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Abstract 

Accurate peak load forecasting plays a key role in operation and planning of electrical power 

generation. To minimize the operating cost, electric suppliers use forecasted peak load to 

control the number of running generator units. One of the most precise load forecasting 

methods is deep neural networks (DNNs), which is categorized under artificial neural networks 

(ANNs). 

In the past few decades, DNNs have appeared as a powerful tool in machine learning filed. 

DNNs have been shown to significantly outperform the other traditional methods in many 

applications, and they have completely revolutionized some fields. Given their success in other 

machine learning problems, DNNs are applied in energy forecasting.  

ANN has recently applied on short-term load forecasting in electrical utilities. In this thesis, 

two ANN algorithms for predicting peak load has been used. Multilayer Perceptron and Long 

Short-Term Memory. Then, the performance of the models was compared to find out the error 

in peak load forecasting. Error here refers to the difference between actual loads and predicted 

ones. The result based on in our study revealed that Long Short-Term Memory has less mean 

absolute percentage error (MAPE) in compare with Multilayer Perceptron. 

Keywords: LSTM, RNN, Peak Load Forecasting, Deep learning; MAPE, TensorFlow. 
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Chapter 1 

1. Introduction 

 

 

1.1 General 

Load forecasting is a crucial component for energy management system (EMS). An accurate 

and reliable prediction model helps an electric utility to make valuable decisions on power 

market, to optimize the energy consumption, to save the energy and money, to achieve voltage 

control, to accomplish maintenance and to contribution infrastructure development. 

Because of fast development of the technologies of Internet of Things (IoT), micro-generation 

and storage, we need house’s EMS. Prediction of EMS is important issue because we need to 

shift the load, buy the load from local or share our generated data [36]. Thus power prediction 

is very critical for future (i.e. 5 or 10 years later). 

The electricity price depends upon the efficient operation of an electrical power generation 

plant. This efficiency means, it should be a balance between consumption and supply of electric 

load. In order to achieve this balance, there should be an accurate forecasting model which can 

predict the load requirement in future or at any time. Inaccurate load forecasting will influence 

the scheduling and planning of power systems. On the other hand, supplying power less than 

consumption will bring about lack of energy and also supplying more than consumption leads 

to power waste. The efficient operation of a power system needs proper fuel scheduling and 

maintenance which can be achieved by using a sophisticated forecasting system.  

The peak load prediction is even more important. Because if we find the predicted peak, we 

can struggle with moving potential peak load to the off peak period to smooth the peak, making 

consumption curve flat and reduce the prediction damages. An accurate peak load forecasting 

has a more substantial role today with the new open access operating environment of electricity 

supply industries. Reliable peak load prediction is necessary to determine generation,  
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transmission, distribution and investment as required to reserve generation in the future on 

forecasted loads.  

Load forecasting is one of the main research areas in the smart grid and can be classified 

depending on its target forecasting ranges. In general, load forecasting is divided into three 

categories: 

 

• Short-term load forecasting (STLF): The forecast period of STLF generally, starts 

from a few minutes to a day or a week. Short-term load forecasting is playing an 

essential role in day to day operation because of its wide applicability on demand-side 

management, energy storage operation, peak load reduction and planning activities of 

the utility system [7]. The prediction target usually is the load capacity of a region or 

the daily and weekly electricity consumption data. The forecasting data generally 

indicates daily or monthly periodicity. One-year prediction also follows a similar 

periodic pattern [9].  

 

• Medium-Term Load Forecasting (MTLF): The prediction period of MLTF starts 

from a week to one year and is used for the purpose of scheduling fuel supplies and unit 

maintenance [20]. The prediction target usually is the load capacity of a region or the 

monthly electricity consumption. The forecast data generally indicates cyclical growth; 

Each month of a year consists of the similar growth pattern [14]. The prediction goal is 

to arrange monthly maintenance plan, reservoir operation plans, operation mode and 

coal transportation plans. The main factors affecting medium-term load forecasting 

would be production planning from large users, weather conditions, industrial 

restructuring situations and national tariff policy and so on [15]. Currently, the 

relatively mature prediction methods are trend extrapolation based on the historical data 

of the same month and the time series prediction methods based on the yearly data.  

 

• Long-Term Load Forecasting (LTLF): The prediction period of MLTF is normally 

longer than a year and up to 15 years or even longer. With accurate forecasting of LTLF, 

the power supply companies make investments and put a plan of regarding maintenance 

[19]. The prediction target is usually the annual electricity consumption. The prediction 
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purpose is to provide the base data for the power grid planning that helps to determine 

the grid operation mode and to make annual maintenance plans. The main factors 

affecting long-term load forecasting are national economic development, population, 

industrial restructuring and national tariff policy and so on [23].  

 

In this thesis, the focus of our research is on STLF to forecast the peak load for 10 minutes’ 

intervals. Minutes period is very short load forecasting, which is important for the real-time 

scheduling of electricity generation. 

In last few decades, STLF has been one of the most important research topics for the 

achievement of higher efficiency and reliability in power system operation. STLF plays a 

decisive role in the real-time control and the security functions of an EMS. Moreover, a correct 

peak load forecast can be helpful in developing a power supply strategy, financing planning, 

electricity management and market search. STLF is a very complex process because there are 

many factors can influence it, such as economic conditions, time, day, season, weather and 

random effects [1]. 

 

1.2 Contributions of the Study 

In this study forecasting of peak power consumption using different ANN architectures based 

on previous studies is investigated. Long Short-Term Memory (LSTM) and Multilayer 

Perceptron (MLP) are then adopted to forecast the peak load in 10 minutes’ intervals.  

A case study with the above methods is performed. The result from the case study reveals that 

LSTM model performs more accurate than MLP. 

 

1.3 Outline of the Thesis  

The thesis is divided into six chapters. After an introduction to the subject in Chapter 1, then 

Chapter 2 describes the related works and reviews the existing literature in the subject matter. 

Chapter 3 starts with a brief background about deep learning discussing the machine learning 
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and artificial neural network. In this section, our goal is first to introduce the two load 

forecasting models, MLP and LSTM with their differences in their approaches. Secondly, the 

activation functions and error analyses are also described here. Chapter 4 concentrates on data 

preparation leading to training and testing dataset and the neural network system design. 

Chapter 5 offers a comprehensive discussion on the MLP and LSTM models. Simulation 

results obtained here showed that the LSTM approach is superior to MLP model. Finally, last 

chapter, Chapter 6, draws final conclusions and also suggests further works in NN-based load 

forecasting.  
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Chapter 2 

2. Related Work 

 

Load forecasting is not a new research topic. In the following other researchers’ works on this 

subject has briefly been addressed. This chapter has been divided into two sections; Section 

2.1 consists of important prior research works on load forecasting subject as general. 

Section 2.2 discusses our model and compares with other surveys that address the peak load 

prediction.  

2.1 Related Works on Load Forecasting 

  

For load forecasting, [2] applied several algorithms such as Weighted Moving Average 

(WMA), Multiple Linear Regression (MLR), quadratic (MQR), Regression Tree (RT), Support 

Vector Regression (SVR) and Multilayer Perceptron (MLP) and realized that MLP has the best 

performance. [4] concentrated on identifying different types of time series and concluded that 

a recurrent network provides a significantly better model. The result shows that recurrent neural 

networks (RNNs) are types of nonlinear autoregressive-moving average (NARMA) model 

which gives the best performance on electric load forecasting. [6] illustrated how deep Neural 

Network is applied for short-term load forecasting where various combinations of activation 

functions were tested to achieve better Mean Absolute percentage error (MAPE). The paper 

tested functions are Sigmoid, Rectifier linear unit (ReLU) and Exponential linear unit (ELU). 

The result shows significant savings in the MAPE values using the ELU function over the other 

activation functions. Paper [7] implemented a neural network (NN)-based method for the 

construction of prediction intervals (PIs) and introduced a method, called lower upper bound 

estimation (LUBE). His comparative results show that the proposed method can construct 

higher quality PIs for load and wind power generation forecasts in a short time. In [10] LSTM 

model for dynamic system identification investigated. The result indicates that LSTM structure 

performs much better than conventional RNN and even single LSTM network.  
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Paper [11] introduced a new approach to the short-term load forecasting of the next day by 

using autoregressive (AR) and artificial neural network (ANN) models. Inputs to the system 

are days of the weeks and output is next day. For the systems that use AR and ANN models, 

there are 7 neurons in the input layer and one neuron in the output layer. This paper found that 

systems which use both AR and ANN models can achieve a higher forecasting accuracy.  

[19] introduced a methodology for long-term electric power demands using a semi-group based 

system-type neural network architecture. This methodology is applied to recent load data, and 

the next year’s load data is satisfactorily forecasted. [8] Applied Cartesian Genetic Algorithm 

evolved Artificial Neural Network (CGPANN) for the prediction of peak loads 24 hours ahead. 

The network for every individual season and for the whole year trained. The results are the best 

for autumn 2009 with having less variation in peak load. In [9] two operative algorithms for 

predicting peak load is used, MLP and Radial Basis Function (RBF). The comparison then has 

been done between the methods to show error in peak load forecasting. The result shows that 

in this case, Multi-layer perceptron has more accuracy than Radial basis function. Another 

valuable paper around peak load forecasting is [12] which presents an ANN model for daily 

peak load forecasting. Moreover, the model presents unique adjustment algorithm to 

compensate for the negative impact of holidays’ forecasts. The result indicates that the 

prediction of the model over a period of one year is reliable including holidays. 

2.2 Related Works on Peak Load Forecasting 
 

[13] proposes a new training method for the analyzable structured neural network (ASNN) in 

order to realize accurate daily peak load forecasting. The result presented confirms that ASNN 

trained by new training method can explain forecasting more properly than ASNN trained by 

the conventional methods. In [17] daily peak load forecasting has been performed for the part 

of a town supplied by 19 distribution feeders on weekdays by taking the historical maximum 

load (Lmax) and maximum temperature (Tmax) data into account. The optimized network 

performances were then compared in terms of the MAPE and the network complexity.  [18] 

illustrates a peak load forecast models using ANN with MLP and back-propagation (BP) 

learning algorithm. It demonstrates the accuracy of the proposed method and shows that the 

forecast model is simple with high accuracy. 

In our research, we have used ANN to forecast the peak consumption. Here we will compare 
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our method with previous related work. Paper [2], [6], [8], [9] and [11] have got good result 

with MLP model for load prediction. [4] also chose the normal recurrent neural network (RNN) 

as the best solution for load forecasting.  

However, the weakness of these researches is that they have applied simple ANN structure 

such as MLP or RNN without memory. Memory is necessary because each neuron or unit can 

use its internal memory to maintain information about the previous input and it is especially 

useful with sequential data. Traditional neural networks cannot do this. In our case special type 

of recurrent neural network with the memory cell which is called LSTM is applied. However, 

due to memory feature of the unites, LSTM could perform better than MLP. 

 Based on our result, we have discovered that the LSTM is a good solution for load forecasting. 

Paper [10] used the LSTM model only for the load forecasting, but our result still is necessary 

because, as it was discussed in the previous chapter, we have found the peak prediction is quite 

important as well.  

Also, we have found [8], [9], [12], [13] and [18], all predicted the peak load, but with MLP 

model, not LSTM which is the weakness of these research.  

According to the above papers, we can conclude that our investigation is the first research about 

peak load forecasting by LSTM in 10 minutes’ intervals. 
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Chapter 3 

3. Technologies 

 

3.1 Background  

Machine learning is the subfield of computer science that focuses on the construction of 

algorithms that make predictions based on input data. It is also can be used on the classification 

of unlabeled data and etc. A machine learning algorithm uses computational methods to learn 

like a human which maps the input data onto the output. On the other hand, this science is 

implemented like a human’s brain. The main issue in machine learning is that it should have 

access to enough data in order to gain experience. In data analytics field, machine learning is a 

procedure contains complex models and algorithms that are used for prediction. These 

analytical models generate precise, repeatable decisions and results from historical 

relationships [22]. 

Deep learning (DL) is a type of machine learning that contains many layers of feature-detecting 

“neurons” between the input and the output. The input layer receives an input and passes on a 

modified version of the input to next layer. Deep learning subfield such as Deep Neural 

Networks (DNN), Convolutional Neural Networks (CNN) and Recurrent Neural Networks 

(RNN) have been applied to fields such as computer vision, prediction, speech recognition, 

language modeling and audio recognition. The phrase "deep learning" in ANN field was 

introduced by Igor Aizenberg in 2000 [34]. The structure of NN is shown in Figure (1). 
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DNN is a neural network with a certain level of complexity which contains certain the number 

of neurons with multiple hidden layers between the input and output layers. DNN is usually 

used to handle complicated recognition tasks and also, requires data with good quality as 

qualified data affects the result of the network. 

RNN has become a widely-used research topic in machine learning field nowadays. It is used 

for the time series prediction with long temporal dependency. It can learn sequential 

information by considering information from previous time steps. The basic idea is recurrent 

networks have loops. These loops allow the network to use information from previous passes, 

which acts as a memory. The length of this memory depends on the number of factors, but it is 

important to note that it is not indefinite. We can use RNNs in different problems like time 

series analysis, natural language processing, and speech recognition.  

CNN is a kind of feedforward neural network technique. A feedforward neural network is an 

ANN where connections between the units are not formed of the loop. CNNs is widely used in 

image and video recognition and natural language processing. Usually, the structure of CNN 

contains neurons with specific weights and biases. Each neuron gets inputs, takes a weighted 

sum over them, pass it through an activation function and generates the output. 

 

 

NN 

RNN 

DL 

CNN DNN 

Figure 1: Structure of Neural Network. 
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In this thesis we tested MLP and LSTM networks to forecast the peak load by using real power 

consumption data approximately available in four months. The motivation for using deep 

learning techniques is to explore if they are able to produce better results than other models.  

 

 3.2. Load Forecasting Techniques  

The load forecasting consists of various methods. Some of the widely used ones are mentioned 

here. One of the parametric methods for forecasting is regression techniques. Regression 

analysis is a statistical procedure for estimating the relationship between dependent and 

predictor (independent) variables. It allows one to see how the dependent variable changes with 

respect to the changes in the independent variable [37]. One limitation of this method is that it 

is unsuitable for the complex modeling techniques and heavy computational efforts. It is more 

convenient for the linear data without complexity relationship.  

Exponential smoothing is one of the classical methods used for load forecasting. The approach 

is based on previous data like other forecast methods, then to use this model to predict the 

future load. This method is also easy to learn and apply. The disadvantage of these approaches 

is that it produces forecasts that lag behind the trend. The lag is a side effect of the smoothing 

process. There is a reason this method has “smoothing” in the naming because it neglects the 

ups and downs associated with random variation [38]. 

Another load forecasting technique is fuzzy logic. It is well known that a fuzzy logic system 

with centroid defuzzification can identify and approximate any unknown dynamic system. This 

approach is easy to understand and implement [39]. However, it has some disadvantages like 

hard to develop a model from a fuzzy system or finding suitable membership values for fuzzy 

systems. 

ANN is one of the well-known methods of the load forecasting. The ANN is behaved same as 

human brain by learning and memorizing different tasks. ANNs are like humans, learn by 

example. It gets enough input as a training set and after processing them can predict the future 

data. ANNs are applied for prediction problems when known and reliable system input/output 

sets are available. Fast system prediction is required as well as the system is complicated and 

difficult to express in mathematical formulas. In general, the ANN is able to predict any system 

accurately and rapidly no matter how complex the system is.  
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An ANN is made up of simple processing units called neurons which are the basic processing 

components of artificial neural networks. Each part of the neuron plays a specific role in 

communicating information throughout the body. In fact, the neuron is a set of inputs, a set of 

weights and an activation function. Every neuron is connected with other neurons through a 

directional link. Each connection link is associated with a specific weight. Each neuron can 

take multiple weighted inputs and then applies the activation function to the summation of 

these inputs in order to generate an output. The inputs can be either the raw input features like 

prior load data or other external features such as temperature and wind speed for the model. 

The output of each layer can then be picked up as input for another layer of neurons later on. 

The network output is calculated with the following equation: 

𝑌 = 𝑓(𝑤1 . 𝑥1 + 𝑤2 . 𝑥2 + ⋯ + 𝑤𝑛 . 𝑥𝑛 ) + 𝑏 

In above equation 𝑏 denotes bias. A bias unit is an extra neuron added to each pre-output layer 

that stores the value of 1. Bias units aren’t connected to any previous layer and it is added into 

neurons to increase the flexibility of the model in order to fit the data.  

 Each neuron has a weight vector w= (𝑤1 , 𝑤2, … , 𝑤𝑛 ), where n is the number of inputs to that 

neuron and Y is the final output. Neuron takes the weighted inputs, sums them up, and then 

sends them to the activation function 𝑓. Figure 2 shows the structure of the artificial neuron. 
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The activation function which is also known as a transfer function is added to the output end 

of any neural network. It maps out the resulting values to a value between 0 to 1. 

Activation functions are really essential elements for an ANN. The role of the activation 

function in a neural network is to produce a non-linear decision boundary via non-linear 

combinations of the weighted inputs. Some types of activation functions will be explained in 

the following;  

▪ logistic sigmoid (σ)  

σ(𝑧) =
1

1 + 𝑒−𝑧 
 

▪ Hyperbolic tangent (tanh) 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

▪ rectified linear units (ReLU) 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑧) 

 

 

 

 

 

 

. 

. 

. 

 

. 

. 

. 

 

Activation 

Function 

 

𝒛𝒋  
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Figure 2 : Structure of the Artificial Neuron. 
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 ANN is a system of connected artificial neurons, and it has the ability to model any arbitrary 

non-linear function [13], Whereas load forecasting data are non-linear in nature. Thus among 

the above-mentioned methods, artificial intelligence methods are a good candidate. ANN can 

solve complex problems with high accuracy such as pattern classification and nonlinear 

mapping. 

 ANN models, by using the historical data and training technique, can learn correlated factors 

between input datasets and matching target values. The created model can be used to forecast 

the outcome of new independent input data.  

There are several types of the neural network structures. As an example is MLP which consists 

of the input layer, output layer, and more than one hidden layer. Another example is RNN that 

has internal memory to process sequences of inputs. In fact, this memory is a state function 

like a feedback loop between neurons. LSTM is another one that is kind of RNNs which are 

designed to avoid the long-term dependency problem by using forget gate. Gated Recurrent 

Unit (GRU) is also similar to the LSTM but GRU, unlike LSTM unit, does not have to use a 

memory unit to control the flow of information.  

3.3 Load Prediction Models  

 In this section, the two DNN models are described. These models are used for forecasting of 

load energy consumption. In Section 3.3.1 standard MLP is explained, followed by the LSTM 

presented in Section 3.3.2.  

3.3.1 Multilayer Perceptron (MLP) 

 

A typical structure of ANN is based on multilayer perceptron. MLP is the most frequently used 

type of neural network model that forecasts a future load by using previous load data.  

 

The MLP has a three-layered structure; input, hidden and output layers. However, between the 

layers, there exist full weighted connections among neurons. The Input layer is connected to 

the one or more hidden layer and the last hidden layer connected to the output layer. Outputs 

of each layer are submitted to inputs of the next layer and all these layers are connected with 

weights. The weighted inputs are summed up and passed through an activation function. 
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If neural network model has one hidden layer it is called single layer perceptron. This model 

is very simple and it is suitable for the non-complex problems. However, if the hidden layers 

increase more than one, for example, two or three it is then called multilayer perception. By 

increasing the number of hidden layers the complexity will be increased. 

MLP is different from a RNN network. The difference is the connections between the nodes. 

In MLP network, the weights from each of the other nodes on the same level of the layer are 

pushed forward into the hidden layer. It means that the input variables will constantly be pushed 

forward to the output nodes. 

The structure implies that the MLP has the power of manipulating the input space by adjusting 

weight matrices between layers. The main process of building MLP is to calculate appropriate 

weight matrices that produce the desired output corresponding to given data. The difference 

between the network outputs which is our prediction and the target values is called the error.  

The backpropagation (BP) algorithm is an optimizer which is used to update and optimize 

weight matrices to minimize the error between the target value and the predicted value that 

produced by MLP. BP is a commonly used method for training an MLP network. The idea 

behind BP algorithm is quite simple, the output of NN is evaluated against desired output. If 

results are not satisfactory. The error is calculated and propagated backward from the output 

to the hidden layer and then to the input. The weights are adjusted to make the error between 

the actual response and the desired response smaller than a target value. The process is repeated 

again and again until to reach the minimum error. 

An MLP model with two-hidden layers which is applied BP is shown in Figure (3).  
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3.3.2 Long Short-Term Memory (LSTM)  

As it was discussed in Chapter 2, the LSTM model is required for peak load prediction.An 

LSTM has a special neuron structure called memory cell. These memory cells have the ability 

to store information over an arbitrary time. Three gates (forget, input and output gates) are 

controlling the information flow into and out of the neuron’s memory cell [24]. 

Each gate in the LSTM receives the same input as the neuron input. Furthermore, each gate 

possesses an activation function. Figure (4) displays LSTM unit cell. 

Input 
 Layer 

𝑥𝑛  

𝑥3 
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𝑥1 

Error 
 

First Hidden  
 Layer 

 

Second Hidden  
Layer 

Figure 3: The MLP based peak load model by using feed forward and  (BP). 

 

Y 
 

Output 
 Layer 



 

 16 

 

 

 

 

 

 

 

 

 

 

The main components of the LSTM unit are:  

1. Input: input vector defined as 𝑥𝑡  and output denoted by ℎ𝑡−1  from the previous time 

step is taken by LSTM unit. The weighted inputs are summed up and passed through 

𝑡𝑎𝑛ℎ activation function, the result is shown in 𝑧𝑡 . 

𝑧𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑧 . 𝑥𝑡 + 𝑅𝑧 ℎ𝑡−1 + 𝑏𝑧 ) 

Where 𝑊𝑧  denotes input weights,  𝑅𝑧 is recurrent weight, and 𝑏𝑧  represents the biases.  

2. Input gate: This gate reads 𝑥𝑡  and ℎ𝑡−1 , computes then the weighted sum, and applies 

sigmoid activation. The result 𝑖𝑡 is multiplied with 𝑧𝑡 calculated above. This is to 

provide the input flowing into the memory cell. 

𝑖𝑡 = σ(𝑊𝑖 . 𝑥𝑡 + 𝑅𝑖 ℎ𝑡−1 + 𝑏𝑖 ) 

3. Forget gate: The forget gate reads 𝑥𝑡  and ℎ𝑡−1  and applies a sigmoid activation to 

weighted inputs. The result, 𝑓𝑡 is multiplied by the cell state at previous time step 𝑐𝑡−1 

which allows for forgetting the memory contents which are no longer needed. The 
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Figure 4: LSTM Memory Cell. 
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output is 0 or 1, which 1 represents “completely keep this” while 0 represents 

“completely get rid of this.” 

𝑓𝑡 = σ(𝑊𝑓 . 𝑥𝑡 + 𝑅𝑓 ℎ𝑡−1 + 𝑏𝑓 ) 

4. Memory cell: The current cell state 𝑐𝑡  is computed by forgetting irrelevant information 

from the previous time step and accepting relevant information from the current input. 

𝑐𝑡 = 𝑧𝑡 ⊙ 𝑖𝑡 + 𝑐𝑡−1 ⊙ 𝑓𝑡  

5. Output gate: Output gate takes the weighted sum of 𝑥𝑡  and ℎ𝑡−1  and applies sigmoid 

activation to control what information would flow out of the LSTM unit. 

𝑜𝑡 = σ(𝑊𝑜 . 𝑥𝑡 + 𝑅𝑜 ℎ𝑡−1 + 𝑏𝑜 ) 

6. Output: The output of the LSTM unit, ℎ𝑡 , is computed by passing the cell state 

𝑐𝑡 through a 𝑡𝑎𝑛ℎ (to push the values to be between −1 and 1) and multiplying it with 

the output gate, 𝑜𝑡 .  

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡 ) ⊙ 𝑜𝑡 ) 

3.4 Loss Function  

Neural network model receives the inputs and generates outputs after passing through the 

hidden layers. If the model prediction is closer to the desired output the model is more accurate 

and has better performance: A simple function which is called loss function will compute this 

error with comparing the predicted output with the actual output. This error (loss) has a direct 

relationship with the model accuracy. If the loss is small enough it means that the model 

prediction is close to the actual value so, the model performance is good and vice versa.  

Different loss functions will give different error measurements for the same prediction. Thus 

have a considerable effect on the performance of the model. Some well-known loss function is 

described as following:  
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MAE (Mean Absolute Error):  

𝑀𝐴𝐸 =
1

𝑛
∑(|𝑌𝑖 − �̂�𝑖 |)

𝑛

𝑖=1

 

MSE (Mean Squared Error): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

 

RMSE (Root Mean Squared Error): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

 

MAPE (Mean Absolute Percentage Error): 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑌𝑖 − �̂�𝑖 |

𝑌𝑖

𝑛
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. 100% 

MRE (Mean Relative Error): 

𝑀𝑅𝐸 =
1

𝑛
∑

|𝑌𝑖 − �̂�𝑖 |

𝑌𝑖

𝑛

𝑖=1

 

where 𝑛 denotes number of samples, 𝑌𝑖 is actual load at time t and �̂�𝑖  represents forecasted 

load at time t. 

After calculating the loss, it is possible to make the loss as small as possible by using 

optimization algorithms such as Adam optimizer, Gradient Descent and AdaGrad [40]. The 

task of the optimizer is to update weights and biases of the internal parameters of a model to 

reduce the error and minimize the loss [25].  
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Chapter 4 

4. Empirical Case  

 

In this chapter the data and methods used to implement the ANNs models for peak load 

forecasting will be described. 

 4.1 Implementation of Deep Neural Networks Platform  

 

Python language as the programming platform has adopted in this thesis. Several Python 

libraries were applied here, such as numpy which provides some advanced math functionalities, 

Matplotlib which is numerical plotting library as well as using Pandas to define DataFrames 

in order to make data manipulation easier. 

The neural network model of this work is developed by using the TensorFlow deep learning 

platform in Python [26]. TensorFlow is an open-source software library was released in 2015 

by Google for numerical computation and is nowadays widely used by many large companies 

[26]. In addition, TensorFlow makes it easier for developers to design, build, and train deep 

learning models.  

4.2 Data Description  

In this research, we have access to the prior load data during 4 months’ period. This data 

includes household information which are key, power consumption and timestamp. 

This data consists of 118 blocks of data, each of these blocks denotes one day, so in total 

information of 118 days (approximately 4 months) exists.  

In this data-set, the time period is at 10 seconds intervals. Our work forecasts the peak load 

data for the next 10 minutes because peak load forecasting in minutes’ scale is an essential 

subject. As it was mentioned in Section 1.1, the very short time interval is needed for real-time 

load forecasting. 
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In our methodology peak load of the previous day and days before are inputs of the ANNs 

model and the machine will forecast the peak load of the next day in 10 minutes’ intervals as 

output. In the following we will explain the reason behind selecting these inputs. A lot 

of different factors affect the peak load such as seasonal change, geographic conditions, wind 

speed, weather conditions and etc. As an example, load consumption pattern in winter is hugely 

different with the one in summer. We only have access to the limited prior data with no data 

for example about wind or weather conditions in the four-month period. On the other hand, if 

we select peak load of only one day before, the forecasting will not be reliable as well because 

the previous day might be a holiday so the peak load on holidays and weekdays is 

not the same. As a result, we have selected peak load of two days before. 

This thesis focuses on prior load data which are collected from the residential community. This 

data contains approximately four-month data starting from February 07th until June 1st 2017. 

Each row of data is related to the one house with its data set. Raw data of this house is used in 

Section 4.3.1 to fix duplications and missing data. Generally, different houses have different 

working patterns, so it does not make sense to forecast the load for all the houses by using the 

same methodology.  In this thesis therefore we have presented the forecast model for one 

household, so it can be extended to others. 

In reality we have limited amount of data and do not have access to the other houses data. 

Moreover, different houses have different consumption patterns. For example, an old couple 

lives in a house and a young couple with children live in another house; pattern in these two 

houses are very different. Old couple might be retired and most of the time of day would stay 

at home so the peak cannot be huge in dinner time, but in the young couple house with children, 

they would go out for work and school so the peak will be significant when they would come 

back home. Thus it can be concluded that it is not easy to find the same neural network model 

for all the houses. There is only one house information so we make one neural network model 

to train the data for that house. The other houses might have the same topology, but different 

training data, so training of the network will be different.  

Our existing data is related to one house and includes several rows. Each row consists of a key, 

power consumption, and timestamp. we catch up all the rows of data in order to make time 

series data. In our case 118 block data exist. Since the data might have overlap with each other, 

it needs to be like time series data. 
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One new list is defined to avoid mixing up the data. Timestamp will be changed in time series 

because it is easier for a process. As an example, if last 24 hours’ data is needed as input, we 

then need to convert hours to seconds by calculating 24h x 60min x 60sec. 

4.3 Data Preprocessing  

 

In neural network modeling, most studies and researches focus on the design and 

implementation of the model. Data preparation is in the secondary importance. However, 

preparing data is an important step in the neural network. The quality of the input data may 

have an enormous effect on the results of the neural network model. Precise preparation has 

serious effects such as reducing the model complexity and increasing the generalization. Also, 

inaccurate data preparation may reduce the model accuracy and cause the detrimental effect on 

the model result. In practice, data-sets are not completely neat; it can have any lack of data like 

missing, destroying or duplication. Thus data preparation contains data cleaning, normalization 

and data deviation for both training set and testing set [27]. 

Thereupon, this work has briefly described different forms of irregularities found in the raw 

data such as gap or duplications and the methods to handle them before generating the data-set 

for the machine in 4.3.1.  

After processing, the data is ready to split into training and testing data-sets. In our MLP model, 

peak load for a day before as the first input and peak load for two days before as the second 

input are chosen. Then both input data are concatenated after reshaping and ready for feeding 

to the machine. This structure is applied for both training and testing of data-set. Figure (5) 

describes the black box schematic of the system. 
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4.3.1 Process Duplication, Missing and Gap 

This sub chapter will focus on how to trim the data set. Our data also was not ready at the 

beginning. We experienced some disqualified data issues like errors in some data, missing of 

data and data duplication. After filling the gap between the missing data and removing all the 

duplication, data-set was prepared for use in the neural network model. This is an essential part 

of the thesis as the current raw data are not optimized for deep learning networks purposes. 

Then all the data has been put in two sets; training and testing data sets. 

For filling the gap process, the iteration starts from the first row data-set to the last row with 

detecting the gap between consequent rows. If the gap is less than 15 seconds it is defined as 

normal gap and there is no need to do anything. We just add it to the data, whereas if it is equal 

to or greater than 15 seconds we then have to fill the gap by using the function which is already 

defined. This procedure is done for both training and testing data-set. 

After data preparation, normalization is required. Normalization (or scaling) is one of the main 

parts of ANN learning process because by using the actual peak load directly in the machine 

the input and output data variables will have very different ranges. Therefore, normalization 

significantly helps as it scales the inputs to between 0 and 1. In order to calculate this the 

following equation is used: 
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Figure 5: Black box modeling of used network. 
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𝑧𝑖 =
𝑥𝑖 − min (𝑥)

𝑚𝑎𝑥(𝑥) − min (𝑥)
 

where 𝑥=(𝑥1,..., 𝑥𝑛)  is denoted input and 𝑧𝑖 is our 𝑖𝑡ℎ normalized data. 𝑚𝑎𝑥(𝑥) and min (𝑥) 

are the maximum and minimum peak load data respectively. 

Therefore, as it was mentioned in Section 4.3 the input data should be prepared in advance. 

4.4. Model Details 

In this research, peak load energy is predicted by MLPs and LSTM model for the next 10 

minutes. For the neural network model to work appropriately, selection of proper historical 

load data sets and choosing the suitable activation function is necessary. For our models, the 

prior peak load data is used as input and the model predicts the next 10 minutes’ load peak. 

Two inputs variables (which is mentioned in Section 4.2) with tanh activation function were 

selected for forecasting the output. The number of neurons for the hidden layers in MLP are 

picked until a better optimization algorithm is obtained. This will in details be described in the 

chapter (5).  

 

4.4.1 Multilayer Perception Model (MLP) 

In this study three MLP models have been applied; MLP models with two, three and four 

hidden layers respectively. In this section, MLP with two hidden layers will be explained in 

details and for the two other models the coding part is similar but just one and two hidden 

layers for MLP with three and four hidden layers is added respectively. 

Our MLP network with two hidden layers is set with different epochs (iterations. The input 

layer contains two input neurons which are peak load data of the previous day and peak load 

of two days before. This input layer is connected to the first hidden layer with two neurons. 

These are forwarded to the second hidden layer with two neurons again and finally, they are 

forwarded to the output layer with one neuron. In this structure, the output of the first layer is 

multiplied to its specific weights.  the result will then add to the bias. Next, this output passes 

to activation function which is a hyperbolic tangent function (tanh) here. In training part, the 

cost/loss function that is calculated by using MAPE will be passed to the applicable optimizer. 
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The code then generates the predicted and target value and print accuracy and error rate. All 

the measure like the number of hidden layers, neurons or the number of the epochs are obtained 

with trial and error method which will be discussed in the chapter (5). 

The MLP with three and four hidden layers contain the same inputs and output, with just extra 

hidden layers added. In our study, MLP with different hidden layers is applied to compare the 

result of different models and observe effect of the number of hidden layers on the accuracy. 

In MLP model, the number of neurons in the hidden layer is an important factor. Using less 

number of neurons in the hidden layers will cause underfitting [35]. Underfitting occurs when 

neurons in the hidden layers have too few neurons to detect the signals in a complicated data-

set. Also using too many neurons in the hidden layers can result in several problems. One 

possible reason could be overfitting. Overfitting occurs when the neural network has too many 

neurons in hidden layers. 

In reality, there is no clear and straight-forward way to find an optimized number of hidden 

layers or neurons in hidden layers. But there are some rule-of-thumb methods for determining 

the number of neurons to use in hidden layers such as the following given by [32]; 

• The number of hidden neurons should be between the size of the input layer and the 

size of the output layer. 

• The number of hidden neurons should be 2/3 the size of the input layer, plus the size of 

the output layer. 

• The number of hidden neurons should be less than twice the size of the input layer. 

• (number of inputs + number of outputs) ^0.5 + (1 to 10). to fix the constant value (last 

part, 0 to 10), use trial and error and find the optimal no of hidden layer neurons for 

the minimum error. 

According to the above rules, we picked 1,2 and 3 neurons and made the combination of them 

to figure out which one has better performance. The result of this combination is illustrated in 

chapter (5). 

We test out different number of neurons in the hidden layers and analyze their performance in 

terms of MAPE for training data-set. We then select the network which has the least error. 

Figure (6) is the schematic drawing of our MLP model with 2 hidden layers. 
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4.4.2 Long Short Term Memory (LSTM) 

After data preparation phase is completed, the prepared data will be scaled. First, the data is 

converted from 10 seconds intervals to the 10 minutes’ intervals. Our LSTM model has 2 inputs 

and one output for both training and testing data-set.  

In our LSTM model number of the epochs (iterations) are 100 and chunk size (number of 

inputs) is equal to two, number of classes (output) is one and the number of the LSTM cells 

are 40. It is worth mentioning that in order to choose the best and most accurate model all these 

numbers have obtained by trial and error method which is explained in the chapter (5). 

In LSTM both the input and output data are originally in horizontal format whereas our input 

and output data are in vertical format. on the other hand, our input data are like a matrix with 

two rows and n columns, and output data are in one rows with n column. Therefore, it is 

compulsory here to reshape the input and output data and change it to the input matrix with n 

rows and two columns and output matrix with n row and one column. This Reshaping process 

should apply for both training and testing data. 

In the training part of the model MAPE (loss function) is applied in order to figure out which 

gives the result with the least error. The next step is to select the appropriate optimizer in order 

to minimize the cost. Finally, the accuracy and error rate is calculated. Figure (6) shows the 

LSTM cell. 
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Figure 6: MLP model with 2 hidden layers. 
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Chapter 5 

5. Model Performance and Discussions 

 

In this chapter, we will go through and analyze the results from each experiment that was done 

based on the two techniques; LSTM and MLP. Both of the techniques have been already 

discussed in this thesis.  

In this research, we have access to the prior load data. This data consists of one house 

information in 118 block data. Each of these blocks corresponds to one day, hence in total 118 

days of information (approximately 4 months) are available. Each block includes key, power 

consumption, and timestamp data. The MLP and LSTM models are applied for predicting the 

peak load power for the next 10 minutes’ intervals. MAPE is used as a performance criterion 

and it has been calculated for all ANN models. 

In order to give a general overview, Figure (7) is plotted to indicates the variation of peak load 

consumption in one month, which starts from February 07th until March 07th 2017. In Figure 

(7), the x axis is time in terms of day that shows the one-month period and y axis denote the 

peak power consumption. In reality our data are in in 10 minutes’ intervals but, if we plot the 

time in 10 minutes’ scale the graph will be chaotic with too many data-points that is not clear 

to analyze. That is why we have chosen to put time in terms of the day. 
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Figure 7: Variation of peak load in a month. 

. 

 

Figure 8:Variation of peak load in testing data. 
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Figure (8) describes the prediction targets in testing data-set, which starts from May 1st until 

May 31st 2017.  

As it was mentioned in Section 4.4.1, by using rule-of-thumb [32], we have chosen 1, 2 and 3 

neurons for the number of hidden layers. Table (1), (2) and (3) below list and compare the 

performance of the MLP models by using combination of different number of hidden layer 

neurons. 

Table (1), shows the result of MLP (2-2-1) model; 2 input neurons, 2 hidden layers and one 

output. 

Table 1: MLP (2-2-1) with different neurons in hidden layers. 

Number of Neurons 

at Hidden Layers 

MAPE Number of Neurons 

at Hidden Layers 

MAPE 

1-1 18.7 2-3 21.8 

1-2 22.0 3-1 21.3 

1-3 18.6 3-2 20.4 

2-1 18.0 3-3 75.9 

2-2 17.3   

As it has been shown in table above, the MLP (2-2-1) with 2 neurons in first hidden layer and 

2 neurons in second hidden layer achieve the minimum MAPE thus it is the best choice.  

 We then repeat the same procedure for MLP (2-3-1) and MLP (2-4-1), the results of those has 

are in Table (2) and Table (3) respectively.  

Table (2) describes the performance MLP (2-3-1) with 2 neurons in input layer, 3 hidden layers 

and one output. 

Table 2: MLP(2-3-1) with different neurons in hidden layers. 

Number of 

Neurons at 

Hidden Layers 

MAPE (%) Number of 

Neurons at 

Hidden Layers 

MAPE (%) 

1-1-1 38.2 2-2-3 18.6 

1-1-2 19.7 2-3-1 20.2 
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1-1-3 17.0 2-3-2 56.7 

1-2-1 18.5 2-3-3 33.2 

1-2-2 18.7 3-1-1 18.5 

1-2-3 19.0 3-1-2 51.3 

1-3-1 18.3 3-1-3 24.2 

1-3-2 17.7 3-2-1 18.3 

1-3-3 28.0 3-2-2 19.8 

2-1-1 18.0 3-2-3 16.6 

2-1-2 16.1 3-3-1 19.2 

2-1-3 17.5 3-3-2 18.7 

2-2-1 18.9 3-3-3 18.9 

2-2-2 18.6   

According to the Table (2), the MLP (2-1-2) with 2, 1 and 2 neurons respectively in first, 

second and third hidden layers has the smallest MAPE, which is the best one.  

Table (3) compares the performance of MLPs with (2-4-1) result with different neurons in 

hidden layers. 

Table 3: MLP (2-4-1) with different neurons in hidden layers. 

 

Number of 

Neurons at 

Hidden 

Layers 

 

MAPE (%) 

Number of 

Neurons at 

Hidden 

Layers 

 

MAPE (%) 

Number of 

Neurons at 

Hidden 

Layers 

 

MAPE (%) 

1-1-1-1 20.21 3-3-1-1 19.33 1-2-3-1 26.43 

1-1-1-2 19.92 3-3-1-2 18.55 1-2-3-2 17.65 

1-1-1-3 18.93 3-3-1-3 18.67 1-2-3-3 19.13 

1-2-1-1 18.61 1-1-3-1 18.72 1-3-2-1 18.54 

1-2-1-3 19.03 1-1-3-2 23.09 1-3-2-2 21.75 

1-2-1-2 18.84 1-1-3-3 18.96 1-3-2-3 22.54 

2-1-1-1 20.01 1-3-1-1 18.65 3-2-1-1 20.22 

2-1-1-2 23.03 1-3-1-2 18.80 3-2-1-2 20.67 
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2-1-1-3 22.26 1-3-1-3 18.93 3-2-1-3 16.58 

1-1-2-1 18.74 3-1-1-1 18.46 3-1-2-1 18.62 

1-1-2-2 18.81 3-1-1-2 17.22 3-1-2-2 18.86 

1-1-2-3 19.97 3-1-1-3 21.68 3-1-2-3 21.32 

2-2-1-1 18.59 2-2-3-1 31.9 2-1-3-1 27.48 

2-2-1-2 18.92 2-2-3-2 18.76 2-1-3-2 19.34 

2-2-1-3 36.51 2-2-3-3 28.44 2-1-3-3 18.83 

2-1-2-1 18.62 2-3-2-1 20.20 2-3-1-1 21.31 

2-1-2-2 18.25 2-3-2-2 22.60 2-3-1-2 19.70 

2-1-2-3 19.05 2-3-2-3 23.23 2-3-1-3 17.86 

1-2-2-1 18.61 3-2-2-1 47.33 3-3-2-1 21.51 

1-2-2-2 16.49 3-2-2-2 18.22 3-3-2-2 35.90 

1-2-2-3 19.99 3-2-2-3 18.81 3-3-2-3 21.49 

1-3-3-1 21.91 3-3-3-1 18.12 2-3-3-1 19.56 

1-3-3-2 19.36 3-3-3-2 20.49 2-3-3-2 25.71 

1-3-3-3 19.44 3-3-3-3 22.14 2-3-3-3 17.64 

3-1-3-1 18.65 2-2-2-2 16.63 3-2-3-1 19.39 

3-1-3-2 22.37 2-2-2-1 18.64 3-2-3-2 18.90 

 

Table above shows the in MLPs with (2-4-1) structure, the one with 1 neuron in first hidden 

layer and 2, 2 and 2 neurons in second, third and fourth hidden layers respectively attains the 

best performance. 

As can be seen in tables above, MLP with 2 hidden layers is more accurate compared with the 

two other structures as it has the lowest error. It is observed that there is a tendency of 

performance attenuation, the reason could be overfitting. To avoid overfitting, one way is to 

limit the number of hidden layers [33]. 

Then, LSTM model with different number of LSTM cells are evaluated and the obtained results 

are tabulated in Table (4). 
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Table 4: LSTM with different number of cells. 

Number of Cells MAPE (%) 

1 39.7 

5 26.2 

10 28.9 

15 20.2 

20 17.5 

30 05.6 

40 04.4 

50 06.2 

60 07.5 

70 07.7 

based on Table (4) above, LSTM model with 40 cells has the smallest MAPE, which is the 

satisfactory model. After increasing the number of cells to more than 40, the MAPE also 

increases. As a result, we stopped the testing at 40 cells. Moreover, three optimizers are applied 

to figure out which one has better result. In Table (5) and (6) result of three optimizers are 

compared based on MAPE; 

Table 5: Different Optimizers Performance for MLP model. 

ANN structure Number of 

Neurons at 

Hidden Layers 

Gradient Descent Adam Adagrad 

MLP (2-2-1) 2-2 17.3 31.7 21.5 

MLP (2-2-1) 2-1-2 16.1 36.4 18.2 

MLP (2-2-1) 1-2-2-2 16.4 38.2 18.0 

 

Table 6:Different Optimizers Performance for LSTM model. 

ANN structure Number of cell Gradient Descent Adam Adagrad 

LSTM 40 4.41 36.3 13.6 
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By empirical result in Table (5) and (6), the Gradient Descent is the best choice for our ANN 

model, because as we see it has minimum MAPE. 

After the proper model structures based on result of Tables (1), (2), (3) and (4) are selected, it 

was tested with different epochs. The same procedure is repeated for all selected models. The 

results are tabulated in Tables (7), (8) and (9) as following:  

Table 7: Performance of  MLP (2-2-1) models with different number of epochs. 

Number of 

Epochs 

MAPE (%) 

10 21.8 

20 20.6 

50 16.5 

100 15.8 

120 16.9 

150 18.5 

200 18.7 

220 19.3 

 

 
Table 8: Performance of  MLP (2-3-1) models with different number of epochs. 

Number of 

Epochs 

MAPE (%) 

10 21.3 

20 19.4 

50 17.7 

100 16.6 

120 18.4 

150 18.9 

200 19.6 

220 21.1 
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Table 9: Performance of  MLP (2-4-1) models with different number of epochs. 

Number of 

Epochs 

MAPE (%) 

10 19.3 

20 18.5 

50 18.0 

100 17.0 

120 17.5 

150 18.5 

200 19.0 

220 19.5 

Based on Table (7), (8) and (9), MLP with 100 epochs has the smallest error, so 100 epochs 

will be our best choice for the MLP models.  

 

Figure 9: MLP models performance. 

It is able to observed that, the MLP models according to number of epochs and error rate are 

compared in Figure (9) this figure MLP model with 2 hidden layers has the minimum error 
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amongst all. Therefore, we have chosen MLP (2-2-1) as the best MLP model. Table (10) shows 

the LSTM performance base on the number of epochs. 

According to Table (10), the error decreases in LSTM model by increasing the number of 

epochs until 200 epochs. Thereafter by increasing the epochs above 100 tendency of 

performance attenuation increases. Thus we do not increase the epochs anymore. In above table 

the best LSTM model is the one with 100 epochs as it has the minimum error. Figure (10) in 

the next page illustrates the LSTM performance.  

 

Table 10: LSTM models with different number of epochs. 

Number of 

Epochs 

MAPE (%) 

10 17.9 

20 11.3 

50 1.70 

100 1.27 

120 1.35 

150 1.56 

200 1.89 

220 8.42 
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Figure 10: LSTM model performance 

We now compare the best MLP model which is MLP (2-2-1) and LSTM with 100 epochs. The 

result has been shown in Figure (11). 

 

Figure 11: MLP & LSTM performance comparison. 
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According to the Figure (11), LSTM performs better than MLP in error. Therefore, based on 

this study we can conclude LSTM is more accurate than MLP. 

In Table (11) comparison of the MAPE between the LSTM and some methods utilized in other 

related works are illustrated; 

Table 11: Comparison of the MAPE (% ) between this work and some other studies. 

References MAPE% 

Our LSTM   1.31 

[9] 1.57 

[28] 2.43 

[29] 2.02 

[30] 1.74 

[31] 4.04 

The references that are presented in Table (11), have included MLPs and other models with 8 

inputs and one output. They have considered 7 inputs as past peak loads as a week contains 7 

days. The one other input left represents the characteristic of forecasting day. This one more 

input is added because of the different nature of days in a week (holiday and week days). We 

made our LSTM model with 8 inputs (peak load of 7 days before and 1 characteristic 

parameter) and 1 output, exactly same as them. For this form of LSTM we got 1.31 MAPE% 

which means better performance. The remarkable reason for this result is LSTM model has 

memory cell and stores the last output in memory and use that as input for next successive step. 

Both MLP and LSTM networks can have same number of inputs and outputs. However, due 

to memory feature of the nodes in LSTM, LSTM could perform better than MLP as it was 

proven in chapter 5 it performed better 
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Chapter 6 

6. Conclusions and Future work 

 

6.1 Conclusion 
 

The main issue of this thesis have been to perform an analysis of the provided input data and 

to develop the qualitative forecasting models for them. In order to solve this problem, the data 

preprocessing, forecasting methods and other essential aspects of time series analysis has been 

discussed in the theoretical part of the thesis. It was investigated, that very often, the proper 

data preprocessing plays the key role of the whole process.  

Due to the prediction results, the LSTM model in our problem has minimum MAPE, hence is 

the best structure for peak load forecasting in this research.  

The results indicate that the LSTM model has advantages in time series analysis in comparison 

to other Neural Networks like MLP, it might because of LSTM structure. LSTM stores the last 

output in memory because it has memory cell and uses that as input for next successive step. 

In the other hand LSTM performs better than other MLP models when evaluated against MAPE 

value, so in this case LSTM network was a good choice in peak load forecasting. 

6.2 Future Work 
 

As this approach only use the peak load as an input to the artificial neural network and doesn’t 

take into account other relevant parameters like atmospheric temperature, humidity, rain and 

pressure, thus, there is a potential research to be conducted highlighting the effect of these 

parameters on load forecasting systems in future. Moreover, our data is included load data in 

limited several months, in future if whole year data or more will be available then we can 

forecast future load by adding season feature and analyze the peak in different seasons 
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DaraPrepration2.py

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:14:57 2018

@author: azadehkarimi
"""



#### find all gapsmissing data

house_key = "cecb04626a640d821e504a4b6625fd3d46785948927acf9ebe435ce9745d9996"

import pickle
import datetime
import pandas as pd

partA = "/Users/azadehkarimi/Documents/data/"
partC = ".pkl"

data_house = [];

for i in range(0,118):
    # read data from each data file
    partB = str(i);
    path = "".join([partA, partB, partC]);
    datafile = open(path, 'rb');
    rawdata = pickle.load(datafile, encoding='latin1');
    datafile.close();
    
    # get a list for all rows of a hus
    for key in rawdata:
        if key == house_key:
            data_house.append(rawdata[key]);

print(len(data_house))




#==============================================================================
### order blocks by time
data_hous2= data_house;
for i in range(0,len(data_hous2)):
    for j in range(i+1,len(data_hous2)):
        if data_hous2[i][0][0] > data_hous2[j][0][0]:
            temp = data_hous2[i];
            data_hous2[i] = data_hous2[j];
            data_hous2[j] = temp;
        if data_hous2[i][0][0] == data_hous2[j][0][0]:
            print(i,j,'error')

### switch blocks to rows
data_hous3 = [];
for i in range(0,len(data_hous2)):
    data_hous3.extend(data_hous2[i]);
    


##==============================================================================
# duplication and missing 


train_data = data_hous3[:615693]; 
test_data = data_hous3[615695:]; 


def fillgap(data_house):
    data_house_nomiss = [];
    
    for i in range(1, len(data_house)):
        gap = (data_house[i][0] - data_house[i-1][0]) / 1e3;
        if gap < 15:
            data_house_nomiss.append(data_house[i-1]);
        elif gap >= 15:
            
            
            last = data_house[i];
            first = data_house[i-1];
            power_difference_per_second = (last[1] - first[1]) / gap;
            
            rows_to_add = int(gap/10 - 0.5); 
            
            for row in range(0, (rows_to_add + 1)):
                addrow = [0] * 2;
                addrow[0] = first[0] + 1000 * 10 * row;
                addrow[1] = int(round(first[1] + 10 * row * power_difference_per_second)); # Rounded off after rounding
                data_house_nomiss.append(addrow);
             
        else:
            print('error', i, data_house[i], data_house[i-1], gap)
            
    return data_house_nomiss



train_data_nomiss = fillgap(train_data); # start at 02-07 16:32:00 # end at 04-20 01:59:27
test_data_nomiss = fillgap(test_data);

   
##============================================================================== 










DataPrepration1.py

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 09:57:48 2018

@author: azadehkarimi
"""
# -*- coding: utf-8 -*-


import pickle
import datetime
import pandas as pd

partA ="/Users/azadehkarimi/Documents/data/"
partC = ".pkl"

List_id = {};
for i in range(0,118):
    # read data from each data file
    partB = str(i);
    path = "".join([partA, partB, partC]);
    datafile = open(path, 'rb');
    rawdata = pickle.load(datafile, encoding='latin1');
    datafile.close();
    
    
    for key in rawdata:
        if key in List_id:
            List_id[key] = [List_id[key][0] + 1, List_id[key][1] + len(rawdata[key])];
        elif key not in List_id:
            List_id[key] = [1,len(rawdata[key])];
        else:
            print('error at key reading');
            
print('init')           
            

def readdata(house_key):
    data_house = [];
    for i in range(0,118):
        # read data from each data file
        partB = str(i);
        path = "".join([partA, partB, partC]);
        datafile = open(path, 'rb');
        rawdata = pickle.load(datafile, encoding='latin1');
        datafile.close();
        
        # Put all the data in list
        for key in rawdata:
            if key == house_key:
                data_house.extend(rawdata[key]);

    return data_house;
 #if distance>1800000 thre is missing data  
def findgap(house_key,data_house):
    miss = 0;
    j = 0;
    for i in range(1,len(data_house)):
        if data_house[i][0] - data_house[i-1][0] >= 1800000 and data_house[i][0] - data_house[i-1][0] <= 86400000:
            j = (data_house[i][0] - data_house[i-1][0])/ 1e3
            #print(c,i);
            miss = miss+ 1;
            j += j;
    j /= miss;
    return miss,j;



for key in List_id:
    data_house = readdata(key);
    gapcount = findgap(key,data_house);
    print (key, gapcount);

for key in List_id:
    data_house = readdata(key);
    print(key, len(data_house));











LSTM-2input.py

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:55:52 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:53:38 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:50:37 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:45:56 2018

@author: azadehkarimi
"""
#### find all gapsmissing data

house_key = "cecb04626a640d821e504a4b6625fd3d46785948927acf9ebe435ce9745d9996"

import pickle
import datetime
import pandas as pd
import pickle
import datetime
import numpy  as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib as mlp
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.metrics import mean_squared_error

partA = "/Users/azadehkarimi/Documents/data/"
partC = ".pkl"

data_house = [];

for i in range(0,118):
    # read data from each data file
    partB = str(i);
    path = "".join([partA, partB, partC]);
    datafile = open(path, 'rb');
    rawdata = pickle.load(datafile, encoding='latin1');
    datafile.close();
    
    # get a list for all rows of a hus
    for key in rawdata:
        if key == house_key:
            data_house.append(rawdata[key]);

print(len(data_house))

#==============================================================================
### order blocks by time
data_hous2= data_house;
for i in range(0,len(data_hous2)):
    for j in range(i+1,len(data_hous2)):
        if data_hous2[i][0][0] > data_hous2[j][0][0]:
            temp = data_hous2[i];
            data_hous2[i] = data_hous2[j];
            data_hous2[j] = temp;
        if data_hous2[i][0][0] == data_hous2[j][0][0]:
            print(i,j,'error')

### switch blocks to rows
data_hous3 = [];
for i in range(0,len(data_hous2)):
    data_hous3.extend(data_hous2[i]);
    
##==============================================================================
# duplication and missing 


train_data = data_hous3[:615693]; 
test_data = data_hous3[615695:]; 


def fillgap(data_house):
    data_house_nomiss = [];
    
    for i in range(1, len(data_house)):
        gap = (data_house[i][0] - data_house[i-1][0]) / 1e3;
        if gap < 15:
            data_house_nomiss.append(data_house[i-1]);
        elif gap >= 15:
            
            
            last = data_house[i];
            first = data_house[i-1];
            power_difference_per_second = (last[1] - first[1]) / gap;
            
            rows_to_add = int(gap/10 - 0.5); 
            
            for row in range(0, (rows_to_add + 1)):
                addrow = [0] * 2;
                addrow[0] = first[0] + 1000 * 10 * row;
                addrow[1] = int(round(first[1] + 10 * row * power_difference_per_second)); # Rounded off after rounding
                data_house_nomiss.append(addrow);
             
        else:
            print('error', i, data_house[i], data_house[i-1], gap)
            
    return data_house_nomiss



train_data_nomiss = fillgap(train_data); # start at 02-07 16:32:00 # end at 04-20 01:59:27
test_data_nomiss = fillgap(test_data);

   
##============================================================================== 

from sklearn.preprocessing import MinMaxScaler
scalar = MinMaxScaler()

#train_data_nomiss=MinMaxScaler().fit_transform(train_data_nomiss)
#dataenhus3test_nomiss=MinMaxScaler().fit_transform(dataenhus3test_nomiss)


train_time=[]
train_power=[]
date=[]
#print(type(train_time))
for i ,v in enumerate(train_data_nomiss):
#            train_time.append(v[0])
             train_power.append(v[1])

            
train_power = np.array(train_power)
train_power=train_power.reshape([-1,1])  
train_power=scalar.fit_transform(train_power)
 
train_power_10_min=[]
train_peak_power=[]#y_train
old_train_peak_power1=[]#X1_train
old_train_peak_power2=[]#X2_train
j=0
for i in range(len(train_power)):
    train_power_10_min.append(train_power[i])
#cinvert 10 sec intervals to 10 min intervals  
    j+=1
    if j%60 ==0:
     train_peak_power.append(max(train_power_10_min))
     del train_power_10_min[:]
#Put peak of one day before as X1_train and put peak of two days before as X2_train.
for i in range(0,288):
    
  old_train_peak_power1.append(train_peak_power[i])
  old_train_peak_power2.append(train_peak_power[i])
  
for i in range(288,len(train_peak_power)):
      
      old_train_peak_power1.insert((i+288), train_peak_power[i])

for i in range(288,len(train_peak_power)-144):
    old_train_peak_power2.insert((i+288), train_peak_power[i+144])

for i in range(0,144):
     
  old_train_peak_power2.append(0)

old_train_peak_power1 = np.array(old_train_peak_power1) 
old_train_peak_power1=old_train_peak_power1.reshape([-1,1])


old_train_peak_power2 = np.array(old_train_peak_power2)
old_train_peak_power2=old_train_peak_power2.reshape([-1,1])

 

x_train=np.concatenate((old_train_peak_power1,old_train_peak_power2), axis =1)



##Put and Test data(time&power) in the lists
test_time=[]
test_power=[]
for i ,v in enumerate(test_data_nomiss):
             test_time.append(v[0])
             test_power.append(v[1])  
                
test_power = np.array(test_power)
test_power=test_power.reshape([-1,1])  
test_power=scalar.fit_transform(test_power)       
 
test_power_10_min=[]
test_peak_power=[]
old_test_peak_power1=[]#tx1_tes
old_test_peak_power2=[]#tx2_tes
x_test=[]
k=0
for i in range(len(test_power)):
    test_power_10_min.append(test_power[i])
    
    k+=1
    if k%60 ==0:
     test_peak_power.append(max(test_power_10_min))
     del test_power_10_min[:]
for i in range(0,288):
    
  old_test_peak_power1.append(test_peak_power[i])
  old_test_peak_power2.append(test_peak_power[i])

for i in range(288,len(test_peak_power)):
     old_test_peak_power1.insert((i+288), test_peak_power[i])

for i in range(288,len(test_peak_power)-144):
    old_test_peak_power2.insert((i+288), test_peak_power[i+144])

for i in range(0,144):
    old_test_peak_power2.append(0)
     

old_test_peak_power1 = np.array(old_test_peak_power1) 
old_test_peak_power1=old_test_peak_power1.reshape([-1,1])
   

old_test_peak_power2 = np.array(old_test_peak_power2)
old_test_peak_power2=old_test_peak_power2.reshape([-1,1])
  
x_test=np.concatenate((old_test_peak_power1,old_test_peak_power2), axis =1)
#============================================================================== #============================================================================== 
#LSTM Model 



#Reshape the data 
#Input data reshape to change like a matrix with two columns and n rows 
#output data reshape to be like matrix with one column and n rows

x_train=x_train.reshape([-1,1,2])
x_test=x_test.reshape([-1,1,2])

train_peak_power = np.array(train_peak_power)
train_peak_power=train_peak_power.reshape([-1,1])

test_peak_power = np.array(test_peak_power)
test_peak_power=test_peak_power.reshape([-1,1])


number_epochs = 100#number of itration
n_classes = 1#output
batch_size = 10
chunk_size = 2#how many input
n_chunks =1 
rnn_size =40#number of lstm cells
x = tf.placeholder('float32', [None, n_chunks,chunk_size])#input data, now it is a empty place 
y = tf.placeholder('float32',[None, 1])#target data but now  it is a empty place 


def recurrent_neural_network(x):
    layer = {'weights':tf.Variable(tf.random_normal([rnn_size,n_classes])),
             'biases':tf.Variable(tf.random_normal([n_classes]))}

    x = tf.transpose(x, [1,0,2])
    x = tf.reshape(x, [-1, chunk_size])
    x = tf.split(x, n_chunks, 0) 
    #print(tf.Session().run(x))
    #hyperbolic tangent function (tanh)
    lstm_cell =rnn_cell.BasicLSTMCell(rnn_size)
    #lstm_cell = rnn_cell.BasicLSTMCell(rnn_size,state_is_tuple=True)
    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)

    output = tf.matmul(outputs[-1],layer['weights']) + layer['biases']

    return output

def train_neural_network(x):
    
    prediction = recurrent_neural_network(x)
    
    cost=((tf.reduce_sum(tf.abs((prediction-y))/y))/(2*len(train_peak_power)))
    #cost=((tf.reduce_sum(tf.abs((prediction-y))/y))/10275)#MRE
    
    optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    #optimizer = tf.train.AdagradOptimizer(0.01).minimize(cost)
    #optimizer=tf.train.AdamOptimizer(0.01).minimize(cost)
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        for epoch in range(number_epochs):
            epoch_loss = 0
            for _ in range(len(train_peak_power)):
                batch_x = x_train[_*batch_size:(_+1)*batch_size]
                batch_y = train_peak_power[_*batch_size:(_+1)*batch_size]
                
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
                epoch_loss += c

            print('Epoch', epoch, 'completed out of', number_epochs, 'loss:', epoch_loss)

     
        Y_prediction=sess.run(prediction,feed_dict={x: x_test, y: test_peak_power})
        Y_prediction=scalar.fit_transform(Y_prediction)
        
        print("prediction:\n",Y_prediction)
        print("Targ'ets:\n",test_peak_power)
        resultabc.append(Y_prediction)
        MAPE=cost.eval({x: x_test, y: test_peak_power})
        #accuracy=1-np.sqrt(MAPE)
        print("MRE:\n",MAPE)
        #print("accuracy:\n",accuracy
     
resultabc=[]

train_neural_network(x)

################*********************************************
#"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''

#Plot LSTM model 

#add title
#plt.title('Load')
plt.xlabel('Samples')
plt.ylabel('Consumption')

prediction = resultabc[0].tolist()#prediction

daily_prediction=scalar.inverse_transform(prediction)


actual= test_peak_power.tolist()#Actual
daily_actual=scalar.inverse_transform(actual)



import numpy as np
#
pr=(np.add.reduceat(daily_prediction, np.arange(0, len(daily_prediction), 72)))/72
ac=(np.add.reduceat(daily_actual, np.arange(0, len(daily_actual), 72)))/72

#pr=pr[:]*4
plt.plot(pr,'red')
plt.plot(ac,'blue')
plt.gca().legend(('prediction','actual'))
plt.show()

#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""'
'''
#Plot (Error,Epochs)
plt.xlabel('Epchs',fontsize=10)
plt.ylabel('MAPE (%)', fontsize=10)
epoch1=[10,20,50,100,120,150,200,220]
error1=[0.205,0.179,0.083,0.017,0.0156,0.0135,0.0127,0.0189]
plt.plot(epoch1,error1,'blue')
plt.gca().legend(('MAPE','Epochs'))
plt.show()















LSTM_8input.py


#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:55:52 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:53:38 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:50:37 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:45:56 2018

@author: azadehkarimi
"""
#### find all gapsmissing data

house_key = "cecb04626a640d821e504a4b6625fd3d46785948927acf9ebe435ce9745d9996"

import pickle
import datetime
import pandas as pd
import pickle
import datetime
import numpy  as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib as mlp
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.metrics import mean_squared_error

partA = "/Users/azadehkarimi/Documents/data/"
partC = ".pkl"

data_house = [];

for i in range(0,118):
    # read data from each data file
    partB = str(i);
    path = "".join([partA, partB, partC]);
    datafile = open(path, 'rb');
    rawdata = pickle.load(datafile, encoding='latin1');
    datafile.close();
    
    # get a list for all rows of a hus
    for key in rawdata:
        if key == house_key:
            data_house.append(rawdata[key]);

print(len(data_house))

#==============================================================================
### order blocks by time
data_hous2= data_house;
for i in range(0,len(data_hous2)):
    for j in range(i+1,len(data_hous2)):
        if data_hous2[i][0][0] > data_hous2[j][0][0]:
            temp = data_hous2[i];
            data_hous2[i] = data_hous2[j];
            data_hous2[j] = temp;
        if data_hous2[i][0][0] == data_hous2[j][0][0]:
            print(i,j,'error')

### switch blocks to rows
data_hous3 = [];
for i in range(0,len(data_hous2)):
    data_hous3.extend(data_hous2[i]);
    
##==============================================================================
# duplication and missing 


train_data = data_hous3[:615693]; 
test_data = data_hous3[615695:]; 


def fillgap(data_house):
    data_house_nomiss = [];
    
    for i in range(1, len(data_house)):
        gap = (data_house[i][0] - data_house[i-1][0]) / 1e3;
        if gap < 15:
            data_house_nomiss.append(data_house[i-1]);
        elif gap >= 15:
            
            
            last = data_house[i];
            first = data_house[i-1];
            power_difference_per_second = (last[1] - first[1]) / gap;
            
            rows_to_add = int(gap/10 - 0.5); 
            
            for row in range(0, (rows_to_add + 1)):
                addrow = [0] * 2;
                addrow[0] = first[0] + 1000 * 10 * row;
                addrow[1] = int(round(first[1] + 10 * row * power_difference_per_second)); # Rounded off after rounding
                data_house_nomiss.append(addrow);
             
        else:
            print('error', i, data_house[i], data_house[i-1], gap)
            
    return data_house_nomiss



train_data_nomiss = fillgap(train_data); # start at 02-07 16:32:00 # end at 04-20 01:59:27
test_data_nomiss = fillgap(test_data);

 
#=================================================================================
from sklearn.preprocessing import MinMaxScaler
scalar = MinMaxScaler()
#
#dataenhus3train_nomiss=MinMaxScaler().fit_transform(dataenhus3train_nomiss)
#dataenhus3test_nomiss=MinMaxScaler().fit_transform(dataenhus3test_nomiss)


train_time=[]
train_power=[]
date=[]
#print(type(train_time))
for i ,v in enumerate(train_data_nomiss):
#            train_time.append(v[0])
             train_power.append(v[1])

            
train_power = np.array(train_power)
train_power=train_power.reshape([-1,1])  
train_power=scalar.fit_transform(train_power)
 
train_power_10_min=[]
train_peak_power=[]#y_train

old_train_peak_power1=[]#X1_train
old_train_peak_power2=[]#X2_train
old_train_peak_power3=[]#X1_train
old_train_peak_power4=[]#X2_train
old_train_peak_power5=[]#X1_train
old_train_peak_power6=[]#X2_train
old_train_peak_power7=[]#X1_train
old_train_peak_power8=[]#X1_train

j=0
for i in range(len(train_power)):
    train_power_10_min.append(train_power[i])
#cinvert 10 sec intervals to 10 min intervals  
    j+=1
    if j%60 ==0:
     train_peak_power.append(max(train_power_10_min))
     del train_power_10_min[:]
#Put peak of one day before as X1_train and put peak of two days before as X2_train.

for i in range(0,1152):
    
  old_train_peak_power1.append(train_peak_power[i])
  old_train_peak_power2.append(train_peak_power[i])
  old_train_peak_power3.append(train_peak_power[i])
  old_train_peak_power4.append(train_peak_power[i])
  old_train_peak_power5.append(train_peak_power[i])
  old_train_peak_power6.append(train_peak_power[i])
  old_train_peak_power7.append(train_peak_power[i])
  old_train_peak_power8.append(train_peak_power[i])
  
for i in range(1152,len(train_peak_power)):
      
      old_train_peak_power1.insert((i+1152), train_peak_power[i])

for i in range(1152,len(train_peak_power)-144):
    old_train_peak_power2.insert((i+1152), train_peak_power[i+144])

for i in range(0,144):
     
  old_train_peak_power2.append(0) 


for i in range(1152,len(train_peak_power)-288):
    old_train_peak_power3.insert((i+1152), train_peak_power[i+288])
    
for i in range(0,288):
     
  old_train_peak_power3.append(0)

for i in range(1152,len(train_peak_power)-432):
    old_train_peak_power4.insert((i+1152), train_peak_power[i+432])
    
for i in range(0,432):
     
  old_train_peak_power4.append(0)    

for i in range(1152,len(train_peak_power)-576):
    old_train_peak_power5.insert((i+1152), train_peak_power[i+576])

for i in range(0,576):
     
  old_train_peak_power5.append(0)

for i in range(1152,len(train_peak_power)-720):
    old_train_peak_power6.insert((i+1152), train_peak_power[i+720])
    
for i in range(0,720):
     
  old_train_peak_power6.append(0)    

for i in range(1152,len(train_peak_power)-864):
    old_train_peak_power7.insert((i+1152), train_peak_power[i+864])


for i in range(0,864):
     
  old_train_peak_power7.append(0)  
  
for i in range(1152,len(train_peak_power)-1008):
    old_train_peak_power8.insert((i+1152), train_peak_power[i+1008])


for i in range(0,1008):
     
  old_train_peak_power8.append(0)
  
  
old_train_peak_power1 = np.array(old_train_peak_power1) 
old_train_peak_power1=old_train_peak_power1.reshape([-1,1])

old_train_peak_power2 = np.array(old_train_peak_power2)
old_train_peak_power2=old_train_peak_power2.reshape([-1,1])

  
old_train_peak_power3 = np.array(old_train_peak_power3) 
old_train_peak_power3=old_train_peak_power3.reshape([-1,1])

  
old_train_peak_power4 = np.array(old_train_peak_power4) 
old_train_peak_power4=old_train_peak_power4.reshape([-1,1])

  
old_train_peak_power5 = np.array(old_train_peak_power5) 
old_train_peak_power5=old_train_peak_power5.reshape([-1,1])

  
old_train_peak_power6 = np.array(old_train_peak_power6) 
old_train_peak_power6=old_train_peak_power6.reshape([-1,1])

  
old_train_peak_power7 = np.array(old_train_peak_power7) 
old_train_peak_power7=old_train_peak_power7.reshape([-1,1])
  
old_train_peak_power8 = np.array(old_train_peak_power8) 
old_train_peak_power8=old_train_peak_power8.reshape([-1,1])

x_train=np.concatenate((old_train_peak_power1,old_train_peak_power2,old_train_peak_power3,old_train_peak_power4,old_train_peak_power5,old_train_peak_power6,old_train_peak_power7,old_train_peak_power8), axis =1)

################################################################################

test_time=[]
test_power=[]
date=[]
#print(type(train_time))
for i ,v in enumerate(test_data_nomiss):
#            train_time.append(v[0])
             test_power.append(v[1])

            
test_power = np.array(test_power)
test_power=test_power.reshape([-1,1])  
test_power=scalar.fit_transform(test_power)
 
test_power_10_min=[]
test_peak_power=[]#y_train

old_test_peak_power1=[]#X1_train
old_test_peak_power2=[]#X2_train
old_test_peak_power3=[]#X3_train
old_test_peak_power4=[]#X4_train
old_test_peak_power5=[]#X5_train
old_test_peak_power6=[]#X6_train
old_test_peak_power7=[]#X7_train
old_test_peak_power8=[]#X8_train
j=0
for i in range(len(test_power)):
    test_power_10_min.append(test_power[i])
#cinvert 10 sec intervals to 10 min intervals  
    j+=1
    if j%60 ==0:
     test_peak_power.append(max(test_power_10_min))
     del test_power_10_min[:]
#Put peak of one day before as X1_train and put peak of two days before as X2_train.

for i in range(0,1152):
    
  old_test_peak_power1.append(train_peak_power[i])
  old_test_peak_power2.append(train_peak_power[i])
  old_test_peak_power3.append(train_peak_power[i])
  old_test_peak_power4.append(train_peak_power[i])
  old_test_peak_power5.append(train_peak_power[i])
  old_test_peak_power6.append(train_peak_power[i])
  old_test_peak_power7.append(train_peak_power[i])
  old_test_peak_power8.append(train_peak_power[i]) 
  
for i in range(1152,len(test_peak_power)):
      
      old_test_peak_power1.insert((i+1152), test_peak_power[i])

for i in range(1152,len(test_peak_power)-144):
    old_test_peak_power2.insert((i+1152), test_peak_power[i+144])

for i in range(0,144):
     
  old_test_peak_power2.append(0) 


for i in range(1152,len(test_peak_power)-288):
    old_test_peak_power3.insert((i+1152), test_peak_power[i+288])
    
for i in range(0,288):
     
  old_test_peak_power3.append(0)

for i in range(1152,len(test_peak_power)-432):
    old_test_peak_power4.insert((i+1152), test_peak_power[i+432])
    
for i in range(0,432):
     
  old_test_peak_power4.append(0)    

for i in range(1152,len(test_peak_power)-576):
    old_test_peak_power5.insert((i+1152), test_peak_power[i+576])

for i in range(0,576):
     
  old_test_peak_power5.append(0)

for i in range(1152,len(test_peak_power)-720):
    old_test_peak_power6.insert((i+1152), test_peak_power[i+720])
    
for i in range(0,720):
     
  old_test_peak_power6.append(0)    

for i in range(1152,len(test_peak_power)-864):
    old_test_peak_power7.insert((i+1152), test_peak_power[i+864])


for i in range(0,864):
     
  old_test_peak_power7.append(0)  
 
  
for i in range(1152,len(test_peak_power)-1008):
    old_test_peak_power8.insert((i+1152), test_peak_power[i+1008])


for i in range(0,1008):
     
  old_test_peak_power8.append(0)
  
  
old_test_peak_power1 = np.array(old_test_peak_power1) 
old_test_peak_power1=old_test_peak_power1.reshape([-1,1])

old_test_peak_power2 = np.array(old_test_peak_power2)
old_test_peak_power2=old_test_peak_power2.reshape([-1,1])

  
old_test_peak_power3 = np.array(old_test_peak_power3) 
old_test_peak_power3=old_test_peak_power3.reshape([-1,1])

  
old_test_peak_power4 = np.array(old_test_peak_power4) 
old_test_peak_power4=old_test_peak_power4.reshape([-1,1])

  
old_test_peak_power5 = np.array(old_test_peak_power5) 
old_test_peak_power5=old_test_peak_power5.reshape([-1,1])

  
old_test_peak_power6 = np.array(old_test_peak_power6) 
old_test_peak_power6=old_test_peak_power6.reshape([-1,1])

  
old_test_peak_power7 = np.array(old_test_peak_power7) 
old_test_peak_power7=old_test_peak_power7.reshape([-1,1])

  
old_test_peak_power8 = np.array(old_test_peak_power8) 
old_test_peak_power8=old_test_peak_power8.reshape([-1,1])

x_test=np.concatenate((old_test_peak_power1,old_test_peak_power2,old_test_peak_power3,old_test_peak_power4,old_test_peak_power5,old_test_peak_power6,old_test_peak_power7,old_test_peak_power8), axis =1)


  #============================================================================== #============================================================================== 
#LSTM Model  with 8 output


#old_train_peak_power1=X1_train
#old_train_peak_power2=X2_train
#train_peak_power#y_train=y_train
#old_test_peak_power1=x1_tes
#old_test_peak_power2=x2_tes
#test_peak_power#y_test=y_test


#Reshape the data 
#Input data reshape to change like a matrix with two columns and n rows 
#output data reshape to be like matrix with one column and n rows

x_train=x_train.reshape([-1,1,8])
x_test=x_test.reshape([-1,1,8])

train_peak_power = np.array(train_peak_power)
train_peak_power=train_peak_power.reshape([-1,1])

test_peak_power = np.array(test_peak_power)
test_peak_power=test_peak_power.reshape([-1,1])


number_epochs = 100#number of itration
n_classes = 1#output
batch_size =10
chunk_size = 8#how many input
n_chunks =1 
rnn_size =40#number of lstm cells
x = tf.placeholder('float32', [None, n_chunks,chunk_size])#input data, now it is a empty place 
y = tf.placeholder('float32',[None, 1])#target data but now  it is a empty place 


def recurrent_neural_network(x):
    layer = {'weights':tf.Variable(tf.random_normal([rnn_size,n_classes])),
             'biases':tf.Variable(tf.random_normal([n_classes]))}

    x = tf.transpose(x, [1,0,2])
    x = tf.reshape(x, [-1, chunk_size])
    x = tf.split(x, n_chunks, 0) 
    #print(tf.Session().run(x))
    #hyperbolic tangent function (tanh)
    lstm_cell =rnn_cell.BasicLSTMCell(rnn_size)
    #lstm_cell = rnn_cell.BasicLSTMCell(rnn_size,state_is_tuple=True)
    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)

    output = tf.matmul(outputs[-1],layer['weights']) + layer['biases']

    return output

def train_neural_network(x):
    
    prediction = recurrent_neural_network(x)
    
    cost=((tf.reduce_sum(tf.abs((prediction-y))/y))/(2*len(train_peak_power)))
    #cost=((tf.reduce_sum(tf.abs((prediction-y))/y))/10275)#MRE
    
    optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    #optimizer = tf.train.AdagradOptimizer(0.001).minimize(cost)
    #optimizer=tf.train.AdamOptimizer(0.1).minimize(cost)
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        for epoch in range(number_epochs):
            epoch_loss = 0
            for _ in range(len(train_peak_power)):
                batch_x = x_train[_*batch_size:(_+1)*batch_size]
                batch_y = train_peak_power[_*batch_size:(_+1)*batch_size]
                
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
                epoch_loss += c

            print('Epoch', epoch, 'completed out of', number_epochs, 'loss:', epoch_loss)

     
        Y_prediction=sess.run(prediction,feed_dict={x: x_test, y: test_peak_power})
        Y_prediction=scalar.fit_transform(Y_prediction)
        
        print("prediction:\n",Y_prediction)
        print("Targ'ets:\n",test_peak_power)
        resultabc.append(Y_prediction)
        MAPE=cost.eval({x: x_test, y: test_peak_power})
        #accuracy=1-np.sqrt(MAPE)
        print("MAPE:\n",MAPE)
        #print("accuracy:\n",accuracy
     
resultabc=[]

train_neural_network(x)

################*********************************************
#"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''

#Plot LSTM model 

#add title
#plt.title('Load')
plt.xlabel('Samples')
plt.ylabel('Consumption')

prediction = resultabc[0].tolist()#prediction

daily_prediction=scalar.inverse_transform(prediction)


actual= test_peak_power.tolist()#Actual
daily_actual=scalar.inverse_transform(actual)



import numpy as np
#
pr=(np.add.reduceat(daily_prediction, np.arange(0, len(daily_prediction), 72)))/72
ac=(np.add.reduceat(daily_actual, np.arange(0, len(daily_actual), 72)))/72

#pr=pr[:]*4
plt.plot(pr,'red')
plt.plot(ac,'blue')
plt.gca().legend(('prediction','actual'))
plt.show()

#""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""'
#'''
#Plot (Error,Epochs)
plt.xlabel('Epchs',fontsize=10)
plt.ylabel('MAPE (%)', fontsize=10)
epoch1=[10,20,50,100,120,150,200,220]
error1=[0.205,0.179,0.083,0.017,0.0156,0.0135,0.0127,0.0189]
plt.plot(epoch1,error1,'blue')
#plt.gca().legend(('MAPE','Epochs'))
plt.show()















MLP(2-3-1)F.py


"""
Created on Wed Jun 13 10:45:56 2018

@author: azadehkarimi
"""
#### find all gapsmissing data

house_key = "cecb04626a640d821e504a4b6625fd3d46785948927acf9ebe435ce9745d9996"

import pickle
import datetime
import pandas as pd
import pickle
import datetime
import numpy  as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib as mlp
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.metrics import mean_squared_error

partA = "/Users/azadehkarimi/Documents/data/"
partC = ".pkl"

data_house = [];

for i in range(0,118):
    # read data from each data file
    partB = str(i);
    path = "".join([partA, partB, partC]);
    datafile = open(path, 'rb');
    rawdata = pickle.load(datafile, encoding='latin1');
    datafile.close();
    
    # get a list for all rows of a hus
    for key in rawdata:
        if key == house_key:
            data_house.append(rawdata[key]);

print(len(data_house))

#==============================================================================
### order blocks by time
data_hous2= data_house;
for i in range(0,len(data_hous2)):
    for j in range(i+1,len(data_hous2)):
        if data_hous2[i][0][0] > data_hous2[j][0][0]:
            temp = data_hous2[i];
            data_hous2[i] = data_hous2[j];
            data_hous2[j] = temp;
        if data_hous2[i][0][0] == data_hous2[j][0][0]:
            print(i,j,'error')

### switch blocks to rows
data_hous3 = [];
for i in range(0,len(data_hous2)):
    data_hous3.extend(data_hous2[i]);
    
##==============================================================================
# duplication and missing 


train_data = data_hous3[:615693]; 
test_data = data_hous3[615695:]; 


def fillgap(data_house):
    data_house_nomiss = [];
    
    for i in range(1, len(data_house)):
        gap = (data_house[i][0] - data_house[i-1][0]) / 1e3;
        if gap < 15:
            data_house_nomiss.append(data_house[i-1]);
        elif gap >= 15:
            
            
            last = data_house[i];
            first = data_house[i-1];
            power_difference_per_second = (last[1] - first[1]) / gap;
            
            rows_to_add = int(gap/10 - 0.5); 
            
            for row in range(0, (rows_to_add + 1)):
                addrow = [0] * 2;
                addrow[0] = first[0] + 1000 * 10 * row;
                addrow[1] = int(round(first[1] + 10 * row * power_difference_per_second)); # Rounded off after rounding
                data_house_nomiss.append(addrow);
             
        else:
            print('error', i, data_house[i], data_house[i-1], gap)
            
    return data_house_nomiss



train_data_nomiss = fillgap(train_data); # start at 02-07 16:32:00 # end at 04-20 01:59:27
test_data_nomiss = fillgap(test_data);

   
##============================================================================== 

from sklearn.preprocessing import MinMaxScaler
scalar = MinMaxScaler()

#train_data_nomiss=MinMaxScaler().fit_transform(train_data_nomiss)
#dataenhus3test_nomiss=MinMaxScaler().fit_transform(dataenhus3test_nomiss)


train_time=[]
train_power=[]
date=[]
#print(type(train_time))
for i ,v in enumerate(train_data_nomiss):
#            train_time.append(v[0])
             train_power.append(v[1])

            
train_power = np.array(train_power)
train_power=train_power.reshape([-1,1])  
train_power=scalar.fit_transform(train_power)
 
train_power_10_min=[]
train_peak_power=[]#y_train
old_train_peak_power1=[]#X1_train
old_train_peak_power2=[]#X2_train
j=0
for i in range(len(train_power)):
    train_power_10_min.append(train_power[i])
#cinvert 10 sec intervals to 10 min intervals  
    j+=1
    if j%60 ==0:
     train_peak_power.append(max(train_power_10_min))
     del train_power_10_min[:]
#Put peak of one day before as X1_train and put peak of two days before as X2_train.
for i in range(0,288):
    
  old_train_peak_power1.append(train_peak_power[i])
  old_train_peak_power2.append(train_peak_power[i])
  
for i in range(288,len(train_peak_power)):
      
      old_train_peak_power1.insert((i+288), train_peak_power[i])

for i in range(288,len(train_peak_power)-144):
    old_train_peak_power2.insert((i+288), train_peak_power[i+144])

for i in range(0,144):
     
  old_train_peak_power2.append(0)

old_train_peak_power1 = np.array(old_train_peak_power1) 
old_train_peak_power1=old_train_peak_power1.reshape([-1,1])


old_train_peak_power2 = np.array(old_train_peak_power2)
old_train_peak_power2=old_train_peak_power2.reshape([-1,1])

 

x_train=np.concatenate((old_train_peak_power1,old_train_peak_power2), axis =1)



##Put and Test data(time&power) in the lists
test_time=[]
test_power=[]
for i ,v in enumerate(test_data_nomiss):
             test_time.append(v[0])
             test_power.append(v[1])  
                
test_power = np.array(test_power)
test_power=test_power.reshape([-1,1])  
test_power=scalar.fit_transform(test_power)       
 
test_power_10_min=[]
test_peak_power=[]
old_test_peak_power1=[]#tx1_tes
old_test_peak_power2=[]#tx2_tes
x_test=[]
k=0
for i in range(len(test_power)):
    test_power_10_min.append(test_power[i])
    
    k+=1
    if k%60 ==0:
     test_peak_power.append(max(test_power_10_min))
     del test_power_10_min[:]
for i in range(0,288):
    
  old_test_peak_power1.append(test_peak_power[i])
  old_test_peak_power2.append(test_peak_power[i])

for i in range(288,len(test_peak_power)):
     old_test_peak_power1.insert((i+288), test_peak_power[i])

for i in range(288,len(test_peak_power)-144):
    old_test_peak_power2.insert((i+288), test_peak_power[i+144])

for i in range(0,144):
    old_test_peak_power2.append(0)
     

old_test_peak_power1 = np.array(old_test_peak_power1) 
old_test_peak_power1=old_test_peak_power1.reshape([-1,1])
   

old_test_peak_power2 = np.array(old_test_peak_power2)
old_test_peak_power2=old_test_peak_power2.reshape([-1,1])
  

 


x_test=np.concatenate((old_test_peak_power1,old_test_peak_power2), axis =1)
#============================================================================== 
#MLP Model with three hidden layer

x_train=x_train.reshape([-1,2])
x_test=x_test.reshape([-1,2])
train_peak_power = np.array(train_peak_power)
train_peak_power=train_peak_power.reshape([-1,1])

test_peak_power = np.array(test_peak_power)
test_peak_power=test_peak_power.reshape([-1,1])



number_sample=len(train_peak_power)
n_nodes_hl1 = 2 #first hidden layer 
n_nodes_hl2 = 1 #second hidden layer 
n_nodes_hl3 = 2
number_epochs=100
n_classes = 1 #output
batch_size = 5

x = tf.placeholder(tf.float32, [None, 2], name = 'x')   # 3 features
y = tf.placeholder(tf.float32, [None, 1], name = 'y')   # 3 outputs


def neural_network_model(data):
    hidden_1_layer = {'weights':tf.Variable(tf.random_normal([2, n_nodes_hl1])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}

    hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
    
    hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
           
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
    

    output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
                    'biases':tf.Variable(tf.random_normal([n_classes])),}


    l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases'])
    l1 = tf.nn.tanh(l1)

    l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases'])
    l2 = tf.nn.tanh(l2)

    l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['biases'])
    l3 = tf.nn.tanh(l3)
    output = tf.matmul(l3,output_layer['weights']) + output_layer['biases']

    return output
def train_neural_network(x):
    prediction = neural_network_model(x)
    #cost=tf.sqrt(tf.reduce_sum(tf.pow(prediction - y,2))/(number_sample))#RMSE
    #cost = tf.reduce_sum(tf.pow(prediction - y,2))/(number_sample)#MSE
    cost=((tf.reduce_sum(tf.abs((prediction-y))/y))/(2*len(train_peak_power)))
    optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    #optimizer=tf.train.AdamOptimizer(0.01).minimize(cost)
    #optimizer = tf.train.AdagradOptimizer(0.01).minimize(cost)
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        for epoch in range(number_epochs):
            epoch_loss = 0
            for _ in range(len(x_train)):
                batch_x = x_train[_*batch_size:(_+1)*batch_size]
                batch_y = train_peak_power[_*batch_size:(_+1)*batch_size]
                
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
                epoch_loss += c

            print('Epoch', epoch, 'completed out of', number_epochs, 'loss:', epoch_loss)

     
      
        Y_prediction=sess.run(prediction,feed_dict={x: x_test, y: test_peak_power})
        Y_prediction=MinMaxScaler().fit_transform(Y_prediction)
        
        print("prediction:\n",Y_prediction)
        print("Targ'ets:\n",test_peak_power)
        resultabc.append(Y_prediction)
        #MSE=cost.eval({x: old_test_peak_power, y: test_peak_power})
        MAPE=cost.eval({x: x_test, y: test_peak_power})
        #accuracy=1-np.sqrt(MAPE)
        print("MAPE:\n",MAPE)
        #print("accuracy:\n",accuracy
resultabc=[]       

train_neural_network(x)
#"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
#Plot 
'''
plt.xlabel('Samples')
plt.ylabel('Consumption')

prediction = resultabc[0].tolist()#prediction

daily_prediction=scalar.inverse_transform(prediction)


actual= test_peak_power.tolist()#Actual
daily_actual=scalar.inverse_transform(actual)

import numpy as np
#
pr=(np.add.reduceat(daily_prediction, np.arange(0, len(daily_prediction), 72)))/72
ac=(np.add.reduceat(daily_actual, np.arange(0, len(daily_actual), 72)))/72

ac=ac[:]*2.1
plt.plot(pr,'red')
plt.plot(ac,'blue')
plt.gca().legend(('prediction','actual'))
plt.show()
'''

#Plot (Error,Epochs)
plt.xlabel('Epochs',fontsize=20)
plt.ylabel('Error', fontsize=20)
epoch1=[10,20,50,100,120,150,200,220]
error1=[ 0.183,0.194, 0.267,0.170,0.175,0.185,0.190,0.191]
plt.plot(epoch1,error1,'blue')
plt.gca().legend(('MAPE','Epochs'))
plt.show()







MLP(2-4-1)F.py

#!/usr/bin/env python3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:55:52 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:53:38 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:50:37 2018

@author: azadehkarimi
"""

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:45:56 2018

@author: azadehkarimi
"""
#### find all gapsmissing data

house_key = "cecb04626a640d821e504a4b6625fd3d46785948927acf9ebe435ce9745d9996"

import pickle
import datetime
import pandas as pd
import pickle
import datetime
import numpy  as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib as mlp
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.metrics import mean_squared_error

partA = "/Users/azadehkarimi/Documents/data/"
partC = ".pkl"

data_house = [];

for i in range(0,118):
    # read data from each data file
    partB = str(i);
    path = "".join([partA, partB, partC]);
    datafile = open(path, 'rb');
    rawdata = pickle.load(datafile, encoding='latin1');
    datafile.close();
    
    # get a list for all rows of a hus
    for key in rawdata:
        if key == house_key:
            data_house.append(rawdata[key]);

print(len(data_house))

#==============================================================================
### order blocks by time
data_hous2= data_house;
for i in range(0,len(data_hous2)):
    for j in range(i+1,len(data_hous2)):
        if data_hous2[i][0][0] > data_hous2[j][0][0]:
            temp = data_hous2[i];
            data_hous2[i] = data_hous2[j];
            data_hous2[j] = temp;
        if data_hous2[i][0][0] == data_hous2[j][0][0]:
            print(i,j,'error')

### switch blocks to rows
data_hous3 = [];
for i in range(0,len(data_hous2)):
    data_hous3.extend(data_hous2[i]);
    
##==============================================================================
# duplication and missing 


train_data = data_hous3[:615693]; 
test_data = data_hous3[615695:]; 


def fillgap(data_house):
    data_house_nomiss = [];
    
    for i in range(1, len(data_house)):
        gap = (data_house[i][0] - data_house[i-1][0]) / 1e3;
        if gap < 15:
            data_house_nomiss.append(data_house[i-1]);
        elif gap >= 15:
            
            
            last = data_house[i];
            first = data_house[i-1];
            power_difference_per_second = (last[1] - first[1]) / gap;
            
            rows_to_add = int(gap/10 - 0.5); 
            
            for row in range(0, (rows_to_add + 1)):
                addrow = [0] * 2;
                addrow[0] = first[0] + 1000 * 10 * row;
                addrow[1] = int(round(first[1] + 10 * row * power_difference_per_second)); # Rounded off after rounding
                data_house_nomiss.append(addrow);
             
        else:
            print('error', i, data_house[i], data_house[i-1], gap)
            
    return data_house_nomiss



train_data_nomiss = fillgap(train_data); # start at 02-07 16:32:00 # end at 04-20 01:59:27
test_data_nomiss = fillgap(test_data);


   
##============================================================================== 

from sklearn.preprocessing import MinMaxScaler
scalar = MinMaxScaler()

#train_data_nomiss=MinMaxScaler().fit_transform(train_data_nomiss)
#dataenhus3test_nomiss=MinMaxScaler().fit_transform(dataenhus3test_nomiss)


train_time=[]
train_power=[]
date=[]
#print(type(train_time))
for i ,v in enumerate(train_data_nomiss):
#            train_time.append(v[0])
             train_power.append(v[1])

            
train_power = np.array(train_power)
train_power=train_power.reshape([-1,1])  
train_power=scalar.fit_transform(train_power)
 
train_power_10_min=[]
train_peak_power=[]#y_train
old_train_peak_power1=[]#X1_train
old_train_peak_power2=[]#X2_train
j=0
for i in range(len(train_power)):
    train_power_10_min.append(train_power[i])
#cinvert 10 sec intervals to 10 min intervals  
    j+=1
    if j%60 ==0:
     train_peak_power.append(max(train_power_10_min))
     del train_power_10_min[:]
#Put peak of one day before as X1_train and put peak of two days before as X2_train.
for i in range(0,288):
    
  old_train_peak_power1.append(train_peak_power[i])
  old_train_peak_power2.append(train_peak_power[i])
  
for i in range(288,len(train_peak_power)):
      
      old_train_peak_power1.insert((i+288), train_peak_power[i])

for i in range(288,len(train_peak_power)-144):
    old_train_peak_power2.insert((i+288), train_peak_power[i+144])

for i in range(0,144):
     
  old_train_peak_power2.append(0)

old_train_peak_power1 = np.array(old_train_peak_power1) 
old_train_peak_power1=old_train_peak_power1.reshape([-1,1])


old_train_peak_power2 = np.array(old_train_peak_power2)
old_train_peak_power2=old_train_peak_power2.reshape([-1,1])

 

x_train=np.concatenate((old_train_peak_power1,old_train_peak_power2), axis =1)



##Put and Test data(time&power) in the lists
test_time=[]
test_power=[]
for i ,v in enumerate(test_data_nomiss):
             test_time.append(v[0])
             test_power.append(v[1])  
                
test_power = np.array(test_power)
test_power=test_power.reshape([-1,1])  
test_power=scalar.fit_transform(test_power)       
 
test_power_10_min=[]
test_peak_power=[]
old_test_peak_power1=[]#tx1_tes
old_test_peak_power2=[]#tx2_tes
x_test=[]
k=0
for i in range(len(test_power)):
    test_power_10_min.append(test_power[i])
    
    k+=1
    if k%60 ==0:
     test_peak_power.append(max(test_power_10_min))
     del test_power_10_min[:]
for i in range(0,288):
    
  old_test_peak_power1.append(test_peak_power[i])
  old_test_peak_power2.append(test_peak_power[i])

for i in range(288,len(test_peak_power)):
     old_test_peak_power1.insert((i+288), test_peak_power[i])

for i in range(288,len(test_peak_power)-144):
    old_test_peak_power2.insert((i+288), test_peak_power[i+144])

for i in range(0,144):
    old_test_peak_power2.append(0)
     

old_test_peak_power1 = np.array(old_test_peak_power1) 
old_test_peak_power1=old_test_peak_power1.reshape([-1,1])
   

old_test_peak_power2 = np.array(old_test_peak_power2)
old_test_peak_power2=old_test_peak_power2.reshape([-1,1])
  

 


x_test=np.concatenate((old_test_peak_power1,old_test_peak_power2), axis =1)
#============================================================================== 
#MLP Model with three hidden layer

x_train=x_train.reshape([-1,2])
x_test=x_test.reshape([-1,2])
train_peak_power = np.array(train_peak_power)
train_peak_power=train_peak_power.reshape([-1,1])

test_peak_power = np.array(test_peak_power)
test_peak_power=test_peak_power.reshape([-1,1])



n_nodes_hl1 = 1 #first hidden layer 
n_nodes_hl2 = 2 #2nd hidden layer 
n_nodes_hl3 = 2 #3d hidden layer 
n_nodes_hl4 = 2 #4th hidden layer 
number_epochs=100
n_classes = 1 #output
batch_size = 5

x = tf.placeholder(tf.float32, [None, 2], name = 'x')   # 3 features
y = tf.placeholder(tf.float32, [None, 1], name = 'y')   # 3 outputs


def neural_network_model(data):
    hidden_1_layer = {'weights':tf.Variable(tf.random_normal([2, n_nodes_hl1])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}

    hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}

    hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
           
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
    hidden_4_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_nodes_hl4])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl4]))}

    output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl4, n_classes])),
                    'biases':tf.Variable(tf.random_normal([n_classes])),}


    l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases'])
    l1 = tf.nn.tanh(l1)

    l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases'])
    l2 = tf.nn.tanh(l2)

    l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['biases'])
    l3 = tf.nn.tanh(l3)
    
    l4 = tf.add(tf.matmul(l3,hidden_4_layer['weights']), hidden_4_layer['biases'])
    l4 = tf.nn.tanh(l4)

    output = tf.matmul(l4,output_layer['weights']) + output_layer['biases']

    return output
def train_neural_network(x):
    prediction = neural_network_model(x)
   
    cost=((tf.reduce_sum(tf.abs((prediction-y))/y))/(2*len(train_peak_power)))
    optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    #optimizer=tf.train.AdamOptimizer(0.01).minimize(cost)
    #optimizer = tf.train.AdagradOptimizer(0.01).minimize(cost)
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        for epoch in range(number_epochs):
            epoch_loss = 0
            for _ in range(len(x_train)):
                batch_x = x_train[_*batch_size:(_+1)*batch_size]
                batch_y = train_peak_power[_*batch_size:(_+1)*batch_size]
                
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
                epoch_loss += c

            print('Epoch', epoch, 'completed out of', number_epochs, 'loss:', epoch_loss)

     
      
        Y_prediction=sess.run(prediction,feed_dict={x: x_test, y: test_peak_power})
        Y_prediction=MinMaxScaler().fit_transform(Y_prediction)
        
        print("prediction:\n",Y_prediction)
        print("Targ'ets:\n",test_peak_power)
        resultabc.append(Y_prediction)
        #MSE=cost.eval({x: old_test_peak_power, y: test_peak_power})
        MAPE=cost.eval({x: x_test, y: test_peak_power})
        #accuracy=1-np.sqrt(MAPE)
        print("MAPE:\n",MAPE)
        #print("accuracy:\n",accuracy
resultabc=[]       

train_neural_network(x)
#########################################################################
#Plot









MLP(2_2_1)F.py

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 13 10:45:56 2018

@author: azadehkarimi
"""
#### find all gapsmissing data

house_key = "cecb04626a640d821e504a4b6625fd3d46785948927acf9ebe435ce9745d9996"

import pickle
import datetime
import pandas as pd
import pickle
import datetime
import numpy  as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib as mlp
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
from sklearn.metrics import mean_squared_error

partA = "/Users/azadehkarimi/Documents/data/"
partC = ".pkl"

data_house = [];

for i in range(0,118):
    # read data from each data file
    partB = str(i);
    path = "".join([partA, partB, partC]);
    datafile = open(path, 'rb');
    rawdata = pickle.load(datafile, encoding='latin1');
    datafile.close();
    
    # get a list for all rows of a hus
    for key in rawdata:
        if key == house_key:
            data_house.append(rawdata[key]);

print(len(data_house))

#==============================================================================
### order blocks by time
data_hous2= data_house;
for i in range(0,len(data_hous2)):
    for j in range(i+1,len(data_hous2)):
        if data_hous2[i][0][0] > data_hous2[j][0][0]:
            temp = data_hous2[i];
            data_hous2[i] = data_hous2[j];
            data_hous2[j] = temp;
        if data_hous2[i][0][0] == data_hous2[j][0][0]:
            print(i,j,'error')

### switch blocks to rows
data_hous3 = [];
for i in range(0,len(data_hous2)):
    data_hous3.extend(data_hous2[i]);
    
##==============================================================================
# duplication and missing 


train_data = data_hous3[:615693]; 
test_data = data_hous3[615695:]; 


def fillgap(data_house):
    data_house_nomiss = [];
    
    for i in range(1, len(data_house)):
        gap = (data_house[i][0] - data_house[i-1][0]) / 1e3;
        if gap < 15:
            data_house_nomiss.append(data_house[i-1]);
        elif gap >= 15:
            
            
            last = data_house[i];
            first = data_house[i-1];
            power_difference_per_second = (last[1] - first[1]) / gap;
            
            rows_to_add = int(gap/10 - 0.5); 
            
            for row in range(0, (rows_to_add + 1)):
                addrow = [0] * 2;
                addrow[0] = first[0] + 1000 * 10 * row;
                addrow[1] = int(round(first[1] + 10 * row * power_difference_per_second)); # Rounded off after rounding
                data_house_nomiss.append(addrow);
             
        else:
            print('error', i, data_house[i], data_house[i-1], gap)
            
    return data_house_nomiss



train_data_nomiss = fillgap(train_data); # start at 02-07 16:32:00 # end at 04-20 01:59:27
test_data_nomiss = fillgap(test_data);

   
##============================================================================== 

from sklearn.preprocessing import MinMaxScaler
scalar = MinMaxScaler()

#train_data_nomiss=MinMaxScaler().fit_transform(train_data_nomiss)
#dataenhus3test_nomiss=MinMaxScaler().fit_transform(dataenhus3test_nomiss)


train_time=[]
train_power=[]
date=[]
#print(type(train_time))
for i ,v in enumerate(train_data_nomiss):
#            train_time.append(v[0])
             train_power.append(v[1])

            
train_power = np.array(train_power)
train_power=train_power.reshape([-1,1])  
train_power=scalar.fit_transform(train_power)
 
train_power_10_min=[]
train_peak_power=[]#y_train
old_train_peak_power1=[]#X1_train
old_train_peak_power2=[]#X2_train
j=0
for i in range(len(train_power)):
    train_power_10_min.append(train_power[i])
#cinvert 10 sec intervals to 10 min intervals  
    j+=1
    if j%60 ==0:
     train_peak_power.append(max(train_power_10_min))
     del train_power_10_min[:]
#Put peak of one day before as X1_train and put peak of two days before as X2_train.
for i in range(0,288):
    
  old_train_peak_power1.append(train_peak_power[i])
  old_train_peak_power2.append(train_peak_power[i])
  
for i in range(288,len(train_peak_power)):
      
      old_train_peak_power1.insert((i+288), train_peak_power[i])

for i in range(288,len(train_peak_power)-144):
    old_train_peak_power2.insert((i+288), train_peak_power[i+144])

for i in range(0,144):
     
  old_train_peak_power2.append(0)

old_train_peak_power1 = np.array(old_train_peak_power1) 
old_train_peak_power1=old_train_peak_power1.reshape([-1,1])


old_train_peak_power2 = np.array(old_train_peak_power2)
old_train_peak_power2=old_train_peak_power2.reshape([-1,1])

 

x_train=np.concatenate((old_train_peak_power1,old_train_peak_power2), axis =1)



##Put and Test data(time&power) in the lists
test_time=[]
test_power=[]
for i ,v in enumerate(test_data_nomiss):
             test_time.append(v[0])
             test_power.append(v[1])  
                
test_power = np.array(test_power)
test_power=test_power.reshape([-1,1])  
test_power=scalar.fit_transform(test_power)       
 
test_power_10_min=[]
test_peak_power=[]
old_test_peak_power1=[]#tx1_tes
old_test_peak_power2=[]#tx2_tes
x_test=[]
k=0
for i in range(len(test_power)):
    test_power_10_min.append(test_power[i])
    
    k+=1
    if k%60 ==0:
     test_peak_power.append(max(test_power_10_min))
     del test_power_10_min[:]
for i in range(0,288):
    
  old_test_peak_power1.append(test_peak_power[i])
  old_test_peak_power2.append(test_peak_power[i])

for i in range(288,len(test_peak_power)):
     old_test_peak_power1.insert((i+288), test_peak_power[i])

for i in range(288,len(test_peak_power)-144):
    old_test_peak_power2.insert((i+288), test_peak_power[i+144])

for i in range(0,144):
    old_test_peak_power2.append(0)
     

old_test_peak_power1 = np.array(old_test_peak_power1) 
old_test_peak_power1=old_test_peak_power1.reshape([-1,1])
   

old_test_peak_power2 = np.array(old_test_peak_power2)
old_test_peak_power2=old_test_peak_power2.reshape([-1,1])
  

 


x_test=np.concatenate((old_test_peak_power1,old_test_peak_power2), axis =1)

#============================================================================== 
#MLP Model with two hidden layer


x_train=x_train.reshape([-1,2])
x_test=x_test.reshape([-1,2])
train_peak_power = np.array(train_peak_power)
train_peak_power=train_peak_power.reshape([-1,1])

test_peak_power = np.array(test_peak_power)
test_peak_power=test_peak_power.reshape([-1,1])




n_nodes_hl1 = 2 #first hidden layer 
n_nodes_hl2 = 2#second hidden layer 
number_epochs=100
n_classes = 1 #output
batch_size = 5

x = tf.placeholder(tf.float32, [None, 2], name = 'x')   # 3 features
y = tf.placeholder(tf.float32, [None, 1], name = 'y')   # 3 outputs


def neural_network_model(data):
    hidden_1_layer = {'weights':tf.Variable(tf.random_normal([2, n_nodes_hl1])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}

    hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}

    

    output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_classes])),
                    'biases':tf.Variable(tf.random_normal([n_classes])),}


    l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases'])
    l1 = tf.nn.tanh(l1)

    l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases'])
    l2 = tf.nn.tanh(l2)


    output = tf.matmul(l2,output_layer['weights']) + output_layer['biases']

    return output
def train_neural_network(x):
    prediction = neural_network_model(x)

    cost=((tf.reduce_sum(tf.abs((prediction-y))/y))/(2*len(train_peak_power)))
    optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    #optimizer = tf.train.AdagradOptimizer(0.01).minimize(cost)
    #optimizer=tf.train.AdamOptimizer(0.01).minimize(cost)
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        for epoch in range(number_epochs):
            epoch_loss = 0
            for _ in range(len(x_train)):
                batch_x = x_train[_*batch_size:(_+1)*batch_size]
                batch_y = train_peak_power[_*batch_size:(_+1)*batch_size]
                
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
                epoch_loss += c

            print('Epoch', epoch, 'completed out of', number_epochs, 'loss:', epoch_loss)

     
      
        Y_prediction=sess.run(prediction,feed_dict={x: x_test, y: test_peak_power})
        Y_prediction=MinMaxScaler().fit_transform(Y_prediction)
        
        print("prediction:\n",Y_prediction)
        print("Targ'ets:\n",test_peak_power)
        resultabc.append(Y_prediction)
        #MSE=cost.eval({x: old_test_peak_power, y: test_peak_power})
        MAPE=cost.eval({x: x_test, y: test_peak_power})
        #accuracy=1-np.sqrt(MAPE)
        print("MAPE:\n",MAPE)
        #print("accuracy:\n",accuracy
resultabc=[]       

train_neural_network(x)









