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1 Introduction

Extreme magnetic fields with strengths estimated to reach up to 1019 G can exist in the

universe, most notably in the terrestrial relativistic heavy ion collision experiments, and in

the interiors of certain neutron stars: the magnetars. Since the energy scale associated with

such magnetic fields is comparable to the characteristic scale of strong nuclear interactions,

this fact has prompted intensive work on the structure of the phase diagram of quantum

chromodynamics (QCD) in presence of magnetic fields (see ref. [1] for a recent review).

While most of the efforts have focused on the effect of the magnetic field on the

chiral order parameter of QCD and the chiral phase transition at high temperature and

zero baryon chemical potential, it was noticed early on that a nonzero chemical potential

combined with the magnetic field leads to a qualitative change of the QCD ground state [2].

Namely, by virtue of the chiral anomaly, sufficiently strong magnetic fields lead to a spatially

nonuniform condensate of neutral pions, which takes the form of a soliton lattice and can

be energetically favored over normal nuclear matter [3, 4]. A number of recent publications

is devoted to a detailed investigation of this new state of matter [5–7].

In this paper, we draw inspiration from the above studies and investigate the effects

of the chiral anomaly on the low-energy dynamics and low-temperature thermodynamics

of QCD in strong magnetic fields and zero baryon chemical potential. In this case, the

structure of the uniform, chiral-symmetry-breaking QCD vacuum remains unaltered, at

least for magnetic fields B . m2
ρ ≈ 0.6 GeV2 [8]. At the same time, charged pions become

– 1 –



J
H
E
P
1
1
(
2
0
1
7
)
1
0
3

heavy as a consequence of the Landau level quantization. Hence, the low-energy physics

of QCD in presence of a magnetic field is dominated by neutral pions and photons. This

is an ideal system to test the effects of the chiral anomaly: the neutral pions do not couple

minimally to the electromagnetic field, and the anomaly thus provides the only interaction

between the two subsystems.

It is well known that in the vacuum, a neutral pion decays anomalously into two

photons. At the effective-field-theory (EFT) level, this process can be described by an

interaction term proportional to φεµναβFµνFαβ , where φ represents the neutral pion and

Fµν ≡ ∂µAν−∂νAµ is the usual electromagnetic field strength tensor. Our key observation

is that in presence of a background magnetic field, Bex, the same interaction leads to a

mixing between pions and photons. This is detailed in section 3 upon a brief overview

of the EFT setup in section 2. It turns out that one of the two photon polarizations is

insensitive to the presence of the background field and retains its relativistic dispersion

relation. It is easy to see that this mode carries electric field perpendicular to Bex, since

for such field configurations, εµναβFµνFαβ ∝ E ·B vanishes. The other photon polarization

mixes with the neutral pion, giving rise to two modes with nonrelativistic and anisotropic

dispersion relations. One of the two modes is gapless and, interestingly, its dispersion

relation becomes quadratic for directions of propagation perpendicular to Bex.

The following sections then present an analysis of some more directly observable con-

sequences of this anomaly-induced mixing between pions and photons. First, in section 4,

we evaluate the pressure of the system at nonzero temperature in the leading, one-loop

approximation. Intriguingly, there is a very simple closed analytic expression for the pres-

sure in the chiral limit (zero pion mass) despite the complicated dispersion relation of the

pion-photon modes. In section 5, we then analyze the effect of the magnetic field on the

above-mentioned anomalous electromagnetic decay of the neutral pion. Finally, in the con-

cluding section 6, we get back to some of the assumptions implicit to our analysis. First

we discuss the separation of scales corresponding to the charged and neutral pion sectors,

which defines the range of magnetic fields in which our EFT is applicable. Second, we

compare the anomalous contributions to the pion spectrum at the tree level to the normal,

one-loop corrections, neglected here.

Our main tool is the chiral perturbation theory [9–11], which governs the dynamics of

QCD at low energies and temperatures. Its predictions for observables are organized in

a derivative expansion, controlled by the parameter p/(4πfπ), where fπ ≈ 92 MeV is the

pion decay constant and p the characteristic momentum scale of the system. This limits the

validity of our results to temperature and magnetic field scales well below the scale of chiral

symmetry breaking. Moreover, we resort to the lowest-order approximations appropriate

for the given physical observable. Thus, the excitation spectrum in section 3 and the pion

decay in section 5 are analyzed at tree level, and thus include no feedback from the thermal

medium. The result for the pressure presented in section 4 then corresponds to a gas of

free quasiparticles with dispersion relations fixed to their zero-temperature values.

Throughout the paper, we use the natural units in which the Planck constant ~, speed

of light c as well as the elementary electric charge e are all set to one. The magnetic field

strength is given in the high-energy-physics units of 1 GeV2 ≈ 1.7× 1020 G.
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2 Low-energy effective theory

The leading order of the chiral perturbation theory Lagrangian for two quark flavors reads

LχPT =
f2
π

4

[
Tr(DµΣ†DµΣ) +m2

π Tr(Σ + Σ†)
]
. (2.1)

Here Σ is the unimodular and unitary 2 × 2 matrix field that includes the three physical

pion degrees of freedom and mπ is the pion mass. For the neutral pion, the physical value is

mπ ≈ 135 MeV. The minimal coupling of the charged pions to the electromagnetic field Aµ
is introduced through the covariant derivative, DµΣ ≡ ∂µΣ − i[Qµ,Σ], where Qµ ≡ Aµ

τ3
2 ,

and τ3 is the third Pauli matrix.

Throughout this paper, we will restrict ourselves to the neutral pion degree of freedom

φ, that is, replace Σ→ exp
(

i
fπ
φτ3

)
. The master Lagrangian that forms the basis of all the

subsequent arguments, is then given by

L =
1

2
(∂µφ)2 +m2

πf
2
π cos

φ

fπ
− C

8
φεµναβFµνFαβ −

1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2. (2.2)

The first two terms arise from the chiral perturbation theory Lagrangian (2.1). The third

term stems from the anomalous Wess-Zumino-Witten coupling of Σ to a background elec-

tromagnetic field and takes the given simple form when restricted to the neutral pion degree

of freedom [2]; we have defined

C ≡ 1

4π2fπ
(2.3)

for the sake of brevity. Finally, the last two terms in the effective Lagrangian (2.2) introduce

the dynamical electromagnetic field including the standard gauge-fixing term.

In the conventional derivative expansion, the pion field φ itself counts as order zero,

whereas any derivatives acting on it count as order one, and so does the pion mass mπ. In

contrast to the more common way of counting the powers associated with the electromag-

netic field, we will treat Aµ as an object of order zero just like φ. Note that this is consistent

with gauge invariance thanks to the fact that we only consider neutral pions here, and also

expresses the fact that we are looking at pion dynamics in strong background fields. The

master Lagrangian (2.2) then represents the complete effective Lagrangian at the leading,

second order of the derivative expansion. This way, including the Wess-Zumino-Witten

term in the leading-order Lagrangian is made consistent with power counting.

For the record, we write down explicitly the equations of motion following from the

Lagrangian (2.2). In the covariant relativistic notation, the equations for φ and Aµ read

�φ+m2
πfπ sin

φ

fπ
+
C

8
εµναβFµνFαβ = 0,

�Aµ −
(

1− 1

ξ

)
∂µ∂νA

ν − C

2
εµναβ(∂νφ)Fαβ = 0.

(2.4)

In order to find the physical interpretation of the various modes in the spectrum, it will

also be convenient to have at hand the nonrelativistic, gauge-invariant form of the classical
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equations of motion. Dropping the gauge-fixing term and trading the field strength tensor

Fµν for the electric and magnetic field E and B, the equations of motion take the form

φ̈−∇2φ+m2
πfπ sin

φ

fπ
= CE ·B,

∇ ·E = −CB ·∇φ, (2.5)

∇×B = Ė + CBφ̇− CE ×∇φ,

where dots stand for time derivative. These are the equations of axion electrodynamics [12].

3 Excitation spectrum

The excitation spectrum of a given system can be found using different approaches. In this

section, we use for that purpose the field equations of motion, which give the best insight

into the physical nature of the various excitation modes. Later on, we will rederive our

result for the dispersion relations from the propagator of the pion and photon fields.

As the first step, we shift the magnetic field by the uniform background, B → Bex+B,

and linearize the equations of motion (2.5) in the field fluctuations φ, E and B,

φ̈−∇2φ+m2
πφ = CBex ·E,

∇ ·E = −CBex ·∇φ,

∇×B = Ė + CBexφ̇.

(3.1)

Next, we carry out the Fourier transform to frequency-momentum space by introducing the

conjugate variables ω and p, and the corresponding Fourier components of the fields, ϕω,p,

eω,p and bω,p.1 Upon using the Bianchi identity to eliminate b in favor of e, b = 1
ωp× e,

and a brief further manipulation, the set of linearized equations of motion can be cast as

(−ω2 + p2 +m2
π)ϕ = CBex · e,

(ω2 − p2)e = Cϕ[p(p ·Bex)− ω2Bex].
(3.2)

This set of equations admits two classes of solutions:

• One solution with

ωγ(p) = |p|. (3.3)

This solution corresponds to the usual electromagnetic wave, characterized by ϕ = 0

and e · p = e ·Bex = 0. Its electric component is thus linearly polarized in the plane

perpendicular to the background field Bex.

• Two solutions with

ω2
±(p) = p2 +

1

2
(m2

π +B2
exC

2)±
√
B2

exC
2p2
⊥ +

1

4
(m2

π +B2
exC

2)2, (3.4)

1We will nevertheless drop the subscripts ω and p; since we use different symbols to denote fields in the

coordinate and momentum spaces, no confusion can arise.
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where p⊥ is the component of momentum transverse to Bex. These solutions have nonzero

ϕ as well as the electric field, related by

e = Cϕ
p(p ·Bex)− ω2Bex

ω2 − p2
. (3.5)

The structure of the spectrum is best understood by focusing first on modes propa-

gating along the magnetic field Bex. In this case, the residual SO(2) rotational symmetry

ensures that helicity is a well-defined quantum number. Consequently, the pion and photon

modes decouple. The dispersion relation ω− becomes degenerate with ωγ . Together, they

define the two usual transverse electromagnetic waves, polarized in the plane perpendicular

to Bex. Their propagation along the magnetic field Bex is unaffected by the anomaly as its

contribution to the Lagrangian (2.2), proportional to E ·B, now vanishes. The presence

of two gapless degrees of freedom in the spectrum can thus be considered a consequence of

gauge invariance just like in the vacuum of quantum electrodynamics (without background

magnetic field).

The remaining excitation propagating along Bex corresponds to a ϕ-wave, accompanied

by longitudinal fluctuations of the electric field, as dictated by eq. (3.5). The existence of

this electric component follows from the fact that a gradient of the pion field induces

nonzero electric charge density in presence of the magnetic background, see the equation

of motion (2.5). This pion-like mode has a gap,

meff ≡
√
m2
π +B2

exC
2, (3.6)

which remains nonzero even in the chiral limit. This can be understood as Schwinger mass

generation due to the 1+1-dimensional chiral anomaly, obtained from the 3+1-dimensional

anomaly by dimensional reduction in presence of the background magnetic field.2

Since the dispersion relations should be continuous functions of momentum, we can

conclude from the above discussion that there will be two gapless and one gapped mode

for arbitrary direction of propagation. The dispersion relation of the gapless ω− mode can

be expanded in powers of momentum as

ω2
−(p) = p2

‖ +
m2
πp

2
⊥

m2
eff

+
B4

exC
4p4
⊥

m6
eff

+O(p6
⊥), (3.7)

where p‖ is naturally the component of momentum in the direction of Bex. The anisotropy

of the dispersion relation becomes maximal in the chiral limit where the p2
⊥ term vanishes

and the dispersion relation in the transverse directions becomes quadratic.

At this point, we would like to remark that the observed anomaly-induced mixing of

photons with a pseudoscalar (here the neutral pion) is of course not a new concept. It has

in particular been known for a long time in the context of axion physics [13–15]. However,

the physical scale hierarchy is quite different in that context, and the interplay of the

extremely weak photon-axion interaction with the coherence of the photon beam results in

a photon-axion conversion rather than full mixing; see also ref. [16] for a related discussion

2We are grateful to the referee for suggesting this interpretation of the pion mass in the chiral limit.
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within neutrino physics. To the best of our knowledge, the actual mixing problem was

first analyzed in ref. [17], and solved therein for the special case of propagation in the

plane transverse to Bex. Our dispersion relations (3.4), valid for an arbitrary direction of

momentum, are a generalization thereof.

3.1 Alternative derivation

It is instructive to rederive the dispersion relations (3.4) directly from the covariant equa-

tions of motion (2.4); this allows us to introduce already now some notation that we will

make use of later in the calculation of the pion decay with. To make contact with that

follow-up quantum-field-theoretic calculation, we keep the gauge-fixing term in the equa-

tion of motion for Aµ, but select the Feynman gauge, ξ = 1, in which the equation takes a

particularly simple form.3

Denoting the Fourier component of Aµ as aµp , the linearized version of the equations

of motion (2.4) can then be written compactly as

(p2 −m2
π)ϕ− in · a = 0,

p2aµ − iϕnµ = 0,
(3.8)

where

nµp ≡
C

2
εµναβpνF

ex
αβ . (3.9)

The most straightforward way to solve these equations is to contract the second of them

with nµ and thereby eliminate ϕ in terms of n·a. This leads to two classes of solutions, which

are in a one-to-one correspondence with the solutions found above using the nonrelativistic

equations of motion (2.5):

• One solution with n · a = 0, for which ϕ = 0 and the momentum satisfies p2 = 0.

This is the relativistic linearly polarized photon.

• Two solutions with n · a 6= 0, for which momentum satisfies the covariant condition

p2(p2 −m2
π) + n2 = 0. (3.10)

Given that n2 = B2
exC

2(p2
‖ − ω

2), it is easy to check that this reproduces the dispersion

relations ω±(p) in eq. (3.4).

4 Pressure at one loop

Pressure is one of the most important observables relevant for both model calculations and

lattice simulations of the QCD phase diagram. In this section, we evaluate the thermal

part of the pressure of our system; in other words, we do not investigate the effect of the

3The dispersion relations of the physical modes are of course independent of such a choice of gauge.

However, we will later on also need the photon polarization vector, which does depend on the gauge.
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magnetic field on the zero-temperature pressure of QCD. At the leading, one-loop order of

the loop expansion, the pressure due to thermal excitations is given simply by

P = −T
3∑
i=1

∫
d3p

(2π)3
log
[
1− e−βωi(p)

]
, (4.1)

where the sum runs over all physical excitations in the system and ωi(p) are their respective

dispersion relations, here given by eqs. (3.3) and (3.4). This expression describes a free gas

of noninteracting quasiparticles with dispersion relations fixed to their zero-temperature

values. The feedback of the thermal medium into the spectrum only enters the pressure at

the two-loop order through the quasiparticle interactions.

Following our notation for the individual dispersion relations, we split the pressure

into the contributions of the individual modes, P = Pγ + P+ + P−. The contribution of

the relativistic photon mode with the linear dispersion relation is trivial to evaluate and

amounts to the usual expression,

Pγ =
π2T 4

90
. (4.2)

As to the other two modes, we will in the following focus on the gapless mode ω− and

discard the contribution P+. This is well justified at temperatures T � meff where this

contribution is exponentially suppressed due to the gap of the ω+ mode. By using spherical

coordinates and integrating by parts with respect to the radial momentum, the momentum

integral in eq. (4.1) can be rewritten in the dimensionless form

P− =
T 4

12π2

∫ π

0
dθ sin θ

∫ ∞
0

dx
x3 ∂ω̃−

∂x

eω̃− − 1
, (4.3)

where the dimensionless dispersion relation ω̃− is defined by

ω̃−(x, θ) ≡ ω−(p)

T
=

1

τ

(
1

2
+ x2τ2 −

√
1

4
+ x2τ2 sin2 α sin2 θ

)1/2

, (4.4)

θ is the angle between the momentum vector and the direction of the background field Bex,

and the parameters α and τ are defined by

cosα ≡ mπ

meff
=

mπ√
m2
π +B2

exC
2
, τ ≡ T

meff
. (4.5)

While we cannot evaluate the thermal integral involving the dimensionless dispersion rela-

tion ω̃− in a closed form, eq. (4.3) is suitable for an expansion in powers of τ , or equivalently

in powers of temperature. (Recall that we assume the temperature to be small compared

to meff, and thus τ to be much smaller than one.) Both the radial and the angular integral

is straightforward to carry out upon such expansion, thus leading to the series expansion

of the pressure P−,

P− =
π2T 4

90

[
1 +

B2
exC

2

m2
π

− 32π2

21

B4
exC

4T 2

m6
π

+
384π4

35

B6
exC

6T 4

m10
π

+O(T 6)

]
, (4.6)
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with the expansion parameter B2
exC

2T 2/m4
π. Interestingly, the expansion is simultaneously

an expansion in powers of Bex: the pion mass in the denominators is the “bare” mass mπ

rather than the effective mass in the magnetic field, meff. It is therefore mandatory to

inspect separately what happens in the chiral limit where mπ goes to zero.

The crucial observation is that in this limit, the dispersion relation in the transverse

directions becomes quadratic in momentum, see eq. (3.7). Obviously, we have to treat the

transverse and longitudinal directions separately, and it is therefore most natural to use

cylindrical coordinates to carry out the momentum integration. In contrast to eq. (4.3),

the pressure of the gapless mode can now be rewritten in the dimensionless form

P− = −BexCT
3

8π2

∫ ∞
0

dx dy log
(
1− e− ˜̃ω−

)
, (4.7)

where x is the dimensionless longitudinal momentum, y is likewise the dimensionless trans-

verse radial momentum squared, and

˜̃ω−(x, y) ≡ ω−(p)

T
=

1

τ

(
1

2
+ x2τ2 + yτ −

√
1

4
+ yτ

)1/2

. (4.8)

Remarkably, the resulting two-dimensional integral can be evaluated in a closed form, for

instance by introducing a new variable z via the substitution

z2τ2 ≡ 1

2
+ yτ −

√
1

4
+ yτ =

1

4

(√
1 + 4yτ − 1

)2
, (4.9)

and subsequently using polar coordinates in the xz plane. The final result for the pressure

due to the gapless mode ω− then reads

P−

∣∣∣
mπ=0

=
ζ(3)

16π
BexCT

3 +
π2T 4

180
. (4.10)

As long as the contribution of the gapped mode ω+ can be neglected, the full one-loop

pressure of the system is given without further approximations by the closed expression

P
∣∣∣
mπ=0

= Pγ + P−

∣∣∣
mπ=0

=
ζ(3)

16π
BexCT

3 +
π2T 4

60
. (4.11)

One can even say that this compact expression represents the complete asymptotic series

expansion of the pressure at low temperatures. Namely, the contribution of the ω+ mode

is suppressed by the non-analytic Boltzmann factor e−meff/T , as a consequence of which all

of its Taylor coefficients at T = 0 vanish.

We can conclude that the mixing of neutral pions with dynamical photons dramatically

changes the thermodynamics of QCD at low temperatures and in strong magnetic fields:

instead of the usual black-body scaling with T 4, the pressure at temperatures T � BexC

is dominated by a term that scales as T 3Bex/fπ. It is interesting to contrast this to the

T 5/2(Bex/fπ)3/2 scaling at nonzero baryon chemical potential, found in ref. [7].
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5 Anomalous pion decay

The presence of the strong background magnetic field affects also other physical observables

than those relevant for equilibrium thermodynamics. In this section, we will focus on the

decay properties of the neutral pion, bearing in mind that in the vacuum, the dominant,

two-photon decay of the pion is one of the hallmarks of the chiral anomaly (see ref. [18] for

a recent precision calculation of the vacuum anomalous pion decay rate). The magnetic

field affects the neutral pion decay in several ways. First, it contributes to the pion mass

through loop corrections [19–21]. Second, it affects, likewise through loop corrections, the

pion decay constant fπ [22]. Finally, it may open phase space for new decay processes, or

increase the branching ratio of processes that in the vacuum are negligible compared to the

two-photon decay [23, 24]. Our discussion below focuses on the consequences of the chiral

anomaly in a background magnetic field for the two-photon pion decay rate at tree level, in

particular on the effects of the kinematic mixing of pions and photons. Non-anomalous loop

corrections due to the magnetic field are not included here; their significance is discussed

briefly in the concluding section 6.

For the sake of simplicity, we shall in this section refer to the ω+ mode as the “pion”,

and denote the corresponding one-particle state with momentum p as |π,p〉. This is natural

for this state smoothly interpolates to the vacuum neutral pion in the limit of vanishing

magnetic field, Bex → 0. Likewise, we shall refer to the other two states as “photons”,

using the following notation:

• |Γ,p〉 for the “nonrelativistic” photon with the dispersion relation ω−(p).

• |γ,p〉 for the “relativistic” photon with the dispersion relation ωγ(p).

Without further mentioning it explicitly, we shall use the Feynman gauge in which ξ = 1.

The two-photon decay of the neutral pion in principle includes three different processes:

π → γγ, π → ΓΓ and π → γΓ; this corresponds to the sum over polarizations of the photons

in the final state. However, only the last process, π → γΓ, is actually allowed. The reason

for this is that QCD in a background magnetic field possesses a discrete symmetry, which

can be thought of as modified parity, under which γ is even whereas π and Γ are odd [15].

Below, we therefore calculate the decay rate for the π → γΓ process alone and compare it

to the vacuum decay rate of the neutral pion. (We have checked by an explicit calculation

that the decay rates for the π → γγ and π → ΓΓ processes vanish.)

5.1 Relativistic photon polarization vector

In order to determine the probability rate for any decay or scattering process, it is manda-

tory to understand the properties of the asymptotic one-particles states. We already know

the dispersion relations of all the one-particle states in our system. However, the calculation

of decay rates or scattering cross-sections also requires the knowledge of the corresponding

wave functions, or in other words of how the one-particle states couple to the elementary

fields in our EFT. We start here with the discussion of the relativistic photon case, which

is the most subtle of the three one-particle states as it is affected by gauge ambiguities.
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Recall the field equations of motion in the relativistic notation and the Feynman gauge,

eq. (3.8). In the second quantization, the solutions to these equations of motion enter the

plane-wave expansion of the pion and electromagnetic fields. In particular, the relativistic

photon mode has ϕ = 0, and thus only appears in the expansion of the field Aµ via

Aµ(x) ⊃
∫

d3p

(2π)3/2
√

2|p|

[
εµ(p)ape

−ip·x + ε∗µ(p)a†pe
ip·x
]
, (5.1)

where a†p is the creation operator of the corresponding one-particle state, |γ,p〉 = a†p|0〉,
ap is the associated annihilation operator, and εµ(p) is the polarization vector of the one-

particle state. The four-momentum p in the integral is on-shell, that is, p0 = ωγ(p) = |p|.
The polarization vector εµ must satisfy the following conditions:

• The transversality constraint n · ε = 0, following from the property n · a = 0 of the

relativistic photon solution to the classical equations of motion (3.8).

• The Feynman gauge constraint p · ε = 0. Note that upon using the on-shell condition

p2 = 0, this constraint is invariant under the gauge transformation εµ → εµ+λpµ with

arbitrary complex λ; the same gauge invariance property must apply to all physical

observables.

The freedom to shift εµ without affecting physical observables can be used to set ε0 = 0

without loss of generality. We thus have altogether three linear constraints on εµ,

ε0 = 0, n · ε = 0, p · ε = 0, (5.2)

which in four spacetime dimensions determine εµ uniquely up to an overall factor. We note

that given the explicit expression for the vector nµ, eq. (3.9), it is easy to find an explicit

solution to these constraints in a covariant form,

εµ(p) ∝ Fµνex pν . (5.3)

The overall normalization will be fixed using a different argument in the next subsection.

5.2 Vacuum transition amplitudes

In presence of field mixing, the one-to-one correspondence between elementary fields and

asymptotic one-particle states is lost. Physical scattering amplitudes then have to be ex-

tracted from the Green’s functions of the fields using the Lehmann-Symanzik-Zimmermann

reduction formula. To that end, we need the vacuum transition amplitudes 〈0|χi(0)|n,p〉,
where χi(0) runs over all elementary fields of the theory and n over all one-particle states.

Consider the matrix propagator of the elementary fields, that is, the time-ordered two-point

Green’s function, defined by Dij(x−y) ≡ −i〈0|T{χi(x)χj(y)}|0〉. By inserting the partition

of unity in terms of the eigenstates of the Hamiltonian, one arrives at the Källén-Lehmann

spectral representation of the propagator in its nonrelativistic form [25],

Dij(ω,p) = (2π)3
∑
n

[
〈0|χi(0)|n,p〉〈n,p|χj(0)|0〉

ω − ωn(p) + iε
− 〈0|χj(0)|n,−p〉〈n,−p|χi(0)|0〉

ω + ωn(p)− iε

]
,

(5.4)
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where ωn(p) denotes the energy of the Hamiltonian eigenstate |n,p〉. These eigenstates are

assumed to be normalized according to 〈n,p|m, q〉 = δmnδ
3(p−q). For one-particle states,

n takes discrete values and the propagator correspondingly has simple poles at energies

given by the dispersion relations of the one-particle states. For multi-particle states, on

the other hand, the label n is continuous, resulting in a branch cut in the propagator.

Equation (5.4) tells us that the vacuum transition amplitudes connecting elementary fields

to a given one-particle state can be extracted from the residuum of the associated pole in

the propagator.

The inverse propagator can be directly read off the Lagrangian (2.2). It is a 5 × 5

matrix and upon Fourier transform to momentum space and setting ξ = 1 takes the form

D−1
µν (p) =

 p2 −m2
π −inν

+inµ −gµνp2

 . (5.5)

Note that we used a somewhat unusual notation wherein the first row and column corre-

sponds to the φ field, and the remaining four rows and columns correspond to the Aµ field

and carry the index µ and ν, respectively. Inverting this 5 × 5 matrix and using the fact

that n · p = 0 leads to an expression for the propagator,

Dµν(p) =


p2

p2(p2 −m2
π) + n2

− inν
p2(p2 −m2

π) + n2

+
inµ

p2(p2 −m2
π) + n2

−gµν
p2

+
nµnν

p2[p2(p2 −m2
π) + n2]

.

 (5.6)

The pole structure of the propagator naturally reproduces our previous results for the

quasiparticle dispersion relations, see e.g. eq. (3.10).

Let us first have a look at the poles corresponding to the two nonrelativistic modes, π

and Γ. Comparing eq. (5.6) to the general spectral representation of the propagator (5.4),

we find that up to an overall phase,

〈0|φ(0)|±,p〉 = ± 1

(2π)3/2

√
∆p ±m2

eff

4ω±(p)∆p
,

〈0|Aµ(0)|±,p〉 =
i

(2π)3/2

npµ√
ω±(p)∆p(∆p ±m2

eff)
,

(5.7)

where we defined

∆p ≡ ω2
+(p)− ω2

−(p) =
√

4B2
exC

2p2
⊥ +m4

eff, (5.8)

and temporarily denoted the states |π,p〉 and |Γ,p〉 as |+,p〉 and |−,p〉, respectively, in

order to keep the expressions compact.

The coupling of the fields to the relativistic photon state γ can likewise be extracted

by looking at the pole at p2 = 0 in the propagator (5.6). Here the situation is, however,

complicated by the fact that the propagator in covariant gauges includes contributions from

states in the unphysical sector of the Hilbert space. This is also easily seen from the fact

– 11 –
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Figure 1. Kinematics of the π → γΓ process, indicating our notation for the momenta of the three

states; the arrows indicate the flow of momentum. We only consider the decay of pion at rest here,

in which case kµ = (meff,0).

that the lower-right 4 × 4 corner of the propagator is proportional to −gµν + nµnν/n
2 at

p2 = 0, which up to a sign is a projector to the three-dimensional space of vectors orthogonal

to nµ, although there is only one physical state with the dispersion relation given by p2 = 0.

The way out is to notice that by the argument of the preceding subsection, 〈0|Aµ(0)|γ,p〉
must be proportional to εµ(p). This fixes the one-dimensional subspace, corresponding

to the physical photon polarization. The overall normalization of the vacuum transition

amplitude can then be fixed using eqs. (5.4) and (5.6), leading to

〈0|φ(0)|γ,p〉 = 0,

〈0|Aµ(0)|γ,p〉 =
1

(2π)3/2
√

2|p|
εµ(p)√
−ε(p)2

.
(5.9)

Equations (5.7) and (5.9) form the basis for our calculation of the pion decay rate below.

5.3 Kinematics

Before we move on to the calculation of the amplitude for the pion decay, we first discuss

the kinematics of the π → γΓ process. Since Lorentz invariance is explicitly broken by the

presence of the background magnetic field, the decay rate in principle has to be evaluated

as a function of velocity or momentum. We limit our attention for the sake of simplicity to

decay of a pion at rest, since this assumption, as we will see, leads to a simple, semi-analytic

expression for the decay rate. We expect the result to give a reasonable approximation also

for a nonzero velocity of the pion provided that it is much smaller than the speed of light.

The kinematics of the decay process is displayed in figure 1. Momentum conservation

in the rest frame of the pion leads trivially to p+q = 0. Imposing the energy conservation

condition, meff = |p| + ω−(q), then gives the magnitude of momentum of the particles in

the final state as a function of the angle θ with respect to the magnetic field Bex,

|p| = meff/2

1−
(
BexC
2meff

)2
sin2 θ

=
meff

2− 1
2 sin2 α sin2 θ

, (5.10)

using the notation introduced in eq. (4.5).

In the next subsection, we will calculate the amplitude M for the π → γΓ decay at

tree level, including the corresponding vacuum transition amplitudes that couple fields to

– 12 –
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= −iCεµναβpαqβ .

Figure 2. Feynman rule for the interaction between pion and electromagnetic fields, following from

the Lagrangian (2.2). The dashed line stands for the φ field, whereas the wavy lines for the A field.

The momenta p and q flow out of the vertex.

one-particle states. The differential decay rate for the process then reads

dΓ = (2π)4δ4(k − p− q)× (2π)3|M |2 d3p d3q. (5.11)

The δ-function, imposing energy and momentum conservation, reduces the phase space

integration to an angular integration over directions of momentum p,

Γ = (2π)7

∫
d3p |M |2δ

(
meff − |p| − ω−(p)

)
= (2π)7

∫
dΩ |M |2 |p|2

1 + dω−
d|p|

, (5.12)

where |p| is determined by eq. (5.10).

5.4 Decay rate

The decay of the pion into a photon pair is driven by a single interaction vertex in the

Lagrangian (2.2), containing both fields. The corresponding Feynman rule is shown in

figure 2. The calculation of the decay amplitude is, however, complicated by the kinematic

mixing between the fields. As a consequence, the φ field in the interaction operator can

couple to both the π in the initial state and the Γ in the final state, and so can one of the A

fields. The other A must necessarily couple to the γ in the final state, since 〈0|φ|γ,p〉 = 0.

The decay amplitude therefore consists of two contributions,

−iM = −iCεµναβpαqβ〈γ,p|Aµ|0〉〈Γ, q|Aν |0〉〈0|φ|π,k〉
− iCεµναβpα(−k)β〈γ,p|Aµ|0〉〈Γ, q|φ|0〉〈0|Aν |π,k〉.

(5.13)

Next one inserts the vacuum transition amplitudes from eqs. (5.7) and (5.9) and takes the

squared absolute value of the amplitude. What follows is a rather lengthy calculation,

including manipulation of products of Levi-Civita tensors and kinematic properties of the

momenta k, p, q, the vectors nµk and nµq , and the polarization vector εµp . At the end of the

calculation, a very compact result surfaces,

|M |2 =
C2

(2π)9

∆p +m2
eff

16meff|p|ω−(p)∆p

[
meffω−(p)− 1

2
(∆p −m2

eff)

]2

. (5.14)

Note that in the limit Bex → 0, this expression further simplifies to C2mπ/[8(2π)9], and

upon trivial angular integration following eq. (5.12) gives

Γvac =
C2m3

π

64π
, (5.15)
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which agrees with the well-known expression for the neutral pion decay rate in the vacuum.

For nonzero values of the background field, one simply has to insert the squared amplitude

in eq. (5.12) and simplify the result. It is natural to normalize the decay rate by its value

Γvac in zero magnetic field. Upon some manipulation, we thus obtain the final result for

the magnetic field dependence of the decay rate of the neutral pion,

Γ(Bex)

Γvac
=

1

cos3 α

〈
(1− sin2 α sin2 θ)2

(1− 1
4 sin2 α sin2 θ)4

〉
Ω

, (5.16)

where the angular brackets indicate angular averaging over the full solid angle correspond-

ing to the variable θ, and the angle α is defined in eq. (4.5).4

The dependence of the pion decay rate on the magnetic field is shown numerically

in figure 3. The increase of the decay rate with increasing Bex is, in fact, a result of a

competition of two effects. First, the phase space for the decay products is increased due

to the increase of the pion mass from mπ to meff; this corresponds to the leading 1/ cos3 α

factor in eq. (5.16). Second, the anisotropic kinematics reduces somewhat the result by the

angular average factor in eq. (5.16). Obviously, the anomalous contribution to the pion

mass plays a dominant role for the pion decay.

Apart from the full numerical result, analytical approximations for the decay rate may

also be of some interest. Given eq. (5.16), it is straightforward to obtain power expansions

for the decay rate in both weak and strong magnetic fields,

Γ(Bex)

Γvac
= 1 +

5

6
tan2 α− 19

120
tan4 α+

251

1680
tan6 α+O(tan8 α), (5.17)

Γ(Bex)

Γvac
=

(
8π

9
√

3
− 4

3

)
tan3 α+

(
52π

27
√

3
− 8

3

)
tanα+O(tan−1 α). (5.18)

The latter expansion is particularly relevant for the chiral limit where only the leading term

survives and we get a closed expression for the decay rate, this time in absolute units,5

Γ(Bex)
∣∣∣
mπ=0

=
B3

exC
5

64π

(
8π

9
√

3
− 4

3

)
. (5.19)

6 Summary and discussion

In this paper, we have analyzed the low-temperature thermodynamics of QCD in strong

magnetic fields. This is dominated by neutral pions and photons since the charged pions

acquire a large gap due to Landau level quantization. We showed that the chiral anomaly

leads in presence of the background magnetic field to mixing of neutral pions and photons,

and worked out the consequences of this mixing for physical observables.

4In fact, the angular averaging indicated in eq. (5.16) can be carried out analytically in a closed form.

However, the resulting expression is rather cumbersome, and we therefore prefer the simple form of eq. (5.16);

the angular average can, if needed, be done numerically with no effort.
5In the chiral limit, the phase space for the pion decay is closed in the vacuum, see also eq. (5.15). The

chiral anomaly then provides two key ingredients that make the pion decay possible in background magnetic

fields: both the interaction with photons and the phase space by giving the pion a nonzero mass.

– 14 –
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Figure 3. Thick red line: dependence of the pion decay rate on the scaled magnetic field, given by

eq. (5.16). The decay rate is normalized to unity in zero magnetic field; the absolute value of the

decay rate in the vacuum is determined by eq. (5.15). Dashed black line: polynomial approximation

for the decay rate given by the first two terms in eq. (5.17). Solid black line: the decay rate without

the 1/ cos3 α prefactor, that is, just the anisotropy factor in eq. (5.16). While all the numerical

values only depend on the dimensionless ratio BexC/mπ, the range on the horizontal axis was

chosen so that, for physical values of mπ and fπ, its upper limit corresponds to Bex ≈ 1020 G.

Our first main result is an expression for pressure of the system in the leading, one-loop

approximation, see eqs. (4.6) and (4.10). The softening of the dispersion relation of one

of the photon polarizations due to the mixing leads to an enhancement of pressure at low

temperatures, which is most dramatic in the chiral limit, where the leading contribution

to pressure scales as BexT
3/fπ.

Our second main result is a formula for the dependence of the neutral pion decay rate

on the magnetic field, eq. (5.16). The effect of the magnetic field is again most dramatic in

the chiral limit. The B3
ex/f

5
π scaling, displayed in eq. (5.19), is actually easy to understand.

Namely, at tree level, the decay rate must consist of a factor C2 from the interaction vertex

times a kinematic function of the product BexC, entering the dispersion relations of the

pion and photon. Dimensional analysis then fixes the powers of Bex and fπ in the final

result. The nontrivial part of our result therefore is the numerical factor in eq. (5.19).

We would now like to discuss some of the assumptions and approximations underlying

our analysis in the form of a set of concluding remarks.

First of all, we worked for the sake of simplicity strictly at the tree level, that is, we

neglected one-loop corrections to the vacuum pion mass in presence of a magnetic field, see

e.g. ref. [21]. While those are necessarily proportional to the pion mass itself in accord with

the chiral symmetry, the anomaly makes the pion massive even in the chiral limit. Hence its

effect will certainly be dominant in sufficiently strong magnetic fields, or sufficiently close

– 15 –



J
H
E
P
1
1
(
2
0
1
7
)
1
0
3

0

1

2

0.0 0.2 0.4 0.6

m
π
(B

e
x
)/
m

π
(0
)

Bex [GeV2]

Figure 4. Dependence of the neutral pion mass on the external magnetic field in units of the

vacuum pion mass. Thick red line: the tree-level anomalous mass, given by eq. (3.6). Thin black

line: the non-anomalous, one-loop mass according to refs. [20, 21]. The dashed black line is added

just to guide the eye. The numerical results were obtained using the physical values fπ ≈ 92 MeV

and mπ ≈ 135 MeV; the anomaly contribution dominates over the non-anomalous loop correction

for Bex & 0.1 GeV2. The upper end of the displayed range for Bex corresponds to 1020 G.

to the chiral limit. At the physical point, the anomaly becomes dominant in moderate

fields, B & 0.1 GeV2, see figure 4.

Second, we only kept neutral pions in our EFT, which assumes that there is sufficient

scale separation between the neutral and charged pion sectors. The effective mass of the

charged pion in the background magnetic field is determined by the standard Landau level

problem, mπ±(Bex) =
√
m2
π +Bex. The graphical illustration of the numerical values of

the neutral and charged pion masses as a function of the magnetic field in figure 5, makes

it clear that there is a large range of magnetic fields in which the requirement of scale

separation is satisfied.

In ref. [24] it was argued that in sufficiently strong magnetic fields, the dilepton decay

π0 → e+e− will be the dominant decay channel for neutral pion. However, it seems that

these authors only included the effect of the magnetic field on the amplitude for such decay,

not its consequences for the phase space of the decay products. Namely, the energy levels

of the electron-positron pair also undergo Landau level quantization. By spin conservation,

the decay is only possible into one gapless and one gapped fermion. Hence the threshold

energy for the π0 → e+e− decay channel to be open altogether equals me +
√
m2
e + 2Bex,

where me is the vacuum electron mass. The position of the threshold is indicated by the

blue line in figure 5, which makes it clear that the dilepton channel is actually closed in

most of the range displayed therein, except for fields below ca 1018 G.

Finally, we neglected nonlinear effects within electrodynamics, which are induced by

loop corrections and in presence of the background magnetic field lead to vacuum bire-
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Figure 5. Comparison of various energy scales in our system as a function of the external magnetic

field. The thick black line corresponds to the anomalous neutral pion mass, eq. (3.6). The red line

stands for the charged pion mass, lifted by the magnetic field as a consequence of Landau level

quantization. Finally, the blue line indicates the threshold for the dilepton (e+e−) decay of the

neutral pion in presence of the external magnetic field. There is clearly a range of magnetic fields in

which the pion spectrum features scale separation, that is, the neutral pion is considerably lighter

than the charged pion. For illustration, demanding that the ratio of the pion masses is at most 1/2

requires that 0.06 GeV2 . Bex . 3.2 GeV2, or 1019 G . Bex . 5× 1020 G. The numerical results

were obtained using the vacuum mass mπ ≈ 135 MeV.

fringence and photon splitting [26–28]. While these effects in general modify the photon

polarization tensor, and thus its propagation in the background field, they will not affect

the main qualitative conclusions of our paper.
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