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Preface
This dissertation is submitted in fulfillment of the requirements for degree of MSc. (Master of Science) Math-
ematics and Physics at the Faculty of Science and Technology (Department of Mathematics and Physics),
University of Stavanger (UiS), Norway. The research work presented in this thesis is conducted mainly at
International Research Institute of Stavanger (IRIS). The outcome of this work together with new findings
from an ongoing research work will hopefully result in a journal publication.
A relevant background information and literature review to this work, followed by the work objectives and
problem statement is given in Chapter 1, the introduction. Chapter 2 discusses in details two of the main
models related to the work. The main results and related discussions are presented in Chapter 3. Finally,
conclusions and recommendations are given in Chapter 4.
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Abstract
Cancer is one of the deadliest diseases in the world and although huge research efforts have been applied to
improve survival rates, there are still great challenges in treatment of the disease. Many factors contribute
in the process of drug delivery and its absorption in tumor cells. Inside the tumor, the high interstitial fluid
pressure (IFP) is one of the main barriers for drug penetration. In this work, interstitial fluid pressure is
analytically investigated for homogeneous (without necrotic core) and heterogeneous (with necrotic core)
tumor by considering the periphery region as a region between necrotic core and tumor edge. This is
performed by adjusting a constant value of interstitial hydraulic conductivity for tumor and a lower constant
value of interstitial hydraulic conductivity for normal tissue. Then, we focus on a heterogeneous tumor
surrounded by normal tissue with the categorization of the necrotic core, periphery and intermediary regions
and analytically investigate the tumor interstitial fluid pressure distribution for periphery and intermediary
regions in some limiting cases. As the interstitial fluid pressure deeply correlates with the interstitial hydraulic
conductivity, for further investigation, it is assumed that the interstitial hydraulic conductivity adopts a
constant value in the central region and normal tissue; while it is changing radially continuously throughout
the periphery and intermediary regions. In order to study such problems, more generally it is necessary
to apply numerical methods. The numerical approach used in this work helps to investigate the tumor
interstitial fluid pressure distribution for all regions. The effect of the necrotic core size on the maximum
interstitial pressure is investigated. Moreover, the influence of the sizes of periphery and intermediary
regions is inquired. From our numerical simulations, it is found that the abundance of blood vessels inside
the periphery region influences the distribution of the interstitial fluid pressure; in such a manner that,
increasing numbers of well-functional blood vessels causes a higher maximum value of the interstitial fluid
pressure. A better understanding of interstitial fluid pressure distribution within a tumor, and methods to
describe this in numerical terms, can be used in combination with imaging tools in order to gain insights
in cancer cells aggressiveness and treatment planing. We also consider a more real model of a tumor where
an asymmetric distribution of blood vessels is considered by including areas with variable arterial hydraulic
conductivity in the periphery region. In this situation, the maximum interstitial fluid pressure is not observed
in the center of the tumor, unlike the symmetric cases.
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Chapter 1

Introduction

1.1 An insight into cancer biology
In this section some general, but important, terms related to cancer are introduced and defined. A simple
overview of the mechanism through which abnormal cell division occurs and how and why tumors grow to
to become a cancerous tumor is provided. Finally, a brief section about cancer diagnosis and treatment is
presented.

1.1.1 What is cancer?
The word cancer comes from the word for crab because, like a crab, they "grab on and don’t let go" [43]. Our
body is made up of billions of cells which are the microscopic pieces of our tissues and organs [23] . Normally,
every day, millions of cells are destroyed inside our body because of senility or injuries. Meanwhile, successor
cells come instead. Sometimes, and for reasons we do not fully understand, a cell has been deformed and
changes to a cancerous cell which is not similar to the normal cells of the body. An abnormal new growth
of cells is defined as a neoplasm. This abnormal growth of cells is usually more rapid than that of normal
cells and will continue if not treated. If a neoplasm forms a mass it is commonly referred to as a tumor [28].
According to [13], in general, neoplasms are categorized into four main groups: benign neoplasms, in situ
neoplasms, malignant neoplasms, and neoplasms of uncertain or unknown behavior. Here, brief definitions
and specifications for the benign and malignant are provided. Benign neoplasms (or tumors) grow relatively
slowly and don not spread into the surrounding tissue and they are made up of cells that are quite similar
to normal cells. On the other hand, malignant neoplasms (or tumors), also called cancerous neoplasms,
grow significantly faster than benign ones and spread into and hurt the surrounding tissues. Gradually,
aimless and fast divisions of the cancerous cells in any origin creates tumor lumps. This lump can discharges
some hormones or it can apply pressure to the surrounding tissue. It causes huge disruptions in the body.
They can also spread throughout the body into other organs. While, most benign tumors respond well to
treatment, malignant neoplasms are often resistant to treatment, may spread to other parts of the body and
they sometimes recur after they are removed.

1.1.2 Tumor growth and cancer development
Our life starts with a single cell. Each type of normal cells has specific tasks and set of knowledge or
instructions, known as genes, in their DNA. Consequently, they know when to stop replicating and die; the
phenomenon by which cells die after a period of time is called apoptosis. When a cell divides, it splits into
two daughter cells (a process known as ’replication’), smaller versions of the original cell (the mother cell).
Each daughter cell gets a complete copy of all the DNA instructions that its parent had. The daughter cells
can then become mother cells to their own daughter cells, passing along the same genes they inherited from
their mother, and the process continues [35]. Although cells die after a period of time, division certifies that
new cells take the place of dead ones. Cells are guided by hormones and catch messages from them. Through
vascular system, blood carries these messages in addition to carrying waste fluid and oxygen (according to

10
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the function of the arterioles and venules, described in the following sections). On the other hand, the
lymphatic system, as a part of our body’s defense (immune) system, drains excess fluid [23].
In case the DNA of cells becomes damaged, the cells replication process is disordered and negatively affected
by the damage happened in the DNA; therefore, this may result in the development of cancerous cells;
i.e. the cells can not anymore distinguish when to start dividing and when to die. When these cells start
to divide abnormally, leading to formation and growth of lumps, a neoplasm or tumor forms. Fig.(1.1a)
illustrates the formation and dividing of cancerous cells within an area; cancerous cells have not yet spread
to the surrounding tissue. Similar to normal cells, cancerous cells cannot live without oxygen and nutrients.
To continue growing, a tumor needs to start creating its own blood vessels to get sufficient nutrition such
as oxygen to stay alive and continue getting larger. The process of developing a new blood-supply system is
called angiogenesis. In such situation, it is quite probable for the cancerous cells to invade the surrounding
tissue, as shown in Fig.(1.1b). Moreover, as it is shown in Fig.(1.1b), active cancerous cells can enter vessel
or lymphatic capillaries and move to other organs of the body and create a tumor there; invasion of cancerous
cells to the surrounding tissue and other organs of body is called metastasize. According to the UK Cancer
Research, [42], as the cancer grows, it will squeeze and block small blood vessels in the area; this leads to
low blood and oxygen levels that can eventually cause some of the normal tissue will begin die off.

(a) (b)

Figure 1.1: (a) Cells start to divide abnormally, leading to formation and growth of lumps, (b) The cancerous
cells invade surrounding tissue and enter vessel or lymphatic capillaries through which can move to other
organs of the body and create a tumor there.

For a tumor to grow, availability of blood supply is a vital factor. As the tumor gets bigger in size, the
distance between center of tumor and blood vessels becomes greater; therefore, less oxygen and nutrition
are delivered to the center of tumor. As a result, a necrotic core develops in the central region. Once a
cancer can stimulate blood vessel growth, it can quickly grow bigger. It will stimulate the growth of many
new blood vessel capillaries from the nearby blood vessels to get nutrients and oxygen. Compared to the
regular vasculature of normal tissues, blood vessels in tumors are often highly abnormal. These physiological
differences can cause problems in cancer treatment [5].

1.1.3 Diagnosis and treatment of cancer
There are over 200 different types of cancer. The characteristics of the cancer are distinguished by where in
the body it appears [30]. In addition, different factors in the environment and style of life, target different
organs of our body to create cancerous cells. For example, the UV radiation from the sun targets the skin or
smoking targets the lungs [30]. The first step in treating tumor is to get information about symptoms and
the stage of the cancer (i.e. how much it has spread throughout the body); this gives us information to better
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recognize the type of the tumor. Some methods such as X-rays, CT scans, MRI scans and PET traces are
applied to discover the position of a tumor and discover the organs which can be affected by that. The only
clear method to diagnose cancer is to look at the extracted cancerous tissue under a microscope (known as
biopsy), blood test is a good alternative [42]. Generally, the main aims of different types of treatment are to
remove the cancerous tissue by surgery, radiation or chemical method and stop the replication of cancerous
cells, reduce the abundances of blood vessels in the tumor tissue and consequently, decrease the growth and
spread of cancerous cells [31][26][10][38][45]. Sometimes an operation to take the tumor out of the organ can
be effective. For some types of tumor, chemotherapy drugs or radiotherapy are used to shrink the tumor
before and after operation to prevent growing back. More details about the treatment of various types of
cancer is out of scope for this research work and can be found in the above-mentioned selected references.

1.2 Fluid flow in porous media
In this section, first, the Darcy law, one of the most fundamental laws of fluid flow in porous media together
with further developments based on this law are presented and important parameters are defined and dis-
cussed. in addition, fundamentals and basic concepts related to fluid flow in biological systems and governing
parameters are provided.

1.2.1 Darcy Law
Normally, whenever there is a discussion of the flow of fluid(s) through porous media, one of the very first
topics to acknowledge is the outstanding experimental work by Henry Philibert Gaspard Darcy [8] that
resulted in the following equation while he was investigating the flow of water through sand filters for water
purification in Dijon, a city in France:

Q =
c ·A ·∆h

L

In this equation c, the constant of proportionality, was introduced to be a characteristic parameter of
the sand. Later, it was Muskat (1937) who first refined Darcy’s equation for single-phase flow by including
viscosity in the single (fluid) phase equation of Darcy; this change made it suitable, specially for the petroleum
industry. Therefore, the original Darcy equation is transformed to the current well-known version (presented
below) which instead of Darcy equation seems fairer to be called “Darcy-Muskat” equation:

v =
k

µ

dp

dx

Where v is the superficial velocity (cm/s) or also well known as Darcy velocity, dp/dx (atm/cm) is the
pressure gradient in the flow direction, µ is the fluid viscosity (cp), and k (D) is the new proportionality
constant called “permeability” (which completely defines dynamically the porous medium as the carrier of a
homogeneous fluid in viscous motion) with the following definition according to Muskat [19]:
The formal definition of the permeability of a porous medium may, therefore, be stated as the volume of a
fluid of unit viscosity passing through a unit cross section of the medium in unit time under the action of a
unit pressure gradient. It is thus a constant determined only by the structure of medium in question and is
entirely independent of the nature of the fluid.
Another format of the “Darcy-Muskat” equation is presented below:

q =
k ·A
µ

dp

dx

Where q is the flow rate of the fluid passing the porous medium (cc/s) and A (cm2) is the total cross
section of the porous medium perpendicular to the flow direction. Note that the above-mentioned units
for different parameters are commonly used in petroleum industry and for flow in biological systems, more
relevant consistent units are used.
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1.2.2 Flow in biological systems
Our body is mostly made up of fluid which is inside or outside of the cells. Thus, fluid in our body is divided
into two original areas, intracellular and extracellular. The intracellular (IC) compartment contains the fluid
that bathes the inside of the cells of the body. The extracellular (EC) compartment is the fluid that lies
outside of the cells. Consequently, the extracellular compartment is separated into two areas of intravascular
(fluid inside the blood capillaries) and interstitial (fluid outside the blood vessels) [17]. Although the fluid in
intracellular and extracellular is constant, it moves inside and outside cells. The existence of cell membrane
affects the getting in or out of the cells. The cell membrane can be less permeable, semipermeable or high
permeable. It means that the permeability of the membrane determines how much fluid can pass through the
membrane [17]. The fluid composition and the hydraulic conductivity are the main properties that govern
fluid transport in a biological system.
Interchanges between the cells in the tissue and the blood build up the composition of tissue fluid. So, In
different areas of the body there are different compositions of tissue fluid. Some contents of blood such as
red blood cells can not pass through the capillary walls. Therefore, they can not enter into the tissue fluid.
Hydraulic conductivity, symbolically represented asK (cm2/mmHg.sec), is a property that describes the ease
with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic
permeability 1 of the material [14].

1.3 Review of some relevant publications
Nowadays, showing the principle of the tumor growth and clarifying how it manifests through cancer types
are defined by large-scale molecular profiling data which is an important benefit for computational biologists.
Mathematical modeling has an exclusive role to show the physical development of cancer [25]. Many factors
play roles in treating tumors. In the following, a review of related mathematical modeling research works
from literature is provided.

Tumor properties (e.g. tumor size) have an important effect on drug transport and its absorption by tumor
cells. 3-D models reconstructed from magnetic resonance images (MRI) can be utilized as a powerful tool
to study the influence of tumor properties on drug delivery and uptake. Through a numerical method, Zhan
et al. [47] simulated the physical processes to study the drug transport in 3-D tumor models of different
sizes. Using a pharmacodynamics model 2, they tried to evaluate the therapeutic influence of each tumor,
according to anticipated intracellular drug concentration. Results show that changing the size of tumor
causes non-linear changes of interstitial fluid pressure. In addition, the distribution of tumor vasculature,
could vary depending on the particular tumor type, size and growth stage. MRI determines the effect of
tumor size on drug transport and its uptake by tumor cells. Zhan et al. [47] argue that there is nonlinear
relationship between spatial-mean interstitial fluid pressure and tumor volume. Moreover, transvascular
transport is more efficient in small tumors, because of the low spatial-mean interstitial fluid pressure and
dense micro-vasculature.

Recently, Soltani et al. [37], modeled the distribution of positron emission tomography tracer (PET tracer)
3 uptake by considering a general equation which is used for solute transport modeling. in their model
they could incorporate the combined effect of transport parameters of solid tumor such as hydraulic con-
ductivity togethr with transvascular permeability. Using a mathematical model for angiogenesis process,
they produced the capillary network of a solid tumor and normal tissues. In addition, pressure distribution
was calculated by a mathematical method, which solved for blood flow in the vessels and fluid flow in the

1vascular permeability: the movement of fluids and molecules between the vascular and extravascular compartments.
2Pharmacodynamic modeling is based on a quantitative integration of pharmacokinetics, pharmacological systems, and

(patho-) physiological processes for understanding the intensity and time-course of drug effects on the body. Application
of such models to the analysis of meaningful experimental data allows for the quantification and prediction of drug–system
interactions for both therapeutic and adverse drug responses.[11]

3positron emission tomography (PET)[1] is a nuclear medicine functional imaging technique that is used to observe metabolic
processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer),
which is introduced into the body on a biologically active molecule. Three-dimensional images of tracer concentration within
the body are then constructed by computer analysis.
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interstitum, simultaneously. Afterwards, spatiotemporal distribution model was exerted to model distribu-
tion of PET tracer uptake. They calculated convention and diffusion from vessel to tissue and in the tissue.
Moreover, they investigated the efficiency of convection an diffusion on tracer transport; these results showed
that convection terms have negligible effect on tracer transport.

Liu et al. (2016)[22] presented the theoretical basis to approximate the absolute value of tumor intersti-
tial fluid pressure (TIFP). Moreover, a method was developed to measure TIFP, noninvasively. By paying
attention to the specific boundary and continuity conditions in addition to using the MRI technology, the-
oretical variables were transformed into measurable variables. They showed that an analysis of the changes
of tissue fluid flow in the tumor rim and surrounding tissue gives the approximate TIFP in the center of
the tumor. These come from three noninvasive measurable parameters: (i) a guess of the velocity of the
tumor interstitial fluid at the tumor surface, which has the maximum value, (ii) size of the distance from
the tumor surface to the absorption region of the tumor exudates, and (iii) an assessment of the hydraulic
conductivity of the interstitium through which the tumor exudate travels. The non-uniform fluid flow in the
rim of the tumor was experimentally investigated; they showed that the fluid flow within the tumor rim,
even for round-shaped tumors, was not uniform.

One of the reasons that cause the fall of cancer therapy is the complicated capillary network of angio-
genesis. To investigate the effect of capillary network structure on drug delivery, a simulation (multi-scale
mathematical method) of drug delivery to a solid tumor was applied by Sefidgar et al. (2015) [33]; In this
research work it was suggested that the mathematical model contains blood flow through vessels, solute and
fluid diffusion, convective transport in extracellular matrix and extravasation from blood vessels. The effect
of heterogeneous dynamic capillary network on interstitial fluid flow and drug transportation and absorp-
tion was shown by a multi-scale method. In addition, drug delivery was simulated by convection-diffusion
equation. Drug transport was simulated by three approaches: without using a vascular network, using a
static vascular network, and using a dynamic vascular network. Uniform and higher drug concentration of
avascular approach than that of vascular approaches was one of the outcomes of implementing this method.
In The dynamic vascular network, more real case occurred with more irregular blood vessels, high interstitial
pressure, and more heterogeneity in drug distribution than other two approaches.

The delivery efficiency of anti-cancer drug and its absorption by cancerous cells was determined by an
important factor of interstitial fluid transport [24]. Charjoui et al.(2015) [24] performed a general numerical
simulation of the interstitial fluid transport which builded 3D models of tumor and its surrounded normal
tissue assuming constant interstitial hydraulic conductivity. Moreover, the effect of some factors on inter-
stitial fluid pressure (IFP) such as tumor radius, size of normal tissue, tissue hydraulic conductivity, and
presence of the necrotic core are investigated. The main aim here [24] was to test the effects of the geomet-
rical properties of tumor and its surrounding normal tissue on IFP. It was verified that the tumor size had
a considerable effect on IFP distribution; increasing the size of the tumor causes increased IFP. In contrast,
different shapes and volumes of surrounding normal tissue had a moderate effect on IFP inside the tumor
and its surrounding normal tissue. Moreover, increase in hydraulic conductivity of the interstitium caused
decrease in IFP inside the tumor. It was shown that applying treatment methods that increase the hydraulic
conductivity of the interstitium can improve the drug delivery. Additionally, presence of necrotic core inside
the tumor exposed considerable effects on IFP. Consequently, formation of the tumor and its surrounded
normal tissue affected IFP distribution inside the interstitium. Moreover, bigger tumors produced higher
IFP. The size of the normal tissue had negligible effects on IFP; however, presence and location of necrotic
core inside the tumor interstitium changed the IFP [24].

Computational methods are strong tools for the investigating the drug delivery process. Sefidgar et al.
(2015) [32] studied the mechanism of transportation of anti-cancer drug from the injection part to absorp-
tion by tumor. They presented a numerical solution in which fluid flow and solute transport equation were
solved together to study the effect of shape and size of the tumor on drug delivery. They figured out that
drug delivery in prolate shape of the tumor was effectively better than other shapes of tumor. In addition,
increasing the size of the tumor showed a decrease in drug concentration in interstitial fluid. They observed
that the drug concentration in interstitial fluid did not depend on osmotic and interavascular pressure. More-
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over, among diffusion and convection mechanisms of drug transport, diffusion was better in most different
tumor shapes and size. In the tumors that convection had remarkable effect, the drug concentration was
larger than that of other tumors at the same time post injection. The reason of the fact that systematic
performance causes nonuniform drug distribution was investigated by the computational methods defined
by [32].

The interstitial hydraulic conductivity has an important role on determining interstitial fluid pressure. Com-
monly, both in a tumor and normal tissue, the hydraulic conductivity has been considered as a constant.
Liu et al. (2015) [21] claimed that the hydraulic conductivity and the curvature of the tumor interstitial
fluid pressure (TIFP) are not continuous at the surface of the tumor. They assumed avascular or poorly
vascularized tumor surrounded by normal tissue; therefore, they argued that it was reasonable to divide a
tumor into three regions of necrotic core (in which tumor interstitial fluid pressure and interstitium struc-
ture are uniform), periphery, and intermediary (the region between periphery and normal tissue) regions.
Through periphery and intermediary regions, fluid composition and tumor cells vary. They showed that
the hydraulic conductivities of the necrotic core and normal tissue were constant with the difference that
the hydraulic conductivity of the necrotic core was higher than that of the normal tissue. In addition, the
hydraulic conductivity of periphery region was monotonically decreasing by increasing the distance from the
center of the tumor. In contrast, the hydraulic conductivity of intermediary was increasing to the value
of the normal tissue, by increased radial position. As a result, according to the relation between tumor
interstitial fluid pressure and the hydraulic conductivity, they suggested a method to approximate the actual
TIFP distribution.

In 1988, Baxter et al. [3] developed a general theoretical framework for transvascular exchange and ex-
travascular transport of fluid in tumors. For the sake of simplicity, they assumed a homogeneous tumor
with no lymphatics and no extravascular binding. According to their numerical solution, in a uniformly
perfused tumor, the important reason for heterogeneous distribution of nonbinding macromolecules was the
high interstitial fluid pressure. The interstitial pressure was anticipated by defined models. It was observed
that the highest interstitial fluid pressure occurred at the center of the tumor and it had the lowest value
in the periphery of the tumor, while the steep gradient of pressure was anticipated in the periphery. The
outcomes of their work showed that although factors such as heterogeneous distribution of blood supply and
hindered interstitial transport determined the permeation of macromolecules into tumors, high interstitial
pressure had a significant role on drug delivery and its absorption by cancerous cells.
In 1990, Baxter et al. [4] considered a more real case by assuming nonuniform perfused tumor and applied
the same theoretical framework. In the model, the effect of presence of lymphatics was examined. One of the
consequences was that the interstitial pressure in the center of the tumor did not decrease by the presence
of the necrotic core. In contrast, if lymphatic presents in the tumor, it caused reductions in interstitial fluid
pressure inside the tumor.
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1.4 Problem statement
The TIFP influences the effectiveness of drug delivery to cancerous tissue. The need for a proper understand-
ing of fluid interstitial pressure inside a tumor and its surrounding normal tissue serves as one of the main
motivations for this work. In this work, first, I have examined the work by L.T. Baxter and R. Jain [3][4],
which is one of the highly cited publications in this field, and present analytical solutions for some specific
cases of tumor; such as, homogeneous and heterogeneous tumor. Then, I focus on the model by L.J. Liu and
M. Schlesinger [21], in which a tumor surrounded by normal tissue is categorized to three regions of necrotic
core, periphery and intermediary regions. In addition analytical investigation of the interstitial pressure for
regions of periphery and intermediary are provided in two limiting cases. Further, in this study, the impact
of different important contributing biological properties of a typical tumor on TIFP is investigated, by using
computational methods, and also we compare the models described by Baxter and Liu in some relevant
cases. Moreover, in this work, we will focus on a numerical investigation of the TIFP distribution. It is
predicted that high pressure is an indicator of cancer cell aggressiveness and consequently creates the barrier
on treating tumors. While, low TIFP is related to a high permeable interstitial which caused the facility of
drug delivery.
Relevant questions that will be investigated by using a numerical model, are:

• How does the size of the necrotic core affect the tumor interstitial fluid pressure distribution?

• How will the arterial, venous and lymphatic hydraulic conductivity influence on the distribution of
tumor interstitial fluid pressure?

• How is the pressure distribution affected by an asymmetric distribution of blood vessel capillaries?
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Chapter 2

Mathematical Formulation

Tumor interstitial fluid pressure has been investigated by using different approaches over the years. Here,
we focus on two mathematical models,

1. Models presented by L.T. Baxter and R.K. Jain in 1988 [3] and 1990 [4], where they considered the
constant interstitial hydraulic conductivity throughout a tumor and lower constant interstitial hydraulic
conductivity in a normal tissue.

2. A model based on Baxter models, but improved, published by L.J. Liu and M. Schlesinger in 2015 [21],
where they categorized a tumor surrounded by normal tissue in three different regions (necrotic core,
periphery and intermediary regions) and defined a continuous variation of the interstitial hydraulic
conductivity; such that, it gets the constant value in the necrotic core and it is decreasing through-
out the periphery region and then it should be monotonically increasing up to the constant value of
interstitial hydraulic conductivity in the normal tissue.

In this chapter, the first part (section (2.1)) is a detailed description of the model proposed by Baxter et al.
[3], in which they investigated the interstitial fluid pressure distribution for the following case:

• Homogeneous tumor (with out necrotic core)

– case 1: An alymphatic, isolated, uniform tumor.

– case 2: An alymphatic, uniform tumor, surrounded by normal tissue.

• Heterogeneous tumor (consisting necrotic core) surrounded by normal tissue

In the second part (section (2.2)) we will have a closer look at the model described by Liu et al. [21], where
the role of defined interstitial hydraulic conductivity on tumor interstitial fluid pressure distribution was
investigated. Liu et al. have analytically found the interstitial fluid pressure distribution for two limiting
cases .
In section (2.3), for the sake of improvement, we apply our numerical method to investigate the actual tumor
interstitial fluid pressure, by considering the introduced continuous variation of the hydraulic conductivity
by Liu.
These two models are served as the main backgrounds for the results presented in Chapter 3.

2.1 Based on Baxter-Jain model
Jain et al. (1988) [16] investigated the determining factors on blood flow in the vascular network. Later,
Baxter et al. [3] developed a theoretical framework for transvascular exchange and extravascular transport
of fluid in tumors. Their numerical models showed that in a uniformly perfused tumor the high interstitial
pressure is a major reason for heterogeneous distribution of nonbinding macromolecules. These models
were used to predict the interstitial fluid pressure as a function of radial position and the size of tumor;
Predictions for their models agreed well with the experimental data and showed that the the tumor interstitial
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fluid pressure was lowest at the periphery of the tumor and increased towards the center which concurred
the model expectations. Based on their results the heterogeneous distribution of blood supply hindered
interstitial transport and rapid extravascular binding of macromolecules; in addition, high interstitial fluid
pressures demonstrated a remarkable impact on the infiltration of macromolecules into tumors. Frequently,
a tumor is considered in a spherical shape with the following regions:

• Necrotic Region

• Semi-Necrotic Region

• Well-Vascularized Region

The biological parameters such as the micro-vessel permeability, interstitial fluid pressure, interstitial fluid
velocity and tumor shape and size affect the drug delivery process. A model shows the transportation of
fluid and the distribution of tumor interstitial fluid pressure according to Starling’s law , which is extracted
to explain the effect of capillary-capillary interaction, and Darcy’s law [3], which reflects the condition of the
porous tissue [20].

A solid tumor is spatially heterogeneous with large differences in the vasculature and in the cells between
different regions. The center of the tumor contains a necrotic core. The cancerous cells divide most actively
in the outer region, where there is a good supply of oxygen and nutrients because of existence of a large
blood supply in addition to an abundance of exchange vessels. Therefore, the physiological parameters,
which are incorporated in the models should be spatially dependent in a tumor. In [3] the physiological
parameters such as blood vessel surface area per unit volume and the hydraulic conductivity were considered
to be independent of time. Another assumption in this work was that the spherical tumor. In the following
subsection,

2.1.1 Mathematical modeling
Tumor is assumed as a rigid porous media. Since interstitial fluid is a Newtonian fluid, Darcy’s law can be
used:

∇pi =
−µ
k

ui (2.1.1)

In this equitation, the parameters u, p, k, and µ are the interstitial fluid velocity (IFV), the interstitial fluid
pressure, permeability, and viscosity, respectively with consistent units. The index i refers to the interstitial
fluid. K is defined as the constant hydraulic conductivity of interstitium (cm2/mmHg.sec) (which describes
the ability to move of the interstitial fluid through the interstitium [21]),

k

µ
= K

Then,
ui = −K∇pi (2.1.2)

and
ui = −K∂pi

∂r
(2.1.3)

where r is the radial position (cm). On the other hand, the mass-conservation equation for steady-state,
in-compressible fluid is given by:

∇·ui = 0

It is also possible to use the same equation in porous media without source or sink in the medium. In a
tumor as a biological tissue, vascular vessels are considered as the source and lymphatic vessels as sink. Fluid
is exchanged between interstitial, blood or lymph vessels. Therefore, the steady state in-compressible form
of the continuity equation is:

∇·ui =

{
φV (r)− φL(r) r ≥ rn
0 r < rn

(2.1.4)
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In Eq.(2.1.4), rn is the radius of the necrotic core (cm). In biological tissues φV (r) (the rate of fluid flow
per unit volume from blood vessels into the interstitium), with unit (sec−1), is the fluid source term , which
is given by Starling’s Law1 and φL(r) (the rate of fluid flow per unit volume from interstitium into lymph
vessels), with unit (sec−1), is the lymphatic drainage term that is assumed to be proportional to the pressure
difference between the interstitial and the lymphatics [39]. Interstitial fluid emanates from permeable tumor
vessels and it is described by Starling’s Law, which illustrates the role of hydraulic and osmotic2 forces, (Fig.
2.1), in the movement of fluid across capillary membranes. The classic Starling equation is defined below:

φV (r) =
JV
V

=
LPS

V
(pV − pi − σ(πV − πi))) (2.1.5)

For r ≥ rn :

φL(r) =
JL
V

=
LPLSL
V

(pi − pL) (2.1.6)

and if r < rn :
φV (r) = φL(r) = 0 (2.1.7)

In Eq.(2.1.6), JV
V (sec−1) is the volumetric flow rate out of the vasculature per unit volume of tissue. The

volumetric flow rate into the lymphatics is shown as JL
V (sec−1). S

V (cm−1) is the surface area per unit
volume for transport in the tumor. LP and LPL(cm/mmHg.sec) are the hydraulic conductivities of the
micro-vascular wall and the lymphatic wall, respectively. pV (mmHg) is the vascular pressure (hydrostatic1
capillary pressure). Moreover, pi, pL, πV , and πi (all with unit mmHg) are the interstitial pressure, the
hydrostatic pressure of lymphatics, the oncotic2 pressure of the plasma (in the plasma of blood vessels that
tend to pull water into circularly system), and the oncotic pressure of the interstitial fluid, respectively. The
average osmotic reflection coefficient for plasma proteins is defined by σ. As a general elucidation of osmotic
pressure, according to Fig.(2.1a), assuming that the right hand side of the tube is a solution of water and
sugar. While the left side is filled by pure water and it comes up to the same height of the solution. Consider
the existence of a border of semipermeable membrane between pure water and sugar solution. Since the flow
of pure water through the semipermeable membrane is greater than the solution, some pure water passes the
membrane. So, the amount of the liquid inside the right side of the tube comes up. The equilibrium situation
is shown in Fig.(2.1b) in which the pressure differential represents the osmotic pressure of the solution and
it equalizes the flow rate of fluid in the two sides of the tube. The original situation of Fig.(2.1a) occurs,
by exerting an osmotic pressure of the water and sugar solution to the liquid in the right side of the tube
(see Fig.(2.1c)). As in this work we are talking about different types of pressure for a vein and interstitial,
osmotic and hydrostatic pressures are clarified in Fig.(2.2). The baseline values of parameters are presented
in Table (2.1).

1Starling’s Law illustrates the role of hydraulic and osmotic forces in the movement of fluid across capillary membranes.
2Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of water across

a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in water by osmosis[29].
1Capillary hydrostatic pressure is the force that is applied by a fluid against the capillary wall. It helps the fluid to move

between capillaries and the interstitial fluid. At the arterial end of the capillary the maximum capillary hydrostatic pressure
occurs. While, the lowest pressure is seen at the venular end. The pumping action of heart produces the capillary hydrostatic
pressure [41].

2Oncotic pressure, or colloid osmotic pressure, is a form of osmotic pressure is applied in a blood vessel’s plasma that usually
tends to pull water into the circulatory system. It is the opposing force to hydrostatic pressure[27].
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Parameter Baseline value in Normal Tissue Baseline Value in Tumor Tissue

Lp[cm/mmHgsec] 0.36× 10−7 2.8× 10−7

K[cm2/mmHgsec] 8.53× 10−9 4.13× 10−8

S/V [cm−1] 70 200

pv[mmHg] 15.6 15.6

πv[mmHg] 20 20

πi[mmHg] 10 15

σ 0.91 0.82

Table 2.1: Baseline parameters used in the work by Baxter et al.

(a) (b) (c)

Figure 2.1: The application of the osmotic pressure [6]. (a) initial state, (b) equilibrium, (c) applied osmotic
pressure
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Figure 2.2: Schematic of a typical vein and different types of pressure [36].

Refer to Eqs.(2.1.2) and (2.1.4) (combination of Darcy‘s Law and Continuity equation), we have:

−∇·K∇pi = φV (r)− φL(r) (2.1.8)

For a special case, where the hydraulic conductivity of the interstitium is constant and there are no source
and sink terms, the interstitial pressure is defined with the below Laplace equation:

∇2pi = 0

By considering constant values for all parameters except for pi and r, we will have the following equation:

−∇·K∇pi =
LPS

V
(pv − pi − σT (πv − πi))−

LPLSL
V

(pi − pL) (2.1.9)

=⇒
∇2pi = −LpS

KV
pV +

LPS

KV
pi +

LPS

KV
σTπv −

LPS

KV
σTπi +

LPLSL
KV

pi −
LPLSL
KV

pL

=
LPS

KV
pi +

LPLSL
KV

pi −
LPS

KV
(pV − σT (πv − πi))−

LPLSL
KV

pL

=
LPS + LPLSL

KV
(pi −

LPS(pV − σT (πv − πi)) + LPLSLpL
LPS + LPLS

)

=
R2

R2

LPS + LPLSL
KV

(pi −
LPS(pV − σT (πv − πi)) + LPLSLpL

LPS + LPLS
)

=⇒
∇2pi =

α2

R2
(pi − pss) (2.1.10)

The dimensionless parameter, α, is a size of the proportion of interstitial to vascular resistances to fluid flow
[3], which is introduced by the following equation:

α = R 2

√
(LpS + LpLSL)/KV (2.1.11)
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The steady-state pressure, pss, is the interstitial pressure at which the flux from the vascular equals influx
into the lymphatics [3]; pss is introduced by the following equation:

pss = (LpSpe + LpLSLpL)/(LpS + LpLSL) (2.1.12)

The interstitial pressure in the center of the tumor has its maximum value which is equal to the effective
pressure, pe:

pe = [pv − σT (πv − πi)] (2.1.13)

Referring to Appendix 1,

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2

Therefore, if we assume spherically symmetry, the Laplace equation (2.1.10) is described as follows:

1

r2
∂

∂r
(r2

∂pi
∂r

) =
α2

R2
(pi − pss) (2.1.14)

2.1.2 Homogeneous tumor
Here, a homogeneous tumor is defined as existing alive cancerous cells all through a tumor with equal scat-
tering of blood vessels. Baxter et al. [3] categorized the investigation of the homogeneous tumor interstitial
fluid pressure from the two below aspects:

• Case 1 : An alymphatic, isolated, homogeneous tumor.

• Case 2 : An alymphatic, homogeneous tumor surrounded by normal tissue.

Boundary conditions

There is no-flux boundary condition at the center of the tumor due to symmetry:

∇pi|r=0 = 0 (2.1.15)

At the outer edge of the solid tumor, the two following boundary conditions are possible.
First, where the pressure in the surrounding tissue or space is fixed, the tumor pressure is the same as the
surrounding pressure, p∞:

pi|r=R = p∞ (2.1.16)

Second, where the solid tumor is surrounded by normal tissues, the continuity of pressure and velocity gives
the following boundary condition:

−KT
dpi
dr
|r=R− = −KN

dpi
dr
|r=R+ (2.1.17)

pi|r=R− = pi|r=R+ (2.1.18)

where R− and R+ represent the tumor and normal tissue radius at the outer edge of the solid tumor; KT

and KN are the hydraulic conductivities of the interstitium in tumor and normal tissues, respectively.
It should be noted that, in the second type, all the equations mentioned for the tumor tissue have to be
solved for the normal tissue, as well. It is clear that for the normal tissue, far from the solid tumor that
the pressure is constant, the first type of boundary condition, Eq. (2.1.16), must be applied. The solution
now can be obtained analytically or numerically to find the interstitial fluid pressure and interstitial fluid
velocity profiles for each of the two boundary conditions [3].

Now, finding a general solution of Eq.(2.1.14) is aimed. Consider Eq.(2.1.14),

1

r2
∂

∂r
(r2

∂pi
∂r

) =
α2

R2
pi −

α2

R2
pss
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As pss is constant, first we ignore the part of the equation consisting pss and consider the following equation:

1

r2
∂

∂r
(r2

∂p

∂r
) =

α2

R2
p (2.1.19)

=⇒
∂

∂r
(r2

∂p

∂r
) = r2

α2

R2
p

=⇒
2r
∂p

∂r
+ r2

∂2p

∂r2
= r2

α2

R2
p

⇒
r2p′′ + 2rp′ − r2 α

2

R2
p = 0 (2.1.20)

The standard form of Eq.(2.1.20) with the constant δ = α2

R2 is:

p′′ +
2

r
p′ − δp = 0 (2.1.21)

Based on the definition of the Ricatti equation given in [15], the solution of Eq. (2.1.21) can be written as
follows:

p =
1

r
e
α
R (2c2+r) − 1

r
e
α
R (2c1+2c2−r) (2.1.22)

where c1 and c2 are constants of integration. We refer to Appendix 2 for details. Moreover, define,

P1 =
1

r
e
α
R (2c2+r)

and
P2 = −1

r
e
α
R (2c1+2c2−r)

It must be pointed out that based on direct computations it can be shown that both P1 and P2, can
individually solve Eq.(2.1.19). As we have a constant part of (− α2

R2 pss) in Eq.(2.1.14), we add constant W
to Eq.(2.1.22) to get the solution of Eq.(2.1.14). As a result, the solution of Eq.(2.1.14) is written as:

p = P1 + P2 +W =
1

r
e
α
R (2c2+r) − 1

r
e
α
R (2c1+2c2−r) +W (2.1.23)

where W is constant and added to the solution because of the constant value of pss in the right hand side
of Eq. (2.1.14). Values for c1, c2 and W will be determined from boundary conditions as well as the main
Eq.(2.1.14) in the various cases that follow.

2.1.2.1 Analytical solution for isolated tumor

Baxter et al. [3] examined a uniform tumor in spherical shape, without any necrotic core, which is homoge-
neously vascularized (see Fig.2.3). Moreover, they ignored the existence of lymphatic drainage system and
binding of the solute (the case describes the transport of non-reacting macromolecule in a tumor without a
lymphatic system). According to these assumptions, we set the lymphatic drainage term, JL (in Eq.(2.1.15))
and the radius of necrotic core, rn (in Eq.(2.1.14)) equal to zero.
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Figure 2.3: Schematic of a uniform spherical tumor without necrotic core in the center and shown typical
vascular in the periphery region, R is the tumor radius and r is the radial position.

Consider Eq.(2.1.14) and its solution stated in Eq.(2.1.23) and relevant boundary conditions for this case
which are defined in Eqs. (2.1.15) and (2.1.16). According to the first boundary condition (Eq.(2.1.15)),
∂pi
∂r |r=0 = 0. Therefore,

− 1

r2
e
α
R (2c2+r) +

α

rR
e
α
R (2c2+r) +

1

r2
e
α
R (2c1+2c2−r) +

α

rR
e
α
R (2c1+2c2−r) = 0

To figure out how the above equation is behaving as r goes to zero, we split it into four items as follows:

L1 = − 1

r2
e
α2c2
R e

αr
R = −e

2αc2
R

r2
(1 +

α

R
r +

1

2

α2

R2
r2 + ...)

=⇒

L1 = −e
2αc2
R

r2
− α

R

e
2αc2
R

r
− α2

R2

e
2αc2
R

2

L2 =
1

r

α

R
e

2αc2
R e

αr
R =

1

r

α

R
e

2αc2
R (1 +

α

R
r +

1

2

α2

R2
r2 + ...)

=⇒
L2 =

1

r

α

R
e
α2c2
R +

α2

R2
e
α2c2
R

L3 =
1

r2
e
α(2c1+2c2)

R e
αr
R =

1

r2
e
α(2c1+2c2)

R (1− α

R
r +

1

2

α2

R2
r2 − ...)

=⇒
L3 =

1

r2
e
α(2c1+2c2)

R − 1

r

α

R
e
α(2c1+2c2)

R +
1

2

α2

R2
e
α(2c1+2c2)

R

L4 =
1

r

α

R
e
α(2c1+2c2)

R e
−αr
R =

1

r

α

R
e
α(2c1+2c2)

R (1− α

R
r +

1

2

α2

R2
− ...)

=⇒
L4 =

1

r

α

R
e
α(2c1+2c2)

R − α2

R2
e
α(2c1+2c2)

R

=⇒

L1 + L2 + L3 + L4 = − 1

r2
e

2αc2
R − 1

r

α

R
e

2αc2
R − 1

2

α2

R2
e

2αc2
R +

1

r

α

R
e
α2c2
R +

α2

R2
e
α2c2
R +

1

r2
e
α(2c1+2c2)

R

−1

r

α

R
e
α(2c1+2c2)

R +
1

2

α2

R2
e
α(2c1+2c2)

R +
1

r

α

R
e
α(2c1+2c2)

R − α2

R2
e
α(2c1+2c2)

R = 0

So,

− 1

r2
e

2αc2
R +

1

r2
e
α(2c1+2c2)

R = 0

and

−1

2

α2

R2
e

2αc2
R +

α2

R2
e
α2c2
R +

1

2

α2

R2
e
α(2c1+2c2)

R − α2

R2
e
α(2c1+2c2)

R = 0
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=⇒
−e

2αc2
R + 2e

2αc2
R + e

α(2c1+2c2)
R − 2e

α(2c1+2c2)
R = 0

=⇒
e

2αc2
R = e

α(2c1+2c2)
R

=⇒ e
α
R (2c2) = e

α
R 2c1e

α
R 2c2 =⇒ e

α
R 2c1 = 1 ⇒ ln(e

α
R 2c1) = ln(1) ⇒ e

α
R 2c1 = 0 ⇒ c1 = 0

Therefore,

pi =
2

r
e
α
R 2c2 sinh(

αr

R
) +W

Now, consider the second boundary condition mentioned in Eq.(2.1.16), pi|r=R = p∞. Thus,

2

R
e
α
R 2c2 sinh(α) +W = p∞

=⇒
2

R
e
α
R 2c2 sinh(α) = p∞ −W

=⇒
e
α
R 2c2 = (p∞ −W )

R

2 sinhα
=⇒

pi =
R(p∞ −W )

sinh(α)

1

r
sinh(

αr

R
) +W

Therefore,
1

r2
∂

∂r
(r2

∂pi
∂r

) =
α2

R2
[
R(p∞ −W )

sinh(α)

1

r
sinh(

αr

R
)]

Since this solution should satisfy Eq.(2.1.14); therefore,

1

r2
∂

∂r
(r2

∂pi
∂r

) =
α2

R2
(pi − pss) =

α2

R2
[
R(p∞ −W )

sinh(α)

1

r
sinh(

αr

R
)] +

α2

R2
W − α2

R2
pss

=⇒
W = pss

As a result,

pi =
R(p∞ − pss)

sinh(α)

1

r
sinh(

αr

R
) + pss (2.1.24)

is the particular solution of Eq. (2.1.14). Define r̂ = r
R as a dimensionless radial position. Finally, The

dimensionless pressure is obtained:

p̂ =
pi − p∞
pss − p∞

=

R(p∞−pss)
sinh(α)

1
r sinh(αrR ) + pss − p∞
pss − p∞

= 1− sinh(αr̂)

r̂ sinh(α)
(2.1.25)

We have plotted the analytical solution (2.1.25), by implementing Matlab programming code and using pa-
rameter values in Table (2.1), and we have investigated the behaviour of tumor interstitial fluid pressure by
increasing the size of the radial position (r) from the center of the tumor. The comparison between pressure
curvatures for different values of α, defined by Eq.(2.1.11), is shown in Fig.(2.4). By changing the value of
interstitial hydraulic conductivity K in Eq.(2.1.11), different values of α are produced; note that in each
case (for each α) the interstitial hydraulic conductivity is assumed to be constant throughout the tumor.
Increased interstitial hydraulic conductivity, K, results in decreased values for α. According to Fig.(2.4),
the maximum pressure happens at the center of the tumor and follows a decreasing trend towards the tumor
outer boundary (r̂ = 1). For high values of α the maximum interstitial pressure remains almost unchanged
until a great distance from the center of the tumor after which it experiences a sharp decrease to a minimum
value at the outer boundary. As shown in Fig.(2.4), the higher value of α lead to higher interstitial pressure.
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We would like to mention that, Sefidgar et al. [32] have claimed that α represents the shape of the tumor
(see Fig.(2.5)). α = 1 gives the spherical shape of the tumor which Baxter et al. [3] have considered in this
case.

Figure 2.4: Dimensionless interstitial pressure pi as a function of dimensionless radial position r for different
values of α.(α = 0.1, 1, 5, 25, 36.8)

Figure 2.5: Different shapes of tumor corresponding to different values of α [32].
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2.1.2.2 Numerical simulation for isolated tumor

Consider Eq.(2.1.14),
1

r2
∂

∂r
(r2

∂pi
∂r

) =
α2

R2
(pi − pss)

and two boundary conditions mentioned in Eqs.(2.1.15) and (2.1.16),

∇pi|r=0 = 0

and
pi|r=R = p∞

In addition to the analytical solution, we have investigated the pressure distribution through the tumor
using a following standard numerical approach to approve the behaviour of pressure presented by analytical
solution. The baseline parameters presented in Table (2.1) are used.

The spatial domain [0,1] is discritized into M cells. Then we get M points of xi, i = 1, 2, ..,M where
xi is located in the center of [xi−1/2, xi+1/2]. The length of each cell is defined by δx = xi+1/2 − xi−1/2.
The discretization of px at the cell interface xi+1/2 is:

[px]i+1/2 =
pi+1 − pi

δx
, i = 1, ...,M − 1 (2.1.26)

Let x be the radial position. A standard second order discretization can then be written according to the
steps below.

1

x

∂

∂x
(x2

∂p

∂x
) =

α2

R2
(p− pss)

=⇒
1

x2i δx
(x2i+1/2

∂p

∂x
|i+1/2 − x2i−1/2

∂p

∂x
|i−1/2) =

α2

R2
(pi − pss)

If i=1:
1

x21δx
(x23/2

∂p

∂x
|3/2 − x21/2

∂p

∂x
|1/2) =

α2

R2
(p1 − pss)

According to the first boundary condition (2.1.15) and Eq.(2.1.26), we have:

1

x21δx
(x23/2

p2 − p1
δx

) =
α2

R2
(p1 − pss)

=⇒
x23/2(p2 − p1) = x21δx

2 α
2

R2
(p1 − pss)

=⇒
x23/2p2 − (x23/2 + x21δx

2 α
2

R2
)p1 = −α

2

R2
x21δx

2pss (2.1.27)

And, if i=M, then:

1

x2Mδx
(x2M+1/2

∂p

∂x
|M+1/2 − x2M−1/2

∂p

∂x
|M−1/2) =

α2

R2
(pM − pss)

As xM+1/2 = 1 and according to the second boundary condition (2.1.16), we have:

1

x2Mδx
(
p∞ − pM

δx
2

− x2M−1/2
pM − pM−1

δx
) =

α2

R2
(pM − pss)
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=⇒
2(p∞ − pM )− x2M−1/2(pM − pM−1) =

α2

R2
(pM − pss)x2Mδx

2

=⇒
−(2 + x2M−1/2 +

α2

R2
x2Mδx

2)pM + x2M−1/2pM−1 = −α
2

R2
x2Mδx

2pss − 2p∞ (2.1.28)

And for i=2,...,M-1:

x2i+1/2pi+1 − (x2i+1/2 + x2i−1/2 + x2i δx
2 α

2

R2
)pi + x2i−1/2pi−1 = −α

2

R2
x2i δx

2pss (2.1.29)

Using Eq.(2.1.29) as well as equations for boundary conditions, Eqs.(2.1.27) and (2.1.28), we obtain a linear
equation system for the unknown pi where i = 1, ...,M . Now, let define A as follows. Let define A (M ×M
matrix of coefficients of pi) as follows:

A =



−(x− 3/2
2

+ x21δx
2 α2

R2 ) x23/2 0 · · · 0

x23/2 −(x25/2 + x23/2 + x22δx
2 α2

r2 ) x25/2 0 · · ·

0
. . . . . . . . .

... · · · x2M−1/2
0 · · · 0 x2M−1/2 −(2 + x2M−1/2 + α2

R2x
2
Mδx

2)


and define B (M × 1):

B =


− α2

R2x
2
1δx

2pss
− α2

R2x
2
2δx

2pss
− α2

R2x
2
3δx

2pss
...

− α2

R2x
2
Mδx

2pss − 2p∞



Therefore, the linear equation system can be written as Ap = B and p is defined as the vector of unknown
pressures. Again, the performance of Matlab programming code by using the baseline values in Table (2.1)
helps to see the behaviour of pressure through the tumor. Fig.(2.6) displays the pressure behaviour in
tumor using numerical simulation (the markers) superimposed to the results from analytical solution (lines)
(Fig.(2.4)); complete agreement between the two approaches is clear in this figure.
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Figure 2.6: Pressure behaviour in tumor using numerical simulation (the markers) and analytical solution
(lines), complete agreement between the two approaches is clear.

2.1.2.3 Analytical solution for tumor surrounded by normal tissue

In the case of tumor surrounded by normal tissue, we consider the specified tumor in case 1 (i.e. alym-
phatic, homogeneous, and without necrotic core) surrounded by a normal tissue (see Fig.(2.7)). In a tumor
tissue, the microvessels are longer, larger in diameter, and denser than the microvessels in a normal tissue [20].

Figure 2.7: Schematic of a homogeneous tumor and its surrounding normal tissue - R: the radius of the
tumor, r: the radial position.

According to the solution (2.1.23), now we can write the solution in the two different domains as:

pTi =
1

r
e
αT
R (2c2+r) − 1

r
e
αT
R (2c1+2c2−r) +W (2.1.30)

in a tumor tissue; and T represents tumor.
And for a normal tissue, since P1 (defined in section (2.1.2)) approaches infinity as r goes to infinity, we just
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consider P2 in Eq.(2.1.23); therefore, the solutions can be written as follows:

pNi = −1

r
e
αN
R (2c′1+2c′2−r) +W ′ (2.1.31)

where N represents normal tissue. We must now apply the boundary conditions to compute the unknown
constants c1, c2, c′1, c′1, W and W ′. The first boundary condition (2.1.15) can be applied for the pressure
solution inside tumor (Eq.(2.1.30)); this results in c1 = 0. Eq.(2.1.30) should satisfy Eq.(2.1.14); therefore,
in the tumor W = pss. The second boundary condition (2.1.16) is applied to pressure solution in normal
tissue (Eq.(2.1.31)). Therefore,

lim
r→∞

pNi = p∞

=⇒
lim
r→∞

[−1

r
e
αN
R (2c′1+2c′2+r) +W ′] = p∞

and this is true if W ′ = p∞.
So, the solution can be stated as follows: If (r < R),

pTi =
1

r
e
αT
R (2c2)(e

αT r

R − e−
αT r

R ) + pss (2.1.32)

and if (r > R),

pNi = −1

r
e
αN
R (2c′1+2c′2)e−

αNr

R + p∞. (2.1.33)

According to Eq.(2.1.18):

1

R
e
αT
R (2c2)(eαT − e−αT ) + pss = − 1

R
e
αN
R (2c′1+2c′2)e−αN + p∞

=⇒
e
αN
R (2c′1+2c′2) = −eαN e

αT
R 2c2(eαT − e−αT )−ReαN (pss − p∞). (2.1.34)

On the other hand,
∂pTi
∂r
|r=R = e

αT
R 2c2 [

2

R2
(−sinhαT + αT coshαT )]

and,
∂pNi
∂r
|r=R =

1

R2
e
αN
R (2c′1+2c′2)(1 + αN )e−αN .

Apply the boundary condition (2.1.17),

−KT [
2

R2
e
αT
R 2c2(−sinhαT + αT coshαT )] = −KN [

1

R2
e
αN
R (2c′1+2c′2)(1 + αN )e−αN ]

Define K̂ as the ratio of hydraulic conductivities of tumor and normal tissue, K̂ = KT
KN

, then,

2K̂

R2
e
αT
R 2c2(−sinhαT + αT coshαT ) =

(1 + αN )e−αN

R2
e
αN
R (2c′1+2c′2)

=
(1 + αN )e−αN

R2
[2eαN sinhαT e

αT
R 2c2 −ReαN (pss − p∞)]

(2.1.35)

=⇒
e
αT
R 2c2 =

R(pss − p∞)(1 + αN )

2K̂(−sinhαT + αT coshαT ) + 2(1 + αN )sinhαT
(2.1.36)

Inserting e
αT
R 2c2 from Eq.(2.1.36) into Eq(2.1.34), results in:

e
αN
R (2c′1+2c′2) = eαN

R(pss − p∞)(1 + αN )

K̂(−sinhαT + αT coshαT ) + (1 + αN )sinhαT
sinhαT +ReαN (pss − p∞)

Page 30



M.Sc. - Tumor Interstitial Fluid Pressure Distribution Spring-Fall 2017

=⇒

e
αN
R (2c′1+2c′2) = eαNR(pss − p∞)[

(1 + αN )sinhαT

K̂(−sinhαT + αT coshαT ) + (1 + αN )sinhαT
+ 1] (2.1.37)

As a result, in this case, the particular solution related to the tumor tissue (Eq.(2.1.32)), where (r < R), has
been obtained,

pTi = −R(p∞ − pss)
r

(1 + αN )

K̂(−sinhαT + αT coshαT ) + (1 + αN )sinhαT
sinh

αT r

R
+ pss (2.1.38)

and for the normal tissue, (r > R), according to Eq.(2.1.33), the particular solution is governed,

pNi = −1

r
eαNR(pss − p∞)[

(1 + αN )sinhαT

K̂(−sinhαT + αT coshαT ) + (1 + αN )sinhαT
+ 1]e−

αNr

R + p∞

=⇒

pNi = −R(pss − p∞)

r

K̂(−sinhαT + αT coshαT )

(K̂(−sinhαT + αT coshαT ) + (1 + αN )sinhαT )e−αN
e−

αNr

R + p∞

=⇒

pNi =
R(p∞ − pss)

r

K̂(−sinhαT + αT coshαT )(sinh(αNrR )− cosh(αNrR ))

(K̂(−sinhαT + αT coshαT ) + (1 + αN )sinhαT )(sinhαN − coshαN )
e−

αNr

R + p∞

(2.1.39)

The comparison of the pressure behaviour between case 1 (isolated tumor) and case 2 (tumor surrounded
by normal tissue) is shown by Baxter et al. [3] in Fig.(2.8). The interstitial pressure, pi, at the edge of a tumor
has the same value as the pressure in the normal tissue. By decreasing the distance towards the center of a
tumor, pi raises quickly (see Fig.(2.8)). According to Eq.(2.1.5) and the definition of the effective pressure,
pe, in Eq.(2.1.13), the driving force for the fluid filtration is the difference between pe and pi. Therefore, the
pure rate of fluid filtration reaches the highest value at the tumor periphery, while the lowest value is obtained
in the center of the tumor. By considering the baseline values for the physiological parameters (Table (2.1))
and Eq.(2.1.13), the calculated pe is 11.5 mmHg; this value is identical to the highest value of interstitial
pressure, pi, in the tumor. The results from analytical solution agree with the experimental findings [3].
The value of αN is calculated by considering the related parameters in normal tissue in Table(2.1), which
is equal to 17. This applies a steep curvature of pressure and produces a high pressure in the center of the
tumor, Fig.(2.8). The presence of functional lymphatics in a normal tissue causes difference between the
trend of pressure for isolated tumor and surrounded by normal tissue. Baxter et al. [3] suggested some ways
that helps to decrease the interstitial pressure, pi. The modification of the osmotic pressure of vessels and
increasing the interstitial hydraulic conductivity K can be applied to approach the goal of reducing pi.
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Figure 2.8: Pressure trend difference between two cases of isolated tumor and surrounded by normal tissue
with fixed value of αT = 36.8. The unit dimensionless pressure is equivalent to a pressure of 11.5 mmHg.

2.1.3 Heterogeneous tumor
The incorporation of a necrotic core inside the tumor (center of a tumor) causes the heterogeneity of the tumor
(see Fig.(2.9)). In this case, the purpose of Baxter et al.[4] was to apply the developed theoretical framework
(presented in the previous cases without necrotic core) to the more realistic case of a non-uniformly perfused
tumor (nonuniform blood perfusion in the tumor because of existing necrotic core). Here, this specific tumor
is considered by a surrounding normal tissue (see Fig.(2.9)). Therefore, it is possible to define three regions
of necrotic core, periphery (the region between necrotic core and the edge of the tumor) and normal tissue.
Necrotic core region means the area without functional blood or lymph vessels, thus no exchange of fluid or
macromolecules with the interstitium [4].

Figure 2.9: Schematic of a heterogeneous tumor surrounded by normal tissue - R: the radius of the tumor,
Rn: the radius of the necrotic core, r: the radial position.
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Here again the fluid transport equation is defined by the combination of Darcy’s Law and continuity equa-
tion. Therefore, Eq.(2.1.14) with the solution presented in Eq.(2.1.23) is considered. Contributing relevant
boundary conditions leads to find the particular solutions for different regions of necrotic core, periphery
and normal tissue.

Boundary conditions

The boundary conditions are defined according to Baxter et al. [4] model. Since there is no source or
sink for fluid in the necrotic core, there is no-flux boundary conditions or continuity of pressure at the
necrotic core-vialbe tumor interface:

∂pi
∂r
|r=Rn = 0 (2.1.40)

pi|r=Rn− = pi|r=Rn+ (2.1.41)

For a tumor surrounded by normal tissue there is continuity of interstitial velocity and pressure between
tumor and normal tissue:

−KT
∂pi
∂r
|r=R− = −KN

∂pi
∂r
|r=R+ (2.1.42)

pi|r=R− = pi|r=R+ (2.1.43)

The superficial velocity is considered here, a macroscopic velocity defined as the flow rate per unit area over
an area large compared to any pores, fibers or cells. The actual instantaneous velocity equals the superficial
velocity, ui divided by the interstitial volume fraction. If the volume fractions were equal in normal and
tumor tissue, Eq. (2.1.38) would also hold for the instantaneous velocity [4]. The pressure will reach the
value of p∞ deep in the normal tissue:

pi|r→∞ = p∞ (2.1.44)

2.1.3.1 Analytical solution for tumor surrounded by normal tissue

Consider Eq.(2.1.14) and its solution (2.1.23),

1

r2
∂

∂r
(r2

∂

∂r
) =

α2

R2
(pi − pss)

pi =
1

r
e
α
R (2c2+r) − 1

r
e
α
R (2c1+2c2−r) +W

In Baxter model [4], it is assumed that in the necrotic core, the parameter α , and therefore the right hand
side of Eq.(2.1.14) is zero. The solutions should be written separately for three regions where r is the radial
position, Rn is the radius of the necrotic core and R is the radius of the tumor.
If (r < Rn), Eq.(2.1.23) will reduce to:

pni = W ′′

In the same manner as previous case (section 2.1.2.3), W = pss. Therefore, if Rn < r < R, we will have,

pTi =
1

r
e
αT
R (2c2+r) − 1

r
e
αT
R (2c1+2c2−r) + pss (2.1.45)

finally, based on Eq. (2.1.44), W ′ = p∞, therefore, if r > R,

pNi = −1

r
e
αN
R (2c′1+2c′2−r) + p∞ (2.1.46)

where n, T and N represent necrotic core, tumor (periphery) and normal tissue, respectively. By applying
boundary condition (2.1.40) in Eq.(2.1.45), we will have,

e
αT
R (2c1+2c2) = e

αT
R (2c2)

e
αTRn
R ( 1

Rn
− αT

R )

e−
αTRn
R ( 1

Rn
+ αT

R )
. (2.1.47)
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By defining A as:

A =
e
αTRn
R ( 1

Rn
− αT

R )

e−
αTRn
R ( 1

Rn
+ αT

R )
(2.1.48)

Eq.(2.1.47) will be,
e
αT
R (2c1+2c2) = e

αT
R (2c2)A. (2.1.49)

By applying the forth boundary condition (2.1.43) in Eq.(2.1.46),

e
αN
R (2c′1+2c′2) = − R

e−αN
[
1

R
eαT e

αT
R 2c2(1−A) + pss − p∞]

Define K̂ = KT /KN . Thus, Eq.(2.1.42) results that,

K̂[eαT e
αT
R 2c2(−1 + αT ) + e−αT e

αT
R 2c2A(1 + αT )] = e−αN (1 + αN )e

αN
R (2c′1+2c′2). (2.1.50)

Put the value of e
αN
R (2c′1+2c′2) in Eq.(2.1.50),

e
αT
R 2c2 [K̂(eαT (−1 + αT ) + e−αTA(1 + αT )) + (1 + αN )eαT (1−A)] = −R(1 + αN )(pss − p∞)

Define,
B = K̂(eαT (−1 + αT ) + e−αTA(1 + αT )) + (1 + αN )eαT (1−A) (2.1.51)

so,

e
αT
R 2c2 =

−R(1 + αN )(pss − p∞)

B
(2.1.52)

Refer to Eq.(2.1.41),

W ′′ =
1

Rn
e
αT
R 2c2e

αTRn
R − 1

Rn
e
αT
R (2c1+2c2)e

−αTRn
R + pss

=
1

Rn

−R(1 + αN )pss
B

e
αTRn
R − 1

Rn

−R(1 + αN )pss
B

Ae
−αTRn

R + (pss − p∞)

=⇒
W ′′ = (pss − p∞)(1− R

Rn

(1 + αN )

B
pss(e

αTRn
R −Ae−

αTRn
R )) (2.1.53)

Finally, the interstitial fluid pressure distributions in three regions are described as follows:

pni = (pss − p∞)(1− R
Rn

(1+αN )
B pss(e

αTRn
R −Ae−

αTRn
R )) (r < Rn) ,

pTi = (pss − p∞)[−Rr
(1+αN )

B (e
αT r

R −Ae
−αT r
R ) + 1] (Rn < r < R),

pNi = − 1
r e
−αNrR (− R

e−αN
[ 1Re

αT (−R(1+αN )pss
B )(1−A) + (pss − p∞)]) (r > R)

(2.1.54)

According to Eq.(2.1.6), lymphatics appear by contributing the values of (
LpLSL
V ) and pL. In this case, Baxter

et al. [4] assumed that pL = 0 because of the fast removal of fluid by distal lymphatics. The combinations
by the necrotic core and the effect of its size on the interstitial pressure is illustrated by Baxter et al. [4]
in Fig.(2.10). The interstitial pressure profile (in the area between the tumor border and the normal tissue)
(r/R ≥ 1), Fig.(2.10) is influenced insignificantly by contributing nonuniform perfusion. The percentage
of necrotic core presentation is shown by the ratio of Rn to R (Rn/R). In the case of uniform perfused
tumor (section (2.1.2)), Rn/R = 0. According to Eq.(2.1.54) where r < Rn, the value of the interstitial
pressure in the necrotic core is constant, as can be seen in Fig.(2.10). First consider a very large necrotic
core, Rn/R = 0.99. So, an invisible small rim (periphery region) with less functional vessels remains. The
interstitial pressure is constant through the necrotic core and then decreases through the normal tissue to
the lowest value. Now, consider Rn/R = 0.90. A constant and maximum pressure in the necrotic core is
clear in Fig.(2.10) and this maximum pressure is higher than that of previous one (very large necrotic core).
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In addition, it is decreasing smoothly through the periphery region and finally decreases sharply outside the
tumor. Overall, the lowest maximum pressure occurs with the largest necrotic core. While decreasing the
size of necrotic core causes an increase in the periphery region, with more functional vessels and consequently
an increased maximum value of the interstitial pressure.

Figure 2.10: The distribution of interstitial pressure in a heterogeneous tumor surrounded by normal tissue
for different sizes of necrotic core.

Baxter et al. [3][4] showed that not only the the heterogeneity of blood flow and barriers of interstitial
transport, but also elevated interstitial pressure causes nonuniform drug penetration in the tumor matrix.
High interstitial pressure influence the transportation system in tumors by acting as a barrier for inflow
transport. Later, Soltani et al. [36] illustrated these effects in Fig.(2.11). One of the impacts of high
interstitial pressure is that it decreases a moving forces for transcapillary exchange of fluid. High interstitial
pressure in the center of a tumor causes low filtration process. While in the periphery region, high filtration
happens because of low interstitial pressure. In addition, elevated interstitial pressure helps the fluid to
transfer towards the outer layer of a tumor. It creates radially outward convection flux in the interstitium.
The concentration gradient of the drug causes an inward diffusion. If the velocity of the diffusion process
becomes higher than the velocity of the convection procedure, drugs can penetrate the tumor matrix. The
elevated interstitial pressure is distributed equally in the center of a tumor which stops the process of
convection. Therefore, the blood in the center of a tumor is perfused heterogeneously. Finally, it leads to
a heterogeneous drug distribution. The theoretical frame work of Baxter et al. helped them to understand
that the pressure, the status of drug penetration , the hydraulic conductivity of vessels and lymphatics are
crucial factors in the actual drug uptake in tumors [36].
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Figure 2.11: Schematic of heterogeneous tumor and the illustrated effect of high interstitial pressure on the
drug delivery [36].

The role of lymphatics for macromolecular transport was also studied by using the model defined by
Baxter et al. [4]. As lymphatics remove the fluid passed from vessels into interstitium, their presence in
the tumor affects reducing the value of maximum pressure. The heterogeneous perfusion and lymphatic
drainage have roles on building the structure of the tumor, and the effects of these two factors are considered
together to determine the profile of interstitial pressure [4]. Inside our body, lymphatic vessels are widely
distributed and they are more permeable to fluid and solutes than the blood capillaries [18]. The main task
of the lymphatic system is to return the interstitial fluid to the blood circulation. Large particles such as
tumor cells, which are detached from a primary tumor, can enter the lymph by passing between the cells of
the lymphatic network [40]. One of the characteristics of solid tumors is related to a poor or non-functional
lymphatic system [18]. The lack of lymphatic drainage in solid tumors affects on the drug delivery process
to the tumor matrix. In addition to investigating the role of necrotic core on determining the interstitial
pressure, Baxter at al. [4], in Fig(2.12), showed the effect of having functional lymphatics, on the interstitial
pressure throughout the tumor, surrounded by normal tissue without a necrotic core. Similar to the results
of the necrotic core efficiency, the outcomes show that lymphatics have a negligible influence on the shape
of the interstitial pressure profile. However, lymphatics have significant effect on the value of steady state
pressure, pss, defined in Eq.(2.1.12). As it is mentioned before, the presence of lymphatics correlates with
the value of LpLSL

V . Since it is obvious in Fig(2.12), for the alymphatic tumor, where LpLSL
V = 0.00, the

highest maximum interstitial pressure happens with the value of 11.5 (mmHg). While the value of maximum
interstitial pressure is decreasing by raising the values of LpLSLV . It illustrates that the presence of lymphatic
in the tumor decreases the elevated interstitial pressure and consequently facilitates the drug delivery process.
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Figure 2.12: The efficiency of lymphatics on the distribution of the interstitial pressure in the homogeneous
tumor surrounded by normal tissue - r

R : dimensionless radial position.

2.2 Based on Liu-Schlesinger model
Traditionally, the hydraulic conductivity K has been considered as a constant both in the tumor and normal
tissue to determine the TIFP distribution (as it was in Baxter et al. model [3][4]). However, investigations
demonstrate that the hydraulic conductivity is not a constant in most tissues and it should be a spatially
dependent variable. Many factors correlates with the hydraulic conductivity, K, (see Fig.(2.13)). Beside
those, K depends on the intrinsic permeability of the material and the degree of saturation, as well as the
density and viscosity of the fluid. In this section we are focusing on the model and assumptions used by L.J
Liu and M. Schlesinger [21]. Their main concern was to express a proper and valid hydraulic conductivity
to determine the real tumor interstitial fluid pressure distribution. They have assumed avascular or poorly
vascularized heterogeneous tumor. In addition, they introduced a continuous change of the interstitial
hydraulic conductivity in order to correspond to the actual TIFP distribution [21]. Similar to Baxter et al.
model [3][4], fluid transport is described by Darcy’s law be cause of the fact that the surroundings of the
interstitial fluid is considered as a porous medium[21].

u = −K∇p (2.2.1)

Eq.(2.2.1) illustrates that interstitial fluid flow corresponds with the hydraulic conductivity K, and the
gradient of fluid pressure which is the driving force also straightly relates to the hydraulic conductivity.
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Figure 2.13: Factors which correlate with hydraulic conductivity (K) as described in [21] .
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2.2.1 Mathematical modeling
Liu et al. [21], divided a typical tumor and its surroundings into three different regions as illustrated in
Fig.(2.14). They suggested an intermediary region between the surface of the tumor and its surrounding
normal tissue, through which the interstitial fluid moves from tumor to normal tissue. Because of the
difference in density of vascular networks in the center of the tumor compared to the periphery region, the
impact of the hydraulic conductivity may be different in the various regions [20]. The hydraulic conductivity
is introduced as a continuous changing parameter by Liu et al. [21] which allows for a different, perhaps
more realistic, TIFP behaviour in the different regions. For the sake of simplicity, Liu et al. imagine the
tumor with a spherical structure. By attending to the difference of vascular network distribution and cell
activity in various regions, especially the change of tumor interstitial fluid pressure, tumor is divided into
three following regions [20]:

1. a necrotic central core where most cells are dead and there are no small functional vessels and where
the tumor interstitial fluid pressure, p0, is uniform. Interstitial hydraulic conductivity can be taken as
constant K ′.

2. a vascularized periphery region. Here, tumor blood vessels are plenty. This region is the main source
of tumor interstitial fluid.

3. an intermediary region. In this area, there is almost no tumor fluid source and only lymphatics exists
for tumor fluid to be absorbed.

The outer area, is the normal tissue region, where interstitial fluid pressure and interstitial hydraulic con-
ductivity can be chosen as constants p∞ and K, respectively. It is assumed that there are no functional
lymphatics within the tumor but some enlarged lymphatics exist near the periphery. In the necrotic core,
there is no living tissue and no functional exchange vessels. There is no source or drain in the necrotic core
region. In the blood vessel area, there is fluid source and negligible drainage system. It is assumed that the
drain exists near the edge of the tumor. Outside the tumor (in the intermediary region), there are drains
due to the functional lymphatics in the normal tissue. In the well vascularized area, the abundance of blood
vessel capillaries are significant [20]. Generally, the necrotic core is in the central region of the tumor and
R0 represents the radius of the necrotic core. The functional blood vessels are distributed in the periphery
with the limited area of R0 < r < Rs, where Rs represents tumor surface. Moreover, Rm is the maximum
distance size that the tumor fluid can move before being normalized (see Fig.(2.14)).

Figure 2.14: Schematic of a heterogeneous tumor surrounded by normal tissue with defined regions- r: radial
position
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Here again, the same as the definition in Eq.(2.1.4) in section (2.1.1), the continuity equation for steady-
state incompressible flow is defined as following:

∇·~u(~r) =
JV
V
− JL
V

(2.2.2)

WhereJVV (sec−1) is the volumetric net flow rate for fluid coming out of blood vessels i.e. the fluid source
term which is given by Starling’s Law, and JL

V (sec−1) is the volumetric flow rate for fluid being absorbed
into the lymphatics i.e. the lymphatic drainage term assumed to be proportional to the pressure difference
between the interstitium and lymphatics. The Interstitial fluid emanates from permeable tumor vessels and
is described by Starling’s Law, which illustrates the role of hydrostatic and osmotic forces in the movement
of fluid across capillary membranes. Below the classic Starling equation is shown,

JV = LV S[(pV − pi)− σ(πV − πi)] (2.2.3)

where, LV (cm/mmHg sec) is the hydraulic conductivity of the vessel membrane, S (cm2) is the surface
area for filtration. In addition, as we have incompressible fluids, pV (mmHg) is the hydrostatic capillary
pressure, pi (mmHg) is the interstitial pressure, σ is the reflection coefficient, πp (mmHg) is the plasma
oncotic pressure and πi (mmHg) is the interstitial osmotic pressure. In the model described by Baxter et
al. [3][4], only arterioles were considered, while Liu et al. [21] considered the whole structure of the blood
capillaries (arterial and venous capillaries). As shown in Fig.(2.15), in our body the blood flows through
the large arterioles and into the microvasculatures, where it delivers nutrition and oxygen through arterial
capillaries in different organs and tissues. Meanwhile, through blood vessel capillary, excess fluid is absorbed
by the capillaries and to the venules and transported back to the pulmonary system and the heart. Normally,
lymphatic capillaries are distributed next to the blood capillaries. Through lymphatics, fluid flows only in
one direction to the heart and remove the excess fluid from the interstitium.

Figure 2.15: Capillary bed. The blood transfer occurs in between arterial and venous capillaries [7].
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The flow rate is described as following (A represents arterioles):

JS = SALA[pA − p(~r)− σA(πA − πAi)] (2.2.4)

As an improvement of the model presented by Baxter et al [3], Liu et al. [21] expressed the net flow rate by
considering both arterioles and venules,

JS = SALA[pA − p(~r)− σA(πA − πAi)] + SV LV [pV − p(~r)− σV (πV − πV i)] (2.2.5)

where the indices of A and V represent arterioles and venules, respectively, and the parameters in Eq.(2.2.5)
have the same concepts as parameters in Eq.(2.2.3) defined both for arterial and venous capillaries. As it is
shown in Fig.(2.16), through arteriole, outward flow of fluid (filtration) is observed by hydrostatic pressure
of arterial capillary due to the hydrostatic pressure of arterial capillaries which is higher than the osmotic
pressure, pA > πA. Unlike, the venous capillaries, the osmotic pressure here is higher than the hydrostatic
pressure, pV < πV . Thus, πV produces inward flow of fluid (absorption). A typical values of osmotic and
hydrostatic pressure both in blood capillaries (consisting arterial and venous) and interstitial and their re-
lationship and consequent functions are illustrated in Fig.(2.17). As shown, the osmotic pressure of the
arteriole end and the venule end are the same; while the hydrostatic pressure of the arteriole is higher than
the hydrostatic pressure of venule. Note that the direction of the pressures shows the sign of them in the first
figure of Fig.(2.17). The filtration pressure is calculated by the summation of the hydrostatic blood capillary
pressure and the osmotic interstitium pressure which is not clearly the same for arteriole and venule. The
absorption pressure is obtained by summing the osmotic pressure of the interstitium and interstitial hydro-
static pressure.This has the same value for arteriole and venule. The net fluid pressure (NFP) is defined as
a difference between the filtration and absorption pressure.

Figure 2.16: Functions of arterial and venous capillaries [44].
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Figure 2.17: Functions of arterial and venous capillaries [9]. PIF and πIF are defined as the hydrostatic and
osmotic pressures of the interstitial and PCAP and πCAP are the hydrostatic and osmotic pressure of the
blood capillary.

As lymphatic vessels are highly permeable, they have no osmotic pressure, so the pressure difference
between the interstitial fluid and the lymph explains the interstitial fluid drain:

JL = SLLL[p(~r)− pL] (2.2.6)

where LL (cm/mmHg sec) is the hydraulic conductivity of lymphatic vessels, and pL (mmHg) is the pressure
in lymphatic vessels. Baluk et al.[2] understood that the basic membrane of blood vessels are not normal
in a tumor. As a comparison of the status of blood vessels in a normal tissue and tumor, the entries of
tumor blood vessels are more larger and their abundance is higher. Some big proteins can come out from the
membrane of blood vessels. The oncotic pressure π in tumors is evaluated. Therefore, the oncotic pressure
difference (πv − π) is small. Moreover, the hydraulic conductivity and the surface area of blood vessels in a
tumor are greater than those in normal tissue. As a result, in a tumor, the net flow of exudates from blood
vessels is higher than that in normal tissue [21]. On the other hand, as in the center of the tumor functional
lymphatics do not exist, the leaking system is not effective and tumor cells increase the resistance of fluid.
In addition, some large proteins which are leaked from the blood vessels may not be drained or absorbed.
They sit in the tumor and decrease the facility of transportation of fluid [21]. Some of the interstitial fluid of
the tumor enters into the normal tissue. However Starling’s law describes the source and sink of interstitial
fluid, as the distribution of the vessels and lymphatic in the tumor is not predicted, it is not easy to measure
the amount of fluid flow. The net flow rate across the tumor surface for a volume of V is:

∇·~u(~r) =
JS(V )

V
− JL(V )

V
(2.2.7)
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The distribution of blood vessels and lymphatics describes the transportation of interstitial fluid in addition
to defining the distribution of tumor interstitial fluid pressure.

Now, some formulations are presented which will be used to analytically investigate the interstitial fluid
pressure for some limiting cases. Liu et al. [21] focused on the two specific types of tumors. A tumor with
a very small necrotic core placed in the center which is defined as the spherical case (Fig.(2.18a)). And the
case in which the tumor has a very large necrotic core, resulting in a very small rim, which is the planar case
(Fig.(2.18b)).

(a) Spherical case (very small necrotic core) (b) Planar case (very large necrotic core)

Figure 2.18: Schematic of tumor for Planar and Spherical cases.

To analytically get the tumor interstitial fluid pressure distribution in these two cases, formulating the
related Laplace equation is needed for each case. First, consider the spherical case. Referring to Eqs.(2.2.1),
(2.2.5), (2.2.6) and (2.2.7) and referencing Fig.(2.14), if (R0 < r < Rs):

∇·(−K ′∇p) =
SA
V
L′A[pA−σA(πA−πAi)]+

SV
V
L′V [pV−σV (πV−πV i)]−(

SAL
′
A

V
+
SV L

′
V

V
)p(~r)−SLL

′
L

V
[p(~r)−pL]

=
SAL

′
ApA + SV L

′
V pV + SLL

′
LpL − SAL′AσA∆πA − SV L′V σV ∆πV

SAL′A + SV L′V + SLL′L
(
SAL

′
A + SV L

′
V + SLL

′
L

V
)−

SAL
′
A + SV L

′
V + SLL

′
L

V
p(~r).

Define α and pe as following,

α =
L′ASA + L′V SV + L′LSL

V

and,

pe =
L′ASApA + L′V SV pV + L′LSLpL − L′ASAσA∆πA − L′V SV σV ∆πV

L′ASA + L′V SV + L′LSL
.

So,
∇(K ′∇p) = α(p− pe) (2.2.8)
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Furthermore, if (Rs < r < Rm), as assumptions, there is no source of the tumor interstitial fluid in the
periphery region. So,

∇·(−K∇p) = −SLLL
V

[p− pL].

Define β = SLLL
V , so,

∇·(K∇p) = β(p− pL) (2.2.9)

By using ∇2 calculated in Appendix 1,

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2

Consider Eqs.(2.2.8) and (2.2.9) in spherical coordinate and take spherical symmetry in to account. So, the
Laplace equation in the spherical case can be written as,

r ddr (K ′ dp(r)dr ) + 2K ′ dp(r)dr − αr(p− pe) = 0 (periphery region, R0 < r < Rs) ,

r ddr (K dp(r)
dr ) + 2K dp(r)

dr − βr(p− pL) = 0 (intermediary region, Rs < r < Rm).
(2.2.10)

In the planar case, we can consider Cartesian coordinates in which Eqs.(2.2.8) and (2.2.9) can be written as,
d
dr [K ′ dp(r)dr ]− αr(p− pe) = 0 (R0 < r < Rs) ,

d
dr [K dp(r)

dr ]− βr(p− pL) = 0 (Rs < r < Rm).
(2.2.11)

The boundary conditions described by Liu et al. [21] are mentioned below.
In the center of the tumor, the interstitial fluid pressure is monotone at steady state [21]. In this region
the fluid velocity is zero because of the fact that the gradient of the pressure is zero. The boundary and
continuity conditions are given as follows from [21],

p(R0) = p0, u(R0) = −K ′ dp(R0)

dr
= 0 (2.2.12)

p(Rm) = p∞, u(Rm) = −Kdp(Rm)

dr
= 0 (2.2.13)

p(R+
s ) = p(R−s ) = p(Rs),K

dp(R+
s )

dr
= K ′

dp(R−s )

dr
= −u(Rs) (2.2.14)

2.2.2 Spatially dependency of the interstitial hydraulic conductivity
Here, Liu et al. [21] introduced a continuous change of interstitial hydraulic conductivity and suggested a
linearly decreasing interstitial hydraulic conductivity through the periphery region and a linearly increasing
interstitial hydraulic conductivity through the intermediary region (They showed the behaviour of interstitial
hydraulic conductivity in Fig.(2.19)). In the necrotic core, in addition to the interstitial fluid pressure,
p0, the structure and composition of the interstitium is mostly monotone. Thus, Liu et al. [21] took the
interstitial hydraulic conductivity as a constant in the central region, K ′ . Similarly, the interstitial hydraulic
conductivity has been taken as a constant in the normal tissue, K. In the tumor periphery and intermediary
region the structure and combination of the interstitium as well as the pressure distribution are changing.
So, assume that the hydraulic conductivity in these two regions is dependent to the radial position, r (cm).
Based on the relevance between the interstitial hydraulic conductivity and the TIFP distribution, the correct
definition of the interstitial hydraulic conductivity is needed to approach the actual tumor interstitial fluid
pressure distribution. Thus, the correct definition of the interstitial hydraulic conductivity both in the
periphery an intermediary regions is needed.
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2.2.2.1 Periphery region

Liu et al.[21] suggested that in the periphery region, where R0 < r < Rs (see Fig.(2.14), the blood capillary
hydraulic conductivity, Lp, increases exponentially with the radial position r. In contrast, the interstitial
hydraulic conductivity decreases smoothly by increasing the radial position, r. The abundance of the leaky
blood vessels is qiute high in the periphery region and a pressure obstacle occurs [20]. In this region, the
structure and composition of the interstitium is not fixed, and the blood vessels may distribute unequally.
In the central region the amount of consisting of the water content is more than the existence of vessels and
the resistance of the interstitial fluid transport increases in the periphery region. As a result, the interstitial
hydraulic conductivity at the central region border is greater than that at the tumor surface. Although it is
not easy to define an exact distribution of the interstitial hydraulic conductivity, since the periphery region
is narrow, Liu et al. [21] suggested a linear change of interstitial hydraulic conductivity. By defining d0 as
the distance between the periphery and the necrotic region (d0 = Rs −R0), we have,

K ′(r) = K ′ − K ′ −Ks

d0
(r −R0) (2.2.15)

2.2.2.2 Intermediary region

In the intermediary region (the limited area between the tumor and the normal tissue), where Rs < r < Rm,
Liu et al. [21] suggested that the interstitial hydraulic conductivity in this region should be treated in such
a way that their model produces continuous first derivatives of pressure as a function of r. The interstitial
hydraulic conductivity is described by a spatially continuous function K(r), that has a value between the
hydraulic conductivity in normal tissue, K, and the hydraulic conductivity at the tumor surface, Ks, because
of the fact that the interstitial hydraulic conductivity depends on the intrinsic permeability of the tissue.
A smaller interstitial hydraulic conductivity leads to a higher tumor interstitial fluid pressure. By the
acceptance of continuous and spatial changes of the interstitial hydraulic conductivity, the assumption of
that K > Ks is demanded. When defined as dm = Rm −Rs, the variation of K(r) as a linear function of r
can be approximated. Thus,

K(r) = Ks +
K −Ks

dm
(r −Rs) (2.2.16)

Figure 2.19: The behaviour of interstitial hydraulic conductivity in different regions investigated by Liu et
al. [21].
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Liu et al. [21] realized that the interstitial hydraulic conductivity has an important role in specifying the
distribution of tumor interstitial fluid pressure (TIFP). As it was mentioned, traditionally, the interstitial
hydraulic conductivity was considered as a constant.
Liu et al. [21], first, analytically investigate the TIFP distribution for the two cases, shown in Fig.(2.18),
by considering constant values of interstitial hydraulic conductivity, K ′ and K, for tumor and normal tis-
sue, respectively. Then, apply a continuous variation of the interstitial hydraulic conductivities defined in
Eqs.(2.2.15) and (2.2.16), to investigate the pressure behaviour only for planar.

We would like to point out that, in this work, the following computations give the full derivation of the
two analytical solutions, which were not presented by Liu et al. [21].
In the case of setting constant values of interstitial hydraulic conductivity for a tumor, K ′, and for normal
tissue, K, the analytical solution will be obtained with almost similar analytical method we applied for
solving the model presented by Baxter et al. [4]. The difference is that, in Liu et al. model, the parameter
JV )
V in Eq.(2.1.5) changes to Eq.(2.2.5), which includes both arterioles and venules.

2.2.3 Analytical solution for a tumor with very large necrotic core
Consider Eq.(2.2.11). 

d
dr [K ′ dp(r)dr ]− αr(p− pe) = 0 (R0 < r < Rs) ,

d
dr [K dp(r)

dr ]− βr(p− pL) = 0 (Rs < r < Rm).

The solution is obtained as follows.
If (R0 < r < Rs):

K ′
d2p

dr2
− α(p− pe) = 0

then,

K ′
d2p

dr2
− αp = −αpe (2.2.17)

Consider the homogeneous partial differential equation of Eq.(2.2.17). Then,

K ′
d2p

dr2
− αp = 0 (2.2.18)

define x = d2p
dr2 , so K

′x2 − α = 0, then x = ±
√

α
K′ . Accordingly, the solution for Eq.(2.2.18), by defining ph

as the solution for homogeneous case, is obtained,

ph = c1e
√

α
K′ r + c2e

−
√

α
K′ r

Define pnh where p = ph + pnh is the solution of Eq.(2.2.17). Assume that pnh = A solves the Eq.(2.2.17)),
so, K ′(0)− αA = −αpe ⇒ A = pe ⇒ pnh = pe. Thus, the solution of Eq.(2.2.17) can be written as,

p = c1e
√

α
k′ r + c2e

−
√

α
k′ r + pe (2.2.19)

In the similar way, the solution for the region of (Rs < r < Rm) can be obtained. Thus, the general solution
of Eq.(2.2.11) is 

p = c1e
√

α
k′ r + c2e

−
√

α
k′ r + pe (R0 < r < Rs) ,

p = c3e
√

β
k r + c4e

−
√

β
k r + pL (Rs < r < Rm).

(2.2.20)

The constants of c1, c2, c3, c4, pe and pL will be calculated by applying the boundary conditions. According
to the first boundary condition mentioned in Eq.(2.2.12):

c1e
√

α
k′R0 + c2e

−
√

α
k′R0 = p0 − pe (2.2.21)
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and,

−K ′[c1
√

α

K ′
e
√

α
K′R0 − c2

√
α

K ′
e−
√

α
K′R0 ] = 0

=⇒
c1e
√

α
K′R0 − c2e−

√
α
K′R0 = 0. (2.2.22)

By combining the two Eqs.(2.2.21) and (2.2.22) we get:

c1e
√

α
K′R0 =

p0 − pe
2

(2.2.23)

The value of c2 can be obtained by putting the value of c1 in Eq.(2.2.22),

c2 =
p0 − pe

2
e
√

α
K′R0 (2.2.24)

Relying on the second boundary condition, Eq.(2.2.13):

c3e
√

β
kRm + c4e

−
√

β
kRm = p∞ − pL (2.2.25)

and,

−K[c3
β

k
e
√

β
kRm − c4

β

k
e−
√

β
kRm ] = 0

then,
c3e
√

β
kRm − c4e−

√
β
kRm = 0 (2.2.26)

The summation of Eqs. (2.2.25) and (2.2.26) gives the value of c3

c3e
√

β
kRm =

p∞ − pL
2

Place c3 in Eq.(2.2.26). Then,

c4 =
p∞ − pL

2
e
√

β
kRm (2.2.27)

According to the third boundary condition mentioned in Eq.(2.2.14):

c3e
√

β
kRs + c4e

−
√

β
kRs + pL = c1e

√
α
k′Rs + c2e

−
√

α
k′Rs + pe

=⇒

(p∞ − pL)[e
√

β
K (Rs−Rm) + e−

√
β
K (Rs−Rm)] + 2pL = (p0 − pe)[e

√
α
K′ (Rs−R0) + e−

√
α
K′ (Rs−R0)] + 2pe (2.2.28)

Define A = e
√

β
K (Rs−Rm) + e−

√
β
K (Rs−Rm) and B = e

√
α
K′ (Rs−R0) + e−

√
α
K′ (Rs−R0). Then, Eq.(2.2.28) can

be written as follows,
p∞A− pLA+ 2pL = p0B − peB + 2pe

=⇒
−(A− 2)pL + (B − 2)pe = Bp0 −Ap∞ (2.2.29)

In addition, from the third boundary condition mentioned in Eq.(2.2.14),

K[c3

√
β

k
e
√

β
kRs − c4

√
β

k
e−
√

β
kRs ] = K ′[c1

√
α

K ′
e
√

α
K′Rs − c2

√
α

K ′
e−
√

α
K′Rs ] = −u(Rs) (2.2.30)

=⇒

K

√
β

K
[
p∞ − pL

2
][e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm)] = K ′

√
α

K ′
[
p0 − pe

2
][e
√

α
K′ (Rs−R0) − e−

√
α
K′ (Rs−R0)]
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by defining C = e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm), D = e

√
α
K′ (Rs−R0) − e−

√
α
K′ (Rs−R0) and K̂ =

K′
√

α
K′

K
√

β
K

, we

have,
p∞C − pLC = K̂[p0D − peD]

=⇒
−CpL + K̂Dpe = −Cp∞ + K̂Dp0 (2.2.31)

As a result, pL is obtained from Eq.(2.2.31):

pL = p∞ −
K̂D

C
p0 +

K̂D

C
pe (2.2.32)

By substituting pL in Eq.(2.2.29), pe will be obtained:

−(A− 2)[p∞ −
K̂D

C
p0 +

K̂D

C
pe] + (B − 2)pe = Bp0 −Ap∞

=⇒

pe[−
AK̂D

C
+

2K̂D

C
+ (B − 2)] = [−AK̂D

C
+

2K̂D

C
+B]p0 − 2p∞

Define E = −AK̂DC + 2K̂D
C + (B − 2) and F = −AK̂DC + 2K̂D

C +B then,

pe =
Fp0 − 2p∞

E
(2.2.33)

Consequently, the interstitial fluid pressure can be obtained for two regions of periphery and intermediary.

For the region of R0 < r < Rs (periphery), the tumor interstitial fluid pressure is obtained as follows:

p = c1e
√

α
k′ r + c2e

−
√

α
k′ r + pe

=
p0 − pe

2
e−
√

α
k′R0e

√
α
k′ r +

p0 − pe
2

e
√

α
k′R0e−

√
α
k′ r + pe

= (
p0 − pe

2
)[e
√

α
k′ (r−R0) + e−

√
α
k′ (r−R0)] + pe

(2.2.34)

For the sake of simplicity, define M = e
√

α
k′ (r−R0) + e−

√
α
k′ (r−R0). Then,

p =
p0
2
M − pe

2
M + pe

=
p0
2
M − (

M − 2

2
)pe

(2.2.35)

By referring to Eq.(2.2.30), pe is calculable,

K ′[c1

√
α

K ′
e
√

α
K′Rs − c2

√
α

K ′
e−
√

α
K′Rs ] = −u(Rs)

so,

K ′
√

α

K ′
p0 − pe

2
[e
√

α
K′ (Rs−R0) − e−

√
α
K′ (Rs−R0)] = −u(Rs)

so,

pe =
2u(Rs)

K ′
√

α
K′ [e
√

α
K′ (Rs−R0) − e−

√
α
K′ (Rs−R0)]

+ p0
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Place pe in Eq.(2.2.35),

p =
p0
2
M − (

M − 2

2
)

2u(Rs)

K ′
√

α
K′ [e
√

α
K′ (Rs−R0) − e−

√
α
K′ (Rs−R0)]

− M

2
p0 + p0 (2.2.36)

Consequently, if (R0 < r < Rs), the solution of Eq.(2.2.11) is obtained, by placing the value of M in
Eq.(2.2.36),

p(r) = − u(Rs)(e
√

α
k′ (r−R0) + e−

√
α
k′ (r−R0) − 2)

K ′
√

α
K′ [e
√

α
K′ (Rs−R0) − e−

√
α
K′ (Rs−R0)]

+ p0 = − u(Rs)(e
√

α
k′

(r−R0)
2 − e−

√
α
k′

(r−R0)
2 )2

K ′
√

α
K′ [e
√

α
K′ (Rs−R0) − e−

√
α
K′ (Rs−R0)]

+ p0

(2.2.37)

Moreover, for the region of Rs < r < Rm (intermediary),

p = c3e
√

β
k r + c4e

−
√

β
k r + pL =

p∞ − pL
2

[e
√

β
k (r−Rm) + e−

√
β
k (r−Rm)]

Define N = e
√

β
k (r−Rm) + e−

√
β
k (r−Rm), then,

p =
N

2
(p∞ − pL) + pL (2.2.38)

Eq.(2.2.32) shows that p∞ − pL = K̂D
C (p0 − pe) and from Eq.(2.2.30) pL is obtained as follows:

K[c3

√
β

k
e
√

β
kRs − c4

√
β

k
e−
√

β
kRs ] = −u(Rs)

=⇒

K

√
β

K

(p∞ − pL)

2
[e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm)] = −u(Rs)

pL =
2u(Rs)

K
√

β
K [e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm)]

+ p∞

So, we can rewrite Eq.(2.2.38) as the following equation,

p =
N

2
(
K̂D

C
(p0 − pe)) +

2u(Rs)

K
√

β
K [e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm)]

+ p∞

Place pe from Eq.(2.2.33). Then,

p =
N

2

K̂D

C
(p0 − [

Fp0 − 2p∞
E

]) +
2u(Rs)

K
√

β
K [e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm)]

+ p∞

=
NK̂D

2C
(
Ep0 − Fp0 − 2p∞

E
) +

2u(Rs)

K
√

β
K [e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm)]

+ p∞

(2.2.39)

Put the values of E and F in Eq.(2.2.39), then,

p =
NK̂D

2C
(
−2p0 + 2p∞

E
) +

2u(Rs)

K
√

β
K [e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm)]

+ p∞
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As a result, for the region of (Rs < r < Rm), the tumor interstitial fluid pressure is written in the following,

p(r) =
K̂D[e

√
β
k (r−Rm) + e−

√
β
k (r−Rm)]

C
(
p∞ − 2p0

E
) +

2u(Rs)

K
√

β
K [e
√

β
K (Rs−Rm) − e−

√
β
K (Rs−Rm)]

+ p∞

with defined constant values of K̂, C, D, E.

2.2.4 Analytical solution for a tumor with small necrotic core
Consider Eq.(2.2.10),

r ddr (K ′ dp(r)dr ) + 2K ′ dp(r)dr − αr(p− pe) = 0 (periphery region, R0 < r < Rs) ,

r ddr (K dp(r)
dr ) + 2K dp(r)

dr − βr(p− pL) = 0 (intermediary region, Rs < r < Rm).

Here, by obeying the same steps as we had in section (2.1.2), the solution can be written as follows,
p = 1

r e
√
α(2c2+r) − 1

r e
√
α(2c1+2c2−r) + pe (R0 < r < Rs) ,

p = 1
r e
√
β(2c4+r) − 1

r e
√
β(2c3+2c4−r) + pL (Rs < r < Rm).

And, according to the boundary conditions mentioned in Eqs.(2.2.12), (2.2.13) and (2.2.14), the constants
of c1, c2, c3 and c4 can be calculated. The full computations to obtain the analytical solution for this case
are provided in Appendix 3.

By considering the continuous variation of the interstitial hydraulic conductivity (different constant val-
ues of interstitial hydraulic conductivity in the tumor and normal tissue, in addition to defined interstitial
hydraulic conductivities in Eqs.(2.2.15) and (2.2.16) for periphery and intermediary, respectively), typically,
it is not possible to obtain an analytical solution of Eq.(2.2.2). Therefore, instead of analytic analysis, we
will focus on solving the problem (Eq.(2.2.2)) based on a following numerical method.

2.3 Two-dimensional formulation and numerical approach
Now let us look at the general two-dimensional mathematical formulation of our TIFP problem. Similar to liu
et al. [21] model, we also obey the categorization of the tumor, surrounded by normal tissue, to three regions
of the necrotic core (r < R0), periphery region (R0 < r < Rs) and intermediary region (Rs < r < Rm)
(see Fig.(2.14)) and use the linear interstitial hydraulic conductivity in periphery and intermediary regions
defined in Eqs.(2.2.15) and (2.2.16), respectively. Consider the combination of the two equations of (2.2.1)
and (2.2.2),

−∇·(K∇p) =
JS
V
− JL
V
.

Previously, JS and JL were defined in section (2.2.1) as follows:

JS = SALA[pA − p(~r)− σA(πA − πAi)] + SV LV [pV − p(~r)− σV (πV − πV i)]

and,
JL = SLLL[p(~r)− pL]

as explained in section 2.2.1, LA, LV and LL are the arterial, venous and lymphatic hydraulic conductivity,
respectively. In addition, pA, pV and pL are arterial, venous and lymphatic capillary hydrostatic pressure,
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respectively. πi is osmotic pressure for i = A,Ai, V, V i.
So,

−∇·(K∇p) = C1p+ C2 (2.3.1)

and,
−(∇·(K∇p) + C1p) = C2

where,

C1 = − (SALA + SV LV + SLLL)

V

and
C2 =

SALA
V

pA −
SALA
V

σA(πA − πAi) +
SV LV
V

pV −
SV LV
V

σV (πV − πV i) +
SLLL
V

pL

The following procedure is applicable to create dimensionless parameters.
Define (x̂, ŷ) (dimensionless parameters) such that x̂ = x

L , ŷ = y
L , where L is the characteristic length of posi-

tion. In addition, introduce characteristic parameters of p∗, K∗ as characteristic pressure and characteristic
interstitial hydraulic conductivity, respectively. Thus, p̂ = p

p∗ and K̂ = K
K∗ are dimensionless. Consequences

are as following:

∇p = p∗∇(p̂) = p∗(
∂

∂x
p̂,

∂

∂y
p̂)

As, ( ∂∂x = ∂
∂x̂ ·

∂x̂
∂x ), then,

∇p = p∗(
∂p̂

∂x̂
·∂x̂
∂x
,
∂p̂

∂ŷ
·∂ŷ
∂y

)

=
p∗

L
(∇̂p̂)

Therefore,

∇·(K∇p) =∇·(K∗K̂ p∗

L
∇̂p̂) =

K∗p∗

L2
∇̂.(K̂∇̂p̂)

−∇·(K∇p) = C1p+ C2

=⇒
K∗p∗

L2
∇̂.(K̂∇̂p̂) = C1p

∗p̂+ C2

Define L̂i = Li
K∗
L

= L
K∗Li, where i represents A (arterioles), V (venules) and L (lymphatics). So, relying on

the definition of C1,

C1 = − (SALA + SV LV + SLLL)

V

= − (L2ŜALA + L2ŜV LV + L2ŜLLL)

L3V̂

= − 1

L

(ŜALA + ŜV LV + ŜLLL)

V̂

= − 1

L

K∗

L
(
ŜAL̂A + ŜV L̂V + ŜLL̂L

V̂
)

= −K
∗

L2
(
ŜAL̂A + ŜV L̂V + ŜLL̂L

V̂
)

(2.3.2)
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In addition, define p̂A = pA
p∗ , p̂V = pV

p∗ , p̂L = pL
p∗ and π̂i = πi

p∗ where i = A, V . Therefore, according to the
definition of C2,

C2 =
SALA
V

pA −
SALA
V

σA(πA − πAi) +
SV LV
V

pV −
SV LV
V

σV (πV − πV i) +
SLLL
V

pL

=
L2ŜALA

L3V̂
p̂Ap

∗ − L2ŜALA

L3V̂
σA(π̂Ap

∗ − π̂Aip∗) +
L2ŜV LV

L3V̂
p̂V p

∗ − L2ŜV LV

L3V̂
σV (π̂V p

∗ − π̂V ip∗) +
L2ŜLLL

L3V̂
p̂Lp

∗

=
p∗

L
(
ŜALA

V̂
p̂A −

ŜALA

V̂
σA(π̂A − π̂Ai) +

ŜV LV

V̂
p̂V −

ŜV LV

V̂
σV (π̂V − π̂V i) +

ŜLLL

V̂
p̂L)

= p∗
K∗

L2
(
ŜAL̂A

V̂
p̂A −

ŜAL̂A

V̂
σA(π̂A − π̂Ai) +

ŜV L̂V

V̂
p̂V −

ŜV L̂V

V̂
σV (π̂V − π̂V i) +

ŜLL̂L

V̂
p̂L)

(2.3.3)

Then we get:
∇̂.(K̂∇̂p̂) = Ĉ1p̂+ Ĉ2

where,

Ĉ1 =
ŜAL̂A + ŜV L̂V + ŜLL̂L

V̂

and correspondingly for Ĉ2,

Ĉ2 =
ŜAL̂A

V̂
p̂A −

ŜAL̂A

V̂
σA(π̂A − π̂Ai) +

ŜV L̂V

V̂
p̂V −

ŜV L̂V

V̂
σV (π̂V − π̂V i) +

ŜLL̂L

V̂
p̂L

For a general heterogeneous interstitial hydraulic conductivity K it is typically not possible to obtain an
analytical solution of Eq.(2.3.1). Thus, instead of analytic analysis, we will focus on solving the problem
(Eq.(2.3.1)) by using a numerical method. In order to perform a relatively systematic investigation with
some degree of realism it is useful to employ unstructured grids that can easily adapt to the geometry. We
thus used the numerical method from [12] in combination with triangular grids. The numerical method
from [12] is a so called multi-point flux approximation (MPFA) method, which delivers accurate results with
unstructured triangulations (see Fig.(3.1)).

Previously, the required technical work flow has been implemented at International Research Institute of
Stavanger (IRIS). It involves using the unstructured grid generator triangle [34] for generating the necessary
triangulation. The pressure equation solver which implements the concrete MPFA method is written in
C++. During our work, this C++ implementation was extended such that Eq.(2.3.1) could be solved. In
practice that meant that the right hand side of Eq.(2.3.1) (which can be seen to be a function of the unknown
pressure p) had to be added within the existing C++ framework. At the end, the ParaView software is used
to visualize the tumor interstitial fluid pressure distribution for different cases.
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Chapter 3

Results and Discussion

Tumor interstitial fluid pressure can be challenging to simulate by numerical methods, since the parameter
values are critical to get realistic results. It is challenging to get true experimentally measured values and
parameters, such as arterial, venous and lymphatic hydraulic conductivities, and many of the values that
are used for numerical models come from rather old works (for example, Table 2.1 used by Baxter et al. is
one of the main references for the parameter values ).
In this numerical model, the used baseline parameter values are presented in the Table (3.1), which is based
on Table (2.1).
In this chapter, we are using our numerical method to investigate the influence of different factors on de-
termining TIFP distribution. The influence of the size of necrotic core simultaneously with the application
of constant interstitial hydraulic conductivity (explained by Liu et al. [21]) or non-constant interstitial hy-
draulic conductivity (explained by Baxter et al. [4]) and their comparison are investigated. In addition,
the size of necrotic, periphery and intermediary regions may affect the TIFP distribution. In the periphery
region, the effect of the abundance of blood vessel capillaries (arterial and venous capillary hydraulic con-
ductivities) is inquired. Finally, to discover the role of the non-uniform distribution of blood vessels on the
TIFP distribution, the more real case of tumor is produced by including some region as blood vessel source
in the periphery region which leads to have an asymmetry distribution of TIFP.
In our idealized model, as shown in Fig.(2.14), circles illustrate different regions (necrotic core, periphery
and intermediary). We have adjusted (0.5, 0.5) as the center coordinates of the circles and the normal tissue
is restricted by a square with the dimensionless length and width of 1.00 and we adjust zero pressure at the
outer boundary condition. Moreover, for every case, we use dimensionless parameters obtained in section
(2.3).
A typical schematic of our model combined with triangular grids is shown in Fig.(3.1). The triangular grids
are generated by using the grid generator Triangle. It is clearly seen that the triangular grids adapt well
to the computational tumor geometry defined by three circles representing the necrotic core, periphery and
intermediary region, respectively.
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Parameter Baseline value in Normal Tissue Baseline Value in Tumor Tissue

LA, LV , LL[cm/mmHgsec] 0.36× 10−7 2.8× 10−7

K[cm2/mmHgsec] 8.53× 10−9 4.13× 10−8

S/V [cm−1] 70 200

pA[mmHg] 78 78

πA[mmHg] 20 20

πAi[mmHg] 10 15

pV [mmHg] 15.6 15.6

πV [mmHg] 20 20

πV i[mmHg] 10 15

pL[mmHg] 15.6 15.6

σ 0.91 0.82

Table 3.1: Baseline parameters used in our work.

Figure 3.1: Triangular Grids with three regions.
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Moreover, for the sake of illustration, a corresponding typical TIFP distribution for the same problem
but with a significantly higher number of with triangular grids is visualized in Fig.(3.2).

Figure 3.2: A typical distribution of TIFP for 6256 grids.

3.1 Grid resolution
The numerical scheme utilized in this thesis has previously been shown to exhibit convergence [12]. Here,
we want to find a sufficient grid resolution for the problem in this study. To show the convergence of TIFP
between different number of grids, we present two examples and investigate TIFP distributions with two
different number of grids for each one. First, lets set the dimensionless radii of necrotic core, periphery and
intermediary as 0.10, 0.25, 0.35, respectively. The TIFP distributions for two different number of grids are
shown in Fig.(3.3). The maximum value of dimensionless TIFP with 12910 grids is 1.484; which is almost
the same as the maximum value of dimensionless TIFP with 6256 grids, 1.481.
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(a) 12910 grids (b) 6256 grids

Figure 3.3: The same maximum values of TIFP for two different number of grids. The dimensionless radii
of necrotic, periphery and intermediary are 0.10, 0.25, 0.35, respectively.

Lets take the second example for a tumor with dimensionless radii of 0.05, 0.25, 0.35 for necrotic core,
periphery and intermediary, respectively. The maximum values of TIFP for two different number of grids
are shown in Fig.(3.4). With 12984 grids, the maximum TIFP is 2.034 which is almost the same value as
2.032 with 6217 grids.

(a) 12984 grids (b) 6217 grids

Figure 3.4: The same maximum values of TIFP for two different number of grids. The dimensionless radii
of necrotic, periphery and intermediary are 0.05, 0.25, 0.35, respectively.

Consequently, from the numerical test it is concluded that using around 6000 grid cells is sufficient to
study the following problems.
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3.2 Systematic change of the necrotic core radius
Here we are focusing on recognizing the effect of the size of necrotic core on the TIFP distribution. So, con-
sider the fixed dimensionless radii of 0.25 and 0.35 for the periphery and intermediary circles, respectively,
with the center coordinates of (0.5, 0.5) ( the basic schematic of a tumor surrounded by normal tissue con-
sists of necrotic core, periphery and intermediary regions is shown in Fig.(2.14)). The question is that does
the increased radius of the necrotic core changes the behaviour of the dimensionless interstitial fluid pressure?

Simultaneously, the effect of Constant interstitial hydraulic conductivity (Liu et al.) and non-constant
interstitial hydraulic conductivity (Baxter et al.) in addition to the size of necrotic core is inquired in this
section. As it is mentioned in Chapter 2, a non-constant interstitial hydraulic conductivity was explained
by Liu et al. [21]; which gets different constant values for necrotic core and normal tissue and gets different
radially dependency variables through the periphery and intermediary regions (see Fig.(2.14) and section
(2.2.1)). By considering this kind of interstitial hydraulic conductivity, Liu et al. reveals a more real tumor
compare to the model described by Baxter et al. [4] in which the tumor surrounding by normal tissue is
categorized to necrotic core and periphery regions and the interstitial hydraulic conductivities for these two
regions are constants with different values (the intermediary region is not included).

Consider the spherical case, including a very small necrotic core, Fig.(2.18a), and the planar case, con-
taining a very big necrotic core, Fig.(2.18b); so that 0.005 and 0.22 are adjusted as dimensionless radii of
necrotic core for spherical and planar, respectively.
The comparisons between applying constant and non-constant interstitial hydraulic conductivity are illus-
trated in Fig.(3.5), for spherical case, and Fig.(3.6), for planar case. As shown in Fig.(3.5), for the spherical
case, the maximum interstitial fluid pressure for non-constant interstitial hydraulic conductivity is higher
than that of constant interstitial hydraulic conductivity. The same results happen for the planar case in
Fig.(3.6). In addition, the comparison of Figs.(3.5) and (3.6) shows that the interstitial fluid pressure in the
spherical case is higher than that of the planar case. It means that the largest size of necrotic core results
very low value of maximum interstitial fluid pressure.
Very small necrotic core inside the tumor leads to the existence of more vessels and consequently existence of
hydrostatic and osmotic pressures of vessel capillaries in the periphery. Thus, the excess fluid remains in the
periphery region and then the interstitial will be less permeable. As the interstitial hydraulic conductivity
correlates with the permeability, it decreases and the fluid hardly flows so very high interstitial fluid pressure
occurs (Fig.(3.5)).
The case with the highest interstitial fluid pressure happens in the well-vascularized tumor without necrotic
core. In contrast, very large necrotic core will give a very small vascular region (periphery). Consequently,
lower interstitial fluid pressure occurs.(see Fig. (3.6)). According to these results, it is predicted that the
tumor which is completely filled by necrotic core has no vasculature and its interstitial fluid pressure is zero.
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(a) Non-constant interstitial hydraulic conductivity - necrotic radius: 0.005

(b) Constant interstitial hydraulic conductivity - necrotic radius: 0.005

Figure 3.5: Difference of TIFP between (a) Liu model, (b) Baxter model, in spherical case.

Page 58



M.Sc. - Tumor Interstitial Fluid Pressure Distribution Spring-Fall 2017

(a) Non-constant interstitial hydraulic conductivity - necrotic radius: 0.22

(b) Constant interstitial hydraulic conductivity - necrotic radius: 0.22

Figure 3.6: Differences of TIFP between (a) Liu model (b) Baxter model, in planar case.

Now, we consider non-constant interstitial hydraulic conductivity and change the dimensionless radius of
necrotic core in the range of [0.005, 0.22]. As shown in Fig.(3.7), the dimensionless tumor interstitial fluid
pressure faces a decreasing behaviour by raising the dimensionless radius of necrotic core radius. In addition,
the maximum interstitial fluid pressure is observed in the center of the tumor (necrotic core).
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(a) necrotic radius: 0.05 (b) necrotic radius: 0.07

(c) necrotic radius: 0.10 (d) necrotic radius: 0.13

(e) necrotic radius: 0.17 (f) necrotic radius: 0.20

Figure 3.7: Differences of TIFP with non-constant interstitial hydraulic conductivity for the specified radius
of necrotic core and fixed radii of periphery and intermediary (The Liu model).
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The table of specified dimensionless radii of necrotic core and corresponding values of maximum di-
mensionless interstitial fluid pressure extracted from visualizations (Fig.(3.7)), for non-constant interstitial
hydraulic conductivity, are presented in Fig.(3.8). Moreover, in the same figure, the curve of the behaviour
of the pressure versus radius of necrotic core is drawn up, which is decreasing by increasing the size of the
necrotic core.

Figure 3.8: The trend of the maximum TIFP by increasing the size of the necrotic core for non-constant
interstitial hydraulic conductivity.

Now, consider constant interstitial hydraulic conductivity. The distributions of TIFP by increasing the
radius of necrotic core in the range of [0.005, 0.22] are visualized in Fig.(3.9). As shown in Fig.(3.9), the
maximum value of TIFP is decreasing by increasing the size of necrotic core.
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(a) necrotic radius: 0.05 (b) necrotic radius: 0.07

(c) necrotic radius: 0.10 (d) necrotic radius: 0.13

(e) necrotic radius: 0.17 (f) necrotic radius: 0.20

Figure 3.9: Differences of TIFP with constant interstitial hydraulic conductivity for the specified radius of
necrotic core and fixed radii of periphery and intermediary (The Baxter model).
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The table of specified dimensionless radii of necrotic core and corresponding values of maximum di-
mensionless interstitial fluid pressure extracted from visualizations (Fig.(3.9)) are presented in Fig.(3.10).
Moreover, the decreasing trend of the interstitial pressure for increasing radius of necrotic core is presented
in the same Fig.(3.10).

Figure 3.10: The trend of the maximum TIFP by increasing the size of the necrotic core for non-constant
interstitial hydraulic conductivity.
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3.2.1 Comparative analysis on the effect of constant and non-constant intersti-
tial hydraulic conductivity on TIFP distribution

By merging the presented results of Figs.(3.8) and (3.10) in Fig.(3.11) the effect of constant and non-constant
interstitial hydraulic conductivity on the maximum value of tumor interstitial fluid pressure ,by increasing the
size of necrotic core, can be investigated. As shown in Fig.(3.11), there is a big gap between the values of the
maximum interstitial fluid pressure for constant and non-constant interstitial hydraulic conductivity in the
tumor which contains very small necrotic core in the central region. While, for large size of necrotic core with
the dimensionless radius of 0.22 the maximum values of TIFP are the same for constant and non-constant
interstitial hydraulic conductivity. Overall, by contributing non-constant interstitial hydraulic conductivity,
the maximum value of TIFP is much higher than that for constant interstitial hydraulic conductivity. In
addition the trend of pressure for non-constant is more sharp compare to the pressure trend for constant
interstitial hydraulic conductivity, which decreases very smoothly. In addition, the behaviours shown in
Fig.(3.11) illustrate that without paying attention to the type of the interstitial hydraulic conductivity,
increasing the size of necrotic core decreases the interstitial fluid pressure. As a result, the size of necrotic
core plays an important role in determining the pressure distribution.

Figure 3.11: Comparison between the TIFP trends for Liu model and Baxter model by increasing the size
of necrotic core.
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3.3 Effect of periphery and intermediary regions sizes on TIFP dis-
tribution

The concentration of the vessels affects the interstitial fluid pressure. As it is assumed only vessel capillaries,
contains arterial and venous capillaries (explained in section(2.2.1)), are found in the periphery region ,
so changing the enlargement of periphery causes big changes in the TIFP distribution. In addition, as
assumptions in section (2.2.1), the intermediary region only contains lymphatics. In this section we only
focus on determining the TIFP distribution for non-constant interstitial hydraulic conductivity and about
6200 number of triangular grids will be considered.

3.3.1 Systematic change of the periphery radius
Here, we fix dimensionless radii of necrotic core and intermediary circles to 0.10 and 0.35, respectively and
change the size of the periphery region by adjusting a value from the range of [0.10, 0.35] as a dimensionless
radius of periphery. Fig.(3.12) shows distributions of TIFP for different specified dimensionless radii of
periphery. In addition, the values of maximum interstitial fluid pressure corresponding to each radius of
periphery is collected in Fig.(3.13). As shown, for small size of periphery, the maximum dimensionless value
of TIFP is 0.199; while, the value of 1.967 is observed for big radius of periphery. This result was predicted
because of the fact that plenty of blood vessels can be seen in periphery. For small size of periphery, less
functional blood vessel observed and less fluid filtered from arterial capillaries so the pressure is lower compare
to the big size of periphery.
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(a) periphery radius: 0.12 (b) periphery radius: 0.15

(c) periphery radius: 0.20 (d) periphery radius: 0.25

(e) periphery radius: 0.30

Figure 3.12: Differences of TIFP for different specified radius of periphery region and fixed radii of necrotic
core and intermediary regions.
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Fig.(3.13) shows that increasing the size of periphery region leads to increased TIFP. Since the periphery
region only contains blood vessels, increasing the radius of periphery means increasing the abundance of
the blood vessels in the tumor which causes the production of more leaky blood vessels and consequently
forming the pressure barrier.

Figure 3.13: The trend of TIFP by increasing the size of periphery region.

3.3.2 Systematic change of the intermediary radius
To investigate the effect of the size of intermediary region, we set 0.10 as the dimensionless radius of necrotic
core and 0.25 as the dimensionless radius of periphery circle. As in our model, the normal tissue is restricted
by a 1.0× 1.0 square and the center coordinates of circles is (0.5, 0.5), we can adjust the values of interme-
diary region from the range of [0.25, 0.5]. The visualizations of the TIFP distribution for different specified
dimensionless radii of intermediary are shown in Fig.(3.14).
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(a) intermediary radius: 0.27 (b) intermediary radius: 0.30

(c) intermediary radius: 0.35 (d) intermediary radius: 0.40

(e) intermediary radius: 0.45

Figure 3.14: Differences of TIFP for different specified radius of intermediary and fixed radii of necrotic core
and periphery regions.

The collection of the values of maximum dimensionless interstitial fluid pressure corresponding to each
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value of intermediary radius from Fig.(3.14) builds up the curve of the pressure trend that is shown in
Fig.(3.15). The maximum Tumor interstitial fluid pressure increases by increasing the size of the intermediary
region.

Figure 3.15: The trend of TIFP by increasing the size of intermediary region.

3.3.3 Comparison between the TIFP trends for different sizes of periphery and
intermediary regions

The obtained values of the maximum TIFP from Figs.(3.13) and (3.15) are shown in Fig.(3.16). As shown,
increasing the radii of periphery and intermediary causes increasing TIFP. However, because of the effect of
vessel capillaries on the pressure distribution, the trend of pressure curvature for increased periphery radius
is significantly sharper than increased intermediary radius. It means that decreasing the size of periphery
region results lower interstitial fluid pressure. Specially, since we here focus on a heterogeneous tumor
(containing necrotic core), cooperation between the necrotic core and the periphery decides the value of
pressure inside the tumor. The larger necrotic core causes the existence of the smaller periphery region,
thus, lower interstitial fluid pressure happens. Changing the size of intermediary does not have a significant
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effect on the interstitial fluid pressure (see Fig.(3.16)).

Figure 3.16: The effects of the size of periphery and intermediary on the trend of TIFP.

3.4 Effect of capillary hydraulic conductivity on TIFP distribution
Generally, as described in section(2.2.1)), there are three categories of capillaries in a tissue; arterial, venous
and lymphatic capillaries. In this layout of tumor, blood vessel capillaries only exist in the periphery region
and normal tissue. Blood vessel capillaries contain arterial and venous capillaries. The hydraulic conductivity
of arterial and venous capillaries represent the abundance of blood vessels inside the tissue. Thus, the values
of these hydraulic conductivity affect the production of blood vessels in the tissue. For example, increasing
the hydraulic conductivity of arterial capillaries increases the amount of arterioles. On the other hand, the
intermediary region only contains lymphatic capillaries. In this section, we are investigating the effect of
arterial, venous and lymphatic capillaries on determining the TIFP distribution. In addition, as the values
of the capillary (arterial, venous and lymphatic) hydraulic conductivity are different inside and outside a
tumor, we use multiples to change these values.

3.4.1 Increasing the hydraulic conductivity of arterial capillaries
The visualizations of the TIFP distribution by increasing the hydraulic conductivity of arterial capillaries
is shown in Fig.(3.17). More fluid can leak out of the arterial capillary by increasing the arterial hydraulic
conductivity. As there is no lymphatic capillary in the periphery region, the leaked fluid remain in the tumor
interstitium and it makes difficulty for fluid to flow through interstitium. Thus, interstitial pressure raises.
It is proved by the increased maximum values of interstitial fluid pressure for increasing arterial hydraulic
conductivity shown in Fig.(3.17).
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(a) (b)

(c) (d)

(e)

Figure 3.17: Differences between the TIFP distributions for increasing arterial hydraulic conductivity.
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Fig.(3.18) shows that increasing the arterial hydraulic conductivity increases the value of maximum
interstitial fluid pressure.

Figure 3.18: The trend of the maximum TIFP by increasing the arterial hydraulic conductivity.

3.4.2 Increasing the hydraulic conductivity of venous capillaries
The distributions of the TIFP for increasing venous hydraulic conductivity is shown in Fig.(3.19). In addition,
the values of the maximum interstitial pressure corresponding to each venous hydraulic conductivity and the
behaviour is illustrated in Fig.(3.20). Increased value of the venous hydraulic conductivity leads to increased
value of the maximum interstitial fluid pressure.
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(a) (b)

(c) (d)

(e)

Figure 3.19: Differences between the TIFP distributions for increasing venous hydraulic conductivity.
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Figure 3.20: The trend of the maximum TIFP by increasing the venous hydraulic conductivity.

3.4.3 Changing the hydraulic conductivity of lymphatic capillaries
As in this study it is assumed that the lymphatic capillaries are observed only in the intermediary region
which is outside of the tumor, investigating its influence on the distribution of the interstitial fluid pressure
specially in the tumor is interesting. This would mean that excess fluid is not removed from the system as
efficiently as with higher values of lymphatic hydraulic conductivity.

3.4.3.1 Decreasing the values of lymphatic hydraulic conductivity

Outcomes of visualizations are shown in Fig.(3.21). According to table (3.22), the value of the maximum
interstitial fluid is decreasing by reducing the values of lymphatic hydraulic conductivity.
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(a) (b)

(c) (d)

Figure 3.21: The effect of decreased value of lymphatic hydraulic conductivity on the maximum value of
TIFP.

Figure 3.22: Governed data of maximum TIFP from the visualizations for decreasing lymphatic hydraulic
conductivity
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3.4.3.2 Increasing the values of lymphatic hydraulic conductivity

The TIFP distributions for increasing lymphatic hydraulic conductivity and the obtained maximum values
of interstitial pressure corresponding to each multiplier of lymphatic hydraulic conductivity are shown in
Fig.(3.23) and table (3.24), respectively. The values in table (3.24) prove that the maximum value of TIFP
is increasing by raising the value of lymphatic hydraulic conductivity.

(a) (b)

(c) (d)

Figure 3.23: The effect of increased value of lymphatic hydraulic conductivity on the maximum value of
TIFP.
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Figure 3.24: Governed data of maximum TIFP from the visualizations for increasing lymphatic hydraulic
conductivity

The effect of the value of lymphatic hydraulic conductivity on the interstitial fluid pressure is illustrated
in Fig.(3.25) which shows linearly increasing trend by increasing lymphatic hydraulic conductivity.

Figure 3.25: The trend of the maximum TIFP by increasing the lymphatic hydraulic conductivity.

Only a minor effect was observed by increasing the lymphatic hydraulic conductivity.
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3.4.4 Comparison between the effects of arterial, venous and lymphatic hy-
draulic conductivity on TIFP

As shown in Fig.(3.26), for the largest values of arterial, venous and lymphatic hydraulic conductivity (which
are defined as LA, LV and LL, respectively, through Chapter 2) there are big gaps between the value of
maximum interstitial fluid pressure. Increasing the arterial hydraulic conductivity (LA) has significant effect
on the interstitial fluid pressure and its trend is quite steep. In contrast, the effect of changing lymphatic
hydraulic conductivity (LL) on determining the tumor interstitial fluid pressure is almost negligible. Mean-
while, increased value of venous hydraulic conductivity, LV , definitely increases the interstitial pressure but
not as efficient as increased LA. Which means that when we increase LA and LV in the same way, the
obtained pressure for increased LA is higher than increased LV (see Fig.(3.26)). Inside the arterial capillary,
the hydrostatic pressure of the capillary is more than osmotic pressure. Therefore, filtration occurs (fluid
filtered out to the interstitial). While inside the venous capillary, the osmotic pressure is more than hydro-
static pressure and excess fluid absorbed into the venous capillary (Fig.2.17). Thus, venous capillary can
drain off excess fluid.

Figure 3.26: Comparison between the trends of pressure resulted from changed values of arterial, venous and
lymphatic hydraulic conductivity.

3.5 Including sources of vessels in the periphery region
In previous sections, all results were investigated for a tumor with a uniform distribution of vessels which
causes it to have symmetric visualizations. In the study in section (3.4), where the effect of arterial, venous
and lymphatic hydraulic conductivities were investigated, it was found that arterial hydraulic conductivity
has the strongest impact on TIFP.
As described in section (2.2.1), inside the tumor, the vessel capillaries, including arterial and venous capil-
laries, are observed in the periphery region. For the sake of simplicity, we assume that a circle with specific
radius and center coordinates can be added in the periphery region which represents the source of blood
vessel capillaries. So, lets call the added circle a source circle as a source of blood vessels.
In this case, it can be predicted that the visualization reveals non-uniform distribution of TIFP because of
non-uniform distribution of blood vessels. This will represent a more realistic situation, as a more asymmetry
TIFP distribution is more likely to be found in a real tumor. By changing the values of arterial hydraulic
conductivity in the source circle, we can inquire its effect on determining the TIFP distribution.
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First, we add the circle with the radius of 0.0375 and the center coordinates of (0.675, 0.5)), as a source of
blood vessel capillary, in the periphery region, with fixed radii of necrotic core, periphery and intermediary
circles as 0.10, 0.25 and 0.35 with the same center coordinates (0.5, 0.5). Note that all parameters are
considered dimensionless. In Fig.(3.27), it is shown that the TIFP distributions for the case with specified
radii of necrotic core, periphery and intermediary circles (Fig.(3.7c)) (lets call this a ’base case’) and added
new circle are almost the same and the minor difference is because of the process of producing triangular
grids. This is as expected and serves as a test for the programming.

(a) The ’base case’

(b) Added new circle in periphery

Figure 3.27: The TIFP distribution (a) base case,(b) added one new circle in the periphery (consider the
same arterial hydraulic conductivity throughout tumor for both cases).
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Now, we investigate the effect of the value of arterial hydraulic conductivity in the added circle on the
hole TIFP distribution. The results for low and high value of arterial hydraulic conductivity are shown
in Figs.(3.28a) and (3.28b), respectively. Referring to Fig.(3.28), in contrast with symmetry distribution
of blood vessels (’base case’, for example), the maximum interstitial fluid pressure does not appear in the
center of the tumor. Thus, the place and the concentration of blood vessels affect the interstitial pressure
distribution.
Moreover, decreasing the LA in the added source circle decreases the maximum interstitial pressure compare
to the ’base case’ in which dimensionless pressure is equal to 1.481, see Fig.(3.7c). In contrast, increased
LA causes increased maximum interstitial pressure. As shown in Fig.(3.28b), for increased arterial hydraulic
conductivity, LA, the maximum pressure occurs inside the added source circle. While for decreased LA, the
maximum interstitial pressure appeared in the region in the opposite side of the source circle Fig.(3.28a).
As shown in Fig.(3.28), by adjusting high arterial hydraulic conductivity for the source circle, almost the
restricted region of source area and its surrounding get highest pressure; while, the low arterial hydraulic
conductivity causes the observation of high interstitial fluid pressure in wider region.

(a) decreased hydraulic conductivity of arterioles, LA (b) increased hydraulic conductivity of arterioles, LA

Figure 3.28: The effect of a source circle and its hydraulic conductivity LA on the interstitial pressure.

Now, we change the position of the source circle in the periphery region by changing the center coordinates
to (0.3762, 0.3762) with the same radius of 0.0375. We have the same story for this new source circle (see
Fig.(3.29)). The comparison of the two figures of (3.28) and (3.29) shows that the location of the source
circle does not affect the value of the maximum interstitial fluid pressure (dimensionless pressure); so that,
for the decreased value of arterial hydraulic conductivity, the maximum interstitial pressure gets the same
value in both positions, which is equal to 1.11, and for increased LA, regardless with the position of the
sources, the maximum value of TIFP is equal to 2.29.
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(a) decreased hydraulic conductivity of arterioles, LA (b) increased hydraulic conductivity of arterioles, LA

Figure 3.29: The effect of a source circle and its corresponding hydraulic conductivity LA on the interstitial
pressure.

Next, in the periphery region, we raise the number of source circles by including both previous circles
with specified center coordinates and radii, with fixed radii of necrotic core, periphery and intermediary
region. As shown in Fig.(3.30), adding two source circles to the ’base case’ (3.7c), similar to observations in
Fig.(3.27)), gives almost the same TIFP distribution.
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(a) The ’base case’

(b) Added two new source circles in the periphery

Figure 3.30: The TIFP distribution with the same adjusting of arterial hydraulic conductivity for (a) the
base case, (b) added two new circles.

As shown in fig.(3.31a), decreasing the arterial hydraulic conductivities in both source circles reduces the
abundance of blood vessels inside the circles and their surroundings. Referring to Fig.(3.31a), decreased LA,
in both sources, significantly decrease the maximum value of interstitial fluid pressure to the value of 0.79,
compare to the base case (Fig.(3.7c)) in which the maximum value of interstitial fluid pressure is equal to
1.481. In contrast, increasing the arterial hydraulic conductivity in both circles increases the distribution
of blood vessels inside the circles and it helps the tumor to get more nutrition and oxygen. Thus, relying
to Fig.(3.31b), a strong increase of the maximum value of interstitial fluid pressure forms with the value of
3.0 by increasing the value of LA in both source circles. Moreover, Figs.(3.31c) and (3.31d) illustrate that
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increased LA in one of the source circles and decreased LA in the other one affect the tumor interstitial fluid
pressure distribution; while, the same value of 1.83 is obtained for the maximum interstitial fluid pressure
which is observed in the source with the higher arterial hydraulic conductivity.

(a) decreased LA in both vessel sources (b) increased LA in both vessel sources

(c) decreased LA in the source circle with the center co-
ordinate of ((0.675, 0.5)) and increased LA in the source
circle with the center coordinate of (0.3762, 0.3762)

(d) decreased LA in the source circle with the center coor-
dinate of (0.3762, 0.3762) and increased LA in the source
circle with the center coordinate of ((0.675, 0.5))

Figure 3.31: The effects of two source circles in the periphery region and their corresponding arterial hydraulic
conductivities on the TIFP distribution.

As shown in Fig.(3.31), the case with increased arterial hydraulic conductivity in both source circles
gets the highest maximum interstitial pressure compare to other three cases. While, Fig.(3.31a) proves
the obtaining of the lowest value of the maximum interstitial pressure by decreasing the arterial hydraulic
conductivity in both source circles. As a result, the amount of source circles and their corresponding arterial
hydraulic conductivity strongly affect the TIFP distribution.
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3.6 Discussion of the model results with regards to venule and lym-
phatic effects on TIFP

When interpreting the results in section 3.4.4 according to expected behaviour, one would assume that
venules and lymphatics would drain off fluid from the system and thereby decrease the TIFP.
When we find the opposite behaviour, we had to question the mathematical formulation given by Liu. Con-
sider the mass-balance equation described in Eq.(2.1.4) (section 2.1.1); and focus on JS = SALA[pA−p(~r)−
σA(πA − πAi)] + SV LV [pV − p(~r)− σV (πV − πV i)], defined by Liu et al. in Eq.(2.2.5), which is the net flow
rate filtered out of blood vessel capillary (source), and JL = LLSL(pi − pL), defined in Eq.(2.2.6), is the net
flow rate absorbed into lymphatic capillary (sink). In the formulations, through arterial capillary, pA should
be bigger than pi to function as filter (source) and, in contrast, through venous and lymphatic capillaries,
pi should be greater than pV and pL to form absorption (sink). By noticing this fact, the formulations
presented by Liu et al. are correct.

Then we focus on the boundary conditions and baseline parameter values used in our numerical model.The
observed model behaviour is in accordance with the model, but the chosen values for pressures in the venules
and in the lymphatic vessels can not be correct (based on the model behaviour).
The boundary condition is such that the pressure is zero at the outer boundaries, so the TIFP are rather close
to zero in the normal tissue. So, to have a sink behaviour for venous and lymphatic capillaries, we should
change the signs of the values of venules hydrostatic and osmotic pressures, in addition to the lymphatic
hydrostatic pressure in the Table (3.1), to have reasonable biophysical parameters in the model.
The results with this new implementation is demonstrated in the following sections.
Notice that these negative pressures are still in accordance with physics; since the pressure in this model is
not unique, we can always add constant to the pressure and still get the same velocity field.
With these pressures for venules and lymphatics, we would expect that the pressure should decrease for
increasing values of venous and lymphatic hydraulic conductivities.

3.6.1 Increased venous hydraulic conductivity
Increasing the hydraulic conductivity of venous capillaries would simulate a situation where the venules
remove excess fluid more effective than with lower conductivity. In Fig.(3.34) the distributions of TIFP for
increasing venous hydraulic conductivity are shown. The corresponding maximum value of dimensionless
interstitial fluid pressure to each multiplier of venous hydraulic conductivity is written in Fig.(3.33a). As
shown in Fig.(3.33b), a decreasing behaviour of pressure is observed by increasing the value of venous
hydraulic conductivity.
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(a) (b)

(c) (d)

(e)

Figure 3.32: The differences between TIFP distributions for increasing venous hydraulic conductivity.
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(a)

(b)

Figure 3.33: The trend of the interstitial pressure for increasing value of venous hydraulic conductivity.

In the model, most of the fluid is located in the periphery region, so the result is in accordance with what
we expected.

3.6.2 Increased lymphatic hydraulic conductivity
As an assumption of the model, lymphatic capillaries are observed only in the intermediary region, which is
outside of the tumor. Excess fluid is removed from the system by lymphatic capillaries. So, investigating
the efficiency of high lymphatic hydraulic conductivity on the interstitial fluid pressure is interesting.
The visualizations of TIFP distribution for increasing value of lymphatic hydraulic conductivity is shown
in Fig.(3.34). The values of maximum interstitial fluid pressure for each value of lymphatic hydraulic con-
ductivity is written in Table (3.35a). As shown in Fig.(3.35b), increasing the value of lymphatic hydraulic
conductivity weakly decreases the value of maximum interstitial fluid pressure.
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(a) (b)

(c) (d)

Figure 3.34: The differences between TIFP distributions for increasing value of lymphatic hydraulic conduc-
tivity.
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(a)

(b)

Figure 3.35: The behaviour of the interstitial pressure by increasing the value of lymphatic hydraulic con-
ductivity.

The differences between the behaviours of interstitial fluid pressure for increasing values of venous and
lymphatic hydraulic conductivity are illustrated in Fig.(3.36). Since venous capillaries function the same as
the lymphatic capillaries, as predicted, the trend of the TIFP for increased values of venous and lymphatic
hydraulic conductivities have the same directions. As shown in Fig.(3.36), the effect of increased lymphatic
hydraulic conductivity is less than that of increased venous hydraulic conductivity.
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Figure 3.36: Comparison between the pressure trends for increased venous hydraulic conductivity and in-
creased lymphatic hydraulic conductivity.
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Chapter 4

Concluding remarks

Overall, the numerical simulation study did give valuable insights in TIFP behaviour. Targeting a hetero-
geneous tumor surrounded by normal tissue, with the tumor categorization into three different regions of
necrotic core, periphery and intermediary, and considering corresponding continuous variation of the inter-
stitial hydraulic conductivity, allows for investigation of the TIFP distribution in a more real tumor. The
necrotic core region has an uniform structure which is reflected in the uniform TIFP. In this region the
interstitial hydraulic conductivity is constant. Similarly, the interstitial hydraulic conductivity in the normal
tissue has constant value which is lower than the constant value of the necrotic core region. Since fluid and
tumor matrix composition and the amount of cancerous cells vary thorough the periphery and intermediary
regions, the interstitial hydraulic conductivity is spatially dependent. Our method gives the possibility to
investigate the actual TIFP distribution.

4.1 Main conclusions
In a tumor, with symmetric distribution of blood vessel capillaries, TIFP gets its maximum value in the
central region and it is decreasing to the minimum value of TIFP in the normal tissue.
Increasing the size of the necrotic core has a strong impact on decreasing the value of TIFP. Consequently,
decreasing the size of the periphery region, as an area with plenty of blood vessels and fluid, causes decreased
TIFP. The size of the intermediary region, as an area "outside" of the tumor consisting of only lymphatic
vessels, has minor effect on the TIFP distribution.

Moreover, the investigations show that arterial, venous and lymphatic hydraulic conductivities affect the
TIFP distribution. Increasing the arterial hydraulic conductivity significantly increases the TIFP. While, as
venules and lymphatics function as sink terms and they absorb excess interstitial fluid, increasing the value
of venous and lymphatic hydraulic conductivity decreases the TIFP.

In the periphery region, adding a region as the blood vessel source influences on TIFP distribution. An
asymmetric distribution of blood vessel capillaries leads to an asymmetric distribution of TIFP. In this case,
maximum value of TIFP is observed in the area with higher arterial hydraulic conductivity and its surround-
ing.
The amount of the blood vessel sources and their corresponding arterial hydraulic conductivity significantly
affect the distribution of TIFP. If we have only one source of blood vessel, regardless with the position in
the periphery region, its value of arterial hydraulic conductivity influence on the TIFP distribution. The
highest interstitial fluid pressure is observed when all the sources get their highest value of arterial hydraulic
conductivity. In contrast, if all sources get the lowest value of arterial hydraulic conductivity, very low
interstitial pressure will be formed.

Finally, the findings discussed in section (3.6), indicate that some of the simulation studies should be repeated
with the new parameter values. But due to lack of time, this is not included in the master thesis work. We
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do not expect that the observed trends will be significantly changed by repeating these simulations. It will
however, be crucial for the planned journal publication.

4.2 Future work
The model results needs to be further confirmed, both by further testing and confirmation of the model.
The model should also be developed further to involve transport of substances across the cancerous matrix.
Next, it will be important to compare the numerical results with experimental findings for different cases.
In [22], it is suggested that a numerical model can aid the development of methods that invasively measure
TIFP in a given tumor (via DCE-MRI). Further investigations of how the numerical model can have clinical
contributions in cancer diagnostics, monitoring and treatment planning will be important.
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Appendices

Appendix 1
Spherical Coordinates

Figure 4.1: Spherical polar coordinates[46].

The spherical coordinates (r, θ, φ) are related to the Cartesian coordinates (x, y, z) by:

r =
√
x2 + y2 + z2

θ = arctan(
√
x2 + y2, z)

φ = arctan(y, x)

and,
x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

with the unit vectors of:

r̂ =
~r

r
=
xx̂+ yŷ + zẑ

r
= x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ

φ̂ =
ẑ × r̂
sin θ

= x̂ sinφ+ ŷ cosφ

θ̂ = φ̂× r̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

The del operator from the definition of the gradient:
Assume that u is a function of the spherical coordinate. The value of u changes by an infinitesimal amount du
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when the point of observation is changed by d~r. That change may be determined from the partial derivatives
as:

du =
∂u

∂r
dr +

∂u

∂θ
dθ +

∂u

∂φ
dφ

In addition, another definition for gradient is

du = ~∇u.d~r

therefore,
∂u

∂r
dr +

∂u

∂θ
dθ +

∂u

∂φ
dφ = ~∇u.d~r

in a spherical coordinates,

∂u

∂r
dr +

∂u

∂θ
dθ +

∂u

∂φ
dφ = (~∇u)rdr + (~∇u)θrdθ + (~∇u)φr sin θdφ

Thus,

(~∇u)r =
∂u

∂r
, (~∇u)θ =

1

r

∂u

∂θ
, (~∇u)φ =

1

r sin θ

∂u

∂φ

from which we find
~∇ = r̂

∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ

Laplacian:

∇2u = ~∇.(~∇u) = [r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ
].[r̂

∂u

∂r
+
θ̂

r

∂u

∂θ
+

φ̂

r sin θ

∂u

∂φ
]

∇2u = r̂.
∂

∂r
(r̂
∂u

∂r
+
θ̂

r

∂u

∂θ
+

φ̂

r sin θ

∂u

∂φ
)+

θ̂

r
.
∂

∂θ
(r̂
∂u

∂r
+
θ̂

r

∂u

∂θ
+

φ̂

r sin θ

∂u

∂φ
)+

φ̂

r sin θ
.
∂

∂φ
(r̂
∂u

∂r
+
θ̂

r

∂u

∂θ
+

φ̂

r sin θ

∂u

∂φ
)

With the help of partial derivatives, we find the Laplacian operator which can be written as:

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2

Appendix 2
We here look at the following equation,

p′′ +
2

r
p′ − kp = 0

Change the problem to the first degree problem by using the well known technique in [15]:

u′ + u2 +
2

r
u− k = 0 (b)

The Ricatti equation is:

y′ = −y2 − 2

x
y + k (c)

One of the solutions of the Ricatti equation is as following:

y1 = − 1

x
+
√
k

So,

y = − 1

x
+
√
k +

1

ν
(d)

and
y′ =

1

x2
+
−ν′

ν2
(e)
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By applying (d) and (e) in the Ricatti equation, we have:

1

x2
− −ν

′

ν2
= −(

1

x2
+ k +

1

ν2
− 2

√
k

x
+ 2

√
k

ν
− 2

1

xν
)− 2

x
(− 1

x
+
√
k +

1

ν
) + k

⇒

− ν
′

ν2
= − 1

ν2
− 2

√
k

ν
⇒

ν′ = 1 + 2
√
kν (f)

Solving the equation (f):

dν(x)

dx
= 1 + 2

√
kν

=⇒
1

1 + 2
√
kν(x)

dν(x)

dx
= 1

integrating from both sides by the substitution of h = 2
√
kν(x) + 1 and ∂h = 2

√
∂ν(t),

ˆ
1

1 + 2
√
kν(x)

dν(x)

dx
=

ˆ
1

2
√
kh
dh =

1

2
√
k

ˆ
1

h
dh =

1

2
√
k

lnh+ c

=⇒
ln(2
√
kν(x) + 1)

2
√
k

+ c = x+ c′

Finally,

ν(x) =
e2
√
k(c1+x) − 1

2
√
k

Putting this solution in equation (d):

y = − 1

x
+
√
k +

2
√
k

e2
√
k(c1+x) − 1

Change the parameters to the origin ones as y = u, x = r, k = α2

R2 .
According to equation (a), we have:

p = exp

ˆ
udr = exp

ˆ
(−1

r
+
α

R
+

2 αR
e2

α
R (c1+r) − 1

)dr (g)

ˆ
−1

r
dr = − ln r + c

ˆ
α

R
dr =

α

R
r + c′

ˆ
(

2 αR
e2

α
R (c1+r) − 1

)dr =
2α

R

ˆ
(

1

e2
α
R (c1+r) − 1

)dr

To solve
´

( 1

e2
α
R

(c1+r)−1
)dr , use the substitution of u = 2αc1+2αr

R . So, dudr = 2α
R ⇒ dr = R

2αdu. So,
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ˆ
(

1

e2
α
R (c1+r) − 1

)dr =
R

2α

ˆ
1

eu − 1
du

Again use the substitution v = 1
eu−1 ⇒

dv
du = − eu

(eu−1)2 ⇒du = − (eu−1)2
eu dv.

In addition, veu − v = 1⇒ eu = 1+v
v = 1 + 1

v . So,ˆ
1

eu − 1
du = −

ˆ
1

v + 1
dv = − ln(v + 1) = − ln(

1

eu − 1
+ 1)

=⇒
R

2α

ˆ
1

eu − 1
du = − R

2α
ln(

1

eu − 1
+ 1)

=⇒ ˆ
(

1

e2
α
R (c1+r) − 1

)dr = − R

2α
ln(

1

e2α(
c1+r
R ) − 1

+ 1) + C2

On the other hand,

ln(
1

e
2αc1+2αr

R − 1
+ 1) = ln(

1 + e
2αc1+2αr

R − 1

e
2αc1+2αr

R − 1
) =

ln(1 + e
2αc1+2αr

R − 1)− ln(e
2αc1+2αr

R − 1) = ln(e
2αc1+2αr

R )− ln(e
2αc1+2αr

R − 1) = 2α(
c1 + r

R
)− ln(e2α(

c1+r
R ) − 1)

Reffering to equation (g):

p = exp{− ln r +
αr

R
+

2α

R
(− R

2α
(
2α(c1 + r)

R
− ln(e2α(

c1+r
R − 1) + c2)}

=⇒
p = exp{− ln r +

αr

R
− 2α(c1 + r)

R
+ ln(e2α(

c1+r
R − 1) +

2αc2
R
}

Appendix 3
The solution for spherical case can be written as

p = 1
r e
√
α(2c2+r) − 1

r e
√
α(2c1+2c2−r) + pe (R0 < r < Rs) ,

p = 1
r e
√
β(2c4+r) − 1

r e
√
β(2c3+2c4−r) + pL (Rs < r < Rm).

(4.2.1)

Refer to the first boundary condition Eq.(2.2.12),

1

R0
e
√
α(2c2+R0) − 1

R0
e
√
α(2c1+2c2−R0) + pe = p0

so,
e
√
α(2c2+R0) − e

√
α(2c1+2c2−R0) + pe = (p0 − pe)R0

so,
e
√
α(2c1+2c2−R0) = −(p0 − pe)R0 + e

√
α(2c2+R0) (1)

And,

−K ′[− 1

R2
0

e
√
α(2c2+R0) +

√
α

R0
e
√
α(2c2+R0) +

1

R2
0

e
√
α(2c1+2c2−R0) +

√
α

R0
e
√
α(2c1+2c2−R0)] = 0
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so,

− 1

R0
e
√
α(2c2+R0) +

√
αe
√
α(2c2+R0) +

1

R0
e
√
α(2c1+2c2−R0) +

√
αe
√
α(2c1+2c2−R0) = 0 (2)

put the value of e
√
α(2c1+2c2−R0) in Eq.(2). So,

− 1

R0
e
√
α(2c2+R0) +

√
αe
√
α(2c2+R0) +

1

R0
(−(p0−pe)R0 +e

√
α(2c2+R0))+

√
α(−(p0−pe)R0 +e

√
α(2c2+R0)) = 0

then,

− 1

R0
e
√
α(2c2+R0) +

√
αe
√
α(2c2+R0) − (p0 − pe) +

e
√
α(2c2+R0)

R0
−
√
α(p0 − pe)R0 +

√
αe
√
α(2c2+R0) = 0

So,

e
√
α(2c2+R0)[− 1

R0
+
√
α+

1

R0
+
√
α] =

√
α(p0 − pe)R0 + (p0 − pe)

so,

e
√
α(2c2+R0) =

(p0 − pe)(
√
αR0 + 1)

2
√
α

Define C2 and C1 as follows:

C2 = e
√
α(2c2) =

(p0 − pe)(
√
αR0 + 1)

2
√
α

e−
√
αR0 (3)

therefore,

e
√
α(2c1+2c2−R0) =

(−R0 +
√
αR0 + 1)(p0 − pe)

2
√
α

C1 = e
√
α(2c1+2c2) =

(−R0 +
√
αR0 + 1)(p0 − pe)

2
√
α

e
√
αR0 (4)

Due to The second boundary condition, Eq.(2.2.13):

1

Rm
e
√
β(2c4+Rm) − 1

Rm
e
√
β(2c3+2c4−Rm) + pL = p∞

so,
e
√
β(2c4+Rm) − e

√
β(2c3+2c4−Rm) = (p∞ − pL)Rm

so,
e
√
β(2c3+2c4−Rm) = −(p∞ − pL)Rm + e

√
β(2c4+Rm) (5)

And,

−K[− 1

R2
m

e
√
β(2c4+Rm) +

√
β

Rm
e
√
β(2c4+Rm) +

1

R2
m

e
√
β(2c3+2c4−Rm) +

√
β

Rm
e
√
β(2c3+2c4−Rm)] = 0

so,

− 1

Rm
e
√
β(2c4+Rm) +

√
βe
√
β(2c4+Rm) +

1

Rm
e
√
β(2c3+2c4−Rm) +

√
βe
√
β(2c3+2c4−Rm) = 0 (6)

Place the value of e
√
β(2c3+2c4−Rm) in Eq.(5):

− 1

Rm
e
√
β(2c4+Rm) +

√
βe
√
β(2c4+Rm) − (p∞ − pL) +

e
√
β(2c4+Rm)

Rm
−

√
β(p∞ − pL) +

√
βe
√
β(2c4+Rm) = 0

so,

e
√
β(2c4+Rm)(− 1

Rm
+
√
β +

1

Rm
+

√
β) = (p∞ − pL) +

√
βRm(p∞ − pL)
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so,

e
√
β(2c4+Rm) =

(p∞ − pL)(1 +
√
βRm)

2
√
β

Define C4 and C3:

C4 = e
√
β(2c4) =

(p∞ − pL)(1 +
√
βRm)

2
√
β

e−
√
βRm (7)

as a result:

C3 = e
√
β(2c3+2c4) =

(−Rm +
√
βRm + 1)(p∞ − pL)

2
√
β

e
√
βRm (8)

Apply the third boundary condition, Eq.(2.2.14):

1

Rs
e
√
α(2c2+Rs) − 1

Rs
e
√
α(2c1+2c2−Rs) + pe =

1

Rs
e
√
β(2c4+Rs) − 1

Rs
e
√
β(2c3+2c4−Rs) + pL

so,

1

Rs
e
√
α(2c2)e

√
αRs − 1

Rs
e
√
α(2c1+2c2)e−

√
αRs + pe =

1

Rs
e
√
β(2c4)e

√
βRs − 1

Rs
e
√
β(2c3+2c4)e

√
βRs + pL

so,
1

Rs
C2e

√
αRs − 1

Rs
C1e

−
√
αRs + pe =

1

Rs
C4e

√
βRs − 1

Rs
C3e

−
√
βRs + pL

And,

K[− 1

R2
s

C4e
√
βRs +

√
β

Rs
C4e

√
βRs +

1

R2
s

C3e
−
√
βRs +

√
β

Rs
C3e

−
√
βRs ] =

K ′[− 1

R2
s

C2e
√
αRs +

√
α

Rs
C2e

√
αRs +

1

R2
s

C1e
−
√
αRs +

√
α

Rs
C1e

−
√
αRs ]

so,

K[C4e
√
βRs(− 1

Rs
+
√
β) + C3e

−
√
βRs(

1

Rs
+
√
β)] = K ′[C2e

√
αRs(− 1

Rs
+
√
α) + C1e

−
√
αRs(

1

Rs
+
√
α)]

so,

C4e
√
βRs(− 1

Rs
+
√
β) + C3e

−
√
βRs(

1

Rs
+
√
β) = C2

K ′

K
e
√
αRs(− 1

Rs
+
√
α) + C1

K ′

K
e−
√
αRs(

1

Rs
+
√
α)

Substitute the values of Ci constants i = 1, 2, 3, 4:

(p∞ − pL)(1 +
√
βRm)

2
√
β

e−
√
βRme

√
βRs(− 1

Rs
+
√
β)+

(−Rm +
√
βRm + 1)(p∞ − pL)

2
√
β

e
√
βRme−

√
βRs(

1

Rs
+
√
β) =

(p0 − pe)(
√
αR0 + 1)

2
√
α

e−
√
αR0

K ′

K
e
√
αRs(− 1

Rs
+
√
α)+

(−R0 +
√
αR0 + 1)(p0 − pe)

2
√
α

e
√
αR0

K ′

K
e−
√
αRs(

1

Rs
+
√
α)

Define below parameters which are constants:

A =
1

Rs

(
√
αR0 + 1)

2
√
α

e−
√
αR0e

√
αRs

B =
1

Rs

(−R0 +
√
αR0 + 1)

2
√
α

e
√
αR0e−

√
αRs

C =
1

Rs

(1 +
√
βRm)

2
√
β

e−
√
βRme

√
βRs

D =
1

Rs

(−Rm +
√
βRm + 1)

2
√
β

e
√
βRme−

√
βRs
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E =
(1 +

√
βRm)

2
√
β

e−
√
βRme

√
βRs(− 1

Rs
+

√
β)

F =
(−Rm +

√
βRm + 1)

2
√
β

e
√
βRme−

√
βRs(

1

Rs
+
√
β)

G =
(
√
αR0 + 1)

2
√
α

e−
√
αR0

K ′

K
e
√
αRs(− 1

Rs
+
√
α)

H =
(−R0 +

√
αR0 + 1)

2
√
α

e
√
αR0

K ′

K
e−
√
αRs(

1

Rs
+
√
α)

As a result,
(p0 − pe)A− (p0 − pe)B + pe = (p∞ − pL)C − (p∞ − pL)D + pL

=⇒
−(C −D)p∞ + (A−B)p0 = −(−A+B + 1)pe + (−C +D + 1)pL (9)

and
(p∞ − pL)E + (p∞ − pL)F = (p0 − pe)G+ (p0 − pe)H

=⇒
(E + F )p∞ − (G+H)p0 = −(G+H)pe + (E + F )pL (10)

By considering the two Eqs.(9),(10), the parameters pL and pe are calculable. Therefore,

pL =
[(G+H)(C −D) + (−A+B + 1)(E + F )]p∞ − [(G+H)(A−B) + (G+H)(−A+B + 1)]

[−(G+H)(−C +D + 1) + (−A+B + 1)(E + F )]

and
pe =

if R0 < r < Rs,

p =
1

r
e
√
α(2c2)e

√
αr − 1

r
e
√
α(2c1+2c2)e−

√
αr + pe

=⇒
p =

1

r

(p0 − pe)(
√
αR0 + 1)

2
√
α

e−
√
αR0e

√
αr − 1

r

(−R0 +
√
αR0 + 1)(p0 − pe)

2
√
α

e
√
αR0e−

√
αr + pe

And if Rs < r < Rm,

p =
1

r
e
√
β(2c4+r) − 1

r
e
√
β(2c3+2c4−r) + pL

=⇒

p =
1

r

(p∞ − pL)(1 +
√
βRm)

2
√
β

e−
√
βRme

√
βr − 1

r

(−Rm +
√
βRm + 1)(p∞ − pL)

2
√
β

e
√
βRme−

√
βr + pL
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List of Symbols

φL Lymphatic drainage term (sec−1)

φV Fluid source term (sec−1)

πA Arterioles osmotic pressure (mmHg)

πi Interstitial osmotic pressure (mmHg)

πV Venules osmotic pressure (mmHg)

K Interstitial hydraulic conductivity (cm2/mmHg.sec)

LA Arterial hydraulic conductivity (cm2/mmHg.sec)

LL Hydraulic conductivity of the lymphatic wall (cm2/mmHg.sec)

LP Hydraulic conductivity of the microvascular wall (cm2/mmHg.sec)

LPL Hydraulic conductivity of the lymphatic wall (cm2/mmHg.sec)

pA Arterioles hydrostatic pressure (mmHg)

pi Interstitial pressure (mmHg)

pL Lymphatic hydrostatic pressure (mmHg)

pV Venules hydrostatic pressure (mmHg)

S Surface area (cm2)

V Unit volume (cm3)

IFP Interstitial Fluid Pressure

NFP Net fluid pressure

TIFP Tumor Interstitial Fluid Pressure
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