall uncertainty of the project is reduced, which decreases the value of the 

real option. Moreover, the value of the project depends directly of the optimal policy. Therefore, 

it was demonstrated that the variation in the optimal decision policy as the correlation is increased 

impacts the expected value of the prospect.  

In the MC simulation, if the cost-price correlation is neglected, cash flows estimations based on 

high oil prices and low oil exploration cost (as well as the opposite case) can be found. These 

estimations are considered biased since they do not represent the market reality, and their values 

affect the estimation of the optimal policy, and consequently, the project value. As the correlation 

factor is increased, these biased estimations cease, leading to more realistic project value 

estimations. Nevertheless, the correlation factor to be implemented should correspond to the local 

market, as this value depends on the location of the prospect.    

Since the exploration cost is a private uncertainty that depends on the market, the parameters of 

the chosen stochastic models are estimated based on experts’ opinion. When choosing a model and 

determining its parameters, the subject matter experts must account for the cost-price dependency 

characteristics in the relevant local market. In this work, a GBM stochastic process was used to 

quantify the decision-makers uncertainty in the exploration cost. A sensitivity analyses was 

conducted to analyze the impact of changes in the drift and volatility values. It was observed that, 

a growth in the drift decreases the expected value of the project, as it produces an increase in the 

exploration campaign investment. This behavior was found to be independent of the correlation. 

Previous studies have argued that increasing the volatility in one of the underlying uncertainties 

will raise the project volatility, and consequently, the value of the real option. However, in this 

work, it has been demonstrated the opposite behavior for correlated uncertainties. In studying the 

specific case in this thesis, if the cost-price correlation is large, increasing the exploration cost 

volatility decreases the project value. Nevertheless, the exploration cost is a negative component 

in the cash flow model, and further studies should be done to evaluate if this behavior is replicated 

by two positive uncertain components of the cash flow model that are correlated.  
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It is easy to generate decision maps when using the LSM approach. These maps can be used to 

assess future decisions conditional on the uncertainties of the model. In this thesis, they were used 

to illustrate the favorable market conditions for executing the exploratory drilling campaign during 

the different years of the exploration license.  

Based on the LSM algorithm presented by Jafarizadeh and Bratvold (2015) for exploration 

projects, a series of MATLAB codes were developed that can be easy extended to other types of 

projects in the O&G industry. In this research, uncertainties such as operational cost or production 

were not included. However, as the LSM approach is relatively insensitive to the number of 

uncertainties in the problem, and the model can easily be extended to include them.    

Finally, it has been illustrated that value can be created during low oil price periods by combining 

uncertainty and flexibility. Identifying value creation opportunities was possible by using ROV 

methods. Correlation between uncertainties in the cash flow are relatively easy to include in the 

LSM approach, and their implementation leads to a more realistic value estimate.  

Although the study case in this work was realistic in terms of its cash flow, valuation, and decision 

making components, the conclusions reached in this thesis cannot be extended to all investment of 

this nature without a proper assessment. Nevertheless, the developed ROV model can be easy 

modified to be implemented in different type of exploration projects.  
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Appendix 1. Calibration of the STLT oil price model  

Jafarizadeh and Bratvold (2012) developed the method for calibrating the STLT price model based 

on current spot contracts, future contracts and options on future contracts. It is implemented in this 

thesis using data reported in the New York Mercantile Exchange on 19th of October 2016.  

Step 1: Estimation of 𝜎𝜉 

Information about the long-term factor is embedded in options of future contracts with long 

maturity time. Schwartz and Smith (2000) derived the formula for estimating the value of 

European options in term of their STLT model parameters as:     

     ,0 ,T
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The value of a European call option (C) or put option (P) is based on today’s (t=0) price of the 

underlying future contract 𝐹𝑇,0, the risk-free rate r, the maturity time of the contract T, the volatility 

𝜎𝜙(𝑇, 𝑡), and the strike price K. N(d) represents the cumulative probabilities for standard normal 

distribution. As the price of the option is observed in the market, equations A-1 or A-2 can applied 

to estimate the implied volatility of the option, using an inverse function. In this research, 

Microsoft Excel’s Goal Seek function was used to find the option’s volatility 𝜎.  

The volatility of the long-term factor (𝜎𝜉) is calculated based on the implied volatility of options 

that expire in 6 to 8 years. Observed marked data for a call option that expires on December 2024 

is shown in Table A-1. Outcome of using the Goal seek function on equation A-1 gives an implied 

volatility 𝜎𝜙(𝑇, 𝑡) equal to 19.46%.   
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Table A- 1 Observed market data for implied volatility calculation. 

Term Value 

𝐹𝑇,0 59.43 USD 

𝐾 45 USD 

P 9.83 USD 

The volatility of the long-term factor is calculated as the annualized implied volatility:  

𝜎𝜉 =
𝜎𝜙(𝑇, 𝑇)

√𝑇
=

0.1946

√8.1667
= 7% 

Step 2: Estimation of 𝜇𝜉
∗  and 𝜅 

Figure A-1 shows the log of the future contract prices for different maturity dates. As argued by 

the Schwartz and Smith (2000), the slope of the line that represents the long-maturity futures is 

equal to 𝜇𝜉
∗ +

1

2
𝜎𝜉

2. The slope of the trend line shown in Figure A-1 is 0.012. Therefore, as the 

volatility of the long-term factor was calculated in the step before, the risk-neutral drift for the 

long-term factor is calculated as:   

𝜇𝜉
∗ = 0.012 −

1

2
𝜎𝜉

2 = 0.012 −
1

2
0.072 = 0.96% 

 

Figure A- 1 Log of the Futures contract prices for different maturity dates 
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In addition, the mean-reversion coefficient 𝜅 is also estimated from the last figure. The half-life of 

the deviation is the length of time that the short-term deviations are expected to halve and is equal 

to ln (2)/ 𝜅. The futures curve (Figure A-1) shows that the deviations from the equilibrium will 

halve at 0.6 years, thus, the mean-reversion coefficient is:  

𝜅 =
ln (2)

0.6
= 1.16 

Step 3: Estimation of 𝜎𝜒 and 𝜌𝜉𝜒 

The annualized volatility of options with short maturity time (𝑇 ≈ 0) is approximate as (Schwartz 

and Smith, 2000):  

𝜎𝜙(𝑇, 𝑇) √𝑇⁄ ≅ √𝑒−2𝜅𝑇𝜎𝜒
2 + 𝜎𝜉

2𝑇 + 2𝑒−𝜅𝑇𝜌𝜉𝜒𝜎𝜒𝜎𝜉                           (A-3) 

In the equation A-3, there are two unknown values: the short-term volatility (𝜎𝜒) and the 

correlation coefficient (𝜌𝜉𝜒). Using equation A-3 on any two options with short maturity time 

(1,2,3 months), a system of two equations with two unknown values can be formed. The call option 

that expires on November 2016 (T=1/12), and the put option that expires on January 2017 (T=3/12) 

were used. The system of equations is then:  

0.32727 ≅ √𝑒−2∗1.16∗(1 12⁄ )𝜎𝜒
2 + 0.072 ∗ (1 12)⁄ + 2𝑒−1.16∗(1 12⁄ ) ∗ 0.07𝜌𝜉𝜒𝜎𝜒     (A-4) 

0.273 ≅ √𝑒−2∗1.16∗(3 12⁄ )𝜎𝜒
2 + 0.072 ∗ (3 12)⁄ + 2𝑒−1.16∗(3 12)⁄ ∗ 0.07𝜌𝜉𝜒𝜎𝜒       (A-5) 

Solving the system of equations, the values of the short-term volatility and the correlation 

coefficient found are: 

𝜎𝜒 = 0.335 

𝜌𝜉𝜒 = 0.34 
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Step 4: Estimation of 𝜉0, 𝜒0, and 𝜆𝜒 

Jafarizadeh and Bratvold (2012) argued that setting the risk premium for the short-term equal to 0 

(𝜆𝜒 = 0) will not affect the risk-neutral stochastic process, and the initial state variables can be 

estimated solving the following system of equations:  

𝜒0 = ln(𝑆0) − 𝜉0                                                        (A-6) 

ln(F𝑇,0) = 𝑒−𝜅𝑇𝜒0 + 𝜉0 + 𝜇𝜉
∗𝑇 + 1 2⁄ [(1 − 𝑒−2𝜅𝑇)

𝜎𝜒
2

2𝜅
+ 𝜎𝜉

2𝑇 + 2(1 − 𝑒−𝜅𝑇)
𝜌𝜉𝜒𝜎𝜒𝜎𝜉

𝜅
]  (A-7) 

The input of the equations A-6 and A-7 are the spot price 𝑆0 (50.29 USD/BBL on 19th of October 

2016) and the price of a future contract 𝐹𝑇,0 with maturity time T. The future contract with 

expiration date on December 2024 (Observed price 𝐹𝑇,0=59.53 USD/BBL) was used. Solving the 

system of two equations with two unknow variables, the long-term factor of the spot price at time 

zero, and the deviation from the equilibrium at time zero are:  

𝜉0 = 4.03 

𝜒0 = −0.11 

A summary of the parameters estimated is shown in the Table 1, in the chapter 3.1.1.  
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Appendix 2. MATLAB codes for exploration projects.  

The LSM approach is implemented in this research using MATLAB® programming. In this 

appendix, the input variables, as well as the main codes are illustrated. The ROV model developed 

in this thesis is based on Jafarizadeh and Bratvold (2015) codes. The table A-2 describes the main 

MATLAB® scripts and functions in this model, which will be shown later in this section.  

Table A- 2 Description of the main functions of the developed ROV model. 

Function Name Description 

OptionsTime 
The main script. It defines the input variables for the function 

“EXPWait”, and plots its results. 

EXPWait 

Calculates the value of the exploration project by calling all the 

functions mentioned below, and implementing the LSM 

algorithm. 

PriceSS 

Generates a Ntrial x T matrix for each of the uncertainties (Long, 

short terms, and the exploration cost). The input arguments of 

this function are the parameters of the STLT process and the 

GBM process, along with the time of expiration of the license 

(T), and the number of simulation trials (Ntrial) 

NPVGen 
Creates a Ntrial x T matrix of NPV values. This function 

calculates the NPV values by calling the function “NPVFutures” 

NPVFutures 

Calculates the NPV of a project based on the cash flow model 

described previously. It calls the function “Futures” to calculate 

the oil price used in the cash flow estimation, and the function 

“Pdecline” to define the production profile. 

Futures 
Generates a vector of futures oil prices to be used in the cash flow 

estimation, by implementing the equation 7. 

Pdecline 
Defines an oil production profile for the project. The input of this 

function is the decline rate and the years of production. 

OneTree 
Calculates the expected value of the project based on the decision 

tree structure showed in the Figure 2. 
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OptionsensrhoC 
Perform the sensitivity analysis of the project value with respect 

to the correlation factor. 

SensitivityDriftandsigmaC 

Perform the sensitivity analysis of the project value with respect 

to the drift and volatility of the stochastic process of the 

exploration cost  

DecisionMap Creates the decision maps for an exploration project 

 

The input values that must be defined beforehand are described in the table A-3.  

Table A- 3 List of input arguments of the MATLAB algorithm  

Variable Description 

Capacity 

The annual capacity of the production infrastructure. When the annual 

production is more than this value, the excess of oil will be produced in the 

next year 

Chi0 Initial value of the short-term factor (𝜒0) 

DeclineRate The annual decline rate of the production profile.  

Develop 
The overall development cost of the project. It includes production drilling, 

facility construction and infrastructure development cost 

Explo0 The initial value of the exploration cost in the GBM process 

Kappa The mean-reverting coefficient in the STLT process (𝜅) 

Lambda The risk-premium for the short-term fact (𝜆𝜒) 

Lead 
The estimated lead time of the project (time between the exploration 

campaign and the first production) 

mu The drift of the long-term factor in the STLT process (𝜇𝜉
∗) 

muC The drift of the exploration cost in the GBM process (𝜇𝜃) 

NPVdry The NPV in case the prospect is dry 

Opex 
Fixed operation cost per year of production. It includes expenses such as 

tariffs or labor cost 

Pg The probability of success on finding hydrocarbons in the prospect.  
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r Risk-free ratio (Discount ratio) 

rho Correlation factor in the STLT process (𝜌𝜒𝜉) 

rhoC 
Correlation coefficient between the exploration cost and the short-term factor 

(𝜌𝜃𝜒) 

sigmaC Volatility of the exploration cost in the GBM process (𝜎𝜃) 

sigmaChi Volatility of the short-term factor in the STLT process (𝜎𝜒) 

sigmaXi Volatility of the long-term factor in the STLT process (𝜎𝜉) 

T Time of expiration of the exploration license 

VariableOpex 
Operational cost per barrel produced. It includes processing and lifting cost, 

among others. 

Volume Total recoverable reserve in the prospect [Barrels] 

Xio Initial value of the long-term factor (𝜉0) 

Years Expected years of production of the prospect.  

The MATLAB® codes are presented starting from the main script, and thereafter, introducing the 

functions used in each simulation level.  

OptionsTime 

% The main script. It defines the input variables for the function EXPWait, 

% and plots its results. 

% written by Camilo Cardenas (15/11/2016) 

 

clear 

%load the input data 

load defer.mat 

%Set the number of Monte Carlo simulations 

Ntrial=100000; 

%Set the correlation factor for the exploration cost 

rhoC=0.89; 

 

% Call the function of EXPWait to estimate: 

% Option=The expected value of the project 

% ExerciseDate=The vector of the optimal exercise year for every simulation 

% trial 

% Price and Explo=The maxtrixes of the simulated uncertainties. 

% k=The vector of optimal payoff for every simulation trial 

% Coeff and Coeff are the regression coefficients for creating the decision maps. 

[Option ExerciseDate Price Explo k Coeff 

Coeff2]=EXPWait(Develop,Explo0,rhoC,muC,sigmaC,Xi0,mu,sigmaXi,Chi0,kappa,... 
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            sigmaChi,lambda,rho,Opex,VariableOpex,Volume,... 

            Capacity,DeclineRate,Years,Lead,NPVdry,Pg,r,T,Ntrial); 

% Estimate the mean values of the uncertainty. 

for i=1:T 

    Exploo(i)=mean(Explo(:,i)); 

    X(i)=i; 

end 

Option 

%Plot the optimal-time histograms 

figure 

subplot(2,1,1); 

plot(X,Exploo) 

xlabel('Years of exploration license') 

ylabel('Capex') 

subplot(2,1,2) 

histogram(ExerciseDate) 

xlabel('Years of exploration license') 

ylabel('Frequency') 

EXPWait  

function [Option ExerciseDate Price Explo k 

Coeff,Coeff2]=EXPWait(Develop,Explo0,rhoC,muC,sigmaC,Xi0,mu,sigmaXi,Chi0,kappa,sigmaChi,lambda,rh

o,Opex,VariableOpex,Volume,Capacity,DeclineRate,Years,Lead,NPVdry,Pg,r,T,Ntrial) 

% calculates the value of exploration project with the option to wait 

% Written by Babak Jafarizadeh 

% Modified by Camilo Cardenas (15/11/2016) 

 

% Estimate the uncertainties. 

[long,short,Explo]=PriceSS(Xi0,mu,sigmaXi,Chi0,kappa,sigmaChi,lambda,rho,T,T,Ntrial,Explo0,rhoC,m

uC,sigmaC); 

Price=exp(long+short); 

% Creates the time shift between the uncertainties 

long(:,2)=[]; 

short(:,2)=[]; 

Price(:,2)=[]; 

long(:,1)=[]; 

short(:,1)=[]; 

Price(:,1)=[]; 

Explo(:,T+2)=[]; 

Explo(:,1)=[]; 

% Creates the matrix of NPV of the project without options. 

NPVmat=NPVGen(Develop,long,mu,sigmaXi,short,kappa,sigmaChi,lambda,rho,r,Opex,VariableOpex,Volume,

Capacity,DeclineRate,Years,Explo,Lead,T,Ntrial); 

% creates the discount vector 

DiscountVec=exp(-r*(1:T)); 

% Set the values at t=T as the initial values for the vectors of optimal 

% payoffs (ValueVec) and optimal exercise time (ExerciseDate) 

NPVest=NPVmat(:,T); 

ValueVec=OneTree(NPVest(:,1),NPVdry,Pg); 

ExerciseDate=T*ones(Ntrial,1); 
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% Set the dimensions of the regression coefficients for the decision maps 

Coeff=zeros(3,T-1); 

Coeff2=zeros(3,T-1); 

% Performs the backward induction 

for step=T-1:-1:1 

    NPVest=NPVmat(:,step); 

    % Estimates the continuation value 

    InMoney=find(OneTree(NPVest(:,1),NPVdry,Pg)>0); 

    Regression=zeros(length(InMoney),5); 

    Regression(:,1)=Price(InMoney,step); 

    Regression(:,2)=Explo(InMoney,step); 

    Regression(:,3)=Regression(:,1).^2; 

    Regression(:,4)=Regression(:,2).^2; 

    Regression(:,5)=Regression(:,1).*Regression(:,2); 

    alpha=Regression\ValueVec(InMoney); 

    continuation=Regression*alpha; 

 

    % For the decision maps code, estimate linear coefficients of the 

    % continuation values. 

    Contdisc=continuation.*DiscountVec(ExerciseDate(InMoney)-step)'; 

    Regression2=zeros(length(InMoney),3); 

    Regression2(:,1)=ones; 

    Regression2(:,2)=Price(InMoney,step); 

    Regression2(:,3)=Explo(InMoney,step); 

    aalpha=Regression2\Contdisc; 

    Coeff(:,step)=aalpha; 

 

    % Estimates the optimal decision at step i 

    Intrinsic=OneTree(NPVest(InMoney),NPVdry,Pg); 

    index=find(Intrinsic>(continuation.*DiscountVec(ExerciseDate(InMoney)-step)')); 

    ValueVec(index,1)=Intrinsic(index,1); 

    ExerciseDate(index)=step; 

 

    %For the decision maps code, estimates the linear regression coefficients of the drilling 

option 

    alpha2=Regression2\Intrinsic; 

    Coeff2(:,step)=alpha2; 

end 

% Discounts the vector of optimal payoffs 

k=ValueVec.*DiscountVec(ExerciseDate)'; 

% Calculate the value of the real option 

Option=max(mean(k)); 

end 

PriceSS 

function [long short 

Explo]=PriceSS(Xi0,mu,sigmaXi,Chi0,kappa,sigmaChi,lambda,rho,T,Nstep,Ntrial,Explo0,rhoC,muC,sigma

C) 

% Generates price paths based on the Schwartz and Smith's (2000) two-factor price model 

% Generate the Exploration cost as a GBM process 
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dt=T/Nstep; 

short=zeros(Ntrial,Nstep+2); 

long=zeros(Ntrial,Nstep+2); 

Explo=zeros(Ntrial,Nstep+2); 

% Set inital values 

long(:,1)=Xi0; 

short(:,1)=Chi0; 

Explo(:,1)=Explo0; 

% Generates the rest of the values 

for i=2:Nstep+2 

    epsilon=randn(Ntrial,1); 

    long(:,i)=long(:,i-1)+mu*dt+sigmaXi*sqrt(dt).*epsilon; 

    epsilonxi=rho.*epsilon+sqrt(1-rho^2).*randn(Ntrial,1); 

        short(:,i)=short(:,i-1).*exp(-kappa*dt)-(1-exp(-kappa*dt))*lambda/kappa ... 

        +sigmaChi*sqrt((1-exp(-2*kappa*dt))/(2*kappa)).*epsilonxi; 

    % Include Exploration cost as GBM 

    epsiloncapex=rhoC.*epsilonxi+sqrt(1-rhoC^2).*randn(Ntrial,1); 

    Explo(:,i)=Explo(:,i-1).*exp((muC-0.5*(sigmaC^2))*dt+((sigmaC*sqrt(dt)).*epsiloncapex)); 

end 

end 

NPVGen 

function 

NPVmat=NPVGen(Develop,long,mu,sigmaXi,short,kappa,sigmaChi,lambda,rho,r,Opex,VariableOpex,Volume,

Capacity,DeclineRate,Years,Explo,Lead,T,Ntrial) 

% Generates the NPV Matrix based on the cash flow model of the project 

% written by Babak Jafarizadeh 

% Modify by Camilo Cardenas (15/11/2016) 

 

NPVmat=zeros(Ntrial,T); 

for j=1:T 

   for i=1:Ntrial 

         NPVmat(i,j)=NPVFutures(Develop,long(i,j),mu,sigmaXi,short(i,j),kappa, ... 

            sigmaChi,lambda,rho,r,Explo(i,j),Opex,VariableOpex,Volume, ... 

            Capacity,DeclineRate,Years,Lead); 

    end 

end 

end 

NPVFutures 

function 

NPVF=NPVFutures(Develop,Xi0,mu,sigmaXi,Chi0,kappa,sigmaChi,lambda,rho,r,Explo,Opex,VariableOpex,V

olume,Capacity,DeclineRate,Years,Lead) 

% Generates the NPV figure using the futures curve and production parameters 

% written by Babak Jafarizadeh 

% Modify by Camilo Cardenas (15/11/2016) 

 

% Estimates the production profile. 
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production=Pdecline(Volume,Capacity,DeclineRate,Years); 

ProjectProduction=[zeros(1,Lead) production]; 

% Set the discount vector 

DiscountVec=[1 exp(-r*(1:Years+Lead-1))]; 

% Calculates the futures oil price 

F=zeros(1,Years+Lead-1); 

F=Futures(Xi0,mu,sigmaXi,Chi0,kappa,sigmaChi,lambda,rho,Years+Lead-1); 

PriceVec=[exp(Xi0+Chi0) F]; 

% Calculate the gross revenue 

Cashflow=zeros(1,Years+Lead); 

Cashflow=ProjectProduction.*PriceVec; 

% Subtract the variable opex 

Cashflow(1,Lead+1:Years+Lead)=Cashflow(1,Lead+1:Years+Lead)- ... 

    ProjectProduction(1,Lead+1:Years+Lead)*VariableOpex; 

% Subtract the exploration cost 

Cashflow(1,1)=Cashflow(1,1)-Explo; 

% Subtract the development cost 

Cashflow(1,Lead-1)=Cashflow(1,Lead-1)-Develop; 

% Subtract the fixed Opex 

Cashflow(1,Lead+1:Years+Lead)=Cashflow(1,Lead+1:Years+Lead)-Opex; 

% Discount the cash flow to calculate the NPV 

NPVF=sum(Cashflow(1,1:Years+Lead).*DiscountVec(1,1:Years+Lead)); 

end 

Pdecline 

function production=Pdecline(Volume,Capacity, DeclineRate, Years) 

% returns the yearly production profile with a positive logarithm profile 

% before the peak, and negative exponential profile after the peak 

% written by Camilo Cardenas (15/11/2016) 

 

% Defines the production peak 

peaky=0.095*Years; 

Peaky=round(peaky); 

Peakp=0.15*Volume; 

C1=(Peakp-1)/log(Peaky); 

production=zeros(1,Years); 

Remain=Volume; 

%Estimate the production profile before the peak 

for i=1:Peaky 

P=(C1*log(i))+1; 

production(1,i)=min(Capacity,P); 

Remain=Remain-production(1,i)'; 

end 

%Estimate the production profile after the peak 

for k=Peaky+1:Years 

P=DeclineRate*Remain; 

production(1,k)=max(0,P); 

Remain=Remain-production(1,k); 

end 

end 
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Futures 

function F=Futures(Xi0,mu,sigmaXi,Chi0,kappa,sigmaChi,lambda,rho,T) 

% returns the futures price using the parameters of the two-factor price process 

F=zeros(size(T)); 

lnF=zeros(size(T)); 

lnF=exp(-kappa.*(1:T)).*Chi0+Xi0+mu.*(1:T)-(1-exp(-kappa.*(1:T)))*lambda/kappa+ ... 

    0.5*((1-exp(-2*kappa.*(1:T)))*sigmaChi^2/(2*kappa)+sigmaXi^2.*(1:T)+ ... 

    2*(1-exp(-kappa.*(1:T)))*rho*sigmaChi*sigmaXi/kappa); 

F=exp(lnF); 

end 

OneTree 

function OptimalAlt=OneTree(NPVoil,NPVdry,Pg) 

% uses a one-step decision tree to find the alternative with the highest 

% expected value 

OptimalAlt=max(0,Pg*NPVoil+(1-Pg)*NPVdry); 

end 

OptionsensrhoC 

% Perform the sensitivity analysis of the project value with respect to the 

% correlation factor. 

% written by Camilo Cardenas (15/02/2017) 

 

clear 

% load the data 

load defer.mat 

% Define the number of Monte Carlo simulations 

Ntrial=1000000; 

% Define the interval of correlation factor to be evaluated 

rhoClist=0:0.01:1; 

% Define the dimentions of the solution matrix 

Optionlist=zeros(length(rhoClist),1); 

%Perform the sensitivity analysis 

for i=1:length(rhoClist) 

    rhoC=rhoClist(i); 

    [Option ExerciseDate Price Explo k Coeff 

Coeff2]=EXPWait(Develop,Explo0,rhoC,muC,sigmaC,Xi0,mu,sigmaXi,Chi0,kappa,... 

            sigmaChi,lambda,rho,Opex,VariableOpex,Volume,... 

            Capacity,DeclineRate,Years,Lead,NPVdry,Pg,r,T,Ntrial); 

        Optionlist(i)=Option; 

end 

 

%Plot the results 

plot(rhoClist,Optionlist) 

xlabel('Correlation factor') 

ylabel('Expected project value') 
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SensitivityDriftandsigmaC 

% Perform the sensitivity analysis of the project value with respect to the 

% drift and volatility of the exploration cost stochastic process. 

% written by Camilo Cardenas (15/02/2017) 

 

clear 

%Load the data 

load defer.mat 

% Define the number of Monte Carlo simulations 

Ntrial=1000000; 

% Define the interval of the variables for the sensitivity analysis 

driftlist=0:0.01:0.1; 

volalist=0.01:0.01:0.21; 

% Define the dimention of the solution matrix 

Optionlist=zeros(length(driftlist),length(volalist)); 

% Define the correlation factor to be evaluated 

rhoC=1; 

% Perform the sensitivity analysis 

for i=1:length(driftlist) 

    for j=1:length(volalist) 

        sigmaC=volalist(j); 

        muC=driftlist(i); 

        [Option ExerciseDate Price Explo k Coeff 

Coeff2]=EXPWait(Develop,Explo0,rhoC,muC,sigmaC,Xi0,mu,sigmaXi,Chi0,kappa,... 

            sigmaChi,lambda,rho,Opex,VariableOpex,Volume,... 

            Capacity,DeclineRate,Years,Lead,NPVdry,Pg,r,T,Ntrial); 

 

        Optionlist(i,j)=Option; 

    end 

end 

% Plot the results in a 3D graph 

surf(volalist,driftlist,Optionlist); 

xlabel('Volatility'); 

ylabel('Drift'); 

zlabel('Project Value (USD million)'); 

title('Sensitivity of Exploration Cost Parameters'); 

DecisionMap 

% Creates the decision maps for an exploration project. 

% written by Camilo Cardenas (15/02/2017) 

 

clear 

% load the data 

load defer.mat 

% Define the number of Monte Carlo simulations 

Ntrial=1000000; 

% Define the correlation factor applicable to your project 

rhoC=0.89; 

% Estimate the value of the coefficients of the regression. 
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% Coeff= Linear regression coefficients matrix of the continuation value 

% Coeff2= Linear regression coefficients matrix of the drilling decision 

[Option ExerciseDate Price Explo k Coeff 

Coeff2]=EXPWait(Develop,Explo0,rhoC,muC,sigmaC,Xi0,mu,sigmaXi,Chi0,kappa,... 

            sigmaChi,lambda,rho,Opex,VariableOpex,Volume,... 

            Capacity,DeclineRate,Years,Lead,NPVdry,Pg,r,T,Ntrial); 

 

%Plot the decision maps 3D 

 

%Specify the interval of the exploration cost and the price 

Exppxx=150:5:600; 

Pricex=20:5:200; 

% Define the year to plot the decision map 

w=1; 

% Define the dimensions of the matrixes 

Cont=zeros(length(Pricex),length(Exppxx)); 

NNPV=zeros(length(Pricex),length(Exppxx)); 

%Perform the calculations for the surfaces plots 

for i=1:length(Pricex) 

      for j=1:length(Exppxx) 

          Cont(i,j)= Coeff(1,w)+(Coeff(2,w)*Pricex(i))+(Coeff(3,w)*Exppxx(j)); 

          NNPV(i,j)=Coeff2(1,w)+(Coeff2(2,w)*Pricex(i))+(Coeff2(3,w)*Exppxx(j)); 

      end 

end 

 

%Plot the decision map 

figure 

hSurface = surf(Exppxx,Pricex,Cont); 

set(hSurface,'FaceColor',[1 0 0]); 

hold on 

hSurface = surf(Exppxx,Pricex,NNPV); 

set(hSurface,'FaceColor',[0 0 1]); 

ylabel('Oil price (USD/bbl)') 

xlabel('Exploration Cost (MUSD)') 

zlabel('Value (MUSD)') 

legend('Wait','Drill'), 

% Desactivate the following if 2D decision map is wanted 

%view(2); 

 

 

 


