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Massive Nambu-Goldstone (mNG) bosons are quasiparticles the gap of which is determined exactly by
symmetry. They appear whenever a symmetry is broken spontaneously in the ground state of a quantum
many-body system and at the same time explicitly by the system’s chemical potential. In this paper, we
revisit mNG bosons and show that apart from their gap symmetry also protects their scattering amplitudes.
Just like for ordinary gapless Nambu-Goldstone (NG) bosons, the scattering amplitudes of mNG bosons
vanish in the long-wavelength limit. Unlike for gapless NG bosons, this statement holds for any scattering
process involving one or more external mNG states; there are no kinematic singularities associated with the
radiation of a soft mNG boson from an on-shell initial or final state.
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I. INTRODUCTION

Spontaneous symmetry breaking is one of the most
important concepts in modern quantum physics. It is
responsible for a vast range of phenomena, ranging from
superfluidity and ferromagnetism to the generation of
masses of elementary particles. As a rule, it is associated
with the presence of gapless quasiparticles in the spectrum
of the system: the Nambu-Goldstone (NG) bosons.
Exact global symmetries are, however, rare in nature.

When the spontaneously broken symmetry is not exact but
merely approximate, the associated soft mode acquires a
gap. Such modes are referred to as pseudo-NG (pNG)
bosons. As a rule, the gap of a pNG boson depends not just
on symmetry alone but also on the details of the dynamics
of the system.
It was discovered only recently that under certain

circumstances the gap of a pNG boson is determined
exactly by symmetry [1]. Namely, breaking an otherwise
exact symmetry by coupling a chemical potential to one of
its generators leads to pNG-like modes with a gap fixed by
the symmetry algebra and the chemical potential alone,
independently of the details of the underlying dynamics.
Such modes have been dubbed massive NG (mNG) bosons
[2]. The list of currently known mNG bosons covers a
range of systems from condensed-matter to high-energy

physics and includes (anti)ferromagnetic magnons in an
external magnetic field, the neutral pion in a pion superfluid
in dense quark matter, certain excitations of relativistic
Bose-Einstein condensates [2], and the Kohn mode [3]
corresponding to center-of-mass oscillations of Bose-
Einstein condensates in harmonic traps [4].
The story is further complicated by the fact that not all

pNG bosons stemming from explicit breaking of a sym-
metry by a chemical potential are mNG bosons [2,5].
Examples of such states are somewhat exotic but not too
difficult to construct, the simplest one perhaps appearing in
a system where a global SO(3) symmetry is completely
spontaneously broken. Unlike the true mNG bosons, the
presence of such states in a given system is, however, not
guaranteed. We will revisit this case in the Appendix.
The goal of this paper is to investigate further properties

of mNG bosons beyond the sole fact that their gap is fixed
by symmetry. It is well known that ordinary NG bosons
interact weakly at low energies. More precisely, barring
special circumstances leading to a kinematic singularity, the
scattering amplitude for a process involving a NG boson
vanishes in the limit where the momentum of this NG
boson goes to zero. This fact is usually referred to as
Adler’s zero and has recently been reinvestigated inten-
sively in the context of a constructive approach to scattering
amplitudes; see Refs. [6–8] for some relevant publications
on the subject [9].
Here, we show that mNG bosons share this property

despite their gap. In fact, the nonzero gap protects them
against the mentioned kinematic singularities so that the
scattering amplitude for any process involving a mNG
external state vanishes as its momentum goes to zero.
The plan of the paper is as follows. InSec. II, we review the

basic facts about mNG bosons. We also discuss to some
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extent how current conservation, which is crucial for estab-
lishing the existence of Adler’s zero, is modified in the
presence of a chemical potential. In the next two sections, we
then warm up by analyzing in detail two concrete examples
of systems featuring a mNG boson. The system described in
Sec. III captures the behavior of antiferromagnetic magnons
in an external magnetic field. Its key advantage is that its
relativistic kinematics is unaffected by the chemical poten-
tial, which only modifies the perturbative interactions of
magnons. The example studied in Sec. IV, known from
certain scenarios for kaon condensation in dense quark
matter [11], features fully nonrelativistic kinematics despite
its relativistic origin. It thus brings to light most of the
subtleties that we will have to deal with in Sec. V, where a
general argument for Adler’s zero in scattering amplitudes of
mNG bosons is presented. Finally, in Sec. VI, we summarize
our findings and give some concluding remarks. We also
discuss to some extent the limit in which themomenta of two
NGormNG bosons, participating in a scattering process, are
taken to zero simultaneously.

II. MASSIVE NAMBU-GOLDSTONE BOSONS
AND CURRENT CONSERVATION

Following Ref. [2], consider a quantum system defined
by its Hamiltonian H. Suppose that we pick one of the
generators Q of its symmetry group G and assign it a
chemical potential, μ. The excitation spectrum of the
system is then determined by the many-body
Hamiltonian ~H ≡H − μQ. This Hamiltonian generally
does not commute with the full group G; let us denote
the subgroup of G commuting with ~H as ~G.
By the standard Cartan decomposition of Lie algebras,

the symmetry generators not commuting with ~H can be
organized into Hermitian-conjugate pairs Q�

i such that

½Q;Q�
i � ¼ �qiQ�

i ; ð1Þ
where qi are the roots of the Cartan subalgebra. It then
follows that acting with Q�

i on an eigenstate of ~H changes
its energy (eigenvalue of ~H) by ∓μqi. As a consequence,
once both μ and qi are chosen without loss of generality to
be positive, the many-body ground state j0i satisfies
Qþ

i j0i ¼ 0. On the other hand, Q−
i j0i can be nonzero,

and if it is (which signals spontaneous symmetry breaking),
it represents a mNG state with energy μqi.
The total number of mNG states in the spectrum can be

determined as follows [2]. Define the real antisymmetric
matrix of commutators,

ρij ≡ −i lim
Ω→∞

1

Ω
h0j½Qi;Qj�j0i ð2Þ

(Ω denotes the spatial volume of the system), and the
analogous matrix ~ρij, composed of generators of ~G only.
The number of mNG bosons is then given by

nmNG ¼ 1

2
ðrank ρ − rank ~ρÞ: ð3Þ

To provide a somewhat different perspective on the
spectrum of mNG bosons, we now discuss the conservation
laws for Noether currents in the presence of a chemical
potential. We use the fact that in the Lagrangian formalism
the chemical potential can be introduced as a constant
background temporal gauge field [12].
Consider rather generally a class of theories defined by

their classical action S½ϕ; A�, depending on a set of scalar
fields ϕa and gauge fields Ai

μ. Suppose that this action is
invariant under a set of simultaneous local transformations
with infinitesimal parameters ϵiðxÞ,

δϕa ¼ ϵiFa
i ðϕ; AÞ; δAi

μ ¼ ∂μϵ
i þ fijkA

j
μϵk; ð4Þ

where fijk are the structure constants of the symmetry group
and Fa

i are some local functions of the fields and possibly
of their derivatives. The requirement of gauge invariance
implies the conditionZ

dx

�
δS
δϕa ϵ

iFa
i þ

δS
δAi

μ
ð∂μϵ

i þ fijkA
j
μϵkÞ

�
¼ 0: ð5Þ

By using the equation of motion for the scalar field,
δS=δϕa ¼ 0, we infer immediately that the Noether cur-
rents, defined by Jμi ðxÞ≡ δS=δAi

μðxÞ up to a conventional
sign, satisfy the covariant conservation law

DμJ
μ
i ≡ ∂μJ

μ
i þ fkijA

j
μJ

μ
k ¼ 0: ð6Þ

Note the generality of our argument. First, we did not
assume any particular form of the transformation rule for
the scalar fields; the function Faðϕ; AÞ need not be linear,
and it may even depend on field derivatives. Second, we did
not make any specific assumptions on the Lagrangian
density; it may depend on higher derivatives of the fields,
and it may change upon the transformation (4) by a surface
term. Finally, the gauge field Ai

μ in Eq. (6) is treated as a
nondynamical background, but it may take an arbitrary
coordinate-dependent value.
What we are actually interested in is the situation in

which the background gauge field AQ
μ for the generator Q

equals ðμ; 0Þ; all the other background gauge fields Ai
μ can

be set to zero upon taking the functional derivative in order
to obtain the Noether currents. It follows that the currents
Jμ� associated with the generators Q�, satisfying Eq. (1)
(we drop for the sake of simplicity the index i), fulfill the
conservation law

∂μJ
μ
� � iμqJ0� ¼ 0: ð7Þ

Consider now the one-particle state of a mNG boson
carrying momentum p, denoted as jGðpÞi. By the argument
following Eq. (1), this state can be created from the
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many-body vacuum j0i by Q−. The matrix element
hGðpÞjJμ−ðxÞj0i is therefore nonzero. Spacetime translation
invariance and spatial rotation invariance constrain it to
take the form

hGðpÞjJμ−ðxÞj0i ¼ eip·x½ipμF1ðjpjÞ þ iδμ0F2ðjpjÞ�; ð8Þ

where F1ðjpjÞ and F2ðjpjÞ are a priori unknown functions
of the mNG boson momentum. Applying the conservation
law (7) to the current Jμ− then gives

ω2F1 þ ωðF2 − μqF1Þ − p2F1 − μqF2 ¼ 0; ð9Þ

where ωðpÞ is the dispersion relation of the mNG mode. It
is easy to see that ωð0Þ ¼ μq is a solution of this equation
for arbitrary F1 and F2, which provides yet another
derivation of the mass of the mNG boson.
We shall utilize the conservation law (7) and the matrix

element (8) in our discussion of the mNG boson scattering
amplitudes in the next sections.

III. CASE STUDY: ANTIFERROMAGNET IN
EXTERNAL MAGNETIC FIELD

Let us start our discussion of scattering amplitudes of
mNG bosons by looking at a concrete example. It is clear
from Eq. (1) that the presence of a mNG boson requires
non-Abelian symmetry. We therefore choose to study the
simplest non-Abelian relativistic model with the symmetry-
breaking pattern SOð3Þ → SOð2Þ. At the leading order
of the derivative expansion, its low-energy effective
Lagrangian is just the nonlinear sigma model,

L ¼ 1

2
ðDμϕ⃗Þ2; ð10Þ

where the vector field ϕ⃗ has a fixed modulus, jϕ⃗j ¼ v. The
covariant derivative includes a background gauge field A⃗μ

of SO(3) via

Dμϕ⃗≡ ∂μϕ⃗þ A⃗μ × ϕ⃗: ð11Þ
For future reference, we take note of the Noether currents
arising from the SO(3) symmetry,

J⃗μ ¼
δS

δA⃗μ

¼ ϕ⃗ ×Dμϕ⃗: ð12Þ

This model can be thought of as describing the low-energy
dynamics of spin waves in antiferromagnets in an external
magnetic field, represented by A⃗0.
We choose the magnetic field to point along the z axis,

that is, set A⃗μ ¼ δμ0ð0; 0; μÞ. In the classical ground state,

the field ϕ⃗ is then oriented in the xy plane, and we can
choose it to point in the x direction, hϕ⃗i ¼ ðv; 0; 0Þ. The
fluctuations above this ground state are parametrized by

two scalar fields, which we denote as π and G for a reason
that will be clear shortly. We shall use the following
nonlinear parametrization that automatically takes account
of the constraint on the length of ϕ⃗,

ϕ⃗ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 − π2 − G2
p

; π; G
�
T
: ð13Þ

Inserting this into the Lagrangian, it acquires a form that is
suitable for a perturbative analysis of the model,

L ¼ 1

2
ð∂μπÞ2 þ

1

2
ð∂μGÞ2 −

1

2
μ2G2

þ 2μð∂0πÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − π2 −G2

p
þ 1

2

ðπ∂μπ þ G∂μGÞ2
v2 − π2 − G2

;

ð14Þ
up to constant and surface terms. We can see that the model
contains one exactly massless mode and one mode with the
mass equal to μ, which is our mNG boson. This corre-
sponds to the well-known fact that out of the two magnons
in antiferromagnets only one becomes gapped when an
external magnetic field is turned on. Our notation then is π
for the truly massless (NG) mode and G for the gapped
(mNG) mode.

A. Scattering amplitude: Direct calculation

To get insight into the properties of the scattering
amplitudes in our model, let us perform a sample calcu-
lation and inspect the four-particle process

πG → πG; ð15Þ
see Fig. 1 for the corresponding Feynman diagrams and the
explanation of our notation. A simple calculation leads to
the tree-level result for the on-shell amplitude with ampu-
tated external legs [13],

M ¼ 2

v2
k · k0 þ 2μ2k0k00

v2

�
1

p · k
−

1

p · k0

�
: ð16Þ

Let us first inspect the properties of this amplitude as the
momentum of one of the NG states, say, the incoming one,
goes to zero. Naively, the amplitude vanishes thanks to the

FIG. 1. Feynman diagrams for the scattering amplitude for the
πG → πG process. The dashed line stands for the π field, and the
solid line stands for G. The 4-momenta of the NG boson in
the initial and final states are denoted, respectively, as k and k0,
whereas those of the mNG boson are denoted as p and p0. The
arrows indicate the flow of momentum.
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presence of the factors of k in the numerators. However,
since p · k0 ¼ p0 · k, both terms in the parentheses in
Eq. (16) are singular in this limit. A more careful evaluation
leads to

lim
k→0

M ¼ 2μ2k00
v2

�
1

p0 − jpj cos α −
1

p0
0 − jp0j cos β

�
; ð17Þ

where α and β are the angles between k and p and p0,
respectively. The absence of Adler’s zero in such a
scattering process is a well-known issue, which arises from
the presence of cubic interaction vertices in the model [14],
and thus from the latter two Feynman diagrams in Fig. 1, as
the momentum k goes to zero, the internal propagator in
these diagrams approaches the mass shell, leading to a
kinematic singularity.
If, on the other hand, one of the mNG bosons in the

process becomes soft [16], no such kinematic singularity
appears due to the nonvanishing mass of the mNG boson. A
simple manipulation using the kinematics of the process
shows that

lim
p→0

M ¼ lim
p0→0

M ¼ 0: ð18Þ

This is our first piece of evidence that the interactions of
mNG bosons are weak at low momentum in spite of their
nonzero mass.

B. Scattering amplitude from current conservation

So far, we have found Adler’s zero in a single scattering
amplitude of the mNG state in our model by a direct
computation. Should we be able to prove the existence of
Adler’s zero for mNG bosons on general grounds, we need
a more robust approach. To that end, recall that the presence
of Adler’s zero for true, massless NG bosons is usually
proven as a direct consequence of conservation of the
Noether current associated with the spontaneously broken
symmetry [15]. We shall now therefore imagine that the
incoming mNG state in the process shown in Fig. 1 is
created by the current operator Jμ− and investigate the
matrix element

hfjJμ−ðpÞjii≡ hk0; p0jJμ−ðpÞjki: ð19Þ

Note that the kinematics corresponding to this matrix
element is different than that of the scattering amplitude
in Fig. 1: whereas the 4-momenta k; k0; p0 label one-
particle asymptotic states and therefore are on shell, the
4-momentum p is created by the local current operator and
thus can be off shell. Keeping this momentum off, if close,
the mass shell is of course all important for understanding
the analytical structure of the matrix element and extracting
from it the physical scattering amplitude.
For the first step, we write down the perturbative

expansion of the Noether currents (12), just as we pre-
viously did for the Lagrangian,

Jμ1 ¼ π∂μG − G∂μπ þ δμ0μG

�
π2 þ G2

2v
− v

�
þ � � � ;

Jμ2 ¼ −δμ0μπG − v∂μG −
1

2v
∂μGðG2 − π2Þ

−
1

v
πG∂μπ þ � � � ;

Jμ3 ¼ δμ0μðv2 − G2Þ þ v∂μπ þ 1

v
πG∂μG

−
1

2v
∂μπðG2 − π2Þ þ � � � ; ð20Þ

where terms of higher order in the fields are omitted.
The matrix element hfjJμ−ðpÞjii with Jμ− ≡ Jμ1 − iJμ2 can

now be evaluated perturbatively similarly to the previous
direct calculation of the scattering amplitude. The Feynman
diagrams that contribute to it are shown in Fig. 2 and fall
into two distinct classes. The first three diagrams arise from
the part of the current linear in G and contain a pole at
p2 ¼ μ2. The last three arise from the parts of the current
quadratic and cubic in the fields and do not have a simple
pole in the p2 variable.
It is obvious from Figs. 1 and 2 that there is a one-to-one

correspondence between diagrams contributing to the
scattering amplitude for the process πG → πG and the
pole contributions to the matrix element hfjJμ−ðpÞjii. Using
only the knowledge of the propagator of the G field and of
the linear pieces of the current Jμ−, that is without having to
evaluate the scattering amplitude explicitly, the pole part of
the matrix element of the current can be expressed as

hfjJμ−ðpÞjiipole ¼ −
ivðμδμ0 þ pμÞ

p2 − μ2
ð−iMoff-shellÞ; ð21Þ

where the subscript “off-shell” refers to the fact that only
the momenta k; k0; p0 but not p are now on shell in the
scattering amplitude.
The nonpole part of the current matrix element is

likewise evaluated straightforwardly,

FIG. 2. Feynman diagrams contributing to the matrix element
hfjJμ−ðpÞjii. The dot on the external line carrying momentum p
represents the current operator; otherwise, the notation is the
same as in Fig. 1.
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hfjJμ−ðpÞjiinon-pole ¼
1

v
ðμδμ0 þ kμ þ p0μ − k0μÞ

−
μk00

vp0 · k0
ðμδμ0 þ pμ þ 2kμÞ

−
μk0

vp0 · k
ðμδμ0 þ pμ − 2k0μÞ; ð22Þ

where we used momentum conservation and the on-shell
condition for k; k0; p0 to simplify the result.
We shall now see that the scattering amplitude for the

πG → πG process is actually completely determined by the
nonpole diagrams in Fig. 2. Indeed, the operator momen-
tum conservation condition (7) implies that

ðpμ − μδμ0ÞhfjJμ−ðpÞjii ¼ 0: ð23Þ

This leads to a cancellation of the pole in the pole part of the
current matrix element, upon which the off-shell amplitude
Moff-shell can be expressed as

Moff-shell ¼
2

v2
k · k0 þ 2μ2k0k00

v2

�
1

p0 · k0
−

1

p0 · k

�
: ð24Þ

Once the momentum p is set on the mass shell, this is seen
to be equivalent to the previously found result (16).
The moral of this exercise is that we do not need to

calculate the scattering amplitude explicitly; it can be
extracted from the nonpole contributions to the matrix
element of the broken current upon using current con-
servation. This is a major step toward proving that the
scattering amplitude vanishes in the limit of zero momen-
tum of the mNG boson. Before proceeding to the general
argument, we will, however, work out in detail another
example. In the calculation above, we have namely used
heavily the relativistic kinematics to simplify the expres-
sions. We want to see to what extent the situation
complicates in systems in which not only the interactions
but also the kinematics are not Lorentz invariant.

IV. CASE STUDY: RELATIVISTIC MODEL
FOR KAON CONDENSATION

Following Ref. [11], we introduce the linear sigma
model, defined by the Lagrangian

L ¼ Dμϕ
†Dμϕ −m2ϕ†ϕ − λðϕ†ϕÞ2; ð25Þ

where ϕ is a doublet of complex scalars and the
covariant derivative incorporates a chemical potential via
D0ϕ≡ ð∂0 − iμÞϕ. The Lagrangian has a manifest ~G ¼
SUð2Þ × Uð1Þ symmetry, corresponding to unitary rota-
tions of the ϕ doublet. The chemical potential μ is then
associated with the U(1) factor of the symmetry group. This
model has been used to describe kaon condensation in

dense quark matter, where the SU(2) stands for isospin and
U(1) stands for strangeness.
The full symmetry group of the model in the limit μ ¼ 0

isG ¼ SOð4Þ≃ SUð2Þ × SUð2Þ, which is most easily seen
by thinking of ϕ as a collection of four real scalar fields.
The non-Abelian nature of this symmetry creates a con-
venient setting for the presence of mNG bosons in the
spectrum. When μ > m, the classical ground state of the
model carries a nonzero expectation value of ϕ and can be
chosen as

hϕi ¼ 1ffiffiffi
2

p
�
0

v

�
; v≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

λ

r
: ð26Þ

The symmetry-breaking pattern then reads

G ¼ SUð2ÞL × SUð2ÞR → SUð2Þ0;
~G ¼ SUð2ÞL × Uð1ÞR → Uð1Þ0: ð27Þ

Here, the primes refer to the fact that the generators of the
unbroken SU(2) and U(1) subgroups are linear combina-
tions of generators of the SU(2) and U(1) factors in G and
~G, respectively. We can see that two of the symmetry
generators are broken spontaneously and at the same time
explicitly by the chemical potential and thus expect a single
mNG boson in the spectrum.
To check this, we parametrize the doublet ϕ as

ϕ≡ 1ffiffiffi
2

p
�

φ

vþ ψ3 þ iψ4

�
; ð28Þ

where φ is a complex field, whereas ψ3;4 are real. Inserting
this into the model Lagrangian and dropping constant
terms, it becomes

L ¼ ∂μφ
�∂μφþ iμðφ�∂0φ − φ∂0φ

�Þ − λv2ψ2
3

þ 1

2
ð∂μψ3Þ2 þ

1

2
ð∂μψ4Þ2 þ μðψ4∂0ψ3 − ψ3∂0ψ4Þ

− λvψ3ð2φ�φþ ψ2
3 þ ψ2

4Þ −
λ

4
ð2φ�φþ ψ2

3 þ ψ2
4Þ2:
ð29Þ

It is easy to see that the φ field excites a pair of states with
the dispersion relations

ω�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2

q
� μ: ð30Þ

These can be thought of as a genuine particle-antiparticle
pair thanks to the fact that they carry the charge of the
unbroken exact Uð1Þ0 symmetry. The lighter of the two is
gapless and represents a so-called type-B NG boson [17].
The heavier of the two, on the other hand, has gap 2μ. This
is the mNG boson of the extended symmetry group G,
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broken both explicitly and spontaneously [2]. It has been
shown by an explicit calculation that its gap does not
receive radiative corrections at one loop [18].
The ψ3;4 sector of the model likewise contains two

excitations with the nonrelativistic dispersion relations

ω3;4ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 3μ2 −m2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3μ2 −m2Þ2 þ 4μ2p2

qr
:

ð31Þ

One of these modes is gapless and corresponds to a so-
called type-A NG boson [17]. The other one is gapped and
represents a Higgs-like mode. In the calculation below, we
actually do not need these dispersion relations, but only the
propagator in the ψ3;4 sector, which takes a matrix form
and can be extracted from the bilinear part of the
Lagrangian (29),

DðpÞ ¼ i
p2ðp2 − 2λv2Þ − 4μ2p2

0

�
p2 −2iμp0

þ2iμp0 p2 − 2λv2

�
:

ð32Þ

All the other Feynman rules of the model can be read off the
Lagrangian (29) trivially.

A. Scattering amplitude: Direct calculation

Let us now, as in the previous section, evaluate the
scattering amplitude for a sample scattering process. For
the sake of convenience, we choose the process

NGþmNG → NGþmNG; ð33Þ

where “NG” refers to the type-B NG mode of the model,
which is the antiparticle of the mNG mode [19]. The
diagrams contributing to this process at tree level are shown
in Fig. 3, which also explains all the notation required.
A straightforward application of Feynman rules leads to

the following intermediate result for the on-shell amplitude
with amputated external legs,

M ¼ 4λþ 4λ2v2ðpþ kÞ2
ðpþ kÞ2½ðpþ kÞ2 − 2λv2� − 4μ2ðp0 þ k0Þ2

þ 4λ2v2ðp − p0Þ2
ðp − p0Þ2½ðp − p0Þ2 − 2λv2� − 4μ2ðp0 − p0

0Þ2
:

ð34Þ

Adler’s zero is not manifest in this case, which is common
for linear sigma models; a cancellation between two or
more Feynman diagrams is usually required in order to
ascertain the vanishing of the scattering amplitude in the
soft limit. To that end, note that the dispersion relations (30)
for the NG and mNGmode can be encoded in the kinematic
relations

p2 ¼ 2μp0; k2 ¼ −2μk0; ð35Þ

and analogously for p0 and k0. It is then easy to see that

ðpþkÞ2 ⟶p→0
2μðp0þk0Þ;

ðp−p0Þ2 ⟶p→0
2μðp0−p0

0Þ; ð36Þ

which immediately leads to the expected result

lim
p→0

M ¼ 0: ð37Þ

It is easy to check that in this case the Adler zero property
also holds for the gapless NG mode; there is no kinematic
singularity present in this model. That is because of the
structure of the cubic interaction vertices; the internal
propagator in the diagrams in Fig. 3 carries a different
mode than the external legs and thus remains off shell in the
limit k → 0.

B. Scattering amplitude from current conservation

For the next step, we shall now again see how to
reproduce this result without evaluating the scattering
amplitude explicitly, using only current conservation. To
that end, we first need to identify the Noether current that
excites the mNG boson of the model. Adding the chemical
potential to the theory explicitly breaks two of the gen-
erators of the right SU(2) factor in the symmetry group G.
The corresponding currents take the form

FIG. 3. Feynman diagrams for the scattering amplitude for the
NGþmNG → NGþmNG process. All quasiparticles participat-
ing in the process are excited by theφ field. TheNGmode is treated
as a particle and thus corresponds to an incoming line in the initial
state and anoutgoing line in the final state. ThemNGmode is treated
as an antiparticle and thus corresponds to an outgoing line in the
initial state and an incoming line in the final state. The dashed line
represents the matrix propagator D; only the Dψ3ψ3

component is
needed here since there are no cubic interaction vertices linear inψ4

in themodel. The notation for the 4-momenta of the gapless and the
gapped states is the same as in Fig. 1. The arrows on the field lines
indicate the flow of the Uð1Þ0 charge. The flow of momentum is
indicated by the arrows next to the momentum labels.

TOMÁŠ BRAUNER and MARTIN F. JAKOBSEN PHYS. REV. D 97, 025021 (2018)

025021-6



JμR1 ¼ −ϕTτ2∂μϕþ ϕ†τ2∂μϕ
�;

JμR2 ¼ −iϕTτ2∂μϕ − iϕ†τ2∂μϕ
�; ð38Þ

where τ2 is the second Pauli matrix. In this case, it is more
convenient to define the “ladder currents” with an addi-
tional factor of

ffiffiffi
2

p
,

Jμ� ≡ 1ffiffiffi
2

p ðJμR1 � iJμR2Þ: ð39Þ

Only the current Jμ− is needed as it excites the mNG boson.
Using the parametrization (28), it becomes

Jμ− ¼ −iv∂μφ − iðψ3∂μφ − φ∂μψ3Þ
þ ðψ4∂μφ − φ∂μψ4Þ: ð40Þ

As in the previous section, we now want to evaluate the
matrix element (19). The Feynman diagrams that contribute
to it are displayed in Fig. 4. The pole part of the matrix
element is again related to the scattering amplitude of
interest by a simple expression,

hfjJμ−ðpÞjiipole ¼
ivpμ

p2 − 2μp0

ð−iMoff-shellÞ; ð41Þ

where the subscript “off-shell” indicates that only the
4-momenta k, k0, and p0 are on shell. The nonpole part
of the matrix element, hfjJμ−ðpÞjiinon-pole, which we will for
brevity call simply Nμ

−, is now given by a larger number of
diagrams as a result of the mixing of the ψ3;4 fields.
Evaluating all the contributions explicitly yields

Nμ
− ¼ −

2λvðpμ þ 2kμÞ½ðpþ kÞ2 þ 2μðp0 þ k0Þ�
ðpþ kÞ2½ðpþ kÞ2 − 2λv2� − 4μ2ðp0 þ k0Þ2

−
2λvðpμ − 2p0μÞ½ðp − p0Þ2 þ 2μðp0 − p0

0Þ�
ðp − p0Þ2½ðp − p0Þ2 − 2λv2� − 4μ2ðp0 − p0

0Þ2
:

ð42Þ

In the present case in which the gap of the mNG mode is
2μ, the current conservation condition (7) implies

ðpμ − 2μδμ0ÞhfjJμ−ðpÞjii ¼ 0; ð43Þ

as opposed to Eq. (23). The prefactor ðpμ − 2μδμ0Þ clearly
cancels the pole in hfjJμ−ðpÞjiipole, although the propagator
of the mNG boson now takes a nonrelativistic form. Upon
canceling the pole, the off-shell scattering amplitude can be
expressed in terms of the nonpole contributions Nμ

− as

Moff-shell ¼ −
1

v
ðpμNμ

− − 2μN0
−Þ: ð44Þ

Upon using some kinematics for the initial and the final
states of the scattering process, it is straightforward to show
that in the on-shell limit this result coincides with the
previously derived Eq. (34). Even more importantly, how-
ever, Eq. (44) makes the presence of Adler’s zero in the
limit p → 0 manifest as long as Nμ

− is not singular in this
limit, which it is not by construction. [It does not include
the contribution of the one-particle pole at p0 ¼ ωþðpÞ.]
This is the last crucial ingredient that we need for a general
proof of the existence of Adler’s zero in scattering
amplitudes of mNG bosons.

V. GENERAL ARGUMENT

We would now like to generalize our argument from the
previous section so that it:

(i) applies to any (compact) symmetry group and
symmetry-breaking pattern G → H.

(ii) does not require the evaluation of specific Feynman
diagrams but only relies on current conservation.

(iii) does not assume any particular form of the propa-
gator of the mNG field.

We will follow rather closely the usual proof of existence of
Adler’s zero for exact spontaneously broken symmetries

FIG. 4. Feynman diagrams contributing to the matrix element
hfjJμ−ðpÞjii. The dot on the external line carrying momentum p
represents the current operator; otherwise, the notation is the
same as in Fig. 3. The ψ3;4 labels on the internal propagators
indicate that mixing has to be taken into account.
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[15]. A generic scattering process involving a mNG boson
in the initial state can be represented by the diagram in
Fig. 5. Just like in our above analysis of specific examples,
the mNG state is created by a local Noether current
operator, and the diagram therefore corresponds to the
matrix element hfjJμ−ðpÞjii, where p is the mNG boson
4-momentum.
To understand the analytic structure of this matrix

element, we will need the Källén-Lehmann spectral repre-
sentation. Its general nonrelativistic version for a time-
ordered Green’s function of two local fields, AðxÞ and BðxÞ,
takes the form [18]

DABðpÞ ¼ ið2πÞ3
X
n

�h0jAð0Þjn; pihn; pjBð0Þj0i
p0 − ωðpÞ þ iϵ

−
h0jBð0Þjn;−pihn;−pjAð0Þj0i

p0 þ ωðpÞ − iϵ

�
; ð45Þ

where the Hamiltonian eigenstates jn; pi are assumed to be
normalized according to hm; pjn; qi ¼ δmnδ

3ðp − qÞ and
ωnðpÞ is their energy. Note that the index n is discrete for
one-particle states and continuous for multiparticle states.
Only the former are relevant for us here.
We now set A → ϕ and B → Jμ−, where ϕ is an

interpolating field for the mNG state, that, is a field for
which the matrix element h0jϕð0ÞjGðpÞi between the
many-body vacuum j0i and the one-particle mNG state
jGðpÞi is nonzero. The pole part of the two-point function
of the current and the interpolating field ϕ then reads

DϕJμ−ðpÞ ⟶
mNG pole

ið2πÞ3 h0jϕð0ÞjGðpÞihGðpÞjJ
μ
−ð0Þj0i

p0 − ωðpÞ ;

ð46Þ

where ωðpÞ now denotes the dispersion relation of the
mNG state. The matrix element h0jϕð0ÞjGðpÞi can be
naturally absorbed into the definition of the scattering
amplitude M of the process, which apart from the initial
state jii and the final state jfi also includes a mNG state.
Altogether, the matrix element for the process depicted

in Fig. 5 has the following representation,

hfjJμ−ðpÞjii ¼ hGðpÞjJμ−ð0Þj0i
ið2πÞ3

p0 − ωðpÞ ð−iMoff-shellÞ

þ Nμ
−ðpÞ; ð47Þ

where Nμ
−ðpÞ is the nonpole contribution. For the next step,

we use the parametrization of the current matrix element
hGðpÞjJμ−ð0Þj0i, following from Eq. (8), and the current
conservation condition (7). Some caution is required here;
while the 4-momentum in Eq. (8) is on shell, that is, the
frequency therein equalsωðpÞ, the 4-momentum in Eq. (47)
is off shell, and its temporal component is denoted simply
as p0. Distinguishing carefully the two 4-momenta, it is

straightforward to see that current conservation leads to a
complete cancellation of the pole in Eq. (47), upon which
the off-shell scattering amplitude can be expressed as

Moff-shellðpÞ ¼
iðpμ − μqδμ0ÞNμ

−ðpÞ
ð2πÞ3½ωðpÞF1ðjpjÞ þ F2ðjpjÞ�

: ð48Þ

For the final step, we can bring the 4-momentum p on shell
and take the soft limit. It is now obvious that the scattering
amplitude for the process involving a mNG boson vanishes
in the limit p → 0, provided that Nμ

− is not singular in this
limit (which it is not by construction) and that the
denominator in Eq. (48) does not vanish in this limit.
That latter requirement is equivalent to the statement that
the coupling of the broken charge to the mNG state does
not vanish in the soft limit, which is actually one of the
hallmarks of mNG bosons [2]. This concludes our general
proof of the existence of Adler’s zero in scattering
amplitudes of mNG bosons.

VI. CONCLUSIONS

In this paper, we have analyzed the low-energy proper-
ties of scattering amplitudes for processes involving one or
more mNG bosons. We showed that as a consequence of
exact symmetry constraints these scattering amplitudes
exhibit Adler’s zero just like those of ordinary (gapless)
NG bosons. When the momentum of the mNG boson is
tuned to zero (and the momenta of the other participating
particles are modified accordingly to maintain energy and
momentum conservation, but otherwise tend to nonzero
limits), the scattering amplitude vanishes. There are no
kinematic singularities associated with radiation of soft
mNG bosons from the initial or final state due to the
nonzero gap of the mNG boson.

FIG. 5. A generic scattering process involving a mNG boson.
The initial and final state jii and jfi can include an arbitrary
number of mNG and non-mNG modes.
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This result, in fact, ensures that mNG bosons are well-
defined quasiparticles in spite of their nonzero gap; due to
their weak interactions at low momentum, their width
necessarily goes to zero in the long-wavelength limit.
The examples analyzed explicitly in this paper include

antiferromagnetic spin waves in an external magnetic field
and a model for kaon condensation in dense quark matter,
in which the mNG mode is one of the gapped kaons.
However, our conclusions hold equally well for other
known examples of mNG bosons such as ferromagnetic
spin waves in an external magnetic field or the neutral pion
in the pion superfluid phase of quantum chromodynamics.

A. Double soft limits of scattering amplitudes

Given the fact that mNG bosons respect the Adler zero
property, it is interesting to consider what happens in the
limit where the momenta of two NG or mNG bosons tend
to zero simultaneously [20]. The behavior of scattering
amplitudes of true, gapless NG bosons in this limit has
recently attracted considerable attention; see, for instance,
Refs. [21,22]. The limit of the scattering amplitude in
general turns out to be nonzero, and it reflects the non-
Abelian nature of the underlying symmetry.
As explained in detail in Ref. [22], this effect arises

solely from Feynman diagrams in which the two NG
bosons in question, and another external leg, are attached
to the same quartic interaction vertex; see the first diagram
in Fig. 6. The reason is that when two of the momenta
attached to the quartic vertex go to zero the propagator
attached to it becomes on shell, and the resulting singularity
may cancel the suppression of the amplitude due to the
presence of derivatives in the vertex.
To see a singularity in processes involving two (m)NG

bosons interacting through such a quartic vertex, it is
essential that both momenta and energies of the two modes
add up to zero in the soft limit. This excludes a nontrivial
double soft limit in processes involving one NG and one
mNG boson and in processes involving two mNG bosons
in the initial or final state. The only possibility seems to be
processes in which one of the mNG bosons is in the initial
and the other is in the final state.

For illustration, let us recall the effective theory for
antiferromagnets, discussed in Sec. III. Following the
notation introduced therein, we write the 4-momenta of
the incoming and outgoing mNG boson including a scaling
factor z as

~pμ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ z2p2
q

; zp
�
¼

�
μþ z2p2

2μ
; zp

�
þ � � � ;

~p0μ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ z2p02
q

; zp0
�
¼

�
μþ z2p02

2μ
; zp0

�
þ � � � ;

ð49Þ

where the ellipsis stands for terms of order z4 or smaller.
Using the Feynman rules following from the Lagrangian
(14), the first diagram in Fig. 6 is evaluated as

i
v2

ð ~p − ~p0Þ2 ið−iMÞ
ðkþ ~p − ~p0Þ2 ¼

izM
2v2

ðp − p0Þ2
k · ðp − p0Þ þOðz2Þ;

ð50Þ

where −iM is the amplitude corresponding to the blob in
the diagram. We can see that in this concrete example the
double soft limit of the full scattering amplitude is safe.
However, in general, we expect diagrams with this top-
ology to give a nontrivial limit when the momenta of one
incoming and one outgoing mNG boson go to zero
simultaneously.
Next, let us have a look at the second diagram in Fig. 6.

This type of kinematics was already observed in Sec. III to
lead to a violation of the Adler zero property for the gapless
NG boson. What if now the momentum of the incoming
mNG boson goes to zero as well? Setting ~kμ ¼ zkμ, a
simple calculation gives for this diagram

−
2μ

v
~k0

ið−iMÞ
ð ~pþ ~kÞ2 − μ2

¼ −
M
v

þOðzÞ: ð51Þ

In this case, we do get a nonzero double soft limit. That is,
however, not so surprising, given the fact that already the
radiation of the soft gapless NG boson from the external
mNG boson line makes the scattering amplitude nonzero at
low momentum.
To see a truly new effect, only existing in the presence of

mNG bosons, consider finally the last diagram in Fig. 6. As
in the case of the diagram with a quartic vertex, we assume
that one of the mNG bosons shown in the figure is
incoming, while the other is outgoing. We then get

2μ

v
ð ~p0 − ~p0

0Þ
ið−iMÞ
ð ~p − ~p0Þ2 ¼ −

M
μv

p2 − p02

ðp − p0Þ2 þOðz2Þ: ð52Þ

This kind of nonzero double soft limit arising from a
cubic interaction vertex cannot appear in Lorentz-invariant

FIG. 6. Topologies of Feynman diagrams that can potentially
lead to a nonzero scattering amplitude in the limit where the
momenta of two of the participating particles are sent to zero
simultaneously. We use the same notation for lines and vertices as
in Sec. III.
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theories for gapless NG bosons, as such cubic vertices
can be removed from the theory altogether by a field
redefinition [8].
Altogether,we have identified three differentmechanisms

whereby a nontrivial double soft limit of scattering ampli-
tudesmaybe realized in theorieswithmNGbosons. The first
one appears when a NG boson and a mNG boson in the
initial or final state are attached to the same cubic interaction
vertex. This case accompanies theviolation of theAdler zero
property for the gapless NG boson alone. The second and
third mechanisms are both associated with a pair of mNG
bosons, one in the initial and the other in the final state of the
scattering process. Whether they are attached to a cubic or a
quartic vertex, their presence leads to a singular propagator
in the Feynman diagram and thus potentially a nonvanishing
soft limit of the scattering amplitude.

B. Scattering amplitudes of pseudo-NG bosons

What we have not touched upon so far is the scattering
amplitudes of pNG bosons that are not mNG bosons, yet
their mass also arises from the chemical potential in the
system. As mentioned in the Introduction, this is a some-
what more exotic, yet perfectly viable, possibility. One
might expect equally strong constraints on the scattering
amplitudes in this case, since, after all, we still have the
exact conservation law (7). However, it is known that
the properties of such pNG bosons differ from those of the
mNG bosons. Apart from the obvious fact that their gap is
not determined by the symmetry and chemical potential
alone, they also couple differently to the broken current;
unlike for the true mNG bosons, this coupling vanishes in
the limit of low momentum [2], which invalidates our proof
of the existence of Adler’s zero in Sec. V for the case of
pNG bosons.
Based on this observation, we conjecture that the

scattering amplitudes of pNG bosons the mass of which
arises from the chemical potential do not have the Adler
zero property, just like the amplitudes of any other pNG
bosons. To test this conjecture, we have analyzed to some
extent a model in which a global SO(3) symmetry is
completely broken. It is known that in presence of a
chemical potential for one of the generators this system
has one NG, one mNG, and one pNG boson [2,5]. To our
surprise, the scattering amplitude for the process we chose
to analyze still exhibits Adler’s zero. However, our general
argument given in Sec. V does not apply to this case, and a
further, more detailed investigation is therefore required.
We leave this issue to the future. For the sake of conven-
ience, we provide some details of our preliminary analysis
in the Appendix.
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APPENDIX: EXAMPLE OF NON mNG–TYPE
pNG BOSON

In this Appendix, we shall analyze a low-energy effective
theory for a complete spontaneous breaking of an SO(3)
symmetry. To that end, we shall use the effective
Lagrangian formalism, developed in Ref. [23], the notation
of which we closely follow.
The leading-order effective Lagrangian for NG bosons in

a relativistic system in the presence of background gauge
fields reads

L ¼ 1

2
gabðπÞDμπ

aDμπb: ðA1Þ

Here, πa are the NG fields that parametrize the coset space
of broken symmetry, G=H. The latin indices a; b;… label
broken generators from this coset space. In contrast, the
latin indices i; j;… will denote generic generators of the
whole symmetry groupG. There is one external gauge field
Ai
μ assigned to each generator Ti, and it enters the covariant

derivative of the NG field via

Dμπ
a ≡ ∂μπ

a − Ai
μhai ðπÞ; ðA2Þ

where hai ðπÞ are the Killing vectors that realize the action of
the symmetry groupG on the coset space G=H. Finally, the
object gabðπÞ in Eq. (A1) is a G-invariant metric on the
coset space, which is determined uniquely up to a set of
a priori unknown parameters, which represent the low-
energy couplings of the effective theory.
The invariant metric can be determined directly in terms

of the Maurer-Cartan form ωi
aðπÞ, defined by

ωi
aðπÞTi ≡ −iUðπÞ−1 ∂UðπÞ

∂πa ; ðA3Þ

where UðπÞ is a representative element of the coset space
G=H, which encodes the NG fields πa. Imposing the G
invariance of the Lagrangian, we obtain

gabðπÞ ¼ gcdð0Þωc
aðπÞωd

bðπÞ; ðA4Þ

where gcdð0Þ is a set of constants that play the role of the
low-energy effective couplings; their values are constrained
by the requirement that gabð0Þ be a symmetric invariant
tensor of the unbroken subgroupH. Equation (A4) makes it
clear that we do not really need to know the full Killing
vectors hai ðπÞ, but only their projections of the form
ωc
aðπÞhai ðπÞ ¼ νci ðπÞ, where the rotation matrix νijðπÞ is

defined by
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νijðπÞTi ≡UðπÞ−1TjUðπÞ: ðA5Þ

The above relations determine completely the structure of
the leading-order effective Lagrangian for an arbitrary
symmetry-breaking pattern G=H.

1. Effective Lagrangian and the spectrum

Let us now see how the above general formalism applies
to the case in which the continuous SO(3) rotation
symmetry is completely broken. Without loss of generality,
we can assume that the matrix gabð0Þ of effective couplings
has a diagonal form,

gabð0Þ≡ diagðg1; g2; g3Þ: ðA6Þ

We will turn on a chemical potential for the third generator
of SO(3), that is, set

Ai
μ ¼ δμ0δ

i3μ: ðA7Þ

This determines the effective Lagrangian completely via
Eq. (A1). For the moment, we will only need the part of the
Lagrangian bilinear in the NG fields πa, which is, up to a
rescaling of the fields, independent of the choice of
parametrization of the matrix UðπÞ,

Lbilin ¼
1

2
½g1ð∂μπ1Þ2 þ g2ð∂μπ2Þ2 þ g3ð∂μπ3Þ2�

þ 1

2
μðg1 þ g2 − g3Þðπ1 _π2 − π2 _π1Þ

−
1

2
μ2ðg3 − g2Þπ21 −

1

2
μ2ðg3 − g1Þπ22: ðA8Þ

The form of the mass terms indicates that the ground state is
stable under the perturbation caused by the chemical
potential provided that g3 is larger than both g1 and g2,
which we will from now on assume.
The excitation spectrum of the theory is easy to work out.

First, the π3 mode does not feel the presence of the
chemical potential and thus behaves as an ordinary gapless
NG boson; its dispersion relation reads

ω3ð pÞ ¼ jpj: ðA9Þ

The π1;2 modes mix, and their dispersion relations therefore
take a more complicated form,

ω�ð pÞ2 ¼ p2þμ2þ g3ðg3− g1− g2Þ
2g1g2

μ2ð1�ΩpÞ; ðA10Þ

where

Ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4g1g2

g23

p2

μ2

s
: ðA11Þ

From here, we can in turn extract the mass spectrum in the
π1;2 sector,

mþ ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg3 − g1Þðg3 − g2Þ

g1g2

s
; m− ¼ μ: ðA12Þ

Whereas we find one mNG mode as predicted by Eq. (3),
there is also another pNG mode which is not of the mNG
type, although its mass comes from the chemical potential
alone. It is this mode that is of interest to us.

2. Coupling of fields to states

The analysis of scattering amplitudes in the present
model is complicated by the mixing in the π1;2 sector. In
such a situation, it is mandatory to use the Lehmann-
Symanzik-Zimmermann formalism to extract the physical
scattering amplitude from the off-shell Green’s function of
the fields. To that end, we need to know how the fields
couple to the asymptotic one-particle states in the scattering
process.
Such coupling can be extracted from the propagators of

the fields using the Källén-Lehmann spectral representation
(45). The propagator of π3 in the interaction picture is just
that of a free massless scalar field, and we readily obtain

h0jπ3ð0Þj3; pi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ32g3jpj
p : ðA13Þ

To extract the couplings between the fields π1;2 and the
states j�; pi with the dispersion relations ω�ð pÞ, we first
write down the matrix inverse propagator in the π1;2 sector,
following from the Lagrangian Lbilin,

D−1ðω;pÞ ¼
�

g1p2−μ2ðg3 − g2Þ −iμωðg1þ g2 − g3Þ
þiμωðg1þ g2− g3Þ g2p2−μ2ðg3− g1Þ

�
:

ðA14Þ

By looking in turn at the poles at ω ¼ ω�ð pÞ and using the
spectral representation (45), we then find

h0jπ1ð0Þjþ; pi ¼ 1

ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3
2g1

ðΩp þ 1Þ − 1

2g3ΩpωþðpÞ

s
;

h0jπ2ð0Þjþ; pi ¼ i

ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3
2g2

ðΩp þ 1Þ − 1

2g3ΩpωþðpÞ

s
;

h0jπ1ð0Þj−; pi ¼
1

ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3
2g1

ðΩp − 1Þ þ 1

2g3Ωpω−ðpÞ

s
;

h0jπ2ð0Þj−; pi ¼
−i

ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3
2g2

ðΩp − 1Þ þ 1

2g3Ωpω−ðpÞ

s
: ðA15Þ
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3. Evaluation of scattering amplitudes

The evaluation of the scattering amplitude for a given
process proceeds according to the following steps:

(i) Choose a specific parametrization of the matrix
UðπÞ, and expand the Lagrangian up to the desired
order in the fields πa.

(ii) Extract the interaction vertices from the expanded
Lagrangian.

(iii) Construct all tree-level Feynman diagrams contrib-
uting to the given process. Note that, as a result of
the mixing in the π1;2 sector, diagrams with different
fields attached to the external legs may contribute to
the same process, since different fields couple to the
same one-particle state [18].

(iv) Test scaling of the scattering amplitude in the long-
wavelength limit numerically.

The last point deserves a more detailed comment. Already
for four-particle scattering, a relatively large number of
Feynman diagrams may contribute as a result of the
mixing, which makes testing the asymptotic behavior of
the scattering amplitude in the long-wavelength limit
analytically difficult. It is more convenient to perform a
numerical “experiment” [6]. All one needs to do is to
generate a set of random kinematical variables that satisfy
the energy and momentum conservation conditions for

a given process. One then introduces a scaling parameter
z into the momentum of the particle the soft limit of
which is to be investigated and makes sure that the
momenta of all other participating particles are modified
so that the on-shell and conservation conditions are
satisfied for any value of z. Finally, one simply plots
the value of the scattering amplitude as a function of z as z
tends to zero.
In this way, we have verified that the scattering ampli-

tudes of the mNG boson (ω−) of the model exhibit Adler’s
zero as expected, using the NGþmNG → NGþmNG
process as an example. Then, we analyzed analogously the
NGþ pNG → NGþ pNG process. Surprisingly, the scat-
tering amplitude still vanishes as the momentum of one of
the pNG bosons tends to zero. This might be a special
property of the process that we chose to study, or due to
some hidden symmetry of the model at hand of which we
are not aware.
This issue would definitely deserve a more careful look.

While we do not show the details of our evaluation of the
scattering amplitudes as they are specific for the chosen
parametrization of UðπÞ and the chosen set of random
kinematical variables, we do hope that the details presented
in this Appendix will enable others to reproduce our results,
and go beyond.

[1] A. Nicolis and F. Piazza, Phys. Rev. Lett. 110, 011602 (2013).
[2] H. Watanabe, T. Brauner, and H. Murayama, Phys. Rev.

Lett. 111, 021601 (2013).
[3] W. Kohn, Phys. Rev. 123, 1242 (1961).
[4] K. Ohashi, T. Fujimori, and M. Nitta, Phys. Rev. A 96,

051601 (2017).
[5] A. Nicolis, R. Penco, F. Piazza, and R. A. Rosen, J. High

Energy Phys. 11 (2013) 055 (2013).
[6] C. Cheung, K. Kampf, J. Novotný, and J. Trnka, Phys. Rev.

Lett. 114, 221602 (2015).
[7] I. Low, Phys. Rev. D 91, 105017 (2015); R. Kallosh, J. High

Energy Phys. 03 (2017) 038.
[8] C. Cheung, K. Kampf, J. Novotný, C.-H. Shen, and J.

Trnka, J. High Energy Phys. 02 (2017) 020.
[9] In condensed-matter physics, scattering amplitudes are a

somewhat less important observable than in high-energy
physics. However, scattering of spin waves in (anti)ferro-
magnets has been analyzed using the effective Lagrangian
formalism, for instance, in Ref. [10].

[10] C. P. Hofmann, Phys. Rev. 60B, 388 (1999); S. Gongyo, Y.
Kikuchi, T. Hyodo, and T. Kunihiro, Prog. Theor. Exp.
Phys. 2016, 083B01 (2016).

[11] V. A. Miransky and I. A. Shovkovy, Phys. Rev. Lett. 88,
111601 (2002); T. Schäfer, D. T. Son, M. A. Stephanov, D.
Toublan, and J. J. M. Verbaarschot, Phys. Lett. B 522, 67
(2001).

[12] J. I. Kapusta, Phys. Rev. D 24, 426 (1981).
[13] This object is what in relativistic field theory is usually

called the invariant amplitude, referring to its Lorentz
invariance. However, since in our case manifest Lorentz
invariance is broken by the presence of the chemical
potential, we refrain from using this term.

[14] In fact, it has been shown that in effective theories
with derivative couplings such as ours cubic interaction
vertices can always be removed by a field redefinition
as long as Lorentz invariance is maintained [8]. As a
consequence, the kinematic singularity described in the
main text cannot appear in interactions including NG
bosons only; it typically arises when a soft NG boson
is radiated from a massive, non-NG external particle
in the scattering process [15]. Our model demonstrates
that once Lorentz invariance is given up cubic interaction
vertices leading to the kinematic singularity may
reappear.

[15] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 1996), Vol. II.

[16] Such that either p → ðμ; 0Þ or p0 → ðμ; 0Þ.
[17] H. Watanabe and T. Brauner, Phys. Rev. D 84, 125013

(2011); H. Watanabe and H. Murayama, Phys. Rev. Lett.
108, 251602 (2012); Y. Hidaka, Phys. Rev. Lett. 110,
091601 (2013).

[18] T. Brauner, Phys. Rev. D 74, 085010 (2006).

TOMÁŠ BRAUNER and MARTIN F. JAKOBSEN PHYS. REV. D 97, 025021 (2018)

025021-12

https://doi.org/10.1103/PhysRevLett.110.011602
https://doi.org/10.1103/PhysRevLett.111.021601
https://doi.org/10.1103/PhysRevLett.111.021601
https://doi.org/10.1103/PhysRev.123.1242
https://doi.org/10.1103/PhysRevA.96.051601
https://doi.org/10.1103/PhysRevA.96.051601
https://doi.org/10.1007/JHEP11(2013)055
https://doi.org/10.1007/JHEP11(2013)055
https://doi.org/10.1103/PhysRevLett.114.221602
https://doi.org/10.1103/PhysRevLett.114.221602
https://doi.org/10.1103/PhysRevD.91.105017
https://doi.org/10.1007/JHEP03(2017)038
https://doi.org/10.1007/JHEP03(2017)038
https://doi.org/10.1007/JHEP02(2017)020
https://doi.org/10.1103/PhysRevB.60.388
https://doi.org/10.1093/ptep/ptw095
https://doi.org/10.1093/ptep/ptw095
https://doi.org/10.1103/PhysRevLett.88.111601
https://doi.org/10.1103/PhysRevLett.88.111601
https://doi.org/10.1016/S0370-2693(01)01265-5
https://doi.org/10.1016/S0370-2693(01)01265-5
https://doi.org/10.1103/PhysRevD.24.426
https://doi.org/10.1103/PhysRevD.84.125013
https://doi.org/10.1103/PhysRevD.84.125013
https://doi.org/10.1103/PhysRevLett.108.251602
https://doi.org/10.1103/PhysRevLett.108.251602
https://doi.org/10.1103/PhysRevLett.110.091601
https://doi.org/10.1103/PhysRevLett.110.091601
https://doi.org/10.1103/PhysRevD.74.085010


[19] By choosing a process that only involves asymptotic states
coupling to the φ field, we avoid having to deal with mixing
in the initial and final states.

[20] We thank the anonymous referee for asking a question that
stimulated the present discussion.

[21] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, J. High
Energy Phys. 09 (2010) 016.

[22] I. Low, Phys. Rev. D 93, 045032 (2016).
[23] H. Leutwyler, Phys. Rev. D 49, 3033 (1994); Ann. Phys.

(N.Y.) 235, 165 (1994); H. Watanabe and H. Murayama,
Phys. Rev. X 4, 031057 (2014); J. O. Andersen, T. Brauner,
C. P. Hofmann, and A. Vuorinen, J. High Energy Phys. 08
(2014) 088.

SCATTERING AMPLITUDES OF MASSIVE NAMBU- … PHYS. REV. D 97, 025021 (2018)

025021-13

https://doi.org/10.1007/JHEP09(2010)016
https://doi.org/10.1007/JHEP09(2010)016
https://doi.org/10.1103/PhysRevD.93.045032
https://doi.org/10.1103/PhysRevD.49.3033
https://doi.org/10.1006/aphy.1994.1094
https://doi.org/10.1006/aphy.1994.1094
https://doi.org/10.1103/PhysRevX.4.031057
https://doi.org/10.1007/JHEP08(2014)088
https://doi.org/10.1007/JHEP08(2014)088

