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ABSTRACT

Subsea pipelines, when exposed to free spans, can experience vortex-induced vibrations.

This phenomenon was described as a resonance condition occurring when the vortex

shedding frequency and the natural frequency of a structure approach common oscilla-

tion frequency. Fatigue life of the pipeline can be adversely affected by a high amplitude

oscillations attributed to the vortex-induced vibrations. A numerical study has been per-

formed on the effects of wall proximity on the vortex shedding of an elastically mounted

circular cylinder. In addition, the study was extended to investigate the influence of a sec-

ond cylinder with a smaller diameter rigidly coupled with the large cylinder. Such config-

urations can be regarded as a model of a subsea pipeline or, in case of coupled cylinders,

a subsea piggyback pipeline in a free span situation. A series of two dimensional, numer-

ical studies using open source CFD code OPENFOAM has been performed. Simulations

were performed in two flow regimes, a laminar vortex street regime at Reynolds number

Re = 200 and an upper transition regime at Re = 3.6×106. A range of reduced velocities

covering a frequency lock-in phenomenon was investigated. Hydrodynamic forces and

response amplitudes were mapped with respect to the reduced velocity. Furthermore, a

study of the phase differences between the hydrodynamic forces and cylinder displace-

ments was conducted. The motions of the cylinder were recorded and presented on the

trajectory plots. The frequency components of hydrodynamic forces and displacements

were analyzed with the FFT algorithm in the frequency domain. In order to gain insight

into the effects of the shear layers interaction in the area around the oscillating cylinder,

flow visualizations of the numerical simulations were analyzed.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Study of the flow patterns around cylindrical structures is relevant in a variety of engi-

neering applications. In the offshore industry, many structures can be represented by

such geometry. Subsea pipelines are one of the most notable examples. It is estimated

that more than 45.000 kilometers of pipelines have been installed in the North Sea since

1966.

From an economic and environmental point of view, subsea pipelines represent an im-

portant asset with high safety and reliability requirements imposed by the regulators.

Reynolds number characteristic for flow around pipes at the sea bottom is typically of

O(104)−O(107) covering subcritical to transcritical flow regimes. When exposed to fluid

flow, free pipeline spans are subjected to dynamic motions induced by currents and/or

waves, referred to as vortex-induced vibrations (VIV), which can cause fatigue related

failure (Fig. 1.1). Another consequence of VIV is the drag amplification effect which

results in enlarged static displacements and tensile forces. It is therefore desirable to de-

1



2 INTRODUCTION

velop a better understanding of the coupled dynamics of free span pipelines undergoing

vibrations in the vicinity of a seabed.

Span shoulder Free span Span shoulder

Alternating 
vortex shedding

Flow 
direction

Figure 1.1: Free spanning subsea pipeline (DNV GL, 2017).

In this thesis, numerical simulations are used to study the motion of cylindrical struc-

tures undergoing vortex-induced vibrations. A numerical approach offers several ben-

efits. Most importantly it allows performing parametric studies where among a large

number of influencing parameters one of them can be varied while the others are kept

constant. This provides the ability to discern the functional dependencies governing the

inherently complex near-wall VIV physics. The second benefit of numerical studies is the

ability to go beyond the limitations of experimental facilities, which are often limited

with respect to the maximum Reynolds number possible to achieve.

1.2 Problem Definition and Objectives of the Thesis

The problem of a free-span along the pipeline can be modeled by the configuration in

which flow is past an elastically mounted circular cylinder with two degree-of-freedom

(2-DoF) in proximity to a stationary plane wall. Example of such problem can be seen in

Fig. 1.2. Research methodology is based on the numerical study of the flow by using an

open source finite volume method (FVM) code Open Field Operation And Manipulation

(Weller et al., 2008).

It is a well established Computational Fluid Dynamics (CFD) code used by both academic

and commercial organizations. The scope of the thesis is focused on two major studies.

In the first part, the focus is on the flow around cylindrical structures at low Reynolds

number. The second part is concerned with the upper transition flow regime. Two-

dimensional models of the pipeline cross sections are investigated at Re = 200 in the

first part and at Re = 3.6×106 in the second part respectively. The results obtained from
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(a) (b)

Figure 1.2: Example of a piggyback pipeline (a) (Subenesol.co.uk, 2018) and 2D model
generalization (b).

CFD study are validated against other numerical and experimental studies. The main

objectives established in the present thesis apply to both parts and are listed as follows:

Research objective: The formation and development of vortices around an oscillating

cylinder in near-wall configuration and their interaction with the bottom boundary layer

shall be investigated.

Research objective: The effects of different geometric configurations (including a single

cylinder and different arrangements of two coupled cylinders with uneven diameters) on

the flow characteristics shall be investigated.

Research questions: What are the key parameters governing the VIV in the near-wall

configuration? What are the interactions between identified parameters? How suitable

are tools used in the present study for practical design tasks concerning subsea pipelines?

1.3 Outline of the Thesis

Structure of the Thesis was established in the following way:

Chapter 2: Flow around Circular Cylinder and Fluid-Structure Interaction introduces

the fundamental theory of viscous flows, classification of flow regimes with respect to

Reynolds number and classification of vortex shedding modes. The concepts of tur-

bulence, boundary layers and, flow separation are briefly treated. Vortex shedding,

dynamic equations of motion and vortex-induced vibrations theories are reviewed.
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Chapter 3: Computational Fluid Dynamics presents general concepts of CFD and

Finite Volume Method. Fundamental governing equations and numerical method

used are explained. Description of the OPENFOAM code used for the simulations is

provided together with a short discussion on the selected solution methods.

Chapter 4: Two degree-of-freedom near wall VIV in laminar vortex street regime de-

scribes the process of a model creation and set up used in the numerical simulations

of 2DoF cylinder near a horizontal plane wall at Re = 200.

Chapter 5: Vortex-induced vibrations of two rigid cylinders with uneven diameters

near the horizontal plane wall at low Reynolds number. This chapter contains the pa-

per draft which will be submitted to the Journal of Fluids and Structures. Presented

study investigates the effects of different configurations of rigidly coupled cylinders

with uneven diameters on VIV in the vicinity of a plane wall at Re = 200.

Chapter 6: Two degree-of-freedom near wall VIV in upper transition regime de-

scribes the convergence studies and validation of a numerical model based on URANS

approach to study the VIV at Re = 3.6× 106.

Chapter 7: Conclusionsand recommendations for future work.

1.4 Previous Work

The effect of vortex-induced vibration was known since the ancient times when it was

first observed that wind can excite a taut wire of an Aeolian harp. The work of Henri Bé-

nard and Theodore von Kármán in the beginning of 20th century resulted in a discovery

of the vortex street formation and it’s relation to the periodicity of the cylinder’s wake.

The wake of a cylindrical structure exhibits a large variety of complex phenomena stem-

ming from the diverse instabilities in the transition regions. Flow around cylinders is

well researched area of fluid dynamics and is covered by many comprehensive positions

in the literature such as: Sarpkaya (2010), Sumer and Fredsøe (2006), Zdravkovich

(1997). Extensive review on the flow induced vibrations was given in Blevins (1990)

and Nakamura (2016).

Experimental Studies. The effect of a plane wall on a flow around horizontally placed

cylinders was investigated experimentally by numerous authors. Most existing studies

have focused on the transverse VIV of the cylinder with one degree of freedom due to the

larger amplitude in the transverse direction than that in the streamwise direction. One

of the first published studies were those by Feng (1968) and Anand and Tørum (1985).
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In his work Feng (1968) investigated cylinder’s vibrations in air flow while Anand and

Tørum (1985) focused on the behavior of the cylinder in the water flow. In both cases,

Feng (1968) and Anand and Tørum (1985) demonstrated the vortex shedding frequency

lock-in. Experiments conducted by Bearman and Zdravkovich (1978) investigated the

effect of gap ratio (e/D where e is the gap distance and D is the cylinder diameter)

on the vortex shedding in the Reynolds number regime between Re = 2.5 × 104 and

Re = 4.8 × 104. Their results indicate that for a stationary cylinder vortex shedding

is suppressed if e/D < 0.3 thus vibrations cease at low gap ratios. Tsahalis and Jones

(1981) performed model testing in a wave tank, tracking the response of the center of the

pipe with an optical tracking system. It was observed that the proximity of the boundary

plane reduced the maximum amplitude of vibration and the onset of VIV was shifted to

higher velocities than without the boundary presence. Fredsøe et al. (1987) investigated

the cross-flow vibration of cylinders near a rigid wall. They concluded that for the range

of reduced velocities 3 < Ur < 8 and 0 < e/D < 1 the transverse vibrating frequency

is noticeably larger than the frequency of vortex shedding from a stationary cylinder.

More recently Yang et al. (2009) measured the vortex shedding frequency and mode by

the method of hot film velocimetry and hydrogen bubbles. Researchers investigated the

influence of reduced velocity, mass ratio, gap ratio and stability parameter on the am-

plitude and frequency of the cylinder vibrations. The results from the parametric study

were summarized as follows: with decreasing mass ratio, the width of the lock-in ranges

in terms of Ur and the frequency ratio ( f/fn ) become larger; with increasing gap-to-

diameter ratio (e/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn)

has a slight variation for the case of larger values of e/D. Wang et al. (2013) investigated

flow around a neutrally buoyant cylinder with a mass ratio m∗ = 0.1 and a low damping

ratio ζ = 0.0173. Experiment covered range of Reynolds number 3×104 ≤ Re ≤ 1.3×104

and reduced velocity 1.53 ≤ Ur ≤ 6.6. In contrast to the case of a stationary cylinder

where vortex shedding was suppressed at a gap ratio e/D < 0.3 the elastically mounted

cylinder was found to vibrate even at the smallest gap ratio e/D = 0.05. In the study by

Hsieh et al. (2016), the velocity field was measured using a high-resolution particle im-

age velocimetry (PIV) system. Vibration amplitude and oscillation frequency for different

Ur, mean velocity field, turbulence characteristics, vortex behavior, gap flow velocity, and

normal/shear stresses on the boundary were measured. The particle image velocimetry

was also used by He et al. (2017) to investigate the vibrating cylinder at Re = 1072 and

gap ratio range e/D = (0− 3.0). In both studies, the flow statistics and vortex dynamics

revealed a strong dependence on the gap ratio. When the cylinder approaches the wall

(e/D < 2.0) the wake becomes more asymmetric and a boundary layer separation occur

on the wall downstream of the cylinder. The critical gap ratio was identified to be at
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about e/D = 0.25, below that value the vortex shedding is irregular. For lower gap ratio

is was found that only the upper shear layer can shed vortices.

Numerical Studies. A rapid development of numerical methods and increasing compu-

tational power led to a dynamic growth of the number of published numerical studies.

Following review covers some recent, relevant developments in the field. The near-wall

cylinder in the turbulent regime was subject of numerical investigations by Ong et al.

(2010) at Re = 3.6× 106. The k−ε model was used to study the effects of a gap to diam-

eter ratio, Reynolds number, seabed roughness and boundary layer thickness δ. One of

the findings of this study was that the drag coefficient (CD) increases as e/D increases

for small e/D, reaching a maximum value before decreasing to approach a constant

value. The mean pressure coefficient (Cp) around the cylinder was studied and devel-

opment of an asymmetry for small gap ratio (e/D = 0.1) was reported resulting in net

positive upward lift. The effect disappears for large gap ratios and Cp becomes sym-

metric. Rao et al. (2013) investigated numerically the flow past a stationary cylinder at

different heights above a no-slip plane ranging from very small gap case e/D = 0.005 to

freestream condition. They identified critical Re in each of the simulated cases where

the transition from steady two-dimensional flow to three-dimensional flow occurs. The

behavior of the vortical wake created by a cylinder placed in the boundary layer flow

was studied using URANS approach by Harichandan and Roy (2012). Two dimensional

model was resolved using FVM solver at Re = 100 and Re = 200 respectively. Au-

thors of the study describe the "vortex-wrapping" phenomena as the shear layer from the

top and bottom cylinder surface curl up destabilizing the shear layer on the plane wall

downstream of the cylinder. The vortex shedding frequency for wall proximity flows was

found to be higher than for the unconfined flows. The flow past tandem of cylinders

placed near a plane wall was investigated by Tang et al. (2015). Numerical simulations

using two-dimensional Navier-Stokes equations were solved with a three-step finite ele-

ment method at a low Reynolds number of Re = 200. Various gap ratios (e/D) and pitch

lengths (L/D where L is the distance between the cylinder’s centers) were considered.

The mean drag coefficient of the upstream cylinder was found to be larger than that of

the downstream cylinder for the same combination of e/D and L/D. They noticed that

change in the vortex shedding modes led to a significant increase in the RMS values of

drag and lift coefficients. D’Souza et al. (2016) studied the dynamics of the flow of two

cylinders along a moving plane wall at Re = 200. The interaction with the wall bound-

ary layer was thus removed and the focus of the study was on the influence of the wall

proximity effects and the wake dynamics. The study revealed an early transition from

the reattachment to co-shedding behavior. Specifically at Re = 200 for e/D = 0.5 the
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combined wake interference and wall proximity effects lead to a parallel double-row of

vortices for the tandem cylinders. Turbulent flow dynamics was the main objective of the

study of the flow around one cylinder (Abrahamsen Prsic̆ et al. (2016)) and two cylin-

ders (Li et al. (2018)) in the vicinity of a horizontal plane wall. In both studies, Large

Eddy Simulations (LES) with Smagorinsky subgrid scale model was used to accurately

capture the turbulence effect at Re = 13.100. Abrahamsen Prsic̆ et al. (2016) investi-

gated the effect of the incoming boundary layer profile by comparing the uniform inlet

flow profile with two logarithmic boundary layer profiles δ = 0.48D and δ = 1.6D. The

importance of boundary layer thickness is manifested by decreasing RMS lift coefficient

as the cylinder becomes immersed in the boundary layer. In Li et al. (2018) six sets of

simulations were performed at e/D = 0.1, 0.3 and 0.5 and pitch length L/D = 2 and 5.

The wall proximity demonstrated a decreasing effect on the mean drag coefficient of the

upstream cylinder. The effects of the cylinder pitch length were manifested in the for-

mation of cavity-like flow between the cylinders, with re-circulation zone being the most

pronounced at L/D = 2 and e/D = 0.1. Both studies conclude that 3D LES simulations

with subgrid scale modeling offer clear improvements over the 2D RANS approach, more

accurately capturing details of the turbulent flow and associated forces.

Relatively small number of studies focuses on the freely vibrating cylinder in a proximity

of a horizontal wall. In Tham et al. (2015) a 2-DoF cylinder close to the plane wall was

simulated using Petrov-Galerkin FEM formulation. Gap ratio ranging from 0.5D to 10D

and reduced velocities Ur from 2 to 10 were analyzed at Re = 100. Tham et al. (2015)

explored the origin of the increased streamwise oscillation of a freely vibrating cylin-

der near-wall as compared to the isolated case. For gap ratios lower than e/D = 0.60

additional branch in amplitude response was identified, namely upper branch in addi-

tion to the initial and lower branches. The effect of enhanced streamwise oscillation

was explained based on the phase difference curves revealing positive net power trans-

fer for gap ratios lower than e/D = 0.9. Study of Chung (2016) focused on a 1-DoF

vibrating cylinder with low mass ratio and zero damping. The outcome of the numerical

study at Re = 100 showed that cylinder vibration in the lock-in zone is controlled by

either the Strouhal frequency or the natural frequency of the structure in a fluid. Strong

dependence on the gap ratio and reduced velocity was experienced. The case of an im-

pact with the wall was also investigated and has been proved to cause no change in the

amplitude and frequency of cylinder vibration. A comprehensive study of the vortex-

induced vibrations of a single cylinder freely vibrating in the proximity of the plane wall

was presented in Li et al. (2016). Both 2D and 3D simulations were performed using

a Petrov-Galerkin finite element formulation. Wall proximity effects were studied in the

laminar flow regime at Re = 200 in a series of 2D simulations. Reasons for the enhanced
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streamwise oscillations were explained in detail. The wall proximity effect was revealed

to contribute to the reduction of streamwise vibration frequency by half. Streamwise

frequency lock-in combined with positive net energy transfer was identified as the main

mechanism behind large streamwise oscillation amplitude. The 2D simulations were

supplemented by 3D simulations at Re = 1000 aimed at capturing the three-dimensional

effects and assessing accuracy and validity of the 2D results. Over predictions of force

coefficients in 2D simulations were revealed when the Reynolds number is higher than

Re = 200.

1.5 Summary

The literature review presents the broad overview of the previous and current research

focused on the VIV of elastically mounted cylinders. Large base of experimental and

numerical work exists for the case of the freestream flow. Relatively small number of

published research is focused on the near-wall effect in conjunction with the 2-DoF VIV.

Furthermore, most of the published studies are investigating moderate to high Reynolds

number flows. The validity of 2D simulations for low Reynolds number flows is con-

firmed in the available literature, on the other hand, the applicability of 2D URANS at

very high Reynolds numbers has been explored only to a limited degree. It appears that

further investigating the effects of wall proximity on vortex shedding mechanisms using

numerical simulations at low Reynolds number could offer additional insight beyond the

available literature. In the view of a very limited number of studies in the upper transi-

tion regime additional study focused on very high Reynolds flow provides an opportunity

for gaining better understanding of the VIV physics.
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CHAPTER 2

FLOW AROUND CIRCULAR CYLINDER AND
VORTEX-INDUCED VIBRATION

The present chapter provides a theoretical background of viscous fluid flow around a

circular cylinder and basic concepts of vortex-induced vibration.

2.1 Flow Around Immersed Cylinders

Bodies immersed in a fluid stream are characterized by viscous effects (shear and no-slip)

occurring near the body surface and in the wake. Such flows can be classified as bound-

ary layer flows. Boundary layer growth and flow separation are defined by fluid forces on

a microscopic level (Blevins, 1990). The flow around the circular cylinder disturbed by

its presence can be divided into four regions proposed by Zdravkovich (1997), as shown

in Fig. 2.1:

1. Region of retarded flow. Local time-averaged velocity, u, in this region is smaller

than the freestream velocity U∞.

13
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2. Boundary layer attached to the surface of the cylinder. The thickness of the boundary

layers δ is very small compared with diameter D, therefore high-velocity gradient

normal to the cylinder surface is present and shear stress effects are significant.

3. Two sideways regions where the flow is accelerated (u > U∞) and displaced.

4. Wide downstream region of separated flow: wake, where u < U∞.

2

3

3

4

1

U

Figure 2.1: Regions of disturbed flow around circular cylinder, (Zdravkovich, 1997,
p.4).

Reynolds number governs the ratio of inertial force to the viscous force and is expressed

as:

Re =
UD

ν
(2.1)

where ν is the kinematic viscosity, U is the flow velocity and D is the characteristic

diameter. As the Reynolds number increases from zero the flow characteristics change

considerably. Sumer and Fredsøe (2006) gave a concise summary of the flow regimes of

a circular cylinder in steady current. Their classification is presented in Table 2.1.

2.1.1 Flow Regimes

Flows with a very small Re < 5 are characterized by a lack of separation (creeping
flows). At about 5 < Re < 40 separation occurs in the form of a pair of vortices be-

hind the cylinder. Increasing Re further up leads to the phenomenon of vortex shedding

which first appears at Re = 40. The vortices are shed alternating from each side of

the cylinder with a frequency called vortex-shedding frequency, denoted fst. The vor-

tex street formed behind the body remains laminar in the range 40 < Re < 200 and

shedding can be treated as two-dimensional due to small variation in the spanwise di-

rection (Sumer and Fredsøe, 2006). Three-dimensional effects become significant after

the transition to turbulence occurs in the wake (200 < Re < 300). At Re > 300 the flow

is characterized by the completely turbulent wake and 3D effects become significant in
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this regime. The range between 300 < Re < 3 × 105 is called the subcritical regime.

Boundary layer around the cylinder is laminar in this wide range of Reynolds numbers.

Lower transition regime covers approximately, 3× 105 < Re < 3.5× 105, and separation

occurs in the cylinder boundary layer at one side of the cylinder leading to an asymmet-

ric mean lift. The supercritical regime, 3.5 × 105 < Re < 1.5 × 106, is characterized

by a turbulent boundary layer separation at both sides of the cylinder with transition

point located between the stagnation point and separation point. In the upper transition

regime, 1.5 × 106 < Re < 4 × 106, fully turbulent transition develops at one side of the

cylinder. After exceeding Re > 4.5× 106, the boundary layer around the cylinder is fully

turbulent and such flow regime is called the transcritical regime.

2.2 Turbulence

According to Batchelor (2000) turbulent flow is a pattern of fluid motion characterized

by chaotic changes in pressure and flow velocity. Turbulence has inherent features which

can be listed as follows:

1. Turbulent flows are characteized by random velocity fluctuations with a wide range

of length and time scales.

2. The large-scale eddying motions are strongly influenced by the geometry of the flow.

In other words the boundary conditions govern the transport and mixing within the

flow. The behavior of the small-scale motions can be predicted by a rate at which

they receive the energy from the large scale motions in a cascading way. The smallest

lenght scales are affected by the viscosity of the fluid.

3. Random nature of the fluctuations requires statistical methods to analyze it.

4. Turbulent flows are characterized by a large Reynolds number in the sense that the

inertia forces dominate the viscosity effects in the flow.

5. Turbulent flows are always dissipative. This means that they lose energy and decay.

Ultimately the smallest eddies dissipate into heat through the molecular viscosity.

6. Turbulent flows are characterized by enhanced diffusivity. Turbulent diffusion is

much greater than that of a laminar flow (molecular diffusivity). The highly diffusive

turbulence causes rapid mixing and increased rates of mass, momentum, and heat

transfer.

7. Turbulent flow is highly vortical, meaning that it is rotational and characterized by

high levels of fluctuating vorticity. The vorticity vector is defined as the curl of the
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Table 2.1: Flow regimes around circular cylinder (Sumer and Fredsøe, 2006, p.2).

No separation
Creeping flow
Re < 5

Fixed pair of symmetric vortices
5 < Re < 40

Laminar vortex street
40 < Re < 200

Transition to turbulence in wake
200 < Re < 300

A

A

Wake completely turbulent
A: Laminar boundary layer separation
300 < Re < 3.5× 105

A

B

A: Laminar boundary layer separation
B: Turbulent boundary layer separation
Boundary layer still laminar
3× 105 < Re < 3.5× 105

B

B

B: Turbulent boundary layer separation
Boundary layer partly laminar partly turbulent
3.5× 105 < Re < 1.5× 106

C

C: Boundary layer completely turbulent at one side
1.5× 106 < Re < 4× 106

C

C

C: Boundary layer completely turbulent at both sides
Re > 4× 106

velocity vector:

~ω = ∇× ~U =

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
,

)
(2.2)

Vorticity is a measure of rotational effects, being equal to twice the local angular

velocity of a fluid particle. Flow is irrotational if the vorticity is equal to zero.
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8. Turbulence is inherently three-dimensional. The term two-dimensional turbulence

is only used to describe the simplified case where the flow is restricted to two di-

mensions. Vortex stretching is the phenomenon responsible for the continuous three

dimensional deformation of the primary vortices.

9. Turbulence is a continuum phenomenon and is governed by the equations of fluid

mechanics. Even the smallest turbulent length scales are much larger than the

molecular length.

2.3 Boundary Layer Concept

2.3.1 Laminar Boundary Layer

In the range of applicability of continuum mechanics, the flow of a real fluid has two

distinct characteristics. Namely, the no-slip condition meaning that, at a solid surface,

the velocity of a fluid relative to the surface is zero and the condition of no discontinuity

of velocity (Ward-Smith, 2005). Based on those assumptions it is possible to derive the

velocity profile expression in the region near a solid surface as depicted in Fig. 2.2.

Equations for the laminar boundary layer were derived from Navier-Stokes equations by

u = U∞

u 

y =  δ
u = 0.99U∞

Figure 2.2: Velocity profile in a boundary layer (Schetz and Bowersox, 2011, p.3).

Prandtl (1904) and for a steady, two-dimensional flow they take form (White, 2006):

∂u

∂x
+
∂v

∂y
= 0 (2.3)

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2
(2.4)

where U = u(x,∞) is the freestream velocity, u is the horizontal velocity component

and v is vertical the velocity component. Solution to this system of parabolic partial dif-

ferential equations can be obtained numerically. In case of a laminar flow past a plate,
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analytical solution was found by Blasius (1908) by using a similarity transformation.

Thickness of a boundary layer was customarily taken as the distance from the solid sur-

face at which the velocity reaches the 99% of velocity in the main stream U∞. Blasius

solution can be expressed in terms of the boundary layer thickness (White, 2011):

δ99% ≈
5.0 x√
Rex

(2.5)

where δ is the boundary layer thickness, x is the distance along the plate and Rex =

ρUx/µ is the local Reynolds number. Blasius expression was derived and holds true in

the situation with zero pressure gradient. Occurrence of flow separation and effects of

pressure gradient are discussed in the next section.

2.3.1.1 Separation Point. Adverse pressure gradient effect is the main reason behind

the separation of the flow. The momentum loss near the wall in the boundary layer of

a flow moving against increasing pressure gradient leads to the backflow at the wall.

Bernouilli equation links pressure gradient to the edge velocity U∞(x), so for an increas-

ing pressure the velocity decreases:

u
du

ds
= −1

ρ

dp

ds
(2.6)

If the pressure varies in the direction of a flow it can greatly affect the behavior of

the fluid. In case of a flow over the curved surface with curvature large compared to

the boundary layer thickness the velocity profile forms as shown in Fig. 2.3. Second

Separation point

Increasing pressure, decreasing U∞

Separation 
bubble∂u

∂y =0

U∞ U∞ U∞

U∞

Figure 2.3: Separation of a boundary layer over curved surface (Schetz and Bowersox,
2011, p.24).

derivative of velocity u at the wall can be used to explain the flow separation. From the

momentum equation (Eq. 2.4) at the wall, where u = v = 0, we obtain:

∂τ

∂y

∣∣∣∣
wall

= µ
∂2u

∂y2

∣∣∣∣
wall

= −ρU dU
dx

=
dp

dx
(2.7)
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To ensure smooth transition with the freestream flow the velocity profile must have a

negative curvature. The wall curvature has the sign of the pressure gradient. In case of

an adverse pressure gradient the second derivative of velocity is positive at the wall but

it must be negative at the outer layer (y = δ) to merge with the freestream flow U∞(x).

It is therefore required that point of inflection exists at which the curvature changes

signs from positive to negative. It should be noted that laminar flows separates easily in

adverse gradients whereas turbulent boundary layer is more resistant due to increased

wall friction and heat transfer.

2.3.2 Turbulent Boundary Layer

Situation of a flow over a flat plate with a uniform velocity profile is presented in Figure

2.4. The formation of a boundary layer can be separated into three distinct regions. The

laminar region, the transition region and, the turbulent region. In a close proximity to

the plate surface, the fluid particles are subject to no-slip condition and their velocity

becomes zero resulting in the formation of a viscous sublayer. This results in the shear

stress development in the thin fluid layer close to a plate. After some distance the flow

becomes unstable and eddies are formed. This region is called a transition region. It

should be noted that transition process is unsteady and is difficult to predict, even with

modern CFD codes (Çengel and Cimbala, 2010, p. 558). Further downstream the plate,

a turbulent boundary layer is formed. The viscous sublayer is characterized by very high

Figure 2.4: Formation of the laminar and turbulent boundary layer (Çengel and Cim-
bala, 2010, p.558).

turbulent energy production rate. It is estimated that in this region more than 30% of the

total production and dissipation takes place (Cebeci and Cousteix, 2009). The turbulent

boundary layer can be treated as a composite layer which is composed of an inner and

outer region (Fig. 2.4). The inner layer is about the laminar boundary layer thickness

and is further divided into a linear sublayer, buffer layer and, log-law region. The outer

layer is about 85% of the total boundary layer thickness (Cebeci and Cousteix, 2009).
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2.3.3 Plus Units

Plus units are non-dimensional variables used in turbulent boundary layer analysis. They

are defined as:

y+ =
uτr

ν
, U+ =

U

uτ
, Reτ =

uτH

ν
(2.8)

where y+ is the non-dimensional distance from the wall, U+ is the non-dimensional

velocity and Reτ is the Reynolds number based on shear velocity uτ =
√
τw/ρ, τw is the

shear stress at the wall and H is the radius of the control volume.

2.3.4 Law-of-the-wall

The velocity profile of a fully turbulent boundary layer can be non-dimensionalized using

the derived plus units. The curve shape in the inner layer close to the wall is common

for all Reynolds numbers. This relation was first observed and described by von Kármán

in 1930. Figure 2.5 shows the plot of the velocity distribution in the inner layer. This

universal curve is referred to as the law-of-the-wall. The equations relating the velocity

to the nondimensional distance from the wall can be derived for the linear sublayer and

for the outer layer. Close to the wall the velocity varies linearly with the nondimensional

wall distance:

U+ = y+ (2.9)

Further away from the wall at a distance where the kinematic viscosity is negligible the

velocity can be approximated by:

U+ =
1

κ
ln(y+) + C+ (2.10)

where κ is the von Kármán constant, usually equal to 0.41, C+ is an integration con-

stant, commonly taken as 5.1. Assuming the linear variation of τw with increasing y, the

velocity distribution in the inner layer is a function of the wall shear stress τw, kinematic

viscosity ν and the distance from the wall y. The approximate range of the viscous sub-

layer is in the range of 0 < y+ < 5. The log-law region is defined at 30 < y+ where Eq.

2.9 is a good approximation of the velocity profile. A buffer region exists in the range

of 5 < y+ < 30 where neither Eq. 2.10 nor Eq. 2.9 applies. This region is of particular

importance in CFD simulations of turbulent flows using the wall function approach.
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Figure 2.5: The inner layer of a turbulent boundary layer.

2.4 Vortex Shedding

Vortex shedding is a result of the basic instability which exists between the two free

shear layers released from the separation points at each side of the cylinder into the

downstream flow from the separation points. These free shear layers roll-up and feed

vorticity and circulation into large discrete vortices which form alternately on opposite

sides of the cylinder.

2.4.1 Mechanism of Vortex Shedding

Phenomenon of vortex-shedding is common for all flow regimes for Re > 40. Due

to the reasons explained in the previous section the boundary layer over the cylinder

surface will separate and shear layers will be formed. The separated boundary layer is

characterized by high vorticity which is then subject of the shear layer roll up into the

vortex with an identical sign. Vortices rotating in opposite direction are thus formed at

both sides of the cylinder. These vortices are very sensitive to the disturbances in the flow

and in consequence one of the formed vortices will become dominating and will draw

the opposite vortex across the wake (Sumer and Fredsøe, 2006). The opposite sign of the

vorticity carried by the drawn vortex leads to cut off of the dominating vortex from the

boundary layer and formation of the free vortex. After the vortex is shed, it is convected

downstream in the wake. The drawn vortex will now become dominant and will draw

newly formed vortex on the opposite side. The whole cycle repeats on the opposite side

of the cylinder. This leads to the cyclic shedding of the vortices behind the cylinder.



22 FLOW AROUND CIRCULAR CYLINDER AND VORTEX-INDUCED VIBRATION

A

B

C A

B

I) II)

Figure 2.6: Vortex shedding mechanism (Sumer and Fredsøe, 2006, p.8).

2.4.2 Vortex Shedding Patterns

The vortex shedding can be characterized by the pattern in which the vortices are formed.

A thorough review of the shedding patterns and proposed classification was given in

Williamson and Roshko (1988), Williamson and Govardhan (2004), Jauvtis and Williamson

(2004) and Morse and Williamson (2009). The symbols, patterns and corresponding ex-

amples of vorticity contours were given in Table 2.2. Short classification of the modes

based on the text by Williamson and Govardhan (2004) can be summarized as follows:

2S mode is characterized by the alternate shedding of one vortex from each side of

the cylinder.

2P mode is distinguished by pairs of vortices of the same vorticity sign thus two

vortices are shed from each side during one cycle.

P + S mode is formed by a pattern wherein each cycle a vortex pair and a single

vortex are formed.

2Po mode is similar to 2P mode, but a secondary vortex in each pair is significantly

smaller than the primary vortex.

2P + 2S mode is comprised of two vortex pairs, formed alternatively like in 2P mode

but additional vortex appears in between.

2T mode can be recognized by a characteristic triplet of vortices formed in each half

cycle. In each triplet, two vortices have the same sign and one vortex of opposite

sign is formed.

2C mode is similar to 2T mode but a doublet of vortices is formed instead of a triplet.

Both vortices have the same sign and full cycle comprises formation of four vortices,

two on each side of the cylinder.
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Table 2.2: Vortex shedding patterns (Williamson and Govardhan, 2004).

2S
SS

2P
P

P

P+S
P

S

2Po
P

P

2P+2S

P

S
P

S

2T
T

T

2C
C

C

2.5 Hydrodynamic Forces

2.5.1 Forces on a Cylinder in Steady Current

Following discussion is based on Sumer and Fredsøe (2006). The total force acting on

the surface of the cylinder in steady flow can be divided into two components, namely

the pressure component and the viscous component. The forces acting in two directions:

in-line (IL) and cross-flow (CF) can be found by integrating the orthogonal components

of pressure and viscous forces along the cylinder surface. The total force acting in the IL

direction is the mean drag FD and is a sum of mean form drag Fp (due to the pressure)

and mean friction drag Ff (due to the viscous forces). Force acting in the CF direction -

mean lift force FL - is defined in a similar way. In the case of a cylinder in the free stream

flow, the FL will be equal zero due to the symmetry of the flow, however, for Re > 40

the vortex shedding phenomenon occurs and instantaneous CF force on the cylinder will

be non-zero.
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Change of the pressure distribution over the cylinder surface during a shedding cycle

was shown in Fig. 2.7. It is evident that due to the periodic change of the pressure

distribution the force components will also exhibit the periodic variation. Due to vortex

U

F

F

F

F

Figure 2.7: Development of pressure distribution and force during vortex shedding
cycle (Sumer and Fredsøe, 2006, p.38).

shedding the velocity of the flow around the cylinder will change periodically at the

top and bottom surface. When a vortex is shed at the lower edge of the cylinder the

upward lift is developed. The velocity will be higher on the lower edge and the pressure

at the bottom will then be larger than at the top according to Bernoulli’s equation. This

induces the force which will be directed upwards. After the other vortex is developed

at the opposite side, the situation is inverse and result is a force directed downwards.

Each complete vortex shedding cycle comprises the effects of a complementary pair of

vortices. Cylinder with low structural damping properties will be thus forced to vibrate

in the CF and to a lesser extent in the IL directions.

2.5.2 Drag and Lift Coefficients

The dimensionless drag coefficient (CD) for a smooth cylinder is a function of Re and is

expressed as:

CD =
FD

1
2ρU

2A
(2.11)

The lift coefficient is defined as:

CL =
FL

1
2ρU

2A
(2.12)
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where: FL is the mean lift force, FD is the mean drag force, ρ is the density of a fluid, U

is the flow velocity and A is the projected area perpendicular to the incoming flow. The

denominator in both expressions is the product of the dynamic pressure of the undis-

turbed flow and the specified projected area. Therefore as a ratio of two forces the drag

and lift coefficients are the same for two dynamically similar flows.

2.5.3 Pressure Coefficient and Skin-friction Coefficient

The pressure coefficient gives the ratio of static pressure to dynamic pressure and is

expressed as:

Cp =
p− p∞
1
2ρU

2
∞

(2.13)

where p is the static pressure at the evaluated point, p∞ is the static pressure in the

freestream, ρ is the density of a fluid and U∞ is the freestream flow velocity. Cp equal one

indicates stagnation point as it corresponds to stagnation pressure. The dimensionless

number that relates the wall shear stress to dynamic pressure is skin-friction coefficient,

defined as:

Cf =
τw

1
2ρU

2
∞

(2.14)

where τw = µ∂u∂y is the local wall shear stress. An approximate point of separation can

be found at the location where Cf = 0 indicating that τw changes sign from positive to

negative.

2.6 Dynamic Equations of Motion

2.6.1 Solutions of a Viscous Damped Vibration Equation

In case of a single DoF freely oscillating system the equation of motion in the form

(Inman, 2013):

mẍ(t) + cẋ(t) + kx(t) = 0 (2.15)

where m is the mass of the system, c is the damping coefficient, k is the spring stiffness,

x(t) is the displacement, ẋ(t) denotes the velocity and ẍ(t) is the acceleration. To find

the solution to Eq. (2.15) one can write the equation in the form:

(mλ2 + cλ+ k)aeλt = 0 (2.16)
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The term aeλt 6= 0 so that this reduces Eq. (2.16) to a characteristic equation which is

quadratic equation of λ variable:

mλ2 + cλ+ k = 0 (2.17)

Solving quadratic formula yields two solutions:

λ1,2 = − c

2m
± 1

2m

√
c2 − 4km (2.18)

It can be shown that depending on the value of the discriminant, c2 − 4km, the roots of

Eq. (2.18) will be real or complex. As long as m, c, and k are positive real numbers,

λ1 and λ2 will be distinct negative real numbers if c2 − 4km > 0. If the discriminant

is negative, the roots will be a complex conjugate pair with a negative real part. If the

discriminant is zero, the two roots λ1 and λ2 are equal negative real numbers. It is useful

to define the critical damping coefficient ccr by:

ccr = 2mωn = 2
√
km (2.19)

where: ωn is the undamped natural frequency. The nondimensional number ζ called

damping ratio can be defined as:

ζ =
c

ccr
=

c

2
√
km

(2.20)

It can be shown that the nature of the roots and and hence the behavior of the solution,

Eq. (2.15), depends upon the magnitude of damping. Underdamped motion occurs

when 0 < ζ < 1 and discriminant in Eq. (2.18) is negative. Overdamped motion requires

that ζ > 1, and critically damped motions, as follows from Eq. (2.20), when ζ = 1.

2.6.2 Dynamics of 2-Dof Systems in Fluid Flow

The equations of motion of the two-degree-of-freedom dynamic system can be given in

a following form:

mẍ(t) + cẋ(t) + kx(t) = Fx(t) (2.21)

mÿ(t) + cẏ(t) + ky(t) = Fy(t) (2.22)

where m is the total mass of the system including hydrodynamic added mass, cx, cy are

damping coefficients in x direction and y direction respectively, kx, ky denote the spring

stiffness in x direction and y direction respectively, x,ẋ,ẍ is the displacement, velocity

and acceleration in x direction, y,ẏ,ÿ is the displacement, velocity and acceleration in y
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direction, Fx is the force induced by vortex shedding acting in x direction and Fy denotes

the force induced by vortex shedding acting in y direction.

For a vibrating system, a feed-back between the motion of the structure, and the hy-

drodynamic forces exists. According to Sumer and Fredsøe (2006) the major problem

encountered in the mathematical and numerical treatment of vibrations is the correct

representation of the exciting force F (t). The solution can be obtained by using a sim-

plified harmonic models like van der Pol’s wake-oscilator model or semi empirical fre-

quency domain methods. Second approach which is employed in this study is based on

obtaining the F (t) directly from the solution of Navier-Stokes equations. The equations

of motion Eq. (2.21) are then coupled with the flow equations and the whole system is

solved numerically. Navier-Stokes equations and more detailed discussion of the solution

procedure are given in Chapter 3.

2.7 Vortex-Induced Vibrations

Elastically mounted cylinder placed in a flow characterized by a Reynolds number higher

than Re > 40 will be subject to vortex shedding. The oscillating hydrodynamic forces

may then induce the vibrations of the cylinder, called the vortex-induced vibrations. In

the most synthetic form, the VIV phenomenon can be regarded as a feedback between

the body motion and vortex motion with many parameters influencing this interaction.

It is useful to define properly different frequencies used in the description of the vortex-

induced-vibrations. We can list them as follows:

fvac = 1
2π

√
k
m - natural frequency of a structure measured in vacuum;

fn = 1
2π

√
k

m+ma
- natural frequency of a system (e.g. cylinder in air, in still water, in

steady current in water);

fst - vortex shedding frequency (called also Strouhal frequency) of a body at rest;

fvs - vortex shedding frequency of a body in motion;

fosc - oscillation frequency.

2.7.1 Influencing Parameters

The vortex-induced vibrations are governed by several influencing parameters which

can be divided into three main groups: flow parameters, structural parameters and,



28 FLOW AROUND CIRCULAR CYLINDER AND VORTEX-INDUCED VIBRATION

interaction parameters. A full overview of the influencing parameters and their effect

on the VIV will be given in subsequent paragraphs. According to Sarpkaya (2004) the

nondimensional Strouhal number emerges as the most robust one.

2.7.2 Strouhal Number

Strouhal number is the dimensionless proportionality constant given as the ratio between

the predominant frequency of vortex shedding and the diameter of cylinder:

St =
fstD

U
(2.23)

where fst is the frequency of vortex shedding, D is the diameter of the cylinder and

U is the flow velocity. The Strouhal number is a function of Reynolds number. Figure

2.8 presents St change in relation to Re. From Figure 2.8 it can be seen that at Re =

40 the Strouhal number is approximately equal to 0.1 and increases gradually to 0.2 at

Re = 300. It remains approximately constant in the subcritical range and experiences

a sudden increase in the critical range (Re = 3 − 3.5 × 105). The reason behind the

jump in St value is the transition to fully turbulent boundary layer and relocation of the

separation points further downstream. The consequence of this is a higher frequency of

vortex shedding as the vortices formed in the cylinder’s shear layers can interact with

each other at a faster rate.
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Figure 2.8: Strouhal - Reynolds number relationship for circular cylinders by Lienhard
(1966), figure reproduced from (Sarpkaya, 2010, p. 53).
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2.7.3 Mass Ratio

The ratio of the cylinder mass per unit length to the mass of a fluid it displaces is called

the mass ratio:

m∗ =
m

ρπD
2

4 L
(2.24)

The mass ratio expresses the relative importance of the buoyancy and added mass ef-

fects on the body and can be regarded as a measure of the susceptibility of a structure

to flow-induced vibrations. Low mass ratio structures demonstrate a wider range of

synchronization in terms of reduced velocity at which the resonance occurs.

2.7.4 Reduced Velocity

The length of the path of a body vibrating in the fluid can be expressed as a ratio of

flow velocity to the vibration frequency U/fn. When normalized by the characteristic

dimension of the structure (D in case of a cylinder) the dimensionless reduced velocity

is given:

Ur =
U

fnD
(2.25)

2.7.5 Added Mass

Unsteady flow around the submerged body (due to fluid acceleration or body accelera-

tion) will result in the additional force exerted on the body which can be attributed to

the disturbance of the surrounding fluid. Therefore, in the case of a structure vibrating in

fluid, the equation of motion Eq. (2.21) has to be modified to account for this additional

force. This force is proportional to the relative acceleration between the body and the

fluid. The added mass force opposes the motion of the body, thus modified equation of

motion can be then expressed as:

mẍ+ cẋ+ kx = Fx −maẍ (2.26)

where ma is the hydrodynamic added mass. Rearranging the terms the equation of

motion becomes:

(m+ma)ẍ+ cẋ+ kx = Fx (2.27)
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It is evident that the added mass will affect the natural frequency of the system, thus the

new natural frequency can be found as:

ωn =

√
k

m
=

√
k

m+ma
(2.28)

The added mass is strongly dependent on the non-dimensional oscillation frequency,

f̂ = foscD
U and the amplitude ratio, A

D . This causes the natural frequency to change,

which means it is possible to have a resonance over a range of excitation frequencies, or

flow velocities.

2.7.6 Frequency Lock-in

Numerous experiments have shown that a cylinder with low material damping ζ and

proper reduced mass m∗ can be excited by the vortices it sheds if it is elastically mounted

and exposed to a steady uniform flow (Sarpkaya, 2004). When the vortex shedding fre-

quency fvs and natural frequency of the system fn approach common frequency the

cylinder will start to experience vortex-induced vibrations at oscillation frequency fosc.

Following that the fvs locks onto the fosc for a certain range of reduced velocity. Within

the lock-in range, the structure experiences large amplitude oscillations as shown in Fig.

2.10. Figure 2.9 presents the results of an experiment by Anand and Tørum (1985) with

flexibly mounted cylinder in steady current. The lock-in phenomenon can be observed,
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Figure 2.9: Experimental vortex shedding frequencies and oscillation frequencies of
submerged cylinder by Anand and Tørum (1985), figure reproduced from (Sumer and
Fredsøe, 2006, p. 359).

starting approximately at Ur = 4. Increasing reduced velocity further it can be noted that

fosc departs from following the Strouhal relation. Due to the motion of the cylinder, the

vortices are forced to interact at a frequency close to the oscillation frequency rather than
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the Strouhal frequency. Furthermore, the added mass is frequency dependent and thus

the natural frequency of the oscillating system will deviate from the natural frequency

in still water. The oscillation frequency increases monotonously with Ur. For a cylinder

vibrating in steady current fosc becomes a compromise between fn and fvs. The VIV

phenomenon is self-limiting in nature. The reason for this behavior lies in the energy

balance between the hydrodynamic forcing and fluid damping. The response amplitude

and flow velocity govern this process. When the A/D is small the vortex shedding pro-

vides positive net energy transfer from the fluid to the structure, which in turn, lead to

the increase of the oscillation amplitude. At a certain point, the equilibrium is reached

and the structure is in the lock-in region. When the reduced velocity exceeds certain

limit either due to the increased flow velocity or due to the increase of the amplitude of

oscillation the vortices are shed before the cylinder reaches Amax/D. The vortex shed-

ding fvs falls out of synchronization with the oscillation frequency fosc, as an outcome

the lift force opposing the transverse motion of the cylinder is developed. The net energy

balance is then negative and lock-in is terminated.
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Figure 2.10: Cross-flow response of a flexibly-mounted circular cylinder subject to
steady current, in water by Anand and Tørum (1985), figure reproduced from (Sumer
and Fredsøe, 2006, p. 359).

2.7.7 Response Amplitude

The amplitudes of vibration in the lock-in region are not the same for each velocity.

The amplitude curve splits into three distinct branches for low mass damping systems.

Figure 2.11 shows how the amplitudes vary over a range of reduced velocities. The

switch between initial and upper branch is hysteretic, while the switch between upper

and lower branch is intermittent. These switches are attributed to a change in phase
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Ur regime determined by m*

A
-
m

a
x

 
d

e
t
e

r
m

i
n

e
d

 
b

y
 
m

*
ζ

Upper branch

Lower branch

Initial

branch

Figure 2.11: Overview diagram of a low mass-damping type response (Williamson and
Govardhan, 2004, p. 426).

between the exciting force and the motion of the cylinder. This phase difference also

influences how cross-flow and in-line vibrations interact.

2.7.8 Effect of Wall Proximity

The proximity of a boundary affects the flow around the cylinder in multiple ways, alter-

ing the magnitude of hydrodynamic forces. The dependency on additional influencing

parameters beyond Reynolds number is manifested. Gap to diameter ratio e/D and rel-

ative boundary layer thickness δ/D play an important role. According to Sumer and

Fredsøe (2006), when a cylinder is placed near a plane wall, a number of changes occur

in the flow around the cylinder. These changes are summarized as follows:

When the gap-ratio (e/D) is smaller than 0.3, the vortex shedding will be sup-

pressed. In the contact regime e/D = 0 periodic shedding is not found resulting

in a completely random wake.

The stagnation point will move to a lower angular position as seen in Fig. 2.13,

which is caused by the asymmetry of the pressure distribution.

The angular position of the separation point (denoted as S in Fig. 2.13) will change.

The separation point at the free-stream side of the cylinder will move upstream and

that at the wall side moves downstream.

The suction is larger on the free-stream side of the cylinder than on the wall-side of

the cylinder as seen in Fig. 2.12. This results in non zero mean lift force.
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Stagnation
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a) b) c)

Figure 2.12: Changes in pressure distribution and stagnation point - cylinder placed in
a proximity of a wall (Sumer and Fredsøe, 2006, p. 58).

According to Sumer and Fredsøe (2006), the drag coefficient decreases with decreasing

gap ratio near wall. This remark is consistent with the pressure distribution that we see

in Fig. 2.12 where the pressure in horizontal direction is getting smaller as the gap ratio

decreases. The mean flow around the near-wall cylinder is not symmetric, therefore a

S
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S
Stagnation

Stagnation
a) b)

Figure 2.13: Streamlines and stagnation point around the cylinder in freestream and
near-wall configuration (Sumer and Fredsøe, 2006, p. 21).

non-zero mean lift must exist. This is a major difference when compared to the case of a

free cylinder where the mean lift coefficient is always zero. Sumer and Fredsøe (2006)

explained that while the lift is fairly small for moderately small gap ratios (e/D = 0.2 -

0.3), it increases as the gap ratio is decreased.

2.8 Summary

A brief theory review of hydrodynamics and vibration of circular cylinders is outlined

in the present chapter. From the discussion follows that the vortex-induced vibrations

are governed by a number of parameters. One of the most important parameter is the

Reynolds number which greatly affects the boundary layer and vortex shedding physics.

The Strouhal-Reynolds relationship relates the nondimensional shedding frequency with

the flow parameters. Nevertheless additional factors like a surface roughness can have

large effect on the Strouhal number, in particular at very high Reynolds numbers. The
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structural dynamics plays equally important role. As pointed out by Williamson and

Govardhan (2004) the mass-damping parameter is the key parameter influencing the

response of a structure. Characteristic response branches can be associated with the

value of mass-damping. The width of the synchronization range increases with decreas-

ing mass ratio. This relation is important for marine structures due to the high density

of the fluid. The disturbance of the flow field can have a significant influence on the

hydrodynamic forces acting on the cylinder as demonstrated by the proximity of the wall

effects.
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CHAPTER 3

COMPUTATIONAL FLUID DYNAMICS

General concepts of Computational Fluid Dynamics and Finite Volume Method are pre-

sented in the present chapter. A brief description of the OPENFOAM code used for the

simulations is given. Theory of the Finite Volume discretization outlined in this chapter

is based on the texts of Cebeci et al. (2009), Ferziger and Perić (2012) and Versteeg and

Malalasekera (2007).

3.1 Introduction

Decreasing cost of computing power is the main driver of the rapid development of nu-

merical methods in fluid dynamics. Due to the complexity of the fluid motion and high

computational cost, use of CFD was originally limited to research applications and ma-

jor projects in the aerospace industry. Increase in affordability enabled employment of

CFD as a design tool in many engineering applications. Presently the computer simula-

tions are regarded as a third main scientific method, next to experimental development

and mathematical theory, effectively bridging the gap between them. Types of simulated

flows vary greatly in terms of complexity, size of the problem, level of required accu-

racy and physical properties of interest (e.g. compressibility or heat transfer). Direct

37
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solution (DNS - Direct Numerical Simulation) of Navier-Stokes equations, which govern

the motion of a Newtonian viscous fluid is in most cases prohibitively expensive, there-

fore numerous approximate methods were developed in the field of CFD. The choice of

the appropriate method is crucial for maintaining the balance between computational

efficiency and accuracy.

3.2 OpenFOAM

OPENFOAM is an object-oriented C++ framework that can be used to build numerical

solvers for problems in continuum mechanics using a finite volume approach (Moukalled

et al., 2015). The software is organized as a set of applications and libraries without

proprietary graphical user interface (GUI). Setting up and running simulation tasks is

carried out using the appropriate text files and terminal commands. The OPENFOAM

simulation case is a file directory containing configuration files, mesh information and

file subdirectories used to store the simulation data.

Figure 3.1: Simulation case directory structure.

3.2.1 Case Directory Structure

The case structure in present work is shown in Fig. 3.1. Directory 0 contains initial and

boundary conditions for the resolved scalar and vector fields, namely pressure field p,
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velocity field U and the mesh morphing pointDisplacement. Directory constant stores

the mesh data in the polyMesh folder, where the settings of the boundary conditions are

specified, dynamicMeshDict is a control file for mesh motion solver used to morph the

mesh around the moving body (cylinder). turbulenceProperties define the turbulence

model settings if turbulence modeling is used. In the system directory numerical solvers

(fvSolution) and discretization schemes (fvSchemes) are defined. Time step and run-

time variables are defined in the controlDict, database controls I/O are also specified

in this file.

3.3 Governing Equations

Navier-Stokes equations for an incompressible, viscous, three-dimensional flow form the

governing equations of considered flow problem and are given in differential form as:

Continuity equation
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.1)

x-component of the momentum equation

Du

Dt
= −1

ρ

∂p

∂x
+ ν∇2u+ fx (3.2)

y-component of the momentum equation

Dv

Dt
= −1

ρ

∂p

∂y
+ ν∇2v + fy (3.3)

z-component of the momentum equation

Dw

Dt
= −1

ρ

∂p

∂z
+ ν∇2w + fz (3.4)

where total derivative is given as:

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
=

∂

∂t
+ u · ∇ (3.5)

Finite volume method is based on a discretization of the integral forms of the conserva-

tion equations. The generic form of the conservation integral equation is given in the
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form:
∂

∂t

∫∫∫

V

φ dV +

∫∫

A

~F · d ~A =

∫∫∫

V

VV dV +

∫∫

A

VA dA (3.6)

where A is the control surface, V is the control volume, φ is the general unknown vari-

able, VA is the possible sources of φ on the control surface, VV is the possible sources of

φ inside control volume and ~F is the flux associated with φ. When applied to physical

space divided into a discrete network of cells integral formulation provides mass and

momentum conservation at the discrete level.

3.4 The Finite Volume Method

The following section presents the principles of the Finite Volume Method. At the core of

the method lies discretization. Term discretization is used to describe a process of trans-

forming one or more partial differential equations into a system of algebraic equations.

When dealing with an unsteady flow problem, three distinct steps can be identified:

Spatial discretization based on splitting the space domain into a set of control vol-

umes (CV’s) thus forming a computational mesh.

Temporal discretization required in transient problems. The time domain is divided

into a finite number of time steps.

Equation discretization applied to the governing equations of the problem. It allows

obtaining a system of algebraic equations in terms of discrete quantities defined at

specific locations in the computational mesh which can be solved iteratively.

3.4.1 Spatial Discretisation

The most fundamental element of the spatial discretization is a finite control volume.

Figure 3.2 shows an example of a control volume. In most generalized form the idea of

discretization can be expressed by the equation:
∫

VP

(x− xP )dV = 0 (3.7)

where P is the centroid of the CV, VP is the volume of the CV, N is the centroid of a

neighboring CV, f is the center of the face. Point P is named a computational node

and is the locus at which the variables values are calculated. Arrangement in which the
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Figure 3.2: Control Volume example (Jasak, 1996).

control volume centroid is used to store the calculated values of all variables is called

collocated grid. This solution was implemented in OPENFOAM. Each of the faces of

the CV is flat and is shared, at most, with only one neighboring CV. Faces which do not

have neighbors are boundary faces. Two main classes of computational meshes (grids),

showed in Fig. 3.3, can be defined (Versteeg and Malalasekera, 2007):

Structured meshes. In this type of mesh grid points are located at the intersection of

coordinate lines. Interior grid points have a fixed number of neighboring grid points.

Unstructured meshes are characterized by control volumes of any shape and no im-

plicit structure of coordinate lines required.

OPENFOAM is capable of handling both structured and unstructured grids. While struc-

tured mesh cells can be represented by a set of integers such as i, j specifying the loca-

tion of vertices of a cell, the unstructured mesh cells must be numbered individually in

a certain order. The consequence is higher memory requirement and more computation

time required. A major benefit of the unstructured grids stems from their suitability for

complex geometries and relative ease of local mesh refinement. Interpolation is used to

express values of the variables at the CV surface calculated from the stored in collocated

arrangement nodal values. OPENFOAM offers flexibility to choose different interpola-

tion schemes for field values. Most commonly used interpolation scheme which was also

used in present study is linear interpolation. For a scalar variable φ which can represent

pressure or velocity component the expression for interpolation can be written:

φf = fxφP + (1− fx)φN (3.8)
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Figure 3.3: Structured (left) and unstructured (right) mesh examples (Ferziger and
Perić, 2012).

where fx is a linear interpolation factor defined as:

fx =
|xf − xN |

|xf − xN |+ |xf − xP |
(3.9)

This method is second order accurate.

3.4.2 Temporal Discretisation

Unsteady flows are parabolic in time thus time-stepping methods can be used to advance

transient solution step-by-step. Similar to the interpolation schemes, OPENFOAM offers

several time discretisation schemes. Euler implicit method is selected in the present

work. This scheme expresses the face-values in terms of the new time-level cell values,

and can be written in the form:

φf = fxφ
n
P + (1− fx)φnN (3.10)

where fx is the linear interpolation factor, ratio of the distance from centroids to the face

center.

S · (∇φ)f = |∆|φ
n
N − φnP
|x| + k · (∇φ)f (3.11)

where S is the surface normal vector and k is the orthogonal to the normal surface

vector S. This method is first order accurate but unlike Euler explicit scheme allows for

higher Courant number to satisfy stability of the solution. Courant number represents

the portion of a cell that the flow will transverse due to advection effect in one time step

and can be defined as:

Co =
∆t|U |

∆x
(3.12)

where ∆t is the maximum time step, ∆x is the cell size in the direction of the velocity

and U is the magnitude of the velocity at considered location.
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3.4.3 Equation Discretisation

The integral form of the conservation equation shown in Eq. (3.6) is a starting point of

the FVM discretisation of continuity and momentum equations. The continuity equation

in incompressible form can be thus discretised as follows:
∫

VP

∇ · (u)dV = 0 (3.13)

Which after apllying Green’s theorem becomes:
∫

AP

u · n dA = 0 (3.14)

where AP is the surface of the control volume VP , n is the vector normal to the surface

AP and u is the velocity vector. Since the finite volume VP has N discrete faces, each

with area An, the equation can be written in the flowing form:

N∑

n=1

∫

An

U · n dA =
N∑

n=1

ŨnAn = 0 (3.15)

where U = u·n is the velocity component normal to faceN , Ũ is the face averaged value

of U , N is the number of discrete faces of CV. This expression gives the finite-volume

discretized continuity equation. The momentum equation consisting temporal term ∂u
∂t ,

convection term ∇ · (uu) and diffusion term ∇ · (ν∇u). Applying integral Eq. (3.6) the

momentum equation becomes:
∫

VP

∂u

∂t
dV +

∫

VP

∇ · (uu)dV −
∫

VP

∇ · (ν∇u)dV =

∫

VP

∇p
ρ
dV (3.16)

Convection and diffusion terms can be then discretised using Gauss theorem, similarly

to previously presented continuity equation discretisation. Additional details on the dis-

ceretisation procedure and correction schemes can be found in Versteeg and Malalasek-

era (2007), Ferziger and Perić (2012) and OpenFOAM-UserGuide (2017).

3.4.4 Pressure - Velocity Coupling

Solver used in all present simulations is a PimpleDyMFoam solver implemented in OPEN-

FOAM. It is an unsteady solver for incompressible Navier-Stokes equations, using a PIM-

PLE algorithm for pressure coupling solution. The PIMPLE algorithm is a combination

of a SIMPLE (semi-implicit method for pressure-linked equations) and a PISO (pressure-

implicit split-operator) algorithms. The governing equations are solved in this method

using standard pressure-velocity coupling composed of momentum predictor, pressure
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solver, and momentum corrector. Flowchart of the PIMPLE solution procedure was

shown in Fig. 3.4. The solution of the PISO algorithm can be summarized in three

main steps:

1. Momentum predictor is used to solve the momentum equation based on the pressure

field from the previous time-step.

2. Approximated solution of the pressure field is obtained.

3. Velocity is corrected explicitly based on the estimation of the pressure field from step

2.

Initializing Fields

Temporal loop
PIMPLE loop

Velocity equation

Total energy
equation

PISO loop

Pressure 
equation

Flux correction

Velocity 
correction

Total energy
equation

End PISO

End PIMPLE

Last time
step

END

Figure 3.4: Flowchart of PIMPLE algorithm.

In the pimpleDyMFoam algorithm, PISO can be repeated for multiple iterations at each

time step. This process is referred to as the PIMPLE loop. By using under-relaxation

technique the PIMPLE loop allows to use higher Courant number, thus larger timesteps

as compared to pure PISO algorithm which is strictly limited to Co < 1 criterion for

stability.
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3.5 Turbulence Modeling

The Navier-Stokes equations account for all length and time scales of the motions of

the fluid. Turbulent flows consists of continuous spectrum of scales ranging from largest

to smallest. The largest scales are governed by the geometry of the flow domain. The

smallest scales were first described by Kolmogorov who defined them as:

η =

(
ν3

ε

)1/4

(3.17)

τ =
(ν
ε

)1/2
(3.18)

These two scales depend on the molecular properties of the fluid: the viscosity ν and the

dissipation rate ε. The Kolmogorov scales become smaller with an increasing Reynolds

number, therefore increasing the range of scales in the fluid motion. It can be shown

that the cost of solving the full Navier-Stokes equations numerically grows proportion-

ally to Re3 (Wilcox, 2004). Therefore, even for a relatively low Reynolds number flows

the capacity of modern computers can be exceeded easily. The result was development

of different approaches to resolve turbulence numerically. Direct Numerical Simulation

resolves all the length scales that are present in the turbulent flow. In the Large Eddy

Simulation concept the smallest eddies are not resolved. This method originally pro-

posed by Smagorinsky assumes spatial filtering of the turbulent length scales using a

low-pass filter. Different approach was proposed by Reynolds who is the aouthor of the

Reynolds decomposition. The main idea behind Reynolds decomposition is to separate

the mean and fluctuating components of the velocity and pressure:

Ũi = Ui + u′i (3.19)

p̃ = P + p′ (3.20)

where Ũi is the instantaneous velocity, Ui is the mean part of Ũi and u′i is the fluctuating

part of Ũi; p̃ is the instantaneous pressure, P and p′ are the mean and the fluctuating part

of p̃ respectively. Substitution of the separated mean and fluctuating parts into Navier-

Stokes equations Eq. (3.1-3.3) results in the Reynolds-averaged equations of continuity

and momentum conservation, given by (Wilcox, 2004):

∂Ui
∂xi

= 0, (3.21)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

(
∂P

∂xi

)
+ ν

∂2Ui
∂x2

j

−
∂u′iu

′
j

∂xj
, (3.22)
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where i, j = 1, 2; x1, x2 are streamwise and wall-normal directions accordingly; U1, U2

are the mean flow velocity components corresponding to directions x1 and x2; u′iu
′
j de-

notes Reynolds stress tensor; ρ is the density of the fluid; P is the dynamic pressure. The

specific Reynolds stress tensor is expressed as:

u′iu
′
j = τij = νt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
kδij , (3.23)

where νt is the turbulent viscosity; k is the turbulent kinetic energy and δij is the Kro-

necker’s delta. To solve the resulting system of equations additional assumptions have

to be made concerning the uknown quantities (turbulence closure problem). Numerous

RANS turbulence models exist ranging from the simplest zero equation algebraic mod-

els up to Reynolds Stress Transport Models which introduce five additional transport

equations.

3.5.1 k − ω SST Turbulence Model

The shear stress transport (SST) k − ω turbulence model by Menter (1994) is used in

the present study. The k − ω SST model has been proved to perform well in predicting

flows characterized by the adverse pressure gradients (see eg. Zhang (2017), Robertson

et al. (2015)). The model is constructed upon an empirical approach combining Wilcox’

standard k−ω model and classic k−ε model. Transport equations for specific dissipation

rate ω and turbulent kinetic energy k are given by:

Dk

Dt
= τij

∂ui
∂xj
− β∗kω +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(3.24)

Dω

Dt
= γ

νt
τij

∂ui
∂xj
− βω2 +

∂

∂xj

[
(ν + σkνt)

∂ω

∂xj

]
+ 2(1− F1)

σω2

ω

∂k

∂xj

∂ω

∂xj
(3.25)

where: standard model coefficients are given in Table 3.1, and turbulent viscosity νt is

defined as:

νt =
a1k

max(a1ω,ΩF2)
, (3.26)

where a1 = 0.31, Ω =
√

2WijWij is the vorticity magnitude, with

Wij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (3.27)

F1 and F2 are blending functions introduced to smoothly switch between the two formu-

lations (k−ω near to the wall and k− ε in the far field) and the corresponding variables
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Table 3.1: Constant values used in the k − ω SST model.

φ σk σw β β∗ γ

φ1 0.85 0.5 0.075 0.09 β/β∗ − σkκ2/
√
β∗

φ2 1.0 0.856 0.0828 0.09

value. They are defined accordingly by

F1 = tanh(arg4
1) (3.28)

F2 = tanh(arg2
2) (3.29)

arg1 = min

[
max

( √
k

β∗ωdw
,
500ν

d2
wω

)
,

4ρσω2k

CDkωd2
w

]
(3.30)

arg2 = max

(
2

√
k

β∗ωdw
,
500ν

d2ω

)
(3.31)

The CDkω is the positive value of the cross-diffusion given by

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
(3.32)

In arg1, the first argument is the ratio between the turbulence length scale and the dis-

tance to the nearest wall. The second argument forces F1 to be 1 in the viscous sub-layer

whereas the third one ensures that the solution remains insensitive to the freestream. All

arguments vanish far from the wall. In this way, F1 is equal to one in the viscous and

logarithmic layers: the original k − ω is activated in theses regions. As the wall distance

increases, the transformed k − ε is progressively activated as F1 goes to 0.
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CHAPTER 4

TWO DEGREE-OF-FREEDOM NEAR WALL
VIV IN LAMINAR VORTEX STREET REGIME

This chapter presents the process of a model creation and set up used in the numerical

simulations of a 2DoF cylinder near a horizontal plane wall at Re = 200. This includes

the convergence studies in terms of mesh density and time step sensitivity. A set of 2D

simulations is carried out at different reduced velocities in order to study the frequency

lock-in of an oscillating cylinder. The hydrodynamic forces and amplitude responses

are characterized as a function of reduced velocity and compared with other numerical

studies. The frequency spectrum analysis of the force coefficients and the displacement

time histories is carried out by means of FFT. The flow fields are compared in three

distinct cases of pre-lock-in regime (Ur = 3), lock-in regime (Ur = 5) and post lock-in

regime (Ur = 8). Vorticity contours at selected time instances are used to visualize the

vortex shedding modes.

4.1 Pre-processing

The pre-processing is carried out in two steps. Firstly the structured 3D mesh with one

cell thickness is generated. Meshing is done using GMSH, which is a mesh generation

program with built-in pre- and post-processing utility (Geuzaine and Remacle, 2009).

51
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The software is distributed under GNU General Public License. Because of the included

CAD engine combined with the scripting capabilities of the software, it is relatively easy

to generate structured meshes with a high degree of control over the cell distribution.

Mesh sensitivity study and details of the mesh generation settings are given in section

4.3. The second step of the pre-processing involves defining the boundary conditions

and control parameters in the simulation case files. Summary of all prescribed boundary

conditions is given in section 4.2.

4.2 Model Description

The computational domain is established as a rectangular box, the boundary conditions

imposed in all simulations are shown in Fig. 4.1. The size of the whole computational

domain is 40D × 20D, where D is the cylinder diameter. In the crossflow direction, it

extends from the rigid wall where e is the gap distance between the wall and the cylinder

up to 20D. Setting domain width to 20D results in a blockage equal to 5% which does

not affect the flow around the cylinder as discussed in Navrose and Mittal (2013). The

Figure 4.1: Schematic of a computational domain and imposed boundary conditions.

upstream distance extends 10D from the cylinder center and downstream distance is set

to 30D. Similar boundary locations were used in earlier works in Prasanth and Mittal

(2008), Jaiman et al. (2016) Navrose and Mittal (2013), and has been proven to be

sufficient to eliminate the far field effects on the flow upstream and downstream of the

cylinder. It is therefore believed that in the present study, the domain boundaries have
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negligible influence on the flow close to the cylinder. The boundary conditions are kept

constant throughout the study.

1. At the inlet uniform velocity field in x-direction is imposed: ux = 1;

2. At the outlet, the pressure is set to constant value: p = 0, and the normal gradient

of the velocity is set to zero: ∂ux
∂x =

∂uy
∂x = 0;

3. Bottom of the domain and cylinder surface are defined as a no-slip condition: ux =

uy = 0;

4. The upper boundary is defined as a symmetry boundary condition. Here the normal

gradients of the velocity components are set to zero and convective flux of fluid is

zero resulting in zero shear stress and non-zero normal stress: ∂ux
∂y = 0, ν = 0.

The cylinder is modeled as an elastically mounted by springs and dampers and allowed

to vibrate freely in both transverse (y-axis) and streamwise (x-axis) directions. Spring

stiffness is assumed to be linear and homogeneous in both x- and y-directions thus the

ratio of fnx to fny is equal to 1. Fixed mass ratio of the cylinder, m∗ = 10 is used in all

simulations. By adjusting the spring stiffness it is possible to set the Ur which is governed

by the fn of the cylinder. Damping ratio ζ in all simulations is set to zero.

4.3 Convergence Studies

A grid and time step independence studies are carried out in this section. The domain

is discretized using a structured hexahedral mesh. The mesh topology is presented in

Fig. 4.2. Cell distribution parameters are summarized in Table 4.1. The cell size is

refined in the high gradient regions and a coarser grid is used in the far-field regions to

decrease the computational effort. The simulations are performed for a circular cylinder

of m∗ = 10 with 2-DoF at Re = 200, e/D = 0.9 and Ur = 5. It is expected that for

the selected reduced velocity and gap ratio, high vibration amplitudes are achieved. The

large amplitude response is desired when estimating the numerical discretization errors.

To asses the dependency of the numerical results on the mesh density, three meshes are

generated with different densities. The summary of the meshes used is given in Table

4.2. In the refinement of the grid, a constant refinement factor is used to ensure the

geometric similarity of the grid cells. Figure 4.3, and Figure 4.4 present details of the

generated mesh B. Representative hydrodynamic force coefficients and responses of the

cylinder undergoing free vibrations are used to asses the convergence. The forceCoeffs
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Figure 4.2: Mesh topology schematic.

Figure 4.3: Mesh B: complete domain view.

function object implemented in OPENFOAM is used to extract the hydrodynamic forces

and moments coefficient data for defined cylinder surface. The lift force (FL) and drag

force (FD) calculated for the cylinder are normalized by the dynamic pressure and area

(0.5ρU2D) to obtain the lift (CL) and drag (CD) coefficients, respectively. The mean

drag coefficient and mean lift coefficient are defined and calculated as follows:

CL =
1

n

n∑

i=1

CL,i (4.1)

CD =
1

n

n∑

i=1

CD,i (4.2)
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(a) Refinement box around the
cylinder.

(b) Details of the mesh near the
cylinder wall.

Figure 4.4: Enlarged views of the mesh B details.

Table 4.1: Mesh topology - cell distribution parameters.

Parameter Description Refinement factor

Nux Cell distribution in x-direction upstream 1.03

Ncx Cell distribution in x-direction cylinder zone 1.00

Ndx Cell distribution in x-direction downstream 1.03

Nby Cell distribution in y-direction bottom 1.05

Ncy Cell distribution in y-direction cylinder zone 1.00

Nty Cell distribution in y-direction top 1.03

Oc Circumferential cell distribution around cylinder 1.00

Or Radial cell distribution around cylinder 1.10

P Diagonal cell distribution in cylinder box 1.01

Table 4.2: Cell distribution of meshes used in the convergence study.

Number of elements

Mesh Nux Ncx Ndx Nby Ncy Nty Oc Or P Total Cell Count

A 60 60 80 20 60 80 240 10 25 36 800

B 80 80 120 25 80 120 320 12 30 70 040

C 100 100 140 30 100 140 400 15 35 101 800

Root-mean-square values of drag coefficient and lift coefficient are calculated using ex-

pressions:

CrmsL =

√√√√ 1

n

n∑

i=1

(CL,i − CL)2 (4.3)

CrmsD =

√√√√ 1

n

n∑

i=1

(CD,i − CD)2 (4.4)
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The maximum vertical and root-mean-square horizontal vibration amplitudes are given

as:

(Ay)max
D

=
1

2

|(Ay)max − (Ay)min|
D

(4.5)

(Ax)rms
D

=

√
1
n

n∑
i=1

(Ax,i −Ax)2

D

(4.6)

The simulations are performed with a time step ∆t = 0.002 for a total duration of τ =

500, where τ , is non-dimensionalised time given by:

τ = tU/D (4.7)

Results of the mesh convergence study are summarized in Table 4.3. With mesh C being

the reference, the differences between results obtained on mesh A and mesh B and those

obtained on mesh C are calculated and % difference is given in the brackets. Conver-

gence plots of CD and CrmsL are presented in Figure 4.5. The differences between the

results for the two finer meshes, mesh B and mesh C are approximately within 1% except

for (Ax)rms which differs by 1.5% from the finest mesh results. Considering the compu-

tational efficiency and assuming acceptable difference in the value of (Ax)rms, mesh B

is then selected as the mesh to perform further simulations. Time step independence

Table 4.3: Mesh convergence study results.

Parameter

Mesh CD Crms
L (Ay)max/D (Ax)rms/D

A 1.9646 (1.21%) 0.0976 (3.58%) 0.4573 (1.98%) 0.0743 (4.31%)

B 1.9477 (0.36%) 0.0943 (0.21%) 0.4516 (0.75%) 0.0722 (1.52%)

C 1.9407 (-) 0.0941 (-) 0.4482 (-) 0.0711 (-)

4 6 8 10 12

104

1.9

1.95

2

4 6 8 10 12

104

0.09

0.095

0.1

Figure 4.5: Mesh density convergence plots of CD and Crms
L .
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Table 4.4: Time step independence study results.

Parameter

Time step CD Crms
L (Ay)max/D (Ax)rms/D

∆t = 0.001 1.9765 (-) 0.0959 (-) 0.4541 (-) 0.0714 (-)

∆t = 0.002 1.9477 (-1.48%) 0.0943 (-1.69%) 0.4516 (-0.55%) 0.0722 (1.1%)

∆t = 0.003 1.9927 (5.25%) 0.0844 (-13.63%) 0.4012 (-13.18%) 0.0834 (14.39%)

study is summarized in Table 4.4. Time step ∆t = 0.001 is taken as the reference, the

differences between results obtained in simulations with ∆t = 0.002 and ∆t = 0.003 are

calculated and % difference is given in the brackets. Convergence plots of CD and CrmsL

are presented in Figure 4.6. It is shown in Table 4.4 that differences between the re-

sults are approximately 1.5% apart for the ∆t = 0.001 and ∆t = 0.002. Considering the

computational efficiency, ∆t = 0.002 is then selected as the time step to perform further

simulations. Additional study is carried out to investigate the effects of the domain size.

0.003 0.002 0.001
1.9

1.95

2

2.05

2.1

0.003 0.002 0.001
0.08

0.085

0.09

0.095

0.1

Figure 4.6: Time step convergence plots of CD and Crms
L .

In case D01 the size of the downstream distance (LDD) is increased from 30D to 50D. In

case D02 the width of the domain (W ) is increased from 20D to 40D. The results com-

pared to reference case (∆t = 0.002, mesh B) with relative error are given in Table 4.5.

In both cases, the effects of the domain size are relatively small, with more pronounced

Table 4.5: Influence of the domain size.

Parameter

Mesh Domain size W LDD CD Crms
L (Ay)max/D (Ax)rms/D

B 20× 40 20 30 1.9477 (-) 0.0943 (-) 0.4516 (-) 0.0722 (-)

D01 20× 60 20 50 1.9508 (0.16%) 0.0953 (1.05%) 0.4522 (0.13%) 0.0715 (-0.98%)

D02 40× 40 40 30 1.9423 (-0.28%) 0.0956 (1.36%) 0.4523 (0.15%) 0.0730 (1.09%)

influence on the root-mean-square lift coefficient value and root-mean-square stream-

wise amplitude. In case D02 the CrmsL is 1.36% higher than in the reference case but the

(Ay)max/D differs only by 0.15%. It can be concluded that the domain size suggested in
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Li et al. (2016) is appropriate to accurately capture the wake dynamics and have a small

influence on the flow around the cylinder. Based on the convergence study results a set

of simulation cases is prepared with mesh B and time step set to ∆t = 0.002 in order to

investigate the VIV of the flexibly mounted cylinder over the range of reduced velocities.

The summary of simulation cases used in the study is given in Table 4.6.

Table 4.6: List of simulation cases used in the study.

Parameter

Case Mesh ∆t Re Ur m∗

B09UR3 B 0.002 200 3.00 10

B09UR3_2 B 0.002 200 3.20 10

B09UR3_4 B 0.002 200 3.40 10

B09UR3_6 B 0.002 200 3.60 10

B09UR3_8 B 0.002 200 3.80 10

B09UR3_9 B 0.002 200 3.90 10

B09UR4 B 0.002 200 4.00 10

B09UR4_1 B 0.002 200 4.10 10

B09UR4_2 B 0.002 200 4.20 10

B09UR4_3 B 0.002 200 4.30 10

B09UR4_4 B 0.002 200 4.40 10

B09UR4_6 B 0.002 200 4.60 10

B09UR5 B 0.002 200 5.00 10

B09UR5_2 B 0.002 200 5.20 10

B09UR5_4 B 0.002 200 5.40 10

B09UR5_6 B 0.002 200 5.60 10

B09UR5_8 B 0.002 200 5.80 10

B09UR5_9 B 0.002 200 5.90 10

B09UR6 B 0.002 200 6.00 10

B09UR6_1 B 0.002 200 6.10 10

B09UR6_2 B 0.002 200 6.20 10

B09UR6_5 B 0.002 200 6.50 10

B09UR7 B 0.002 200 7.00 10

B09UR8 B 0.002 200 8.00 10

4.4 Results and Discussion

In this section, the results and the discussion on VIV of the single cylinder in a vicinity of

a horizontal plane wall are presented. In subsection 4.4.1. mean flow features are shown

in the considered range of reduced velocities. Subsection 4.4.2. presents the vibration

responses. In subsections 4.4.3 and 4.4.4. the phase diagrams and frequency response

curves are presented respectively. Motion trajectories analysis is outlined in subsection

4.4.5. followed by the detailed analysis of the flow structures using vorticity contours
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at selected Ur presented in subsection 4.4.6. Interaction of the vibrating cylinder with

the plane wall boundary layer is explained. The vibration frequency characteristics and

vortex shedding modes are given in subsections 4.4.7 and 4.4.8 respectively.

4.4.1 Hydrodynamic Forces

Mean lift coefficient CL, mean drag coefficient CD , root-mean-square lift coefficient

CL
rms and root-mean-square drag coefficient CDrms are extracted and calculated in each

simulation case from the dimensionless time range τ = tU/D = 250−500. The exception

were cases in reduced velocity range from Ur = 3.8 to Ur = 4.2, where it was found

that longer simulation time is required to develop statistically steady vibration pattern,

thus simulated time was extended to τ = 1000. Results are validated against data from

the study by Li et al. (2018) who conducted 2D simulations of an elastically mounted

cylinder near a horizontal plane wall at Re = 200. The isolated cylinder VIV simulation

results atRe = 200 are from the study by Li et al. (2016). Results from Li et al. (2016) are

used as a reference to identify the differences between the near-wall VIV characteristics

and free stream VIV. It is evident from the Fig. 4.7(a) that the mean lift coefficient in the

near-wall configuration is non zero as opposed to free stream case where CL is close to

zero. This is the result of the broken symmetry in the wake caused by the wall presence.

There is a significant increase in CL in the lock-in regime which can be identified between

3.5 ≤ Ur ≤ 6 in the Fig. 4.7(a). The peak of CL occurs at reduced velocity Ur = 3.9. The

peak in CL is correlated with the peak in transverse vibration amplitude which has been

presented in Fig. 4.9(a). It is apparent that both mean and root-mean-square values of

drag and lift coefficients are in excellent agreement with data from Li et al. (2018) with

a small discrepancy in the peak values of mean lift coefficient CL and peak in CL
rms.

Peak in CL
rms occurs at Ur = 3.9 and is slightly smaller when compared to the results

from Li et al. (2018). The difference can be attributed to highly sensitive nature of the

cylinder oscillations in that regime. It was observed that in some instances the cylinder

oscillation was transitioning to the different pattern if simulation time was extended long

enough. This situation is depicted in Fig. 4.8, it can be observed that from apparently

steady state between τ = 400 and τ = 500 the oscillations transition to more chaotic

pattern and beating oscillations appear after approximately τ = 500.

Both mean and root-mean-square values of drag coefficient are lower than in the isolated

cylinder counterpart. This effect is in agreement with the remarks of Zdravkovich (1997)

and Sumer and Fredsøe (2006) which were outlined in Chapter 2.
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Figure 4.7: Force coefficients as a function of Ur at Re = 200, mean lift coefficient CL,
mean drag coefficient CD, root-mean-square lift coefficient CL

rms, root-mean-square
drag coefficient CD

rms.

4.4.2 Response Amplitudes

Figure 4.9 presents the normalized displacements in transverse direction AY,max/D and

root-mean-square normalized displacement in streamwise direction AX,rms/D. Both

transverse and streamwise amplitude response values display good agreement with the

results obtained by Li et al. (2018). The slight differences appear in the transition to

lock-in regime which occurs at reduced velocity Ur = 3.8 as opposed to Ur = 4.0 in the

reference study. The reason is explained in subsection 4.4.2 and can be attributed to

the duration of the simulation and resolution of Ur which is higher in the present study.

The distinct difference between the freestream cylinder oscillations and the near-wall

configuration case is the correlation of CD and streamwise displacement. The change

in CD and CDrms with respect to Ur is similar in the near-wall and in the freely vibrat-
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Figure 4.8: Time history of drag (top) and lift (bottom) coefficients of a vibrating
cylinder at Ur = 4.1 and Re = 200.
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Figure 4.9: Normalized peak transverse displacementAY,max/D and root-mean-square
streamwise displacement AX,rms/D as a function of Ur at Re = 200.

ing cylinder configurations but the AX,rms/D is strongly enhanced in the near-wall case.

From the Fig. 4.9 the lock-in regime can be identified to start approximately at Ur = 3.5

and extend to Ur = 6.0, after that the response of the cylinder displacement is greatly

decreased. According to Williamson and Govardhan (2004) a low mass-damping cylin-

der will exhibit two branches in the displacement response plot: the initial branch and

the lower branch. The initial branch is characterized by an increase in the oscillation
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amplitude, typical for the beginning of the lock-in phenomenon. Here the peak value of

the transverse displacement AY,max/D = 0.58 is reached at Ur = 4. The lower branch is

characterized by a gradual decrease of the response amplitude which then drops down

rapidly in the desynchronization regime. This behavior is clearly visible in Fig. 4.9(a)

where the initial branch can be identified between 3.5 ≤ Ur ≤ 4.2 at the onset of syn-

chronization and lower branch ranging from Ur = 4.2 to Ur = 6.0 with gradual decrease

of A/D. In contrast to high Re number flows, there is no upper branch as seen in 2.10

with a characteristic peak of displacement amplitudes. Lack of the upper branch was

described in the study of Prasanth and Mittal (2008) who focused on the low Re number

regime and reported an absence of hysteretic behavior and intermittent switching be-

tween the oscillation amplitudes in the lock-in regime of Ur. Comparing the freestream

cylinder VIV characteristics with the near-wall VIV the AY,max/D response is slightly

lower in the near wall case but overall response is similar in both isolated and near-wall

arrangements. The streamwise response is on the other hand radically different. Figure

4.9(b) shows that the AX,rms/D is greatly affected by the wall proximity. Findings of

the analysis of averaged forces and response amplitudes are thus as follows: the wall

presence greatly influences the streamwise response but has little effect on the stream-

wise force, the wall presence has little effect on the transverse response while largely

enhancing the transverse force. To explain this behavior it is useful to study the phase

diagrams of the force-displacement relation in the streamwise and transverse directions.

4.4.3 Phase Difference of Forces and Responses

The phase difference between transverse displacement and lift force φCL−Y and stream-

wise displacement and drag force φCD − X as a function of Ur has been shown in Fig.

4.10. Investigation of the phase relations can give important insight about the origins

of enhanced streamwise response caused by the wall proximity. The phase angle can be

associated with the direction of the energy transfer in the system: when the phase an-

gle between the exciting force and the response amplitude is close to 0◦ the net energy

transfer is positive. In the present study, it means that the energy is transferred from the

fluid to the structure. When the phase angle is close to 180◦ an opposite situation takes

place and the energy is dissipated by the fluid. Looking at Fig. 4.10 one can spot that

φCL− Y is approximately equal to 0◦ in pre-lock-in regime extending to the onset of the

lock-in (3 ≤ Ur ≤ 4), namely in the initial branch. The phase switches then suddenly

to 180◦ at Ur = 5.5 corresponding to the transition from the initial branch to the lower

branch. φCD −X shows the more gradual transition from an in-phase state in the pre-

lock-in regime to out of phase state in the lower branch. According to Blackburn and
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Henderson (1999) proposed hypothesis explaining this sudden change in phase angle

in the case of a transversely oscillated cylinder is connected to the vorticity production

mechanisms. Cylinder vibrations at different reduced velocities are characterized by

a different balance between the pressure gradient vorticity production mechanism and

motion-induced vorticity production mechanism. In both φCD − X and φCL − Y rela-

tions the phase switch is observed between Ur = 5.0 when the oscillation amplitude is

still high and Ur = 6.0 where the vibration amplitude decays and cylinder leaves the

lock-in regime. This implies that not only the energy transfer governs the motion of the

cylinder but the frequency lock-in appears to be the main driver of the high amplitude

oscillations.

2 3 4 5 6 7 8 9
0

30

60

90

120

150

180

2 3 4 5 6 7 8 9
0

30

60

90

120

150

180
(b)(a)

Figure 4.10: Phase difference between transverse displacement and lift force φCL − Y
and streamwise displacement and drag force φCD −X as a function of Ur at Re = 200.

4.4.4 Frequency Response

The relation between frequency ratios of vibration frequencies and natural frequency of

the cylinder and Ur is shown in Fig. 4.11(a) and (b). Figure 4.11(c) shows the ratio of

the transverse vibration frequency to the streamwise vibration frequency in the range of

investigated Ur. A characteristic feature of VIV is that of the lock-in phenomenon, where

the vortex shedding frequency diverges from Strouhal’s relationship (vortex shedding

frequency of a stationary cylinder) and becomes equal or close to the cylinder’s natu-

ral frequency. In Fig. 4.11(a) and (b) it is clearly visible that in the range of reduced

velocities (3.5 ≤ Ur ≤ 6) the lock-in occurs, both transverse and streamwise oscilla-

tion frequencies depart from following the Strouhal’s relation (marked as dotted line for

St = 0.21) and become close to natural frequency of the system. As discussed in Chap-

ter 2 the relation is not perfectly aligned to unity but increases monotonically because
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of the frequency-dependent added mass. The ratio of the streamwise to the transverse

frequencies is on the other hand almost perfectly equal to unity. This is a significant

departure from the behaviour of the freestream VIV of 2DoF cylinder which is character-

ized by a frequency of vibration in the streamwise direction equal twice the frequency

of the vibration in the transverse direction. This leads to the conclusion that not only
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Figure 4.11: Vibration frequency response in transverse fy/fn, streamwise fy/fn and
ratio of streamwise vibration frequency to transverse vibration frequency fx/fy as a
function of Ur at Re = 200.

the transverse oscillations are in the lock-in but also the streamwise oscillations are in

resonance with the vortex shedding. This leads to the largely enhanced response in the

streamwsie direction experienced by the cylinder placed close to the horizontal plane

wall. The motion trajectory plots are helpful in understanding the nature and pattern of

the near-wall VIV.

4.4.5 Motion Trajectories

The XY -trajectory of a freely vibrating cylinder in cross-flow is well known from the

published studies figure of eight. The trajectories obtained from the simulations at dif-

ferent Ur are plotted in Fig. 4.12(a) - (l). The shape of a skewed oval is in line with

the experimental observations by (Zdravkovich, 1997) and other numerical studies fo-

cused on low Re regime (similar oval trajectories were reported by Li et al. (2016) and

Tham et al. (2015)). A characteristic effect which should be mentioned here is the more

chaotic nature of the trajectories at 3.8 ≤ Ur ≤ 4.1, and Ur = 6.5. According to Li et al.

(2016) the cylinder vibration mode transitions from the wake mode (weak interaction)

to a combined wake and structure mode (strong interaction) across the critical value of

Ur between the pre-lock-in and lock-in. The mode switching mechanism is the source of

instabilities in the cylinder trajectories.
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Figure 4.12: Trajectories of near-wall cylinder (e/D = 0.9) for different reduced veloc-
ities Ur at Re = 200.

4.4.6 Flow Field Characteristics

To explain the reason for the lower streamwise oscillation frequency and phenomena

underlying the streamwise near-wall VIV it is useful to visualize the flow fields around

the cylinder. For better understanding of different vortex shedding modes characteristic

for pre-lock-in, lock-in and post-lock-in conditions the plots of z-vorticity were taken at

three different reduced velocities: Ur = 3 (4.13), Ur = 5 (4.14) and Ur = 8 (4.15).
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The time instances of the snapshots were selected corresponding to the maximum and

minimum values of the force coefficients and displacement amplitudes.
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Figure 4.13: Time histories of CD, CL, X/D and Y/D and evolution of vorticity con-
tours for near-wall cylinder (e/D = 0.9) at Ur = 3 and Re = 200.

4.4.6.1 Pre-lock-in, Ur = 3. Figure 4.13 represents time histories of CD, CL, X/D and

Y/D and vorticity contour plots at corresponding time instances. Both drag and lift force

are in phase with transverse and streamwise displacements respectively as indicated by

4.10(a). The neutral position of the cylinder’s center is marked with a cross. It can be

seen that the displacement of the cylinder is very small since it barely changes position

with the reference to the marker at dimensionless time instance τ = 502 which corre-

sponds to the maximum streamwise displacement (in positive x-axis direction) and at

the same time the minimum transverse position. This is consistent with the observations

made in Fig. 4.7 and Fig. 4.9 since the cylinder is still in the pre-lock-in regime and

there is no resonance leading to the big amplitudes of vibration. The mechanism of the
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Figure 4.14: Time histories of CD, CL, X/D and Y/D and evolution of vorticity con-
tours for near-wall cylinder (e/D = 0.9) at Ur = 5 and Re = 200.

bottom shear layer rollup can be observed. The anti-clockwise vortex shed from the bot-

tom surface of the cylinder (B) forces the boundary layer to rollup. In Fig. 4.13 (d) the

clockwise vortex shed from the upper cylinder surface (A) shows coalescent interaction

with the clockwise vortex shed from the bottom boundary layer (C). This interaction

reinforces the clockwise vortices shed from the top surface of the cylinder and weakens

the anticlockwise vortices shed from the bottom surface of the cylinder. In accordance

with observations of Li et al. (2016) the suppression of the counter-clockwise vortices

shed from the bottom of the cylinder is the reason for matched vibration frequencies

in streamwise and transverse directions. This, in turn, leads to streamwise frequency

lock-in and is the root cause of the significantly increased streamwise oscillations.

4.4.6.2 Lock-in, Ur = 5. A representative case for the lock-in regime is the simulated

case at Ur = 5, where large amplitudes of vibrations are reported. Figure 4.14 presents
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Figure 4.15: Time histories of CD, CL, X/D and Y/D and evolution of vorticity con-
tours for near-wall cylinder (e/D = 0.9) at Ur = 8 and Re = 200.

the time histories of CD, CL, X/D and Y/D and the vorticity contour plots at corre-

sponding time instances. From the time history of CL (Fig. 4.14 (a)) it can be seen

that relatively small lift coefficient values correspond to large transverse displacements.

Similarly to the pre-lock-in case, here the bottom layer roll-up effect is present as well.

Because of the large cylinder displacements in the transverse direction, the coalescent

interaction between the clockwise vortices shed from the top of the cylinder and clock-

wise vortices rolled-up by negative vorticity shed from the bottom of the cylinder is more

pronounced. The reason for that is the larger displacement in the transverse direction

cause the cylinder to submerge deeper into the bottom boundary layer. The cylinder’s

wake is much wider at Ur = 5 than Ur = 3.

4.4.6.3 Post Lock-in, Ur = 8. Figure 4.15 represents time histories of CD, CL, X/D

and Y/D and vorticity contour plots for post-lock-in case at Ur = 8. It can be clearly seen
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from the time history (Fig.4.15 (a)) that the force coefficients are now in an out of phase

relation with the displacements. The amplitudes of oscillations are small, similar to the

situation discussed in the pre-lock-in case. The bottom shear layer roll-up is present and

the interaction of vortices shed from the cylinder is analogous to the pre-lock-in case,

thus the wake formed at Ur = 8 is of similar width to that observed at Ur = 3.

4.4.7 Vibration Frequency Characteristics

Fast Fourier Transform analysis is used to compute the frequency power spectra of the

hydrodynamic forces CD, CL, as well as of the displacement time histories Y/D, X/D in

dimensionless period τ = 250− 500 (τ = 600− 1000 in cases at 3.8 ≤ Ur ≤ 4.2). Results

of the calculations covering all analyzed reduced velocities can be found in the Appendix

A. Selected representative cases will be discussed here.

In the pre-lock-in regime, the displacements are characterized by a single-mode response,

and the vibration amplitudes are small. This situation can be seen in Fig. 4.16. The drag

force has a second super-harmonic at a frequency twice that of the dominating excita-

tion frequency. The dominant frequencies of the drag and the lift force are coinciding

and are equal to approximately 0.21 Hz. In the synchronization regime, the Ur reaches

a critical value at which the cylinder enters the lock-in regime. In accordance with the

lock-in regime of Ur identified by inspection of Fig. 4.9 the transition occurs at Ur =

3.8. The characteristic beating phenomenon is encountered in the hydrodynamic forces

and displacements time series. The most distinguishable are the fluctuations in the drag

force followed by the streamwise oscillations. Due to the presence of many harmonics
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Figure 4.16: Power spectral analysis for transverse vibration and lift (right), stream-
wise vibration and drag (left) at e/D = 0.9, Ur = 3, Re = 200.

in the signal, the FFT picture cannot identify the single dominating frequency and the
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Figure 4.17: Power spectral analysis for transverse vibration and lift (right), stream-
wise vibration and drag (left) at e/D = 0.9, Ur = 3.8, Re = 200.

characteristic scattered image is produced (Fig. 4.17). This implies that many concurrent

exciting frequencies exist, this is the effect of switching between different vorticity pro-

duction mechanisms. In the lock-in regime, the time traces display stable quasi-steady

behavior. Looking at reduced velocities between Ur = 4.3 and Ur = 5.6 following con-

clusions can be drawn. The dominating vibration frequency in the streamwise direction

coincides with the dominating vibration frequency in the transverse direction and de-

creases monotonically with increasing Ur. Both, drag and lift force have dominating

frequency of approximately twice the frequency of the cylinder vibrations. The stream-

wise displacement amplitude decreases slightly with increasing Ur while the transverse

displacement amplitude decrease is more pronounced as Ur is increased. The transi-

tion from the lock-in regime to the post-lock-in regime at Ur = 6.5 (Fig. 4.18) is marked

with the beating phenomenon. The oscillations of the hydrodynamic forces and displace-

ments are less chaotic during transition from the lock-in to the post-lock-in than when

the transition to the lock-in occurs. In the post-lock-in regime, the power spectra pictures

are similar to the pre-lock-in regime. In Figure 4.19 at Ur = 8 the dominating frequen-

cies of the lift and drag forces coincide with the dominating frequencies of respective

displacements but similarly to Ur = 3 the amplitudes are very small.

4.4.8 Vortex Shedding Modes

Figure 4.20 and Figure 4.21 presents the wake development at selected reduced ve-

locities. Snapshots were taken at the minimum transverse displacement position and

approximately around the same nondimensional time τ = 495. Referring to the discus-

sion on the flow field characteristics given in Section 4.4.6, the proximity of the wall has

significant implications on the behavior of the wake. Specifically the break-down of the
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Figure 4.18: Power spectral analysis for transverse vibration and lift (right), stream-
wise vibration and drag (left) at e/D = 0.9, Ur = 6.5, Re = 200.
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Figure 4.19: Power spectral analysis for transverse vibration and lift (right), stream-
wise vibration and drag (left) at e/D = 0.9, Ur = 8, Re = 200.

symmetry in the flow and the bottom shear layer roll-up. The suppression of the bottom

vortex shedding is closely connected to the asymmetry in the development of the vor-

tices on both sides of the cylinder. The strength of the clockwise vortices is enhanced by

the coalescence with the clockwise vortices developed from the bottom boundary layer

roll-up. The anticlockwise vortices shed from the bottom of the cylinder are on the other

hand weaker due to the interaction with the bottom boundary layer. In all analyzed

cases the vortex shedding pattern represents the 2S mode. It should be noted that in

the pre-lock-in regime as well as in the post-lock-in regime counterclockwise vortices are

slightly weaker than in the lock-in regime.
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(c) Ur = 4.3

Z Vorticity: -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.20: Vortex shedding modes at selcted Ur for near-wall cylinder (e/D = 0.9;
Re = 200).

4.5 Summary

A series of numerical simulations in laminar (Re = 200) regime is performed to study

the flow around a freely oscillating cylinder in the proximity of a plane wall. All nu-

merical solutions are obtained by using incompressible Finite Volume Code OPENFOAM.

Range of reduced velocities from Ur = 3 to Ur = 8 is investigated, at a gap ratio of

e/D = 0.9. Hydrodynamic forces and response amplitudes are mapped with respect to

the investigated reduced velocities. Furthermore, a study of phase differences between

the drag force and the streamwise displacement and the lift force and the transverse

displacement is conducted. The motions of the cylinder are recorded and displayed on

the trajectory plots, Fast Fourier Transform is used to analyze the frequency components
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Figure 4.21: Vortex shedding modes at selcted Ur for near-wall cylinder (e/D = 0.9;
Re = 200).

of hydrodynamic forces and displacements. Vorticity fields are analyzed to study the ef-

fects of the shear layers interaction in the area around the oscillating cylinder. Based on

the observations presented in this chapter following conclusions can be drawn from the

study:
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1. The results are supportive to the suggestion that the wall proximity enlarges the

mean lift force but the influence on the mean drag force is minimal.

2. Proximity of the wall strongly enhances the streamwise response of a cylinder. Anal-

ysis of the phase relations between the drag force and the streamwise displacement

revealed two distinct phases in the lock-in regime. The phase of the positive net

energy transfer from the fluid to the structure and the phase of the negative energy

transfer when the energy is dissipated by the fluid. The first phase is found to co-

incide with the pre-lock-in regime and the initial branch of the lock-in. The second

phase is identified in the lower branch of the lock-in regime.

3. Study of the vortex shedding mechanism shows that the bottom shear layer vorticity

counteracts the vortices shed from the bottom surface of the cylinder leading to the

asymmetry of the wake. This, in turn, reduces the streamwise oscillation frequency

by half. It is the reason for the streamwise frequency lock-in, thus both transverse

and streamwise vibration frequencies are simultaneously in resonance with hydro-

dynamic forcing.

4. Vortex shedding patterns in the investigated Ur range show the 2S shedding pattern.

The width of the wake and strength of the counterclockwise vortices are affected

by the vibration amplitude with wider wake and stronger counter-clockwise vortices

occurring in the lock-in regime.

5. In the lock-in transition regime, the beating oscillations of the hydrodynamic forces

and vibration response are found. More pronounced, chaotic patterns occur at Ur =

3.75 in the transition from pre-lock-in to lock-in. Oscillations of the hydrodynamic

forces and vibration responses are more organized when the cylinder exits the lock-

in regime.
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CHAPTER 5

PAPER I: VORTEX-INDUCED VIBRATIONS
OF TWO RIGID CYLINDERS WITH UNEVEN
DIAMETERS NEAR THE HORIZONTAL
PLANE WALL AT LOW REYNOLDS NUMBER

This chapter contains the paper draft which will be submitted to the Journal of Fluids and

Structures. Results and discussions contained in this study can be treated as an extension

of the work presented in Chapter 4. In particular, the scope of the study is extended

to investigate the effects of different configurations of rigidly coupled cylinders with

uneven diameters on VIV in the vicinity of a plane wall. One example of an engineering

application of such model are subsea flowlines in a "piggyback" configuration, where

a small diameter pipeline is rigidly attached to a larger diameter pipeline. In current

guidelines a common practice is to use an equivalent hydrodynamic diameter (DNV GL,

2017) and consider the most critical cross-section orientation in the calculations. The

results of the present analysis indicate however that the position of the small cylinder

can have a fundamental impact on the VIV response of the coupled system. It is therefore

desireable to gain additional insight on the complex flow physics involved in such flows

which can translate to more accurate and robust design practices.
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A numerical study is performed on the vortex-induced vibrations of two rigidly coupled

cylinders of uneven diameters placed in the proximity of the plane wall. The two cylinders

are elastically supported and free to vibrate in two degree-of-freedom. The Reynolds

number is kept constant at Re = 200. Different position angles of the small cylinder

are systematically studied. The effects on the vibration amplitudes and hydrodynamic

forces are analyzed. The flow structures around the cylinders are investigated to explain

the variations in observed structural responses. At selected gap ratio (e/D = 0.9) the

bottom boundary effects are found to significantly affect the behavior of the structure.

The suppression of the vortex shedding from the bottom surface of the large cylinder is

observed, leading to streamwise vibration lock-in. The cross-flow vibration amplitude of

the coupled cylinders is found enhanced in the widest range of reduced velocities (Ur),

among analyzed configurations, when the small cylinder is located downstream of the

large cylinder (α = 0◦). When located side by side (α = 90◦) the effect of the small

cylinder is manifested by increased mean drag and change in the direction of the mean

lift force to negative (directed towards the wall). In case of the small cylinder located

upstream of the large cylinder (α = 180◦) reduced vibration response and narrower

lock-in range is identified compared with the single cylinder and other analyzed coupled

cylinders configurations.

Key words: vortex-induced vibrations, piggyback, lock-in, vortex shedding
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1. Introduction

Vortex-induced vibrations (VIV) of elastically supported structures is an area of

interest for many practical engineering applications. One major group of structures, often

subject to VIV, are offshore subsea pipelines. Due to various economic and engineering

reasons it is a common practice to install subsea pipelines in bundles where, in the most

frequent arrangement, the main pipe is accompanied by a smaller pipe attached to it

at certain intervals via clamps or blocks. Physically this system can be modeled as two

rigidly coupled cylinders interacting with an incoming flow and experiencing vibrations

in two degrees of freedom (2DoF). It is known that oscillatory forces caused by vortex

shedding can negatively affect the pipeline stability and its fatigue life. Therefore, the

investigation of the influence of the presence and positioning of the secondary cylinder

has significant practical implications.

Flow around cylinders is well researched area of fluid dynamics and is covered by many

comprehensive positions in the literature, most prominently by Sarpkaya (2010), Sumer

& Fredsøe (2006) and Zdravkovich (1997). Large and continuously expanding body of

research is related to the study of VIV. However, majority of the studies are focused on

the free flow in isolated cylinder configuration.

Near wall effects were investigated experimentally by numerous authors. Most existing

studies have focused on the transverse VIV of the cylinder with one degree of freedom due

to the larger amplitude in the transverse direction than that in the streamwise direction.

Experiments conducted by Bearman & Zdravkovich (1978) investigated the effect of gap

ratio (e/D where D is the diameter of the cylinder and e is the distance between the

bottom of the cylinder and the wall) on the vortex shedding in the Reynolds number

regime varying form 2.5 × 104 to 4.8 × 104. Their results indicate that for a stationary

cylinder vortex shedding is suppressed if e/D < 0.3, thus vibrations cease at low gap

ratios. More recently Yang et al. (2009) measured the vortex shedding frequencies and

modes by the method of hot film velocimetry. The results from the parametric study

showed that with decreasing mass ratio (m∗), the width of the lock-in range in terms

of reduced velocity (Ur) and the frequency ratio ( f/fn ) becomes larger. It was shown

that with increasing e/D, the amplitude ratio (A/D) gets larger up to a critical value

of e/D = 0.5. PIV measurements by Wang & Tan (2008) at Re = 1.2 × 104 confirmed

the strong influence of the boundary proximity for small and intermediate gap ratios

on the wake development but revealed relatively small sensitivity of Strouhal number

and convection velocity to change with respect to change of e/D. Wang et al. (2013)

investigated flow around a neutrally buoyant cylinder with a mass ratio m∗ = 1.0 and

a low damping ratio ζ = 0.0173. Experiment covered range of Reynolds numbers from

Re = 3 × 104 to Re = 1.3 × 104 and reduced velocities from Ur = 1.53 to Ur = 6.6. In

contrast to the case of a stationary cylinder where vortex shedding was suppressed at a

gap ratio e/D < 0.3 the elastically mounted cylinder was found to vibrate even at the

smallest gap ratio e/D = 0.05.
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Comprehensive numerical studies of the vortex-induced vibrations of a single cylinder

freely vibrating in the proximity of the plane wall were carried out by Tham et al. (2015),

Li et al. (2016) and Li et al. (2017). Li et al. (2016) performed both 2D and 3D simulations

using a Petrov-Galerkin finite element formulation. Wall proximity effects were studied

in the laminar flow regime at Re = 200 in a series of 2D simulations. The wall proximity

effects were discussed in terms of streamwise vibration frequency. They investigated the

mechanism of wake vortices interaction with the bottom boundary layer. In particular

the suppression of the counter-clockwise vortices shed from the bottom of the cylinder

proved to be a reason of the streamwise vibration frequency reduction. Li et al. (2017)

performed 3D simulations at Re = 1000 to capture the three dimensional flow effects

and assess accuracy and validity of the 2D simulations reported in Li et al. (2016). The

numerical results reported by Li et al. (2017) show that for Re > 200 the 3D effects

become significant and use of 2D approach in this regime can lead to over predictions of

hydrodynamic forces.

Relatively few experimental studies focused on the VIV response of the piggyback

pipelines exist up to date. Experiments conducted by Kalghatgi & Sayer (1997) covering

the Reynolds number range from Re = 9 × 104 to Re = 3 × 105, revealed that drag

coefficient is significantly increased by the presence of a piggyback pipeline in side by side

arrangement. It was also noticed that direction of the lift force is dependent on the Re,

with dominantly negative mean lift coefficient values in the subcritical regime and positive

values of mean lift coefficient in the critical regime. Zang et al. (2013) used PIV system

to visualize flow around piggyback pipeline with Re ranging from 1.5 × 104 to 4 × 104.

The vortex shedding characterized by swirling strength was found to be highly sensitive

to changes in G/D (where G denotes distance between the small cylinder and the large

cylinder) and e/D. Zang & Gao (2014) studied the effects of configuration parameters on

the VIV suppression in Re numbers from 1.8× 104 to 6× 104. Besides different diameter

ratios d/D (d is the small cylinder diameter, D is the large cylinder diameter), gap ratios

e/D and spacing G/D, the position angle α of the piggyback pipeline was studied. Here α

is defined as the angle position of the small cylinder measured from the center line of the

upstream surface of the large cylinder. The maximum lift force was reported for α = 90◦

and G/D = 0.25. When α = 0◦, the lock-in range of reduced velocity was widest among

the analyzed positions. Zhao et al. (2007) conducted a series of numerical studies focusing

on the flow around piggyback pipelines. In Zhao et al. (2007) different values of gap ratio

and spacing were studied for a stationary piggyback pipeline in stacked configuration

near the seabed. Four shedding modes were identified at Re = 2 × 104, governed by

the gap and spacing ratios. Zhao & Yan (2013) conducted simulations of an elastically

mounted piggyback pipeline in free flow configuration at Reynolds number Re = 250.

They reported that in comparison to a single cylinder case the lock-in regime in terms of

reduced velocity is significantly widened for the small cylinder with α = 0◦, 22.5◦, 90◦,

and 112.5◦. Yang et al. (2013) studied flow characteristics of a piggyback pipeline in
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oscillatory flow at different Keulegan-Carpenter (KC) numbers, ranging from KC = 4

to KC = 24. The influence of the small cylinder was identified to be a function of the

spacing G/D. The piggyback cylinder was found to disrupt the symmetry of the vortex

shedding leading to an increase in the lift force. This effect was reported to be the most

pronounced when KC = 4.

In this paper, two-dimensional numerical simulations are carried out to investigate the

effects on VIV of two cylinders with uneven diameters in different arrangement close

to a horizontal plane wall. To the authors’ knowledge there is no published numerical

study on investigating VIV response of a two rigid cylinders with uneven diameters in

the vicinity of a horizontal plane wall in low Reynolds number regime.

The rest of the paper is organized as follows. In Section 2, the governing equations

and the numerical model used in the present study are outlined. Section 3, presents

the problem description, verification of used numerical meshes and time step selection.

The numerical model is also compared with the results from other similar published

studies. In Section 4, simulations are performed with different placements of the smaller

cylinder and reduced velocities. Diameter ratio d/D = 0.2, gap ratio e/D = 0.9 and

dimensionless cylinder spacing G/D = 0.1 is kept constant in all simulations. The effects

of a cylinders configuration and plane boundary on VIV of the structure are discussed.

Finally, conclusions are presented in Section 5.

2. Governing equations and numerical method

2.1. Flow equations

Incompressible Newtonian fluid flow considered in this work is governed by the Navier-

Stokes equations. In an arbitrary Lagrangian Eulerian frame they are expressed as follows:

∇ · u = 0, (2.1)

∂u

∂t
+∇ · ((u−w)u) = −∇ · p+∇ · (ν∇u), (2.2)

where u is the flow velocity vector, w is the moving mesh velocity vector, p represents

pressure, ν is the kinematic viscosity.

2.2. Structure equation

In the present study we consider elastically supported rigidly coupled cylinders ex-

periencing VIV as shown in figure 1. Flow direction is parallel to the horizontal plane

wall. The dynamic behavior of the two rigid, coupled cylinders with uneven diameters

vibrating with 2DoF is modeled via a mass-spring-damper system as follows:

∂2x

∂t2
+ 4πζ

∂x

∂t
+ 4π2x =

2

π

U2
rCD

m∗(1 + d/D)
(2.3)

∂2y

∂t2
+ 4πζ

∂y

∂t
+ 4π2y =

2

π

U2
rCL

m∗(1 + d/D)
(2.4)
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Figure 1: Schematic of a problem definition: flow induced vibrations of a two rigidly

coupled cylinders with uneven diameters near a horizontal plane wall.

where x and y denote the in-line and transverse displacements respectively, ζ is the

structural damping ratio, and m∗ is the mass ratio, given as:

m∗ =
m

md
, ζ =

c

2
√
km

, (2.5)

where m is the mass of the cylinders, md is the mass of displaced fluid, k is the structural

stiffness and c is the structural damping. The reduced velocity, Ur is defined as Ur =

U∞/(fnD), where fn is the structural natural frequency, U∞ is free stream flow velocity.

CD and CL are the drag and lift coefficients, respectively, computed by:

CD =
1

1
2U

2∞ρDL

∫

Γ

[(
−pI + µ

(
∇u + (∇u)T

))
· n
]
· nx dΓ (2.6)

CL =
1

1
2U

2∞ρDL

∫

Γ

[(
−pI + µ

(
∇u + (∇u)T

))
· n
]
· ny dΓ (2.7)

where Γ is the cylinders surface area, ρ is the fluid density, L represents spanwise

dimension of the cylinder, n is the unit vector normal to the cylinders surface, I is the

identity tensor. The fluid forces Fx and Fy acting in streamwise and transverse directions

are obtained by solving the flow Eqns. 2.1 and 2.2 coupled with structural Eqns. 2.3 and

2.4. The temporal integration of the dynamic equations is performed numerically using

Newmark - β algortihm.

3. Problem description

Problem definition sketch is presented in Figure 1. In the present study a piggyback

configuration of two cylinders with uneven diameters is investigated in a series of

simulations. The flow configuration considered consists of a uniform fluid stream with

velocity U∞, density ρ and viscosity µ. According to Leontini et al. (2007) the wake of

an oscillating cylinder in a uniform cross flow remains two dimensional for Re < 260

which is significantly higher than that of a stationary isolated cylinder at Re < 180. Due

to the oscillatory movement the correlation length in the spanwise direction is increased.

It is therefore expected that for Re = 200 the vortical structures remain effectively
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Figure 2: Schematic of a computational domain and imposed boundary conditions.

Dimensions are given in terms of large cylinder diameter D.

two dimensional and 2D simulations give realistic approximation of the flow problem.

Reynolds number based on the free stream velocity U∞ and diameter of the larger cylinder

D is kept constant at Re = 200 which corresponds to Re = 40 based on the diameter of

the smaller cylinder d. This allows to investigate the effects of vortex shedding from the

smaller cylinder as the critical value of Reynolds number at which vortex shedding occurs

is satisfied. The reduced mass of the two cylinders system coupled together is set to m∗

= 10. The cylinders are rigidly coupled and mounted on elastic supports free to undergo

transverse and streamwise vibrations. To encourage large amplitude of displacement, the

damping coefficient ζ is set to zero. The springs in both transverse and in-line directions

are assumed to be linear and homogeneous k = kx = ky. The effect of reduced velocity Ur

is investigated in the range from Ur = 3.0 to Ur = 9.0 with increments of 1, for α = 90◦

and α = 180◦ configurations. For the case of α = 0◦ the Ur range is extended and spans

from Ur = 3.0 to Ur = 12.0 in order to capture the extended lock-in regime. The value

of Ur is changed by changing the structural natural frequency. This is done by adjusting

the spring stiffness as described by:

fn =
1

2π

√
k

m
(3.1)

The diameter ratio between two cylinders is set to d/D = 0.2 reflecting typical value

encountered in the subsea piggyback pipelines. This diameter ratio was previously con-

sidered in the studies by Yang et al. (2013) and Zhao & Yan (2013).

3.1. Computational domain and boundary conditions

The present computational domain is established as a rectangular box, and the bound-

ary conditions imposed in all simulations are shown in Fig. 2. The center of the large
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cylinder is the origin of the coordinate system. The size of the whole computational

domain is 40D × 20D. In the crossflow direction, it extends from the rigid wall at the

bottom up to 20D. Setting domain width to 20D results in blockage equal to 5% which

does not affect significantly the flow around cylinder as suggested in Navrose & Mittal

(2013). The upstream distance extends 10D from the cylinder center and downstream

distance is set to 30D. Similar boundary locations were used in earlier works by Li et al.

(2016), Navrose & Mittal (2013), Prasanth & Mittal (2008) and has been proven to be

sufficient to eliminate the far field effects on the flow upstream and downstream of the

cylinder. It is believed that the selected domain boundaries have negligible influence on

the flow close to the cylinder in the present study. Surface of both of the cylinders is

assumed to be smooth, where no slip boundary is applied: ux = 0, uy = 0 where ux is

the velocity component in x-direction and uy is the velocity component in the y-direction.

The location of the moving boundary is calculated at each time step. At the inlet Dirichlet

conditions are imposed: ux = 1, uy = 0. Bottom wall is specified as a no slip boundary:

ux = 0, uy = 0. The top boundary is prescribed with the normal component of the

velocity and component of stress vector along the boundary equal to zero: ∂ux

∂y = 0,

ν = 0. At the outlet, the pressure and the normal gradients of the velocities are set to

zero: ∂ux

∂x = 0,
∂uy

∂x = 0, p = 0.

3.2. Grid and timestep convergence studies and code verification

Hybrid meshes composed of hexahedra and prisms are used. Figure 3 shows a typical

mesh of the computational domain for the α = 90◦ case. Meshes for other configurations

are similar. Details of the mesh near the cylinder surfaces are shown in Fig. 4. The

mesh topology can be divided into three regions: structured prism layers around the

cylinders surfaces, unstructured mesh in the box bounding cylinders and structured

background mesh. Mesh around cylinders can be defined using parameters Nik, Njk

which corresponds to the number of grid points in circumferential and radial directions

respectively. Subscript k = 1 corresponds to the large cylinder and k = 2 corresponds to

the small cylinder. Total number of cells in the domain is denoted Nt. The bounding box

around the cylinder and the background mesh are refined to capture the flow features close

to the cylinder and in the wake. Further away from the bounding box and wake refinement

region the mesh is gradually coarsened to decrease the computational cost. Two sets of

three meshes were prepared for the grid convergence study, one for α = 0◦ configuration

and one for α = 90◦ configuration. The number of cells Nik, Njk and Nt for each case

is summarized in Table 1. In order to ensure the mesh independence, computations are

performed with three different meshes (a coarse mesh M1, a medium mesh M2, and a fine

mesh M3) for two different cylinders configurations α = 0◦ and α = 90◦, at Re = 200 and

reduced velocity Ur = 5. At Ur = 5 large oscillation amplitudes are expected facilitating

comparison of hydrodynamic parameters obtained from the simulations. The time step

corresponding to the mesh resolution is set as ∆t = 0.002. Representative hydrodynamic
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Large cylinder Small cylinder

Mesh Ni1 Nj1 Ni2 Nj2 Nt

M1α=90 160 8 80 6 19758

M2α=90 320 10 120 8 44615

M3α=90 400 16 160 12 79662

M1α=0 160 8 80 6 19758

M2α=0 320 10 120 8 44615

M3α=0 400 16 160 12 79662

Table 1: Summary of cell distribution in the structured block around cylinders for

different meshes used in the convergence study.

Figure 3: A typical computational mesh with 44615 elements: computational domain

view.

(a) (b)

Figure 4: Mesh details: Close up view of the mesh around the cylinders (a). Details of

the mesh near the cylinders surface (b).
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force coefficients and cylinder responses undergoing free vibrations are used to asses

the convergence. The mean drag coefficient and mean lift coefficient are defined and

calculated as follows:

CL =
1

n

n∑

i=1

CL,i (3.2)

CD =
1

n

n∑

i=1

CD,i (3.3)

Root-mean-square values of drag coefficient and lift coefficient are calculated using

expressions:

CrmsL =

√√√√ 1

n

n∑

i=1

(CL,i − CL)2 (3.4)

CrmsD =

√√√√ 1

n

n∑

i=1

(CD,i − CD)2 (3.5)

The maximum vertical and root-mean-square horizontal amplitudes are given as:

(Ay)max
D

=
1

2

|(Ay)max − (Ay)min|
D

(3.6)

(Ax)rms
D

=

√
1
n

n∑
i=1

(Ax,i −Ax)2

D
(3.7)

The simulations are performed with time-step ∆t = 0.002 for total duration of τ = 500,

where τ , is non-dimensionalised time given by:

τ = tU/D (3.8)

The mesh parameters and corresponding representative hydrodynamic quantities ob-

tained from convergence study are given in Table 2, along with the percentage changes.

The differences between the results of solutions obtained on mesh M2 and mesh M3

are approximately within 1.5%. By considering the computational cost, meshes with

density similar to M2 are used for other simulations in the present study. Simulations

are performed using two different values of the time step in order to study the influence

of temporal resolution on the flow parameters. Quantified results of the time step study

are shown in Table 3. The difference in calculated mean drag coefficient using time step

∆t = 0.001 compared to the timestep ∆t = 0.002 is on both meshes smaller than 0.5%.

Root-mean-square lift coefficient values are slightly more sensitive to the timestep value

and differ by approximately 1% between ∆t = 0.001 and ∆t = 0.002. The maximum

transverse vibration amplitude is more sensitive to the timestep value change in the

α = 90◦ configuration and is approximately 1.3% lower when smaller timestep is used. In

the α = 90◦ configuration this difference is smaller and is equal to 0.35% when smaller

timestep is used. The Strouhal number appears to be insensitive to the timestep change in
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Mesh parameters: Hydrodynamic parameters:

Mesh variant Mesh density Cell count CD CrmsL St Aymax

M1α=0 Coarse 19758 1.734 0.7532 0.190 0.5124

M2α=0 Normal 44615 1.722 (0.69%) 0.7489 (0.57%) 0.190 (0%) 0.5066 (1.13%)

M3α=0 Fine 79662 1.712 (0.58%) 0.7442 (0.62%) 0.190 (0%) 0.4992 (1.46%)

M1α=90 Coarse 19758 2.886 0.4403 0.21 0.4669

M2α=90 Normal 44615 2.874 (0.41%) 0.4421 (0.41%) 0.21 (0%) 0.4589 (1.71%)

M3α=90 Fine 79662 2.854 (0.69%) 0.4431 (0.22%) 0.21 (0%) 0.4519 (1.52%)

Table 2: Flow past 2DoF cylinder near plane wall at Re = 200: effects of mesh resolution.

Other parameters of the simulations: ∆t = 0.002.

Mesh parameters: Hydrodynamic parameters:

Mesh variant Time step Cell count CD CrmsL St Aymax

M2α=0 ∆t = 0.002 44615 1.722 0.7489 0.190 0.5066

M2α=0 ∆t = 0.001 44615 1.724 (0.12%) 0.7416 (0.97%) 0.190 (0%) 0.5047 (0.35%)

M2α=90 ∆t = 0.002 44615 2.874 0.4421 0.21 0.4589

M2α=90 ∆t = 0.001 44615 2.860 (0.47%) 0.4369 (1.19%) 0.21 (0%) 0.4527 (1.35%)

Table 3: Flow past 2DoF cylinder near plane wall at Re = 200: effects of time-step. Other

parameters of the simulations: Mesh M2.

the investigated range. Considering the computational effort and small differences in the

calculated representative hydrodynamic quantities the timestep ∆t = 0.002 is selected

for other simulations in the present study. In the summary of the convergence studies

the mesh M2 with the timestep ∆t = 0.002 is considered to provide the best balance of

accuracy and computational efficiency.

Accuracy of selected numerical technique is assessed by comparison with the study by

Li et al. (2018) for the flow past a 2DoF single cylinder in a proximity of the plane wall. Li

et al. (2018) performed 2D simulations at Re = 200 using a rectangular domain with the

cylinder located at a distance of 10D from the inlet where the uniform flow was specified

and 30D from the outlet of the domain. The width of the domain was set to 20D. Mesh

of a near-wall single cylinder used in the comparison study is qualitatively similar to the

mesh M2 shown in Fig. 3. The results of normalized maximum transverse displacement

AY,max/D and root-mean-square normalized streamwise displacement AX,rms/D are in

a good agreement with the results reported by Li et al. (2018) shown in Fig. 5. Similarly

values of mean drag coefficient CD and root-mean-square lift coefficient CrmsL presented

in Fig. 6 reach fairly good match compared with Li et al. (2018). It appears that the

present numerical approach is suitable for studying the VIV of a two cylinders with

uneven diameters in the vicinity of a horizontal plane wall.
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Figure 5: Validation study: Non-dimensional maximum amplitude of cross flow vibration

AY,max/D and non-dimensional root-mean-square in-line displacement AX,rms/D

against reduced velocity at Re = 200.
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Figure 6: Validation study: Mean lift coefficient CL and mean drag coefficient CD against

reduced velocity at Re = 200.

4. Results and Discussion

Each simulation is carried out for τ = 500 in order to obtain sufficiently long pe-

riod of repetitive vibration pattern. Normalized maximum displacement in y-direction

(AY,max/D) and normalized root-mean-square displacement in x-direction (AX,rms/D),

mean lift coefficient (CL), mean drag coefficient (CD), root-mean-squared lift coefficient

(CrmsL ) and root-mean-squared drag coefficient (CD
rms) are extracted and calculated in

each simulation case from a dimensionless time range τ = (250− 500), ensuring that at

least 20 cycles of vertex shedding are covered.

4.1. Analysis of the amplitude response

Figure 7 presents the normalized displacements in transverse direction AY,max/D

and root-mean-squared normalized displacement in streamwise direction AX,rms/D.

The lock-in range can be easily identified in all analyzed cases. The present shape

of the prdeicted response curves is typical for low mass ratio and low Re vortex-
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Figure 7: Non-dimensional maximum amplitude of cross flow vibration AY,max/D

and non-dimensional root-mean-square in-line displacement AX,rms/D against reduced

velocity at Re = 200.

induced vibrations as reported in Williamson & Govardhan (2004). Two branches can

be distinguished in the lock-in at the low Reynolds number and the low mass ratio.

The initial branch where the amplitude reaches its highest value is characterized by the

phase angle (φCL−Y ) between the hydrodynamic lift force coefficient and the transverse

displacement close to 0◦ and lower branch with decaying amplitude of vibration is

characterized by φCL−Y close to 180◦. The maximum amplitude observed in simulations

is close to 0.6D which is a typical value encountered in other studies on VIV with

similar settings. In the α = 90◦ configuration the lock-in range is approximately the

same as in the single cylinder case, covering approximately values of reduced velocity

4 6 Ur 6 6. The peak transverse amplitude in α = 90◦ configuration is very close to the

maximum transverse amplitude of the single cylinder. The streamwise normalized root-

mean-square vibration amplitude is however smaller than that of the single cylinder. In

case of the tandem arrangement with the small cylinder placed upstream of the large

cylinder (α = 180◦) the transverse response is generally smaller but the streamwise

response is markedly larger with a peak in AX,rms/D occurring at Ur = 4. The lock-in

range is narrower than the critical values identified in the single cylinder case and the

case of α = 90◦ and is expected between 4 6 Ur 6 5. The most evident influence on the

amplitude response as compared to the single cylinder case is exhibited in the α = 0◦

case. The lock-in range in this case is significantly extended to 4 6 Ur 6 12. The peak

occurrence of the peak in AY,max/D is shifted to Ur = 6 with slightly lower magnitude

than the peak value observed in the single cylinder case. The AX,rms/D exhibits similar

extended range but the peak magnitude is approximately 50% smaller than that of the

single cylinder case.
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4.2. Hydrodynamic coefficients

For the single cylinder oscillating near wall, the mean lift coefficient, as opposed to free

stream case, is non zero due to the break of symmetry in the wake caused by the wall

presence. There is a significant increase in CL in the lock-in region with a peak at reduced

velocity Ur = 4 which can be seen in Fig. 8. The peak in CL is correlated with the peak

in cross-flow vibration amplitude which was discussed in the amplitude response. It is

apparent that the position angle of the small cylinder has a strong influence on the mean

lift coefficient. In the α = 0◦ arrangement CL is noticeably lower than in single cylinder

case with the peak value shifted to Ur = 5. In the α = 180◦ configuration the CL is close

to 0.1 for all investigated Ur values. For stacked arrangement (α = 90◦) the CL values are

negative in all Ur investigated except for the Ur = 4 which coincides with the peak in the

amplitude response. In this case mean lift coefficient is positive with a value close to 0.1.

It is worth to note that the direction of the lift force in the α = 90◦ is dependent on the

Re. Negative values in the present study are in line with the findings of Kalghatgi & Sayer

(1997) who reported negative values of CL in the subcritical regime and positive values

of CL in the critical regime. Mean drag coefficient is elevated in the synchronization

range in all analyzed cases. The highest value of the drag coefficient is obtained in the

stacked arrangement (α = 90◦) with a peak value occurring at Ur = 5. When the small

cylinder is placed upstream of the large cylinder the mean drag coefficient values are

lower outside the lock-in regime than in the single cylinder configuration. When α = 0◦

the system behaves like a streamlined body. When the oscillations reach a peak value

at Ur = 4, the CD is close to that of a peak value for the single cylinder case. When

the small cylinder is placed downstream the CD is markedly lower in the lock-in range

(4 6 Ur 6 6) with a peak occurring at Ur = 4 which is approximately 50% of the values

noted in the single cylinder and the α = 180◦ cases. Figure 9 shows variation in the CrmsL

and the CrmsD . The peak values for the single cylinder case, the α = 90◦ case and the

α = 0◦ case occur at Ur = 4. The peak value for the α = 90◦ case is substantially higher.

There is also a sharp drop in the CrmsL observed in this configuration, after the transition

from the initial branch to lower branch of the lock-in. Similar drop is also noted in the

single cylinder configuration. The α = 0◦ case displays more gradual decrease in CrmsL

with increasing Ur. No major fluctuations in CrmsL are spotted when the small cylinder is

located upstream of the large cylinder. In contrast CrmsD peak value in this configuration

is close to a peak value obtained in the single cylinder case. Similar to CrmsL behavior,

CrmsD in the α = 0◦ case is characterized by a lower peak value than in the single cylinder

configuration and extended decay range of the CrmsD .

4.3. Analysis of vibration frequency

Figure 10 and Figure 11 present the ratio of the transverse vibration frequency f and

the natural frequency fN of the stystem. Reference lines corresponding to the Strouhal’s

relation and a horizontal line at a frequency ratio f/fN = 1 are given in Fig. 10 and
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Figure 8: Mean lift coefficient CL and mean drag coefficient CD against reduced velocity

at Re = 200.
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Figure 9: Root-mean-square lift coefficient CrmsL and root-mean-square drag coefficient

CrmsD against reduced velocity at Re = 200.

Fig. 11 for better interpretation of the results. Figures 10 and 11 show that the lock-in

phenomenon is easy to discern by inspecting the behavior of the frequency ratio, which

in the synchronization range diverges from following the Strouhal’s relationship and

tends towards the unity. In Fig. 10(a) for the single cylinder configuration it is clearly

visible that the lock-in occurs when 3.8 6 Ur 6 6. Figure 10(b) shows the frequency

characteristic for the α = 0◦ case. The extended lock-in range is evidently spanning from

Ur = 4 to Ur = 12, this is in accordance with the observations made in the response

analysis. When the small cylinder is placed upstream of the large cylinder the lock-in

range is narrowing and after the desynchronization the frequency of a structural vibration

falls back to following the Strouhal’s relation. This can be clearly seen in Fig. 11(b). In

the α = 90◦ case with the small cylinder directly above the large cylinder (see Fig.11(a))

the Strouhal number is slightly lower (St = 0.19) than that in the single cylinder case,

the α = 0◦ case and the α = 180◦ case, which is equal to St = 0.21 respectively. The

reason of the Strouhal number reduction in the α = 90◦ configuration is twoflod. Firstly

the presence of the small cylinder increases the transverse dimension of the system.
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(b) Piggyback configuration α = 0◦.

Figure 10: Response frequencies as a function of reduced velocity Ur at Re = 200.
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(b) Piggyback configuration α = 180◦.

Figure 11: Response frequencies as a function of reduced velocity Ur at Re = 200.

Secondly it is influenced by the gap flow between the small and the large cylinders which

is interacting with the wake delaying the vortex formation.

4.4. Motion trajectories

The X − Y trajectories extracted from the simulation time τ = 250 − 500 are shown

in Fig. 12 - 15. In the near wall placement the ”figure eight” oscillation pattern , known

from an isolated cylinder vibration studies, is replaced by a skewed oval trajectory. The

shape of the skewed oval was also reported by Li et al. (2016) and Tham et al. (2015).

The reason of a change in the vibration trajectory is the suppression of the counter-

clockwise vortices shed from the bottom of the cylinder which are interacting with the

horizontal plane wall boundary layer. This suppression mechanism is in turn the cause

of the stream-wise frequency lock-in and large amplification of the streamwise response.

Both the single cylinder case and the investigated coupled configurations exhibit similar

regular oscillation pattern. It is observed that the trajectories in the single cylinder case
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(a) Ur = 3 (b) Ur = 4 (c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

Figure 12: X − Y trajectories: single near-wall cylinder at Re = 200.

(a) Ur = 3 (b) Ur = 4 (c) Ur = 5 (d) Ur = 6

(e) Ur = 9 (f) Ur = 10 (g) Ur = 11 (h) Ur = 12

Figure 13: X − Y trajectories: Piggyback configuration α = 0◦ at Re = 200.

vibration captured at Ur = 4, Ur = 6.5 and the α = 0◦ case at Ur = 10 − 12 are more

chaotic than in other ivestigated Ur. The chaotic fluctuations in the cylinder trajectories

can be attributed to the shedding mode switching mechanism as mentioned by Li et al.

(2016). Across the critical value of Ur between the pre-lock-in and lock-in, the cylinder

vibration mode transitions from the wake mode (weak interaction) to a combined wake

and structure mode (strong interaction). This results in a chaotic vibration pattern. Less

pronounced instabilities occur during densynchronization when switching back to the

weak interaction occurs.
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(a) Ur = 3 (b) Ur = 4 (c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8 (g) Ur = 9

Figure 14: X − Y trajectories: Piggyback configuration α = 90◦ at Re = 200.

(a) Ur = 3 (b) Ur = 4 (c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8 (g) Ur = 9

Figure 15: X − Y trajectories: Piggyback configuration α = 180◦ at Re = 200.

4.5. Phase differences

Phase difference between the hydrodynamic force and the corresponding displacement

response can be associated with the direction of the energy transfer in the system. Figure

16 shows the phase portraits of the cylinder transverse displacement Y/D against the

lift coefficient CL for the investigated range of reduced velocities. Trace position in the

first and third quadrant is indicative of an in-phase relation between the displacement

and the hydrodynamic force. As the phase portrait transitions to the second and fourth

quadrant this relation becomes out of phase. Comparing the phase portraits with the

response plots (Fig. 7) one can relate the shift in the phase from 0◦ to 180◦ with the shift
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Figure 16: Phase pictures of CL and cross-flow displacement Y/D of a single near-wall

cylinder.

from the initial to the lower branch of the lock-in regime. Looking at the phase picture

of the α = 90◦ case (Fig. 18) it stands out that φCL−Y is approximately equal to 0◦ in

pre-lock-in state extending to the onset of the lock-in (Fig. 18(a) and Fig. 18(b)). The

phase switches then suddenly to 180◦ at Ur = 5 (Fig. 18(c)) corresponding to transition

from the initial branch to the lower branch. The vibration amplitude is still enhanced

in the lower branch despite the fact that the energy is dissipated by the fluid after the

phase switch. Interesting phenomenon can be identified in the α = 180◦ case which is

shown in Fig. 19. After the phase switch and desynchronization which takes place at

Ur = 6 the lift force and the transverse displacement switch back to in-phase state again

at Ur = 7. Zhao & Yan (2013) found that for lower mass ratio m∗ = 2 systems this effect

can lead to multi-lock-in with two distinct peaks in the response curve. In the present

study however, for the α = 180◦ configuration with the mass ratio m∗ = 10 the response

is not enhanced significantly.

4.6. Frequency characteristics

Time histories covering dimensionless time τ = 450−500 of the transverse and stream-

wise displacements and hydrodynamic coefficients at representative reduced velocities are

displayed for each position angle and for the single cylinder configuration in Fig. 20 -

Fig. 23. Fast Fourier Transform (FFT) analysis is used to compute the frequency power

spectra of the hydrodynamic forces CD, CL, and the displacement time histories Y/D,

X/D in dimensionless period τ = 250 − 500. The transverse and stream-wise vibration

frequencies in all considered cases coincide, which is in accordance with the observed

images of the oval motion trajectories. The single exception is the α = 90◦ case at

Ur = 3. In this instance the streamwise displacement frequency is twice the transverse
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Figure 17: Phase pictures of CL and cross-flow displacement Y/D of a piggyback

configuration α = 0◦.
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Figure 18: Phase pictures of CL and cross-flow displacement Y/D of a piggyback

configuration α = 90◦.

vibration frequency resulting in the trajectory similar to that of the single isolated

cylinder. Pre-lock-in range and the initial branch of the lock-in can be characterized

by a single dominant frequency in the temporal response of the lift force. At the onset

of the lock-in the shedding frequency is tuned in to the natural frequency of the system.

This behavior can be observed at Ur = 4 in all considered cases (Fig. 20(b), Fig. 21(b),

Fig. 22(b), Fig. 23(b)). The drag force temporal response in the initial branch in the

single cylinder case and in the α = 0◦ and α = 180◦ configurations is characterized
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Figure 19: Phase pictures of CL and cross-flow displacement Y/D of a piggyback

configuration α = 180◦.

by a dominant frequency at second harmonic corresponding to twice the frequency of a

transverse displacement. In the α = 90◦ configuration there are multiple harmonics in

the temporal response of the drag force with dominant frequency synchronized with the

stream-wise vibration frequency. In the lower branch the second harmonic contribution

in the temporal response of the lift force becomes enhanced. This can be observed in the

spectra of the single cylinder case (Fig. 20(c)), in the α = 90◦ case (Fig. 22(c)) and in

the α = 0◦ case (Fig. 21 (e),(f)). After the desynchronization the dominant frequencies

of the vibration response become the same as the hydrodynamic forces frequencies. The

beating vibration is found in the single cylinder case at the onset of the initial branch

of the lock-in at Ur = 4 (Fig. 20(b)) and during the desynchronization at Ur = 6.5 (Fig.

20(e)). In the α = 0◦ case the beating oscillations are found at Ur = 10 and Ur = 11

(Figure 21(f)). The chaotic fluctuations of the hydrodynamic forces are the outcome of

a change in the balance between two different vorticity production mechanisms, namely

between the pressure gradient and motion-induced vorticity production. For the other

investigated reduced velocities the vibration time history is regular.

4.7. Analysis of vortex shedding

In order to elucidate the qualitative differences in the time histories of the hydro-

dynamic forces and the structural responses between different position angles the flow

features are analyzed. Vorticity and pressure contours at selected time instants (τ =

490− 500) and reduced velocities Ur are used for that purpose. First the influence of the

bottom boundary layer is discussed based on the flow field around the single cylinder

in the initial branch of the lock-in regime at Ur = 4. This situation is shown in Fig.

24. Presented vorticity and pressure contours correspond to the time instants when the
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Figure 20: Temporal variations of cross-flow displacement (Y/D), streamwise

displacement (X/D), lift coefficient (CL) and drag coefficient (CD) with corresponding

FFT spectra at selected reduced velocities Ur. Single cylinder at Re = 200.

amplitudes of the forces and displacements are the largest. The cross marker indicates

the initial location of the cylinder center. It is evident that the proximity of the horizontal

wall significantly affects the vortex shedding of the cylinder by breaking the symmetry

of the wake. Both drag and lift forces are in phase with the transverse and stream-wise
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Figure 21: Temporal variations of cross-flow displacement (Y/D), streamwise

displacement (X/D), lift coefficient (CL) and drag coefficient (CD) with corresponding

FFT spectra at selected reduced velocities Ur. Piggyback configuration α = 0◦ at

Re = 200.

displacements in this instance as indicated by the time history plot in Fig. 24(a). The net

energy transfer from the fluid to the structure is positive, resulting in a large amplitude

of transverse vibration. The mechanism of the bottom shear layer roll up can be observed

99



23

450 460 470 480 490 500

1.9

2

2.1

2.2

2.3

0.03

0.032

0.034

0.036

0.038

0.04

0.042

450 460 470 480 490 500

-1.5

-1

-0.5

0

0.5

-0.03

-0.02

-0.01

0

0.01

0.02

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15 f
drag

f
disp. x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
f
lift

f
disp. y

(a) Ur = 3

450 460 470 480 490 500

1.5

2

2.5

3

3.5

4

0

0.05

0.1

0.15

0.2

450 460 470 480 490 500

-2

0

2

4

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6 f
drag

f
disp. x

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
lift

f
disp. y

(b) Ur = 4

450 460 470 480 490 500

2

2.5

3

3.5

4

4.5

0.05

0.1

0.15

0.2

0.25

0.3

450 460 470 480 490 500
-1.5

-1

-0.5

0

0.5

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6
f
drag

f
disp. x

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

f
lift

f
disp. y

(c) Ur = 5

450 460 470 480 490 500

2

2.2

2.4

2.6

2.8

0.1

0.15

0.2

450 460 470 480 490 500

-1

-0.5

0

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3
f
drag

f
disp. x

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6
f
lift

f
disp. y

(d) Ur = 6

450 460 470 480 490 500

1.9

2

2.1

2.2

2.3

2.4

0.18

0.19

0.2

0.21

450 460 470 480 490 500

-1

-0.5

0

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2
f
drag

f
disp. x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6 f
lift

f
disp. y

(e) Ur = 7

450 460 470 480 490 500

1.9

2

2.1

2.2

2.3

2.4

0.24

0.245

0.25

0.255

0.26

450 460 470 480 490 500
-1.5

-1

-0.5

0

-0.1

-0.05

0

0.05

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

f
drag

f
disp. x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6
f
lift

f
disp. y

(f) Ur = 8

Figure 22: Temporal variations of cross-flow displacement (Y/D), streamwise

displacement (X/D), lift coefficient (CL) and drag coefficient (CD) with corresponding

FFT spectra at selected reduced velocities Ur. Piggyback configuration α = 90◦ at

Re = 200.

in the sequence of vorticity snapshots (Fig. 24(b),(d),(f),(h)). The anti-clockwise vortex

shed from the bottom surface of the cylinder (B1) forces the boundary layer to roll-up

(C1). In Fig. 24(b) the clockwise vortex shed from the upper cylinder surface (A1) is
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Figure 23: Temporal variations of cross-flow displacement (Y/D), streamwise

displacement (X/D), lift coefficient (CL) and drag coefficient (CD) with corresponding

FFT spectra at selected reduced velocities Ur. Piggyback configuration α = 180◦ at

Re = 200.

coalescing with the clockwise vortex formed from the rolled-up bottom wall boundary

layer (C1). This interaction reinforces the clockwise vortices shed from the top surface of

the cylinder and weakens the anticlockwise vortices shed from the bottom surface of the

101



25

cylinder. The suppression of the counter-clockwise vortices shed from the bottom of the

cylinder is the reason of matched vibration frequencies in the streamwise and transverse

directions. This in turn leads to a streamwise frequency lock-in and is the root cause

of a significantly increased streamwise oscillations. Large amplitude of vibration further

amplifies this mechanism by immersing the cylinder deeper in the bottom wall boundary

layer (Fig. 24(b)).

In Fig. 25 the α = 90◦ configuration with the small cylinder placed on top of the large

cylinder is investigated at Ur = 4. The mean drag coefficient is significantly increased

due to the increased area exposed to the incoming flow. The biggest difference between

the single cylinder configuration and analyzed side by side configuration is unveiled in

the lift coefficient characteristics. It is believed that the variation of the CL and the CrmsL

stems from the interaction of vortex shedding from the large and from the small cylinder.

Figures 25(b) - (g) show development of the wake with the distinct flow features caused

by the presence of the small cylinder. The variation in the lift and drag forces is closely

related to the evolution of the vortical structures near the large cylinder body. The anti-

clockwise vortex shed from the bottom of the large cylinder (B4) is interacting with the

bottom boundary layer resulting in the boundary layer roll-up (C2). This mechanism is

analogous to the one presented in the single cylinder case. However, presence of the small

cylinder introduces another anti-clockwise vorticity (B2) which is amalgamating with the

the anti-clockwise vortical structure generated at the back of the large cylinder (B3) (Fig.

25(a) and (b)). It is then deflected upwards delaying the interaction between the shear

layers separating from the both sides of the coupled cylinders (A2) and (B4). This is the

reason of a lower dominant frequency of the drag force identified in the spectral analysis

(Fig. 22(b)).

Figure 26 shows the flow fields at selected time instants of the oscillation cycle for the

α = 90◦ configuration at Ur = 5. The structure is in a lower branch of the lock-in regime

and the the lift force and the transverse displacement are in this case out of phase. The

near-wake structure shown in Fig. 25 is clearly different than that for the Ur = 4. It

can be characterized by markedly wider vortex street. The wake is qualitatively similar

to that of the single cylinder at Ur = 4. Large difference in the pressure field between

flows at Ur = 4 and Ur = 5 is clearly visible. Explanation of the significant drop in the

mean lift coefficient value can be found by analyzing pressure filed development during

the shedding cycle. The large negative pressure zone (P1) is developed on the back side

of the large cylinder. The reason is the anti-clockwise vortex shed from the bottom of

the large cylinder (B4) which stays attached to the back side of the large cylinder for a

longer time (Fig. 26(b)) compared to the case at Ur = 4 (Fig. 25(b)).

Figure 27 presents the time histories of the displacements, hydrodynamic coefficients

and flow features of the single cylinder at Ur = 6. The structural vibration is outside of

the lock-in regime. The lift force is 180◦ out of phase with the transverse displacement and

the vibration amplitude is very small. In Fig. 28 the α = 0◦ configuration flow fields and
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Figure 24: Time histories of displacements Y/D, X/D and hydrodynamic coefficients CL,

CD. Vorticity contours (left column) and pressure contours (right column) at selected

time instances (b)-(i). Single cylinder at Ur = 4, Re = 200.
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Figure 25: Time histories of displacements Y/D, X/D and hydrodynamic coefficients CL,

CD. Vorticity contours (left column) and pressure contours (right column) at selected

time instances (b)-(c). Piggyback configuration α = 90◦ at Ur = 4, Re = 200.

time histories at Ur = 6 are shown. Transverse displacement amplitude is markedly larger

than that at Ur = 6 in the single cylinder case, indicating frequency lock-in. Placement

of the small cylinder downstream the large cylinder widens the reduced velocity lock-

in regime significantly. This behavior can be attributed to the increase in the vortex

formation length. This in turn leads to the shift in phase between the lift force and the
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Figure 26: Time histories of displacements Y/D, X/D and hydrodynamic coefficients CL,

CD. Vorticity contours (left column) and pressure contours (right column) at selected

time instances (b)-(g). Piggyback configuration α = 90◦ at Ur = 5, Re = 200.

streamwise vibration thus the positive net energy transfer from the fluid to the structure

is maintained over wider range of reduced velocities exciting large amplitude oscillations.
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Figure 27: Time histories of displacements Y/D, X/D and hydrodynamic coefficients CL,

CD. Vorticity contours (left column) and pressure contours (right column) at selected

time instances (b)-(g). Single cylinder at Ur = 6, Re = 200.
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Figure 28: Time histories of displacements Y/D, X/D and hydrodynamic coefficients CL,

CD. Vorticity contours (left column) and pressure contours (right column) at selected

time instances (b)-(c). Piggyback configuration α = 0◦ at Ur = 6, Re = 200.
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5. Concluding remarks

Two-dimensional numerical study of vortex-induced vibrations of two circular cylinders

with uneven diameters at a low Reynolds number of Re = 200 near a horizontal plane

wall is carried out. Constant mass ratio m∗ = 10, gap ratio e/D = 0.9 and spacing

ratio between the cylinders G/D = 0.1 is maintained. The study is focused on the

influence of the position angle of the small cylinder on the lock-in regime. Position of

the small cylinder is varied between the three angles relative to the main cylinder center

line (α = 0◦, α = 90◦, α = 180◦). The cylinders diameter ratio d/D is set to a typical

value encountered in the offshore subsea piggyback flow-lines d/D = 0.2. The conclusions

drawn from the study are summarized as follows:

(i) The wall proximity effect is similar in both the single cylinder and the investigated

coupled cylinders arrangements. At a selected gap ratio e/D = 0.9 in all investigated

cases the bottom boundary layer roll-up is responsible for the suppression of the vortex

shedding from the bottom surface of the large cylinder. This suppression mechanism leads

to the reduction of the streamwise vibration frequency by half and largely enhances

streamwise oscillation amplitude. Observed vibration patterns are in the form of the

skewed oval.

(ii) The response of the coupled cylinders is widened significantly compared to the

single cylinder configuration when the small cylinder is located downstream of the large

cylinder. The lock-in regime when the α = 0◦ is identified in the range of 4 6 Ur 6 12.

The mechanism of the increased vortex formation length and the delay in the phase switch 

between the lift force and transverse displacement are induced in this configuration. On 

the contrary, placing the small cylinder upstream of the large cylinder is an effective way

of reducing the structural response. In the α = 180◦ configuration the lock in range is

the smallest among all analyzed arrangements. Upstream interference due to the small 

cylinder presence results in the weaker interaction between the shear layers shed from the

two sides of the large cylinder. When located at α = 90◦ the effect of the small cylinder is

manifested by an increased mean drag and switch in the direction of the lift force. Except 

at the peak vibration value of Ur = 4 the force acting on the pipeline is directed towards

the horizontal plane wall. Analysis in the frequency domain using FFT shows that in the 

initial branch of the lock-in dominating frequencies of hydrodynamic coefficients are close 

to the natural frequency of the system. When the phase switch occurs beating oscillations 

are reported  and  the  harmonic content of the displacement signal is enhanced by 

superharmonics at double and triple the fundamental excitation frequency.
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CHAPTER 6

TWO DEGREE-OF-FREEDOM NEAR WALL
VIV IN UPPER TRANSITION REGIME

The present chapter describes the convergence studies and validation of a numerical

model based on URANS approach to study the VIV in the upper transition regime. The

turbulence closure used in the simulations is the k-ω SST model by Menter (1994) avail-

able in OPENFOAM. The numerical model is then used to study the flow around a single

cylinder and three different configurations of two coupled cylinders with uneven diame-

ters at a gap ratio e/D = 2 near the horizontal plane wall. A discussion on the observed

response amplitudes, hydrodynamic forces and, flow features is given.

6.1 Computational Domain and Boundary Conditions

Problem definition sketch is presented in Fig. 6.1. In the present study, a rectangular

computational domain is established with dimensions of 30D by 10D. The cylinder

center is located at a distance of 10D from the inflow and 20D from the outflow. The

upper boundary is located at a distance 8.5D from the cylinder center, the bottom wall

is located 1.5D from the cylinder center. Therefore, the gap-to-diameter ratio (e/D) is

equal to one. The boundary layer thickness δ of the inflow is expressed in terms of the

nondimensional boundary layer to diameter ratio (δ/D) and is set to δ/D = 0.48. The
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domain settings which were previously used in Ong et al. (2010) and Ong et al. (2012),

are considered to be sufficient to eliminate the far field effects associated with the inflow,

outflow and top boundaries proximity.

Figure 6.1: Schematic of a computational domain and imposed boundary conditions.
Dimensions are given in terms of large cylinder diameter D.

1. The boundary layer flow profile is specified at the inlet using following expressions

for u, k, and ω:

u1(y) = min

[
u∗
κ

ln

(
y

zw

)
, U∞

]
(6.1)

u2(y) = 0 (6.2)

k(y) = max

[
C−1/2
µ

(
1− y

δ

)2
u2
∗, 0.0001U2

∞

]
(6.3)

ω(y) = max
k(y)1/2

β∗1/4`(y)
(6.4)

`(y) = min

[
κy
(

1 + 3.5
y

δ

)−1
, Cµδ

]
(6.5)

where y is the wall-normal direction starting from the bottom as illustrated in Fig.

6.1; ` is the estimated turbulent length scale; Cµ = 0.09 is the model constant;

κ = 0.41 is the von Kármán constant; u∗ is the friction velocity expressed as

u∗ =
κU∞

ln
(
δ
zw

) (6.6)
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U∞ denotes the free stream velocity; zw = 1× 10−6 m is the imposed seabed rough-

ness.

2. At the outlet of the domain u, k and ω are prescribed with "zero gradient" condition,

meaning that convective fluxes and normal stresses are set to zero. The reference

pressure p = 0 is set along the boundary.

3. The top boundary is prescribed with the "symmetry" boundary condition which sets

the normal component of u, k and ω to zero.

4. On the bottom and on the cylinder wall a "no slip" condition is imposed with u1 = 0

and u2 = 0. Standard wall functions are applied for k and ω

k =
u2
∗√
Cµ

(6.7)

ω =

√
k

C
1/4
µ κhp

(6.8)

where hp is the radial distance from the wall to the first cell center. The friction

velocity u∗ in equation 6.8 is evaluated using log law expression

utan
u∗

=
1

κ
ln

(
hp
zw

)
(6.9)

where utan is the flow velocity tangential to the wall.

The Reynolds number based on the free stream velocity U∞, diameter of the larger cylin-

der D and kinematic viscosity ν is kept constant at Re = 3.6× 106.

6.1.1 Convergence Studies

Structured meshes composed of hexahedral cells are used. Figure 6.2 shows typical

mesh of the computational domain with 76364 cells. Mesh around the cylinders can be

defined using parameters Nc and Nr which corresponds to the number of grid points

in circumferential and radial directions around the cylinder surface respectively. Nb

denotes the number of grid points in the radial direction in the refinement box around the

cylinder as shown in the close-up view in Fig. 6.2. A total number of cells in the domain is

denotedNt. The bounding box around the cylinder and the background mesh are refined

to capture the flow features close to the cylinder and in the cylinder’s wake. Further away

the background mesh is coarsened to decrease the computational cost. The convergence

studies are carried out in two steps. In the first step, a series of simulations of a single

cylinder with a fixed position above the horizontal plane wall is carried out. The results
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are used to assess the required grid density and time step and the effects of the mesh

motion on the results are excluded. The main aim is to establish appropriate mesh

spacing in the near-wall regions where the wall function modeling is used. The results

from the static mesh study are also used to validate the computational setup used against

other published experiments and simulations in upper transition regime. Mesh density

is then reevaluated to account for the effects of the mesh motion. Time step sensitivity

is carried out based on the desired maximum Courant number. Adjustable time step

capability of the PIMPLE solver is engaged for that purpose. This approach is selected

due to the mesh deformation which is a consequence of the motion solver. In case of

large displacements there are mesh regions where the cell size can vary considerably

compared to the initial state, therefore the Courant number is also affected. Compared

to the fixed time step the adjustable time step approach is more suitable to study the

effects of the temporal discretization in a class of problems involving mesh movement

and was previously employed by Wen and Qiu (2017). Two sets of four meshes are

prepared for the grid convergence study. In the first set, the parameter studied is the

height of the first cell layer. The overall mesh density is kept constant here with cell

count equal 76364 (mesh M3). Second mesh set is used to study the effect of mesh

density. It contains four meshes where grid cell count of the meshes is varied using

constant refinement factor preserving geometric similarity. Parameters of the meshes

used are summarized in Table 6.1. The time step used in grid convergence study with

a fixed cylinder position is kept constant at ∆t = 0.001D/U∞, ensuring that Courant

number defined as Co = U∆t/∆x is less than one. Firstly the effect of the distance to

Table 6.1: Summary of cell distribution parameters of the meshes used in the conver-
gence study.

Mesh Nc Nr Nb Nt

M1 180 30 20 18886

M2 270 45 30 41754

M3 320 60 40 76364

M4 450 75 50 117648

Table 6.2: Convergence study: Static cylinder, effects of the first cell layer height. Other
parameters of the simulations: Re = 3.6× 106, e/D = 1, Mesh M3.

Mesh parameters: Hydrodynamic parameters:

Mesh Time step First cell height ∆y1 CD CL max. y+ avg. y+

M3A ∆t = 0.001 0.0007 D 0.4778 (3.72%) 0.0445 (9.21%) 98.40 50.54

M3B ∆t = 0.001 0.0006 D 0.4705 (2.23%) 0.0425 (4.94%) 84.85 43.73

M3C ∆t = 0.001 0.0005 D 0.4610 (0.21%) 0.0404 (0.00%) 69.40 38.34

M3D ∆t = 0.001 0.0004 D 0.4600 (-) 0.0404 (-) 56.86 29.65



COMPUTATIONAL DOMAIN AND BOUNDARY CONDITIONS 115

Figure 6.2: Computational mesh details - mesh M3, 76364 cells.

the first cell center is evaluated. The results are presented in Table 6.2. The y+ is defined

here as y+ = hpu∗/ν. Relative percentage change between consecutive simulations is

given in the brackets. The difference in obtained results between the two smallest cell

heights M3D ∆y1 = 0.0004D and M3C ∆y1 = 0.0005D is negligible and the maximum

and average y+ values are within the range appropriate for the wall function use. In the

two other cases, a significant variation in the lift and drag forces is observed. Therefore

the first cell height is established as ∆y1 = 0.0005D and the first cell layer adjacent to

the walls is kept constant in the following grid density study.

To evaluate the effect of the grid density, meshes with different cell count are com-

pared. The mesh parameters and corresponding representative hydrodynamic quantities

obtained from the convergence study are given in Table 6.3, along with the percentage

changes between the consecutive simulations. The differences between the results of

solutions obtained on mesh M3 and mesh M4 are in general smaller than 1%, similar

results are obtained with mesh M2 with the exception of root-mean-square value of lift

coefficient which is particularly sensitive to the mesh resolution. In that case, the dif-

ference between CrmsL on mesh M2 and mesh M3 is higher than 5%. On the coarsest

mesh, the numerical results diverge by more than 5% as compared to mesh M2. Consid-

ering the computational cost the mesh M3 is selected to conduct the further study and is

expected to be sufficiently accurate.

Results of the simulations with motion solver engaged are summarized in Table 6.4 and

Table 6.5. The reduced velocity is set to Ur = 6 where a large amplitude of oscillation is

expected. Gap ratio is extended from e/D = 1 to e/D = 2. This is done to prevent the
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Table 6.3: Convergence study: Static cylinder, effects of the grid density. Other param-
eters of the simulations: Re = 3.6× 106, e/D = 1.

Mesh parameters: Hydrodynamic parameters:

Mesh Time step Cell count CD CL Crms
L St

M1 ∆t = 0.001 18886 0.4406 (-4.82%) 0.0442 (9.28%) 0.196 (14.29%) 0.324 (-7.10%)

M2 ∆t = 0.001 41754 0.4624 (0.13%) 0.0405 (0.99%) 0.178 (5.62%) 0.342 (-1.46%)

M3 ∆t = 0.001 76364 0.4610 (-0.17%) 0.0404 (0.74%) 0.169 (0.59%) 0.347 (0.0%)

M4 ∆t = 0.001 117648 0.4618 (-) 0.0401 (-) 0.168 (-) 0.347 (-)

oscillating cylinder from hitting the horizontal wall at the bottom of the domain. One of

the limitations of the mesh motion solver is the necessity to provide sufficient distance

around the body where the mesh morphing algorithm is active. The large amplitude of

motion requires large morphed mesh distance to accommodate the moving boundaries

displacements. Time step is adjusted on every outer loop iteration of the PIMPLE solver

and is constrained to a maximum value of Courant number Comax = 0.5. Compared to

the static simulations results it is apparent that simulations with the mesh motion solver

are more sensitive with respect to the mesh density and quality. The results summarized

in Table 6.4 seem to support the selection of the mesh M3 as sufficiently accurate for

the present study. All of the investigated parameters differ less than 2% from the values

obtained on the finest mesh M4. The largest differences occur in the CrmsL values. Results

from the time step sensitivity study are presented in Table 6.5. Mesh M3 is used in the

simulations, at Ur = 6. When the maximum Courant number is set higher than 1 the

solution is not converging as indicated in Table 6.5. Discrepancies between the two finest

settings at Comax = 0.25 and Comax = 0.5 are well below 1%. Based on the results from

the convergence studies mesh M3 and time step restricted to Comax = 0.5 are considered

to give sufficient numerical accuracy.

Table 6.4: Convergence study: Vibrating cylinder, effects of the grid density. Other
parameters of the simulations: Re = 3.6× 106, e/D = 2, Ur = 6.

Mesh parameters: Hydrodynamic parameters:

Mesh Time step Cell count CD (Ay)max/D Crms
L St

M1 Comax = 0.5 18886 0.7642 (-6.7%) 1.0732 (7.12%) 0.3815 (16.12%) 0.1508 (-6.14%)

M2 Comax = 0.5 41754 0.7983 (-2.53%) 1.0245 (2.26%) 0.3491 (6.26%) 0.1577 (-1.83%)

M3 Comax = 0.5 76364 0.8098 (-1.15%) 1.0115 (0.95%) 0.3349 (1.89%) 0.1605 (-0.12%)

M4 Comax = 0.5 117648 0.8191 (-) 1.0018 (-) 0.3289 (-) 0.1606 (-)
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Table 6.5: Convergence study: Vibrating cylinder, effects of the time step. Other pa-
rameters of the simulations: Re = 3.6× 106, e/D = 2, Ur = 6.

Mesh parameters: Hydrodynamic parameters:

Mesh Time step Cell count CD (Ay)max/D Crms
L St

M3 Comax = 2 76364 not converged not converged not converged not converged

M3 Comax = 1 76364 0.8661 (7.76%) 1.0638 (5.64%) 0.3128 (-7.21%) 0.1664 (3.65%)

M3 Comax = 0.5 76364 0.8098 (0.75%) 1.0115 (0.43%) 0.3349 (-0.65%) 0.1605 (0%)

M3 Comax = 0.25 76364 0.8037 (-) 1.007 (-) 0.3371 (-) 0.1605 (-)

6.1.2 Model Validation

The accuracy of the selected numerical technique is compared with the available exper-

imental data and numerical studies in the upper transition regime. Due to the technical

difficulties in the experimental setup and high computational demands in the numerical

studies the availability of the reference data is relatively scarce compared to the lower

Reynolds number flows. Comprehensive numerical study at Re = 3.6 × 106 was carried

out by Ong et al. (2010), who investigated flow around a near-wall cylinder in the upper

transition regime. More recently Porteous et al. (2015) conducted benchmark simula-

tions of flow around a cylinder at Re = 1− 3.6× 106 using RANS and URANS models in

OPENFOAM. In Ong et al. (2010) the standard k − ε turbulence model was used and fi-

nite element solver employed on the domain setup similar to the one in the present study.

Summary of the mean drag coefficient, root-mean-square lift coefficient, Strouhal num-

ber and base pressure coefficient values are given in Table 6.6. The CD values show very

good agreement with the other numerical studies and fall well within the experimental

results range. The CrmsL , on the other hand, is higher than the value from the compu-

tations by Ong et al. (2010). The same tendency can be noted for the Strouhal number

value, at St = 0.347 it falls at the upper limit of the uncertainty band of experimental

data. The base pressure coefficient compares well with the reference data from Ong et al.

(2010) and Porteous et al. (2015). The plot of pressure coefficient is shown in Fig. 6.3. It

can be seen that the fit to experimental data by Achenbach (1968) is very good between

0◦ ≤ θ ≤ 70◦, k − ω SST model tends to overpredict the CP value at 70◦ ≤ θ ≤ 110◦

and underpredict at 110◦ ≤ θ ≤ 180◦. It should be noted that in 110◦ ≤ θ ≤ 180◦ range

the fit to the results by Ong et al. (2010) is almost exact. In general, the agreement of

the present computational model with the other published results can be viewed as sat-

isfactory considering high uncertainty and scatter of the experimental data at very high

Reynolds numbers.
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Figure 6.3: Mean pressure coefficient around the cylinder at Re = 3.6 × 106; δ/D =
0.48; e/D = 1.0.

Table 6.6: Experimental data and numerical results at Re = 3.6× 106.

Study Description CD Crms
L St −CPb

Present study e/D = 1.0, δ/D = 0.48 k − ω SST URANS 0.461 0.169 0.347 0.5268

Ong et al. (2010) e/D = 1.0, δ/D = 0.48 k − ε URANS 0.4608 0.0857 0.3052 0.5392

Ong et al. (2009) isolated cylinder k − ε URANS 0.4573 0.0766 0.3052 -

Catalano et al. (2003) Re = 4.0× 106 URANS 0.46 - - -

Porteous et al. (2015) k − ω SST URANS 0.518 - - 0.513

Zdravkovich (1997) Experiments 0.36-0.75 0.06-0.14 0.17-0.29

Achenbach (1968) Re = 0.5− 5× 106 Experiments 0.6-0.76 - - 0.85

Roshko (1961) Re = 1− 3.5× 106 Experiments 0.3-0.7 - - 0.62-0.85

Schewe (1983) Re = 1− 5× 106 Experiments 0.22-0.52 - - -

Jones et al. (1969) Re = 0.5− 8× 106 Experiments 0.15-0.54 - - 0.53 - 0.63

Schmidt (1966) Re = 1− 5× 106 Experiments 0.18-0.53 - - 0.35 - 0.60

Shih et al. (1993) Re = 0.3− 8× 106 Experiments 0.16-0.50 - - 0.10 - 0.60

6.2 Results and Discussion

For each analyzed case the simulations are performed sufficiently long to ensure at least

30 periods of regular vibration if the vibration is regular and periodic. In case of irregu-

lar vibration, the duration of the simulations is extended to extract representative mean

flow features. Meshes used in the simulations of coupled cylinders with uneven diame-

ters have similar density and are qualitatively similar to the mesh M3 presented in the

convergence studies. Similarly to the study presented in Chapter 5, three different an-

gular positions of the small cylinder are investigated over the range of reduced velocities
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2 ≤ Ur ≤ 12. The mass ratio is kept constant in all cases at m∗ = 10. Structural damping

ratio is set to zero ζ = 0.

6.2.1 Response Amplitudes

Normalized displacements in transverse direction are shown in Fig. 6.4. Among the

analyzed configurations the α = 0◦ configuration has the narrowest lock-in regime, ap-

proximately 2 < Ur < 6 with a peak value AY,max/D = 1.15 at Ur = 5. The widest

lock-in regime is observed when the small cylinder is placed upstream of the large cylin-

der at α = 180◦ and extends from Ur = 2 beyond Ur = 12 which was the limit of the

present study. The peak value of AY,max/D = 1.23 is in this case reached at Ur = 10. This

behavior is the opposite of the behavior observed in the low Reynolds regime presented

in Chapter 5, where the widest lock-in regime occured in the α = 0◦ configuration and

the narrowest lock-in regime occured in the α = 180◦ configuration. This phenomenon is

confirmed by the experimental results by Zang and Gao (2014) who observed similar re-

lation in high Reynolds flow at Re = 3.8× 104. In the side-by-side configuration α = 90◦

lock-in regime can be identified between 3 ≤ Ur ≤ 12 with a peak AY,max/D = 0.92

occuring at Ur = 6. The single cylinder vibrations are in the locin regime at 3 ≤ Ur ≤ 7

with a peak value AY,max/D = 1.01 identified at Ur = 6. Both the single cylinder and

the α = 0◦ configurations show abrupt decrease in the response and very narrow desyn-

chronization regime. The densynchronization in the α = 90◦ configuration is gradual

and vibration amplitudes are decreasing monothonically between Ur = 6 and Ur = 12.

The desynchronization in the α = 180◦ configuration is not captured in the present study

due to lock-in regime exceeding the Ur limits of the simulations.

The streamwise response in term of the root-mean-square streamwise displacementAX,rms/D

is presented in Fig. 6.5. A characteristic feature of the streamwise response at Re =

3.6 × 106 compared to the low Reynolds studies presented in Chapter 4 and Chapter 5

is that the streamwise lock-in regime is generally slightly shifted to the lower range of

reduced velocities. The streamwise lock-in regimes in all analyzed configurations are

considerably narrower than the corresponding transverse lock-in regimes. The peak val-

ues are also shifted towards lower Ur compared to the corresponding peak values in the

AY,max/D response. The largest AX,rms/D response is experienced by the single cylinder

and the α = 90◦ configuration. A peak value of AX,rms/D ≈ 0.3 is reached at Ur = 4 in

both single cylinder and α = 90◦ configurations. The widest streamwise lock-in regime

is observed when the small cylinder is placed upstream of the large cylinder 3 ≤ Ur ≤ 8.

In the α = 0◦ configuration the AX,rms/D response is very small compared to the other
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Figure 6.4: Non-dimensional maximum amplitude of transverse vibration AY,max/D
at Re = 3.6× 106 as a function of reduced velocity Ur.

considered configurations. Slight excitation can be spotted at Ur = 4 and Ur = 5 but

there is no apparent peak present in the AX,rms/D response picture.
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Figure 6.5: Non-dimensional root-mean-square amplitude of streamwise vibration
AX,rms/D at Re = 3.6× 106 as a function of reduced velocity Ur.
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6.2.2 Hydrodynamic Forces

Mean lift coefficient values against reduced velocity are shown in Fig. 6.6. A negative

value indicates the force acting in the direction of the bottom wall. The dashed line

representing CL of a single stationary cylinder at Re = 3.6 × 106 and e/D = 1 is given

for comparison. The CL pictures vary considerably depending on the configuration.

In the single cylinder configuration, the mean lift coefficient is negative except in the

initial branch of the lock-in regime corresponding to 3 ≤ Ur ≤ 4 which can be seen in

Fig. 6.6. The α = 180◦ configuration and the α = 0◦ configuration show similar CL
response curves but the peak values are considerably lower than in the single cylinder

case. Outside of the initial branch, the CL values in those configurations are approaching

zero. Presence of the small cylinder at α = 90◦ angular position results in the dominantly

negative CL, reported at all investigated Ur except Ur = 4. The CL value increases in

the lock-in regime and at Ur = 4 becomes slightly positive. Figure 6.7 shows root-mean-
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Figure 6.6: Mean lift coefficient CL at Re = 3.6× 106 as a function of reduced velocity
Ur.

square values of CL. In the α = 0◦ configuration the CrmsL peak value is considerably

higher than in the other considered configurations. The response curve shape in this

case is coinciding with the AY,max/D response curve with peak located at Ur = 5. After

reaching the peak value, CrmsL drops to the value observed in the static cylinder case. The

peak of CrmsL in the single cylinder configuration is located at Ur = 3 which is different

than the peak of transverse response observed at Ur = 6. This indicates that other

mechanism than lift force oscillations alone is responsible for the enhanced vibration

amplitude. Similar observations can be made with respect to the α = 90◦ and the α =
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180◦ configurations. Here the peak values are identified in both cases at Ur = 4. The
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Figure 6.7: Root-mean-square lift coefficient Crms
L at Re = 3.6 × 106 as a function of

reduced velocity Ur.

effect of the small cylinder presence on the mean drag force can be seen in Fig. 6.8.

In the range of reduced velocities 3 ≤ Ur ≤ 4 the mean drag coefficient in the single

cylinder case is considerably higher than in the three investigated configurations of two

coupled cylinders. Outside of this Ur range the CD is smaller than in the α = 0◦, α = 90◦

and α = 180◦ configurations. The lowest peak value of CD is observed in the α = 0◦

configuration. Slightly higher peak value can be identified in the α = 90◦ configuration.

Similar observations were made by Zang and Gao (2014) who reported decrease in

the mean lift coefficient when tha small cylinder was placed at α = 0◦ and α = 180◦

positions. The root-mean-square values of CD can be seen in Fig. 6.9. The peak values

in the CrmsD plot overlap with those identified for mean values in Fig. 6.8.

6.2.3 Phase Pictures and Motion Trajectories

In this subsection, the X − Y trajectories and phase pictures of transverse displacement

Y/D against the lift coefficient CL are analyzed at selected reduced velocities. For the

sake of completeness the results from all simulation cases in this study are assembled

in the Appendix B. The phase difference between the hydrodynamic force and the cor-

responding displacement response can be associated with the direction of the energy

transfer in the system. Trace position in the first and third quadrant is indicative of an

in-phase relation between the displacement and the hydrodynamic force. As the phase

portrait transitions to the second and fourth quadrant, this relation becomes out of phase.
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Figure 6.8: Mean drag coefficient CD at Re = 3.6 × 106 as a function of reduced
velocity Ur.
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Figure 6.9: Root-mean-square drag coefficient Crms
D at Re = 3.6× 106 as a function of

reduced velocity Ur.
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Figure 6.11 shows the phase picture (φCL−Y ) of CL and y/D and X − Y trajectory of

the single cylinder at Ur = 6. At this reduced velocity, the cylinder transverse oscillations
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(b) Trajectory at Ur = 6

Figure 6.11: Phase picture (φCL−Y ) of CL and y/D and X − Y trajectory; single
cylinder; e/D = 2.0; Re = 3.6× 106; Ur = 6.

reach its peak amplitude. The trajectory pattern is in form of the skewed oval which is

representative for the near-wall VIV of a single cylinder and was previously discussed in

Chapter 4 and Chapter 5. The φCL−Y trace lies in the first and third quadrant indicating

that the lift force and the transverse displacement are in-phase. Vibration trajectories at

other investigated Ur show similar oval shape. In the configuration with the small cylin-

der located downstream of the large cylinder (α = 0◦) trajectories and phase portraits

at Ur = 4 and Ur = 5 will be compared. Both analyzed cases correspond to the lock-

in regime where the transverse oscillation amplitude is large. Figure 6.13 presents the

X − Y -trajectory and φCL−Y plots at Ur = 4. Similarly to the single cylinder case shown

in Fig. 6.11(a) the phase plot indicate here (Fig. 6.13(a)) the in-phase relation between

CL and y/D. The vibration trajectory is in the form of skewed oval (Fig. 6.13(b)). At

Ur = 5 the trajectory shape switch from the oval shape to the figure eight shape as shown

in Fig. 6.15(b). When the cylinders are placed in the α = 90◦ configuration the phase

picture and X − Y trajectory shown in Fig. 6.17 is similar to the plots obtained from the

other investigated Ur. In all investigated cases of the α = 90◦ configuration the trajecto-

ries are very regular and less skewed compared to the other considered configurations.

In the α = 180◦ configuration plots presented in Fig. 6.19 are representative for the

range of reduced velocities 4 ≤ Ur ≤ 7. This range can be associated with the initial

branch of the lock-in regime. Between the Ur = 7 and Ur = 8 the vibration pattern

changes from the skewed oval to the figure eight which can be seen in Fig. 6.21(b).



RESULTS AND DISCUSSION 125

-4 -2 0 2

-1

-0.5

0

0.5

1

(a) φCL−Y at Ur = 4

-0.05 0 0.05 0.1 0.15 0.2

-1

-0.5

0

0.5

1

(b) Trajectory at Ur = 4

Figure 6.13: Phase picture (φCL−Y ) of CL and y/D and X − Y trajectory; coupled
cylinders α = 0◦; e/D = 2.0; Re = 3.6× 106; Ur = 4.
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(a) φCL−Y at Ur = 5
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Figure 6.15: Phase picture (φCL−Y ) of CL and y/D and X − Y trajectory; coupled
cylinders α = 0◦; e/D = 2.0; Re = 3.6× 106; Ur = 5.

6.2.4 Flow Field Charactersitics

Vorticity and pressure contours at reduced velocities Ur corresponding to the largest

transverse amplitude response are used to study the flow field characteristics of analyzed

cylinder configurations. The cross marker indicates the initial location of the cylinder

center. Figure 6.23 shows the flow fields around the single cylinder configuration at

Ur = 6. At this reduced velocity, the single cylinder reaches the peak in transverse

oscillation amplitude response. A characteristic feature, compared to the low Reynolds

number flow, is the significantly increased vortex formation length. The separation points

in the cylinder’s boundary layer are shifted backward compared to the flow visualizations

at Re = 200 presented in Chapter 4 (e.g. Fig. 4.14). The shedding mode is clearly of

a 2P type, where two vortex pairs are shed per oscillation cycle from the upper (A1 and
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Figure 6.17: Phase picture (φCL−Y ) of CL and y/D and X − Y trajectory; coupled
cylinders α = 90◦; e/D = 2.0; Re = 3.6× 106; Ur = 6.
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Figure 6.19: Phase picture (φCL−Y ) of CL and y/D and X − Y trajectory; coupled
cylinders α = 180◦; e/D = 2.0; Re = 3.6× 106; Ur = 4.

A2 in Fig. 6.23) and lower surfaces of the cylinder (B1 and B2 in Fig. 6.23). This is

the source of the lift coefficient fluctuations within one oscillation period which can be

seen in Fig. 6.24. At present gap ratio e/D = 2, the cylinder is not submerging into the

boundary layer. The bottom shear layer roll up can be observed in Fig. 6.23(a) where

the anti-clockwise vortex (C) forces the boundary layer to rollup (D). This action takes

place further away from the cylinder compared to the low Reynolds number flow (see

Fig. 4.14).

Flow fields in the α = 0◦ configuration at Ur = 5 are shown in Fig. 6.26. Here the

shedding mode can be identified as a 2S mode. Clockwise and anti-clockwise vortices

form the wake in an alternating way. However, the vortex formation in the shear layers

of the large cylinder is affected by the small cylinder presence. The gap flow between
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Figure 6.21: Phase picture (φCL−Y ) of CL and y/D and X − Y trajectory; coupled
cylinders α = 180◦; e/D = 2.0; Re = 3.6× 106; Ur = 10.

the cylinder is present which is indicated by the streamlines passing through the gap as

shown in Fig. 6.26. It can be observed that in the first half cycle of one oscillation period

vortices are formed around the small cylinder (S1,S2 in Fig. 6.26(a)) and merge with

the vortices shed from the large cylinder (L3 and L4 in Fig. 6.26(b)). This sequence is

repeated in the second half cycle where vortices from the small cylinder (S3 and S4 in

Fig. 6.26(c)) merge with the newly formed vortices on the large cylinder (Fig. 6.26(d)).

Effect of the wake interference due to the small cylinder presence can be found in the

drag coefficient time trace presented in Fig. 6.27, in the form of random fluctuations of

the CD.

Flow around the side-by-side configuration in which the small cylinder is placed on top

of the large cylinder (α = 90◦) is shown in Fig. 6.29. In this case, the formation of

the vortex street behind the small cylinder (E) can be observed in Fig. 6.29. It can be

seen that the vortex shedding frequency from the small cylinder is five times the vortex

shedding frequency of the large cylinder. This is in agreement with the diameter ratio

of the cylinders d/D = 0.2 and follows from the Strouhal’s law. The vortices from the

small cylinder (E) merge with the clockwise vortex shed from the upper surface of the

large cylinder (F1) destabilizing the upper shear layer. In consequence, the formation of

the clockwise vortex (F1) is disrupted. This leads to the fluctuations in the lift coefficient

when the cylinder is moving from the trough to the peak position as shown in Fig. 6.30.

Here in each cycle, five small oscillations can be spotted. Merging of the vortices from

the small cylinder with the clockwise vortex from the large cylinder reinforces the anti-

clockwise vortex developed on the bottom surface of the large cylinder (F2). This anti-

clockwise vortex (F2) remains coherent as it is convected away down the wake. In case of

the clockwise vortex (F1), the interaction with the vortex street from the small cylinder



128 TWO DEGREE-OF-FREEDOM NEAR WALL VIV IN UPPER TRANSITION REGIME

(a) T/4 (b) T/4

(c) 2T/4 (d) 2T/4

(e) 3T/4 (f) 3T/4

(g) 4T/4 (h) 4T/4

Figure 6.23: Vorticity contours (left) and streamlines with normalized pressure con-
tours (right) at selected time instances of one shedding cycle for a single cylinder at
Ur = 6.
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Figure 6.24: Time histories of CD, CL, x/D and y/D; single cylinder at Ur = 6,
Re = 3.6× 106.

leads to a break down of the clockwise vortex (F1) into few smaller vortical structures

(G) which can be seen in Fig. 6.30(a) and (c).

The vorticity contours and the pressure contours with streamlines in the α = 180◦ con-

figuration are presented in Fig. 6.33. In this case, the regular vortex street behind the

small cylinder is not formed. Instead, a jet flow in the gap between the cylinders is devel-

oped. The jet flow from the gap merges into the top shear layer from the large cylinder

(H1 in Fig. 6.33(a) and (c)) in the first half-cycle of the oscillation period and into the

bottom shear layer in the second half-cycle of the oscillation period (H2 in Fig. 6.33(e)

and (g)). This enhances the shear layers from the large cylinder. From the vorticity con-

tours presented in Fig. 6.33 it is clearly visible that formation length is increased by that

mechanism. The time histories of hydrodynamic force coefficients and displacements

(Fig. 6.31) show that at Ur = 10 the CL is still in phase with the y/D resulting in the

frequency lock-in and large amplitude oscillations. It can be concluded that placement of

the small cylinder upstream the large cylinder widens the reduced velocity lock-in regime

significantly at this spacing ratio G/D = 0.2 and cylinders’ diameter ratio d/D = 0.2.
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(a) T/4 (b) T/4

(c) 2T/4 (d) 2T/4

(e) 3T/4 (f) 3T/4

(g) 4T/4 (h) 4T/4

Figure 6.26: Vorticity contours (left) and streamlines with normalized pressure con-
tours (right) at selected time instances of one shedding cycle for a coupled cylinders
α = 0◦ at Ur = 5.
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Figure 6.27: Time histories of CD, CL, x/D and y/D; coupled cylinders α = 0◦ at
Ur = 5, Re = 3.6× 106.
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(a) T/4 (b) T/4

(c) 2T/4 (d) 2T/4

(e) 3T/4 (f) 3T/4

(g) 4T/4 (h) 4T/4

Figure 6.29: Vorticity contours (left) and streamlines with normalized pressure con-
tours (right) at selected time instances of one shedding cycle for a coupled cylinders
α = 90◦ at Ur = 6.
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Figure 6.30: Time histories of CD, CL, x/D and y/D; coupled cylinders α = 90◦ at
Ur = 6, Re = 3.6× 106.
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Figure 6.31: Time histories of CD, CL, x/D and y/D; coupled cylinders α = 180◦ at
Ur = 10, Re = 3.6× 106.
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(a) T/4 (b) T/4

(c) 2T/4 (d) 2T/4

(e) 3T/4 (f) 3T/4

(g) 4T/4 (h) 4T/4

Figure 6.33: Vorticity contours (left) and streamlines with normalized pressure con-
tours (right) at selected time instances of one shedding cycle for a coupled cylinders
α = 180◦ at Ur = 10.
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6.3 Summary

A series of two-dimensional numerical simulations of vortex-induced vibrations of two

circular cylinders with uneven diameters at a Reynolds number of Re = 3.6 × 106 near

a horizontal plane wall is performed. The k-ω SST model with a wall function approach

is used in the study to predict the effects of the turbulence. Constant mass ratio m∗

= 10, gap ratio e/D = 2 and spacing ratio between the cylinders G/D = 0.2 are kept

constant. Position of the small cylinder is varied between the three angles relative to

the main cylinder center line (α = 0◦, α = 90◦, and α = 180◦). The cylinders diameter

ratio equals d/D = 0.2. The summary of the findings outlined in the present chapter is

following:

1. The k-ω SST model appears to perform reasonably well at Re = 3.6× 106 compared

to the experimental and numerical results available in the literature. The CD and

−CPb values show very good agreement with the other numerical studies and fall

well within the experimental results range. The CrmsL and St values are at the upper

limit of the uncertainty band of the experimental data.

2. At the gap ratio e/D = 2 the interaction of the vortices shed from the bottom surface

of the large cylinder with the bottom boundary layer leads to the bottom boundary

layer roll-up. In the high Reynolds regime, this interaction is shifted away further

downstream of the cylinder/coupled cylinders system. The suppression mechanism

of the vortex shedding from the bottom surface of the cylinder is present which

is confirmed by the streamwise oscillation lock-in and the skewed oval vibration

trajectories observed in most of the analyzed cases.

3. The lock-in regime in the case of the single near-wall cylinder is identified approxi-

mately at 3 ≤ Ur ≤ 8. In the α = 0◦ configuration the lock-in regime is significantly

smaller and is found at 3 ≤ Ur ≤ 6. In the α = 90◦ configuration the lock-in regime

is wider than in the single cylinder configuration and is identified at 4 ≤ Ur ≤ 12.

When the small cylinder is in the α = 180◦ position, the lock-in regime is the widest

among all analyzed configurations and extends beyond the range of reduced veloci-

ties considered in the present study: 3 ≤ Ur > 12.

4. The maximum transverse amplitude response AY,max/D of the single cylinder is

recorded at Ur = 6 and equals AY,max/D = 1.01. The transverse amplitude response

AY,max/D of coupled cylinders in the α = 0◦ configuration is larger than that of the

single cylinder and is equal AY,max/D = 1.15. The transverse amplitude response

AY,max/D of coupled cylinders in the α = 180◦ configuration is the largest among
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analyzed configurations and is equal AY,max/D = 1.23. The α = 90◦ configuration

shows the smallest transverse amplitude response at AY,max/D = 0.92.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a numerical study using CFD package OPENFOAM is performed and val-

idated to predict the vortex-induced vibrations of a single cylinder and three different

configurations of coupled cylinders with uneven diameters placed in the proximity of

a horizontal plane wall. Suitability of computational models for practical engineering

tasks is assessed by considering the computational cost. Two-dimensional computational

models are used for the purpose of extensive parametric studies. Numerical studies

are conducted in two flow regimes, a laminar vortex street regime at Reynolds number

Re = 200 and an upper transition regime at Re = 3.6×106. The unsteady RANS method

with k-ω SST turbulence model is selected to solve for the flow fields in the upper tran-

sition regime study.
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7.1 Conclusions

The conclusions based on the findings presented in Chapters 4, Chapter 5 and Chapter 6

can be formulated as follows:

1. Convergence studies and grid resolution:

A convergence studies regarding the grid resolution and domain size are conducted

in order to set a baseline for the simulations carried out in this thesis. In the laminar

study, the wall integration grids resolving the boundary layer are adopted. The first

grid spacing is refined so that the wall unit y+ is O(1) or less. Selected meshes

have a density of approximately 70.000 cells. In the high Reynolds number study,

the wall functions are used resulting in the y+ requirement of 30 < y+ < 100. The

meshes selected for the simulations have a similar density to those in the laminar

study, approximately 76.000 cells. Such mesh requirement is found to be adequate

for the common engineering design tasks and can be used on a modern workstation

with multicore CPU within reasonable computation time.

2. Two degree-of-freedom near wall VIV in laminar vortex street regime:

The results show that the wall proximity enlarges the mean lift force but the

influence on the mean drag force is minimal.

Proximity of the wall strongly enhances the streamwise response of a cylinder.

Analysis of the phase relations between the drag force and the streamwise dis-

placement reveals two distinct phases in the lock-in regime. The phase of the

positive net energy transfer from the fluid to the structure and phase of the neg-

ative energy transfer when the energy is dissipated by the fluid. The first phase is

found to coincide with the pre-lock-in regime and the initial branch of the lock-in.

The second phase is identified in the lower branch of the lock-in regime.

Study of the vortex shedding mechanism shows that the bottom shear layer vor-

ticity counteracts the vortices shed from the bottom surface of the cylinder lead-

ing to the asymmetry of the wake. This, in turn, reduces the streamwise oscilla-

tion frequency by half and is the reason for the streamwise frequency lock-in.

The lock-in regime in the case of the single near-wall cylinder is observed at

3.6 ≤ Ur ≤ 6. In the α = 180◦ configuration of coupled cylinders the lock-in

regime is comparable to that of the single cylinder and is observed at 3 ≤ Ur ≤ 6.

In the α = 90◦ configuration the lock-in regime is wider than in the single cylinder

configuration and is observed at 3 ≤ Ur ≤ 7. In the α = 0◦ configuration the lock-
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in regime is the widest among all analyzed configurations and extends beyond the

range of reduced velocities considered in this numerical study: 3 ≤ Ur > 12.

The maximum transverse amplitude response AY,max/D of the single cylinder

is observed at Ur = 4 and is equal AY,max/D = 0.58. The transverse ampli-

tude responses AY,max/D of coupled cylinders are smaller than that of the single

cylinder. In the α = 0◦ configuration the transverse amplitude response is equal

AY,max/D = 0.55. In the α = 90◦ configuration the transverse amplitude re-

sponse is equal AY,max/D = 0.53. When the small cylinder is placed at α = 180◦

position the maximum transverse amplitude response is equal AY,max/D = 0.43.

3. Two degree-of-freedom near wall VIV in upper transition regime:

The k-ω SST model appears to perform reasonably well at Re = 3.6 × 106 com-

pared to the experimental and numerical results available in the literature. The

CD and −CPb values show very good agreement with the other numerical studies

and fall well within the experimental results range. The CrmsL and St values are

at the upper limit of the uncertainty band of the experimental data.

At a gap ratio e/D = 2 the interaction of the vortices shed from the bottom sur-

face of the large cylinder with the bottom boundary layer leads to the bottom

boundary layer roll-up. In the high Reynolds regime, this interaction is shifted

away further downstream of the cylinder/coupled cylinders system. The suppres-

sion mechanism of the vortex shedding from the bottom surface of the cylinder is

present which is confirmed by the streamwise oscillation lock-in and the skewed

oval vibration trajectories observed in most of the analyzed cases.

The lock-in regime in the case of the single near-wall cylinder is observed ap-

proximately at 3 ≤ Ur ≤ 8. In the α = 0◦ configuration the lock-in regime is

significantly smaller and is found at 3 ≤ Ur ≤ 6. In the α = 90◦ configuration the

lock-in regime is wider than in the single cylinder configuration and is observed

at 4 ≤ Ur ≤ 12. When the small cylinder is in the α = 180◦ position the lock-in

regime is the widest among all analyzed configurations and extends beyond the

range of reduced velocities considered in the present study: 3 ≤ Ur > 12.

The maximum transverse amplitude response AY,max/D of the single cylinder is

observed at Ur = 6 and is equal AY,max/D = 1.01. The transverse amplitude

response AY,max/D of coupled cylinders in the α = 0◦ configuration is larger

than that of the single cylinder and is equal AY,max/D = 1.15. The transverse

amplitude response AY,max/D of coupled cylinders in the α = 180◦ configura-

tion is the largest among analyzed configurations and is equal AY,max/D = 1.23.



142 CONCLUSIONS AND RECOMMENDATIONS

The α = 90◦ configuration shows the smallest transverse amplitude response at

AY,max/D = 0.92.
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7.2 Recommendations for Future Work

The following list describes some ideas for future work:

1. Study on VIV of a near-wall cylinder using LES turbulence model at Re = 3.6× 106.

More numerical studies, preferably with eddy resolving turbulence modeling focused

on very high Reynolds number flows could decrease the knowledge gap on the near-

wall VIV in this regime.

2. Study on the applicability of two-dimensional CFD model on VIV prediction in the

critical regime using transitional turbulence modeling (e.g. k-kl-ω model by Walters

and Cokljat(2008), γ−Re−θ model by Langtry and Menter(2009), k−ω−v2 model

by Lopez and Walters(2016)). The ability to resolve the drag crisis phenomenon

should be investigated.

3. Study on VIV of multiple bodies with uncoupled motion in two-degrees-of-freedom.

This could include parametric studies on the spacing and different configurations

and their influence on the vortex shedding.





APPENDIX A

RESULTS OF SIMULATIONS IN
LAMINAR VORTEX STREET REGIME

This appendix provides the results of simulations of 2DoF VIV of a single cylinder in lam-

inar vortex street regime at Re = 200. Details of the computational setup are provided

in Chapter 4.
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A.1 Time histories of CD, CL, X/D and Y/D and power spectral analysis.
Single cylinder at Re = 200, e/D = 0.9
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Figure A.1: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 3.0 and Re = 200.
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Figure A.2: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 3.8 and Re = 200.
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Figure A.3: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 3.9 and Re = 200.
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Figure A.4: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 4.0 and Re = 200.
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Figure A.5: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 4.1 and Re = 200.
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Figure A.6: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 4.3 and Re = 200.
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Figure A.7: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 4.6 and Re = 200.
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Figure A.8: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 5.0 and Re = 200.
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Figure A.9: Time histories (tU/D = 250 − 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 5.6 and Re = 200.
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Figure A.10: Time histories (tU/D = 250− 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 6.0 and Re = 200.
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Figure A.11: Time histories (tU/D = 250− 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 6.5 and Re = 200.
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Figure A.12: Time histories (tU/D = 250− 500) of CD, CL, X/D and Y/D and power
spectral analysis. Near-wall cylinder (e/D = 0.9) at Ur = 8.0 and Re = 200.





APPENDIX B

RESULTS OF SIMULATIONS IN
UPPER TRANSITION REGIME

This appendix provides the results of simulations of 2DoF VIV of a single cylinder and

three considered configurations of coupled cylinders with uneven diameters in upper

transition regime at Re = 3.6 × 106. Details of the computational setup are provided in

Chapter 6.
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B.1 Time histories of streamwise displacement x/D, cross-flow displacement
y/D, drag coefficient CD and lift coefficient CL at investigated reduced
velocities Ur

(a) Ur = 3 (b) Ur = 4

(c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

Figure B.1: Single cylinder; e/D = 2.0; Re = 3.6× 106; Ur = 3− 8.
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(a) Ur = 9 (b) Ur = 10

(c) Ur = 11 (d) Ur = 12

Figure B.2: Single cylinder; e/D = 2.0; Re = 3.6× 106; Ur = 9− 12.
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(a) Ur = 3 (b) Ur = 4

(c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

Figure B.3: Coupled cylinders α = 0◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 8.
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(a) Ur = 3 (b) Ur = 4

(c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

Figure B.4: Coupled cylinders α = 90◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 8.
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(a) Ur = 9 (b) Ur = 10

(c) Ur = 11 (d) Ur = 12

Figure B.5: Coupled cylinders α = 90◦; e/D = 2.0; Re = 3.6× 106; Ur = 9− 12.
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(a) Ur = 3 (b) Ur = 4

(c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

Figure B.6: Coupled cylinders α = 180◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 8.



160 APPENDIX B: RESULTS OF SIMULATIONS IN UPPER TRANSITION REGIME; RE = 3.6× 106

(a) Ur = 9 (b) Ur = 10

(c) Ur = 11 (d) Ur = 12

Figure B.7: Coupled cylinders α = 180◦; e/D = 2.0; Re = 3.6× 106; Ur = 9− 12.



FFT OF Y/D AND CL AT INVESTIGATED UR 161

B.2 Fast Fourier Transform of transverse displacement y/D and lift coefficient
CL at investigated reduced velocities Ur

(a) Ur = 3 (b) Ur = 4

(c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

(g) Ur = 9 (h) Ur = 10

(i) Ur = 11 (j) Ur = 12

Figure B.8: Single cylinder; e/D = 2.0; Re = 3.6× 106; Ur = 3− 12.
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(a) Ur = 3 (b) Ur = 4

(c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

Figure B.9: Coupled cylinders α = 0◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 12.



FFT OF Y/D AND CL AT INVESTIGATED UR 163

(a) Ur = 3 (b) Ur = 4

(c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

(g) Ur = 9 (h) Ur = 10

(i) Ur = 11 (j) Ur = 12

Figure B.10: Coupled cylinders α = 90◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 12.
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(a) Ur = 3 (b) Ur = 4

(c) Ur = 5 (d) Ur = 6

(e) Ur = 7 (f) Ur = 8

(g) Ur = 9 (h) Ur = 10

(i) Ur = 11 (j) Ur = 12

Figure B.11: Coupled cylinders α = 180◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 12.
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B.3 Phase pictures of lift coefficient CL and transverse displacement y/D,and
X − Y trajectory plots at investigated reduced velocities Ur

(a) φCL−Y at Ur = 3 (b) Trajectory at Ur = 3 (c) φCL−Y at Ur = 4 (d) Trajectory at Ur = 4

(e) φCL−Y at Ur = 5 (f) Trajectory at Ur = 5 (g) φCL−Y at Ur = 6 (h) Trajectory at Ur = 6

(i) φCL−Y at Ur = 7 (j) Trajectory at Ur = 7 (k) φCL−Y at Ur = 8 (l) Trajectory at Ur = 8

(m) φCL−Y at Ur = 9 (n) Trajectory at Ur = 9 (o) φCL−Y at Ur = 10 (p) Trajectory at Ur = 10

Figure B.12: X − Y trajectories and phase pictures (φCL−Y ) of CL and y/D; single
cylinder e/D = 2.0; Re = 3.6× 106; Ur = 3− 10.
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(a) φCL−Y at Ur = 3 (b) Trajectory at Ur = 3 (c) φCL−Y at Ur = 4 (d) Trajectory at Ur = 4

(e) φCL−Y at Ur = 5 (f) Trajectory at Ur = 5 (g) φCL−Y at Ur = 6 (h) Trajectory at Ur = 6

(i) φCL−Y at Ur = 7 (j) Trajectory at Ur = 7 (k) φCL−Y at Ur = 8 (l) Trajectory at Ur = 8

Figure B.13: X − Y trajectories and phase pictures (φCL−Y ) of CL and y/D; coupled
cylinders α = 0◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 10.
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(a) φCL−Y at Ur = 3 (b) Trajectory at Ur = 3 (c) φCL−Y at Ur = 4 (d) Trajectory at Ur = 4

(e) φCL−Y at Ur = 5 (f) Trajectory at Ur = 5 (g) φCL−Y at Ur = 6 (h) Trajectory at Ur = 6

(i) φCL−Y at Ur = 7 (j) Trajectory at Ur = 7 (k) φCL−Y at Ur = 8 (l) Trajectory at Ur = 8

(m) φCL−Y at Ur = 9 (n) Trajectory at Ur = 9 (o) φCL−Y at Ur = 10 (p) Trajectory at Ur = 10

Figure B.14: X − Y trajectories and phase pictures (φCL−Y ) of CL and y/D; coupled
cylinders α = 90◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 10.
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(a) φCL−Y at Ur = 3 (b) Trajectory at Ur = 3 (c) φCL−Y at Ur = 4 (d) Trajectory at Ur = 4

(e) φCL−Y at Ur = 5 (f) Trajectory at Ur = 5 (g) φCL−Y at Ur = 6 (h) Trajectory at Ur = 6

(i) φCL−Y at Ur = 7 (j) Trajectory at Ur = 7 (k) φCL−Y at Ur = 8 (l) Trajectory at Ur = 8

(m) φCL−Y at Ur = 9 (n) Trajectory at Ur = 9 (o) φCL−Y at Ur = 10 (p) Trajectory at Ur = 10

Figure B.15: X − Y trajectories and phase pictures (φCL−Y ) of CL and y/D; coupled
cylinders α = 180◦; e/D = 2.0; Re = 3.6× 106; Ur = 3− 10.
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