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1 Introduction

The Chiral Soliton Lattice (CSL) is a periodic, parity-violating topological soliton. CSL-

type structures have been studied in condensed-matter systems such as chiral magnets [1]

and cholesteric liquid crystals [2]. In this paper, we show that CSL appears as the ground

state of Quantum ChromoDynamics (QCD) at nonzero baryon chemical potential in an

external magnetic field. The existence of a “stack of parallel domain walls” under such

conditions was previously conjectured in ref. [3]. Here we provide an exact solution to the

underlying equations of motion, and thus firmly establish the presence of CSL in the QCD

phase diagram.

Our argument is based on a systematic, model-independent low-energy effective theory

and is thus under theoretical control; this is a prediction for QCD per se. Our topological

soliton lattice is chiral in that it breaks parity spontaneously.1 To the best of our knowledge,

this is the first realization of CSL in the context of high-energy physics. Our results also

provide a new example of hierarchical symmetry breaking [4, 5]: chiral symmetry of QCD

is first spontaneously broken, giving rise to pions as the pseudo-Nambu-Goldstone bosons.

1Note that in condensed-matter physics, the term “chiral symmetry” usually refers to a discrete parity

symmetry, which is different from the continuous chiral symmetry SU(Nf)L × SU(Nf)R of QCD, where Nf

is the number of quark flavors.
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Subsequently, pion dynamics in strong magnetic fields generates the CSL with broken

continuous translational symmetry, leading to a phonon as the Nambu-Goldstone boson.

Throughout the text, we use the natural units in which the Planck’s constant ~, the

speed of light c and the elementary electric charge e are all set to one.

2 Low-energy effective theory

The low-energy dynamics of QCD is dominated by the spontaneously broken chiral sym-

metry, and can thus be described by an effective theory for the ensuing Nambu-Goldstone

bosons (pions): the chiral perturbation theory. The predictions of this effective theory are

organized by a derivative expansion, controlled by the parameter p/(4πfπ), where p is a

characteristic momentum and fπ is the pion decay constant [6, 7]. The leading order of

the chiral Lagrangian for two quark flavors reads [8]

L =
f2
π

4

[
Tr(DµΣ†DµΣ) + 2m2

π Re Tr Σ
]
. (2.1)

Here Σ is a 2× 2 unitary matrix containing the pion degrees of freedom. It couples to an

external electromagnetic gauge field Aµ via the covariant derivative DµΣ ≡ ∂µΣ− i[Qµ,Σ],

where Qµ ≡ Aµ τ32 , and ~τ denotes the set of Pauli matrices.

The QCD vacuum corresponds to 〈Σ〉 = 1. However, in presence of a nonzero baryon

chemical potential µ and an external magnetic field B, a nontrivial neutral pion structure

may appear [3]. Setting thus Σ = eiτ3φ, the anticipated time-independent neutral pion

background φ is obtained by minimization of the energy functional. The latter in turn

follows from the Hamiltonian density that equals, up to a constant,2

H =
f2
π

2
(∇φ)2 +m2

πf
2
π(1− cosφ)− µ

4π2
B ·∇φ. (2.2)

The first two terms follow from eq. (2.1). The last term, on the other hand, is a topological

surface term that arises from the anomalous coupling of neutral pions to the electromagnetic

field [3, 9]. Without loss of generality, we will orient the uniform external magnetic field

along the z-axis, B ≡ (0, 0, B). It is then easy to see that in the chiral limit (mπ = 0), the

total energy is minimized when

φ(z) =
µBz

4π2f2
π

. (2.3)

This solution is characterized by a new, emergent momentum scale, pCSL ≡ µB/(4π2f2
π).

Validity of the derivative expansion of the effective theory then requires that pCSL � 4πfπ.

The same condition ensures that the non-anomalous next-to-leading order contributions to

the chiral Lagrangian, containing four derivatives of φ, are negligible compared to terms

included in eq. (2.2). Unless explicitly stated otherwise, the results presented in this paper

are therefore exact up to a relative correction of the order p2
CSL/(4πfπ)2. Note that the scale

pCSL can be arbitrarily small, thus creating a hierarchy of scales for symmetry breaking.

2The offset m2
πf

2
π is chosen so that the energy density vanishes in the QCD vacuum.

– 2 –



J
H
E
P
0
4
(
2
0
1
7
)
1
3
2

3 Chiral soliton lattice

For nonzero mπ, one needs to take into account the competition between the periodic

potential and the anomalous term in eq. (2.2). This competition leads to the CSL solution,

as we will now see (see also ref. [10] for a similar calculation in a different context). Since

the derivatives of φ with respect to x, y only enter the Hamiltonian (2.2) through the

first term, the ground state necessarily features a modulation in the z-direction only. The

equation of motion for such a one-dimensional configuration φ(z) then reads

∂2
zφ = m2

π sinφ. (3.1)

Note that this is mathematically equivalent to the equation of motion of a simple pendulum,

which can be solved in a closed form in terms of the Jacobi elliptic functions. We thus get

cos
φ(z̄)

2
= sn(z̄, k), (3.2)

where z̄ ≡ zmπ/k is a dimensionless coordinate and k (0 ≤ k ≤ 1) is the elliptic modulus.

Let us look at the properties of this solution. First, observe that it has a lattice

structure. For (2n − 1)K ≤ z̄ ≤ (2n + 1)K with n integer and K ≡ K(k) the complete

elliptic integral of the first kind, the angle φ varies from 2(n − 1)π to 2nπ. Hence, the

period of the lattice is given by

` =
2kK(k)

mπ
. (3.3)

Second, the anomalous term in eq. (2.2) gives rise to a local baryon charge and magneti-

zation [3],

nB(z) =
B

4π2
∂zφ(z), m(z) =

µ

4π2
∂zφ(z). (3.4)

Consequently, each unit cell of the lattice carries a baryon charge and magnetic moment

per unit area in the xy plane,

NB

S
=

B

2π
,

M

S
=

µ

2π
. (3.5)

Both of these are topological charges in that they depend only on the values at the boundary

of a unit cell such as φ(−`/2) = −2π and φ(`/2) = 0, but not on details of the function φ(z).

We conclude that the solution (3.2) exhibits a periodic array of topological solitons

carrying baryon charge and magnetic moment. Being a coordinate-dependent condensate

of pseudoscalar mesons, the solution breaks parity. It may be called CSL in analogy to the

structure found in chiral magnets [11]. The profile of the CSL, as given by the gradient of

the phase φ, is displayed in figure 1 for several different values of k.
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Figure 1. The gradient of φ, proportional to the topological charge densities (3.4), as a function of

position. The various curves correspond to k of 0.999 (black), 0.9 (red), 0.7 (green), and 0.5 (blue).

4 Ground state

So far we treated k as a free parameter. Its value in the ground state is determined by

minimization of the total Hamiltonian. Using elementary properties of the Jacobi elliptic

functions [12], one readily shows that the energy of each soliton with period ` per unit area

in the xy plane is
E

S
=

Enorm

S
− µB

2π
. (4.1)

Here the first term stems from the non-anomalous part of the Hamiltonian (2.2),

Enorm

S
= 4mπf

2
π

[
2E(k)

k
+

(
k − 1

k

)
K(k)

]
≡ F (k), (4.2)

where we used the identity for the complete elliptic integral of the second kind, E(k),

E(k) =

∫ K

0
dz̄ dn2(z̄, k). (4.3)

Note that eq. (4.1) can also be expressed as (Enorm − µNB)/S. This is in accord with the

usual expression for the Hamiltonian at finite baryon density, H = Hnorm − µnB.

In the limit k → 1, the Jacobi elliptic functions reduce to the hyperbolic functions and

`→∞, which corresponds to a single pion domain wall, considered in ref. [3]. In this case,

the energy density becomes F (1) = 8mπf
2
π , which indeed coincides with that of the pion

domain wall. In the general CSL case, the total energy of the system of length L in the

z-direction is given by

Etot =
L

`
E =

V mπ

2kK(k)

[
F (k)− µB

2π

]
, (4.4)
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Figure 2. The value of the elliptic modulus k in the ground state as a function of magnetic field.

where V ≡ LS is the volume of the system. Minimization of the total energy Etot at fixed

volume V with respect to k leads to the simple condition,

E(k)

k
=

µB

16πmπf2
π

. (4.5)

This condition fixes the optimal k for given external parameters, µ and B. Since the left-

hand side of eq. (4.5) is bounded from below as E(k)/k ≥ 1 (0 ≤ k ≤ 1), the CSL solution

exists if and only if the following condition is satisfied,

µB > µBCSL ≡ 16πmπf
2
π . (4.6)

This is one of our main results. The value of k in the ground state for magnetic fields above

BCSL is displayed in figure 2. By combining this with figure 1, we can see that very close to

BCSL, the CSL takes the form of a periodic array of thin domain walls, but with increasing

magnetic field it turns into a smooth, cosine-like profile. To complete the picture, we also

show in figure 3 the period of the CSL in units of the inverse pion mass as a function of the

magnetic field. This indicates large separation of the domain walls just above the critical

field BCSL. As a result of using the inverse pion mass as a unit for the lattice spacing,

the chiral limit has to be treated with some care. In this case, the CSL profile is given by

eq. (2.3) and the period is determined as the distance over which φ increases by 2π,

lim
mπ→0

` =
8π3f2

π

µB
. (4.7)

One can show that when the condition (4.6) is satisfied, CSL is energetically more

favorable than the usual QCD vacuum for µ ≤ mN, and than nuclear matter for µ ≈ mN,
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Figure 3. The period of the CSL ` in units of inverse pion mass as a function of magnetic field.

where mN is the nucleon mass. To see this, just combine eqs. (4.2) and (4.5) to write the

CSL energy per unit area as

E

S
= 4mπf

2
π

(
k − 1

k

)
K(k) < 0, (4.8)

where we used that 0 ≤ k < 1 and K(k) > 0. When µ ≤ mN, the CSL energy is therefore

always lower than that of the usual QCD vacuum independently of µ and B. Likewise,

eqs. (4.2) and (4.5) give us the CSL energy per unit baryon number,

Enorm

NB
= µ+

8πmπf
2
π

B

(
k − 1

k

)
K(k), (4.9)

which analogously implies that for µ ≈ mN, Enorm/NB ≤ mN, and so CSL is energetically

favorable compared with nuclear matter as well. Therefore, eq. (4.6) is the necessary and

sufficient condition for the realization of CSL within the range of validity of the low-energy

effective theory (2.1).

5 Phonons

The CSL configuration spontaneously breaks continuous translational symmetry in the z-

direction down to a discrete one, and continuous rotations down to rotations around the

z-axis. This is a new example of hierarchical symmetry breaking [4, 5] in QCD. Based

on the general properties of broken spacetime symmetries [13, 14], we expect one Nambu-

Goldstone boson: the phonon of the soliton lattice.
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The phonon spectrum is most easily found by analyzing the linear perturbations of the

CSL solution using eq. (3.1). Restoring full spacetime dependence of the fluctuation π(x),

its linearized equation of motion reads(
� +m2

π cosφ
)
π = 0. (5.1)

Using eq. (3.2) and Fourier transforming in all spacetime coordinates but z, this is seen to

be equivalent to [
−∂2

z̄ + 2k2 sn2(z̄, k)
]
π =

k2

m2
π

[m2
π + ω2 − (p2

x + p2
y)]π, (5.2)

where px,y and ω are the phonon momentum and frequency. Now the left-hand side is the

Lamé operator with n = 1. The Bloch-type eigenstates of this operator are well-known

in the literature [15, 16], here we focus just on the spectrum though. For n = 1, this

consists of two bands. The eigenvalues of the first band are bounded from below by k2,

which ensures that the phonon is gapless [17, 18]. The phonon group velocity, defined by

cph ≡ dω/dpz, can be obtained from the dispersion relation, presented in ref. [18],

cph =
√

1− k2
K(k)

E(k)
, (5.3)

where k is given implicitly by eq. (4.5). (An alternative derivation of this result is provided

in appendix B.) The group velocity vanishes at the critical magnetic field for CSL formation

BCSL, given by eq. (4.6), where k = 1, and rapidly approaches the speed of light as the

magnetic field increases, see figure 4. The full dispersion relation of the phonon reads

ω2 = p2
x + p2

y + (1− k2)

[
K(k)

E(k)

]2

p2
z +O(p4

z), (5.4)

where pz is the phonon crystal (Bloch) momentum measured from the bottom of the

valence band.

6 Charged pions

The phonon represents the neutral pion fluctuation of the CSL state. To analyze the

charged pion fluctuations, we need to expand the full Lagrangian (2.1) around the CSL

solution, see appendix A for details. It is convenient to preserve unitarity of the matrix

field variable by setting Σ = Σ0U , where Σ0 ≡ eiτ3φ. The unitary matrix U can then be

expanded in the pion fields ~π as usual. The bilinear part of the Lagrangian reads

Lbilin =
1

2
(∂µ~π)2 + (Aµ−∂µφ)(π1∂µπ2−π2∂µπ1) +

1

2
AµAµ(π2

1 +π2
2)− 1

2
m2
π~π

2 cosφ. (6.1)

Next we fix the gauge for the electromagnetic vector potential as A = (0, Bx, 0) and

introduce the charge eigenstates π± ≡ (π1 ± iπ2)/
√

2. Upon Fourier transforming in time

and the y-coordinate, the equation of motion for π+ takes the form

ω2π+ =

[
−∂2

x +B2
(
x− py

B

)2
]
π+ + (−∂2

z + 2iφ′∂z +m2
πe

iφ)π+, (6.2)

where the prime denotes a derivative with respect to z.

– 7 –
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Figure 4. Group velocity of the CSL phonon as a function of magnetic field.

Let us first discuss the chiral limit. Solving eq. (6.2) is now equivalent to the usual

Landau level problem. Using eq. (2.3), the resulting charged pion dispersion relation is

given by

ω2 = p2
z −

µBpz
2π2f2

π

+ (2n+ 1)B, (6.3)

where the non-negative integer n labels the Landau levels. We observe that the bottom of

the lowest Landau level reaches zero at a critical magnetic field given by

BBEC =
16π4f4

π

µ2
. (6.4)

In yet stronger magnetic fields, charged pions will undergo Bose-Einstein condensation

(BEC). To get a rough estimate, we insert the physical value fπ ≈ 92 MeV and µ =

900 MeV, that is, just below the threshold for nuclear matter formation. For these values,

BBEC ≈ 0.14 GeV2, which is large but possibly achievable in nature.3 Indeed, the magnetic

fields in the cores of magnetars are expected to be roughly in the range 1016–1019 G [19].

In our units, 1 GeV2 ≈ 1.7× 1020 G.

Getting back to the general case, note that the x and z variables are separated in

eq. (6.2), the former leading to the same Landau level problem. Upon a field redefinition

π+ ≡ eiφπ̃+ and using eq. (3.2), the equation of motion (6.2) can be cast as

[
−∂2

z̄ + 6k2 sn2(z̄, k)
]
π̃+ =

k2

m2
π

[ω2 − (2n+ 1)B]π̃+ + (k2 + 4)π̃+. (6.5)

3Note that the minimum of the dispersion relation (6.3) at this magnetic field occurs at pz ≈ 370 MeV,

which still lies within the range of validity of the chiral perturbation theory, since 4πfπ ≈ 1160 MeV.
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Figure 5. The “phase diagram” of CSL as a function of chemical potential and magnetic field. CSL

becomes favored over the QCD vacuum above the critical field BCSL (dashed line). For B ≥ BBEC,

BEC of charged pions occurs (solid line). The dotted line stands for BBEC in the chiral limit (6.4).

The shaded area indicates the region in which CSL of neutral pions can exist as the QCD ground

state. The physical values fπ ≈ 92 MeV and mπ ≈ 140 MeV were used to obtain the numerical

results.

The left-hand side of this equation is the Lamé operator with n = 2. According to

refs. [17, 18, 20], its spectrum consists of three bands. The lower edge of the first band

corresponds to the eigenvalue 2(1 + k2 −
√

1− k2 + k4). Hence, the bottom of the lowest

Landau level is given, for arbitrary mπ, by

minω2
n=0 = B − m2

π

k2

(
2− k2 + 2

√
1− k2 + k4

)
, (6.6)

where k is given implicitly by eq. (4.5).

This calculation confirms the observation made above for the chiral limit, that suffi-

ciently strong magnetic fields lead to an instability of CSL under BEC of charged pions.

Indeed, in strong magnetic fields, the elliptic modulus k (4.5) is asymptotically propor-

tional to 1/B, hence the second term in eq. (6.6) goes as B2. The bottom of the lowest

Landau level thus necessarily reaches zero for strong enough B.

Our main results, eqs. (4.6) and (6.6), are depicted in figure 5. We observe that there

is a range of magnetic fields in which CSL is energetically favored. However, for higher

values of µ, not shown in figure 5, a direct transition from the QCD vacuum to charged

pion BEC might occur. This is due to non-monotonicity of eq. (6.6) as a function of B.

In addition to being negative for large enough B, it also becomes negative at low B above

certain threshold µ. The latter coincides with the threshold for stability of a domain wall,

which is a degenerate CSL at B = BCSL. Setting k = 1, eq. (6.6) reduces to B − 3m2
π,4

4This reproduces the result of ref. [3] regarding the instability of a single domain wall under charged

– 9 –
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which together with eq. (4.6) implies instability of the domain wall under charged pion

fluctuations at

µ ≥ 16πf2
π

3mπ
≈ 1010 MeV, (6.7)

where the physical values of fπ and mπ were used. However, this result should be regarded

as a mere rough estimate; both its numerical value and its inverse proportionality to mπ

indicate that it may lie outside the range of validity of our effective theory. Unlike the

other results obtained above, the prediction of a direct transition from the QCD vacuum

to a phase with charged pion BEC should thus be treated with care.

7 Discussion

We have shown that baryonic matter is unstable under formation of a chiral soliton lattice

in the range of magnetic fields, BCSL < B < BBEC. Our results are based on a system-

atic low-energy effective theory and are model-independent with the relative accuracy of

p2
CSL/(4πfπ)2. For B > BBEC, however, the CSL is itself unstable under BEC of charged

pions. Understanding the structure of the ground state in this regime is beyond the scope

of the present paper and would be an interesting future problem. The range of magnetic

fields in which the CSL appears may be relevant for the physics of magnetars. To demon-

strate that the CSL can also reach sufficiently high baryon number densities, relevant in

this context, we show in figure 6 the spatially averaged density nB, as given by eq. (3.4),

in units of the nuclear saturation density, nB,sat ≈ 0.16 fm−3.

In order to simplify the discussion, we worked exclusively with the leading-order chiral

Lagrangian (2.1) and only included the effect of the anomaly through the surface term

in eq. (2.2). In fact, the anomalous Wess-Zumino-Witten contribution to the Lagrangian

adds a term with a time derivative to eq. (6.1). However, while this changes somewhat

the charged pion dispersion relation (6.3), our result for the critical magnetic field BBEC,

extracted from the condition ωn=0 = 0, remains valid without modification, see appendix C.

We also simplified the analysis by neglecting the effects of baryon degrees of freedom

altogether. It follows from our discussion in section 4 that in the region of parameter

space of interest to us, there are no baryons in the QCD ground state. However, for the

highest values of the chemical potential µ, shown in figure 5, the free energy of nucleons

becomes small, and one might therefore wonder if they affect our conclusions through

virtual corrections. Yet, thanks to the derivative coupling of pions to nucleons, the latter

only contribute to pion dynamics at the next-to-leading order of the derivative expansion,

and can therefore be consistently omitted from our setup.

Some nonuniform states with one-dimensional modulation are known to be unstable

under transverse fluctuations at any nonzero temperature [21, 22]. Here we assumed zero

temperature throughout the text, yet we do not expect such an instability to appear even

at nonzero temperature in the situation considered here. Namely, the instability arises from

a quadratic dispersion relation of the transverse fluctuations and in turn from rotational

invariance of the system. In our setup, the dispersion relation of low-energy excitations is

pion fluctuations.

– 10 –
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Figure 6. Spatially averaged baryon number density carried by the CSL in units of the nuclear

saturation density. The individual curves correspond to the values of µ of 400 MeV (black), 500 MeV

(red), 600 MeV (green), 700 MeV (blue), and 800 MeV (orange). For each curve, the onset of

nonzero baryon density corresponds to BCSL, whereas the endpoint indicates the BEC instability

at the critical field BBEC.

linear, see eq. (5.4), and rotational invariance is broken by the magnetic field. The linear

dispersion relation in turn justifies the usual power counting rules which dictate that the

effects of fluctuations are suppressed by the loop factor p2
CSL/(4πfπ)2 [6, 7].

Finally, we note that our analysis applies to QCD in an external magnetic field. In

presence of a dynamical electromagnetic field, the situation changes in several aspects.

On the one hand, the anomalous coupling of neutral pions to the electromagnetic field

leads to a modification of the photon dispersion relation; in the chiral limit, it exhibits a

nonrelativistic behavior [23]. On the other hand, the requirement of charge neutrality may

require that BEC of charged pions localized to the nodes of the soliton lattice accompanies

the CSL state [3].
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A Effective Lagrangian

In this and the following appendices, we provide some details of the calculations, and show

how they are modified by the Wess-Zumino-Witten (WZW) contribution to the chiral

Lagrangian.

The normal, invariant part of the chiral Lagrangian is given by eq. (2.1),

L =
f2
π

4

[
Tr(DµΣ†DµΣ) + 2m2

π Re Tr Σ
]
, (A.1)

where DµΣ ≡ ∂µΣ− i[Qµ,Σ] is the covariant derivative and Qµ ≡ Aµ τ32 . The Chiral Soliton

Lattice (CSL) structure is characterized by a neutral pion condensate, corresponding to

〈Σ〉 ≡ Σ0 = eiτ3φ. (A.2)

It proves convenient to undo the ground state modulation as described by eq. (A.2) by

redefining the field variable Σ as

Σ ≡ Σ0U, (A.3)

where U is a new unitary matrix field such that 〈U〉 = 1. Inserting all the definitions into

the Lagrangian (A.1) and throwing away terms that do not depend on U , we get

L =
f2
π

4
Tr

[
∂µU

†∂µU + iτ3∂
µφ(U∂µU

† − ∂µUU †) + iAµτ3(∂µUU
† − U †∂µU)

− 1

2
AµA

µτ3Uτ3U
† +m2

π(Σ0U + U †Σ†0)

]
.

(A.4)

Note that the intrinsic parity symmetry of the Lagrangian (A.1) can be implemented as

the replacement Σ→ Σ†. In terms of the new field variable U , this is equivalent to

Σ0 → Σ†0, U → Σ0U
†Σ†0. (A.5)

In case of a coordinate-dependent background φ, the individual terms in the La-

grangian (A.4) are not invariant under this transformation. However, the Lagrangian

as a whole is.

To move on, we next need to choose a parameterization for the unitary matrix U .

Rather than the standard exponential parameterization, we will choose

U(~π) =

√
1− ~π2

f2
π

+
i~τ · ~π
fπ

. (A.6)

A short calculation then leads to

L =
1

2

(∂µ~π)2 − 1
f2π

(~π × ∂µ~π)2

1− ~π2

f2π

− 2fπ(∂µφ)π3∂µ

√
1− ~π2

f2
π

+ (Aµ − ∂µφ)(π1∂µπ2 − π2∂µπ1) +
1

2
AµAµ(π2

1 + π2
2)

+m2
πf

2
π

(√
1− ~π2

f2
π

− 1

)(
cosφ+

π3

fπ
sinφ

) (A.7)
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plus a surface term. For the record, we also put down explicitly the bilinear part of this

Lagrangian, eq. (6.1) of the main text,

Lbilin =
1

2
(∂µ~π)2 +(Aµ−∂µφ)(π1∂µπ2−π2∂µπ1)+

1

2
AµAµ(π2

1 +π2
2)− 1

2
m2
π~π

2 cosφ. (A.8)

We assumed that the gauge for Aµ has been chosen so that Aµ∂µφ = 0, which is always

possible in a uniform magnetic field.

The anomalous, WZW contribution to the action reads [3]

SWZW = −
∫

d4x

(
AB
µ −

1

2
Aµ

)
jµB, (A.9)

where AB
µ is an external gauge field that couples to the baryon number and jµB is the

Goldstone-Wilczek current. The latter is given by the manifestly covariant expression

jµB = − 1

24π2
εµναβ Tr

[
(ΣDνΣ†)(ΣDαΣ†)(ΣDβΣ†) +

3i

4
Fνατ3(ΣDβΣ† +DβΣ†Σ)

]
. (A.10)

Upon inserting the definition of the covariant derivative, the current acquires the form

jµB =− 1

24π2
εµναβ Tr

[
−Σ∂νΣ†∂αΣ∂βΣ† + 3iQν(∂αΣ†∂βΣ− ∂αΣ∂βΣ†)

+
3i

4
Fνατ3(Σ∂βΣ† + ∂βΣ†Σ)

]
.

(A.11)

Once the field fluctuations are separated from the ground state by defining Σ = Σ0U as

above, the current can by a longer manipulation be cast as

jµB =
1

24π2
εµναβ Tr(U∂νU

†∂αU∂βU
†) + ∂νG

µν , (A.12)

where

Gµν =− 1

16π2
εµναβ

{
φFαβ + 2iφTr(τ3∂αU∂βU

†) +Aα∂βφTr(τ3U
†τ3U)

+ iAα Tr[τ3(U∂βU
† + ∂βU

†U)]
}
.

(A.13)

The first term in Gµν is independent of the pion fields. Together with the pion-independent

piece of the third term (obtained by the replacement U → 1), this is responsible for the

stabilization of the CSL solution in an external magnetic field. It is easy to see that in a

uniform external magnetic field, only the second term can contribute to perturbative pion

physics. Using the parameterization (A.6), we can work out the part of the Lagrangian

bilinear in the pion fields explicitly. Including the topological term, it reads

L bilin
WZW =

1

8π2
εµναβAB

µ∂ν(φFαβ)− 1

16π2f2
π

εµναβFµν∂αφ(π1∂βπ2 − π2∂βπ1). (A.14)

– 13 –
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B Neutral pion fluctuations

Thanks to the fact that the third component of the isospin SU(2) symmetry remains intact

by the neutral pion background, the neutral and charged pion fluctuations do not mix and

can be treated separately. Since the WZW term (A.14) obviously includes only the charged

pions, the discussion of the phonon spectrum in the main text is not affected by it. Here

we wish to give an alternative derivation of the phonon group velocity, eq. (5.3) in the main

text, which makes use of the explicit Bloch-type wave function of the phonon.

The Lamé equation takes the general form

[−∂2
z̄ + n(n+ 1)k2 sn2(z̄, k)]ψ(z̄) = Aψ(z̄). (B.1)

For n = 1, its solution is known to be of the form [15, 16]

ψ(z̄) =
H(z̄ + σ, k)

Θ(z̄, k)
e−z̄Z(σ,k), (B.2)

where H, Θ, and Z denote Jacobi’s eta, theta, and zeta functions and σ is a parameter

which is related to A by

A = 1 + k2 cn2(σ, k). (B.3)

The solution (B.2) can be rewritten equivalently as

ψ(z̄) =
H(z̄ + σ, k)

Θ(z̄, k)
exp

[
−iπ

z̄

2K(k)

]
exp

{
iz̄

[
iZ(σ, k) +

π

2K(k)

]}
. (B.4)

This is the usual Bloch form of the wave function. The first two terms together are

explicitly periodic in z̄ with period 2K(k), and hence in z with period 2kK(k)/mπ = `.

The last term takes the form eipzz = eikz̄pz/mπ , which leads to the identification of the

crystal momentum as

pz =
mπ

k

[
iZ(σ, k) +

π

2K(k)

]
=

imπ

k
Z(σ, k) +

π

`
. (B.5)

Obviously, the solution is only bounded (and thus physically acceptable) when Z(σ, k) is

purely imaginary. Within the period of Z, this happens only for Re σ equal to 0 or K(k).

The spectrum of solutions to the Lamé equation (B.1) with n = 1 therefore consists of two

bands, corresponding to

σv = K(k) + iκ, σc = iκ, (B.6)

where κ is a real parameter. Here σv corresponds to the “valence band” that encodes the

phonon excitation, whereas σc corresponds to the “conduction band”.

We would now like to find a closed analytic expression for the phonon dispersion

relation. To that end, we first note that the bottom of the valence band appears at

κ = K(k′), where k′ ≡
√

1− k2 is the complementary modulus. Shifting the parameter

κ to the minimum by δκ ≡ κ − K(k′) and using the periodicity properties of the Jacobi

elliptic functions, one can prove that

cn(σv, k) = cn(K(k) + iK(k′) + iδκ, k) = − ik′

k
cn(δκ, k′). (B.7)
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Hence for the valence band,

A = 1− k′2 cn2(δκ, k′), (B.8)

and using eq. (5.2) of the main text, we can identify the dispersion relation of the phonon.

Namely, for a purely longitudinal motion, px = py = 0, we get

ω

mπ
=
k′

k
sn(δκ, k′) ≈ k′

k
δκ+O(δκ3). (B.9)

It remains to find an explicit relation between the parameter κ and the crystal mo-

mentum pz at the bottom of the valence band. To that end, we use the identity

dZ(σ, k)

dσ
= dn2(σ, k)− E(k)

K(k)
. (B.10)

As above, the periodicity properties of the Jacobi elliptic functions tell us that

dn(σv, k) = dn(K(k) + iK(k′) + iδκ, k) = −k′ sn(δκ, k′), (B.11)

which manifestly vanishes at δκ = 0. We thus deduce from eq. (B.10) and from the

definition of Bloch momentum (B.5) that

dpz
dκ

=
mπE(k)

kK(k)
(B.12)

at the bottom of the valence band. Together with eq. (B.9), this then immediately gives

the desired expression for the phonon group velocity,

cph =
√

1− k2
K(k)

E(k)
, (B.13)

in accord with eq. (5.3) in the main text.

C Charged pion fluctuations

Since the WZW term (A.14) carries one time derivative of the charged pion fields, it

does not affect the discussion of the instability with respect to charged pion Bose-Einstein

condensation (BEC), which is defined by the condition that the bottom of the lowest

Landau level appears at ω = 0. Below, we review the modifications that the WZW term

does bring.

In order to extract the spectrum of the charged pion fluctuations, we need both

eqs. (A.8) and (A.14). As in the main text, we choose the gauge for the vector poten-

tial as A = (0, Bx, 0), and introduce the charge eigenstates π± via

π± ≡ 1√
2

(π1 ± iπ2). (C.1)

Upon Fourier transforming in time and the y-coordinate, the equation of motion for π+,

following from the bilinear Lagrangian, takes the two-dimensional form

ω2π+ =

[
−∂2

x +B2
(
x− py

B

)2
]
π+ +

(
−∂2

z + 2iφ′∂z +m2
πe

iφ − ωBφ′

4π2f2
π

)
π+, (C.2)
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which generalizes eq. (6.2) of the main text. The right-hand side of this equation consists

of two mutually commuting operators, whose spectrum can therefore be determined sepa-

rately. The first of these represents the standard Landau level problem, and we can thus

write the spectrum right away as

ω2 = (2n+ 1)B + λ, (C.3)

where λ runs over the eigenvalues of the one-dimensional differential operator

∆ ≡ −∂2
z + 2iφ′∂z +m2

πe
iφ − ωBφ′

4π2f2
π

. (C.4)

In the chiral limit, the ground state configuration is given by a linear function of

z, eq. (2.3) of the main text. The operator ∆ is then diagonalized by a further Fourier

transform in the z-coordinate,

λ = p2
z −

µBpz
2π2f2

π

− µωB2

16π4f4
π

. (C.5)

The dispersion relation of the charged pions then immediately follows from eq. (C.3),

ω = − µB2

32π4f4
π

+

√(
µB2

32π4f4
π

)2

+ p2
z −

µBpz
2π2f2

π

+ (2n+ 1)B. (C.6)

This modifies the dispersion relation found in the main text, eq. (6.3). However, it does

not change the conclusion that the bottom of the lowest Landau level drops to zero at

B = BBEC ≡
16π4f4

π

µ2
. (C.7)

Away from the chiral limit, the spectrum of the operator ∆ given by eq. (C.4) does

not seem to be easy to find. Similarly to the main text, we can simplify it by a unitary

transformation ∆ → ∆̃ ≡ e−iφ∆eiφ, which upon using the equation of motion for the

background φ leads to

∆̃ = −∂2
z − (φ′)2 +m2

π cosφ− ωBφ′

4π2f2
π

. (C.8)

However, the presence of the last, anomalous term prevents its straightforward reduction to

the Lamé operator. Fortunately, this last term vanishes at ω = 0, and thus the conclusion

made in the main text regarding the critical magnetic field BBEC for BEC of charged pions

still holds.

Open Access. This article is distributed under the terms of the Creative Commons
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