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Coastal hypoxia (dissolved oxygen ≤ 2 mg/L) is a growing problem
worldwide that threatens marine ecosystem services, but little is
known about economic effects on fisheries. Here, we provide evidence
that hypoxia causes economic impacts on a major fishery. Ecological
studies of hypoxia and marine fauna suggest multiple mechanisms
through which hypoxia can skew a population’s size distribution to-
ward smaller individuals. These mechanisms produce sharp predictions
about changes in seafood markets. Hypoxia is hypothesized to de-
crease the quantity of large shrimp relative to small shrimp and in-
crease the price of large shrimp relative to small shrimp. We test these
hypotheses using time series of size-based prices. Naive quantity-
based models using treatment/control comparisons in hypoxic and
nonhypoxic areas produce null results, but we find strong evidence
of the hypothesized effects in the relative prices: Hypoxia increases the
relative price of large shrimp compared with small shrimp. The effects
of fuel prices provide supporting evidence. Empirical models of fishing
effort and bioeconomic simulations explain why quantifying effects of
hypoxia on fisheries using quantity data has been inconclusive. Spe-
cifically, spatial-dynamic feedbacks across the natural system (the fish
stock) and human system (themobile fishing fleet) confound “treated”
and “control” areas. Consequently, analyses of price data, which rely
on a market counterfactual, are able to reveal effects of the ecological
disturbance that are obscured in quantity data. Our results are an
important step toward quantifying the economic value of reduced
upstream nutrient loading in the Mississippi Basin and are broadly
applicable to other coupled human-natural systems.
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Fertilizer use in coastal watersheds and agriculture intensification
contribute to a growing incidence of coastal ecological distur-

bances (1–4). Of particular concern is coastal hypoxia [dissolved
oxygen (DO) ≤ 2 mg/L] and potential impacts on marine fauna
(1–4). The Western Hemisphere’s largest area of seasonal hypoxia
is in the Gulf of Mexico (GoM; >20,000 km2) and overlaps with
what was once the highest value fishery in the United States (brown
shrimp) (www.st.nmfs.noaa.gov/commercial-fisheries/index) (5–7).
Because controlling nutrient runoff upstream is costly, identifying
and quantifying economic benefits downstream, including benefits
to commercial fisheries, are essential for policy analysis (www.st.
nmfs.noaa.gov/commercial-fisheries/index) (8–10). Although studies
demonstrate ecological effects of hypoxia, economic consequences
have not been established in this fishery.
GoM brown shrimp (Farfantepenaeus aztecus) provide a unique

opportunity to study the economic effects of hypoxia. First, the
fishery is concentrated in regions of the GoM that become hypoxic
seasonally (7) (SI Appendix, Figs. S1 and S2). Second, the temporal
dynamics of brown shrimp and hypoxia match. Within season,
harvest and hypoxic severity both peak in the summer, whereas
across seasons, both the extent of hypoxia and shrimp populations
exhibit substantial variation (5, 6, 7, 10, 11). This overlap highlights

the potential significance of GoM hypoxia for the fishery but also
the challenge of identifying its effects. Third, biological mechanisms
that link hypoxia to shrimp abundance produce sharp predictions
about the shrimp market. Bioenergetic consequences of hypoxia
likely translate into impaired growth (12–16), reducing the average
size of shrimp in the population. Shrimp also aggregate along the
edges of the hypoxic area such that segments of the population are
exposed to increased catchability early in the season when shrimp
are small (12–14). Both mechanisms decrease the relative quantity
of large shrimp, and thus increase the relative price of large shrimp
(Fig. 1). In contrast, a positive recruitment shock increases (and a
negative shock decreases) the number of shrimp that recruit into
the fishery, and thus supply of both large and small shrimp, pro-
ducing ambiguous predictions about relative quantity and price
changes (Fig. 1). Recruitment shocks that alter the total number of
individuals in the fishery could reflect changes in reproductive
success, juvenile survival due to predation, or other environmental
conditions in nursery grounds. Finally, the availability of fine-scale
shrimp market data allows us to test the causal effects of hypoxia.
Shrimp are sold in consistently used size-based categories defined
by number of shrimp per pound, providing data on prices and
quantities by size on a scale that is rarely available for other species
(Fig. 2 and SI Appendix, Table S1 A and B).
Although numerous effects of hypoxia on harvested marine

species have been demonstrated, scientists have had difficulty
linking large-scale, seasonal hypoxia to fishery losses (3). The
areal extent of GoM hypoxia is negatively correlated with aggregate
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gulf-wide shrimp landings (7). Within the region most affected by
hypoxia, these correlations are weaker and suggest negative effects
on large shrimp and positive effects on small shrimp (SI Appendix,
Table S2). Because establishing a causal effect of hypoxia requires a
valid counterfactual, aggregate fishery landings are insufficient be-
cause so many environmental, economic, and institutional factors
influence fishery outcomes (3, 10, 17, 18). Economic studies of
other, smaller fisheries have found modest economic losses from
hypoxia (17–20). For example, North Carolina brown shrimp ex-
perience low DO as juveniles and are caught as adults in oxygenated
waters. The lagged response decreases catch by 13% (19), but
economic value declines only 3.5% due to the mediating effect of
human (fishing) behavioral responses to the natural system (17).
Data disaggregated by shrimp size, time within the season, and

space provide new insights. All impact evaluations begin with a
choice of which outcome or outcomes to measure. Moreover, which
outcomes are relevant and feasible to track depend on feedbacks
across the human and natural systems. Our theoretical model (Fig.
1) indicates that counterfactual outcomes (i.e., what would happen
in the absence of hypoxia) could be defined in either terms of
quantities landed or prices of small and large shrimp. A naive ap-
proach to analyze quantities would be to construct a quasi-experi-
ment (a treatment effects model) based on spatial variation:
Compare catches in a hypoxic location (treated) with catches in a
nonhypoxic location (control) before and after the onset of hypoxia.
We estimate this naive quantity-based model using difference-in-
differences (DiD), which is a generalization of a before-after control
impact (BACI) design. We then estimate models of fishing effort to
evaluate the stable unit treatment value assumption (SUTVA) that
is maintained in the naive model. The SUTVA requires that the
treatment does not also affect control units. To contextualize the
quantity-based results further, we run spatial-dynamic bioeconomic
simulations in which, by construction, the counterfactual outcomes
are known. We identify conditions under which SUTVA violations
are consequential in coupled spatial-dynamic systems. Finally, we
test the price-based implications of our theoretical model using time
series analysis and a market-based counterfactual.

Results
The naive quantity-based analysis shows some evidence that con-
temporaneous hypoxia increases the catch of large shrimp but no
evidence that contemporaneous hypoxia affects overall shrimp

catch and no evidence of long-term impacts of hypoxia on
shrimp catch (SI Appendix, Tables S3–S7). In summary, the
treatment effects models produce null results. It is possible that
the null results are valid and that hypoxia has no significant
impact on the GoM shrimp fishery due to compensating re-
sponses by both the shrimp and the fishers. It is also possible that
the SUTVA is violated in a way that significantly biases the re-
sults and leads to a null finding.
Analyses of fishing effort provide empirical evidence for viola-

tions of the SUTVA in the naive quantity-based analysis, which may
account for null results. Effort response to profitability creates
feedbacks between the human (fishing fleet) and natural (shrimp
population) systems that undermine quasi-experimental approaches
to observational data (10, 21). When an area becomes hypoxic, the
increased catchability along the edge draws fishing effort into the
area and away from nonhypoxic areas (12–14), changing the fishing
effort in both places relative to the counterfactual. Dynamically,
exposure to hypoxia impairs shrimp growth, changing the abun-
dance and size structure of shrimp in the treated areas, thereby
changing incentives and the resulting spatial behavior of fishermen.
Because licensed commercial shrimp vessels can fish anywhere in
the GoM brown shrimp fishery (i.e., off both the Louisiana and
Texas coasts), fishing effort can substitute in or out of areas that we
otherwise would expect to be unaffected by hypoxia. Estimates from
panel data models of fishing effort as a function of contempora-
neous and past hypoxia, as well as hypoxia in an adjacent area, show
evidence of fleet-sorting behavior that would violate the SUTVA
(SI Appendix, Tables S8–S13). Evidence for treatment/control
contamination is strongest in models with the typical (<2.0 mg/L)
hypoxia threshold. We also find empirical evidence for sorting be-
havior in the spatial discrete choice model of the GoM shrimp fleet
behavior (SI Appendix, Table S3).
However, the SUTVA does not strictly hold in many treat-

ment effects applications. Whether these models can be used to
estimate reasonable causal relationships hinges on whether this
contamination is small relative to the causal impact of treatment.
We have shown that there is effort sorting based on hypoxia that
could contaminate the control groups. Empirical evidence from a
similar fishery (North Carolina brown shrimp) demonstrates that
fishing behavior feeds back on the seasonal dynamics of the stock
size and structure (22). We use a spatial-dynamic bioeconomic
simulation to evaluate whether SUTVA violations are likely to be
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Fig. 1. Stylized model of the small and large shrimp markets. (Top) Short-
run negative recruitment shock that decreases the abundance of new shrimp
recruited into the fishery decreases the supply of both small and large shrimp
(from S0 to S1). Holding demand (D) for each size class constant, both small and
large shrimp prices (Ps and PL) increase. Predictions about the relative price
change (PL/Ps) are ambiguous. (Bottom) Hypoxia shock increases the supply of
small shrimp and decreases the supply of large shrimp due to aggregation (12)
and bioenergetics effects on growth (13, 14). Holding D constant for each size
class, Ps decreases and PL increases. The relative price (PL/Ps) increases un-
ambiguously. The figure depicts the case of perfect market substitution between
small and large shrimp, but the predictions hold for imperfect substitutes, PL =
α(Ps)

γ, where α > 0 is a constant and 0 ≤ γ ≤ 1 represents the degree of sub-
stitution, with γ = 1 being a perfect substitute (SI Appendix).
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Fig. 2. Monthly nominal brown shrimp prices by market size. GoM shrimp
landings are sold in market categories based on number of shrimp per
pound (Dataset S1). A smaller number of shrimp per pound indicates larger
individual shrimp. The larger categories fetch higher prices (SI Appendix, Table
S1B). Although price spreads fluctuate in the short run, price relationships across
size categories are stable in the long run (23) (SI Appendix, Tables S14 and S15).
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severe, thereby rendering estimates from quantity-based treatment
effects models unreliable (10) (SI Appendix, Figs. S3 and S4).
The degree of treatment/control contamination depends on the

extent of fishing responsiveness to expected revenues in the coupled
system. The marginal rate of substitution (MRS) between the dis-
tance and expected revenue (the ratio of the distance and expected
revenue coefficients) captures this responsiveness. When the fleet is
highly responsive, it takes less expected revenue to move vessels
(MRS = 4 km per dollar) and contamination is severe (SI Appendix,
Fig. S3). With less responsiveness, more revenue is necessary to
move vessels (MRS = 40 km per dollar), contamination is mild, and
naive DiD on quantities will be nearly unbiased (SI Appendix, Fig.
S4). The larger MRS is less responsive because, holding the distance
coefficient fixed, the expected revenue coefficient is smaller. Em-
pirical estimates are consistent with the high responsiveness. The
mean MRS, which is vessel-specific, is 0.4 km per dollar, implying
an order of magnitude more responsiveness than the severe con-
tamination scenario in the simulation (SI Appendix, Fig. S3). Of the
3,576 vessels with at least two trip records during our sample period,
3,464 vessels (96.9%) appear more responsive to revenues than the
cutoff for severe contamination (MRS = 4 km per dollar) and only
seven vessels (0.2%) are less responsive than the mild contamina-
tion cutoff (MRS = 40 km per dollar). Simulation results combined
with empirical evidence of sorting in panel data and discrete choice
models imply that treatment effects from quantity-based models are
highly unreliable in this setting.
In contrast to inferring causation from quantities landed, long-

run shrimp price relationships provide a market-based counterfac-
tual that does not require the SUTVA for validity (23) (Fig. 2).
Rather, price-based tests rely on stable long-run relationships be-
tween shrimp prices in different size classes. To test for impacts of
hypoxia, we analyze monthly brown shrimp prices in each of six size
categories from January 1990 through March 2010 (SI Appendix,
Table S1B). We first establish that long-run price relationships (Fig.
2) are stable according to bivariate cointegration tests (24) (SI
Appendix, Tables S14 and S15). These tests imply that in the ab-
sence of any exogenous shocks to the fishery, short-run deviations
from these relationships would be purely random.
The test of impacts of hypoxia now centers on whether an exog-

enous shock from increasing or decreasing the areal extent of hypoxia
affects the short-run relative prices of large and small shrimp. The
results show that hypoxia explains short-run departures from long-
run price relationships exactly as theory predicts (Fig. 1). Hypoxia
unfolds continuously over time: Within each year, it builds up as
summer approaches and dissipates in the winter months, and across
years, its spatial extent varies. Results indicate that more severe
hypoxia causes short-run increases in large shrimp prices compared
with small shrimp prices (Fig. 3 and SI Appendix, Tables S16–S23).
As markets adjust, short-run price deviations dissipate, presumably as
fish buyers are able to secure more imports or shrimp from other US
fisheries. Many of the coefficients are in the neighborhood of 0.01,
which means that a 1,000-km2 increase in the hypoxic area (a roughly
6% increase from the mean) triggers a 1% increase in the large
shrimp price. Separate multivariate regressions for each large and
small shrimp combination, two hypoxia measures, and two definitions
of the dependent variable yield (3 × 3 × 2 × 2 = 36 regression results)
(Fig. 3). In total, we run models for the nine pairwise size combi-
nations: the two interpolation schemes, relative prices and prices in
levels, two methods for calculating SEs (weighted least squares and
Newey–West), and three different definitions of areal extent of
hypoxia (1.5 mg/L, 2.0 mg/L, and 2.5 mg/L) plus a volumetric mea-
sure (2.0 mg/L) (9 × 2 × 2 × 2 × 4 = 288 regression results) (SI
Appendix, Tables S16–S23). Our results are highly robust. Statistically
significant hypoxia coefficients occur across a wide range of different
pairwise price comparisons and model specifications.
Furthermore, negative coefficients on fuel price indirectly sup-

port use of a market-based counterfactual (SI Appendix, Tables
S16–S23). Exogenous increases in fuel prices reduce fishing effort,
allowing more shrimp to escape capture and to reach larger sizes
later in the season (10, 11, 22), increasing the catch of large shrimp
and reducing the large shrimp price (Fig. 1).

Discussion
We analyze the impact of a large-scale environmental change
(GoM hypoxia) on a natural resource sector (the GoM shrimp
fishery). The singular challenge of conducting causal inference us-
ing observational data is to identify the counterfactual outcome: in
our case, what would have happened in the absence of GoM hyp-
oxia. We adopt a market counterfactual that theoretically combines
ecological evidence about the effects of hypoxia with a multimarket
model of size-based shrimp pricing. We find strong evidence in time
series of prices that hypoxia causes economic effects. These effects
could not be identified in a DiD model of quantities because
feedbacks in the coupled human-natural system cause treated zones
to contaminate control zones. The mechanism driving contamina-
tion is the fishing fleet’s dynamic response to profit opportunities
over space. When some areas become hypoxic, the fishing fleet sorts
into or out of other areas that are otherwise unaffected by hypoxia,
rendering candidate control areas changed and thus contaminated.
Whether contamination is severe enough to cause practical prob-
lems (large bias) for causal inference is an empirical question. We
show that contamination is problematic in our setting by combining
insights from a spatial-dynamic bioeconomic simulation, a panel
model of fishing effort, and a discrete choice model of fishing lo-
cation. Consistent with these findings, the naive DiD model pro-
duces null results. Time series analyses of prices, in contrast, are
immune to this spatial contamination because the counterfactuals
are based on the GoM-wide market, not on the stock of the re-
source in different locations over time.

Fig. 3. Hypoxia increases large shrimp prices. Point estimates (circles) and 95%
confidence intervals (lines) for the impact of hypoxia on large shrimp price in
multivariate regressions usingmonthly data (SI Appendix, Tables S16 and S22) and
weighted least squares are shown. Large (L) and small (S) shrimp are sold as the
number of shrimp per pound. Small shrimp categories are 30–40 per pound (gray),
40–50 per pound (orange), and 50–67 per pound. (blue). (Left) Dependent vari-
able is the natural logarithm of large brown shrimp price, and independent
variables include the natural logarithm of small brown shrimp price, fuel price, sea
surface temperature, hypoxia, and monthly fixed effects. (Right) Dependent
variable is the natural logarithm of large-to-small relative brown shrimp price, and
independent variables include fuel price, sea surface temperature, hypoxia, and
monthly fixed effects. The horizontal axis in both panels labels the relevant large
shrimp market category for regression, and each line result reflects a different
combination of the small shrimp comparison group and the measure of hyp-
oxia. The vertical axis reports the percentage of change in the large shrimp price
[dln(PL)] (Left) or large-to-small relative brown shrimp price [dln(PL/PS) (Right) as-
sociatedwith a 1,000-km2 areal increase in themonthly hypoxia variable (dA) (Top)
or a 1,000-km3 volume increase in themonthly hypoxia variable (dV) (Bottom). The
monthly hypoxia measures are linearly interpolated annual snapshots of areal or
volumetric extent of hypoxia (5) from July to the following July.
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Across time series models, hypoxia coefficients are consistently
positive. Only 11 of 288 estimated hypoxia coefficients are negative,
and of these coefficients, just one is statistically significant (at the
10% level). Although the results tend to be stronger when the de-
pendent variable is the natural log of the large shrimp price (rather
than the relative price of large shrimp to small shrimp) (SI Ap-
pendix, Tables S16–S23), the main conclusions hold for both defi-
nitions of the dependent variable. These conclusions are also
invariant to the interpolation scheme, areal extent versus volumetric
extent of hypoxia, DO cutoff for areal extent of hypoxia, and
whether or not quantity weights are used in the models.
Although Fig. 1 does not predict specific magnitudes of hypoxic

effects across size classes, effects appear less pronounced for the
largest shrimp size class (0–15 shrimp per pound). A possible ex-
planation is that 0–15 shrimp are substantially more expensive in
absolute terms. So, a 1% change in price for the largest shrimp
translates into a large absolute change compared with smaller size
classes. Also, the markets for 0–15 shrimp are thin; that is, the
trading volume for the largest shrimp is low, which could introduce
more volatility and thus make it harder to resolve short-run dis-
turbances attributable to hypoxia. The fact that the results are
stronger for the weighted least squares regressions for 0–15 shrimp
(and comparable for other size classes) provides some indirect
support for this explanation. A related point is that the 0–15 shrimp
are a unique product and, as a consequence, are potentially less
integrated with other shrimp markets. We see some evidence of less
integration in the low P value for the Law of One Price in the 0–15/
30–40 comparison (SI Appendix, Table S15, column G).
Negative fuel price coefficients provide supporting evidence for

the validity of using price-based models to infer the causal impact of
hypoxia. People fish less with higher fuel prices; as a result, more
small shrimp escape to larger size classes, putting downward pres-
sure on the price of large shrimp. Fuel price coefficients are neg-
ative in all 144 models with the logarithm of large shrimp price as
the dependent variable and statistically significant in 142 of those
models. For the relative price models, the results are more mixed,
although the only counterexamples (positive and significant fuel
price coefficient) are for the 0–15/30–40 comparison, the same
market that showed weaker results on the hypoxia coefficient.
There are limitations of the price analysis. First, use of an annual

hypoxia measure potentially introduces errors-in-variables bias. In a
univariate model, this effect would attenuate the hypoxia coefficient
(decrease its magnitude) and reduce the likelihood that it is statistically
significant. Under plausible conditions, this result generalizes to mul-
tivariate settings. Thus, the fact that we find strong statistical evidence
for the effects of hypoxia on large shrimp prices suggests that the
actual effects are quite pronounced and may be larger in magnitude
than what we are able to quantify. Second, the global nature of the
shrimp market implies that the price effects of hypoxia are transitory.
Per capita consumption of shrimp in the United States is higher than
any other seafood product, and roughly 80% of that consumption is
imported (23). Short-run hypoxia-induced price changes do not last
because buyers can source more product from imports. That process is
not instantaneous, such that our models are able to reveal effects of
hypoxia in monthly observations. Thus, economic data can indicate
when a consequential ecological disturbance has occurred locally in
the presence of a highly integrated global market for the affected
resource, but a reasonably high level of temporal resolution is re-
quired. Third, the price analysis does not provide complete in-
formation for a policy analysis. An ideal claim for policy analysis would
be something like “reducing nutrient runoff X% leads to economic
benefits for shrimp (and other) fisheries of $Y.” The science of causal
inference using observational data on spatial-dynamic systems is not
sufficiently advanced to make such a claim at this point.
Our modeling demonstrates that the interaction between

economic and ecological phenomena is more nuanced than a
traditional approach to causal inference would imply. Because
spatial sorting of the fishing fleet contaminates candidate control
sites, we do not have estimates of quantity changes due to hyp-
oxia. We also do not have enough spatiotemporal resolution in the
environmental data to develop a structural empirical bioeconomic

model of hypoxia and its effects on GoM fisheries. Nevertheless, we
are able to show causal effects of hypoxia on shrimp markets, pro-
viding an important step toward quantifying the full economic con-
sequences of nutrient pollution. This step significantly improves on
simple correlation analysis that has neither theoretical nor empirical
grounding in causation. A complete policy analysis of GoM hypoxia
will require methodological developments in causal inference for
coupled human-natural spatial-dynamic systems as well as increased
efforts to measure and model DO over space and time in the GoM.
Departures from stable price relationships could reveal im-

pacts of an ecological disturbance on other fisheries. Whether re-
searchers can identify impacts from prices depends on the fisheries,
the seafood markets, and data availability. Blue crabs (Callinectes
sapidus) in North Carolina estuaries and in the Chesapeake Bay are
exposed to varying levels of hypoxia (18). They are sold as hard, soft,
and peeler (crabs in the process of molting). A substantial premium
for soft and peeler crabs exists (the nominal 2014 Chesapeake Bay
price for soft and peeler blue crabs was $3.63 per pound compared
with $1.61 per pound for hard-shell crabs), but the markets are
connected. Because laboratory studies demonstrate that hypoxia
affects blue crab molting (25), prices could test for effects of hypoxia
on blue crabs following the logic of our GoM shrimp analysis. A
larger scale phenomenon is the effect of the El Nino-Southern
Oscillation (ENSO) in the Pacific on the productivity of Peruvian
anchoveta (Engraulis ringens), the world’s largest fishery by quantity.
The anchoveta is a small, bony pelagic fish that is mostly reduced to
fishmeal. Traditionally, fishmeal was a part of the larger market for
vegetable meals that is dominated by soybean meal (26), and the
price of fishmeal relative to soybean meal was constant in the long
run. With increased demand for fishmeal from growth in aquacul-
ture, this relationship changes during ENSO periods (27, 28). An-
other intriguing large-scale possibility is the use of market-based
counterfactuals to analyze the effects of ocean acidification on
capture fishery and aquaculture production of calcifying organisms.
Nevertheless, not all disturbances will manifest in prices. A recent
assessment of the impact of the Fukushima nuclear disaster on the
Japanese markets for whitefish did not find price effects (29). In this
case, there is a clear quantity effect (decreased purchases of locally
caught Japanese fish) but no price change due to the highly in-
tegrated nature of the global whitefish market. Unlike our setting
with shrimp markets differentiated by size, the commodity nature of
whitefish allowed Japanese companies to replace domestic supplies
with imports of other whitefish without bidding up the prices of
individual products.
The problem of treatment/control contamination in coupled

spatial-dynamic systems is generic and warrants further scientific
attention. The sorting mechanism that poses identification problems
in our quantity-based model applies to other spatially explicit shocks
and interventions that influence human/environment interactions.
Technological disasters, such as oil spills; policy interventions, such
as forming a marine protected area; or a natural disaster, such as a
major hurricane, could affect resource stocks in seemingly un-
affected locations through human/natural feedbacks; that is, a dis-
turbance occurring in a particular place at a particular time can
induce sorting behavior of the fishing fleet. Other locations far from
the oil spill, outside the marine reserve, or regions unaffected by the
hurricane are problematic controls if sorting behavior reaches them.
For oil spills and marine reserves, one might expect more fishing
effort in the unaffected areas, whereas for hurricanes, one might
expect less fishing effort. The economics literature on marine re-
serves explicitly raises concerns about this mechanism, but the
marine conservation literature ignores it (10, 30, 31).
The logic extends to terrestrial systems. For example, if a re-

searcher uses areas outside a protected area to identify effects of
protection on deforestation, sorting effects on the timber industry or
fuel-wood gathering could contaminate the control areas. Re-
searchers have acknowledged this potential bias in evaluating the
effects of terrestrial protected areas on deforestation (32). However,
corrections for the bias assume that spillovers are local and not part
of a spatial-dynamic system. As such, the SUTVA is invoked for
nonlocal control sites without an explicit conceptual model of the
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coupled system. In all coupled spatial-dynamic systems, spatial
identification in traditional DiD models may be possible if spatial
sorting is minimal. However, when sorting (or spatial dispersal of
the resource) is substantial, researchers should be skeptical of
treatment effects or BACI-style estimates of impacts and explore
alternative approaches to identification, including the use of
market counterfactuals.

Materials and Methods
Naive Treatment Effects Models.Hypoxia is firstmodeled as a natural experiment
from which one might naively expect to identify causal effects of the ecological
disturbance on shrimp quantities landed. “Treated” areas are ones that experi-
ence hypoxia, whereas “control” areas are ones that remain oxygenated.We use
fine-resolution data both spatially (zones defined below) and temporally (daily).

The National Oceanic and Atmospheric Administration’s shrimp com-
mercial landings (SHRCOM) database records, on a trip basis, landed weight
and landed value for each shrimp species within each of 10 size classes that
reflect standard market categories. Two size classes are not useful for most
of our analysis (unclassified and pieces). The remaining classes correspond to
the number of shrimp per pound: (i) <15, (ii) 15–20, (iii) 20–25, (iv) 25–30,
(v) 30–40, (vi) 40–50, (vii) 50–67, and (viii) >67.

Landings in the SHRCOM data are assigned to National Marine Fisheries
Statistics “subareas.” The SHRCOM database also contains the depth at
which shrimp are caught. This information overestimates the amount of
shrimping effort in the midshelf region (33), so we aggregate the depth
indicator into three bins that redistribute some of the midshelf effort to
near-shore and offshore bins. Combining depth information with statistical
subareas yields depth-zone/subarea polygons (SI Appendix, Fig. S1).

We use two distinct sources of variation in hypoxia severity: seasonal variation
within year and spatial variation across years (6, 13, 14). Hypoxia is defined by
whether an observation in the polygon has DO< 2mg/L during the summer or fall
Southeast Area Monitoring and Assessment Program (SEAMAP) survey (34). We
refer to this measure as a thresholdmeasure. Because the SEAMAP survey provides
data only twice during the year (summer: June–July, fall: October–November), we
extrapolate hypoxia for the remaining months of the year. In effort models (be-
low), we create alternative definitions based on polygon averages, as well as two
different cutoff points (<1.5 mg/L and <2.5 mg/L). We use SEAMAP data for 1986
through 2009, noting that we truncated the sample in 2010 to avoid confounding
effects of the Deepwater Horizon incident (SI Appendix, Fig. S2).

Catch (C) is conditional on whether zones are hypoxic (H) or nonhypoxic
(N). With just two zones, the average effect of hypoxia on catch is:

fE½C1jH�− E½C0jH�g− fE½C1jN�− E½C0jN�g, [1]

where subscripts 1 and 0 indicate time with 1 = after hypoxia and 0 = before
hypoxia. Nonhypoxic zones provide counterfactuals for hypoxic zones, dif-
ferencing out seasonal variation in fishing outcomes shared across hypoxic
and nonhypoxic zones. The treatment effect is identified using DiD (31, 35–
38), and the estimating equation is:

lnCjmy = βlnEjmy +dj +dy +dm +djy +djm + γ0Hjmy +
Xτmax

τ=1

γτHjðm−τÞy + «jmy . [2]

E is effort, j indexes the spatial location (combination of subarea and depth
zone), m is month, y is year, d terms are fixed effects that capture different
combinations of location and time, H is a binary variable to indicate whether
the location is hypoxic in month m and year y, τ is the lag length, τmax is the
maximum lag length considered, and « is a random shock. The dependent
variable is defined in four different ways: aggregate catch, large shrimp
catch, medium shrimp catch, and small shrimp catch (SI Appendix).

To address endogenous fishing effort, we use instrumental variables and
construct an instrument for effort using a conditional logit model (39) with
alternative specific constants (40, 41). The deterministic portion of the choice
model (v) is defined for each individual vessel (i = 1, 2, . . . I), for each choice
(j = 1, 2, . . . J), on each day (t = 1, 2, . . . T):

vijt = δj +Xtθ1 +Yijθ2 + Zjtθ3. [3]

There are alternative-specific constants (δj) and covariates that vary over just
time X (shrimp price, fuel price), individual and location Y (travel distance),
and location and time Z (expected revenue and catch, wave height). Results
of the logit model generate predicted effort for each zone-time combination.
Predictions use a daily time step in which all of the covariates are exogenous, and
the predicted probabilities are aggregated across individual vessels and time to
arrive at monthly predicted effort. The choice structure follows the naive

treatment effects model with three depth bins and 10 statistical areas for a total
of 30 discrete locations. We also include the choice of not fishing (42) for a total
of 31 choices (j = 1, 2, . . ., 31). Following Smith et al. (40) and Zhang and Smith
(43), we assume that daily choices are independent.

The treatment effects model spans January 1986–March 2010 for a total of
291 mo. The discrete choice model is daily, from January 1, 1986–April 19,
2010, so there are 8,875 days in our choice model (SI Appendix).

Diagnosing Treatment/Control Contamination. A key assumption in treatment
effects models is the SUTVA, which means that treatment does not affect the
control. Sorting behavior in the discrete choice model calls into question the
SUTVA. To examine this issue further, we estimate panel models of fishing
effort with two-way fixed effects (zone-depth and year-month) that include
hypoxia status as a covariate. Across models, we use average and threshold
measures and three different cutoffs (DO < 1.5 mg/L, DO < 2.0 mg/L, and
DO < 2.5 mg/L). Using nomenclature from Eq. 2, the estimating equation is:

Ejmy =dj +dy +dm +djy +djm + γ0Hjmy +
Xτmax

τ=1

γτHjðm−τÞy + γτmax+1Hðj−1Þmy + «jmy .

[4]

Hypoxia enters different models contemporaneously, lagged in time, and
lagged in space. If the SUTVA holds, no hypoxia coefficient should be sta-
tistically different from zero.

A spatial-dynamic bioeconomic simulation of the GoM brown shrimp fishery
illustrates the potential for treatment/control contamination by analyzing the ef-
fects of hypoxiaon landings across space, time, and size classes. Themodel is anage-
and size-structured bioeconomic model of brown shrimp (10). Each year, shrimp
recruit exogenously to each of nine zones. They grow and experience natural and
fishing mortality throughout the year. The nine zones reflect stylized, qualitative
patterns in the spatial and temporal dynamics of hypoxia: One zone is seasonally
hypoxic in every year, two zones are never hypoxic, and the remaining six zones
are hypoxic in some years but not in others (based on random draws).

Three biological consequences of hypoxia are modeled in the stock dynamics:
(i) Hypoxia increases mortality, (ii) hypoxia slows the growth of shrimp (flatter
slope of the von Bertalanffy growth function), and (iii) hypoxia leads to aggre-
gation of shrimp (increased catchability). Shrimp prices are exogenous but size-
dependent, with larger shrimp fetching higher prices. Effort responds endoge-
nously to distance to fishing grounds (the different zones) and to spatiotemporally
explicit expected revenues, which are driven by size-specific abundance, catch-
ability, and prices. Spatially explicit effort in each time period, in combination with
the associated spatially explicit stock, produces spatially explicit fishing mortality,
which feeds back into expected revenues in the next time period. Details on the
analytical structure, parameterization, and model fit with observational data are
provided in a study by Smith et al. (10). The model extension here distributes
shrimp recruitment over 100 d and tracks individual daily shrimp cohorts as they
grow and are differentially exposed to hypoxia over time and space.

Time Series Analysis of Prices. In time series models, we aggregate all data
spatially and focus on the entire GoM brown shrimpmarket. We use a continuous
annual measure of areal extent of hypoxia (mean DO < 2.0 mg/L) (5) and then
interpolate the annual measure to the monthly scale in two ways: a linearly in-
terpolated annual snapshot of the areal extent of hypoxia in square kilometers (5)
from July to the following July and a linearly interpolated annual snapshot of
areal extent of hypoxia in square kilometers (5) from July down to zero in January
and up to the next year’s annual snapshot in the following July. As robustness
checks, we create three other hypoxia measures with the same two interpolation
schemes (areal extent< 1.5mg/L, areal extent< 2.5mg/L, and volumetric extent<
2.0 mg/L). We use monthly prices of brown shrimp from the GoM fishery from
January 1990 to March 2010. Although we have access to shrimp prices from
earlier and later periods, we truncate the series in this manner for two reasons.
First, the annual measure of hypoxia has a gap in 1989 because no data were
collected in that year. This gap poses problems for time series models and would
require interpolation across an entire year without any data. Second, the Deep-
water Horizon incident and associated fishery closures occurred in April 2010.

The price data are aggregates from the SHRCOM database. Large shrimp
prices are represented by the <15, 15–20, and 20–25 cohorts, where cohort
refers to number of shrimp per pound as in previous sections. The small
shrimp prices are represented by the 30–40, 40–50, and 50–67 cohorts. In the
pairwise comparisons, we omit the size category 25–30. We include diesel
price as a covariate due to its importance in influencing shrimping effort and
sea surface temperature, which could influence abundance patterns and be
correlated with hypoxia (SI Appendix, Table S1B).

We test that individual shrimp price series are nonstationary in levels but
stationary in first differences (23, 44, 45). This test examines whether
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spurious correlations could be induced by regressing levels of shrimp prices
on covariates such as hypoxia. We next test for whether pairwise small and
large shrimp prices are cointegrated and that size-based prices are pro-
portional to each other (24, 46). Cointegration implies that when regressing
a large shrimp price on a small shrimp price, the residuals are stationary and
spurious correlation is not an issue. These two steps provide justification for
our analysis of the effects of hypoxia on shrimp prices because they establish
stable long-run price relationships as a market counterfactual. Regressing
large shrimp price on small shrimp price and hypoxia then becomes a test of
whether hypoxia causes a departure from this stable long-run relationship.
The regression models take one of the two following forms that capture
different degrees of substitutability between large and small shrimp (Fig. 1):

lnPL,t =α+ βHk,t + γlnPS,t +Xtθ+ «L,t , [5]

ln
�
PL,t

�
PS,t

�
= α+ βHk,t +Xtθ+ «L,t . [6]

P is price per pound of brown shrimp, α is a constant, β is the hypoxia
parameter of interest, H is hypoxia (areal or volumetric extent and either

of two temporal interpolations), k is the interpolation scheme used in
the model, L is the large size category, S is the small size category, γ
is the parameter on small shrimp price, Xt contains the other covariates
with associated parameter vector θ, and «L,t is a stationary error term
(SI Appendix).

Our models control for other factors that influence either demand for or
supply of domestic shrimp. Seasonal dummies account for seasonality of
demand and seasonal pattern of the annual fishery. For the supply side, we
include sea surface temperature, which could influence recruitment, and fuel
prices, which are the major driver of variable costs and thus influence total
fishing effort. All other demand and supply shocks (other than hypoxia) are
captured in the random error term, which is assumed to be transitory.
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