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1 Introduction

In Cold Electroweak Baryogenesis, the out-of-equilibrium conditions responsible for cre-
ating the baryon asymmetry of the Universe originate from a fast quench of the Higgs
potential at zero temperature. Rather than the first order thermal phase transition and
bubble nucleation of Hot Electroweak Baryogenesis (realised in some extensions of the Stan-
dard Model), the spinodal instability ensures exponential growth of IR modes of the Higgs
field, which in turn drive energy into the gauge fields. In the presence of CP-violation,
this straightforwardly produces a baryon asymmetry [4-7]. This asymmetry depends lin-
early on the magnitude of CP-violation and, it turns out, has a maximum for a finite
quench time [1, 8].

A strong appeal of this scenario is that it is amenable to essentially first-principles
numerical field theory simulation and computation of the baryon asymmetry. But these
simulations are numerically intensive, as the equations to be solved are often implicit,
the physical volumes to be simulated must be large to include the IR dynamics and it is
necessary to average over an ensemble of hundreds of classical random realisations.



Previous simulations of Cold Electroweak Baryognesis with CP-violation have included
only the SU(2) gauge group of the Standard Model (in some cases with a second Higgs
field [9, 10] or with fermions [11]). Several simulations of the CP-even dynamics have also
considered hypercharge and the generation of magnetic fields [12, 13], or have included
an additional (inflaton) field [14], presumed to be the trigger of the symmetry breaking
transition.

We will here revisit this scenario, but including both hypercharge U(1) as well as CP-
violation. This allows us to compute the expectation value of both CP-even observables
(Higgs field, magnetic field, electric field, energy components, variance of CP-odd observ-
ables) [12, 13], but also CP-odd ones (helical magnetic field, Chern-Simons numbers, Higgs
winding number). From the CP-even observables, we will be able to track the process of
tachyonic preheating, and how the energy is transferred to the degrees of freedom present,
on the short and long term. Of particular interest to us is the effect of including hy-
percharge on the final and maximal baryon asymmetry created, and discovering how the
asymmetry depends on the quench time. Also, we will investigate whether “secondary”
CP-odd observables such as helicity of the magnetic field also acquire a non-zero expecta-
tion value, and find to what extent it reflects the CP-violation strength and quench time
dependence of the baryon asymmetry itself.

It has been conjectured, that in electroweak baryogenesis, the amplitude of the net
helicity should be proportional to the net baryon asymmetry of the Universe [2, 3, 13]
(see also [15]). Helicity is expected to be conserved in time as a result of the very large
conductivity of the ambient plasma in the Universe. This implies that observation of such
helicity would be an indication of electroweak dynamics being responsible for baryogenesis.
Conversely, the observed galactic and intergalactic magnetic fields could be explained by
the electroweak phase transition. We will argue that this conjecture is based on features
specific to hot electroweak baryogenesis and the decay of sphaleron configurations, and
does not apply to Cold Electroweak Baryogenesis. We will demonstrate this numerically.

The paper is structured as follows: in section 2 we will present our SU(2)xU(1)-Higgs
model with CP-violation, and present the set of observables we will compute. In section 3
we will consider CP-even observables and their short and long-time behaviour. In section 4
we compute the CP-odd observables and study their dependence on the strength of CP-
violation and quench time, as well as the relationship between helical magnetic field and
Chern-Simons number, and hence baryogenesis. We conclude in section 5.

2 The SU(2)xU(1)-Higgs model with CP-violation

We model the electroweak-sector of the Standard Model by a Higgs doublet coupled to
SU(2) and U(1) gauge fields, with the classical action
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The field strength tensors are W, for SU(2) and B,,, for U(1), with the dual defined by

Wy = %GWWW”". The gauge couplings are g and ¢', respectively, and we have a Higgs
self-interaction A, in addition to a time-dependent mass-coefficient g (t) defined by

2
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It is initially positive, “restoring symmetry”, and once the quench is completed,
ugﬁ (t) — —p?, so that the Standard Model vacuum expectation value satisfies Av? = p?.
The covariant derivative D), is given by
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with the U(1) gauge field B,, and the SU(2) gauge field denoted by W,. We have used that
the Higgs field hypercharge is Y = —1/2.

The discrete CP-symmetry is broken by the last term of (2.1) because W‘“’WW breaks
P, preserving C. For successful electroweak baryogenesis, it is necessary to break P, C and
CP separately, so that baryon number (C-odd) and Chern-Simons number (P-odd) can be-
come non-zero. For the full Standard Model-like theory with fermions, C and P are broken
by the gauge-fermion coupling, while the present term breaks P. d., is a dimensionless mea-
sure of the strength of CP-violation. In the simulations it will be taken in the range 0-7,
with the physical baryon asymmetry corresponding to values around d¢, ~ 1075 [1, 16].

The origin of the CP-violating term is assumed to be interactions at a higher energy
scale, possibly involving heavy fermions. We take it as a generic higher order operator with
the required symmetry (breaking) properties. Integrating out the fermions of the Standard
Model itself produces effective terms similar to this, although not exactly the same [17].
The equivalent of d.}, for the Standard Model is a complicated expression in the parameters
of the CKM mass matrix and the temperature, and turns out to be orders of magnitude
too small to account for the baryon asymmetry [17], unless the effective temperature is
around T'=1GeV.

Our choice of P-breaking term biases the time derivative of the SU(2) Chern-Simons
number, defined as an integral over time
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or equivalently in a spatial representation
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When this bias manifests itself as a non-zero expectation value of the Chern-Simons num-
ber, the baryon asymmetry follows from the anomaly equation

(NB(t) = Np(0)) = 3([Nes2(t) — Nes,2(0)])- (2.6)



We will ultimately infer the baryon asymmetry from the final value of the Higgs winding

number 1
T / dze; Te[UTO,UUTO,UUT8, U], (2.7)
with 1
U(z) = %(imé*, ). (2.8)

At late times, Ny, ~ N is enforced dynamically, but since winding number settles early
in the simulation, it is more convenient to use from a computer-time perspective. The
hypercharge field also provides a CP-odd observable, that we will refer to as the U(1)
Chern-Simons number

3272

in terms of the spatial components of the gauge field and its field strength. This is not a

_ (9/)2 3., ijknp. .
Nesa(t) = d’x €7 B; Bjy, (2.9)

Chern-Simons number in the sense of a winding number, but it does enter in the anomaly
equation for fermion number. Strictly speaking, eq. (2.6) should be

<NB(t) - NB(0)> = 3([(NCS,2 - NCS,l)(t) - (NCS,Z - NCS,l)(O)Du (2-10)

but since only SU(2) has a non-trivial set of equivalent vacua, a vacuum-to-vacuum tran-
sition involving true fermion production always has AN 1 = 0.
Additional observables that will be of interest include the average Higgs field

# =1 [ s (2.11)

and the various energy components in SU(2), U(1l) and Higgs fields, respectively,
Ew, Ep, Es.

As symmetry breaking proceeds, the Higgs mechanism promotes different linear com-
binations of field degrees of freedom to be mass eigenstates. The Z boson and the photon
field A are defined in the unitary gauge in the broken phase as

Z, = Wj’ cosf + B, sin 0, A, = Wi’ sinf — By, cos 6. (2.12)
These are naturally generalised to
Zy =n"Wjcos + By,sind, Ay =nWyisin — By, cos, (2.13)

outside of the unitary gauge, where we have defined

n® = —pla%y, ﬂ (2.14)
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However, due to the ambiguity in the definition of the photon [18], which is only really
defined in the symmetry-broken phase, we find it convenient to add a term proportional
to gofaugo - (?M@Tgo to our definition of the electromagnetic field, allowing us to write it in
a manifestly gauge covariant way as
1
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with the field strength defined as the curl in the usual way, leading to
1
Fuy = |0u(n*Wy) — 0, (n"Wy) — geabcnaﬁunb&,nc sin@ — By, cos 6. (2.16)

By construction, in the unitary gauge in the broken phase, n* — (0,0,1) everywhere,
and the expression simplifies to the standard expressions. However, we will perform our
simulation in temporal gauge Ag = 0, and therefore we need a gauge covariant expression
that is simple to use on a lattice. We note that since we will be using the zero temperature
value for the mixing angle 6, the field A, is the photon field throughout, but only at the
end of the transition is it massless [19]. We will include in our list of observables the
magnetic energy component associated with the photon field, Ey,,s. This is not a distinct
component, being composed of part of Ep and part of Eyy.

Once the symmetry breaking transition is complete, we have for the masses of the

System
my = 2u* = V2 v = 125 GeV, (2.17)
1
mw = Sgu = 77.5GeV, (2.18)
mw
= = 88.4 2.1
7= 5 =884GeV, (2.19)
ms, =0, (2.20)

with our choices of parameters’

47 e e
= 246 GeV in? 6 = 0.231 =4/ — = =0.63 = —_ =10.35.
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(2.21)

In the A — Z field basis, we define the helical magnetic field of the photon field to be

1 g
Ny, = —Q/dgxeukAiij. (2-22)

Note that this has the same structure as the Chern-Simons number of the U(1) hypercharge
field that was defined previously (2.9). Since the photon field has contributions from both
SU(2) and U(1) gauge fields, we may expect some correlation with Neg 2 and/or Nes 1 [2, 3].

To summarize, our CP-odd (P-odd, C-even) observables are Ny, Neg 1, Nes2 and Ny,
while our CP-even (P-even, C-even) observables are ¢2, all the energy components Ep,
Eyw, Eg, Enag as well as the squares of the CP-odd observables.

We discretize the system on a spatial lattice, and solve the classical equations of motion
for an explicitly CP-symmetric ensemble of random initial conditions. The initial conditions
for the Higgs field are chosen to mimic a quantum vacuum prior to the mass quench [20-22].
The gauge fields are initially zero, with the gauge momenta found from Gauss’s Law in
the background of the initial Higgs field. Statistical errors are computed based on the

"We use primarily low energy-scale values for the couplings, since the transition starts out at zero
temperature. Using only electroweak-scale parameters amounts to a correction of a few percent and has no
impact on the final results.
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Figure 1. Some observables for single random realisations of the initial conditions. Left: without
CP-violation, no flip. Right: with CP-violation, showing an example where a flip occurs. The
notation Ny, and NW|Cp, for example, refers to the evolutions from a random initial condition and
the evolution from the CP-conjugated initial data.

differences between CP-conjugate initial condition pairs. We average over ensembles of
100-300 such pairs. The lattice size is Vm%, = 243, with 642 lattice sites and ampy = 0.375.
This is large enough to include the IR physics, while still keeping lattice artefacts under
control. The total numerical effort for the data presented here is in the order of 100.000
cpu hours. Details on the numerical implementation can be found elsewhere [7], while
explicit expressions for the lattice equations of motion and observables may be found in
appendix A.

3 CP-even averages: the preheating process and real-time rates

3.1 Flips

As symmetry breaking is triggered by uq(t) becoming negative the Higgs field IR modes
become unstable. The Higgs field effectively “rolls down” from its potential maximum,
and energy is transferred to the gauge fields as particles are created. At first, only the
modes k < |ueg(t)| grow exponentially, but as non-linear interactions kick in, the energy
is redistributed into the UV modes as well [23]. As kinetic equilibration completes over a
timescale of a few hundred in mass units, the spectrum acquires an approximate exponential
form, similar to a Bose-Einstein distribution with an effective chemical potential. Chemical
equilibrium then shifts the distribution over a timescale an order of magnitude longer. The
redistribution stage has features similar to turbulence or a cascade [12, 13, 23].

In figure 1 (left) we show, for a single random configuration pair,? the time history of
2, N¢s2 and N,,. For the CP-odd observables, we have flipped the sign of one of the two
configurations, so that they appear on top of each other, when they are precisely of opposite
sign. We see the spinodal roll-off of the Higgs field turn into damped oscillations, while the

2A configuration pair is the two simulations whose initial data is related by a CP transformation.
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Figure 2. The different energy components, averaged over an explicitly CP-symmetric ensemble,
for an instantaneous quench 7, = 0.

CP-odd observables evolve into non-zero values. For these simulations, the CP-violation
parameter d., was set to zero, but for individual configurations CP-odd observables can
still be non-zero. In fact, the figure shows the trajectories for a CP-conjugate pair, and we
see that the two have exactly opposite values of the CP-odd observables (N¢ 1 and N}, are
not shown but behave similarly). They average to zero identically in our CP-symmetric
ensemble composed of such pairs.

In figure 1 (right) we show another pair of configurations, with CP-violation turned on.
We see that the CP-odd observables are opposite until time 10 ml_{l, where they diverge,
giving a non-zero integer average over the ensemble. We call such an event a “flip” (in
this case a “-1 flip”). Most configurations do not flip, even with CP-violation present, but
a certain fraction flip with +1 or even in rare cases +2. Averaging over these instances
of 0,41, +2 gives our ensemble averages. We find, that when CP-violation is not present,
the vanishing of the CP-odd observables is not a result of the cancelling of positive and
negative flips. No flips occur at all.

3.2 Energy

In figure 2, we show the different energy components Ey, Eg and Eyy, corresponding to the
three fields in the problem. In addition, we show the magnetic energy density Fyag, defined
in the usual way, taking (2.16) as the field strength. We see that as the spinodal transition
happens, energy pours into these dynamical degrees of freedom. The SU(2) energy and
also U(1) energy grow very rapidly initially, during the first few Higgs oscillations. This,
in effect, is the process of post-inflationary preheating for this scenario. Afterwards the
energy starts equipartitioning between the various degrees of freedom. Being not in unitary
gauge, the precise counting of degrees of freedom between field variables is non-trivial, but
at the latest time shown here, the energy fraction is roughly Fw : Ey : Egp = 6 : 4 : 2,
suggestive of effectively massless gauge bosons coupled to four Higgs degrees of freedom.
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Figure 3. The final energy density as a function of quench time.

An issue with our implementation, is that because peg(t) is not a dynamical variable,
but an external “source”, energy is not conserved in the system. The energy loss can be
written as

AE =2 [ e ot ol ), (3.1)

Tq Jo

and computed numerically, as shown in figure 3, as a function of quench time. We see that
for our quench times, as much as % of the energy is extracted in this way. This means
that the energy available to preheat the fields is reduced for slow quenches. The final
temperature is also smaller by a factor Tyowquench X (Einitial — AE)I/ 1~ 07 Ttastquench-
By redistribution of the initial potential energy to a thermal state at late times, this
corresponds to temperatures of about 70-50 GeV, counting all the degrees of freedom in the
model as massless. Either way, this is deep in the “broken symmetry” phase of the Standard
Model. We point out that the energy extraction enters through the Higgs equation of
motion only, and not the gauge fields themselves.

For a complete model, where the quench is triggered by a dynamical field (an inflaton
or curvaton, or some other scalar [6, 24-26]), no energy is lost, although part of it will end
up in this additional degree of freedom [12, 13]. The field dynamics however also becomes
more complicated. We will address this in a future publication [27], and proceed here with
a hand-made quench, keeping in mind the energy loss for slow quenches.

3.3 Variance of observables

One effect of preheating is that as the fields get populated and temperature increases,
the variance of various observables also increases. We are interested in the square of the
CP-odd quantities

0'2372 = <Nc25,2> - <NCS72>27 Ugs,l = (Nc25,1> - <NCS71>27 (32)
oy = (N3) — (Ny)?, o = (Nit) — (Nn)?,
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Figure 4. The variance of the CP-odd observables, averaged over an explicitly CP-symmetric
ensemble. We use d., = 6.83, and the quench is instantaneous 7, = 0. The helicity and U(1)
Chern-Simons number have been rescaled to fit inside the plot.

from which one may compute the time derivatives, the “diffusion rates”

do-zs,2 T . dU(Q:s,l . — do-\?v . dO'}QL
dt ) cs,1 — dt ; w = dt’ h — dt'

Feso2 = (3.3)
In equilibrium, the first of these is the familiar Sphaleron rate [28, 29] (up to a factor of
the volume), describing the finite temperature diffusion of Chern-Simons number. In our
case, we are not in equilibrium, and the observable is a priori just a time-dependent rate
of change of Chern-Simons number squared. Similarly for the other observables.

In figure 4 (left, linear and right, log scale), we show the observables (3.2), averaged
over an ensemble, for various quench times with ., = 6.83. We observe that the winding
number settles completely around time mgt ~ 50, as it becomes fixed in each configuration,
fixing the average and the variance. The other observables continue to increase also at later
times. At asymptotically late times, the rate is given by the equilibrium diffusion rate at
the final temperature. Since this temperature is in the range 50-75 GeV, at least for Chern-
Simons number the Sphaleron rate is exponentially suppressed. We see this as an approach
to a constant value of the variance. In contrast, we see that the variance of N1 and N,
at late times grow as a power law, with late time dependence found to be ~ (myt)'# and
~ (myt)'3 for o2 and 002571 respectively, at the physical Higgs mass mpy = 1.6 my,.

One may have hoped to be able to estimate the asymmetry in each of the CP-odd
observables, created by the introduction of a CP-breaking bias, without explicitly doing
the simulations. A “linear response”-like treatment was proposed in [8] for the Chern-Simon
number as

N0 = [ ‘;;:;2(%) Feus(t)dt, (3.4)

where we have generalized the expression by allowing a time-dependent chemical potential
fics,2 to provide a CP-bias, and allow for a time-dependent effective temperature Tig. Such



an expression may of course be written down for any CP-odd observable, in terms of each
their diffusion rate, and bias coefficient.

For instance in the present case of using (2.1) and (2.4), we may readily find that the
P violating term in the action is

e
Sy~ [t pes®Ne,  pesalt) = 22 5(616), (3.5)

m2, dt

where we have approximated the quadratic scalar piece by its spatial average. This shows
that the time dependence of the Higgs vev gives a chemical potential to the Chern-Simons
number, and so we may write a Boltzmann equation of the form (3.4).

It was found in [8], that only the very initial stages of the baryogenesis process could be
reproduced with such a treatment, and then only by tuning the value of the effective tem-
perature Tyg. This shows that the asymmetry is not driven by diffusion. For instance, we
note that if pes 2/Ter is taken to be constant, the final asymmetry follows from integrating
up the diffusion rate, and simply find

(Nes2) (1) = T2 (N2, o) (1), (36)

In particular, since the variances are always positive, the overall sign of any asymmetry
would be given by the sign of .. In figure 5 we show the values of the observables squared
at late times? for different quench times. We see that they are all monotonically decreasing.
We found that even allowing for quite unrealistic time-dependence of fie2/cs1/n/Tet We
were unable to reproduce the behaviour of any of the CP-odd observables.

4 CP-odd: the baryon asymmetry and helicity

4.1 Short and long time evolution

We first display in figure 6 a typical set of averaged observables as a function of time, for a
particular quench time mpy7, = 16 and CP-violation d., = 6.83. We observe the rolling off
of the Higgs field and the creation of the baryon asymmetry (here, Ny, and N 2) first going
up, then sharply down, then up again in a sequence of driven oscillations. We confirm in
figure 7 that for very late times the average Chern-Simons number converges to agree with
winding number, and find that the Chern-Simons number fits an exponential curve for the
two quench-times in the figure*

Nes 2l pyry=0 = Nw,oo +0.010 — 0.294 exp(—0.003 mt), (4.1)
N, ~ Ny +0.038 — 0.273 exp(—0.002 mt). (4.2)

S72|mH’Tq:16 -

From this fit, one may estimate the time-scale for the convergence to be around
mgt ~ 300-500. Moreover, we see from figure 7 that the winding number stays put after

3We evaluate the late-time variances at 390 mgl after the first minimum of ¢*, and we find that the first
minimum occurs at 0.71mpg7, + 10.

4The asymptotic value is not exactly N, because of statistical errors. Explicitly requiring that
Nes2 — Ny also produces good fits.

~10 -



T Y T T T T
X A
usf . o
\><\ \>(\
" X
1.0- \ . I
wb's e - _>g\ N;;) e - —X\
' 0.5F
L % i X<
0.5 %
[aREv s
\>< \\X
| n | | | 1 L 1 1 1
0-0 0 10 20 30 0-0 0 10 20 30
my Tq my ‘I'q
, , , , , 30000 ‘
X
. x_
0.010}- X i "
20000}
><\ %
szr X\\ Nb—" X\
0.005} x . )
AN 10000} N
N X
X X
He < > <
I I I H- X I . I I . X=X
0.000 0 10 20 30 0 0 10 20 30
my 7‘q my Tq

—0.4F — ¢ V? N — N, /200/
T NW - 5]‘\Ics,l |
— 1T 1 1 1
0'60 20 40 60 80 100
myt

Figure 6. The ensemble averaged observables for my7, = 16 and d., = 6.83.

11 -




04— —F—+—— 04

—1.2 . | . | . | . | . . . | . | . | . | .
0 100 200 300 400 500 0 100 200 300 400 500
my ¢ my t

Figure 7. The late-time approach of N¢s o to Ny, for two quench times mpy7, = 0 and 16, with
dep = 6.83.

mgt = 50, and so in some of our simulations we will only simulate until mgt¢ ~ 100 or
400, and infer the final asymmetry from the value of Ny. In this figure, we show the
Chern-Simons number computed both by time-integration of (2.4) and through the spatial
definition (2.5). A small discrepancy starts to appear around time mpgt = 300, due to

accumulated errors from the time integration.

4.2 Hypercharge impact on asymmetry

In figure 8, we show the dependence of the final asymmetry on quench time with the gauge
group SU(2) [1, 8] and with SU(2)xU(1). The main features of the quench-time dependence
are that the fastest quench (7, = 0) produces a baryon asymmetry of negative sign, while for
intermediate quench times a peak of positive asymmetry appears around mpy7, ~ 16. For
slow quenches, mpy7, > 32, no asymmetry is produced. This is true both with and without
the hypercharge field, and in fact for the fastest quenches (mpy7, < 6), no difference can
be seen. The peak at intermediate times is visible, but much less pronounced and flatter,
suggesting that the U(1) gauge field has a significant moderating effect on whether CP-
violation can bias CP-conjugate pairs of configurations in the ensemble. Numerically, the
maximum asymmetry is reduced by a factor of three. The asymmetry again decreases for
large quench times, becoming indistinguishable from zero around mpy7, = 25.

In search for an explanation of this behaviour, we in the same figure 8 show the total
number of flips (positive and negative) with and without U(1)-fields.> We firstly see a clear
correlation between the overall number of flips and the asymmetry between positive and
negative such flips. The suppression due to the introduction of hypercharge is evident also
in the total number of flips, although by a smaller factor. This leads us to consider the
number of Higgs-zeroes available for flipping in the first place. Figure 9 shows histograms
of values of ¢? locally in space for different quench times mpTq = 0,9.6,16, 32, with and

SWe omit explicit statistical error bars on the “flip” observable. It is a binary object, whereas jumps
are not always integer, nor restricted to unity. We find that errors are comparable to errors on the asym-
metry itself.
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Figure 8. The quench time dependence of the final asymmetry, with and without U(1) hypercharge,
taking e, = 6.83.

without U(1) in the simulation. We see that the number of zeros of the Higgs field is
strongly correlated with the final asymmetry (this was also observed in [8]). But we see
very little impact of including the hypercharge U(1).

The precise mechanism whereby the asymmetry is reduced remains unclear. But we
tentatively interpret our data to indicate that the baryogenesis process unfolds in two parts.
First the initial roll-off, where the asymmetry is driven negative in the very early stages
of the transition. And then a second stage, where the asymmetry is driven up again in
consecutive minima of the Higgs field oscillation. For the fastest quench time, only the
first process plays a role, and at that stage the U(1) gauge field has rather little energy
associated to it (figure 2) and is not large enough to have an impact. For the slower
quenches, the second stage is dominant, during a time where the U(1) field is large enough
to play a part. Fewer flips occur and a smaller asymmetry is generated.

Noting from figure 8 that the maximum asymmetry occurs with my7, ~ 16, we now
wish to see how the CP violation affects the final Chern-Simons number. To this end we
simulated an ensemble of runs with quench time mpy7, = 16 and show in figure 10 (left)
the time dependence of the ensemble average of Ny, for four different values of é.,. Then
in figure 10 (right) we fit the final value of Ny vs dcp, and see that the final Higgs winding,
or equivalently the final Chern-Simons number, is linear in dcp

Ny (t = 00) = 1.39 x 107 25p. (4.3)

Note that we us a one-parameter fit, since the intercept at d., = 0 vanishes by virtue of
the CP-symmetric ensemble.
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Figure 9. The distribution of ¢?(x) over the lattice for different quench times at the first (top
line) and second (bottom line) minimum. With U(1) hypercharge (left column) and without (right
column).
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Figure 10. The dependence of the ensemble-average of the Higgs winding, Ny, on the CP violation
parameter dcp. The left figure shows the time dependence of Ny, for different values of d.p, and the
figure on the right gives a fit of the final value as a function of ..
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Figure 11. The dependence on CP-violation strength d.p, of the hypercharge Chern-Simons number,
with mpy71, = 16.

4.3 Helical magnetic field and baryogenesis

We next turn to the other CP-odd quantities N¢s1 and Ny. In the absence of CP-violation,
these are also forced by our CP-symmetric ensemble to average to zero. Once dcp # 0, they
are allowed to stray from zero average, but whereas our CP-violating term explicitly biases
Nes,2 (the “primary” biased observable), it is not obvious in what way this influences what
we will term the “secondary” biased observables. Ny is also secondary in this terminology,
and we have seen that it is pushed around by a violently oscillating N2 to eventually
settle and determine the final baryon asymmetry. In a similar way, we would expect N 1
and Ny, to be biased by evolving in the background of non-zero Ncg 2.

In figure 11 we show the time evolution of Ng1 (left) and the final asymmetry (right)
for different values of d.p, for quench time m g7, = 16. We see a very clear linear dependence
on the strength of CP-violation, and we can fit this dependence to find

(Nes1) == 1.56 x 10726y, (4.4)

for this quench time. The time evolution is particularly striking, in that in the early stages
curves of different Jp, oscillate completely coherently, even crossing zero at the same time.
We also note that because the observables take on both positive and negative values in
quite a complicated evolution, the chances of finding a well-motivated effective chemical
potential function to reproduce this behaviour in linear response is remote.

In figure 12 we show the magnetic helicity, for the same simulations. Again, we see
that the dependence on d.p is close to linear, and we find

(Np) =~ —1.66 6cp, (4.5)

for this quench time of mg7, = 16.

We show in figure 13 the average hypercharge Chern-Simons number (left) and mag-
netic helicity (right) as a function of quench time. We have run to time mgt = 400, and
extrapolated to an asymptotic value as for N in figure 7. We see that for both observ-
ables, the dependence on quench time is monotonic. Largest asymmetry for fast quenches,

~15 —



“Hw—r——————————————————— o ——————7—

—
— Sep=1T1  — §gp=5.12 — Best fit

301 — Sp=341  — §up=6.83 ]

Ny

—10f- ,

-20 . ! L ! . | . | . —15 T T R S S NS S B!
0 20 40 60 80 100 0 1 2 3 4 5 6 7 8

Figure 12. The dependence on CP-violation strength ., of the magnetic helicity, with mg7, = 16.

T T T T T T T T T T T T T

" " T T T T T T T T
0.030}- F- 1N, (my t=400)|
t - | Fitted N, -10 iI 4

0.025/- » Ny ]
N \Y \ 4 p
0.020} ENAS § b
[ N ’
‘\ A N A /,/
0.015/- x\i AR S I T §
N N7

(DN v |
0.010}- I . ¥
N _\% —40|- t- 1N, (my t=400)]
I *% i -1 Fitted N,
0005 1 1 1 1 1 n 1 n 1 n 1 n | n L L L L L L L L 1 L L L L L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
my 7, my 7,

Figure 13. The late-time quench time dependence of Nes 1 (left) and N, (right), with d., = 6.83.

small for slow quenches. The quenches are not so slow that the magnetic helicity disappears
altogether. The final temperature is still about 50 GeV and some of this energy goes into
the magnetic field, also generating helicity.

In [2], the prediction is that (Nj) ~ —300(Ns,2) for the decay of Sphalerons. By order
of magnitude, this is correct for my7, = 0, whereas for all the other quench times, the sign
is opposite. The crucial point is that the quench time dependence of the magnetic helicity,
figure 13, is qualitatively different from the dependence of N o, figure 8. We conclude
that the non-zero signal in the secondary observables indicate the presence of CP-violation
(in this case, that N2 is non-zero), as well as the possibility of baryogenesis, but they are
not a reliable proxy to infer the magnitude of the baryon asymmetry.

4.4 Sphaleron unravelling

In this final section, we offer an example of the different mechanisms at play in [2, 3] and the
present work, to further emphasize that there is no direct proportionality between magnetic
helicity and Chern-Simons number. In figure 14, we show the SU(2) Chern-Simons number
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Figure 15. The Chern-Simons number and helicity during a tachyonic roll-off.

and the helicity during a sphaleron decay. This is a direct reproduction of the simulation
in [3], where we set up the initial conditions close to the sphaleron solution.® As one would
expect, the change in Chern-Simons number for the sphaleron decay is one-half, given that
the sphaleron is the configuration that is half way between integer Chern-Simons number
vacua.” The unravelling of the sphaleron then leads to the formation of helical magnetic
fields, with N ~ 2-3.

In figure 15, we show the same observables, but during the tachyonic roll-off of a single
configuration. We see that the structure leads to a rather different relationship between

STf one uses the actual sphaleron solution it will not decay as it is a static, albeit unstable, solution to
the equations of motion.

"In the plot we multiply Nes by —3 to match the convention used in [3].
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Njp and N, the signal has a large stochastic component, and although the change in
Chern-Simons number is one, the helicity fluctuates around —100.

Sphalerons play a key role in Hot Electroweak Baryogenesis as they represent the dom-
inant trajectory for Chern-Simons number change in thermal equilibrium. That particular
trajectory involves Chern-Simons number and winding changing at the same time, because
that is energetically favourable. Cold Electroweak Baryogenesis is violently out of equilib-
rium, and Chern-Simons number may change along many different trajectories, without
reference to winding number. As a result, Sphaleron configurations play no role for the
baryogenesis process, except at very late times when the system is close to equilibrium.

5 Conclusion

We have explored the physics of baryogenesis and helical magnetogenesis using the first
simulations that include both CP-violation, and the full Bosonic sector of the Standard
Model. The scenario under investigation is that of Cold Electroweak Baryogenesis, whereby
the fields are taken out of equilibrium due to an exponential growth of the IR modes, rather
than a thermal phase transition. An important property of such a scenario is the quench
time, namely how long it takes for the Higgs potential to evolve from a symmetry-restored
shape, to the symmetry-broken form. Our simulations have confirmed a similar result found
with the absence of U(1) hypercharge [1, 8] that there is a non-zero value of the quench
time that maximizes the creation of Higgs winding, and so also Chern-Simons number. One
thing that turned out to be of practical importance was that while N2 had a relaxation
timescale of ~ 300 ml}l, the winding number became fixed at around 50 m;ll, allowing us
to infer the final Chern-Simons number from the winding number.

The effect of the introduction of U(1) hypercharge is to reduce the final asymmetry
for all values of quench-time, but there remains a peak value for quench times of around
mpTq ~ 16. This peak, however, is reduced by a factor of about three, and also flattened.
One thing that the U(1) hypercharge does not affect though is the number of zeros of the
Higgs field at minima of its mean value.

As these simulations also include the hypercharge we are able to measure the magnetic
field that is formed during the spinodal instability, and subsequent evolution. In particular,
we focussed on the helical component of the magnetic field, as this has been proposed as a
measure of baryogenesis [2, 3]. In examining the relationship of our observables on the CP-
violation and quench time we discovered that, for a fixed quench time, the Chern-Simons
number and the magnetic helicity are proportional to d.,. However, we found that the
non-trivial dependence on quench time for these observables meant that the Chern-Simons
number could not be assumed to simply follow the final value of helicity. This was further
backed up by examining the case of a single sphaleron, compared to a tachyonic falling-off
of the Higgs field, finding that helicity is not directly proportional to the Chern-Simons
number. The consequence of these results is that an observation of magnetic helicity cannot
be used as a proxy for baryogenesis.

On the other hand, we also found that all CP-odd observables were not only non-
zero, but that the asymmetries were all proportional to d.,. This is not surprising for
Nes 2, which is explicitly (primary) biased by the specific CP-violating term used here.
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But that the same proportionality applies to the secondary biased N¢s 1 and N}, shows
that they faithfully pick up the CP-breaking through the amplitude of the non-zero N 2.
Conversely, one may imagine a CP-violating theory, where N 2 is a secondary rather than
primary biased observable. One may then expect a baryon asymmetry to be generated
there as well. This is currently under investigation [27].
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A Lattice implementation

The classical action on the lattice can be written as S = d*x > .t £, with the lagrangian

2 1
L= 2 Vu-Vi)-N 2V, -V,
Z@: (¢'dt dx;)? ( 0 io) %: (¢'dxidxj)? ( J i)

4 1 2 1
(1 tmUe) -y (1 STy
+; (gdtdz;)? ( 2 rUOZ) ; (gdxidx;)? ( 2 er)
T [s12] 1 m% (1 v?
1o lete] -1 e - ™ (lniete - ¥
+ 5T [@ @} > ;Tr [(D@) (Dﬂ))} o <2Tr[<1> @) -3 CQ)
+ AL, (A1)

where cg = (2% — 1) when t < 7g; cg = 1 whent > 7 and AL, is the CP-violating term,

whose expression will be discussed in section C. The subscript “0” refers to the time-like

direction, and subscripts ¢, j, k to space-like directions. We use the short-hand for the Higgs

momentum ® = [®(x +0) — ®(z)]/dt. In the expression above, we have used the plaquette

Uy () = Up(@) Uy (x + p)U(x + v)Uf (),

and the gauge covariant derivative

Up(@)®(x + 1) Zy(x) — ()
dx,, '

D,®(z) = (A.3)

By interpreting gauge links as exponential functions of gauge fields,
;s ~Q

1o 1
Uu(x) ~ exp <—2gdacHW;j(x)> , Vu(z) ~exp <29’dx“B“(:v)> ,

Vi) 0 io?
Zy(x) = ( #0 Vu(z)) ~ exXp <—291d17uBu(33) ’ (A4)
we can connect to the continuum lagrangian in the leading order of the perturbation
of (A.1).
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We further adopt the temporal gauge fixing, so that Uy = 1 and Vy = 1, and define
electric fields on the lattice as,

Tr iaan(x—i-O)UiT(w)}

Vi(z+0)V; (z) — Vi(2)V] (z+0)
gdtdx; ’ '

Eiz) = - ig'dtdzx;

E,(a;) = —

(A.5)

The equations of motion can then be derived from the Euler-Lagrangian equation. For
the Higgs field:

B (2+0)—2P(2)+P(2—0) _ 3 U(2)®(x4i) Zi(2) = 2® () + U, (x—i)®(x—i) Z] (x—1)

dt? - 2z,
2 2
_ (Lt v LOAL
(T @)0()] - g ) @) + > 5Tt
(A.6)
where kg is one 2 x 2 matrix in (1,i0!,i02,i0%), so that ® = >3 Psks, and
®(z +0) = &(z) + dtd(x). (A7)

For the U(1) gauge field, we find:

D) 5 e V)= Vile)+ Vo) Vil (A8)

with

Vi(z +0) = |:\/1 - (gdtd:ciEi(x)>2 - i‘gdtd:viEi(:p)] Vi(z). (A.9)

For the SU(2) gauge fields:
Ei(z) - Ei(x —0)

= Z 1 (Tr [iU“Ui(x)Uj(ﬁU + Z')U;r(iﬁ + ])U;(fv)}

dt - gdz;d?z;
—Tr |i0®U (x — §)Ui(x — j)Uj(z +i — §)U;
r |io®Uj(x — j)Ui(x — j)Uj(z + i — j)U; ()
ia OALs
—Jy - e (A.10)
with
Us(z +0) = [\/1_2( dtdw; B9 (x ) +Zw 9 dtda B (z) | Ui(2). (A.11)

For hypercharge U(1) and SU(2) gauge fields, Higgs currents are defined respectively,

b= (55 ) B [Fv@eE + )z,

Jhe = (- g ) Tr [@T(aj)iaan(m)@(m + z‘)zl-(:c)} . (A.12)
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In addition to the equations of motion, Gauss’ laws can also be derived as derivatives
of the lagrangian with respect to temporal components of the gauge fields,

Z Ei(z) —dEz‘(l' —i) o

)

- 4z
> E(a) dif(x ) e %AWEO A3
where, )
Ef(z) = —3 zb: Tr [waUJ(x)wai(:p)} Eb (), (A.14)
and
O =g [¢3<i>0 P2 — plep? — (I,o(i-)s} ,
=g [(1)1(50 _ P! _ p3¢2 o @2&)3} 7
=g [@2(1)0 1L P3¢ — pOd2 @@3} ’
P=g [cp%o — 2! 4+ 319 — c1>0q'>3} . (A.15)

The sum of (A.13) over the lattice with periodic boundaries further impose constraints on
the Higgs charge densities,

deZpﬁ(a:) =0, for B8=0,1, 2, 3. (A.16)

The electromagnetic field after symmetry breaking can be calculated by the gauge-
invariant combination,

2sinf 1, [. 4@ (z) Oz + p) 2
— T |io® A - Im . (A1
dzyg 2 ' [w x Un(z) ”(m} dx,g cos0 V()] (A-17)

m

B Initial condition

Modes and initial charge. The Higgs field ® and its canonical momenta & are ex-
panded on the lattice as

1 ; 1 1
OP(z) = —= S e 8 Lo BBty — o
(.1‘) \/v . € mnp Tp + 2? <np77p > )

() = = 3 e [2e\ In+ . (e =2 (B.1)
p

where z; = s;dx;, p; = ¢2w/(N;dz;) with integer s; and ¢;, and 1 and £ are complex
random numbers with Gaussian distributions. A “bulk” momentum mode satisfies one of
following three criteria:

(1) @1 < (N1 —q1)%Ny;

(2) g1 = (N1 —q)%N1, g2 < (Ny—q2)%No;

(3) @1 =1 —q)%N1, q=(N2—q2)%Na, g3 <(N3—q3)%Ns, (B.2)
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whereas a “corner” mode obeys
q1 = (N1 — q1)%N1, g2 = (N2 — q2)%Na, q3 = (N3 — q3)%N3. (B.3)

Therefore, the fields can also be expanded into:

T)=— ab +1 }Un + —-+4+hec |+ — abr/n, + =,
\/Vpebulk \% 2wp 8 g ' 2 Wpécorner \% Wp g g 2
1

1 . [ 1 . [ 1
Hﬁ(x):ﬁ Z <e”” %{cﬁ—kidg] np+2+h.c.>+v Z elm,/wpcg np+§,

pEbulk pEcorner
with real numbers ag , bg ) cg , dg satisfying
((a)®) = (b)) = ((7)?) = ((dp)*) = 1. (B.-4)

We only initialise unstable modes, whose momenta fulfil

1 — cos(p;dz;) m%

and these modes will experience a fast growth during Higgs rolling down. The con-
straints (A.16) are equivalent to H = 0 with

2 2 2
_(pa @ 5, N L) 5,5 @) 5,5 @)
e (e 20 (D20 ) s (w0 ()

So before initialising Higgs fields, we implement flow equations along the virtual time 7 to

2

minimise H to zero,

dx OH
i v for x:ag, bg, cg, dg and £=0,1, 2, 3. (B.6)
We find, by choosing a proper dr, H can become numerically tiny, if not exactly zero.

Parity. Under the parity inversion,

O(z) = ®(—z), Ui(z) = U (—z —i). (B.7)

We assume the origin point is located at (N12_1, sz_l, N32_1) on the lattice. So for

x = (81, S2,83), the opposite site is —x = (N7 — 1 — 81, No — 1 — 59, N3 — 1 — s3). The
charge conjugation operation is

O(x) = O*(x), Ui(z) = U] (x), Vi(z) = V" (2), (B.8)

but since the CP-violation arises from a P-breaking term, we will not need to generate an
explicitly C-even ensemble of C-conjugate pairs.
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C CP-violation, AL,
The CP-violating term is

35CP g°

ALy =
L2 m2, © Y642

PTW LW

On the lattice, we adopt

92
5126 Wi W ~ <_

1
Am2diz

) Tr [Lo1123 + Tools1 + Iosli2],

where

[UM(:E)U,,(Q: + UL (x + 1)U (x)

Uy (@)U (z — p+ v)US (& — p)Up(z — )
+UT(x WU (x — p— ) Uz — p— v)U, (x — v)
+ Ul(x — )Uﬂ(x—y)Ul,(:L‘+u—u)U;£(x)

—h.c.

ol

1,

Here we list its derivatives with respect to different fields,

OAL 3dcpgdx; ) )
awf - <_32w2;3 d4a:> (Kiljk] = K [kj] = K2).
' W

)

where

Ki[jk] = Tr [ia“Ui(:c)HOk(:Jc + ) Uiz + iU (2 + j)UT(x)}
+Tr :w“U 2)Uj(x + i (z + i + ))US (z + U} (2 )}
Ty :waU 2)Uj(z + U (z + ) o (x + 5)US (z )}
+Tr :maU 2)Uj(x + 1)U} (z + §)U] (& )Ho,c(@}

(
(
(
T |io"Uy(@) ok (@ + U (@ + i = j)U] (2 = j)Uj (@ = )|
— Tr lic®U;(x)
(
(

= T [i0°Ui (@)U (2 + i = U} (z = j)Uj(x — j)Tlow()] .
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and

with

where

+ Tr

+ T [i
—l—Tr_'
~ Tr [ig®

— Tr |10

H;u/(l') = |¢(x)|2‘[w/($)

W

OALy _( 3dcpgdt
N 32772m12/vd4x

) (Ksligh] + Kaljki] + Kalkig]),

Ki[ijk] = Tr [i0"Tlx(x + 0)Ui(x + 0)U ()]

+ Tr

—Tr

—Tr

0 Ui + ) + i + )] (:c)}
:ia“Ui(x + 0Ty (a + z’)Uj(x)}

:w“Ui(:c + O)U;r(x)ﬂjk(x)}
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