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Abstract. An overview of modelling and simulation of flow processes in gas/particle and 
gas/liquid systems are presented.  Particular emphasis is given to computational fluid dynamics 
(CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling 
strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub 
models for the interfacial transfer processes and chemical kinetics modelling are presented. 
Examples are shown for some gas/particle systems including flow and chemical reaction in risers 
as well as gas/liquid systems including bubble columns and stirred tanks.   

1.  Introduction  

1.1. Basic considerations 
Several different approaches are available for setting up the governing equations for multi-phase 
equipment. One method is the so-called PSIC (Particle-Source-In-Cell) procedure originally presented 
by Migdal and Agosta [1].This method treats the continuous phase (liquid or gas) in a usual Eulerian 
description, whereas the dispersed phases (bubbles, droplets or particles) are described in a Lagrangian 
way. This means that the dispersed phase is tracked through the flow domain from inlet to outlet. In the 
original method it was assumed no interaction between the various dispersed phases and thus this 
method was only applicable to low volume fractions of the dispersed phase. In later years this limitation 
has been removed and the resulting method is called the discrete particle method (DPM). 

The second method is the Volume of Fluid (VOF) for gas/liquid systems and was first proposed by 
Nichols et al. [2]. The method makes it possible to calculate the interphase between the gas and liquid 
and is thus able to resolve the details of the bubble shapes as they move through the liquid. The method 
assumes that the flow is fully segregated (resolved), which means that we do not have a mixture of gas 
and liquid anywhere in the computational cells. We either have pure gas or pure liquid present in the 
cells. This means that we solve only one set of balance equations: gas or liquid. The inter-phase is 
tracked by solving a transport equation for the VOF variable. This is a discontinuous variable that is 
either zero or one. The method is such that in order to resolve sharp interfaces it needs large grid 
resolution and hence large computer resources. 

The third method is the Lattice Boltzman (LB) method that is able to model the flow around solid 
particles and is therefore able to fully resolve the solids fluid flow. Both the VOF and LB may be 
characterised by being so-called Direct Numerical Simulation (DNS) method for multi-phase flows.   

The fourth method deduces the governing equations based on the Eulerian concept and is normally 
named the multi-fluid method (Spalding, [3]). This means that the phases are treated as interpenetrating 
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fluids that share the space and interact through the source terms. All equations are such that the volume 
fraction may take a value between zero and one. 

Figure 1 gives an overview of the four various methods for gas-liquid and gas-solids flow. We note 
that at the top row in the figure gives the most fundamental methods, i.e. methods that need no modelling 
since all aspects of the flow are calculated. These methods will however need large computational 
resources. We also see from the figure that DPM/PSIC approach is an intermediate method where some 
details are lost and needs to be modelled. The third row in the figure gives the multi-fluid method. This 
is the most demanding method with regard to modelling needs. The important aspect to note is that due 
to large dimensions and computing demands the multi-fluid method is the optimum choice for industrial 
scale process equipment. However, the VOF, LB and DPM/PSIC methods are highly needed to feed 
better sub-models for the multi-fluid technique. We also see that in the last row it is envisaged a 
combination of multi-fluid and the DPM methods that may be optimum where large bubbles are flowing 
through a fluidised bed.  

 
Figure 1: Relations between description level for gas liquid and gas solids systems and 1) degree 

of modelling details needed and 2) scale of reactor (adapted from van der Hoef et al [4]). 

1.2. Objective of the Paper 
This paper will mainly deal with the multi-fluid technique. Details will be given on the derivation of the 
multi-fluid equations. Section II will deal with the basics of the multi-fluid approach. Section III will 
deal with the closures for bubble-liquid flows whereas Section IV will handle the closure framework for 
solids fluid flows based on the kinetic theory of granular flow (KTGF). Additional sub models for bubble 
size, interfacial transfer processes, chemical reaction and stirred tank models are dealt with in Section 
V. Section VI presents some applications of multi-fluid simulations for bubble columns, stirred tanks 
and fluidised beds. The final section VII gives a summary of the Paper. 

2. Basics of the multi-fluid approach 

2.1. Introduction 
A multiphase flow system consists of a number of single phase regions bounded by moving interfaces. 
In principle, a multiphase flow model could be formulated in terms of the local instantaneous variables 
pertaining to each phase and matching boundary conditions at the interfaces. The direct numerical 
solution of this kind of formulation is not feasible in practice. It would require an extremely fine mesh 
and a very small time step. The local instantaneous formulation can be used as starting point to derive 
macroscopic equations by an average procedure, whose numerical solution is feasible. The modelling 
of the unclosed terms arising from the average procedures is the price to pay for solving averaged 
multiphase flow systems.  
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2.2. Averaged Balance Equations 
Multi-fluid model: In cases where a detailed description of the interface dynamics is not relevant or is 
computationally too expensive, the averaging can be performed on a volume larger than the 
characteristic volume of the secondary phase as illustrated in Figure2. Doing so, all the information lost 
on the scales smaller than the averaging scale need to be accounted for through sub-grid models, which 
may be derived empirically, analytically or numerically. The multi-fluid model is derived from the 
averaged local instantaneous balance equations with an averaging volume larger than the characteristic 
volume of the secondary phase, and is based on the assumption of inter-penetrating continuum media. 
That is, different phases can share the same spatial position.  

The multi-fluid model balance equations can be written in a compact form:  
 

Mass balance         
  

(1) 

 
 

Figure 2:  Averaging volume for a multi-fluid flow model framework [13]. 

 
Momentum balance 

(2) 
  
 
 

Here, Γk represents the exchange of mass between phases, t
kT  is the residual stress tensor accounting 

for the unresolved turbulence scales and ,I kM


 accounts for the interfacial forces. 
 
The following constraints hold 

 
(3) 

 
 

The average energy equation expressed by enthalpy h as the dependent variable reads (kinetic energy 
is subtracted): 

(4) 
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Here the terms on the RHS are 1) heat transfer in phase k due to temperature gradients, 2) reversible 
work in phase k, 3) dissipation due to shear stress in phase k, 4) energy transfer to phase k due to mass 
transfer between phases, 5) energy generation in phase k due to e.g. chemical reaction and finally 6) 
heat transfer to phase k from the other phases. 

The average balance equation for a chemical specie is expressed as 
 

(5) 
 

 

 
Here the terms on the RHS are 1) mass transfer in phase k due concentration gradients, 2) mass 

transfer to phase k due to mass transfer from the other phases, 3) mass generation of specie Yj in phase 
k due to e.g. chemical reaction.  

 

3. Closure framework  

3.1. General 
So far, all the multiphase models described are not yet in a solvable form. They still include unclosed 
terms that are not explicitly depending on the averaged fluid properties. Unclosed terms, for multiphase 
flow models, can be grouped in three different classes:  

(i) phase interaction terms ( ),, I kk MΓ


,  

(ii) self-interaction terms ( )kT and 

(iii) turbulence terms t
kT 

 
 

.  

Furthermore, the thermodynamic state of the system needs to be specified through state equations, 
which link the thermodynamic variables. The closures of the terms in (i)-(iii) together with state 
equations go under the name of closure laws or constitutive laws.  

3.2. Bubble Liquid 

3.2.1 Self-interaction: The viscous stress tensor of phase k,  kT can be split up into a pressure term and a 
shear stress term as 

 
(6) 

 
The shear stress tensor is often modelled using the Newtonian strain-stress relation 
 

(7) 
 
 

where the strain-rate tensor is defined by 
 

(8) 
  

 
The bulk viscosity, kξ , is usually set to zero for all phases, whereas the dynamic viscosity, kµ , is 

usually set to a constant value (laminar viscosity) for the primary phase (liquid) and to zero for the 


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secondary phases (classes of bubble). The assumption of constant viscosity for the primary phase may 
be questionable, since there should be dependence from the concentration of the secondary phases and 
temperature when non isothermal process is studied. In the present analysis, a constant laminar viscosity 
is assumed. 

3.2.2 Phase interaction: The interactions between the phases are accounted for by the terms , ,I k kM Γ


 in 
the multi-fluid model. The formulation of the exchange mass rate between phases, kΓ , depends on the 
particular process under consideration (evaporation, solidification, condensation, etc.) and will not be 
discussed here. 

The interfacial force for phase k is usually decomposed in terms of a generalized drag force and 
averaged interfacial pressure and shear stress. 

, , ,,

gd
I k I k I kI k k kM M p α τ α= + ∇ − ∇

 
                                                                 (9) 

By this decomposition the RHS of Eq. 2 may be rewritten as follows 

 

 ( )  ( )
( ) ( ) 

,
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k I kk kkk k k k k k
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I kI k kkI k k k k k k

T g u M p

p p g u M
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α τ α α ρ

 
∇ ⋅ + + Γ + = − ∇ +∇ ⋅ + 

 

+ − ∇ − ∇ ⋅ + + Γ +

  

  
                                               (10) 

The generalized drag force accounts for several interaction forces. Here, only the main contributions 
for bubbly flows, i.e. drag, virtual mass and lift forces, will be considered. In case of bubbly flows, the 
multiphase system can be modelled with a primary phase (k=1), consisting of the liquid phase, and (N-
1) secondary phases each one representing a class of bubbles with volumes ranging within an interval. 
Assuming that the interfacial forces are only acting between the primary phase and the secondary phases 
and not among the secondary phases, which is reasonable for dispersed systems, the generalized drag 
form can be formulated for the primary phase as 

( ),1 , , ,
2

Ngd D L VM
I I k I k I k

k
M M M M

=

= + +∑
   

                                                          (11) 

and for the secondary phases as 
, , , , 2,.....

gd D L VM
I k I k I k I kM M M M k N= − − − =

   
                                          (12) 

This formulation satisfies the averaged jump constraint for the momentum. The drag, lift and virtual 
mass are modelled as follows: 

Drag force 
   ( ),

, 1 11
,

3
4

D D k
I k k kk

b k

C
M u u u u

d
ρ α= − −
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                                                  (13) 

Lift force 
( )  ( ), 1 11,

L
I k kL k kM C u u uρ α= − ∇× × −

   
                                                 (14) 

Virtual mass force 
 

, 11,
D D
D D

VM
I k kVM k kM C u u

t t
ρ α  = − 

 

  
 `                                            (15) 

3.2.3 Turbulence closure: The averaging process on the convective terms of phase k generates the so 
called residual stress tensor (or Reynolds stress tensor when a time or ensemble average is performed),

t
kT , which accounts for the residual or unresolved turbulence filtered out by the averaging process. Due 

to the nature of turbulence, which is still a not well understood problem of physics, the modelling of the 
residual tensor is not trivial. Kataoka and Serizawa [5] and successively Lopez de Bertodano et al. [6] 
have derived and extended from single phase to multiphase the k−ε turbulence model. However, in 
deriving the equations for the turbulent kinetic energy, k, and the turbulent dissipation rate, ε, several 
cross-correlation terms have been neglected mainly because the lack and the difficulties of 
understanding them. Hence care must be taken when using this model. The work of Chahed et al. [7] is 
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one of the few if not the only one in which the Reynolds stress model is applied for multiphase flows. 
In the last years there has been some attempt to use very large eddy simulations (VLES) for computing 
multiphase flows, in particular bubbly flows, (Milelli [8], Deen et al. [9], Bove et al. [10]. This technique 
has shown to be able to capture the unsteadiness and the main characteristic of the flow quite 
successfully. LES and VLES are based on spatial filtered Navier-Stokes equations. Since the volume 
average of the multiphase model equations is equivalent to filter in space by a particular filter, they can 
be regarded as LES/VLES. Here VLES will be considered and the residual stress tensor will be modelled 
consequently. For the continuous phase, k=1, the residual stress tensor can be written as 

  ( )1 1 1 1 111 1
2
3

tT u u u u k Iρ τ= − = − +
   

                                                            (16) 

Here, k1 is the residual turbulent kinetic energy for the continuous phase and is defined as 
  ( )1

1 1 1 111 2k u u u uρ= −
   

                                                            (17) 

τ1 is the anisotropic residual stress tensor and accounts for two different turbulence contributions, 
one induced by the shear stress in the liquid phase and the other deriving from the bubble liquid 
interaction or bubble induced turbulence (Sato and Sekoguchi [11]). The linear eddy-viscosity model is 
used to relate the anisotropic residual stress to the rate of strain and the superposition of the two 
turbulence effects is assumed. The anisotropic residual stress tensor can then be modelled as 

( ) 11 t,2 t BIT Sτ µ µ= +                                                       (18) 
By analogy with the mixing-length hypothesis, the turbulent viscosity, μt, is modelled as 

(Smagorinsky [12]) 
( )2

1 1t sC Sµ ρ= ∆                                                    (19) 
where, Cs is the Smagorinsky coefficient, Δ is the filter length or the volume average characteristic 

length and S1 is the characteristic filtered rate of strain. It is defined as 

( )1/ 2

1 11 2 :S S S=                                                                (20) 

The bubble induced viscosity was introduced and modelled by Sato and Sekoguchi [11] as 

11t, ,
2

N

kBIT BIT k k
k

C d u uµµ ρ α
=

= −∑
 

                                            (21) 

Where the model constant, Cμ,BIT , is set equal to 0.6. For the secondary phases, the residual stress 
tensor should account for the dispersion of the bubbles (or particles in general) due to the unresolved 
eddies. Bove [13] shows that the modelling of this term by the linear eddy-viscosity assumption is not 
able to describe the desired physics. Several works account for the turbulent dispersion in the generalized 
drag force, among others Lopez de Bertodano [14] and Drew and Passman [15]. This is questionable. 
In fact, if the turbulent dispersion effect is considered in the generalized drag force, what is the meaning 
of the residual stress tensor for the secondary phases? When VLES is applied to bubbly flows, eddies 
down to a length scales comparable with the bubble size (two times the bubble diameter if the grid 
spacing is set equal to the bubble diameter) are resolved. These eddies are responsible of the turbulent 
dispersion of the gas phase. With an appropriate choice of the grid spacing the most of the turbulent 
dispersion effect is then resolved and only a small part needs to be modelled. Therefore, the residual 
stress tensor for the secondary phases will be neglected. The reader can refer to the work of Moraga et 
al. [16] for a review of various turbulent dispersion models.  

Another popular model for bubble liquid flows is to model the continuous phase using the so-called 
k-ε turbulence model. The dispersed phase influence is taken account by introducing additional source 
terms. The turbulence viscosity is modelled as 

    
    (22) 

 
 

1

1

2

kt,k
k =  C µ ρµ
ε
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The equation for the turbulent kinetic energy for the continuous phase (k=1) reads 
(23) 

  
 

The equation for dissipation of turbulent kinetic energy for the continuous phase (k=1) reads 
 

 

(24) 
 

 

Production of turbulence due to mean strain gradients is given by: 
(25) 

 
Additional turbulent kinetic energy is produced or dissipated due to the work induced by the bubbles 

when they move through the liquid phase 
(26) 

  
 

Cb range from 0.02 to 0.75. This means that from 2 to 75 percent of the bubble-induced turbulence 
goes into the large eddy structure of the continuous phase. Cbd range from 0.02 to 0.2. These large 
variations in the two constants indicate the problems with the k-ε turbulence model for bubble-liquid 
flows. The values of the other constants applied in the k-ε model are given in the Table 1 below. 

Table 1. Values of constants in the k-ε model 

Cμ C1 C2 σk σε 

0.09 1.44 1.92 1.0 1.3 

Lahey et al. [17] propose an extension to the k-ε model given above. Their extension introduces two 
time scales, namely one which is the normal turbulent turnover time of the liquid eddies (k/ε)1 and one 
which is related to the relative velocity and the bubble diameter (db/│urel│). The kinetic energy of 
turbulence is derived from transport equations, one for shear induced turbulence kSI, and one for bubble 
induced turbulence kBI . These two contributions are added to get the total turbulent kinetic energy in 
the liquid phase, kl. 

3.2.4 Closed multi-fluid model: Assuming that the surface tension effect is not important, as it is for 
non-separated flows, the pressure can be considered to have locally the same value for all phases, pk = 
pI,k = p. The mass conservation and momentum balance yields 

Mass conservation 

( ) ( ) , 1,......,kk kk k ku k N
t
α ρ α ρ∂

+∇ ⋅ = Γ =
∂


                                    (27) 
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α

= =
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Momentum balance for the primary phase 
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                                          (29) 

Here, μeff,1 represents the sum of the dynamic, μ1, residual, μt, and residual bubble induced viscosity, 
μt,BIT . 

Momentum balance for the secondary phases 
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                                                 (30) 

Normally, the virtual mass coefficient, CVM,k, is set equal to 0.5. The lift coefficient, CL,k, is either set 
to a constant value or modelled as suggested by Tomiyama [18], 

( ) ( )
,

min 0.288 tanh 0.121 Re ,      if     Eo < 4

( )                           if    4 <
L k

f Eo
C

f Eo Eo

 ⋅   =  
  

                                               (31) 

where, 
           ( ) 3 20.00105 0.00159 0.204 0.474f Eo Eo Eo Eo= ⋅ − ⋅ − ⋅ +                                         (32) 

The drag coefficient, CD,k, is modelled either by the distorted model (Ishii and Zuber [19]) 
1/ 2

,
2
3D k kC Eo=                                                                        (33) 

or by different correlations depending on the mean diameter and the initial deformation of the bubbles 
as well as the water contamination level, which affects the surface tension (Tomiyama et al. [20], 
Tomiyama [18]). 

For non-contaminated water or high initial shape deformation, the drag coefficient is well correlated 
by 

   

( ) 0.687
,

,,

k
,

k

16 1.0 0.15 Re      if     0 < < 0.5
Re
48 if    0.5 < < 1.3

Re
Eo8                            if    1.30 <

3 Eo 4

b kk
k

b kD k
k

b k

mm d mm

C mm d mm

mm d

 
+ ⋅ 

 
  =  
 
 
 

+  

                                        (34) 

For contaminated water or low initial shape deformation, the following correlation holds 

( ) 0.687
,

,

,

16 1.0 0.15 Re      if     0 < < 0.8
Re

Correlation                           if    0.8 <

b kk
kD k

b k

mm d mm
C

mm d

 + ⋅ =  
 
 

                                         (35) 
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Tomiyama [18] expresses the drag coefficient as 

( )
( )

( )
( )

-2k
k12 / 3 2 4 / 3

k

, k

-2k
k12 / 3 2 4 / 3

k

Eo8 F      if     ER < 1.0
3 1 Eo 16

6 if     ER 1.0
Eo8     if     ER 1.0

3 1 Eo 16

k

k k k

D k

k

k k k

ER
ER ER ER

C

G ER
ER ER ER

−

−

 
 

− + 
 = = 
 
 >
 − − 

                                         (36) 

Where, 

( )
2
, Eotvos numberb k

k

gd
Eo

ρ
σ

∆
=                                              (37) 

 

( )0.757

1 Mean aspect ratio
1 0.163k

k

ER
Eo

=
+

                                            (38) 

 

( )
, ,

1

Re Bubble Reynolds number
s kl db k

k

u dρ

µ
=



                                         (39) 

 

( )
1 2

2

cos 1
1
k k k

k
k

ER ER ER
F ER

ER

− − −
=

−
                                                   (40) 

 

( )
( )2 1 1 2

2

1 tanh 1

1
k k k k

k
k

ER ER ER ER
G ER

ER

− −− − −
=

−
                                                   (41) 

The system of Equations (27)-(29) is determined. In fact it has the same number of equations and 
unknowns. As stated previously, in order to be solved, initial and boundary conditions need to be 
specified. In general, they depend on the particular type of process to be solved. Therefore, they will be 
given when the type of flow and its operative environment is known. 

4. Closure framework for particle (solids) gas flows 

4.1. Kinetic Theory of Granular flow (KTGF) for mono-sized particles 

4.1.1 Introduction: Statistical approach used to formulate the constitutive equations of the solid phase 
equations come from the interactions of the fluctuating motion of the particles with the mean motion of 
the particles. Such interactions generate stresses in the solids phase and give rise to an effective viscosity 
of the solids phase. To be able to calculate these stresses and an effective solids viscosity, a model is 
proposed by Ding and Gidaspow [21] and Gidaspow [22]. The model is based on the kinetic theory of 
dense gases, as presented by Chapman and Cowling [23] and the work of Jenkins and Savage [24]  and 
Lun et al. [25].The thermal temperature in the kinetic theory of dense gases is here replaced with a 
granular temperature for which a transient differential equation is derived. The solid viscosity and solid 
stresses are a function of this granular temperature that varies with time and space in a fluidized bed. 
Derivation given is mainly based on the work of Gidaspow [22]. The generalised model for multi-sized 
particles given by Manger [26] will be summarized below.      

In gas/solid systems, particle segregation due to different size and/or density will play a significant 
role on the flow behaviour. To describe such phenomena, an extension to multiple particle phases is 
essential. Jenkins and Mancini [27]   extended the kinetic theory for granular flow to binary mixtures. 
The basic assumption was equal turbulent kinetic energy with a small correction for the individual phase 
temperatures. Mathiesen et al. [28] developed a model based on this work and performed a simulation 
with one gas and three solid phases. The model predicted segregation effects fairly well, and good 
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agreement with experimental data was obtained. Gidaspow et al. [29] and Manger [26] extended the 
kinetic theory to binary mixtures of solid with unequal granular temperatures between the phases. Based 
on their research, a generalized multiphase gas/solid model will be given in the next section. 

4.1.2 Summary of Governing Equations for Fluid/Multi-sized particle flows: The three-dimensional, 
finite-volume, multiphase Eulerian/Eulerian CFD code FLOTRACS-MP-    3D (see also Mathiesen et 
al., [30] [31], Ibsen et al., [32] and Hansen et al. [33]) uses the generalized fluid/multi-sized particle 
model mentioned above. The turbulent motion of the particulate phase is modelled using the kinetic 
theory of granular flow described by Manger [26] and the gas phase turbulence is modelled using a 
LES/Sub-Grid-Scale model. 

4.1.3 Mass balances and momentum balances: The governing equations may be written as: 
 

Continuity equation for phase k without mass transfer: 
 

(42) 
 

Here α, ρ and U are the volume fraction, density and velocity of phase k, respectively. The 
momentum equation for phase k is written as: 

 
 
 
 (43) 

 

Here p, τij, g and β are pressure, stress tensor, gravity and the inter-phase drag coefficient, 
respectively. There are N solids phases (s) and one gas phase (g) and the total number of phases are 
therefore M = N+1. 

 

4.1.4 Auxiliary relations: The gas phase stress tensor is given by: 
 

(44) 
 

where δij is the Kroenecker delta. The effective viscosity, µeff,g, is derived from a sub-grid-scale (SGS) 
model based on Smagorinsky [12], where the effective viscosity is a sum of a laminar and a turbulent 
part.  

 (45) 
 

The SGS eddy coefficient, ct, is set to 0.079 based on Deardoff [34]. The length scale, ∆, and the 
strain rate tensor of the resolved field, Sij,g, are given by: 

( )1/ 3x y z∆ = ∆ ∆ ∆ and 

   (46) 
 

   
The solid phase stress tensor is given by: 

( ) ( ), 0k k k k i k
i

U
t x
α ρ α ρ

∂ ∂
+ =

∂ ∂

( ) ( ) ( ), , , , , ,
1,

M

k k j k k k i k j k k ij k k k j km j m j k
m m ki j i

pU U U g U U
t x x x
α ρ α ρ α τ α ρ β

= ≠

∂ ∂ ∂ ∂
+ = − + + + −

∂ ∂ ∂ ∂ ∑

, ,
2
3

j i k
ij g eff g ij

j j k g

U U U
x x x

τ µ δ
  ∂ ∂ ∂

= + −   ∂ ∂ ∂   

( ) ( )2
, , , , , ,:eff g g lam g turb g g lam g g g t ij g ij gc S Sµ α µ µ α µ α ρ= + = + ∆

,
1
2

j i
ij g

i j g

U U
S

x x
 ∂ ∂

= + 
∂ ∂  
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(47) 

 
 

The solids phase pressure, Ps, the bulk viscosity, ξs, and the shear viscosity, µs, are derived from the 
kinetic theory of granular flow. The solids pressure is found from, Ding and Gidaspow [21]: 

  
 (48) 

 

where PC,n  is the pressure caused by collisions between the solids phases s and n and has the expression: 

( ) ( ) ( )
( )
( )( )( )

( ) ( )

3 2
2

03 0
, 2

0

1
3

1 1, and
2 2

s s ns n
C sn sn sn sn s n

s n s n s n s s n n s n

sn n s sn n s s n

m mm
P e d g n n

m m m m m m

e e e d d d m m m

θ θθ θπ
θ θ θ θ θ θ

    = + ⋅   +  + +    

= + = + = +

                                                  

(49) 
where e, d, n and m are coefficient of restitution, diameter of the particle, number of particles and mass 
of a particle, respectively. The coefficient of restitution is unity for fully elastic, and zero for inelastic 
collisions. By using the assumption of spherical particles, number of particles and mass of a particle are, 
respectively: 

3

3

6
and

6
s s s

s s
s

d
n m

d
α π ρ

π
= =                                                 (50) 

where gsn is the radial distribution function, which is close to one for dilute flow and approach infinity 
for dense flow making motion impossible. Based on the single solid phase model given implicitly by 
Bagnold [35], a new binary radial distribution function is proposed here: 

 
(51) 

 
 

The maximum solids packing, αs,max, is often put to 0.65. The solids bulk viscosity is calculated as 
(Ding and Gidaspow, [21]): 

 (52) 
 

 

The solids phase shear viscosity consists of a kinetic term:  

( )( )
( )( ), , 2

1

2
3

N
sn

col s C sn s n s n
n s n s n s n

d
P m m

m m
µ θ θ

πθ θ θ θ=

= +
+

∑                                                  (53) 

and a collisional part: 

( )
( )

2
,

,
1

1

2 41 1
1 51

N
dil s

kin s sn n snN
n

sn sn
n

g e
e g

N

µ
µ α

=

=

 
= + + 

 +
∑

∑
                                               (54) 

where the dilute solids viscosity, µdil,s, is found from: 
  

 (55) 
 

,
,

2
3

jk s i k
ij s s ij s ij s ij

k i j k s

UU U U
P

x x x x
τ δ ξ δ µ δ

  ∂∂ ∂ ∂
= − + + + −   ∂ ∂ ∂ ∂   
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11/ 3

0
0

,max

1
2 1

s
sn s n
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α α
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−
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To ensure that the dilute viscosity is finite as the volume fraction of solid approaches zero, the mean 
free path ls is limited by a characteristic dimension. The average granular temperature θs,av is obtained 
from: 

 

( )
( )( )

( )
( )( )( )

, 2
2 2

0 3 / 2
2

1 0

2
0

2
0

2 s s
s av

N
s nn sn

n s s s s n

s s n

s s n s n

m

m mn d S
n d m m

m m
S

m m

θ
θ

θ

θ θ

θ θ

θ θ θ θ

=

=
 

    +   

=
+ +

∑
                                       (56) 

Three solids gas inter-phase drag models will be presented. 

Model 1 Gidaspow [22]: For αg ≤ 0.8 the inter-phase drag coefficient is found from the Ergun equation 
(Ergun, [36]): 

 

 
 (57) 

 
where Φs is the sphericity of the particles (i.e. 1.0 for spheres; 0.81 for cubes; 0.6 - 0.7 for crushed 
materials; 0.3 for Raschig rings).  

For αg > 0.8 the drag formulation of Wen and Yu [37] is used 
 

 (58) 
         

 
with a drag coefficient, CD, from Rowe [38]: 

 (59) 
 
 

 

where the particle Reynolds number is defined as: 
(60) 

 
 

Model 2 Gibilaro et al. [39]: 
 

 
(61) 

  

Model 3 Syamlal and O'Brien [40]:  
 (62) 

  

 
Rt is the ratio between the falling velocity of a suspension and the terminal velocity of a single sphere. 

Rt, CD, A and B are given by the following expressions: 
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2
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2150 1.75 s g g ss lam g
sg

s sg s s

u u
dd

α ρα µ
β

α

−
= +

ΦΦ

 

2.653
4

s g g g s
sg D g

s s

u u
C

d
α α ρ

β α
φ

−
−

=
 

( )0.68724 1 0.15Re       for     Re 1000
Re
0.44                              for     Re 1000

s
sD

s

C
 + ≤ =  
 > 

,

Re s g g g s
s

lam g

d u uρ α

µ

−
=

 

1.817.3 0.336
Re

g
sg g s s g

p p

u u
d
ρ

β α α −
 

= + −  
 

 

( )2

3 1 1
4sg D g g g g s

p t

C u u
d R

β ρ α α= − −
 



13

1234567890

First Conference of Computational Methods in Offshore Technology (COTech2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 276 (2017) 012010 doi:10.1088/1757-899X/276/1/012010

 
 
 
 
 
 

  
 
  
 

 
       (63) 

 
 
 

The particle/particle drag coefficient may be expressed as (Manger [26]): 
( )

( )
( )

2 2

2
0

, ,

2 2

23

ln1 ln 3
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s s n n

sn s n
s g C sn
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α θ θ θθ θ
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 
 =

  ∇ ∇
+ ∇ + − + ∇   +−   
 

                                           (64) 

4.1.5 Granular temperature: A transport equation for the solids phases’ turbulent kinetic energy or 
granular temperature is solved: 

 

 

 (65) 
 

Here, the terms on the right side of the equation represent diffusive transport, production due to shear, 
dissipation due to inelastic collisions and dissipation due to fluid friction. The dissipation due to inelastic 
collisions is given by Manger [26].The production/dissipation term due to fluctuations in drag has been 
assumed as negligible. This is a reasonable assumption for the relatively large and heavy particles. 
Hence, the particle response time is assumed much longer than the characteristic time scale for the 
turbulent fluid motion. 

The conductivity of granular temperature κs, and the dissipation due to inelastic collisions γs are 
determined from the kinetic theory for granular flow [26]. The conductivity is given by a dilute and a 
dense part as: 

  

 

                                    (66) 
 

 

 

 
 

The dissipation due to inelastic collisions is given by (Manger [26]):   
   
   
                                (67) 
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The divergence term is often neglected. However, if the term is retained it may cause production 
instead of dissipation, and must be handled with special care. 

5. Additional sub models 

5.1. Bubble Size Models 
Five different bubble size models are examined. These are denoted models A to E. 

Model A: The simplest model assumes that the bubble size is constant and given by overall flow 
conditions. Johansen and Boyson [41] have used an estimation of the bubble diameter which is 
dependant on the inlet flow rate: 

0.2
g

b
Vd  = 0.35   
g

 
 
 


                                                                          (68) 

Model B: Jakobsen [42] has used a bubble size model which sets the diameter proportional to the 
length scale of the turbulent liquid eddies according to: 

3
2
l

SMDb
l

kd  =  C
ε

                                                                             (69) 

The constant CSMD is determined to be 0.04 for flow in bubble columns. The two models given above 
do not include properties of the interface. This is included in the next model. 

Model C: Calderbank [43] has proposed an expression based on dissipation length scale and a critical 
Weber number as follows: 

2
,

3
t,lb

crit t l ll
b

d u= ;   = u  ;   = We
d

τ
τ ερ

σ
                                       (70) 

Here τ is the shear stress, ut,l is the turbulence velocity, σ is the surface tension of the gas liquid 
interface and ε is the dissipation rate of turbulence. The expression for db from the above relations gives: 

0.4

1.0
0.6

b We
ll

 =     d C
σ
ρ ε

 
 
 

                                                           (71) 

  
Experimental verification against data from stirred tanks has given the following correlation based 

on the above expression: 
0.6 0.25

g0.5
b We g0.4

ll

1    =        +  0.0009d C
µσ

α
µρ ε

   
   

  
                                     (72) 

When CWe is taken to be 4.15, db is given in metres. 

Model D: Both models B and C give bubble size as function of local properties. However, in many 
cases history effects govern the bubble size. Cook and Harlow [44] give a model that takes account of 
this. This model calculates the transport of the number concentration of bubbles N, according to: 

g b e
 N  +  ( u  N ) = (N N)
t

ω∂
∇ ⋅ −

∂


                                                       (73) 

Here the equilibrium number concentration of bubbles Ne, is calculated based on a critical Weber 
number as: 

3 with
2

rel beg l g
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 d
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

                                                   (74) 

The bubble diameter relates to the void fraction and the bubble number concentration as: 
1
3

g
b

6 
d  =   
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π
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                                                                            (75) 
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The two constants in the model, the critical Weber number Wecrit, and the relaxation parameter ωb, 
has the following values: 3.6 and between 4 and 20, respectively. These constants are determined for 
vertical gas-liquid flow past an obstacle. 

Model E: The most general and comprehensive method is to calculate bubble size distribution by 
solving the Population Balance Equation. Here there are several methods available including: 
Classes/Sectional Methods (CM/SM) and methods of moments (QMOM, DQMOM, PPDC). Details of 
these methods will not be discussed here but a full description may be found in Bove [14] and Marchisio 
and Fox [45]. 

5.2. Interfacial Heat Transfer  
Gas/liquid: Heat transfer between the two phases without mass transfer may be treated as follows: 
T1 and T2 are the temperatures in the bulk of phase 1 and 2, respectively. Ts is the interface 

temperature. Energy balance over the phase separation surface: heat in = heat out. 
1 2;1 s s 21s s2= ( a)( ) = ( a)( )Q QT T T Tλ λ− −  

Solving for Ts , Q1s = Q2s 
1 21 2

1s 12
1 2

( )T T= = a Q Q
+

λ λ
λ λ

−  

Or as source term in the phase 2 and phase 1 enthalpy equations reads: 
 2 1 1 2 1 2( ) where 1 1 1h h=  = a U T T US S λ λ− = +−                                         (76) 

Here U is the total heat transfer coefficient between phase 1 and 2; λ1 and λ2 are the individual heat 
transfer coefficients between phase 1 and the interface and phase 2 and the interface, respectively; a is 
the specific surface area of the interface, i.e. area per unit volume. 

Gas/particle: Heat may be generated by the catalytic exothermic solid phase chemical reaction [46]. 
This heat is transported between the phases (particles, p and gas, g) and may in addition be cooled by 
e.g. generation of steam in a submerged heat exchanger (wall, w). 

Source term for the gas phase 
g p g w gv wh  =  (     ) +  (   )S h hT T T T− −                                                                (77) 

Source term for the solids phase 

 
p

k = nreac

g p w p rx,k kv wh
k=1

      =   (     ) +   (    )   +       S h hT T T T H r− − ∆ ⋅∑                                                (78) 

The effective transport coefficients relates to the turbulent viscosities as: 

andlam , g g p
h , g h , p 

p , g 

 =   +     = 
0.7 0.7c

µ µκ
Γ Γ                                                          (79) 

Where κlam,g is the laminar conductivity and c p,g is the specific heat capacity of the gas. 
 
The volumetric heat transfer coefficient hv may be calculated by using several different correlations 

for the Nusselt number Np in different flow regimes, characterized by the Reynolds number Re and the 
gas phase volume fraction αg. 

For αg≤0.8  
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;

;

;

pp
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0.17
pp

p

pp
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d
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≤

 
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 
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For αg > 0.8 

  

0.67

0.60

0.457

;

;

;

p p

pp

pp

= (  2 + 0.16 Re  )   Re  200   N S
N = 8.2 Re        200 < Re < 1000 S
N  = 1.06 Re          Re  1000S

≤

≥

                                           (81) 

where 

                            pg g p p v p
p p

lam , gplam ,g 

  |    |   6  d u u h d   Re =   ,   =   ,   = S N
d

ρ α
µ κ

−
 

                                            (82) 

The wall to bed heat transfer coefficient, hw, may for many cases be taken to be a constant, only 
proportional to the respective volume fractions of the phases. Typical values for the bed to wall heat 
transfer coefficient may be found in Geldart [47].  

5.3. Mass Transfer in Bubble Liquid Flows 
The interface mass transfer driven by concentration gradients is taken account of through the source 
terms for the species equation. For the liquid phase, Yj,l , the source term reads: 

*
, ,j,l l j g j lY l = (k a   (Y - Y ))S                                                            (83) 

The (kl a) is related to the dissipation rate, εl gas fraction, αg and bubble diameter, db (Trägårdh, [48]): 

( ) g0.2
l m l

b

6 
k a = C  

d

α
ε                                                           (84) 

Modelling of mass transfer in single component two-phase flow where evaporation/condensation 
occurs, may be expressed as: 

1 1s 2 2s1 2

12

( a)( )+( a)( )T T T T=
h

λ λ− −Γ                                                          (85) 

Here T1s and T2s are saturation temperatures, dependant only on pressure; λ1 is the heat transfer 
coefficient between phase 1 and the interface surface. λ2  is the heat transfer coefficient between phase 
2 and the interface surface, h12 enthalpy of evaporation and a specific surface area of interface. 

5.4. Chemical Reaction 
 Catalytic reaction 
The ozone decomposition reaction: The ozone decomposition reaction is a simple irreversible first 

order catalytic reaction. The reaction can be written as: 
2 O3 → 3 O2 

Due to the low concentration of ozone in a riser, the heat produced by the chemical reaction is 
negligible and the reaction is looked upon as being isothermal. 

Species conservation equations: A transport equation for the mass fraction of ozone in the gas phase 
Yk,g is solved 

 
(86) 

 

where the transport coefficient ΓY is expressed in terms of the diffusion coefficient, DY, and the 
turbulent viscosity of the gas phase: 

                

 (87) 
 

The reaction rate constant for the catalytic reaction was measured in a fixed bed reactor. The rate 
constant is expressed pr. unit volume of catalyst and was measured to be 3.96 s-1 (Ouyang et al., [49]). 
The reaction rate is expressed as: 

  r = -3.96 ⋅ αs⋅ COzone       [kg Ozone/m3 s]                                             (88) 

( ) ( )
,k g

k
k i k Y gg g

i i i

Y
Y U Y r

t x x x
αρ αρ α

 ∂∂ ∂ ∂
+ = Γ + ⋅ ∂ ∂ ∂ ∂ 
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,

0.7k g k g
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Y YD

µ
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6. Applications 
The next subsections will give some examples of use of some of the models described above. 

6.1. Bubble Columns 
In the work of Deen et al. [9] the use of large eddy simulations (LES) in numerical simulations of the 
gas–liquid flow in bubble columns was studied. The Euler–Euler approach was used to describe the 
equations of motion of the two-phase flow. It was found that, when the drag, lift and virtual mass forces 
are used, the transient behaviour that was observed in experiments can be captured. Good quantitative 
agreement with experimental data is obtained both for the mean velocities and the fluctuating velocities 
(Figure 3). The LES showed better agreement with the experimental data than simulations using the k–
ε model. 

 Bove [13] extended the above modelling by including solution of the Bubble population equation 
using three nodes in the size coordinate. This enabled calculation of the bubble size distribution in 
bubble columns. An example of Bove’s results are given in Figure 4. 
.  

 
Figure 3: Comparison of simulated and experimental profiles of (left) the axial average liquid 

velocity and (right) the transverse liquid velocity fluctuations for different conditions. 

 
Figure 4: (left) A snap shot of the predicted size distribution at two position in the bubble column 

of van den Hengel et al [50] and  (right) the predicted and measured bubble diameter along the column 
centreline. 
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6.2. Stirred Tanks 
Deen et al [51] did a study of flow in a stirred tank. A two-camera PIV technique was used to obtain 
angle resolved velocity and turbulence data of the flow in a lab-scale stirred tank, equipped with a 
Rushton turbine 

Two cases were investigated: a single-phase flow and a gas-liquid flow. In the former case, the 
classical radial jet flow pattern accompanied by two trailing vortices was observed. In the latter case, 
the velocity of the radial jet was reduced, and the vortices were diminished by the presence of the gas. 
Gas cavities clinging to the back of the impeller blades were observed (Figure 5). Both cases were also 
investigated with the use of three-dimensional transient CFD simulations. The sliding grid technique 
was used to describe the movement of the impeller.  

For the single-phase flow the simulations in the impeller region corresponded very well with the 
experimental data. For the gas-liquid flow both the mean and fluctuating liquid velocities in the impeller 
region were well predicted  as seen in Figure 6. This was also the case for the mean radial gas velocities. 
The largest differences between the simulations and the experiments were found for the mean axial gas 
velocity.  
 

 

 

 

 

 

 

 

 

 

Figure 5: Comparisons between measured (left) and computed (right) distribution of gas around 
the impeller.  

 

Figure 6: Comparisons of measured and predicted radial liquid velocity (left) and axial liquid 
turbulent velocity (right) close to the impeller region. The gas liquid case using fine or coarse grids. 
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6.3. Circulating fluidized beds 

6.3.1 Cold flow: Hansen et al [33] have performed a computational fluid dynamics simulation of a cold 
flowing riser fluidized with FCC catalysts. The computations were performed using the 3D multiphase 
computational fluid dynamics code with an Eulerian description of both gas and particle phase, 
described above. The turbulent motion of the particulate phase was modeled using the kinetic theory for 
granular flow, and the gas phase turbulence was modeled using a Sub-Grid-Scale model. The complex 
inlet geometry was approximated using multiple inlet patches. The first results were submitted to a 
blind-test in connection to the 10th international workshop on two-phase flow prediction held in 
Merseburg, Germany, 2002.  

The results were subsequently validated against experimental findings of particle mass flux across 
the riser and pressure profile along the riser. The calculations showed good agreement with experimental 
findings of both mass flux and pressure profile, but further improvements were proposed and 
investigated. A parameter study showed that mesh refinement, choice of particle diameter and choice of 
drag model are crucial when simulating FCC riser flow. The result of the submitted blind test and best 
result after the parameter study is given in Figure 7. 

6.3.2 Reactive flow: Hansen et al. [51] have implemented the isothermal decomposition of ozone in the 
CFD code FLOTRACS-MP-3D described above. The code is a three dimensional (3D) multiphase 
computational fluid dynamics code with an Eulerian description of both gas and particle phase. The 
turbulent motion of the particulate phase is modelled using the kinetic theory for granular flow, and the 
gas phase turbulence is modelled using a sub-grid-scale model. 

The decomposition reaction is studied in a 3D representation of a 0.254m I.D. riser, which has been 
studied experimentally by Ouyang et al. [49]. These authors obtained profiles of ozone concentration in 
the 10.85-m high riser by the use of a UV detector system. Furthermore, a pressure drop profile was 
reported. Comparison between measured and simulated time-averaged ozone concentration at different 
elevations in the riser shows good agreement. The 3D representation of the reactor geometry gives better 
predictions of the radial variation in concentration than in a similar 2D simulation, Samuelsberg and 
Hjertager [53]. Typical results are given in Figure 8. 

 
 Figure 7: Predicted and measured solids fluxes (left) and pressure profile for blind test and 

improved cases (right). 
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Figure 8: Predicted contours of ozone concentration (iso-surface of C/Cinlet = 0.6) (left); 
comparison of measured and predicted radial profile of ozone (right) 

7. Summary 
The present Paper has presented details of a multi-fluid model for multi-phase flows. Closure laws for 
both bubble-liquid and solids-gas systems have been exposed. In particular the results using kinetic 
theory of granular flow (KTGF) have been shown for the solids gas system. Several sub-models are 
presented including bubble size, chemical reactions as well as heat and mass transfer. Finally, examples 
of results from bubble-liquid and solids-gas simulations are given. 
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