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Abstract          
  

The Norwegian North Sea is a huge and mature hydrocarbon province which has been 

mapped extensively since the discovery of oil and gas in the late 1960s. There is a numerous 

amount of data that is available for companies work and various studies. It is an area of 

multidisciplinary interest, such as, geology, geochemistry, geophysics or petrophysics. 

However, some investigations of the area are vague, challenging and remain open. In particular, 

the questions related to prediction of seismic velocities of shallow sediments in the Utsira High 

in the North Sea.  

High pore pressure predominantly associated with shallow unconsolidated sediments 

presents a significant hazard during drilling and completion of offshore wells. Hence, defining 

overpressured intervals before drilling not only diminishes drilling hazards but also reduces 

drilling cost. The correct rock physics model can be a key element in predicting overpressure. 

The standard Greenberg and Castagna rock physics model showing the empirical 

relationship between compressional and shear wave velocities has been applied for 

unconsolidated shallow sediments in the North Sea. Observation from a particular well in the 

Johan Sverdrup field  is shown to indicate that this model works for deeper formations, but 

seems not to be valid for shallow sediments. One possible reason for this could be a low 

effective pressure appropriate to their environment. Therefore, in the thesis we aimed to define 

proper rock physics models for Cenozoic siliciclastic sediments in the North Sea based on 

laboratory data and well logging models. 

The laboratory data analysis motivated for  a power model as the best model for sonic 

modeling on well logs. Testing of the power models for Vp and Vs did not give proper results 

on well logging data. Thus, inspired by Faust we derived second sonic models for Vp and Vs 

prediction. We found that resistivity is an essential parameter that should be included to the 

models. Furthermore, we realized that models should be estimated in every well separately. 

The comparison of our sonic models with the standard Greenberg and Castagna empirical 

model showed that our derived models behave appropriately in the shallow formations up to 

the depth around 1100 m TVDML where the standard Greenberg and Castagna empirical 

model breaks down. This is the depth that we got using porosity trend together with Murphy’s 

porosity boundary between unconsolidated and consolidated sand which is equal roughly to 

35%. Consequently, we can claim that our final sonic models are correct for unconsolidated 

siliciclastic sediments.  
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1. Introduction 
 

This Chapter represents the general information about study area of the thesis which is 

the Johan Sverdrup field as well as the result of previous observations and main goals of the 

thesis. The Chapter is based on the references: (Joerstad, 2012), (Wesenlund & Karlsen, 2016), 

(NPD) and (Greenberg & Castagna, 1992).  
 
 

1.1. Johan Sverdrup field  
 

The Johan Sverdrup field is located on the southern Utsira High in the Norwegian North 

Sea, is the 5th largest discovery on the Norwegian Continental Shelf (Figure 1.1.1). It is defined 

as a combined structural trap (hanging wall fault) and stratigraphic trap. It covers 

approximately 200 km2 and it is considered to play an essential role for the years in the 

Norwegian petroleum industry (Joerstad, 2012). 

The discovery of the Johan Sverdrup field came as a surprise since the North Sea is a 

mature offshore region. As well 16/3-2 drilled in 1976 by Norsk Hydro Produksjon AS proved 

dry, little faith was given for later drilling on the Utsira High. However, Lundin Petroleum AS 

drilled well 16/1-8 on the Luno prospect on the southern Utsira High in 2007 leading to the 

discovery of the Edvard Grieg field. Further interest and confidence on the southern Utsira 

High gave rise to the Avaldsnes prospect further east. The Avaldsnes prospect was 

subsequently drilled in 2010 by well 16/2-6, which in combination with several other 

delineation and appraisal wells have discovered and quantified the Johan Sverdrup field.  The 

production of the field is expected to last for 50 years (Wesenlund & Karlsen, 2016).  

The Figure 1.1.1 below shows the location of the Johan Sverdrup field with the wells 

considered in the thesis. The map was modified by the author of the thesis by adding the 

location of wells from the Fact Pages of NPD (NPD).  
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       Figure 1.1.1.  Location map of the southern part of the Utsira High and surrounding area      

       with key wells considered in the thesis.   

 

In the thesis we are going to work with twelve particular wells that lay within the 

Utsira High, mainly in the Johan Sverdrup field (Figure 1.1.1).   

 

1.2. Greenberg and Castagna empirical model 
 

Physical properties of shallow unconsolidated formations are distinguishable from most 

reservoir and seal rocks studied for petroleum exploration because these materials are located 

next to the transition zone between rocks and sediment (Huffman & Castagna, 2001). Due to 

overpressure shallow unconsolidated sediments can provoke hazards for successful exploration 

and production of hydrocarbons. Rock models involving relationship between differential 

pressure and Vp/Vs ratio could be the key tool in predicting overpressured intervals. However, 

for shallow unconsolidated rocks compressional and shear wave velocities are difficult to 

determine due to the uncemented nature of these rocks.  
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Previous studies of shallow unconsolidated sediments have been based on the usage of 

empirical relations between compressional and shear wave velocities predicted by Greenberg 

and Castagna.  The developed general method allows to define shear wave velocity in porous 

rocks if reliable compressional wave velocity and pure (monomineralic) lithology in brine-

filled rocks are available (Greenberg & Castagna, 1992): 

𝑉𝑉𝐷𝐷 = 1
2
��∑ 𝑋𝑋𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑉𝑉𝑝𝑝𝑖𝑖𝑉𝑉𝑖𝑖

𝑖𝑖=0
𝐿𝐿
𝑖𝑖=1 � + �∑ 𝑋𝑋𝑖𝑖�∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖

𝑖𝑖=0 𝑉𝑉𝑝𝑝𝑖𝑖�
−1𝐿𝐿

𝑖𝑖=1 �
−1
�, 

where ∑ 𝑋𝑋𝑖𝑖 = 1;𝐿𝐿
𝑖𝑖=1  𝐿𝐿 is a number of monomineralic lithologic constituent; 𝑋𝑋𝑖𝑖 is a volume 

fractions of lithological constituents; 𝑎𝑎𝑖𝑖𝑖𝑖 is an empirical regression coefficients; 𝑁𝑁𝑏𝑏 is an order 

of polynomial for constituent I; 𝑉𝑉𝑉𝑉 and 𝑉𝑉𝐷𝐷 are compressional and shear velocities (km/s) in 

composite brine-saturated rock. 
 
Table 1.2.1. 

Representative regression coefficients for shear wave velocity (km/s) versus compressional 

wave velocity (km/s) in pure porous lithologies: 𝑉𝑉𝐷𝐷 = 𝑎𝑎𝑖𝑖2𝑉𝑉𝑉𝑉2 + 𝑎𝑎𝑖𝑖1𝑉𝑉𝑉𝑉 + 𝑎𝑎𝑖𝑖0 (Greenberg & 

Castagna, 1992). 

Lithology 𝑎𝑎𝑖𝑖2 𝑎𝑎𝑖𝑖1 𝑎𝑎𝑖𝑖0 

Sandstone 0 0.80416 -0.85588 

Limestone -0.05508 1.01677 -1.03049 

Dolomite 0 0.58321 -0.07775 

Shale 0 0.76969 -0.86735 

 

The trends showing compressional wave velocity versus shear wave velocity for 

different lithologies  based on Greenberg and Castagna empirical model is shown in the Figure 

1.2.1.  
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    Figure 1.2.1. Greenberg and Castagna model (Greenberg & Castagna, 1992). 

 

 

 

1.3. Failure of Greenberg and Castagna empirical model 
 

 
The Greenberg and Castagna empirical model is successfully used by many industrial 

companies. In particular, it was applied in the well 16/3-6 for constructing standard 

petrophysical templates in Geolog program. Both Figures 1.3.1 and 1.3.2 include two cross-

plots: the image A represents Vp/Vs ratio versus acoustic impedance where sonic velocities 

were calculated based on sonic logs. The image B shows Vp/Vs ratio versus acoustic 

impedance where shear wave velocity was determined based on Greenberg and Castagna 

model. The cross-plots in the Figure 1.3.1 are related to the depth 992-1712 meters, while the 

cross-plots in the Figure 1.3.2 were done for the depth 780-882 meters. One can see that both 

trends in the Figure 1.3.1 have similar behaviour and they have the same lithological 

distribution. In contrast, the trends for more shallow formations differ from each other 

demonstrating a divergent lithology which can be noticed in the Figure 1.3.2.  Moreover, 

reflection coefficients in the Figure 1.3.1 are visibly more distinguishable  than in the Figure 

1.3.2, in the latter one they are almost flat and practically identical.  

 
 



 
19 

 

 
 
Figure 1.3.1. Cross-plots showing Vp/Vs ratio versus acoustic impedance at the depth 992-

1712 meters. A. Vp/Vs were derived from the sonic logs. B. Vs was determined from the 

standard Greenberg and Castagna model.  

    

Figure 1.3.2. Cross-plots showing Vp/Vs ratio versus acoustic impedance at the depth 780-882 

meters. A. Vp/Vs were derived from the sonic logs. B. Vs was determined from the standard 

Greenberg and Castagna model.  

 



 
20 

 

The investigation of this well allowed us to suggest that the standard Greenberg and 

Castagna empirical model applies only for deeper formations. Further, this example suggests 

also that an alternative to the Greenberg and Castagna model is needed in the shallow 

formations.  

 

 

1.4. Objectives of the thesis 
 

In the thesis we mainly aim to determine rock physics models that would be relevant 

for shallow unconsolidated sediments. We are going to work with both laboratory and well 

logging data in order to derive models for shale and sand. Furthermore, we will test our models 

for shallow unconsolidated formations for twelve wells in the Johan Sverdrup field and 

compare them with the standard Greenberg and Castagna empirical model.  We hope that our 

obtained models will be of a practical use for the future studying of the area.  
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2. Geological setting  
 

This Chapter is dedicated to the tectonical, geological and stratigraphical features of the 

area of our interest – the south Viking Graben at the Utsira High. The main source of 

information is Norwegian Petroleum Directorate (NPD).  

 

2.1. Tectonic setting  
 

The flooded North Sea palaeorift system forms a minor epicontinental basin confined 

by the Shetland Platform to the west and the Norwegian mainland to the east (Figure 2.1.1). 

The N-S-trending Viking-Central Graben has a length of approximately 1000 km and a width 

that varies between 25 and 100 km (Ziegler, 1992). 

 

 
Figure 2.1.1. A. Regional map of the North Sea area (modified from Gregersen, Michelsen, & 

Sørensen, 1997) with cross-section marked X-Y.  B. Cross-section (X-Y) of the South Viking 

Graben (modified from Ziegler, 1992). 
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The North Sea basin is composed of several major Mesozoic grabens and highs 

(Gregersen et al., 1997). The Viking Graben is an example of the intracratonic basin (Figure 

2.1.1) located on the continential crust in the North Sea (Faleide, Bjørlykke, & Gabrielsen, 

2015). The initial necessary condition to form sedimentary successions in the intracratonic 

basin is a crustal thinning due to extension followed by subsidence as a result of an isostatic 

equilibrium compensation and sediment loading (Faleide et al., 2015). The Viking Graben rift 

system was affected by two extensional events which are dated to be of Permian-Triassic and 

Late Jurassic-Early Cretaceous age (Gabrielsen, Færseth, Steel, Idil, & Kløvjan, 1990). The 

latter extensional setting resulted in rotated fault blocks of Jurassic age which were the main 

objectives for hydrocarbon accumulation. The rift system is bounded to the west by the East 

Shetland Platform and the Oeygarden Fault Zone to the east (Figure 2.1.1).  

The Permian-Triassic and Late Jurassic-Early Cretaceous rift episodes are 

superimposed onto the Caledonian suture (Faleide et al., 2015). The Caledonian basement 

encountered by wells in the North Sea includes intrusive igneous rocks and/or low- to high-

grade metamorphic rocks (Gautier, 2005). The Caledonian plate movement altered from 

subduction to strike-slip tectonic setting in Late Devonian between Greenland and 

Fennoscandia which later terminated in the transition from Devonian to Carboniferous. The 

strike-slip setting was followed by diverging plate movement in Early Carboniferous till the 

present day. Late Carboniferous rifting reveals in the Oslo Graben, as well as Permian-Triassic 

and Late Jurassic-Early Cretaceous. The final continental break-up accompanied by onset of 

sea-floor spreading took a place in the earliest Eocene time (Faleide et al., 2015).   

The Utsira High is one of the intrabasinal structural highs forming the eastern flank of 

the southern Viking Graben. It is bounded to the east and north by the Stord basin and to the 

south by the Ling depression (Figure 1.1.1). The southern part of the Utsira High is referred to 

as the Haugaland high, while the Augland graben separates the main Utsira High from the 

Avaldnes high to the east (Figure 2.1.2) (Riber, Dypvik, & Senile, 2015). 



 
23 

 

 
Figure 2.1.2. Top Basement Two-Way-Time structure map with additional structural 

subdivision (Olsen, Briedis, & Renshaw, 2017). 
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2.2. Stratigraphy  

 
The general stratigraphic chart of the southern Viking Graben and the Utsira High is 

presented in the Figure 2.2.1. 

 
 Figure 2.2.1. General stratigraphic chart of the Southern Viking Graben and the Utsira High 

(Justwan, Dahl, & Isaksen, 2006). 

 

As the thesis is related to the rock physics models of the Cenozoic sediments, thus, 

our area of the interest is in the shallow part – from sea bed to the top of the Shetland. The 

most upper part of the stratigraphic chart shows three sand dominated formations the Grid, 

Skade and Utsira Formations we are intrested in the thesis. 
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2.2.1. The Hordaland Group - Grid Formation  
 
Middle to Upper Eocene 
 

The Grid Formation of the Hordaland Group consists of a series of sand-bodies 

probably sourced from the East Shetland Platform and located in the Viking Graben between 

58o30´N and approximately 60o30´N. The thickness in the typical well is 370 m. The formation 

thins eastward. There is a considerable difference in thickness north and south. To the north 

the thickness is less than 200 m and to the south nearly 400 m. This is due to the fact that sand 

deposition started earlier in the south. Due to soft sediment deformation, there may be poor 

connectivity between individual sand bodies, and some sands may be interpreted as injectites. 

The deposition of the formation took place in an open marine environment during regression 

(NPD). 

 

 

2.2.2. The Hordaland Group - Skade Formation  
 
Eocene to Middle Miocene 
 

 The Skade Formation of the Hordaland Group together with the Eir (informal) and 

Utsira Formations and the Upper Pliocene sands of the Nordland Group form the outer part of 

a large deltaic system with its source area on the East Shetland Platform. The proximal parts 

of this system are mainly located in the UK sector, and these deposits are named the Hutton 

sand (informal). In the Norwegian sector, sands belonging to the system are the Miocene–

Lower Pliocene Skade, Eir (informal) Utsira Formations, and Upper Pliocene sands of the 

Nordland Group (no formal name) (NPD). 

The Skade Formation, Lower Miocene, consists of marine sandstones (mainly 

turbidites) deposited over a large area of the Viking Graben. The maximum thickness exceeds 

300m and decreases rapidly towards the east where the sands shale out or terminate towards 

large shale diapirs (Figure 2.2.2.1) (NPD).  
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                  Figure 2.2.2.1. Thickness of the Skade Formation (NPD). 

 

 

2.2.3. The Nordland Group - Utsira Formation  
 
Uppermost Middle Miocene to Quaternary 
 

 The Utsira Formation of the Nordland Group (uppermost Middle Miocene to 

Quaternary) consists of marine sandstones with source area mainly to the west. The maximum 

thickness exceeds 300 m (Figure 2.2.3.1). The sands of the Utsira Fm display a complex 

architecture and the elongated sand body extends some 450 km N-S and 90 km E-W. The 

northern and southern parts consist mainly of large mounded sand systems. In the middle part 

the deposits are thinner, and in the northernmost part (Tampen area) they consist of thin beds 

of glauconitic sands (NPD). 

Upper Pliocene deltaic sand deposits overlie the Utsira Formation and Eir formation 

(informal) with a hiatus. We regard the Upper Pliocene sand as a part of the large Utsira-Skade 

aquifer system. The Upper Pliocene sand has previously often been assigned to the Utsira 

Formation. The top of the sand is found at about 150 m below the sea floor in the Norwegian 

sector. Seismic data indicates that the latest active progradation of these sands took place 
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towards the north-east in the Tampen area, where their distal parts interfinger with glacial sedi-

ments derived from Scandinavia (NPD). 

 
                Figure 2.2.3.1. Thickness of the Utsira Formation (NPD). 

 

 

2.3. A lower bound for unconsolidated sands 
 
2.3.1. Temperature data 
 

In sedimentary basins a mechanical compaction dominates in the shallow part down to 

the temperature of about 80-100oC depending on the geothermal gradient (Bjørlykke, 2010).  

A temperature model that was built for considered wells allows to estimate the depth at 

which the mechanical compaction changes to cementation. The data for the model is presented 

in the Table 2.3.1.1 The values of bottomhole temperature (BHT), kelly bushing (KB), true 

vertical depth (TVD) and water depth (WD) and were taken from Fact Pages of Norwegian 

Petroleum Directorate (NPD). Since we are working with siliciclastic shallow sediments we 

are interested in formations that lay till top of the Shetland where there is contrast change in 
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lithology.  The values of top of the Shetland were taken from completion logs.  True vertical 

depth subsea and true vertical depth mud line (TVDSS and TVDML accordingly) were 

calculated based on the formulas: 

𝑇𝑇𝑉𝑉𝐷𝐷𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑉𝑉𝐷𝐷 − 𝐾𝐾𝐾𝐾 

𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿 = 𝑇𝑇𝑉𝑉𝐷𝐷𝑆𝑆𝑆𝑆 −𝑊𝑊𝐷𝐷 

Seabed was calculated as follows: 

𝐾𝐾𝐾𝐾 + 𝑊𝑊𝐷𝐷 

 The temperature in the water depth bed assumed to be equal to 4oC. The temperature 

model shows the temperature values in the bottom of the well versus the true vertical depth 

mud line (Figure 2.3.1.1).  

 
Table 2.3.1.1. 

Basic depth and temperature values for wells under consideration.  

Well BHT 
(°C) 

KB  
(m) 

TVD  
(m) 

WD 
(m) 

TVDSS  
(m) 

TVDML 
(m) 

Seabed 
(m) 

Top of the Shetland 
(m) 

16/2-4 91 48 2000.00 113 1952.00 1839.00 161 1708 
16/2-5 90 49.2 2373.00 109 2323.80 2214.80 158.2 1756.5 
16/2-12 87 22 2067.00 115 2045.00 1930.00 137 1671.5 

16/2-14 T2 85 22 1982.00 113 1960.00 1847.00 135 1567 
16/2-20 S 91 30 2098.00 109.5 2068.00 1958.50 140.1 1899.5 
16/3-4 A 88.1 25 1958.60 117 1933.60 1816.60 141.5 1570 
16/3-6 86.2 25 2050.00 117 2025.00 1908.00 142 1500 
16/3-7 89 25 2100.00 116.5 2075.00 1958.50 141.5 1452 

16/3-8 A 89.3 25 2053.00 116 2028.00 1912.00 141 1569.5 
16/4-5 84 26 2019.80 104 1993.80 1889.80 130 1780 

16/4-6 S 85 25 2213.00 100.5 2188.00 2087.50 125.5 1915 
16/5-4 90 25 2100.00 108 2075.00 1967.00 133 1486.5 

 

 
             Figure 2.3.1.1. BHT (oC) versus TVDML (m). 

BHT = 0.0431·TVDML + 4
R² = 0.95

0

10

20

30

40

50

60

70

80

90

100

110

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

BH
T 

(O
C)

TVDML (m)



 
29 

 

Based on our temperature model and considering the average temperature to be equal 

to 90oC we can make a suggestion that the diagenesis starts at about 2000 m burial depth. So, 

we can say that cementation will take place at the depth greater than 2000 m where the 

sandstone would be become stiffer and consolidated.   

 

2.3.2. Porosity data 
 

We also estimated a burial depth based on porosity data.  We considered two models: 

linear and exponential. Linear trends of porosity versus true vertical depth mud line for sand 

and shale are presented in the Figure 2.3.2.1 A and B.  
 

 

Figure 2.3.2.1. Linear model for porosity including all considered wells: A. For sand. B. For 

shale. 
 

Murphy in his work suggested that porosity of unconsolidated sand is about 35% and 

could be even higher (Murphy, Reischer, & Hsu, 1993). Taking this value into account we can 

assume the depth of the shallow unconsolidated part to be equal to approximately 1100 m 

according to both linear trends for sand and shale. However, the linear trends for porosity seem 

to be not so appropriate because one can notice a slight curvature of the trends close to sea bed. 

Therefore, we considered an exponential model as well. We made cross-plots showing 
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logarithm of porosity versus true vertical depth mud line for sand shale for all considered wells 

(Figure 2.3.2.2). Exponential model of porosity as function of depth was initially suggested by 

Athy (Athy, 1930), as well as the model found use further in laboratory studies of clay (Mondol, 

Bjørlykke, Jahren, & Høeg, 2007). Investigation of our data showed that exponential model 

has a better fit than linear one. The trends of porosity are different for sand and shale (Figure 

2.3.2.2). The crossing point of these two lines in the Figure 2.3.2.3 coincides with the depth 

which is about 1100 m as well. Up to this value deposition takes place, at higher depths 

deposition alters to packing (crushing) (Avseth, Flesche, & Van Wijngaarden, 2003).  

 

 
 Figure 2.3.2.2. Exponential model for porosity including all considered wells: A. For sand. B.     

for shale. 
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Figure 2.3.2.3. Exponential models for porosity for both sand and shale  including all 

considered wells. 
 

Resuming all of the above, based on the temperature data we got a higher value of burial 

depth. However, since porosity models are more restrictive and assuming Murphy’s model to 

be correct, we concluded that in our case shallow unconsolidated sediments lay roughly up to 

1100 m.  
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3. Derivation of shale models constrained by small to moderate differential 

pressures based on laboratory measurements 
 
This Chapter presents the shale models that were derived based on laboratory data 

analysis. The main reference for this section is (Mondol et al., 2007). It should be mentioned 

that we considered second order polynomial and power models for laboratory sonic velocities 

modeling. The former models were constructed in order to define compressional and shear 

wave velocities values at seabed. The latter models were determined as the most reliable for 

our case.  

We assumed for simplicity that Vp and Vs velocities in shale have an isotropic behavior. 

This is clearly an approximation as textural properties of shales are more exactly described by 

an oriental distribution function (Sayers, 1999). Thus, our results here should be considered as 

experimental average behavior of sonic velocities. 
 
 

3.1. Origin and description of laboratory data 
 

The source of the laboratory data of clay mineral aggregates are previous observations 

that where done by H. Mondol, K. Bjoerlykke, J. Jahren and  K. Hoeeg (Mondol et al., 2007). 

Their work included dry and brine-saturated clay aggregates ranging from pure smectite to pure 

kaolinite. Experiments were conducted by increasing vertical effective stress up to 50MPa. The 

laboratory analysis showed the changing of such physical properties as acoustic velocities, 

porosity, density. A set of 12 synthetic samples (6 dry and 6 brine saturated) were prepared in 

the laboratory by mixing known amounts of smectite and kaolinite. All experiments were 

performed at room temperature which was between 19 and 21oC. The salinity of the fluid in 

experiments was about 34000 ppm (Mondol et al., 2007). 

For the shale modeling part we used brine saturated clay minerals. Since there are two 

aggregates in the experiments – pure smectite and pure kaolinite, in the thesis we chose two 

clay systems: smectite/kaolinite/brine and kaolinite/silt/brine ones. These systems were 

organized based on different relative volume fractions of kaolinite, smectite and silt. The final 

database was done based on the laboratory experiments mentioned above. It represents the 

collection of the clay fractions, effective pressure, salinity, porosity, density, compressional 

and shear wave velocities values. Moreover, it shows a grain size for a certain clay type. Here 

is a short example how the data look like.  
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Figure 3.1.1. Example of clay data from the supplementary materials.  
 

The full clay data can be found in the supplementary materials in the  USB flash-drive 

attached to the printed version of the thesis.  It involves not only clay but also marine sediments, 

sand and glass-bead data. However, for the thesis the most critical are shale and sand values.  

 

3.2. Principle of models selection  
 

The shale modeling was done based on laboratory data of shale mentioned in the section 

above. According to the clay values for the compressional as well as shear wave velocities 

modeling we chose the simplest non-linear equations that behave nice when the effective 

pressure approaches to zero limit. Thus, the logarithmic model is not appropriate in this case. 

Taking into account it, we used the second order polynomial model as the initial model for both 

compressional and shear wave velocities against varying differential pressure. This model is 

described by the following similar equations: 

𝑉𝑉𝑉𝑉 = 𝐴𝐴 · 𝜎𝜎2 + 𝐾𝐾 · 𝜎𝜎 + 𝐶𝐶, 

where 𝑉𝑉𝑉𝑉 is compressional wave velocity,  𝜎𝜎 is effective pressure and  𝐴𝐴, 𝐾𝐾, 𝐶𝐶 are coefficients 

of the equation.  

𝑉𝑉𝐷𝐷 = 𝐴𝐴′ · 𝜎𝜎2 + 𝐾𝐾′ · 𝜎𝜎 + 𝐶𝐶′, 

where 𝑉𝑉𝐷𝐷 is shear wave velocity  and 𝐴𝐴′, 𝐾𝐾′, 𝐶𝐶′ are coefficients of the equation.  

The power models for compressional and shear wave velocities modeling were selected 

like a second option as well. These models are described by the following equations: 

𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑏𝑏 + 𝐴𝐴′′ · 𝜎𝜎𝐵𝐵′′,  

where 𝑉𝑉𝑉𝑉𝑏𝑏 is compressional wave velocity of the brine at seabed  and 𝐴𝐴′′, 𝐾𝐾′′ are coefficients 

of the equation. 

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝐷𝐷𝑏𝑏 + 𝐴𝐴′′′ · 𝜎𝜎𝐵𝐵′′′,  

where  𝑉𝑉𝐷𝐷𝑏𝑏 is shear wave velocity of the brine at seabed  and 𝐴𝐴′′′, 𝐾𝐾′′′ are coefficients of the 

equation. 
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The equations of the second order polynomial and power  models were applied for 

both considered clay systems – smectite/kaolinite/brine and kaolinite/silt/brine ones.  

The derived models are presented Sections further. The models include error bars for 

both Vp and Vs velocities. The error in the velocity measurements at most pressures above 1 

or 2 MPa is generally less than 2% for the compressional wave velocities and 4% for the shear 

wave velocities (Zimmer, 2004).  

A deviation of the first points in the polynomial and power models can be explained by 

the small values of the effective pressure. However, both models lie in the range of the error 

bars. We also made plots of the parameters A, B,C, Vpb and Vsb as functions of smectite and 

silt volume. It was essential in order to represent the final shale models in relations with relative 

smectite and silt volume.  

We used different colors for the models for Vp and Vs in order to distinguish the type 

of the model and type of velocity. The different colors for the parameters A, B,C, Vpb and Vsb 

were applied to highlight the difference in values between clay systems.  

 

 

 3.3. Modeling of compressional velocity in a smectite/kaolinite/brine system with varying 

differential pressure 
 

3.3.1. Second order polynomial model  
 

The values of the compressional velocity polynomial models for different relative 

volume fractions of clay  in a smectite/kaolinite/brine system are presented in the Table 3.3.1.1.  
  
Table 3.3.1.1. 

Results of fitting of laboratory data of Vp to the second order polynomial model in a 

smectite/kaolinite/brine system. 

Relative 
smectite 
volume 

Relative 
kaolinite 
volume A B C R2 

0 1 -0.261 28.2 1390 0.987 
0.2 0.8 -0.248 27.9 1420 0.981 
0.4 0.6 -0.204 23.7 1380 0.988 
0.6 0.4 -0.214 23.9 1530 0.992 
0.8 0.2 -0.188 19.9 1450 0.989 
1 0 -0.169 17.6 1510 0.991 
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 The Figure 3.3.1.1 represents compressional wave velocity values against effective 

pressure in the second order polynomial model.  

 

  
          Figure 3.3.1.1. Second order polynomial model for Vp fitting when relative volume fraction    

          of kaolinite is 1 and relative volume fraction of smectite is 0. 

 

The second order polynomial models for Vp fitting for other clay composition in a 

smectite/kaolinite/brine system are similar and they are presented in the section A1.1 of 

Appendix A.  

 

Vp = -0.261·σ2 + 28.2·σ + 1390
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      Figure 3.3.1.2. A versus relative smectite volume. 

 

 
        Figure 3.3.1.3. B versus relative smectite volume. 
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        Figure 3.3.1.4. C versus relative smectite volume 

 

The trends in the Figures 3.3.1.2, 3.3.1.3 and 3.3.1.4 show the linear behavior of the 

parameters A, B, C respectively as functions of the relative smectite volume.  

 

3.3.2. Power model 

 Polynomial models that were considered above could be the first option of velocities 

modeling. However, they have some limitations. Notice first of all that A<0 leading to a 

concave parabola. In particular, when differential pressure is sufficiently large (distant from 

seabed) then the velocity decreases with increasing differential pressure. This behavior is 

clearly not physically correct.  

Power models were considered as the second possibility of the modeling. Power models 

were constructed taking into consideration the boundary condition. Compressional velocity of 

the brine at the seabed (water boundary) was taken as the lowest boundary for the power 

modeling of compressional velocities against differential pressure. We applied a programming 

code based on Coppen’s (Coppens, 1981), Batzle-Wang’s (Batzle & Wang, 1992) models in 

order to calculate the compressional velocity of the brine at seabed. The codes can be found in 

the Sections B1 and B2 of the Appendix B. We made calculation of the compressional wave 

velocity at the seabed  for all 12 wells. The values are listed in Table 3.3.2.1.  
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Table 3.3.2.1. 
Compressional wave velocity at seabed for 12 wells based on Batzle-Wang and Coppens 
modules. 

Well P 
(Bar) 

P 
(MPa) 

V_Coppens 
(m/s) 

V_Batzle-Wang  
(m/s) 

Difference 
(m/s) 

Difference 
(%) 

16/2-12 11.7 1.17 1468.39 1465.86 2.53 0.17 
16/2-14_T2 11.5 1.15 1468.36 1465.83 2.53 0.17 

16/2-20S 11.2 1.12 1468.31 1465.79 2.52 0.17 
16/2-4 11.6 1.16 1468.36 1465.85 2.51 0.17 
16/2-5 11.1 1.11 1468.29 1465.77 2.52 0.17 

16/3-4A 11.8 1.18 1468.42 1465.88 2.54 0.17 
16/3-6 11.9 1.19 1468.42 1465.89 2.53 0.17 
16/3-7 11.8 1.18 1468.42 1465.88 2.54 0.17 

16/3-8A 11.8 1.18 1468.41 1465.88 2.53 0.17 
16/4-5 10.6 1.06 1468.21 1465.70 2.52 0.17 

16/4-6S 10.2 1.02 1468.15 1465.64 2.52 0.17 
16/5-4 10.9 1.09 1468.28 1465.74 2.54 0.17 

 
It can be seen that values of the compressional velocity at the seabed based on both 

modules are approximately the same. We should then expect that our models of Vp do not 

deviate too much from 1470m/s.  

The Vpb values for the power modeling were defined using the polynomial models for 

each volume fraction of clay: Vpb is equal to C coefficient for zero differential pressure. 

However, values of Vpb  that are much lower than the brine water value were replaced with the 

latter one (such that the Vpb values must be close to the brine water velocity value or be higher 

but strictly not less).  

A and B values were obtained after constructing the plots Vp-Vpb (difference between 

experimental values of Vp and the compressional wave  velocity of the brine at  seabed) against 

differential pressure. The negative difference between Vp and Vpb for particular cases was 

considered as the most uncertain and it was excluded from the trends.  

The values of the power models for Vp fitting for different relative volume fractions of 

clay for a smectite/kaolinite/brine system are presented in the Table 3.3.2.1. 
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Table 3.3.2.1.  

Results of fitting of laboratory data of Vp to the power model in a smectite/kaolinite/brine 

system. 

Relative 
smectite 
volume 

Relative 
kaolinite 
volume A B Vpb 

0 1 28.2 0.846 1470 
0.2 0.8 69.001 0.631 1420 
0.4 0.6 15.9 0.957 1470 
0.6 0.4 46.8 0.698 1530 
0.8 0.2 41.5 0.673 1450 
1 0 31.1 0.756 1470 

 

The Figure 3.3.2.1  represents a power model of the compressional wave velocity Vp 

versus differential pressure for the certain relative volume fractions of clay.  

 

 
    Figure 3.3.2.1. Power model for Vp fitting when relative volume of kaolinite is 0.8 and     

    relative volume of smectite is 0.2. 

 

The power models for Vp fitting for other clay compositions in a 

smectite/kaolinite/brine system are similar and they are presented in the Section A1.2 of 

Appendix A.  
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         Figure 3.3.2.2. A versus relative smectite volume including outliers 

 
Figure 3.3.2.2. shows the behavior of the parameter A as a function of the relative 

smectite volume. It can be noticed that two points in the graph look like outliers. Hence, they 

were neglected from the trend.   

 

   
         Figure 3.3.2.3. A versus smectite volume without outliners. 
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          Figure 3.3.2.4. B versus relative smectite volume. 

 

 
     Figure 3.3.2.5. Vpb versus relative smectite volume including outliers. 
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Similarly to the parameter A, the Vpb versus relative smectite volume has two points 

that can be considered as deviation from the trend. Thus, they were excluded from it.  
 

 
          Figure 3.3.2.6. Vpb versus relative smectite volume without outliers. 

 

 

3.4. Modeling of compressional velocity in a kaolinite/silt/brine system with varying 
differential pressure 

3.4.1. Second order polynomial model 
 

The values of the  second order polynomial models for Vp fitting for different relative 

volume fractions of clay in a kaolinite/silt/brine system are presented in the table 3.4.1.1.  
 
Table 3.4.1.1.  

Results of fitting of laboratory data of Vp to the second order polynomial model in a 

kaolinite/silt/brine system. 

Relative silt 
volume 

Relative 
kaolinite volume A B C R2 

1 0 -0.144 20.7 1420 0.999 
0.75 0.25 -0.389 41.3 1500 0.984 
0.5 0.5 -0.495 48.2 1320 0.969 
0.25 0.75 -0.478 45.7 1320 0.973 
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   Figure 3.4.1.1. Second order polynomial model for Vp fitting when relative volume fraction  

   of kaolinite is 0 and relative volume fraction of silt is 1.0. 
 

The second order polynomial models for Vp fitting for other clay composition in a 

kaolinite/silt/brine system are represented in the Section A1.3 of Appendix A. 
 

 
     Figure 3.4.1.2. A versus relative silt volume 
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    Figure 3.4.1.3. B versus relative silt volume. 

 

 
      Figure 3.4.1.4. C versus relative silt volume. 
 

The parameters A, B and C versus relative silt volume in the Figures 3.4.1.2, 3.4.1.3 

and 3.4.1.4 have a linear behavior.   

B = -32.7·V_silt + 59.4
R² = 0.713

0

10

20

30

40

50

60

0 0,2 0,4 0,6 0,8 1

B

Relative silt volume

C = 191·V_silt + 1271
R² = 0.516

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

0 0,2 0,4 0,6 0,8 1

C

Relative silt volume



 
46 

 

3.4.2. Power model 
 

The values of the power models for Vp fitting for different clay compositions in a 

kaolinite/silt/brine system are presented in the Table 3.4.2.1.  
 

Table 3.4.2.1.  

Result of fitting of laboratory data of Vp to the power model in a kaolinite/silt/brine system. 

Relative silt 
volume 

Relative 
kaolinite volume A B Vpb 

1 0 15.2 1.020 1420 
0.75 0.25 100.82 0.626 1500 
0.5 0.5 54.8 0.785 1470 
0.25 0.75 47.2 0.805 1470 

 

 
    Figure 3.4.2.1. Power model for Vp fitting when relative volume fraction of kaolinite is 0.25   

   and relative volume fraction of silt is 0.75. 
 

The power models for Vp fitting for other relative volume fractions of clay in a 

kaolinite/silt/brine system are presented in the Section A1.4 of Appendix A. 
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       Figure 3.4.2.2. A versus relative silt volume including an outlier.  

 
There is one point in the Figure 3.4.2.2 which looks like an outlier. We omitted this 

point from the trend.  

 

        
       Figure 3.4.2.3. A versus relative silt volume without an outlier. 
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    Figure 3.4.2.4. B versus relative silt volume. 

 
 

 
       Figure 3.4.2.5. Vpb versus relative silt volume including an outlier. 
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 In the Figure 3.4.2.5. one point visibly deviates from the whole trend and, thus, it was 

neglected as well.  

 

 
       Figure 3.4.2.6. Vpb versus relative silt volume without an outlier. 

 

 

 

3.5. Modeling of shear wave velocity in a smectite/kaolinite/brine system with varying 
differential pressure 

3.5.1. Second order polynomial model 
 

The second order polynomial models for shear wave velocity  have a similar behavior 

as for compressional wave velocities.  

The values of the shear wave velocity of second order polynomial models for various 

relative volume fractions of clay in a smectite/kaolinite/brine system are presented in the Table 

3.5.1.1. 
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Table 3.5.1.1.  

Results of fitting of laboratory data of Vs to the second order polynomial model in a 

smectite/kaolinite/brine system. 

Relative 
smectite 
volume 

Relative 
kaolinite 
volume 

A B C R2 

0 1 -0.172 18.9 369 0.995 
0.2 0.8 -0.152 17.6 395 0.996 
0.4 0.6 -0.127 15.2 374 0.997 
0.6 0.4 -0.119 15.04 384 0.999 
0.8 0.2 -0.103 13.3 324 0.994 
1 0 -0.0675 8.81 313 0.996 

 

 
          Figure 3.5.1.1. Second order polynomial model for Vs fitting when relative volume fraction    

         of kaolinite is 1 and relative volume fraction of smectite is 0. 

 

The second order polynomial models for Vs fitting for other clay composition in a 

smectite/kaolinite/brine system are listed in the Section A2.1 of Appendix A. 
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    Figure 3.5.1.2. A versus relative smectite volume. 

 

 
     Figure 3.5.1.3. B versus relative smectite volume. 
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     Figure 3.5.1.4. C versus relative smectite volume. 

 

In Figures 3.5.1.2, 3.5.1.3 and 3.5.1.4  the parameters A, B and C as functions of  

smectite volume have a linear trend similarly to the trends obtained from Vp models.  

 

 

3.5.2. Power model 
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velocity. They also follow the boundary condition described earlier.  
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the shear wave velocity of the brine at seabed) against differential pressure. The negative 

difference between Vs and Vsb for certain points was excluded from the trends.  

The values of the shear-wave velocity power models for Vs fitting in a 

smectite/kaolinite/brine system are given in the Table 3.5.2.1.  
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Table 3.5.2.1.  

Results of fitting of laboratory data of Vs to the power model in a smectite/kaolinite/brine 

system. 

Relative 
smectite 
volume 

Relative 
kaolinite 
volume A B Vsb 

0 1 34.09 0.719 369 

0.2 0.8 34.6 0.699 395 

0.4 0.6 8.99 1.068 374 

0.6 0.4 16.5 0.885 384 

0.8 0.2 21.7 0.769 324 

1 0 16.4 0.731 313 
 

The power model below shows the shear wave velocity against the differential pressure 

for the one particular case when relative volume fraction of kaolinite constitutes 1 and relative 

volume fraction of smectite is zero.  

 

 
            Figure 3.5.2.1. Power model for Vs fitting when relative volume fraction of kaolinite is 1     

           and  relative volume fraction of smectite is 0. 
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The power models for Vs fitting for other clay composition in a smectite/kaolinite/brine 

system are comparable to the model above and they are presented  in the Section A2.2 of 

Appendix A. 

 

 
    Figure 3.5.2.2. A versus relative smectite volume including an outlier. 
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      Figure 3.5.2.3. A versus relative smectite volume without an outlier. 

 

 
    Figure 3.5.2.4. B versus relative smectite volume. 
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    Figure 3.5.2.5. Vsb versus relative smectite volume. 

 

We did not change the trends for parameters B and Vsb as functions of relative smectite 

volume in the Figures 3.5.2.4 and 3.5.2.5, because we think there are no points in these graphs 

which deviate significantly from the trends.  

 

 

 

3.6. Modeling of shear wave velocity in a kaolinite/silt/brine system with varying 
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Table 3.6.1.1.  

Results of fitting of laboratory data of Vs to the second order polynomial model in a 

kaolinite/silt/brine system. 

Relative 
silt 

volume 

Relative 
kaolinite 
volume 

A B C R2 

1 0 -0.1301 15.9 305.7 0.998 
0.75 0.25 -0.251 27.7 379 0.993 
0.5 0.5 -0.281 29.3 334 0.987 
0.25 0.75 -0.229 25.4 311 0.993 

 

 
    Figure 3.6.1.1. Second order polynomial model for Vs fitting when relative volume fraction    

    of kaolinite is 0 and relative volume fraction of silt is 1.0 

 

The second order polynomial models for other relative volume fractions of clay in a  

kaolinite/silt/brine system are similar to the model above and they are presented in the Section 

A2.3 of Appendix A. 
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    Figure 3.6.1.2. A versus relative silt volume. 

 

 
     Figure 3.6.1.3. B versus relative silt volume. 
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      Figure 3.6.1.4. C versus relative silt volume. 

 

Figures 3.6.1.2, 3.6.1.3 and 3.6.1.4 show the linear behavior of the parameters A, B 

and C as functions of the silt volume.  

 

3.6.2. Power model 
 

The values of the power models for shear wave velocity fitting for various relative 

volume fractions of clay in a kaolinite/silt/brine system are presented in the Table 3.6.2.1. 

 
Table 3.6.2.1.  

Results of fitting of laboratory data of Vs to the power model in a kaolinite/silt/brine system. 
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silt 

volume 

Relative 
kaolinite  
volume 

A B Vsb 

1 0 7.32 1.15 305.7 
0.75 0.25 50.48 0.716 379 
0.5 0.5 61.8 0.667 334 
0.25 0.75 48.3 0.7055 311 

 

The power  model showing the shear wave velocity against the differential pressure 

for the one particular relative volume fraction of clay is shown below in the Figure 3.6.2.1. 
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    Figure 3.6.2.1. Power model for Vs fitting when relative volume fraction of kaolinite is 0.25   

    and relative volume fraction of silt is 0.75. 

 

The  power models for Vs fitting for other clay composition are similar to the model 

above and they are demonstrated in the Section A2.4 of Appendix A.  
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        Figure 3.6.2.3. B versus relative silt volume 
 

 
        Figure 3.6.2.4. Vsb versus relative silt volume 

 
The trends in the Figures 3.6.2.2, 3.6.2.3 and 3.6.2.4 have a linear character.   
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3.7. Summary of shale models 
 

Both second order polynomial and power models were considered within laboratory 

data analysis of shale. It showed that a second order polynomial model in our case does not 

have a good behavior with high values of differential pressure – it decreases which is physically 

incorrect. The model should constantly follow the asymptote line or increase moderately with 

a trend. Power model satisfies this condition. Thus, we assumed that the power model is  more 

reliable model than the polynomial one. In addition, previous studies also suppose that a power 

model is reasonable for modeling of compressional and shear wave velocities, in particular, for 

unconsolidated sand and glass-beads (Domenico, 1977).  

For completeness the summary of second order polynomial models we included in the 

Section A3 of Appendix A. In this Section we presented the summary of power models that 

are essential for further modeling. 

Assuming a power model for the smectite/kaolinite/brine systems we get sonic 

velocities 

 
Vp = (-10·V_smec+1470) +(-46.5·V_smec+77.3) ·σ(-0.0828·V_smec+0.8016) and 

                Vs = (-69.4·V_smec+395) + (-19.7·V_smec+34.9) ·σ(0,012·V_smec+0.8057), 

 
 Whereas for the kaolinite/silt/brine system the sonic velocities in the power model are 

 

                 Vp = (-72.6·V_silt+1495) + (-47.8·V_silt+66.9)·σ(0.195·V_silt+0.687) and 

                  Vs =(12.1·V_silt+325) + (-53.7·V_silt+75.5) ·σ(0.549·V_silt+0.465). 
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4. Derivation of unconsolidated sand models based on laboratory 
measurements 

 
This section describes the laboratory data of unconsolidated sand used in the modeling. 

Moreover, the Chapter covers theoretical bases of the most essential rock physics models for 

unconsolidated sand based on laboratory data. There are Gassmann’s, Biot’s and Mavko-Jizba 

squirt relations. In addition, we also take into account Murphy’s equations as well as Biot-

Geertsma and Geertsma-Smit approximations of Biot’s relations. We will present some 

mathematical calculations, as well as our derived models for bulk and shear modulus of dry 

skeleton as well as sonic velocity models of a saturated rock based on the theoretical relations 

and our obtained models for Kdry and Gdry. The main reference in the Chapter 4 is (Mavko, 

Mukerji, & Dvorkin, 2009). 

 

4.1. Principle of laboratory data selection 
 
4.1.1. Comparison of Zimmer’s data with Bhuiyan’s and Holt’s data 
 

Laboratory data for the sand modeling are represented in the supplementary materials 

in the USB flash drive which is attached to the printed version of the thesis.  The database was 

created based on the previous studies of unconsolidated sand. 

 According to the database it can be noticed that the most recent laboratory analysis of 

the sand was done by Zimmer (Zimmer, 2004) as well as Bhuiyan and Holt (Bhuiyan & Holt, 

2016). Zimmer in his work (Zimmer, 2004) presented the values of the observation of five 

different types of sands-the Galveston Beach, Gulf of Mexico, Merritt, Pomponio Beach and 

Santa Cruz Aggregate ones.  Bhuiyan and Holt described their laboratory experiments of two 

unconsolidated sands -the Ottawa and Columbia sands with a high porosity and different grain 

sizes (Bhuiyan & Holt, 2016). From innovative point of view, Zimmer’s, Bhuiyan and Holt’s 

works cover  the most up-to-date studies of unconsolidated sands. Zimmer’s investigations of 

the sand are more extended since he studied more types of sand. However, it can be noticed 

that there is a missing of quite many values in the Zimmer’s measurements and the latter don’t 

include grain size characteristic. In contrast, Bhuiyan and Holt’s data are more full. Moreover, 

the grain size parameter was taken into account in their observation of the unconsolidated sand. 

Thus, Bhuiyan and Holt’s data were prioritized and selected for the sand modeling in the thesis.  
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4.1.2. Description of Bhuiyan and Holt’s data 
 
M. Bhuyain and R.Holt in their article did not present the values of their laboratory 

experiment. After a special request M. Bhuiyan sent a database with raw values of the 

laboratory studies. It can be found in the supplementary materials in the USB flash drive which 

is attached to the printed version of the thesis. These raw values include measurements of the 

differential pressure, porosity, density, compressional and shear wave velocities of two types 

of sand – the Ottawa and Columbia. Each type has five different grain sizes. The Ottawa sand 

has the following grain size variations: 450 μm, 450-355μm, 355-230 μm, 230 μm and 

unsorted, while the Columbia sand is characterized by the following grain sizes: 550 μm, 450-

355 μm, 355-230 μm, 230-180 μm and unsorted. Ottawa sand has a subrounded to rounded 

grain shape with a variation of the porosity from 36.4 to 37.5%. Columbia sand has a 

subangular shape of the grains with the porosity range from 39.8 to 43.8 % (Bhuiyan & Holt, 

2016). The laboratory measurements of the sand included two loading-unloading cycles 

performed in dry condition and one fluid saturated cycle excluding the Ottawa unsorted sand 

where one can see two dry and two saturated loads. In order  to stay consistent, the second 

saturated load of the Ottawa unsorted sand was not considered in the modeling part. 

Furthermore, the measurements of shear-wave velocities of   the 355-230 μm grain sized 

Ottawa sand lack of  values within the first dry loading.  Hence, this particular grain size of the 

Ottawa sand was omitted in the modeling as well. 

The raw database was processed by averaging of the same values of all measured 

parameters – differential pressure, porosity, density, Vp and Vs velocities. Averaging was done 

separately for two dry and one saturated loading cycles for each type of sand. 

 

4.1.3. Organization of laboratory data  
 

  
The collection of the data, in particular for sand modeling, includes the values of the 

following essential parameters – differential pressure, water saturation, compressional and 

shear wave velocities, density, porosity, grain size, frequency and uniformity coefficient. It can 

be seen that laboratory data of sand modeling includes a quite wide range of values from 

different sources.  

Here is an example how the laboratory data of sand are organized.  



 
65 

 

 
Figure 4.1.3.1. Example of sand data from supplementary materials. 

 

 

4.2. Rock physics models for sandstone  
 
4.2.1. Theoretical basics 
 
4.2.1.1. Gassmann’s relations  
 
In the geophysical literature there are many theories of wave propagation in porous 

media. Gassmann’s equation is used to predict velocities in porous media with mixed fluids 

like water-gas or water-oil. When the seismic wave passes through a porous saturated rock the 

pore pressure tries to resist the compression of the seismic wave. The resistance of the 

volumetric compression is called the bulk modulus – K (Aljarrah, 2009). Gassmann’s equation 

predicts the resulting increase in effective bulk modulus of the rock with a pore fluid. 

Gassmann’s equation relate such parameters as porosity, the bulk modulus of the mineral 

matrix, the bulk modulus of the rock frame, and the bulk modulus of the pore fluids to the 

saturated bulk modulus of the same rock. This is shown in the following equations (Gassmann, 

1951): 

 
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠

𝐾𝐾𝑠𝑠 − 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠
=

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠 − 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑

+
𝐾𝐾𝑢𝑢𝑓𝑓

𝜑𝜑 · (𝐾𝐾𝑠𝑠 − 𝐾𝐾𝑢𝑢𝑓𝑓)
     (1), 
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𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 +
�1 −

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠

�
2

𝜑𝜑
𝐾𝐾𝑢𝑢𝑓𝑓

+ (1 − 𝜑𝜑)
𝐾𝐾𝑠𝑠

−
𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠2

          (2), 

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠    (3), 

 
where  𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 is the effective bulk modulus of porous rock frame or skeleton,   𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 is the 

effective bulk modulus of the rock with a pore fluid,𝐾𝐾𝑠𝑠 is the bulk modulus of the mineral 

material making up rock, 𝐾𝐾𝑢𝑢𝑓𝑓  is the effective bulk modulus of pore fluid, 𝜑𝜑 is porosity, 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 

is the effective shear modulus of porous rock frame or skeleton and  𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠   is the effective shear 

modulus of the rock with a pore fluid.  

            Equations (1) and (2) are the same but in a different algebraic order.  

Murphy  suggested a velocity form of Gassmann’s relations (Murphy, Schwartz, & 

Hornby, 1991): 

        𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠2 = 𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 +
4
3

 𝐺𝐺       (4) 

        𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠2 = 𝐺𝐺                                      (5), 

 where                   

 𝐾𝐾𝑝𝑝 =
�1 −

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠

�
2

𝜑𝜑
𝐾𝐾𝑢𝑢𝑓𝑓

+ (1 − 𝜑𝜑)
𝐾𝐾𝑠𝑠

−
𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠2

 

 

and 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠  is the density of the saturated rock, 𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 is a compressional wave velocity of 

the saturated rock, 𝑉𝑉𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 is a shear wave velocity of the saturated rock and 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 =𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = G.  
Gassmann’s equation implicates the following essential assumptions. 

 
 
Frequency 

The equation is valid only at sufficiently low frequencies such that the induced pore 

pressures are equilibrated throughout the pore space. This means there is enough time for the 

pore fluid to flow and eliminate wave-induced pore-pressure gradients. Hence, Gassmann’s 

relation works best for very low-frequency in-situ seismic data (<100Hz) and may perform less 

well as frequencies increase toward sonic logging (≈104Hz) and laboratory ultrasonic 

measurements (≈106Hz) (Mavko, Mukerji, & Dvorkin, 2009, p. 273).  
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Symmetry of rock 

Gassmann’s theory assumes that the rock is isotropic and homogeneous physically 

meaning that the rock has the same physical properties in all directions. 

Pores connectivity  

All pores within the rock are connected. This means that the rock has a high porosity 

and there are no isolated pores in the rock. Most of rocks follow this assumption, especially 

unconsolidated rocks with a high porosity and permeability. Velocities measured at high 

frequencies like sonic logs or laboratory measurements usually are higher than those calculated 

with Gassmann’s equations.  

Rock system 

The rock system is closed meaning that there is no fluid flow in or out of the surface of 

the rock. There are no physical or chemical reactions between solids and fluids. 

Viscosity  

The fluids that fill the pores have a zero viscosity. Similarly to the assumption (3) this 

is relate to the wavelength in order to highlight that a pressure equilibrium of pore fluid will be 

complete. High viscosity fluids are not easy to equilibrate. As a matter of fact, most of fluids 

have a finite viscosity most of waves have a finite wavelengths. There is a significant difference 

in bulk and shear moduli between fluids and solids and according to the previous reasons a 

relative motion between fluids and solids will appear, hence, waves are dispersive. This 

explains why laboratory velocity measurements are higher than those calculated using 

Gassmann’s equations at a high water saturation (Aljarrah, 2009).  

Dry effect 

Laboratory measurements on very dry rocks such as those prepared in a vacuum oven 

are sometimes too dry. Several researchers have found that the first few percent of fluid 

saturation added to an extremely dry rock will lower the frame moduli possibly as a result of 

disrupting surface forces acting on the pore surfaces. Hence, in order to avoid the artifacts of 

ultra-dry rocks it is often recommended  to use a slightly wet or moist rock modulus  as the 

“dry-rock” modulus in  Gassmann’s relations (Mavko et al., 2009, p. 274). 

 Geometry of rock 

Gassmann’s theory considers also that the shear modulus is not affected by pore fluid, 

there is no assumption for a pore geometry as well.  
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4.2.1.2. Murphy’s relations 

 
William Murphy devoted his laboratory studies of pure quartz sand (with SiO2≥0.98) 

to assessing of porosity, compressional and shear-wave velocities for full gas and full water 

saturation. These data were measured using a standard ultrasonic technique at high effective 

pressures, approximately 50 MPa (Murphy, Reischer, & Hsu, 1993).   

The frame moduli which were calculated from the gas saturated velocities demonstrated 

a significantly clean dependence on porosity which empirically looks as follow (Murphy et al., 

1993): 

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 = �38.18[1 − 3.39𝜑𝜑 + 1.95𝜑𝜑2]   𝜑𝜑 ≤ 0.35
𝑏𝑏𝑒𝑒𝑉𝑉[−62.6𝜑𝜑 + 22.58]              𝜑𝜑 > 0.35   (1) 

 

and  

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 = � 42.65[1 − 3.48𝜑𝜑 + 2.19𝜑𝜑2]   𝜑𝜑 ≤ 0.35
𝑏𝑏𝑒𝑒𝑉𝑉[−62.69𝜑𝜑 + 22.73]              𝜑𝜑 > 0.35  (2) 

 

These moduli were measured by varying the effective pressure on an unconsolidated 

sand from 50 to 5 MPa.  

 

 

 

4.2.1.3. Biot’s relations 

 
Biot derived theoretical formulas for predicting the frequency-dependent velocities of 

saturated rocks in terms of the dry-rock properties. His formulation incorporates some of the 

mechanisms of viscous and inertial interaction between the pore fluid and the mineral matrix 

of the rock. The low-frequency limiting velocities are the same as those predicted by 

Gassmann’s relations. The high-frequency limiting velocities Vp∞ and Vs∞ are given by (Biot, 

1956): 

𝑉𝑉𝑉𝑉∞(𝑓𝑓𝑎𝑎𝐷𝐷𝑠𝑠, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠) = �
∆ ± [∆2 − 4(𝜌𝜌11𝜌𝜌22 − 𝜌𝜌122 )(𝑃𝑃𝑅𝑅 − 𝑄𝑄2)]

1
2

2(𝜌𝜌11𝜌𝜌22 − 𝜌𝜌122 ) �

1
2

(1) 
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𝑉𝑉𝐷𝐷∞ = �
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑

𝜌𝜌 − 𝜑𝜑 ∙ 𝜌𝜌𝑢𝑢𝑓𝑓 ∙ 𝛼𝛼−1
�
1/2

 (2), 

where  

∆= 𝑃𝑃𝜌𝜌22 + 𝑅𝑅𝜌𝜌11 − 2𝑄𝑄𝜌𝜌12 

 

𝑃𝑃 =
(1 − 𝜑𝜑) �1 − 𝜑𝜑 −

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠

�𝐾𝐾𝑠𝑠 + 𝜑𝜑𝐾𝐾𝑠𝑠𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑/𝐾𝐾𝑢𝑢𝑓𝑓

1 − 𝜑𝜑 −
𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠

+ 𝜑𝜑𝐾𝐾𝑠𝑠/𝐾𝐾𝑢𝑢𝑓𝑓
+

4
3
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 

       

𝑄𝑄 =
�1 − 𝜑𝜑 −

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠

�𝜑𝜑𝐾𝐾𝑠𝑠

1 − 𝜑𝜑 −
𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠

+ 𝜑𝜑𝐾𝐾𝑠𝑠/𝐾𝐾𝑢𝑢𝑓𝑓
 

𝑅𝑅 =
𝜑𝜑2𝐾𝐾𝑠𝑠

1 − 𝜑𝜑 −
𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝐾𝐾𝑠𝑠

+ 𝜑𝜑𝐾𝐾𝑠𝑠/𝐾𝐾𝑢𝑢𝑓𝑓
 

𝜌𝜌11 = (1 − 𝜑𝜑)𝜌𝜌𝑠𝑠 − (1 − 𝛼𝛼)𝜑𝜑𝜌𝜌𝑢𝑢𝑓𝑓 

𝜌𝜌22 = 𝛼𝛼𝜑𝜑𝜌𝜌𝑢𝑢𝑓𝑓 

𝜌𝜌12 = (1 − 𝛼𝛼)𝜑𝜑𝜌𝜌𝑢𝑢𝑓𝑓 

𝜌𝜌 = 𝜌𝜌𝑠𝑠(1 − 𝜑𝜑) + 𝜌𝜌𝑢𝑢𝑓𝑓𝜑𝜑 , 

where 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 and 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 are the effective bulk and shear moduli of the rock frame respectively – 

either the dry-frame moduli or the high-frequency, 𝐾𝐾𝑠𝑠 is the bulk modulus of the mineral 

material making up the rock, 𝐾𝐾𝑢𝑢𝑓𝑓 is the effective bulk modulus of the pore fluid, 𝜑𝜑 is the 

porosity, 𝜌𝜌𝑠𝑠 is the mineral density, 𝜌𝜌𝑢𝑢𝑓𝑓 is the fluid density and 𝛼𝛼 is the tortuosity parameter 

which is always greater than or equal to 1.  

The two solutions give above for the high-frequency limiting P-wave velocity 

designated by ± correspond to the “fast” and “slow” waves. The fast wave is the compressional 

body-wave most easily observed in the laboratory and the field and it corresponds to overall 

fluid and solid motions that are in phase. The slow wave is a highly dissipative wave in which 

the overall solid and fluid motions are out of phase. 

The complete frequency dependence can be obtained from the roots of the dispersion 

relations (Biot, 1956): 
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��

𝐻𝐻
𝑉𝑉𝑉𝑉2

− 𝜌𝜌 𝜌𝜌𝑢𝑢𝑓𝑓 − 𝐶𝐶/𝑉𝑉𝑉𝑉2

𝐶𝐶
𝑉𝑉𝑉𝑉2

− 𝜌𝜌𝑢𝑢𝑓𝑓 𝑞𝑞 − 𝑇𝑇/𝑉𝑉𝑉𝑉2
�� = 0 

�𝜌𝜌 −
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝑠𝑠2

𝜌𝜌𝑢𝑢𝑓𝑓
𝜌𝜌𝑢𝑢𝑓𝑓 𝑞𝑞

� = 0 

The complex roots are: 

1
𝑉𝑉𝑝𝑝2

=
−(𝐻𝐻𝑞𝑞 + 𝑇𝑇𝜌𝜌 − 2𝐶𝐶𝜌𝜌𝑢𝑢𝑓𝑓) ± �(𝐻𝐻𝑞𝑞 + 𝑇𝑇𝜌𝜌 − 2𝐶𝐶𝜌𝜌𝑢𝑢𝑓𝑓)2 − 4(𝐶𝐶2 − 𝑇𝑇𝐻𝐻)(𝜌𝜌𝑢𝑢𝑓𝑓2 − 𝜌𝜌𝑞𝑞)

2(𝐶𝐶2 − 𝑇𝑇𝐻𝐻)
 (3) 

1
𝑉𝑉𝑠𝑠2

=
𝑞𝑞𝜌𝜌 − 𝜌𝜌𝑢𝑢𝑓𝑓2

𝑞𝑞𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
 (4) 

The real and imaginary parts of the roots give the velocity and the attenuation 

respectively. Again, the two solutions correspond to the fast and slow P-waves. The various 

terms are 

𝐻𝐻 = 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 +
4
3
𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 +

(𝐾𝐾𝑠𝑠 − 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑)2

(𝐷𝐷 − 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑)
 

𝐶𝐶 =
�𝐾𝐾𝑠𝑠 − 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑�𝐾𝐾𝑠𝑠

(𝐷𝐷 − 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑)
 

𝑇𝑇 =
𝐾𝐾𝑠𝑠2

(𝐷𝐷 − 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑)
 

𝐷𝐷 = 𝐾𝐾𝑠𝑠 �1 + 𝜑𝜑(
𝐾𝐾𝑠𝑠
𝐾𝐾𝑢𝑢𝑓𝑓

− 1)� 

𝜌𝜌 = (1 − 𝜑𝜑)𝜌𝜌𝑠𝑠 + 𝜑𝜑𝜌𝜌𝑢𝑢𝑓𝑓 

𝑞𝑞 =
𝛼𝛼𝜌𝜌𝑢𝑢𝑓𝑓
𝜑𝜑

−
𝑏𝑏𝜂𝜂𝐹𝐹(𝜁𝜁)
𝜔𝜔𝑘𝑘

, 

where 𝜂𝜂 is the viscosity of the pore fluid, 𝑘𝑘 is the absolute permeability of the rock and 𝜔𝜔 is 

the angular frequency of the plane wave. 

The viscodynamic operator 𝐹𝐹(𝜁𝜁) incorporates the frequency dependence of viscous 

drag and is defined by 

𝐹𝐹(𝜁𝜁) =
1
4
�

𝜁𝜁𝑇𝑇(𝜁𝜁)

1 + 2𝑏𝑏𝑇𝑇(𝜁𝜁)
𝜁𝜁

� 
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𝑇𝑇(𝜁𝜁) =
𝑏𝑏𝑏𝑏𝑏𝑏′(𝜁𝜁) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏′(𝜁𝜁)
𝑏𝑏𝑏𝑏𝑏𝑏(𝜁𝜁) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜁𝜁)

=
𝑏𝑏
𝑖𝑖3𝜋𝜋
4 𝐽𝐽1(𝜁𝜁𝑏𝑏−

𝑖𝑖𝜋𝜋
4 )

𝐽𝐽0(𝜁𝜁𝑏𝑏−
𝑖𝑖𝜋𝜋
4 )

 

𝜁𝜁 = �
𝜔𝜔
𝜔𝜔𝑑𝑑
�
1/2

= �
𝜔𝜔𝑎𝑎2𝜌𝜌𝑢𝑢𝑓𝑓

𝜂𝜂
�
1/2

, 

 

where ber ( ) and bei ( ) are real and imaginary parts of the Kelvin function respectively, 𝐽𝐽𝑛𝑛 ( ) 

is a Bessel function of order n and 𝑎𝑎 is the pore-size parameter. 

The pore-size parameter 𝑎𝑎 depends on both the dimensions and the shape of the pore 

space. Stoll found that values between 1/6 and 1/7 of the mean grain diameter gave good 

agreement with experimental data (Stoll, 1974).  

At  very low frequencies 𝐹𝐹(𝜁𝜁)→ 1 and at very high frequencies (large 𝜁𝜁) the asymptotic 

values are 𝑇𝑇(𝜁𝜁)→(1+𝑏𝑏)/√2  and 𝐹𝐹(𝜁𝜁)→ (𝑘𝑘/4)(1+𝑏𝑏)/ √2. 

The reference frequency 𝑓𝑓𝑐𝑐 which determines the low-frequency range,𝑓𝑓 ≪ 𝑓𝑓𝑐𝑐 , and the 

high-frequency range, 𝑓𝑓 ≫ 𝑓𝑓𝑐𝑐 , is given by 

𝑓𝑓𝑐𝑐 =
𝜑𝜑𝜂𝜂

2𝜋𝜋𝜌𝜌𝑢𝑢𝑓𝑓𝑘𝑘
 

One interpretation of this relation is that it is the frequency where viscous forces acting 

on the pore fluid approximately equal the inertial forces acting on it. In the high-frequency 

limit the fluid motion is dominated by inertial effects and in the low-frequency limit the fluid 

motion is dominated by viscous effects. 

As it was mentioned above, Biot’s theory predicts the existence of a slow highly 

attenuated P-wave in addition to the usual fast P- and S-waves. The slow P-wave has been 

observed in the laboratory and it is sometimes invoked to explain diffusional loss mechanisms. 
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4.2.1.4. Geertsma-Smit approximations of Biot’s relations 
 
Biot’s theoretical formulas predict the frequency-dependent velocities of saturated 

rocks in terms of the dry rock properties. Low- and middle- frequency approximations of his 

relations can be expressed as (Geertsma & Smit, 1961): 

𝑉𝑉𝑝𝑝2 =
𝑉𝑉𝑝𝑝∞4 + 𝑉𝑉𝑝𝑝04 �

𝑓𝑓𝑐𝑐
𝑓𝑓�

2

𝑉𝑉𝑝𝑝∞2 +𝑉𝑉𝑝𝑝02 �
𝑓𝑓𝑐𝑐
𝑓𝑓�

2 , 

where 𝑉𝑉𝑉𝑉 is the frequency dependent compressional wave velocity of saturated rock, 𝑉𝑉𝑝𝑝0 is the 

Biot - Gassmann low - frequency limiting compressional wave velocity, 𝑉𝑉𝑝𝑝∞ is the Biot high-

frequency limiting compressional wave velocity, 𝑓𝑓 is the frequency and 𝑓𝑓𝑐𝑐 is Biot’s reference 

frequency. 

The use of the Geertsma - Smit approximations can be used for the following: 

• estimating saturated rock velocities from dry rock velocities and 

• estimating the frequency dependence of velocities. 

The use of the Geertsma - Smit  approximations presented above requires the following 

assumptions: 

• mathematical approximations are valid at moderate-to-low seismic frequencies, 

so that 𝑓𝑓<𝑓𝑓𝑐𝑐. This generally means moderate-to-low permeabilities but it is in 

this range of permeabilities that squirt dispersion may dominate the Biot effect; 

• the rock is isotropic; 

• all minerals making up the rock have the same bulk and shear moduli; 

• fluid - bearing rock is completely saturated.  
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4.2.1.5. Mavko - Jizba squirt relations 
 
The squirt or local flow model suggests that the fluctuating stresses in a rock caused by 

a passing seismic wave induce pore-pressure gradients at virtually all scales of pore-space 

heterogeneity  - particularly on the scale of individual grains and pores. These gradients impact 

the viscoelastic behavior of the rock, at high frequencies when the gradients are unrelaxed all 

elastic moduli will be stiffer than at low frequencies when the gradients are relaxed. Mavko 

and Jizba  derived simple theoretical formulas for predicting the very high-frequency moduli 

of saturated rocks in terms of the pressure dependence of dry rocks. The prediction is made in 

two steps: first, the squirt effect is incorporated as high-frequency “wet-frame moduli” 𝐾𝐾𝑢𝑢𝑢𝑢 and 

𝐺𝐺𝑢𝑢𝑢𝑢 which are derived from the normal dry moduli as (Mavko & Jizba, 1991): 

1
𝐾𝐾𝑢𝑢𝑢𝑢

≈
1

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑−ℎ𝑖𝑖𝑖𝑖
+ �

1
𝐾𝐾𝑢𝑢𝑓𝑓

−
1
𝐾𝐾𝑠𝑠
�𝜑𝜑𝑠𝑠𝑠𝑠𝑢𝑢𝑠𝑠 

 

�
1
𝐺𝐺𝑢𝑢𝑢𝑢

−
1

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑
� =

4
15

�
1
𝐾𝐾𝑢𝑢𝑢𝑢

−
1

𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
�, 

where  𝐾𝐾𝑢𝑢𝑢𝑢 is the effective high-frequency, unrelaxed, wet-frame bulk modulus, 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 is the 

effective bulk modulus of the rock skeleton, 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑−ℎ𝑖𝑖𝑖𝑖 is the effective bulk modulus of dry rock 

at very high pressure, 𝐾𝐾𝑠𝑠  is the bulk modulus of the mineral making up the rock, 𝐾𝐾𝑢𝑢𝑓𝑓 is the 

effective bulk modulus of the pore fluid, 𝜑𝜑𝑠𝑠𝑠𝑠𝑢𝑢𝑠𝑠 is the soft porosity – the amount of porosity that 

closes at high pressure. 𝐺𝐺𝑢𝑢𝑢𝑢 is the effective high-frequency, unrelaxed, wet-frame shear 

modulus and 𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 is the effective shear modulus of the rock skeleton. 

These frame moduli are then substituted into Gassmann’s or Biot’s relations to 

incorporate the remaining fluid-saturation effects.  

The Mavko-Jizba squirt relations can be used to calculate high-frequency saturated rock 

velocities from dry rock velocities. 

The use of the Mavko-Jizba squirt relations requires the following assumptions: 

• high seismic frequencies that are ideally suited for ultrasonic laboratory 

measurements are assumed. In-situ seismic velocities generally will have 

neither squirt nor Biot dispersion and should be described using Gassmann’s 

equations. Sonic-logging frequencies may or may not be within the range of 

validity, depending on the rock type and fluid viscosity; 

• the rock is isotropic; 
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• all minerals making up the rock have the same bulk and shear moduli and 

• fluid-bearing rock is completely saturated. 

 

 

4.3. Sandstone models based on laboratory data  

 
The sand models were derived based on laboratory data using the relations presented in 

the chapter above.  Laboratory samples of the sand were dried in an oven at 110oC at  room 

conditions  (Bhuiyan & Holt, 2016) that assumes that the ultra-dry artifacts were avoided. 

 Since laboratory measurements include two dry loads, the models were considered 

separately for the first and second loads. Furthermore, the modeling of the saturated load was 

also subdivided into two parts according to two dry loads.  

 

4.3.1. First and second dry load models  

 
The main purpose of our modeling is to derive the models for bulk and shear moduli of 

the dry rock and then using the main theoretical relation’s (Gassmann, Biot, Mavko-Jizba) 

obtain compressional and shear wave velocities of the saturated rock.  

Firstly, we calculated bulk and shear moduli of the rock skeleton  using equations: 

       𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑 =  𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑 ∙ (𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑
2 − 4

3
 𝑉𝑉𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑2 )       (1) and 

        𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑 ∙ 𝑉𝑉𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑2                           (2), 

where 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑  is the density of the rock skeleton, 𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 is a compressional wave velocity of the 

rock skeleton and  𝑉𝑉𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 is a shear wave velocity of the rock skeleton.  

 Based on the calculated  Kdry and Gdry values we  made  the models for bulk and 

shear moduli of the dry rock as functions of porosity for two dry loads.  
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 Figure 4.3.1.1. Kdry model for all considered types of sand with different grain sizes. A. First     

 dry load. B. Second dry load. 
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Figure 4.3.1.2. Kdry model based on the whole range of values for all considered types of sand 

with different grain sizes. A. First dry load. B. Second dry load. 
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Figure 4.3.1.3. Gdry model for all considered types of sand with different grain sizes A. First 

dry load. B. Second dry load. 
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Figure. 4.3.1.4. Gdry model based on the whole range of values for all considered types of sand 

with different grain sizes. A. First dry load. B. Second dry load. 
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 The Figure 4.3.1.1 (A and B) is identical to the Figure 4.3.1.2 (A and B) and  the Figure 

4.3.1.3 (A and B) is the same as Figure 4.3.1.4 (A and B).  The only difference is in a shown 

equations for Kdry and Gdry.  

The definition of the models for Kdry and Gdry was not so clear  and simple for the 

whole range of values. So, instead of using the whole range of values we estimated the average 

values of Kdry and  Gdry as well as porosity for each type of sand with a certain grain size.  

 

 

 
Figure 4.3.1.5. Kdry model for all considered types of sand with different grain sizes using 

average values. A. First dry load. B. Second dry load. 
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Figure 4.3.1.6. Gdry model for all considered types of sand with different grain sizes using 

average values. A. First dry load. B. Second dry load. 
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Kdry and Gdry models derived according to the average values might be more 

sustainable and accurate. Hence, they were chosen for the calculation of compressional and 

shear wave velocities of the saturated rock.  

The observation of Kdry models showed that in general  Kdry tends to increase with 

increasing of the grain size of sand. However, this tendency is not seemed to be that obvious 

for Gdry models.  It can be seen in both dry loads. 

 

 

 

 

4.3.2. Velocity models based on the first and second dry loads 
 

First of all, we calculated compressional and shear wave velocities using Gassmann’s 

theory and our derived models for Kdry and Gdry.  

We got such models for Kdry and Gdry for both dry loads accordingly: 

𝐾𝐾1𝑑𝑑𝑏𝑏𝑑𝑑 = 5.37 · 𝑏𝑏−4.86·𝜑𝜑 , 

𝐺𝐺1𝑑𝑑𝑏𝑏𝑑𝑑 = 1.44 · 𝑏𝑏−2.29·𝜑𝜑 , 

 

𝐾𝐾2𝑑𝑑𝑏𝑏𝑑𝑑 = 4.71 · 𝑏𝑏−4.39·𝜑𝜑 , 

𝐺𝐺2𝑑𝑑𝑏𝑏𝑑𝑑 = 1.39 · 𝑏𝑏−2.006·𝜑𝜑, 

Assuming that the bulk modulus of the mineral making up rock is equal to 37GPa and 

the bulk moduli of the fluid is equal to 2.36 GPa (Mavko et al., 2009, p.459) as well as using 

our models for Kdry and Gdry, we calculated the bulk modulus of the saturated rock (equation 

(2) from the Subsection 4.2.1.1). Compressional and shear wave velocities were estimated 

using formulas (4) and (5) from the subsection 4.2.1.1. 

In addition, we calculated the bulk and shear moduli of the saturated rock using 

Murphy’s models for Kdry and Gdry (expressions (1) and (2) from the Subsection 4.2.1.2. for 

the case when porosity higher that 35%). This allowed us to estimate Vp and Vs velocities 

based on Gassmann’s relations (formulas (4) and (5) from the Subsection 4.2.1.1) as well.  

Secondly, we also tested two approximations of Biot’s theory. The first Biot-Geertsma 

approximation was related to the high-frequency limiting velocities (described in the 

Subsection 4.2.1.3) . We created the programming code based on the formulas (1) and (2) from 

the subsection 4.2.1.3 in order to calculate high-frequency limiting velocities according to 

Biot’s approximation.  The code is shown in Section B4 of Appendix B. The calculations 
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involve Kdry and Gdry values as well. In this case we used  the models K1dry, G1dry for the 

first load and K2dry, G2dry for the second load. We took porosity from the input data and 

density of the solid material we assumed to be equal to 2.65 g/cm3. The bulk moduli of the 

solid material was taken to be equal to 37 GPa and  the bulk moduli of the fluid was set as 2.36 

GPa. Density of the brine was calculated using Batzle-Wang’s code (Section B3 of Appendix 

B) and it is constituted 1.02 g/cm3 taken into account that pressure is 0.11 MPa, salinity is 

35000ppm and temperature is 20oC. Tortuosity parameter was considered to be equal to 2 

(Winkler, 1985).  

 Furthermore, we tested the Geertsma-Smit approximation of Biot’s theory (Subsection 

4.2.1.4). In order to calculate the  reference frequency 𝑓𝑓𝑐𝑐  (Subsection 4.2.1.3) we set up the 

values of permeability by ourselves since we are not aware of them. We have been working 

with unconsolidated sand , thus, we supposed high permeability values ranging up to 

50000mD.  The viscosity of the brine 𝜂𝜂 was defined according to the following formula (Mavko 

et al., 2009, p. 341): 

𝜂𝜂 = 0.1 + 0.333𝑆𝑆 + (1.65 + 91.9𝑆𝑆3)𝑏𝑏𝑒𝑒𝑉𝑉{−[0.42(𝑆𝑆0.8 − 0.17)2 + 0.045]𝑇𝑇0.8}, 

 where 𝑆𝑆 is salinity that is 35000ppm and 𝑇𝑇 is temperature that is 20oC (room 

conditions).  

We also set up the value of porosity which is equal to about 38% for unconsolidated 

sand in our case. Frequency was done as an input parameter and it is constituted 500000Hz.  

The detailed calculations are presented in the supplementary material in the USB flash-

drive which attached to the printed version of the thesis.  

 The velocity models for the saturated rock obtained based on two dry loads using  our 

models for Kdry and Gdry as well as Murphy’s models for Kdry and Gdry, Gassmann’s 

relations and approximation of Biot’s theory are presented in the Figures 4.3.2.1, 4.3.2.2, 

4.3.2.3 and 4.3.2.4 ( Vp1 and Vp2 , Vs1  and Vs2 mean that velocities were calculated based  

on  first and second dry load accordingly). 
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  Figure 4.3.2.1. Vp velocity models of the saturated rock based on both dry loads. 

 
Figure 4.3.2.2. Vp velocity models of the saturated rock based on both dry loads. 
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The model in the Figure 4.3.2.1 includes the whole range of measured values of Vp, 

while the model in the Figure 4.3.2.2 involves the average values of measured Vp velocity and 

porosity for each type of sand.  

Similarly we got the models for Vs velocity: 

 

 
Figure 4.3.2.3. Vs velocity models of the saturated rock based on both dry loads. 
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Figure 4.3.2.4. Vs velocity models of the saturated rock based on both dry loads. 

 
The model in the Figure 4.3.2.3 includes the whole range of measured values of Vs, 

while the model in the Figure 4.3.2.4 involves the average values of measured Vs velocity and 

porosity for each type of sand.  

From the Figures above we noticed that measured velocities are close to the velocities 

calculated based on Gassmann’s relations and Biot-Geertsma high-frequency approximation. 

In contrast, velocities obtained according  Murphy’s models for Kdry and Gdry show a 

dramatic difference for both Vp and Vs. One can see that velocities trends based on measured 

values as well as Gassmann’s relations and Biot’s approximation have a coincidence with 

Murphy’s trend only up to porosity of about 37%. The porosity of random packing can vary up 

to 44.7% (Mavko et al., 2009). In the graphs we observed the changing in porosity of sand from 

approximately 36% to 44%. Hence, the high level of porosity can be explained by the packing 

of sand. However, according to the graphs we see a slight increasing of Vp velocity with 

increasing porosity while Vs velocity practically  stays constant with rising porosity values that 

can not be correct due to the fact that in the fluid Vs should approach to zero. We believe that 

Murphy’s trend behaves much more reasonable for Vp and Vs in comparison with the others. 

We assumed that laboratory data of unconsolidated sand are not completely correct. For this 

reason, we think that the considered models did not give relevant results.  
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Testing of  the Geertsma-Smit approximation showed that it is not applicable for our 

case as well. We calculated the reference frequency according to the chosen permeability 

diapason and made the graph which is presented in the Figure 4.3.2.5. 

 

 
Figure 4.3.2.5. Reference frequency versus permeability. 

 

It can be noticed in the Figure 4.3.2.5 that the reference frequency decreases with 

increasing permeability. We got  the values of the reference frequency which are much lower 

than the frequency of the measurements. So, one of the requirements of the Biot’s 

approximation 𝑓𝑓<𝑓𝑓𝑐𝑐 is not fulfilled. (Subsection 4.2.1.4). Hence, Geertsma-Smit’s 

approximation can not be used for our laboratory data of sand. 

We planned to take into consideration the complete Biot’s theory as well as Mavko-

Jizba squirt relations.  However, we think that the laboratory data of sand are biased. Therefore, 

we decided not to implement the further analysis.  
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5. Establishment of a well database for Cenozoic sediments in twelve wells of 
the Johan Sverdrup field 
 

In this Chapter we presented editing as well as main calculations that were done with 

well logs. Moreover, the Chapter includes the essential part – modeling of shallow 

unconsolidated sediments and results of the derived models based on well logging data of all 

wells.  
 
 
5.1. How were the wells selected 
 

Well logging data of 12 wells considered in the thesis was provided by Petrobank. The 

location of wells was presented in the Section 1.1.  

The wells in general are characterized by a good quality of well logs with a couple of 

exceptions to be identified later in this thesis. The wells were chosen according to the fact that 

well logs in most of the wells were recorded practically from the seabed level or close to seabed 

values. This makes the modeling of the shallow part possible and more correct as well as it 

allows to avoid significant uncertainties and errors in the final results.  

 

 

5.2. Basic calculation before logs editing 
 

Before the logs loading we calculated a true vertical depth mud line and a true vertical 

depth subsea   for all considered wells. The formulas for TVDML and TVDSS calculation as 

wells as values of TVD, water depth and kelly bushing we presented in the Subsection 2.3.1. 

True vertical depth was determined using minimum curvature algorithm based on inclination, 

azimuth and depth data.  

 

 

5.3. Editing of well logs 
 

After loading the well logs it was important to check out the quality of them. The quality 

of logs in considered wells in general is good. However, there are some flaws that were found 

in well logs.  The correction of logs was implemented in Geolog program.  
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5.3.1. Editing of gamma-ray logs 
 

In the wells 16/2-20 S, 16/3-4 A and 16/3-8 A there is missing of values in gamma-ray 

log in some intervals. In order to improve this issue we used a linear interpolation in Geolog 

program. The wells with intervals where gamma-ray log was edited are presented in the Table 

5.3.1.1.  

 
Table 5.3.1.1. 

Gamma-ray logs editing. 

Well 
Edited interval 

(m) 

Missing of 

values 
Type of editing 

16/2-20 S 
316.4 - 319.4 Hole Linear interpolation 

605.8 – 609.5 Hole  Linear interpolation  

16/3-4 A 758.1 – 761.4 Hole  Linear interpolation  

16/3-8 A 210.2– 212.5 Hole  Linear interpolation 

 

 

5.3.2. Editing of deep resistivity logs  

 
In the wells 16/2-12, 16/2-14 T2, 16/2-20S, 16/2-5, 16/3-4 A, 16/3-7, 16/3-8 A, 16/4-6 

S and 16/2-4 there is a missing of values in deep resistivity log in some intervals as well. They 

were corrected applying linear interpolation in the logarithmic space. The edited intervals are 

given in the Table 5.3.2.1. 

 
Table 5.3.2.1. 

Deep resistivity logs editing. 

Well 
Edited interval 

(m) 
Flaw Type of editing 

16/2-12 

605.0 – 610.8 Missing of values Linear interpolation in the logarithmic space 

1219.5 -1225 Missing of values Linear interpolation in the logarithmic space 

1668.6 - 1674.6 Missing of values Linear interpolation in the logarithmic space 

16/2-14 T2 

610.1– 616.9 Missing of values Linear interpolation in the logarithmic space 

1206.4-1208.5 Missing of values Linear interpolation in the logarithmic space 

1561.3– 1574.3 Missing of values Linear interpolation in the logarithmic space 



 
89 

 

Continuation of the Table 5.3.2.1. 

Well 
Edited interval 

(m) 
Flaw Type of editing 

16/2-20 S 

314.6– 317.3 Missing of values Linear interpolation in the logarithmic space 

604.4– 607.9 Missing of values Linear interpolation in the logarithmic space 

636.5– 645.5 Missing of values Linear interpolation in the logarithmic space 

16/2-5 
509– 516.3 Missing of values Linear interpolation in the logarithmic space 

1729.3 – 1736.1 Missing of values Linear interpolation in the logarithmic space 

16/3-4 A 
503.5– 505.7 Missing of values Linear interpolation in the logarithmic space 
591.8– 596.2 Missing of values Linear interpolation in the logarithmic space 
755.3– 763.1 Missing of values Linear interpolation in the logarithmic space 

16/3-7 707.3 – 713.0 Missing of values Linear interpolation in the logarithmic space 

16/3-8 A 
208.6– 210.9 Missing of values Linear interpolation in the logarithmic space 
605.9– 607.0 Missing of values Linear interpolation in the logarithmic space 

16/4-6 S 
605.6– 610.7 Missing of values Linear interpolation in the logarithmic space 

1911.1– 1921.9 Missing of values Linear interpolation in the logarithmic space 

16/2-4 
636.4– 645.4 Missing of values Linear interpolation in the logarithmic space 

1690.1– 1692.1 Missing of values Linear interpolation in the logarithmic space 
 

 

5.3.3. Editing of sonic logs  
 
5.3.3.1 Editing of compressional slowness logs 
 

A special technique was applied to edit compressional slowness logs. This technique 

involves a creation of the synthetic logs. The synthetic logs restore the upper part of the raw 

DT logs in case when a record of the latter logs starts from the lower point in comparison with 

other logs. Thus, synthetic logs are a useful tool for the reconstruction of the upper part where 

values are omitted. Furthermore, synthetic logs allow to get rid of the holes by replacing the 

intervals with holes in raw logs with filled intervals of the synthetic logs. 

The synthetic logs for editing of the raw DT log were made based on the Faust’s 

equations. Faust’s modification was considered in 2 forms – standard one and for the shallow 

part. Faust’s equation is described by the following equation: 

𝐷𝐷𝑇𝑇 · (𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 · 𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿)�
1
6� = 𝑎𝑎 + 𝑏𝑏 · 𝑉𝑉_𝐶𝐶𝐿𝐿𝐴𝐴𝐶𝐶, 
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where 𝐷𝐷𝑇𝑇 is a raw compressional slowness log, 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final edited deep 

resistivity log, 𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿 is true vertical depth mud line, a and b are strictly positive empirical 

constants which are the same for all wells and 𝑉𝑉_𝐶𝐶𝐿𝐿𝐴𝐴𝐶𝐶 is the wet clay volume.  

For  our particular case the Faust’s equation has the following formula based on all 

wells together: 

𝐷𝐷𝑇𝑇_𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇 = 1000 · (0.422 + 0.0332 · 𝑉𝑉_𝐶𝐶𝐿𝐿𝐴𝐴𝐶𝐶) · (𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 · 𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿)(−16), 

where 𝐷𝐷𝑇𝑇_𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇 is the log name for compressional slowness curve calculated based on Faust 

equation. This equation was used in order to calculate a synthetic DT_FAUST log. 

 However, the standard Faust equation in always breaks down in the first 100-300 m 

below the seabed as shown in the article “Faust Revisited – A Shallow Modification of the 

Faust Empirical Relationship Between Sonic Slowness and Resistivity” accepted for 

publication in CWLS Insite and included in this thesis before the list with references.  The 

equation for the most shallow part was shown in this article to be: 

𝐷𝐷𝑇𝑇_ 𝑆𝑆𝐻𝐻𝐴𝐴𝐿𝐿𝐿𝐿𝑆𝑆𝑊𝑊_𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇 = 𝑏𝑏(5.37−0.000610·𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿) · 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿�−
1
6� , 

where 𝐷𝐷𝑇𝑇_ 𝑆𝑆𝐻𝐻𝐴𝐴𝐿𝐿𝐿𝐿𝑆𝑆𝑊𝑊_𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇 is the log name for compressional slowness curve calculated 

based on modified Faust equation for shallow part. 

Both DT_FAUST and DT_SHALLOW_FAUST calculations were made for all wells 

in order to compare raw and synthetic logs and to apply editing when it was necessary. The 

table below shows the intervals of wells where raw DT logs were edited. The correction was 

applied in the shallow part that missed the curve, intervals with missing values as well as in the 

bad hole and mud intervals. Bad hole intervals were determined by the large difference between 

bit size (BS) and caliper (CALI). This has influence also to the density log. If the density 

correction is big then it has impact to the density as well. If DT is close to mud value 

(approximately 189 ms/ft) then sonic log reads only mud and not rock. 

Table 5.3.3.1.1. 

DT logs editing. 

Well Edited interval 

(m) 
Flaw Type of editing 

16/2-4 
290.2-598 Absence of the log in the shallow part DT_SHALLOW_FAUST 

1242.1-1328.8 Bad hole interval DT_FAUST 

 

 

 



 
91 

 

Continuation of the Table 5.3.3.1.1. 

Well 
Edited interval 

(m) 
Flaw Type of editing 

16/2-5 
158.2-492.7 Absence of the log in the shallow part DT_SHALLOW_FAUST 

1726.2 – 1730.7 Missing of values DT_FAUST 

16/2-12 
137- 600.8 Absence of the log in the shallow part DT_SHALLOW_FAUST 

1212.3 – 1234.6 Missing of values DT_FAUST 

16/2-20S 

188.0-189.4 Mud interval DT_FAUST 

276.8-277.8 Missing of values DT_FAUST 

305.1-307.1 Missing of values DT_FAUST 

595.2-597.4 Missing of values DT_FAUST 

623.9-625.1 Missing of values  DT_FAUST 

654.1-655.1 Missing of values DT_FAUST 

707.0-721.6 Mud interval, hole DT_FAUST 

16/2-14T2 135-581.4 Absence of the log in the shallow part DT_SHALLOW_FAUST 

16/3-4A 142.2-763.7 Absence of the log in the shallow part DT_SHALLOW_FAUST 

16/3-7 
142.0-327.2 Absence of the log in the shallow part DT_SHALLOW_FAUST 

692.5-718.7 Missing of values DT_FAUST 

16/3-8A 595.4-607 Missing of values DT_FAUST 

16/4-5 
134.6-902.2 Absence of the log in the shallow part DT_SHALLOW_FAUST 

1763.5-1770.1 Missing of values DT_FAUST 

16/4-6S 

226.7-228.9 Missing of values  DT_FAUST 

242.0-245.7 Missing of values DT_FAUST 

588.6-602.3 Missing of values DT_FAUST 

1905.0-1909.0 Missing of values DT_FAUST 

16/5-4 696.5-710.2 Missing of values DT_FAUST 
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The final DT log is a combination of the raw DT, DT_FAUST and 

DT_SHALLOW_FAUST logs. DT_SHALLOW_FAUST logs were used to restore the curve 

where the raw DT logs were missed in the shallow part. DT_FAUST logs were applied to fill 

the intervals with missing values as well as mud and bad holes intervals. In some wells the raw 

DT logs have no issues and, thus, they were not corrected, so the final log in this case is the 

same as the raw log.  

 

 

 

5.3.3.2 Editing of shear slowness logs 
 

We also edited raw DTS logs. In order to fill the intervals with missing values we 

created a synthetic DTS curve and merged it with a raw one. For every edited interval we 

derived a separate  model. Using Archie formula for the water saturated case we get (Archie, 

1942): 

𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) = 𝐿𝐿𝑠𝑠𝑔𝑔10(𝑎𝑎𝑅𝑅𝑤𝑤) −𝑠𝑠𝐿𝐿𝑠𝑠𝑔𝑔10(𝜑𝜑), 

where 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿  is the final edited deep resistivity log, 𝑎𝑎,𝑠𝑠,𝑅𝑅𝑤𝑤 are constants and 𝜑𝜑 is 

porosity.  

DTS is a function of porosity and porosity itself is related to resistivity according to the 

Archie formula. Thus, we determined models for DTS correction as functions of logarithm 

resistivity for each interval to be corrected. The intervals with missing values and equations for 

their correction are presented in the table below.  
 
Table 5.3.3.2. 

DTS logs editing. 

Well 
Edited interval  

(m) 
Flaw 

Type of editing 

DTS models for filling the holes 

16/2-12 1215.3-1231.5 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 347.67− 372.54𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

16/2-20S 

499.8-515.6 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 482.70− 15.06𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

592.3-602.1 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 370.75− 215.60𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

621.2-628.5 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 526.63− 721.02𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

652.1-656.8 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 56.31 + 1554.51𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

696.9-730.2 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 285.77− 531.99𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

959.3-980.7 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 388.94− 760.13𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 
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Continuation of the Table 5.3.3.2. 

Well 
Edited interval  

(m) 
Flaw 

Type of editing 

DTS models for filling the holes 

16/2-4 1670-1691 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 405.26− 339.17𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

16/2-5 1720.1-1743.8 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 386.55− 106.60𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

16/3-6 688.4-704.2 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 353.59 + 433.13𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

16/3-7 
694.2-718.3 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 371.56 + 28.79𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

1032.5-1060.8 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 292.09 + 542.68𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

16/3-8A 

593.1-610.9 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 436.62 + 6.93𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

1383.5-1421.8 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 347.01 + 30.93𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

1457.4-1534.3 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 216.38− 667.55𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

16/4-5 

1228.9-1231.5 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 362.08− 404. 16𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

1418.1-1503.1 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 349.18− 230.26𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

1540.6-1779.3 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 363.39 + 459.72𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

16/5-4 

478.8-485.9 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 802.45− 1448.23𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

693.2-704.3 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 395.09− 52.19𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

1340-1405 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 419.27 + 315.11𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

1422.6-1486 Missing of values 𝐷𝐷𝑇𝑇𝑆𝑆 = 419.27 + 315.11𝐿𝐿𝑠𝑠𝑔𝑔10(𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿) 

 

 

 

5.3.4. Editing of density logs  
 

The density logs correction included creation of the synthetic logs which allowed to 

restore a shallow part of the logs if it was missed in wells. Moreover, the synthetic density logs 

were applied to remove cavings and fill the intervals with missing values. The possible 

presence of cavings intervals in some wells was defined by the visible decreasing of raw density 

values. For the editing of density curves we used the Gardner’s formula (Gardner, Gardner, & 

Gregory, 1974): 

𝑅𝑅𝐻𝐻𝑆𝑆𝐾𝐾 · 𝐷𝐷𝑇𝑇_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿�
1
4� = 𝐴𝐴 + 𝐾𝐾 · 𝑉𝑉_𝐶𝐶𝐿𝐿𝐴𝐴𝐶𝐶, 

where 𝑅𝑅𝐻𝐻𝑆𝑆𝐾𝐾 is  the raw density log, 𝐷𝐷𝑇𝑇_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final edited compressional slowness 

log, 𝐴𝐴 and  𝐾𝐾 are empirical constants. 

For our particular case the Gardner’s equation  was reformulated as follows: 
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𝑅𝑅𝐻𝐻𝑆𝑆𝐾𝐾_𝑆𝑆𝐶𝐶𝑁𝑁𝑇𝑇 = 1000 ∙ (0.0706 + 0.00223 ∙ 𝑉𝑉_𝐶𝐶𝐿𝐿𝐴𝐴𝐶𝐶) ∙ 𝐷𝐷𝑇𝑇_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿(−14), 

where 𝑅𝑅𝐻𝐻𝑆𝑆𝐾𝐾_𝑆𝑆𝐶𝐶𝑁𝑁𝑇𝑇 is the synthetic density log. 

We used this equation for all wells to calculate the synthetic density logs. The wells 

with intervals where density logs were edited are given in the Table 5.3.4.1.  
 
Table 5.3.4.1. 

Density logs editing. 

Well 
Edited interval  

(m) 
Flaw Type of editing 

16/2-12 
210.9-612.6 Absence of the log in the shallow part RHOB_SYNT 

1196-1671.4 Missing of values RHOB_SYNT 

16/2-14T2 

203.6-622 Absence of the log in the shallow part RHOB_SYNT 

1163.6-1249 Caving RHOB_SYNT 

1550.0-1567.0 Missing of values RHOB_SYNT 

16/2-20S 

140.7-725.6 Absence of the log in the shallow part RHOB_SYNT 

904.4-952.6 Caving RHOB_SYNT 

965.5-971.3 Caving RHOB_SYNT 

16/2-4 

290.2-645.5 Absence of the log in the shallow part RHOB_SYNT 

942.7-1058.2 Caving RHOB_SYNT 

1241.3-1324.7 Caving RHOB_SYNT 

1681.7-1707.8 Missing of values RHOB_SYNT 

16/2-5 

282.4-756.2 
Caving, absence of the log in the shallow 

part 
RHOB_SYNT 

969.1-999.3 Caving RHOB_SYNT 

1124.5-1187.5 Caving RHOB_SYNT 

1682.8-1756 Caving RHOB_SYNT 

16/3-4A 142.2-766.7 Absence of the log in the shallow part RHOB_SYNT 

16/3-6 156.9-712.1 Absence of the log in the shallow part RHOB_SYNT 
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Continuation of the Table 5.3.4.1. 

Well 
Edited interval  

(m) 
Flaw Type of editing 

16/3-7 141.8-722.5 Absence of the log in the shallow part RHOB_SYNT 

16/3-8A 141.2-610.7 Absence of the log in the shallow part RHOB_SYNT 

16/4-5 

135.3-610.7 Absence of the log in the shallow part RHOB_SYNT 

955.6-963.9 Caving RHOB_SYNT 

1769.5-1779.5 Missing of values RHOB_SYNT 

16/4-6S 

125.8-622.71 Absence of the log in the shallow part RHOB_SYNT 

1006.2-1080.1 Caving RHOB_SYNT 

1126.5-1196.3 Caving RHOB_SYNT 

1338.4-1360.2 Caving RHOB_SYNT 

1871.6-1914.5 Missing of values RHOB_SYNT 

16/5-4 
133.3-768.1 Absence of the log in the shallow part RHOB_SYNT 

1141.3-1246 Caving RHOB_SYNT 

 

The final density log is a combination of the raw and synthetic logs. The raw density 

log was used in a good intervals with no issues while the synthetic one was applied in edited 

intervals.  

All logs editing includes log flag curves which serve as visual tools for indicating 

correction that was done. A log flag curve which is equal to 1 shows the intervals with no 

correction, whereas a log flag curve  that is equal to 0 means the interval with correction. The 

following log flag curves were made in the thesis: GR_FLAG, RDEP_FLAG, DT_FLAG, 

DTS_FLAG and  RHOB_FLAG.  

 

 

 

 

 

 

 



 
96 

 

5.4. Main calculation done on well logs 

 
V_CLAY log was calculated from the GR log based on the following equation 

(Malcolm, 1996): 

𝑉𝑉_𝐶𝐶𝐿𝐿𝐴𝐴𝐶𝐶 = 𝐺𝐺𝐺𝐺_𝐹𝐹𝐹𝐹𝑁𝑁𝐹𝐹𝐿𝐿−𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹𝑁𝑁
𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹𝐺𝐺−𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹𝑁𝑁

, 

where 𝑉𝑉_𝐶𝐶𝐿𝐿𝐴𝐴𝐶𝐶 is the volume of the wet clay, 𝐺𝐺𝑅𝑅_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final edited gamma-ray log, 

𝐺𝐺𝑅𝑅𝑇𝑇𝐹𝐹𝑁𝑁 is the  minimum of the gamma-ray log and GRMAX is the maximum of the gamma-

ray log. GRMAX log was picked only in shale intervals, while GRMIN log only in sand 

intervals.  
 
Differential pressure was calculated from the density log using the following 

equation: 

𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝑆𝑆𝐾𝐾 − 𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝐻𝐻𝐶𝐶𝐷𝐷𝑅𝑅𝑆𝑆, 

where 𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 is differential (effective) pressure, 𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝑆𝑆𝐾𝐾 is overburden pressure and  

𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝐻𝐻𝐶𝐶𝐷𝐷𝑅𝑅𝑆𝑆 is hydrostatic pressure.  

The overburden pressure at a depth z is given by (Karimi, Adelzadeh, & 

Mohammadypour, 2014): 

𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝑆𝑆𝐾𝐾 = 𝑃𝑃0 + 𝑔𝑔 ∫ 𝜌𝜌(𝑧𝑧)𝑧𝑧
0 𝑑𝑑(𝑧𝑧), 

where 𝜌𝜌𝑧𝑧 is the density of the overlying rock at depth z, 𝑔𝑔 is acceleration due to gravity and  𝑃𝑃0 

is the datum pressure (pressure at the surface). Since the values of the density close to seabed 

were missed in some wells, from the cross-plot in the Figure 5.5.1 we assumed one reasonable 

value of density which is equal to 2.1 g/cm3. 
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                            Figure 5.4.1. Density versus TVDML. 

 
The hydrostatic pressure in its turn was calculated based on the following equation 

(Malcolm, 1996): 

𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝐻𝐻𝐶𝐶𝐷𝐷𝑅𝑅𝑆𝑆 = 𝑃𝑃𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆_𝑆𝑆𝐾𝐾 +  𝑔𝑔 · 0.01 · 𝜌𝜌𝑢𝑢𝑓𝑓 · 𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿, 

where 0.01 is a conversion unit, 𝜌𝜌𝑢𝑢𝑓𝑓 is density of the fluid (equal to 1.03g/cm3). 

At seabed the values of hydrostatic and overburden pressures are equal or practically 

equal.  

Porosity was calculated using the following formula (Malcolm, 1996): 

𝑃𝑃𝐻𝐻𝐹𝐹𝑇𝑇 = (𝜌𝜌𝑚𝑚𝑠𝑠  − 𝑅𝑅𝐻𝐻𝑆𝑆𝐾𝐾_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿)/(𝜌𝜌𝑚𝑚𝑠𝑠 − 𝜌𝜌𝑢𝑢𝑓𝑓), 

where 𝜌𝜌𝑚𝑚𝑠𝑠 is the density of the rock matrix (equal to 2.65g/cm3), 𝑅𝑅𝐻𝐻𝑆𝑆𝐾𝐾_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final 

edited density log. The lowest and highest limits for the porosity curve are 0.01 and 0.5 

respectively.  

Calculation of velocities on well logs were done according to the formulas(Malcolm, 

1996): 

𝑉𝑉𝑃𝑃 = 304800/𝐷𝐷𝑇𝑇_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿, 

where 𝑉𝑉𝑃𝑃 is the compressional wave velocity log, 𝐷𝐷𝑇𝑇_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final edited 

compressional slowness log and 
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                                                      𝑉𝑉𝑆𝑆 = 304800/𝐷𝐷𝑇𝑇𝑆𝑆_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿, 

where 𝑉𝑉𝑆𝑆 is the shear wave velocity log, 𝐷𝐷𝑇𝑇𝑆𝑆_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final edited shear slowness log.    

The results of logs editing as well as main calculations done on well logs we showed 

in CPI plots for three main formations: Utsira, Skade and Grid for every well.  

 

 
 Figure 5.4.2. CPI showing well logs editing and main calculations for the Utsira formation in   

 the well 16/2-12. 
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 Figure 5.4.3. CPI showing well logs editing and main calculations for the Skade formation in   

 the well 16/2-12. 

 

 In this particular well the Grid formation does not exist. Hence, there is no CPI for this 

formation in this particular well.  

The CPI plots for the remaining wells are presented in Appendix C. We would like to 

make a small remark about these CPI plots. Some tracks include several curves, due to exact 

scale for all logs in one track, the curves are overlapped. Because of this small issue of the 

program in some wells one can not see both edited (final) and raw logs in one track at once. 

However, the Flag logs indicate where the logs were edited.  
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6. Sonic modeling from well logs 
 

This Chapter presents the sonic models that we obtained based on well logging data. 

We considered two sonic models and we made our conclusion which model is better for the 

shallow formations.  
 
 
6.1. Motivation for two sonic models 

 
There are two natural boundary conditions in sand/shale: 

1. Finite values of sonic velocities at seabed where a lower bound of compressional 

wave velocity may be estimated by the Coppen’s and Batzle-Wang’s models. 

2. For large TVDML velocities are approximately constant or slightly increase. The 

power model satisfy both conditions while a second order polynomial model satisfy 

only the one (first condition).  

Based on the investigation of laboratory data of shale we also concluded that a power 

model seems to be the best model for sonic velocities. In the well logs sonic modeling part we 

considered two models.  

   First of all we tried out a power model on well logs. The power model on well logs 

has the same equation as we had for our laboratory studies. For compressional wave velocity 

we get: 

𝑉𝑉𝑃𝑃 = 𝑉𝑉𝑃𝑃𝑏𝑏 + 𝐴𝐴 · 𝜎𝜎𝐵𝐵,  

where 𝑉𝑉𝑃𝑃  is compressional wave velocity, 𝑉𝑉𝑃𝑃𝑏𝑏 is compressional wave velocity of the brine at 

seabed,  𝜎𝜎 is effective pressure, 𝐴𝐴  and 𝐾𝐾 are coefficients of the equation. Similarly we have 

equation for shear wave velocity: 

𝑉𝑉𝑆𝑆 = 𝑉𝑉𝑆𝑆𝑏𝑏 + 𝐴𝐴′ · 𝜎𝜎𝐵𝐵′,  

where 𝑉𝑉𝑆𝑆  is shear wave velocity, 𝑉𝑉𝑆𝑆𝑏𝑏 is shear wave velocity of the brine at seabed,  𝜎𝜎 is 

effective pressure, 𝐴𝐴′ and 𝐾𝐾′ are coefficients of the equation. 

The second approach of the considered models involves resistivity in addition to 

differential pressure. The model represents a generalization of both the power and the Faust 

models. The Faust model for compressional wave velocity has the following general form: 

𝑉𝑉𝑃𝑃 = 𝐴𝐴′′ ∙ 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿1/6 ∙ 𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿1/6,  

where 𝐴𝐴′′ is coefficient of the equation, 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final edited deep resistivity log, 

𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿 is true vertical depth mud line. The true vertical depth mud line versus differential 
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pressure has in general a linear trend for all twelve wells in the range 0 m TVDML – 1200 m 

TVDML that can be seen in the figure below. 

 
Figure 6.1.1. TVDML versus differential pressure. 

 
It allowed us to make an assumption that true vertical depth mud line can be roughly 

equal to differential pressure at least down to about 1200 m TVDML. Thus, in the second 

model in stead of TVDML we used differential pressure parameter. The second model then has 

the following form for compressional wave velocity: 

𝑉𝑉𝑃𝑃 = 𝑉𝑉𝑃𝑃𝑏𝑏 + 𝐴𝐴′′ · 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿𝑚𝑚 · 𝜎𝜎𝑛𝑛,  

where 𝑉𝑉𝑃𝑃𝑏𝑏 is compressional wave velocity of the brine at seabed, 𝐴𝐴′′is coefficient of the 

equation,  𝑠𝑠, 𝑛𝑛 are exponents of the equation, 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final edited deep resistivity 

curve, 𝜎𝜎 is differential pressure. Similarly we get the formula for shear wave velocity: 

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝐷𝐷𝑏𝑏 + 𝐴𝐴′′′ · 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿𝑚𝑚′ · 𝜎𝜎𝑛𝑛′,  

where 𝑉𝑉𝐷𝐷𝑏𝑏 is shear wave velocity of the brine at seabed, 𝐴𝐴′′′is coefficient of the equation and  

 𝑠𝑠′, 𝑛𝑛′ are exponents of the equation.  

Notice that in order to get finite limits for Vp and Vs close to the seabed we need to 

have 𝑛𝑛 and 𝑛𝑛′≥0. Further, the previous equations may be inverted to give: 
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𝜎𝜎 = (
𝑉𝑉𝑃𝑃 − 𝑉𝑉𝑃𝑃𝑏𝑏

𝐴𝐴′′
)𝑝𝑝 ∙ (

𝑉𝑉𝑆𝑆 − 𝑉𝑉𝑆𝑆𝑏𝑏
𝐴𝐴′′′

)𝑞𝑞 

 

𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 = �
𝑉𝑉𝑃𝑃 − 𝑉𝑉𝑃𝑃𝑏𝑏

𝐴𝐴′′
�
𝑝𝑝′

∙ �
𝑉𝑉𝑆𝑆 − 𝑉𝑉𝑆𝑆𝑏𝑏

𝐴𝐴′′′
�
𝑞𝑞′

, 

           where                                                𝑉𝑉 = 𝑚𝑚′

𝑛𝑛𝑚𝑚′−𝑛𝑛′𝑚𝑚
 , 

𝑞𝑞 = −𝑚𝑚
𝑛𝑛𝑚𝑚′−𝑛𝑛′𝑚𝑚 

, 

                                                          𝑉𝑉′ = −𝑛𝑛′

𝑛𝑛𝑚𝑚′−𝑛𝑛′𝑚𝑚
  and 

                                                          𝑞𝑞′ = 𝑛𝑛
𝑛𝑛𝑚𝑚′−𝑛𝑛′𝑚𝑚  

  . 

 
Thus, for m´/m ≠ n´/n there is a one to one correspondence between points in the (VP, 

VS) space and the (RDEP_FINAL, σ) space. In particular, in water-filled sand the Archie 

equation gives the porosity as a function of VP and VS: 

𝜑𝜑 = (
𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿

𝑎𝑎𝑅𝑅𝑠𝑠
)1/𝑚𝑚, 

 

where 𝑎𝑎,𝑠𝑠 and  𝑅𝑅𝑤𝑤  are constants. 

 

 

 

6.2. The first models for compressional and shear wave velocities  - optimization is 

based on all wells simultaneously 

 

In this section we considered the first and second models for Vp and Vs based on the 

optimization for all wells simultaneously.  

 

6.2.1. The first model for compressional wave velocity  
 
In well logging part the values of compressional wave velocity of the brine at seabed 

for sand and shale we obtained from the cross-plots showing Vp versus differential pressure 

for the twelve wells. This is the value of velocity at zero differential pressure.  
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     Figure 6.2.1.1. Cross-plot “Vp versus σ”. A. For sand B. For shale. 

 
For the sand the compressional wave velocity at the seabed is equal to about 1470m/s, 

whereas for shale the value is a bit higher and it constitutes around 1610 m/s. The remaining 

coefficients for the first model were obtained by taking logarithm of the differential pressure 

values and logarithm of the difference between raw values of compressional wave velocity and 

the values of the compressional wave velocity at seabed which are presented in the cross-plots 

in the Figure 6.2.1.2. 
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    Figure 6.2.1.2. Compressional wave velocity model. A. For sand B. For shale 

 

Having changed the logarithm form of the equations, we got the following power 

compressional wave velocity models for sand and shale: 

𝑉𝑉𝑃𝑃_𝐷𝐷𝑎𝑎𝑛𝑛𝑑𝑑 = 1470 + 145 · 𝜎𝜎0.331,  

𝑉𝑉𝑃𝑃_𝐷𝐷ℎ𝑎𝑎𝑠𝑠𝑏𝑏 = 1610 + 159 · 𝜎𝜎0.227.  

 

 

6.2.2. The first model for shear wave velocity  
 

We found the shear wave velocities of the brine at seabed for sand and shale in the same 

way as for compressional wave models. We also used cross-plots showing shear wave velocity 

against differential pressure for all wells.  
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       Figure 6.2.2.1. Cross-plot “Vs versus σ” for sand. A. For sand B. For shale. 

 
In this case it was not so clear to define the shear wave velocity of the brine at zero 

differential pressure. We used a second order polynomial models in order to define shear wave 

velocity of the brine at seabed. We assumed the value for sand which is equal to about 460m/s 

and for shale it is around 330m/s.  

The remaining coefficients for the first model for shear wave velocity we got by taking 

logarithm of the differential pressure values and logarithm of the difference between raw values 

of shear wave velocity and the values of the shear wave velocity at seabed, and showing it in 

the cross-plots in the Figure 6.2.2.2.   
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      Figure 6.2.2.2. Shear wave velocity model. A. For sand B. For shale. 

 

Having changed the logarithm form of the equations, we got the following power 

shear wave velocity models for sand and shale: 

𝑉𝑉𝑆𝑆_𝐷𝐷𝑎𝑎𝑛𝑛𝑑𝑑 = 460 + 8.72 · 𝜎𝜎0.784,  

𝑉𝑉𝑆𝑆_𝐷𝐷ℎ𝑎𝑎𝑠𝑠𝑏𝑏 = 330 + 101 · 𝜎𝜎0.366.  

 

6.3. Consistency of the seabed velocities  
 

We decided to check if the estimated values of velocities at seabed were chosen 

correctly. The Poisson’s ratio is directly related to the Vp/Vs ratio as follows (Mavko et al., 

2009): 

𝜈𝜈 =
(𝑉𝑉𝑃𝑃/𝑉𝑉𝑆𝑆)2 − 2

2[(𝑉𝑉𝑃𝑃/𝑉𝑉𝑆𝑆)2 − 1]. 
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The results are given in the Table 6.3.1. 
 

         Table 6.3.1. Poisson’s ratio values at seabed. 

Lithology VPb 

(m/s) 

VSb 

(m/s) 
PRb 

Sand 1470 460 0.45 

Shale 1610 330 0.48 

 

For both sand and shale the values at seabed satisfy the following consistency 

requirements at seabed (Mavko et al., 2009): 

1. VPb > VSb. 

2. 0< PRb<0.5 

3. PRb should be close to the fluid limit 0.5. 

Therefore, the chosen values of compressional and shear wave velocities for sand and 

shale at seabed seem to be reasonable.  

 

 

6.4. The second models for compressional and shear wave velocities – optimization is 

based on all wells 

 

6.4.1. The second model for compressional wave velocity 
 

Using the multiple regression in Geolog program we got the coefficients of the equation 

for compressional wave velocity  in logarithmic form. They are listed in the Tables 6.4.1.1 and 

6.4.1.2. 

 
Table 6.4.1.1. 

Resulting coefficients of the multiple regression for sand from output of Geolog 

generated report.  
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Table 6.4.1.2. 

Resulting coefficients of the multiple regression for shale from output of Geolog 

generated report.  

 
 
The final equations of the second compressional wave velocity model for sand and shale 

are as follows: 

𝑉𝑉𝑃𝑃_𝐷𝐷𝑎𝑎𝑛𝑛𝑑𝑑 = 1470 + 75.9 · 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿0.277 · 𝜎𝜎0.493,  

𝑉𝑉𝑃𝑃_𝐷𝐷ℎ𝑎𝑎𝑠𝑠𝑏𝑏 = 1610 + 23.9 · 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿0.507 · 𝜎𝜎0.643.  

 

 

 

6.4.2. The second model for shear wave velocity  
 

Using the multiple regression in Geolog we calculated the coefficients of the equation 

for shear wave velocity in logarithmic form. They are shown in the Tables 6.4.2.1 and 6.4.2.2. 

 
Table 6.4.2.1. 

Resulting coefficients of the multiple regression for sand from output of Geolog 

generated report.  
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Table 6.4.2.2. 

Resulting coefficients of the multiple regression for shale from output of Geolog 

generated report . 

 
 
The final equations of the second shear wave velocity model for sand and shale are as 

follows: 

𝑉𝑉𝐷𝐷_𝐷𝐷𝑎𝑎𝑛𝑛𝑑𝑑 = 460 + 31.6 · 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿0.391 · 𝜎𝜎0.529,  

𝑉𝑉𝐷𝐷_𝐷𝐷ℎ𝑎𝑎𝑠𝑠𝑏𝑏 = 330 + 73.1 · 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿0.359 · 𝜎𝜎0.409.  

 

 

6.5. The first models for compressional and shear wave velocities – optimization is based 

on every well  
 
The models that we described earlier are based on optimization for all wells 

simultaneously. Since the formations intervals vary from well to well, we also derived the 

velocity models based on optimization in every well. We assumed that it would allow to 

improve the models.  

 

6.5.1. The first model for compressional wave velocity  
 

Making the cross-plots of compressional wave velocities versus differential pressure 

the got the coefficients of the models for every well. They are presented in Table 6.5.1.1. 
 
Table 6.5.1.1. 

The coefficients of the first model for compressional wave velocity for 12 wells, where 

VPb is equal to 1470m/s in sand and VPb is equal to 1610 m/s in shale. 

Well 
Sand Shale 

Asand Bsand Ashale Bshale 

16/2-12 18.44 0.79 8.91 0.80 

16/2-14T2 17.27 0.81 108.79 0.32 

16/2-20S 17.93 0.77 208.68 0.16 
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Continuation of the Table 6.5.1.1. 

Well 
Sand Shale 

Asand Bsand Ashale Bshale 

16/2-4 14.59 0.86 7.61 0.90 

16/2-5 21.99 0.78 41.23 0.47 

16/3-4A 18.86 0.79 150.09 0.23 

16/3-6 280.83 0.19 135.45 0.23 

16/3-7 324.59 0.14 138.80 0.23 

16/3-8A 121.87 0.34 133.72 0.23 

16/4-5 6.11 1.05 170.06 0.23 

16/4-6S 151.54 0.32 27.09 0.59 

16/5-4 116.94 0.39 49.45 0.47 

 

 

6.5.2. The first model for compressional wave velocity  
 
We got the coefficients of the first model for shear wave velocity similarly as for 

compressional wave velocity.  The results are presented in the Table 6.5.2.1. 
 
Table 6.5.2.1. 

The coefficients of the first model for shear wave velocity for 12 wells, where VSb is 

equal to 460 m/s in sand and VSb is equal to 330 m/s in shale. 

Well 
Sand Shale 

A´sand B´sand A´shale B´shale 

16/2-12 21.12 0.62 30.97 0.58 

16/2-14T2 49.82 0.41 24.33 0.66 

16/2-20S 39.77 0.46 36.01 0.59 

16/2-4 1.66 1.14 56.95 0.45 

16/2-5 22.47 0.53 54.37 0.40 

16/3-4A 40.28 0.56 243.35 0.18 

16/3-6 83.90 0.29 71.73 0.43 

16/3-7 5.39 0.92 54.92 0.49 

16/3-8A 97.00 0.24 84.11 0.39 

16/4-5 1.12 1.26 239.86 0.14 
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Continuation of the Table 6.5.2.1. 

Well 
Sand Shale 

A´sand B´sand A´shale B´shale 

16/4-6S 6.59 0.82 168.73 0.24 

16/5-4 39.46 0.45 230.36 0.17 

 

 

 

6.6. The second models for compressional and shear wave velocities – optimization is 

based on every well 

 
Using multiple regression in Geolog we got the coefficients of the second models for 

compressional and shear wave velocities in logarithmic form for every well separately. Having 

inverted the logarithmic form we presented the coefficients of the second models for Vp and 

Vs for every well in the Subsections 6.6.1 and 6.6.2. 
 

 

6.6.1. The second model for compressional wave velocity 
 
The resulting coefficients of the second model for Vp are listed in the Table 6.6.1.1. 
 
Table 6.6.1.1. 

The coefficients of the second model for compressional wave velocity for 12 wells,  

where  VPb is equal to 1470m/s in sand and VPb is equal to 1610 m/s in shale. 

Well 
Sand Shale 

A´´sand msand nsand A´´shale mshale nshale 

16/2-12 138.93 0.12 0.36 30.73 0.54 0.62 

16/2-14T2 62.18 0.42 0.56 27.14 0.73 0.64 

16/2-20S 24.75 0.35 0.75 34.34 0.52 0.57 

16/2-4 95.10 0.13 0.44 41.03 0.60 0.51 

16/2-5 23.01 0.68 0.81 33.04 0.58 0.58 

16/3-4A 288.07 0.19 0.17 8.39 0.82 0.85 

16/3-6 50.74 0.15 0.59 15.59 0.57 0.76 

16/3-7 20.06 0.36 0.80 21.78 0.46 0.65 

16/3-8A 131.23 -0.21 0.31 19.42 0.67 0.69 
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       Continuation of the Table 6.6.1.1. 

Well 
Sand Shale 

A´´sand msand nsand A´´shale mshale nshale 

16/4-5 65.51 0.02 0.51 3.79 0.71 1.05 

16/4-6S 133.63 0.06 0.34 10.47 0.78 0.78 

16/5-4 38.92 0.93 0.66 21.54 0.55 0.65 

 

 

6.6.2. The second model for shear wave velocity 
 
For shear wave velocity we got the resulting coefficients that are shown in the Table 

6.6.2.1. 
 
Table 6.6.2.1. 

The coefficients of the second model for shear wave velocity for 12 wells, where VSb 

is equal to 460 m/s in sand and VSb is equal to 330 m/s in shale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Well 
Sand Shale 

A´´´sand m´sand n´sand A´´´shale m´shale n´shale 

16/2-12 10.98 -0.06 0.73 88.59 0.74 0.37 

16/2-14T2 21.91 0.46 0.62 47.14 0.79 0.51 

16/2-20S 4.00 0.55 1.02 18.66 0.78 0.74 

16/2-4 15.59 0.32 0.66 36.25 0.72 0.51 

16/2-5 0.74 0.80 1.39 50.52 0.58 0.47 

16/3-4A 215.95 0.01 0.17 208.57 0.16 0.21 

16/3-6 317.26 1.29 0.06 52.91 0.46 0.49 

16/3-7 44.91 0.51 0.46 40.09 0.61 0.54 

16/3-8A 122.35 0.85 0.25 55.75 0.40 0.49 

16/4-5 12.28 0.08 0.74 72.84 -0.48 0.42 

16/4-6S 33.83 0.42 0.48 63.16 0.66 0.40 

16/5-4 9.36 0.68 0.80 83.38 0.12 0.38 
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6.7. Comparison of the first and second sonic models based on optimization for all wells 

simultaneously and well by well 
 
Compressional and shear slowness that we calculated using our derived sonic models 

we presented in CPI plots. As we mentioned in the earlier, first of all, we estimated DT and 

DTS based on the first and second models for compressional and shear wave velocities 

optimized taking all twelve wells simultaneously and then we did the same calculations in wells 

separately.  Taking the well 16/2-12 like an example we got the following results for the Utsira 

and Skade formations (since the Grid formation does not exist in this well, it was not included 

in this particular case). We should mention that CPIs for the remaining wells are similar to 

those shown in this section and they are presented in Appendix D and E. In Appendix D we 

presented the CPI plots showing DT and DTS calculated based on the first and second sonic 

models optimized for all wells together for the Utsira, Skade and Grid formations. In Appendix 

E there are CPIs showing DT and DTS calculated based on the first and second sonic models 

optimized for 10 wells separately for the Utsira, Skade and Grid formations. Further, we would 

exclude the wells 16/3-4 A and 16/4-5 from the final models and, thus, we did not include them 

in the final CPIs.  
 

 
   Figure 6.7.1. DT and DTS calculated based on the first and second sonic models for the      

   Utsira formation in the well 16/2-12. The optimization was done based on all wells together.       
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  Figure 6.7.2. DT and DTS calculated based on the first and second sonic models for the  

  Utsira formation in the well 16/2-12. The optimization was done based only on this well. 
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  Figure 6.7.3. DT and DTS calculated based on the first and second sonic models for the  

  Skade formation in the well 16/2-12. The optimization was done based on all wells together. 
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  Figure 6.7.4. DT and DTS calculated based on the first and second sonic models for the  

  Skade formation in the well 16/2-12. The optimization was done based only on this well. 

 
In these CPI plots the second and third tracks display DT and DTS calculated based on 

the first sonic model while the third and fourth tracks show DT and DTS obtained according 

to the second sonic model. Estimated DT and DTS curves are compared with raw DT and DTS 

in sand and shale intervals. The raw curves are highlighted with green color. For DT curve we 

used the limits from 240 to 40 and for DTS one the limits are 840 to 40. The high limit for DTS 

log is explained by the low values of velocities at seabed. The first thing that can be noticed in 
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the Figures above that DT and DTS assessed based on the second models follow the shape of 

the raw DT and DTS curves which allows to compare behavior of the curves in both shale and 

sand intervals. In contrast, according to the first model  we got a straight shape of DT and DTS 

curves which makes comparison of raw and calculated DT and DTS logs more uncertain. 

Therefore, we assumed that the second model for compressional and shear wave velocities is 

better than the first and we concluded that resistivity is a crucial parameter and it should be 

included to the model.  

Another moment that we observed is that the optimization of the models by calculating 

DT and DTS well by well gives more precise results. 

Resuming all of the above, we can make a conclusion that our sand and shale modeling 

showed that the derived second models for compressional and shear wave velocities are better 

than the first ones because the former ones involve resistivity which is an important parameter. 

The models work good for shallow sand and shale formations we are interested in in the thesis. 

Finally, the models should be applied in every well independently because the depth of 

formations can vary from well to well and calculation of DT and DTS in each well will show 

more correct result.  

 

 

 

 

 

6.8. QC and removal of outliers 
 
During the modeling we found out that wells 16/3-4 A and 16/4-5 could be considered 

as outliers and they should be excluded from the final result of the modeling. We realized that 

the quality of DT and DTS has impact to the final modeling result. In order to explain why we 

eventually omitted two wells,  we showed the values of depth from which raw DT and DTS 

curves start in every well in the Table 6.8.1.  
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Table 6.8.1. 

 Starting depth of raw DT and DTS curves in all wells. 

Well 
DT 

(m) 

DTS 

(m) 

16/4-6S 125 612 

16/3-8A 141 381 

16/5-4 133 410 

16/2-20 S 141 375 

16/3-6 158 380 

16/3-7 323 407 

16/2-5 491 503 

16/2-14 T2 580 620 

16/2-4 598 625 

16/2-12 605 605 

16/3-4A 763 773 

16/4-5 903 925 

 

The reviewing of logs quality indicated that 16/3-4A and 16/4-5 wells have raw DT and 

DTS logs what miss the biggest shallow part in comparison with other wells. Moreover, the 

quality of raw DTS logs in these two particular wells is not good either due to missing of values 

in many intervals. 

 Our  models are based on the raw DT and DTS logs and, thus, they  define the quality 

of the models as well.  Since DT and DTS  curves  include bad data  in the wells 16/3-4A and 

16/4-5, we eliminated these wells from the final evaluation of the models.  

Considering the rest ten wells, we calculated the error of our models for Vp and Vs 

using the formula: 

𝑅𝑅𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 =
𝑅𝑅𝑎𝑎𝑠𝑠 −𝑇𝑇𝑠𝑠𝑑𝑑𝑏𝑏𝑠𝑠

𝑅𝑅𝑎𝑎𝑠𝑠
∙ 100%, 

where Raw are raw values of Vp and Vs, Model are the values of Vp and Vs obtained from the 

models. Notice that only those parts with a good flag for the raw curves were included. 

Presenting the error of Vp and Vs in histograms we got the following results for sand and shale.  
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 Figure 6.8.1. Error of Vp. A. For sand. B. For shale. 

 

 
    Figure 6.8.2. Error of Vs. A. For sand. B. For shale. 
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The Figure 6.8.1 shows that the error of Vp for sand for three formations (Utsira, Skade 

and Grid) varies from about -5 to 5 % and for shale for three formations (Utsira, Skade and No 

name) it is approximately in the same  range from -5 to 5%.  The negative percentage of the 

error means that modeled values of Vp or Vs are higher that raw ones.  

In the Figure 6.8.2 it can be seen that the error of Vs for sand for three formations 

(Utsira, Skade and Grid) is in the diapason from around -10 to 10 % and for shale for three 

formations (Utsira, Skade and No name) it changes from roughly -20 to 15%.  

The insignificant values of the error up to 20% proved that our chosen second models 

for Vp and Vs are reliable.  

 
 
 
6.9. Are the standard Greenberg and Castagna relations are optimal for any depth? 
 

One of the most critical points in this thesis is that we tried to clarify if the standard 

empirical Greenberg and Castagna model is proper for any depth. In order to find the answer 

to this question we constructed the cross-plots showing the raw data trend (based on raw log 

values of Vp and Vs) as well as models trend (based on  values of  Vp and Vs obtained using 

our sonic models) in relation with the standard Greenberg and Castagna model. We did this for 

three formations for both sand and shale including all ten wells. We got the following results 

presented in the cross-plots below. The standard Greenberg and Castagna empirical model in 

the Figures in this Section for sand as well as shale is shown with purple color. Black, green 

and red lines in the graphs in this section present the real data trends for the Utsira, Skade and 

Grid formations for sand. It is similar for shale, the only one difference that instead of Grid we 

used the No name formation.  

In order to make the Greenberg and Castagna model for sand and shale we took 

approximate minimum and maximum values of compressional wave velocity from the plots 

which are 1800 and 2800m/s, using standard regression coefficients for sand and shale, we 

determined respective values of shear wave velocity for both sand and shale according to the 

Greenberg and Castagna relations (Section 1.2). 
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   Figure 6.9.1. Raw Vs versus Raw Vp compared with the standard Greenberg and Castagna    

   model for sand. A. Utsira formatuon. B. Skade formation. 

 
  Figure 6.9.2. Raw Vs versus raw Vp compared with the standard Greenberg and Castagna   

  model for sand. C. Grid formatuon. D. Utsira, Skade and Grid formations together. 
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As we can see from the Figure 6.9.1. (A and B) the trends based on the raw logs of Vp 

and Vs deviate from Greenberg and Castagna line for sand in the Utsira and Skade formations. 

In contrast, in the Grid formation the raw data trend is visibly closer to the standard Greenberg 

and Castagna model as well as they have similar direction.  It can be noticed in the Figure 6.9.2 

(C).  

The plots for shale are shown in the Figures 6.9.3 and 6.9.4. Notice that for shale case 

we used the No name formation which is in the range between Skade and Grid formations, 

since the latter one is not representative for shale.  

 
  Figure 6.9.3. Raw Vs versus raw Vp compared with the standard Greenberg and Castagna   

  model for shale. A. Utsira formation. B. Skade formation. 
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  Figure 6.9.4. Raw Vs versus raw Vp compared with the standard Greenberg and Castagna   

  model for shale. C. No name formation. D. Utsira, Skade and No name formations together. 
 
For shale we have a similar pattern as for sand. From the Figure 6.9.3 (A and B) one 

can see that raw data trends in the Utsira and Skade formations have different behavior in 

comparison with Greenberg and Castagna model for shale. In the No name formation the raw 

data trend is closer to the Greenberg and Castagna one as well as they have similar orientation 

which can be noticed in the Figure 6.9.4 (C).  

The raw data trends for sand and shale are rotated relative to the standard Greeberg and 

Castagna model in the Utsira and Skade formations. The angle of rotation between standard 

Greenberg and Castagna and the raw data trend for sand in the Utsira formation constitutes 

approximately 13o, whereas in shale it is equal to about 21o.  

 The comparison between standard Greenberg and Castagna model and our models for 

sand and shale showed the following results.  
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  Figure 6.9.5. Modeled Vs versus modeled Vp compared with the standard Greenberg and   

  Castagna model for sand and with the raw data trend. A. Utsira formation. B. Skade formation.  

 
    Figure 6.9.6. Modeled Vs versus modeled Vp compared with the standard Greenberg and   

    Castagna model for sand and with the raw data trend C. Grid formation. D. Utsira, Grid and   

    Skade formations together.  
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One can notice that in the Utsira and Skade formations the models trend for sand have 

a quite good coincidence with the raw data trends, while Greenberg and Castagna model 

deviates from them. In the Grid formation the model trend differs from the raw data  and their 

directions are divergent (Figure 6.9.6 C). From the Figure 6.9.6 D we also can see that our 

model trends behave good only in the Utsira and Skade formations. 

The plots for shale are presented in the Figures 6.9.7, 6.9.8 ,6.9.9 and 6.9.10. For better 

comparison in the shale case for every considered formation except models trend we also 

included  the raw data points.  

 

 
  Figure 6.9.7. Modeled Vs versus modeled Vp compared with the standard Greenberg and   

 Castagna model for shale and with the raw data trend in the Utsira formation. A. Without raw    

 data points. B. Including raw data points. 
 
Similar plots we have for two other formations.  
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 Figure 6.9.8. Modeled Vs versus modeled Vp compared with standard Greenberg and Castagna   

 model for shale and with the raw data trend in the Skade formation. C. Without raw    

 data points. D. Including raw data points. 

 
 Figure 6.9.9. Modeled Vs versus modeled Vp compared with standard Greenberg and   

 Castagna model for shale and with the raw data trend in the No name formation. E. Without   

 raw data points. F. Including raw data points. 
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Figure 6.9.10. Modeled Vs versus modeled Vp compared with the standard Greenberg and 

Castagna model for shale  and with the raw data trend in the Utsira, Skade and No name 

formations. 
 

From the Figures 6.9.7 and 6.9.8 we figured out that in the Utsira and Skade formations 

most of the points of the model trends are close to the raw data ones except the lowest most 

part where the models trend points are close to the Greenberg and Castagna line. The 

orientation of the models trend varies from the Greenberg and Castagna model in the Utsira 

and Skade formations. In the No name formation the models trend is closer to the raw data 

trend as well as to the Greenberg and Castagna line. Moreover, they have the same direction.  

These cross-plots for both sand and shale allowed us to assume that our sonic models 

behave good in the shallow part, in particular, in the Utsira and Skade formations in comparison 

with the standard Greenberg and Castagna empirical model. However, the pattern of the trends 

in deeper formations, such as the Grid or No name, showed that our models start to break at 

certain depth where the standard Greenberg and Castagna empirical model seems to be more 

appropriate. We assessed that particular depth that is equal to around 1100m in our case and 

we believe that our derived sonic models are applicable up to this point.  This observation 

coincides with the depth range according to the porosity trend (Subsection 2.3.2) and Murphy’s 

porosity boundary (35%) between unconsolidated and consolidated part.  
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7. Discussion of results and conclusions 
 

Laboratory data analysis of shale and sand implemented in the thesis gave the 

understanding about controlling variable, such as, effective (differential) pressure that is 

essential for the modeling of compressional and shear wave velocities. We assumed that both 

lithologies are isotropic linear elastic materials, thus, Vp and Vs velocities are relevant. 

Laboratory data studying by itself can be considered as an independent investigation but on the 

same time it served as a motivation for the further well logging modeling. The modeling of 

laboratory data of shale allowed us to determine the useful power model for the optimal 

modeling of compressional and shear wave velocities in relation with variable differential 

pressure. For the laboratory shale data we obtained the following models for Vp and Vs: 

For the smectite/kaolinite/brine systems we got sonic velocities: 

 
Vp = (-10·V_smec+1470) +(-46.5·V_smec+77.3) ·σ(-0.0828·V_smec+0.8016) and 

                Vs = (-69.4·V_smec+395) + (-19.7·V_smec+34.9) ·σ(0,012·V_smec+0.8057), 

 
           For the kaolinite/silt/brine system the sonic velocities in the power model are 

 

                 Vp = (-72.6·V_silt+1495) + (-47.8·V_silt+66.9)·σ(0.195·V_silt+0.687) and 

                  Vs =(12.1·V_silt+325) + (-53.7·V_silt+75.5) ·σ(0.549·V_silt+0.465). 
 

The observation of laboratory data of unconsolidated sand was more ambiguous than 

we expected. We realized that it is not easy to establish a direct link between high-frequency 

laboratory studies of sand with well logging data. Based on the laboratory data of sand we 

obtained the following dry models, under the assumption that the data are correct: 

𝐾𝐾1𝑑𝑑𝑏𝑏𝑑𝑑 = 5.37 · 𝑏𝑏−4.86·𝜑𝜑 , 

𝐺𝐺1𝑑𝑑𝑏𝑏𝑑𝑑 = 1.44 · 𝑏𝑏−2.29·𝜑𝜑 . 

 

𝐾𝐾2𝑑𝑑𝑏𝑏𝑑𝑑 = 4.71 · 𝑏𝑏−4.39·𝜑𝜑 , 

𝐺𝐺2𝑑𝑑𝑏𝑏𝑑𝑑 = 1.39 · 𝑏𝑏−2.006·𝜑𝜑, 

where 𝜑𝜑 is porosity. 

On well logs we used the concept of the power model determined based on the modeling 

of laboratory data of shale. We tested the power models for Vp and Vs on well logging data as 

the first option of the sonic modeling. However, the first sonic power models did not show 

good final results. 
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 Motivated by Faust we derived the second models for Vp and Vs prediction. In these 

models we introduced resistivity as an important parameter that should be included to the 

models. Furthermore, we found out that the second sonic models should be applied in every 

well independently. Since the depth of formations can vary from well to well, the calculation 

of Vp and Vs well by well optimizes the final results. This let us to choose the second sonic 

models as the final models for Vp and Vs estimation. The additional process of QC of the final 

models showed two wells (16/3-4 A and 16/4-5) with bad raw DT and DTS data. Thus, we 

excluded them and did not present in the final CPIs and cross-plots. Moreover, during the QC 

analysis of DT data we found out that close to seabed the Faust’s relation has a singularity. 

According to all wells we modified the functional form of the Faust equation to be on the form: 

𝐷𝐷𝑇𝑇_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 ∙ 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿
1
6 = 𝐴𝐴 ∙ exp (−𝐾𝐾 ∙ 𝑇𝑇𝑉𝑉𝐷𝐷𝑇𝑇𝐿𝐿), 

where 𝐷𝐷𝑇𝑇_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final edited compressional slowness log, 𝑅𝑅𝐷𝐷𝑅𝑅𝑃𝑃_𝐹𝐹𝐹𝐹𝑁𝑁𝐴𝐴𝐿𝐿 is the final 

edited deep resistivity log , A and B positive constants. 

The first 100-300 meters TVDML below seabed clearly need this modified version. 

Further details can be found in the article presented in the thesis. 

In fact, the final sonic models may be considered as generalization as well as extension 

of Faust’s relation including DTS in addition to DT. 

The comparison of our sonic models with the standard Greenberg and Castagna 

empirical model showed that our models are applicable in the shallow formations up to roughly 

1100 meters TVDML. This is approximately the depth obtained using the porosity trend 

simultaneously with the Murphy’s porosity boundary between unconsolidated and 

consolidated sand which constitutes around 35%. It is consistent with the claim that our sonic 

models are correct for unconsolidated siliciclastic sediments which was the main goal of the 

thesis.  

We would like also to present here the workflow of the well logging sonic modeling in 

more details: 

1. It is necessary to identify the wells with shallow DT and DTS logs as well as to 

check the presence of resistivity log in every well.  

2. It is needed to calculate differential pressure in all considered wells. 

3. It is necessary to determine velocities at seabed using cross-plots of Vp and Vs 

velocities versus  TVDML and a second order model. All wells are needed. 

4. It is needed to do the multiple regression in every well separately and get the 

coefficients of the equations for Vp and Vs in the logarithmic form: 
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Log (VP-VPb) =αp+βp Log (RDEP_FINAL) +γpLog (PRESS_DIFF)  

Log (VS-VSb) = αs+βs Log (RDEP_FINAL) +γsLog (PRESS_DIFF), 

where αp, βp, γp, αs, βs and γs are coefficients of the models and PRESS_DIFF is differential 

pressure. From the logarithmic form we may obtain the power law form. 

5. It is necessary to calculate the error of the models, to do QC analysis and make 

cross-plots of the final results.   

6. It is needed to define the range of the models applicability comparing with porosity 

trend for considered wells and Murphy’s porosity boundary. 
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8. Suggestion for the future work  
 

We hope that our derived sonic models for Vp and Vs prediction will find a use in the 

other wells in the Johan Sverdrup field. We suggest to use a bigger range of wells for the 

modeling testing if it is possible. Moreover, the models can be tried out in the fields with 

different geological environments. Most likely the work-flow presented in the previous Chapter 

may only be applied in siliciclastic sediments.  

Last but not least, as we mentioned in conclusion, in addition to the differential pressure, 

resistivity is also a crucial parameter for sonic modeling. Hence, we think that it should be 

determined within laboratory studies as well.  
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The following article “Faust Revisited – A Shallow Modification of the Faust Empirical 

Relationship Between Sonic Slowness and Resistivity” is accepted for publication by the 

Canadian Well Logging Society (CWLS) InSite.  
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Faust Revisited – A Shallow Modification of the Faust Empirical 
Relationship Between Sonic Slowness and Resistivity 

 

Adelya Bilalova, University of Stavanger 
Inge H. A. Pettersen, Statoil 

 

Introduction 

Velocity-depth trends are useful for predicting abnormal pressures during drilling (Dutta 1986, 
Storvoll et al. 2005) and they are often used to make synthetic logs for QCing sonic logs (Smith 
2011). While many different relationships have been published (Hacikoyhu et al. 2006, Hubert 
2008), the Faust equation (Faust 1951, Faust 1953) remains unique both in terms of its 
simplicity and in terms of its power of prediction in water-filled sediments (Ojala 2009). 

Based on three recent wells with good resistivity and compressional slowness logs completely 
up to seabed in the Johan Sverdrup field (https://www.statoil.com/en/what-we-do/johan-
sverdrup.html) in the Norwegian sector of the North Sea, it has become clear to us that the 
standard Faust relationship between resistivity and sonic needs a modification in the upper part 
of the overburden. 

In the first section below, we will give a theoretical argument for why the standard functional 
form of the Faust equation will break down close to the seabed. In the second section, we show 
empirically how to determine a natural modification of the standard Faust equation close to the 
seabed. Finally, we make a summary where the range of applicability is suggested. 
 

Breakdown of standard Faust close to the seabed 

One quality control on the compressional slowness log DT is to calculate a synthetic log 
DT_FAUST based on the Faust equation 

 1/6( )DT RT TVDML a⋅ ⋅ = , (1.1) 

where RT is the true resistivity, TVDML is the true vertical depth with seabed as datum and 
with positive direction downwards in the gravitational field, and a is a strictly positive 
empirical constant. 

If we separate out the explicite depth factor of the standard Faust equation, this relation may 
be reformulated as 

 1/6( ) ( ) ( ) / 6Ln DT RT Ln a Ln TVDML⋅ = −   

https://www.statoil.com/en/what-we-do/johan-sverdrup.html
https://www.statoil.com/en/what-we-do/johan-sverdrup.html
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When TVDML approaches the seabed, the right hand is diverging. However, in water-filled 
sediments both DT and RT will remain positive and bounded. The left hand will therefore 
stay finite and we have thus a contradiction. 

 
Testing the standard Faust equation close to seabed for three wells in the Johan 
Sverdrup field 

Based on three recent wells in the same basin with good logs completely up to seabed, we 
plotted 1/6( )Ln DT RT⋅  versus TVDML varying from 0 m TVDML to 500 m TVDML. The 

crossplot in Figure 1 show that 1/6( )Ln DT RT⋅  has a linear dependency on TVDML on this 
range – as opposed to the divergent behaviour predicted by the standard Faust equation in the 
previous section. Thus, we have a shallow modification of Faust in an exponential form  

 1/6 exp( )DT RT A B TVDML⋅ = ⋅ − ⋅ , (1.2)  

where A and B are positive constants. Finally, the well CPIs in Figure 2 show the green 
shallow Faust slowness DT_FAUST_SH that is consistent with the raw DT log down to ca. 
700 m – 800 m TVDML. The red standard Faust slowness DT_FAUST is consistent with the 
raw DT log from ca. 100 m TVDML - 300 m TVDML and downwards except for zones 
containing hydrocarbons. 

 
Figure 1. Best fit of 1/6( )Ln DT RT⋅  versus TVDML close to seabed for three wells in the 

Johan Sverdrup field. 
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Figure 2. Comparing measured slowness DT (black curve), standard Faust DT_FAUST 
(red curve), and shallow Faust DT_FAUST_SH (blue curve) in track 2 for three wells in 
Johan Sverdrup. Deep resistivity is shown in track 3. 

 

Conclusion 

The standard Faust relation between sonic slowness, deep resistivity, and depth is shown to 
break down the first 100 m – 300 m below seabed in three Johan Sverdrup wells. A simple 
modification of Faust gives an exponential relationship that is trustworthy the first 700 m – 
800 m below the seabed for these wells. Even though the modification was derived for a 
particular field, we conjecture that the same functional form should also apply in other 
offshore wells in water-filled sediments sufficient close to seabed. 
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 Appendix A.  Fitting clay models from data 
 

In Appendix A we presented the second order polynomial and power models for 

compressional and shear wave velocities in smectite/kaolinite/brine and kaolinite/silt/brine 

systems. We showed the models for fitting compressional and shear wave velocities for 

different clay composition that were not included in the Chapter 3. The second order 

polynomial models for Vp have the following equation: 

𝑉𝑉𝑉𝑉 = 𝐴𝐴 · 𝜎𝜎2 + 𝐾𝐾 · 𝜎𝜎 + 𝐶𝐶, 

where 𝑉𝑉𝑉𝑉 is compressional wave velocity  𝜎𝜎 is effective pressure and  𝐴𝐴, 𝐾𝐾, 𝐶𝐶 are coefficients 

of the equation.  

We assumed that for shear wave velocity the polynomial models are similar and the 

have the following form: 

 𝑉𝑉𝐷𝐷 = 𝐴𝐴′ · 𝜎𝜎2 + 𝐾𝐾′ · 𝜎𝜎 + 𝐶𝐶′, 

where 𝑉𝑉𝐷𝐷 is shear wave velocity  and 𝐴𝐴′, 𝐾𝐾′, 𝐶𝐶′ are coefficients of the equation.  

The power models for Vp are described by the following equations: 

𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑏𝑏 + 𝐴𝐴′′ · 𝜎𝜎𝐵𝐵′′,  

where  𝑉𝑉𝑉𝑉𝑏𝑏 is compressional wave velocity of the brine at seabed and 𝐴𝐴′′, 𝐾𝐾′′ are coefficients 

of the equation.  

For Vs the equation is as follows: 

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝐷𝐷𝑏𝑏 + 𝐴𝐴′′′ · 𝜎𝜎𝐵𝐵′′′,  

where 𝑉𝑉𝐷𝐷𝑏𝑏 is shear wave velocity of the brine at seabed  and 𝐴𝐴′′′, 𝐾𝐾′′′ are coefficients of the 

equation. 

These equations we used in both clay systems. In the Chapter 3 we mentioned that the 

second order polynomial models were constructed in order to define the values of Vp and Vs 

velocities at seabed, while the power models we consider as the most reliable for our data. We 

described it in the Chapter 3.  

The models below contain error bars. The error for Vp and Vs measurements constitutes 

2 and 4% respectively.  
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A1. Vp fitting 

A1.1. Polynomial models for Vp fitting in a smectite/kaolinite/brine system 
 

The models in this section show fitting compressional wave velocity for different 

relative volume fractions of clay in a second order polynomial model. Here are the models that 

were not considered in the Subsection 3.3.1.  
 
Table A1.1.1.  

Results of fitting of laboratory data of Vp to the second order polynomial model in a 

smectite/kaolinite/brine system. 

Relative 
smectite 
volume 

Relative 
kaolinite 
volume 

A B C R2 

0.2 0.8 -0.248 27.9 1420 0.981 
0.4 0.6 -0.204 23.7 1380 0.988 
0.6 0.4 -0.214 23.9 1530 0.992 
0.8 0.2 -0.188 20.0 1450 0.990 
1 0 -0.169 17.6 1510 0.991 

 

 
    Figure A1.1.1.  Second order polynomial model for Vp fitting when relative volume fraction    

    of  kaolinite is 0.8 and  relative volume fraction of  smectite is 0.2. 
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  Figure A1.1.2.  Second order polynomial model for Vp fitting when relative volume fraction    

  of  kaolinite is 0.6 and  relative volume fraction of  smectite is 0.4. 

 

  
  Figure A1.1.3.  Second order polynomial model for Vp fitting when relative volume fraction    

  of  kaolinite is 0.4 and  relative volume fraction of  smectite is 0.6. 
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  Figure A1.1.4.  Second order polynomial model for Vp fitting when relative volume fraction    

  of kaolinite is 0.2 and relative volume fraction of smectite is 0.8. 
 

 
  Figure A1.1.5.  Second order polynomial model for Vp fitting when relative volume fraction    

  of kaolinite is 0 and relative volume fraction of smectite is 1. 
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A1.2. Power  models for Vp fitting in a smectite/kaolinite/brine system 
 

In A1.2 section we presented the power models for Vp fitting in a 

smectite/kaolinite/brine system for different clay composition that were not presented in the 

Subsection 3.3.2. 
 

Table A1.2.1.  

Results of fitting of laboratory data of Vp to the power model in a smectite/kaolinite/brine 

system. 

Volume 
smectite 

Volume 
kaolinite  A B Vpb 

0 1 28.2 0.846 1470 
0.4 0.6 15.9 0.957 1470 
0.6 0.4 46.8 0.698 1530 
0.8 0.2 41.5 0.673 1450 
1 0 31.1 0.756 1470 

 

 
        Figure A1.2.1. Power model for Vp fitting when relative volume fraction of kaolinite is 1   

        and relative volume fraction of smectite is 0. 
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Figure A1.2.2. Power model for Vp fitting when relative volume fraction of kaolinite is 0.6 and 

relative volume fraction of smectite is 0.4. 

 

 
 Figure A1.2.3. Power model for Vp fitting when relative volume fraction of kaolinite is 0.4  

 and relative volume fraction of smectite is 0.6. 
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  Figure A1.2.4. Power model for Vp fitting when relative volume fraction of kaolinite is 0.2  

  and relative volume fraction of smectite is 0.8. 

 

 
 Figure A1.2.5. Power model for Vp fitting when relative volume fraction of kaolinite is 0  

 and relative volume fraction of smectite is 1. 
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A1.3. Second order polynomial models for Vp fitting in a kaolinite/silt/brine system 
 

In this section we showed the second order polynomial models for Vp fitting in a 

kaolinite/silt/brine system for the particular clay composition. These are the models that were 

not included in the Subsection 3.4.1. 

The values of the second order polynomial models for different clay composition in a 

kaolinite/silt/brine system are presented in the Table A1.3.1. 
 

Table A1.3.1.  

Results of fitting of laboratory data of Vp to the second order polynomial in a 

kaolinite/silt/brine system. 

Relative 
silt 

volume 

Relative 
kaolinite 
volume  

A B C R2 

0.75 0.25 -0.389 41.3 1500 0.984 
0.5 0.5 -0.495 48.2 1320 0.969 
0.25 0.75 -0.478 45.7 1320 0.978 

 

 
  Figure A1.3.1. Second order polynomial model for Vp fitting when relative volume fraction   

  of kaolinite is 0.25 and reltive volume fraction of silt  is 0.75. 
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   Figure A1.3.2. Second order polynomial model for Vp fitting when relative volume fraction   

   of kaolinite is 0.5 and reltive volume fraction of silt  is 0.5. 
 

 
  Figure A1.3.3. Second order polynomial model for Vp fitting when relative volume fraction   

   of kaolinite is 0.75 and reltive volume fraction of silt  is 0.25. 
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A1.4. Power models for Vp fitting in a kaolinite/silt/brine system 

 

In the section A1.4. there are the power models for Vp fitting in a kaolinite/silt/brine 

system that were not listed in the Subsection 3.4.2.   

The resulting values of the power models for Vp fitting for a kaolinite/silt/brine system 

are presented in the Table 1.4.1.  
 
Table A.1.4.1.  
Result of fitting of laboratory data of Vp to the power model in a kaolinite/silt/brine system. 

Relative 
silt 

volume 

Relative 
kaolinite 
volume  

A B Vpb 

1 0 15.2 1.020 1420 
0.5 0.5 54.8 0.785 1470 
0.25 0.75 47.2 0.805 1470 

 
         

 Figure A1.4.1. Power model for Vp fitting when relative volume fraction of kaolinite is 0 and    

 relative volume fraction of silt is 1.0. 
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  Figure A1.4.2. Power model for Vp fitting when relative volume fraction of kaolinite is 0.5   

 and  relative volume fraction of silt is 0.5. 
 

 
 Figure A1.4.3. Power model for Vp fitting when relative volume fraction of kaolinite is 0.75  

 and  relative volume fraction of silt is 0.25. 
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A2. Vs fitting 
 

A2.1. Polynomial models for Vs fitting in a smectite/kaolinite/brine system 
 

 
In this section we presented the second order polynomial models for shear wave 

velocity fitting in a smectite/kaolinite/brine system. Here are the models that were not shown 

in the Subsection 3.5.1. The resulting values of fitting laboratory data of Vs to the second order 

polynomial model in a smectite/kaolinite/brine system are given in the Table 2.1.1. 
 

Table 2.1.1.  

Results of fitting of laboratory data of Vs to the second order polynomial model in a 

smectite/kaolinite/brine system. 
 

 

 

 

 

 

 

 

 

  Figure A2.1.1. Second order polynomial model for Vs fitting when relative volume fraction   

  of kaolinite is 0.8 and relative volume fraction  of smectite  is 0.2. 
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Relative 
smectite 
volume 

Relative 
kaolinite 
volume 

A B C R2 

0.2 0.8 -0.152 17.6 395 0.996 
0.4 0.6 -0.127 15.2 374 0.997 
0.6 0.4 -0.119 15.04 384 0.999 
0.8 0.2 -0.103 13.3 324 0.994 
1 0 -0.0675 8.81 313 0.996 
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 Figure A2.1.2. Second order polynomial model for Vs fitting when relative volume fraction 

of kaolinite is 0.6 and relative volume fraction  of smectite  is 0.4. 
 

      
Figure A2.1.3. Second order polynomial model for Vs fitting when relative volume fraction of 

kaolinite is 0.4 and relative volume fraction  of smectite  is 0.6. 
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   Figure A2.1.4. Second order polynomial model for Vs fitting when relative volume fraction   

  of kaolinite is 0.2 and relative volume fraction  of smectite  is 0.8. 
 

 
 Figure A2.1.5. Second order polynomial model for Vs fitting when relative volume fraction 

of kaolinite is 0 and relative volume fraction  of smectite  is 1. 
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A2.2. Power models for Vs fitting in a smectite/kaolinite/brine system 
 

In this section we presented the power models for Vs fitting in a smectite/kaolinite/brine 

system that were not included in the Subsection 3.5.2. Results of fitting laboratory data of Vs 

to the power models in a smectite/kaolinite/brine system for certain clay composition are shown 

in the Table 2.2.1. 
 
 

Table 2.2.1.  

Results of fitting laboratory data of Vs to the power model in a smectite/kaolinite/brine system. 

Relative 
smectite 
volume 

Relative 
kaolinite 
volume 

A B Vsb 

0.2 0.8 34.6 0.699 395 
0.4 0.6 8.99 1.068 374 
0.6 0.4 16.5 0.885 384 
0.8 0.2 21.7 0.769 324 
1 0 16.4 0.731 313 

 

 
   Figure A2.2.1. Power model for Vs fitting when relative volume fraction of kaolinite is 0.8  

   and relative volume fraction of smectite is 0.2. 
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   Figure A2.2.2. Power model for Vs fitting when relative volume fraction of kaolinite is 0.6  

   and relative volume fraction of smectite is 0.4. 
 

 
  Figure A2.2.3. Power model for Vs fitting when relative volume fraction of kaolinite is 0.4  

   and relative volume fraction of smectite is 0.6. 
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  Figure A2.2.4. Power model for Vs fitting when relative volume fraction of kaolinite is 0.2  

  and relative volume fraction of smectite is 0.8. 
 

 
  Figure A2.2.5. Power model for Vs fitting when relative volume fraction of kaolinite is 0  

  and relative volume fraction of smectite is 1. 
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A2.3. Polynomial models for Vs fitting in a kaolinite/silt/brine system 

 

In the section 2.3. we showed the second order polynomial models for Vs fitting in a 

kaolinite/silt/brine system for certain clay composition that were not included in the Subsection 

3.6.1. Resulting values of fitting laboratory data of Vs to the second order polynomial model 

in a kaolinite/silt/brine system are listed in the Table 2.3.1. 
 

Table 2.3.1.  

Results of fitting of laboratory data of Vs to second order polynomial model in a 

kaolinite/silt/brine system. 

Relative 
 silt  

volume 

Relative 
kaolinite 
volume 

A B C R2 

0.75 0.25 -0.251 27.7 379 0.993 
0.5 0.5 -0.281 29.3 334 0.987 
0.25 0.75 -0.229 25.4 311 0.993 

 

 
  Figure A2.3.1. Second order polynomial model for Vs fitting when relative volume fraction  

  of kaolinite is 0.25 and relative volume fraction of silt is 0.75. 
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  Figure A2.3.2. Second order polynomial model for Vs fitting when relative volume fraction   

  of kaolinite is 0.5 and relative volume fraction of silt is  0.5 
 

 
  Figure A2.3.3. Second order polynomial model for Vs fitting when relative volume fraction       

  of kaolinite is 0.75 and relative volume fraction of silt is 0.25. 

Vs = -0.281·σ2 + 29.3·σ + 334
R² = 0.987

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

Vs
 (s

at
),m

/s

σ,MPa

Vs = -0.229·σ2 + 25.4·σ + 311
R² = 0.993

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Vs
 (s

at
),m

/s

σ,MPa



 
164 

 

A2.4. Power models for Vs fitting in a kaolinite/silt/brine system  

 

In this section there are the power models for Vs fitting in a kaolinite/silt/brine system 

for particular clay composition that were not presented in the Subsection 3.6.2. 

The resulting values of fitting of laboratory data of Vs to the power model in a 

kaolinite/silt/brine system are given in the Table 2.4.1.  
 

Table 2.4.1.  

Results of fitting of laboratory data of Vs to the power model in a kaolinite/silt/brine system. 

Relative 
silt 

volume 

Relative 
kaolinite 
volume 

A B Vsb 

1 0 7.32 1.15 305.7 
0.5 0.5 61.8 0.667 334 
0.25 0.75 48.3 0.7055 311 

 

 
 Figure A2.4.1. Power model for Vs fitting when relative volume fraction of kaolinite is 0 and 

relative fraction of silt is 1.0. 
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   Figure A2.4.2. Power model for Vs fitting when relative volume fraction of kaolinite is 0.5  

   and relative volume fraction of silt is 0.5. 
 

 
   Figure A2.4.3. Power model for Vs fitting when relative volume fraction of kaolinite is 0.75  

   and relative volume fraction of silt is 0.25. 
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A3. Summary of second order polynomial models  
 

Since we considered second order polynomial only to obtain the values of the velocities 

at seabed, we decided not to include the final form of these models in the Section 3.7. We 

presented them here.  

For the smectite/kaolinite/brine systems the sonic velocities in a second order 

polynomial system are given by the equations 
 

   Vp = (0.0903·V_smec-0.259)·σ2+(-10.94·V_smec+29.02)·σ+(114·V_smec+1390) 

   Vs = (0.0967·V_smec-0.172)·σ2+(-9.046·V_smec+19.3)·σ+(-69.4·V_smec+395), 

For the kaolinite/silt/brine system the sonic velocities in the second order polynomial 

model are 

   Vp = (0.443·V_silt - 0.654) ·σ2+(-32.7·V_silt+59.4) ·σ+(190.9·V_silt+1271) 

   Vs = (0.129·V_silt-0.3038) ·σ2+(-12.05·V_silt+32.1) ·σ+(12.1·V_silt+325). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
167 

 

Appendix B. Programming codes applied in the thesis  
 
B.1. Coppen’s  code for the brine velocity calculation 
 
' Output: 
'    SBV_Coppens = acoustic velocity of brine water at sea bed(m/s) 
' Input: 
'    D= depth (m) 
'    S = salinity (fractions of one) 
'    T = temperature (degC) 
' Notes: 
'    '    1. Horner form of polynomials to reduce loss of accuracy 
' Reference: 
'    Coppens 1981 
'    Simple equations for the speed of sound in Neptunian waters, 3nd 
ed,  page 862 
Public Function SBV_Coppens (Temp As Double, Depth As Double, PSU As Double) As Double 

    Dim c_T0S_a, c_T0S_b, c_T0S As Double 

    Dim a0, a1, a2 

    c_T0S_a = 1449.05 + Temp * (4.57 + Temp * (-0.0521 + 0.00023 * Temp)) 

    c_T0S_b = (1.333 + Temp * (-0.0126 + 0.00009 * Temp)) * (PSU - 35) 

    c_T0S = c_T0S_a + c_T0S_b 

    a0 = (0.0000016 + 0.00000002 * (PSU - 35)) * (PSU - 35) * Temp * Depth 

    a1 = (0.01623 + 0.0000253 * Temp) * Depth 

    a2 = (0.000000213 - 0.00000001 * Temp) * Depth ^ 2 

    SBV_Coppens = c_T0S + a0 + a1 + a2 

End Function 

 

 

 

B.2. Batzle-Wang’s  code for the brine velocity calculation 
 
' Output: 
'    V_b = acoustic velocity of brine water (m/s) 
' Input: 
'    P = pressure (MPa) 
'    S = salinity (fractions of one) 
'    T = temperature (degC) 
' Notes: 
'    1. 1 MPa = 10 bar 
'    2. Horner form of polynomials to reduce loss of accuracy 
' Reference: 
'    Batzle and Wang 1992 
'    Rock Physics Handbook, 2nd ed, page 340 
Public Function V_b(P As Double, S As Double, T As Double) As 
Double 
    Dim om00, om10, om20, om30, om40 As Double 
    Dim om01, om11, om21, om31, om41 As Double 
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    Dim om02, om12, om22, om32, om42 As Double 
    Dim om03, om13, om23, om33, om43 As Double 
    Dim a, b, c, d, e, V_w As Double 
    Dim sr, aa, bb, cc As Double 
    ' Find first the acoustic velocity of pure water 
    om00 = 1402.85 
    om10 = 4.871 
    om20 = -0.04783 
    om30 = 0.0001487 
    om40 = -0.0000002197 
    om01 = 1.524 
    om11 = -0.0111 
    om21 = 0.0002747 
    om31 = -0.0000006503 
    om41 = 0.0000000007987 
    om02 = 0.003437 
    om12 = 0.0001739 
    om22 = -0.000002135 
    om32 = -0.00000001455 
    om42 = 0.0000000000523 
    om03 = -0.00001197 
    om13 = -0.000001628 
    om23 = 0.00000001237 
    om33 = 0.0000000001327 
    om43 = -4.614E-13 
    a = om00 + P * (om01 + P * (om02 + P * om03)) 
    b = T * (om10 + P * (om11 + P * (om12 + P * om13))) 
    c = T * T * (om20 + P * (om21 + P * (om22 + P * om23))) 
    d = T * T * T * (om30 + P * (om31 + P * (om32 + P * om33))) 
    e = T * T * T * T * (om40 + P * (om41 + P * (om42 + P * om43))) 
    V_w = a + b + c + d + e 
    ' Then the velocity of brine 
    sr = Sqr(S) 
    aa = 1170 + T * (-9.6 + T * (0.055 - 0.000085 * T)) 
    bb = P * (2.6 - 0.0029 * T - 0.0476 * P) 
    cc = sr * sr * sr * ((780 + P * (-10 + 0.16 * P)) - 1820 * sr) 
    V_b = V_w + S * (aa + bb) + cc  
End Function 
 

 

B3. Batzle-Wang’s code for the brine density calculation   
 
' Output: 

'    rho_b = density of brine (g/cc) 

' Input: 

'    P = pressure (MPa) 

'    S = salinity (fractions of one) 

'    T = temperature (degC) 

' Notes: 

'    1. 1 MPa = 10 bar 

'    2. Horner form of polynomials to reduce loss of accuracy 
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' Reference: 

'    Batzle and Wang 1992 

'    Rock Physics Handbook, 2nd ed, page 340 

Public Function rho_b(P As Double, S As Double, T As Double) As Double 

    Dim a, b, c, d, e, f, rho_w As Double 

    ' Calculate the density of pure water 

    a = T * (-80 + T * (-3.3 + 0.00175 * T)) 

    b = P * (489 - 0.333 * P) 

    c = T * P * (-2 - 0.002 * P + T * (0.016 - 0.000013 * T)) 

    rho_w = 1# + 0.000001 * (a + b + c) 

    ' Calculate the density of brine 

    d = 0.668 + 0.44 * S 

    e = P * (300 - 2400 * S) 

    f = T * (80 + 3 * T - 3300 * S + P * (47 * S - 13)) 

    rho_b = rho_w + S * (d + 0.000001 * (e + f)) 

End Function 

 
 

 

 

 

B4.  Biot-Geertsma code for velocities prediction 
 
' Output: 

'    High-frequency limit of shear velocity according to Biot-Geertsma for 1st loading 

' Input: 

'    phi = total porosity 

'    rho_m = density of solid material 

'    rho_f = density of fluid 

'    alpha = tortuosity parameter 

' Assumption: 

'    1st load sandstone model 

Public Function VS_hf_BiotGeertsma_1st(phi As Double, rho_m As Double, rho_f As Double, alpha As 

Double) As Double 

    Dim G_d As Double 

    ' Sand model for first load 

    G_d = 1.44 * Exp(-2.29 * phi) 

    ' Biot-Geertsma calculations 

    VS_hf_BiotGeertsma_1st = 1000# * Sqr(G_d / ((1 - phi) * rho_m + (1 - 1 / alpha) * phi * rho_f)) 

End Function 
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' Output: 

'    High-frequency limit of shear velocity according to Biot-Geertsma for 2nd loading 

' Input: 

'    phi = total porosity 

'    rho_m = density of solid material 

'    rho_f = density of fluid 

'    alpha = tortuosity parameter 

' Assumption: 

'    2nd load sandstone model 

Public Function VS_hf_BiotGeertsma_2nd(phi As Double, rho_m As Double, rho_f As Double, alpha As 

Double) As Double 

    Dim G_d As Double 

    ' Sand model for second load 

    G_d = 1.4 * Exp(-2.01 * phi) 

    ' Biot-Geertsma calculations 

    VS_hf_BiotGeertsma_2nd = 1000# * Sqr(G_d / ((1 - phi) * rho_m + (1 - 1 / alpha) * phi * rho_f)) 

End Function 

 

 

 

 

' Output: 

'    High-frequency limit of compressional velocity according to Biot-Geertsma for 1st loading 

' Input: 

'    phi = total porosity 

'    rho_m = density of solid material 

'    rho_f = density of fluid 

'    K_m = bulk modulus of solid material 

'    K_f = bulk modulus of fluid 

'    alpha = tortuosity parameter 

' Assumption: 

'    1st load sandstone model 

Public Function VP_hf_BiotGeertsma_1st(phi As Double, rho_m As Double, rho_f As Double, K_m As 

Double, K_f As Double, alpha As Double) As Double 

    Dim rho11, rho22, rho12 As Double 

    Dim A, B, D, P, Q, R As Double 

    Dim G_d, K_d As Double 

    ' Sand model for first load 

    G_d = 1.44 * Exp(-2.29 * phi) 
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    K_d = 5.37 * Exp(-4.86 * phi) 

    ' Biot-Geertsma calculations 

    rho12 = (1# - alpha) * phi * rho_f 

    rho22 = phi * rho_f - rho12 

    rho11 = (1# - phi) * rho_m - rho12 

    B = rho11 * rho22 - rho12 * rho12 

    D = 1# - phi - K_d / K_m + phi * K_m / K_f 

    Q = (1# - phi - K_d / K_m) * phi * K_m / D 

    R = phi * phi * K_m / D 

    P = ((1 - phi) * (1 - phi - K_d / K_m) * K_m + phi * (K_m / K_f) * K_d) / D + 4# * G_d / 3# 

    A = P * rho22 + R * rho11 - 2# * Q * rho12 

    VP_hf_BiotGeertsma_1st = 1000# * Sqr((A + Sqr(A * A - 4 * B * (P * R - Q * Q))) / (2 * B)) 

End Function 

 

' Output: 

'    High-frequency limit of compressional velocity according to Biot-Geertsma for 2nd loading 

' Input: 

'    phi = total porosity 

'    rho_m = density of solid material 

'    rho_f = density of fluid 

'    K_m = bulk modulus of solid material 

'    K_f = bulk modulus of fluid 

'    alpha = tortuosity parameter 

' Assumption: 

'    2nd load sandstone model 

Public Function VP_hf_BiotGeertsma_2nd(phi As Double, rho_m As Double, rho_f As Double, K_m As 

Double, K_f As Double, alpha As Double) As Double 

    Dim rho11, rho22, rho12 As Double 

    Dim A, B, D, P, Q, R As Double 

    Dim G_d, K_d As Double 

    ' Sand model for second load 

    G_d = 1.4 * Exp(-2.01 * phi) 

    K_d = 4.71 * Exp(-4.39 * phi) 

    ' Biot-Geertsma calculations 

    rho12 = (1# - alpha) * phi * rho_f 

    rho22 = phi * rho_f - rho12 

    rho11 = (1# - phi) * rho_m - rho12 

    B = rho11 * rho22 - rho12 * rho12 

    D = 1# - phi - K_d / K_m + phi * K_m / K_f 

    Q = (1# - phi - K_d / K_m) * phi * K_m / D 
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    R = phi * phi * K_m / D 

    P = ((1 - phi) * (1 - phi - K_d / K_m) * K_m + phi * (K_m / K_f) * K_d) / D + 4# * G_d / 3# 

    A = P * rho22 + R * rho11 - 2# * Q * rho12 

    VP_hf_BiotGeertsma_2nd = 1000# * Sqr((A + Sqr(A * A - 4 * B * (P * R - Q * Q))) / (2 * B)) 

End Function 
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Appendix C. CPI plots displaying editing and main calculations that were 

done on well logs 
 

Here we presented the CPI plots showing editing and main calculations that were done 

on well logs for the three formations (Utsira, Skade and Grid) for the wells that were not 

included in the Section 5.5.  

 

 
  Figure C1. CPI plot showing editing and calculations for the Utsira formation in the well   

  16/2-14 T2. 
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 Figure C2. CPI plot showing editing and calculations for the Skade formation in the well     

 16/2-14 T2. 

 

The Grid formation does not exist in this well, so there is no CPI plot for this formation 

in this certain well.  
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Figure C3. CPI plot showing editing and calculations for the Utsira formation in the well  

16/2-20 S. 

 
 Figure C4. CPI plot showing editing and calculations for the Skade formation in the well   

 16/2-20 S. 
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The Grid formation does not exist in well 16/2-20 S and so there is no CPI plot for this 

formation in this certain well.  

 

 
Figure C5. CPI plot showing editing and calculations for the Utsira formation in the well  

16/2-4. 
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 Figure C6. CPI plot showing editing and calculations for the Skade formation in the well    

 16/2-4. 

 

 
 Figure C7. CPI plot showing editing and calculations for the Grid formation in the well 16/2-4. 
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 Figure C8. CPI plot showing editing and calculations for the Utsira formation in the well     

 16/2-5. 
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 Figure C9. CPI plot showing editing and calculations for the Skade formation in the well    

 16/2-5. 

 
 Figure C10. CPI plot showing editing and calculations for the Grid formation in the well      

 16/2-5. 
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 Figure C11. CPI plot showing editing and calculations for the Utsira formation in the well     

 16/3-4. 

 

 
 Figure C12. CPI plot showing editing and calculations for the Skade formation in the well    

 16/3-4. 
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The Grid formation does not exist in the well 16/3-4 and, thus, there is no CPI for it.  
 

 
 Figure C13. CPI plot showing editing and calculations for the Utsira formation in the well     

 16/3-6. 

 

 
 Figure C14. CPI plot showing editing and calculations for the Skade formation in the well     

 16/3-6. 
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The Grid formation does not exist in the well 16/3-6 and there is no CPI plot showing 
it.  

 
 

 
 Figure C15. CPI plot showing editing and calculations for the Utsira formation in the well     

 16/3-7. 

 

 
 Figure C16. CPI plot showing editing and calculations for the Skade formation in the well   

 16/3-7. 

The Grid formation does not exist in this well as well, thus, there is no CPI plot for it.  
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Figure C17. CPI plot showing editing and calculations for the Utsira formation in the well  

16/3-8 A. 

 
Figure C18. CPI plot showing editing and calculations for the Skade formation in the well  

16/3-8 A. 

 
The Grid formation does not exist in this well and there is no CPI plot showing it.  
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 Figure C19. CPI plot showing editing and calculations for the Utsira formation in the well   

 16/4-5. 
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 Figure C20. CPI plot showing editing and calculations for the Skade formation in the well   

 16/4-5. 

 
The Grid formation does not present in this particular well and there is no CPI plot for 

it.  
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 Figure C21. CPI plot showing editing and calculations for the Utsira formation in the well    

 16/4-6 S.  
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 Figure C22. CPI plot showing editing and calculations for the Skade formation in the well   

16/4-6 S. 

 
The Grid formation does not exist in the wells 16/4-6 S and 16/5-4 and there is no CPI 

plots showing Grid formation in these particular wells as well.  
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 Figure C23. CPI plot showing editing and calculations for the Utsira formation in the well    

 16/5-4. 

 
 Figure C24. CPI plot showing editing and calculations for the Skade formation in the well   

 16/5-4. 
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Appendix D. CPI plots showing DT and DTS calculated based on the first 

and second sonic models for the Utsira, Skade and Grid formations – 

optimization is based on all wells 
  

There are CPI plots showing DT and DTS calculated using the first and second sonic 

models optimized for all 12 wells simultaneously for the Utsira, Skade and Grid formations. In 

the Section 6.9 we presented CPI plots for the one particular well 16/2-12. The remaining CPIs 

are shown below. We should mention that Grid formation exists only in wells 16/2-4 and 16/2-

5. Hence, only for these certain wells we presented CPIs for all three sand formations.  

 
 Figure D1. DT and DTS calculated based on the first and second sonic for the Utsira formation   

 in the well 16/2-4. The optimization was based on all wells together. 
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 Figure D2. DT and DTS calculated based on the first and second sonic for the Skade formation   

 in the well 16/2-4. The optimization  was based on all wells together. 

 

 
 Figure D3. DT and DTS calculated based on the first and second sonic for the Grid formation   

 in the well 16/2-4. The optimization  was based on wells together. 
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 Figure D4. DT and DTS calculated based on the first and second sonic for the Utsira formation   

 in the well 16/2-5. The optimization was based on all wells together. 
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 Figure D5. DT and DTS calculated based on the first and second sonic for the Skade formation   

 in the well 16/2-5. The optimization was based on all wells together. 

 
 Figure D6. DT and DTS calculated based on the first and second sonic for the Grid formation   

 in the well 16/2-5. The optimization was based on  all wells together. 
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 Figure D7. DT and DTS calculated based on the first and second sonic models for the Utsira   

 formation in the well 16/2-14 T2. The optimization was based on wells together. 
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 Figure D8. DT and DTS calculated based on the first and second sonic models for the Skade 

 formation in the well 16/2-14 T2. The optimization was based on all wells together. 



 
195 

 

 
 Figure D9. DT and DTS calculated based on the first and second sonic models for the Utsira 

 formation in the well 16/2-20 S. The optimization was based on all wells together. 
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 Figure D10. DT and DTS calculated based on the first and second sonic models for the Skade 

 formation in the well 16/2-20 S. The optimization was based on all wells together. 
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 Figure D11. DT and DTS calculated based on the first and second sonic models for the Utsira    

 formation in the well 16/3-4 A. The optimization was based on all wells together. 
 

 
 Figure D12. DT and DTS calculated based on the first and second sonic models  

 for the Skade formation in the well 16/3-4 A. The optimization was based on all wells together. 
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Figure D13. DT and DTS calculated based on the first and second sonic models t for the Utsira 

formation in the well 16/3-6. The optimization was based on wells together. 

 

 
 Figure D14. DT and DTS calculated based on the first and second sonic models for the Skade   

 formation in the well 16/3-6. The optimization was based on all wells together. 
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 Figure D15. DT and DTS calculated based on the first and second sonic models for the Utsira   

formation in the well 16/3-7. The optimization was based on all wells together. 

 

 
 Figure D16. DT and DTS calculated based on the first and second sonic models for the Skade   

 formation in the well 16/3-7. The optimization was based on all wells together. 
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 Figure D17. DT and DTS calculated based on the first and second sonic models for the Utsira   

 formation in the well 16/3-8 A. The optimization was based on all wells together. 

 

 
 Figure D18. DT and DTS calculated based on the first and second sonic models for the Skade   

 formation in the well 16/3-8 A. The optimization was based on all wells together. 
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Figure D19. DT and DTS calculated based on the first and second sonic models for the Utsira 

formation in the well 16/4-5. The optimization  was based on wells together. 
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 Figure D20. DT and DTS calculated based on the first and second sonic models for the Skade   

 formation in the well 16/4-5. The optimization was based on all wells together. 
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Figure D21. DT and DTS calculated based on the first and second sonic models for the Utsira 

formation in the well 16/4-6 S. The optimization was based on all wells together. 
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 Figure D22. DT and DTS calculated based on the first and second sonic models  for the Skade   

 formation in the well 16/4-6 S. The optimization was based on all wells together. 

 



 
205 

 

 
 Figure D23. DT and DTS calculated based on the first and second sonic models  

 for the Utsira formation in the well 16/5-4. The optimization was based on all wells together. 
 

 
 Figure D24. DT and DTS calculated based on the first and second sonic models for the Skade   

 formation in the well 16/5-4. The optimization was based on all wells together. 
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Appendix E. CPI plots showing DT and DTS calculated based on the first 

and second sonic models for the Utsira, Skade and Grid formations – 

optimization is based on every well  
 

Here we showed CPI plots displaying DT and DTS calculated using the first and second 

sonic models for the Utsira, Skade and Grid formations optimized for every well separately. 

We presented CPIs for the 10 final wells , since we excluded wells 16/3-4A and 16/4-5 due to 

bad raw data of DT and DTS which have influence to the final results of the models.  We should 

mention that Grid formation was found only in wells 16/2-4 and 16/2-5. Hence, only for these 

certain wells we presented CPIs for all three sand formations.  

 
        Figure E1. DT and DTS calculated based on the first and second sonic models for the     

        Utsira formation in the well 16/2-4. The optimization was based on only this well. 
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 Figure E2. DT and DTS calculated based on the first and second sonic models for the Skade  

formation in the well 16/2-4. The optimization was based on only this well. 

 

 
 Figure E3. DT and DTS calculated based on the first and second sonic models for the Grid   

 formation in the well 16/2-4. The optimization was based on only this well. 
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Figure E4. DT and DTS calculated based on the first and second sonic models for the Utsira 

formation for the well 16/2-5. The optimization was based on only this well. 
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 Figure E5. DT and DTS calculated based on the first and second sonic models  

 for the Skade formation in the well 16/2-5. The optimization was based on only this well. 
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    Figure E6. DT and DTS calculated based on the first and second sonic models  

    for the Grid formation in the well 16/2-5. The optimization was based on only this well. 
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   Figure E7. DT and DTS calculated based on the first and second sonic models  

  for the Utsira formation in the well 16/2-14 T2. The optimization  was based on only this well. 
 

 
     Figure E8. DT and DTS calculated based on the first and second sonic models for the Skade   

     formation in the well 16/2-14 T2. The optimization was based on only this well. 
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Figure E9. DT and DTS calculated based on the first and second sonic models separately for 

the Utsira formation in the well 16/2-20 S. The optimization was based on only this well. 
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Figure E10. DT and DTS calculated based on the first and second sonic models for the Skade 

formation in the well 16/2-20 S. The optimization was based on only this well. 
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  Figure E11. DT and DTS calculated based on the first and second sonic models for the Utsira  

  formation in the well 16/3-6. The optimization was based on only this well. 

 

 
 Figure E12. DT and DTS calculated based on the first and second sonic models for the Skade   

 formation in the well 16/3-6. The optimization was based on only this well. 
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 Figure E13. DT and DTS calculated based on the first and second sonic models for the Utsira   

 formation in the well 16/3-7. The optimization was based on only this well. 

 

 
 Figure E14. DT and DTS calculated based on the first and second sonic models for the Skade   

 formation in the well 16/3-7. The optimization was based on only this well. 
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Figure E15. DT and DTS calculated based on the first and second sonic models for the Utsira 

formation in the well 16/3-8 A. The optimization was based on only this well. 

 

 
Figure E16. DT and DTS calculated based on the first and second sonic models  for the Skade 

formation in the well 16/3-8 A. The optimization was based on only this well. 
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Figure E17. DT and DTS calculated based on the first and second sonic models for the Utsira 

formation in the well 16/4-6 S. The optimization  was based on only this well. 
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Figure E18. DT and DTS calculated based on the first and second sonic models for the Skade 

formation in the well 16/4-6 S. The optimization was based on only this well. 
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   Figure E19. DT and DTS calculated based on the first and second sonic models  

   for the Utsira formation in the well 16/5-4. The optimization was based on only this well. 
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    Figure E20. DT and DTS calculated based on the first and second sonic models  

    for the Skade formation in the well 16/5-4. The optimization was based on only this well. 
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