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Abstract

The size of data we are producing is exponentially increasing every year. According to
former Google CEO Eric Schmidt, we produce as much information in two days now
as we did from the dawn of mankind through 2003. The Oil & Gas industries produce
millions of linked data each day. However, a vast majority of the data are unstructured
or semi-structured data. To make a good decision, it is very important that we know
our data. Many industries rely on the insights of their data to take any further action.
Therefore, it is very important for the advancement of a company or an institution to
have an overall view of the data they are producing.

For this thesis, we studied some data produced by Oil & Gas industries that are provided
to us by LOOPS, and we found that the data are usually linked data. Two linked data
can be interlinked with each other and become more useful through semantic queries.
However, due to poor presentation of the data, the benefit that can be achieved from
linked data is lacking.

In this thesis, we devised a system that extracts the meaningful information from the
semi-structured data and visualizes the data using the power of graph. We then use the
graph to have the insights of the data. The system can recognize entities in the graph
and give important feedbacks by inferring more knowledge about the recognized entities.

As we said, the data are interlinked with other data. However, usually in liked data,
some of the links between the data might be missing. The more the data are linked, the
more useful information we can learn from it. Therefore, we invested a significant portion
of our research in predicting the possible missing links between data using supervised
and unsupervised link prediction approach.
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Chapter 1

Introduction

1.1 Motivation

The size of data we are producing is exponentially increasing every year. According to
former Google CEO Eric Schmidt, we produce as much information in two days now as
we did from the dawn of mankind through 2003 [1]. Not all of the data we produced
are structured data, many of them have no defined structures. How to turn the data we
produced to set of meaningful information is a hot topic of research among Big Data
community.

Business such as finance and oil sectors has always wanted to derive the insights from
information to make a fact-based decision in a more smarter and real-time manner. At
Loops, we analyze the data produced by oil and gas sectors and found that the data they
produce are usually linked data that are interconnected with other data.

Getting information from the data manually is a tedious task and need a great demand of
human resources and at some time become unfeasible. However, if the data are cleverly
represented, we can not only extract the information from the big volume of data but also
can infer other information that is hidden inside the data that are not easily detectable to
human eyes. For example, in a spreadsheet produced by an employee at an oil company,
one of the cells may have a string of text such as Drilling at F-East. From this piece of
information, we understand nothing. However, if we can recognize entities such as F-East
in the text, then can an answer a lot of questions such as what F-East is, where is it etc.

With these ideas in mind, we propose a system that represents the data in a directed
graph and can be used to query various questions. Our main focus is on recognizing
the entities from an input data set and inferring further knowledge that is not easily
detectable to human eyes. We are also inspired to do an experiment on our graph to

1



1.4 Chapter 1 Introduction

predict possible missing links. If we can predict the missing link in a network, we can
make the graph more complete by adding those potential missing links to the graph.

1.2 Challenges

Nodes and relationships are the building blocks of a graph, so we need to come up with
an efficient idea of extracting nodes and relationships from the data available at our
disposal and build a graph so that the system can use it to recognize and infer entities for
an unseen dataset. The dataset that is provided by LOOPS contains so many redundant,
conflicting and abnormal data. Hence, the first and the most important part of the work
is to extract the information and clean them as much as possible. The presence of noisy
data in a graph can contaminate the end result.

The inference problem we dealt in this thesis is not a rule-based inference but hierarchical
inference. In hierarchical inference task, inferring knowledge is comparatively easy if
two nodes are directly connected. However, when two nodes are connected through a
variable length of hops, it is challenging to infer new knowledge.

In our dataset, we do not have enough features for a node. The nodes in the graph have
only a name and a type attributes. Therefore, we have to use a relatively poor set of
features for supervised link prediction. All the features we used are topological features
such as Common Neighbors, Jaccard Coefficient etc.

1.3 Contributions

For this thesis, we make the following contributions:

• We develop object extractor - a system that effectively extracts all relevant objects
and their relationships from Excel files. The object extractor eliminates data
inconsistency and ambiguity. It also performs data normalization.

• We developed ger- a system that represents the data extracted by object extractor
in a graph and recognizes the entities in an input data file using the graph. It
also infers more knowledge for the recognized entity by using hierarchical inference
techniques.

• We experiment supervised and unsupervised link prediction methods on the graph
to predict possible missing links in the network.

2



1.5 Chapter 1 Introduction

1.4 Used Software

All the softwares we use in this thesis are freely available open-source softwares. For
Entity recognition and Graph Inference, we use Java and for link prediction, we use
Python.

Software Used for Writing the Report:

1. LaTex

2. TexMaker

Programming Languages and Tools:

1. Java 1.8

2. JetBrains Intellij IDE (Student License)

3. Python 3.6

4. JetBrains PyCharm IDE(Student License)

Libraries used:

1. Apache POI , a Java library for reading and writing files in MS Office formats

2. Guava, a common utility library developed by Google

3. Pandas, a Python library for data manipulation and analysis

4. NetworkX, a Python library for analyzing graphs and networks

5. Scikit-learn, a machine learning library for Python

1.5 Outline

The remainder of the thesis is structured as follows:

Chapter 2 introduces literature review. In this chapter, we discuss Semantic Web and
Graph Database. Understanding how Semantic Web and Graph Database represent
linked data is an important part for this thesis.

3



1.5 Chapter 1 Introduction

Chapter 3 presents the implementation of object extractor system that extracts the
relevant information from Excel files provided by LOOPS. Here, our main focus is
to extract only relevant information by successfully tackling data redundancy, data
inconsistency and ambiguity that exist in raw dataset. The system normalizes the
extracted data so that different representation of same data in different files are unified
into a consistent source of information.

Cahpter 4 describes the implementation of ger system that represents information
extracted by object extractor in a graph data model. In this chapter, we analyze different
graphs and graph data representation techniques. We also discuss different graph traversal
techniques and apply them in ger system for recognizing entities and inferring more
knowledge about the recognized entities.

Chapter 5 provides the missing link prediction methods using unsupervised approach.
In this chapter, we experiment the network that we build using ger system to predict
potential missing link in the network. We use different link prediction algorithms that use
features intrinsic to the network topology such as Common Neighbors, Jaccard Coefficient
etc.

Chapter 6 uses different supervised machine learning algorithms for link prediction for
the network we build using ger system. The unsupervised link prediction algorithm we
implemented in Chapter 5 uses a single feature for predicting the missing links. Using a
single feature may not completely explore different structural patterns contained in the
network. Therefore, we use supervised machine learning algorithm that composes all the
features into a set of feature vector and predict missing link.

Chapter 7 concludes and presents suggestions for further work.

Since we develop different systems to achieve different goals for this thesis, instead of
dedicating a separate chapter for the result and discussion, we opted to include the
experimental setup, result and discussion for each system in their respective chapter. In
doing so, readers can read each chapter independently and have a clear image of the
system that we proposed.

4



Chapter 2

Literature Review

The literature review is an important part of any research. It helps the researcher
get familiar with the domain of the research area and existing technology stacks. To
understand the domain of our research, we study semantic web and graph database.
Semantic web technology broaden our knowledge about the linked data and inference
while graph database helps us understand many different techniques for graph analysis.

2.1 Semantic Web

The initial concept of World Wide Web was to put information to a computer by anyone
and access that information by anyone anywhere. At the initial step, only people were
able to discover the meaning of data on the web. However, the creator of WWW- Sir Tim
Berners-Lee believes that eventually, machines would also be able to use the information
on the web that would ultimately allow powerful and effective human-computer-human
collaboration [2]. As a result, Semantic Web was born. Semantic Web is more a
vision than a technology where the data located anywhere on the web is accessible and
understandable to both human and machines. To bring the life to the vision of Semantic
Web, different technologies have evolved such as RDF, OWL, SPARQL etc.

2.1.1 RDF- Resource Description Framework

A huge amount of data available on the web are not uniformly formatted. To process
the data by both machine and people, a standard format is needed. RDF is such a
simple data model standardized by W3C for describing and modeling the knowledge
and exchanging the information. In RDF, basically there are resources and there are
statements that can be made about those resources. A statement links two resources

5



2.1 Chapter 2 Literature Review

and usually has the form of subject-predicate-object where subject and object are two
resources linked together by a predicate. Since an RDF statement always consists of
three components, it is also known as RDF triple. An example of an RDF statement is

Mark Zuckerberg is the owner of Facebook

If we interpret this into a triple, we will have

(Mark Zuckerberg, isOwnerOf, Facebook)

We can think of the triple (x, P, y) as P(x,y) where predicate P relates the resource x to
the resource y. RDF statements can be represented with a directed labeled graph where
resources x and y of the statement are two nodes and the predicate P is the relationship
or edge that connects x to y. A more specific definition of RDF graph is given at [3]:

Definition 2.1. An RDF graph is a directed labeled graph, denoted as G = (V, E,
LE), where V is a set of nodes corresponding to subjects and objects and E is a set of
directed edges from the subject to the objects. LE is a set of edge labels referring to the
predicates associated with the edges. A node with in-degree as zero is called as a source
node.

For uniquely identifying resources in RDF statement, Uniform Resource Identifiers
(URIs) are used as the label of the resources. For serialization of RDF, there exist
different alternatives such as RDF/XML, Turtle, N-Triple etc. RDF triples are stored in
RDF triplestore and are queried using SPARQL query language.

2.1.2 RDF-Schema

RDF is a universal language where a user defines the resources using their own vocabu-
laries. To make the RDF domain specific, domain-specific vocabularies are used. These
vocabularies are defined in RDF Schema. The Mark Zuckerberg and Facebook resources
in above statement are individual objects. We also want to have Person, Website, Courses
etc that define the individual object. For example, we can classify Mark Zuckerberg
object as an instance of Person and Facebook as an instance of Website classes. Also, by
using classes, we can put a restriction on what can be stated. For example, although
they are valid RDF statements, we do not want to allow the statement such as:

Mathematics is taught by Physics

Room 505-E is taught by John

We do not want to allow the first statement because we want a course to be taught by a
Professor only. To do that, we have to put a restriction on value of taught by property

6



2.1 Chapter 2 Literature Review

i.e restricting the range. For the second statement, we need to put restriction so that
only courses be taught. Hence we want to put a restriction on the subject resource on
which we can apply property i.e restricting the domain.

RDF Schema allows hierarchies of classes. For example, every professor is an academic
staff. We can say that professor is "a subclass of" academic staff. If class A is a subclass of
B, then every instance of A is also an instance of B. Similar to class hierarchies, property
hierarchies can be accomplished. RDF Schema is written in RDF triple format, hence
every RDF Schema is a valid RDF document.

2.1.3 Inference in Semantic Web

Inference in semantic web mean discovering new statements or relationships between
resources. Using the class hierarchies of RDF Schema, we can infer new relationships.
For example, consider the following RDF in a RDF store:

:AcademicStaff rdf:type rdfs:Class
:Professor rdfs:subClassOf :AcademicStaff
:John rdf:type Professor

From the above, RDF triples, since John is a Professor and Professor is a subclass of
Academic Stuff, we can infer that John is an Academic Stuff even though that statement
is not explicitly included in original triples.

By using the hierarchies of the properties in RDF Schema, we can discover new knowledge.
Consider the following triples:

:AcademicStaff rdf:type rdfs:Class
:Professor rdfs:subClassOf :AcademicStaff
:Course rdf:type rdfs:Class
:teaches rdf:type rdf:Property
:teaches rdfs:domain :Professor
:teaches rdfs:range :Course
:John :teaches :Mathematics

From the above triple, we can infer than John is a Professor and Mathematics is
a Course even though the knowledge is not in original RDF triples. This is because,
according to the RDF schema we defined, the domain of the teaches is a Professor and
the range is a Course.

RDF Schema only allows limited inference such as subclass hierarchical inference. Some-
times, more complex logical reasoning is required to infer new knowledge. For, example,

7



2.2 Chapter 2 Literature Review

the equivalence of classes, the intersection of classes etc cannot be defined in RDF Schema.
For more complex reasoning, OWL-Web Ontology Language is a W3C recommendation.
Explanation of how OWL works in Semantic Web is out of the scope of this research.
Interested readers are encouraged to read [4].

2.2 Graph Database

Historically, relational databases are being used for storing, querying, retrieving and
manipulating data. However, after the advent of the internet, data size is growing
exponentially and for the highly connected linked data where there are a lot of many-to-
many relationships, the relational model becomes a burden with large join tables and
sparsely populated rows and a lot of null checking logic [5]. Since relational databases
use a fixed schema which is not designed for frequent changes, dealing with the request of
changes is a challenge and need considerable human input. As a result, graph database
technologies evolve for efficiently handling connected data with the dynamic schema.

A graph database is a database management system with CRUD functionality like a
relational database. Not all graph database use native graph storage, some store nodes
and edges in a relational database. In this thesis, we will focus on native graph databases.
Native graph storage stores information using graph data model.

Relational databases do not have the fixed relationship between records. Instead, the
relationship between records exists at modeling time as a mean of join tables and foreign
keys. Retrieving related data using JOIN operation is computationally costly. Since JOIN
operations are so common in relational databases, relational databases are optimized
for single JOIN. However, as the level of depth increases, the performance degrade
exponentially. The performance degrades is because of the Cartesian product used by
JOIN operation.

In contrast, the relationship is a first class citizen in graph databases hence there needs
no JOIN operation. To get the related data, graph database uses graph traversal that
navigates to its connected nodes by following the relationships.

Graph database is extremely fast because of the localized nature of the graph traversal.
Irrespective of the number of nodes and relationships in the database, the traversal only
visit those nodes that are connected to the starting nodes. In a relational database, the
join operations compute the Cartesian product and then discard irrelevant results which
affect the performance exponentially with the growth of data set.

8



2.2 Chapter 2 Literature Review

As an example, let say in a small stadium, if I am asked to count all the people sitting
within 15 meters of me, I will stand and count all people sitting within the distance. I
would not care how many people are there in the stadium. I can do the same task in a
large stadium at a very similar time as I am not considering the size of the people in the
stadium but the people near me. This is exactly how graph traversal works.

On the other hand, if the stadium example is taken for a relational database, it will count
all the people in the stadium and discard those who are not sitting within 15 meters
which is definitely not an effective strategy.

In a graph database, as the name suggests, data are stored as graph. A graph is a set of
nodes and relationships that connect them. A graph is very expressive for representing
real-world data as if we are writing them on white boards. The entities are represented
as nodes in a graph and how entities are related to each other is represented by edges.
For example, a data of a social network can be represented using a graph as shown in
Figure 2.1

Figure 2.1: Representation social graph

Each node has a label that differentiates and group the nodes from other types of nodes.
The nodes are connected with a directed edge that gives a semantic context like Ruth
follows Harry.

Graph databases use graph data structure to store and query. We studied a very popular
graph database called Neo4j that uses Labeled Property Graph (LPG) for representing
graph data. RDF graph is another type of graph used to represent RDF triples. We
discussed RDF graph in Semantic Web section above.

9



2.2 Chapter 2 Literature Review

2.2.1 LPG - Label Property Graph

As the name suggests, a label property graph is made up of nodes, relationships, properties.
and labels. Nodes in LPG can have one or more labels. Labels group the nodes together
and indicate the roles these nodes play. For example, nodes in a graph can represent
User, Order or Employee with a proper label.

The nodes in LPG has an internal structure and they contain properties as key-value
pairs. We can think the node in LPG as an object and the properties as its attributes.
For example, a User node can contain the properties like name, age, date of birth etc.

The relationships connect the nodes. A relationship always has a name, a start node
and end node and is always directed from start node to end node. Like the nodes,
relationships can also have properties. For example, a FOLLOWS relationship shown in
Figure 2.1 can have a date property which add more semantic to the relationships. In
LGP, there cannot have any broken link. Since a relationship always has a start and end
node, we cannot delete a node without deleting its relationships.

2.2.2 Index Free Adjacency

In a graph database, every node stored in the database has a pointer to its adjacent
nodes. Hence, to find the neighbors of a node, we do not need any additional helper
structure such as indexing. By storing the data in this manner, graph databases are able
to follow the pointer to connected nodes and relationships very quickly when performing
traversals.

For example, to see how many users are followed by Ruth in our social graph example, we
just need to find the Ruth node, then from there we can traverse to all nodes that have a
follows relationship in a constant time. Nodes in a graph database can be indexed using
properties and label which facilitates the task of finding the starting node for traversal.

2.2.3 Graph Traversal

Graph traversal is a key ingredient of graph databases. All the graph queries use graph
traversal for retrieving information from a database. Traversing a graph means visiting
its nodes following relationships according to some rules.

If we want to find all Ruth’s friends, the traversal with start from the Ruth node and
follow all outgoing FRIENDS relationship and get the end nodes.

10



2.2 Chapter 2 Literature Review

If we want to find the friend-of-friend of Ruth, we start from Ruth node and navigate to
all outgoing FRIENDS relationship and from each end node, we follow again outgoing
FRIENDS relationship and get the end nodes. Similarly, we can do the traversal for the
entire graph or for dept n. Friend-of-friend is a depth-2 traversal.

Graph databases use the index for locating the starting node. Like a relational database,
an index can be created using properties such as name, email etc. After locating the
starting node, the graph database does not need any indexing for traversal because of
the index-free adjacency structure.

The index-free adjacency makes the graph traversal extremely fast compare to non-index-
free adjacency store such as a relational database.

Depth-first-search and Breadth-first-search are two basic types of graph search algorithms.

2.2.4 Graph Query

SPARQL is a standardized query language for a triple store. For other graph databases
like Neo4j, vendor-specific query language exists. The query language used by Neo4j is
called Cypher.

The graph queries can be represented by a graph where nodes or relationships can be
variables. The graph database performs a graph matching with the stored graph and the
query graph then returns the results.
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Chapter 3

Extracting information from Excel
file for building graph

In this chapter, we discuss extracting information from Excel files for building the graph
that we will ultimately use to recognize entities and inferring new knowledge for the
recognized entities. We describe the structure of the files that are provided by Loops
and developed a system called object extractor that extracts the relevant information
form the files.

3.1 Structure of the files

Loops gives us the dataset required for this research. The data they provide us are in
MS Excel format. Each Excel file has tens of Excel Sheets having thousands of rows in
each sheet. Though the dataset is semi-structured, it is not ideal to use directly in the
graph as there are so many unnecessary, redundant and conflicting data. For a graph,
we need to extract the information for nodes and relationship between nodes. In Loops
dataset, we find that there can be two different type for Excel sheet which we refer as
Type I and Type II accordingly. These are shown in Figure 3.1 and 3.2 respectively.
As we said earlier, an Excel file can have tens of sheets but not all the sheets are relevant
for the graph. In the Excel file for this thesis, all the sheets that have sheet name start
with Cluseter are considered to be relevant sheet and we only read those sheets for
extracting information for the graph.

13
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Figure 3.1: A sample Excel sheet with data to be extracted (Type I)

Figure 3.2: A sample Excel sheet with data to be extracted (Type II)

3.1.1 Structure of Type I sheet

In Type I, there are two header rows. The first header row is what we call as notation
header. The second header is a general header. If we have notation header in a sheet, the
second header is not relevant. It is important to notice that the notation header is not
applied to all columns in the sheet. Hence, we can discard the columns that do not have
notation header as these columns are not going to be part of the relevant information.

In Type I sheet, we also have to pay attention to the names of the notation header. The
name of the notation can be of two types: obj_X and alt_X_Y where X is a type of
a possible node and Y is a number. If the notation begins with obj_X, we treat each
cell value in that column as the name of an object with type X. For example, for the
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column in the Figure 3.1 that has the notation, obj_well, the cell value D12-A1 under
that column is a name of the object and the type of that object is well.

Similarly, if the name of the notation header has the form of alt_X_Y, we treat the column
as an alternative name for the object type X. Y denotes the number of the alternative
name as an object can have multiple alternative names. For instance, alt_field_1 notation
means that the cell values for the column with this notation header are alternative names
for the object type field. alt_X_Y will always be accompanied by obj_X header as an
alternative name of an object without the object itself is meaningless.

3.1.2 Structure of TYPE II Sheet

For Type II, unlike Type I, there is no notation header but a single general header as
shown in Figure 3.2. Depending on the name of the header, we can guess if a column
in this file is relevant or not. If the header contains Object Type followed by Object
Name, we can assume that this sheet has relevant information. As the name suggest,
Object Type column has the type of the objects such as Country, License etc whereas
Object Name column has the name of the objects such as Norway, D12-A1 etc.

In addition to the said headers, there could be other relevant headers that have the
format of Alternate_Y. The columns with Alternate_Y are the alternative names of
the objects. Similar to Type I, Alternate_Y will always accompanied by Object Type
and Object Name headers as alternate names cannot exist without the object.

3.2 Extracting the Objects

Now we know the format of the Excel file and we can extract the information related to
the object. We can take the object in the same context as the object in Object Oriented
Programming (OOP). In our object, we have two mandatory attributes or properties.
These are name and type. There is another optional property which is alternative names.
The combined attributes of name and type of the object makes the object unique among
other objects. Hence, we can assume that there will be no two objects with the same
name and type.

A Java program is developed to extract the information from the Excel file. The program
uses Apache POI library to manipulate Excel files. The program scans all the relevant
sheets that have names start with Cluster. For each such relevant sheet, the program
reads the first row to extract the header. If the header is notation header, i.e at least one
of the cell values for the header starts with obj_, then the program discards the second
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row which is a general header. As we said earlier, if a sheet contains notation header, the
general header is not relevant. An abstract of the header extraction is shown in Listing
3.1

1 public static List<String> getHeader(Iterator<Row> rowIterator) {
2 List<String> resultHeader = new ArrayList<>(50);
3 Row heading = rowIterator.next();
4 boolean removeNextHeading = false;
5
6 for (int i = 0; i < heading.getLastCellNum(); i++) {
7 Cell cell = heading.getCell(i);
8 if (cell == null) {
9 resultHeader.add(" ");

10 continue;
11 }
12 String val = cell.getStringCellValue();
13 if (val.startsWith("obj_")) {
14 removeNextHeading = true;
15 }
16
17 resultHeader.add(val);
18 }
19
20 if (removeNextHeading) {
21 rowIterator.next(); // removes general header
22 }
23 return resultHeader;
24 }

Listing 3.1: Header extraction

After extracting the header, the program read each row and scan the relevant cell values.
Each valid row has several cells and the combination of the relevant cells in a row forms
an object. A cell cell[i] in row is relevant if the corresponding header satisfies one of the
following rule:

• header[i] starts with obj_

• header[i] starts with alt_

• header[i] starts with Object Name and header[i-1] starts with Object Type

• header[i] starts with Alternate

The value of the cell can be name, type or alternative name of an object based on the
corresponding header. For example, if the corresponding header[i] has format of obj_X,
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then the cell value is name of an object. The type of the object is X. If the header is of the
format alt_X_Y, then the cell value is an alternative name of the object whose type is X.
The corresponding object name can be read from the cell as cell[header.indexOf(X)].
The objects extraction is illustrated in Figure 3.3. The redundancy of the object names
such as multiple D12-A (Field), D12A are handled with a clever selection of data structure
to hold the objects.

Figure 3.3: Illustration of objects extraction

3.2.1 Data Normalization

For each cell value we extracted, we need to perform data normalization by replacing
accent characters and Norwegian characters with appropriate major character. For
example, the word Gjøa needs to be transformed into Gjoa. We need to convert all the
character into lower letters so that the objects SE Illizi and SE ILLIZI are treated as
a single object.The following Listing 3.2 shows the data normalization.
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1 private String normalizeText(String in) {
2
3 String acc = "ÀàÁáÂâØøÅå"; // all possible accent characters
4 String maj = "AaAaAaOoAa"; // equivalent major characters
5
6 String out = "";
7 for (int i = 0 ; i < in.length() ; i++) {
8 String car = in.substring(i, i+1);
9 int idx = acc.indexOf(car);

10
11 if (idx != −1){
12 out += maj.substring(idx, idx+1);
13 } else if (car.equals("Æ")) { // combination of multiple characters
14 out += "AE";
15 } else if (car.equals("æ")) {
16 out += "ae";
17 } else {
18 out += car;
19 }
20 }
21
22 return out.toLower(); // convert to lower case and return
23 }

Listing 3.2: Data normalization

3.3 Extracting the Relationships

After extracting the objects and their associated attributes, we are halfway down to build
our graph. In a graph, we can represent the objects we extracted as nodes. However,
another major ingredient for a graph is missing. A graph consists of a set of nodes and a
set of edges or relationships that connects two nodes. We at the moment do not have the
relationships. A relationship creates a link between two objects. Each relationship has
a label. The label usually has the format of startNodeType_has_endNodeType.
How two objects linked with each other is encoded in notation header. If we have n
objects in header, number of relationship types we can have is given by:

C(n, k) = n!
k!(n− k)!

where k = 2.
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For example, if we have the following header:

header = [obj_field, obj_license, obj_asset]

The type of relationship we can have are:

field_has_license, field_has_asset, license_has_asset

The extraction of relationship is illustrated graphically in Figure 3.4. In the figure, we
have three headers that start with obj_. Hence, according to the formula, we will have

3!
2!∗1! = 3 relationship types. The datatype we selected to store the relationship effectively
removes redundant relationships. In the figure, there are multiple similar relationships
such as D12-A (Field) to D12-A3 appears two times but the program only stores one
such relationship.

Figure 3.4: Illustration of relationships extraction
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3.3.1 Data Clean up

As we mentioned earlier, the Excel file has redundant and ambiguous data that we need
to clean up after extraction. The ambiguity will appear when a value appears both
as object and alternative names. For example, in one of the Excel sheet, UK is an
alternative name of a country type object whose name is United Kingdom but in
another sheet, UK appears as the name of the country object. If we do not clean up this
type of ambiguity, we will have multiple nodes in a graph that represent the same object
in real world. Some of the data ambiguity and their cleanup operation is shown below.

Case 1:

Let say we have the following two country type objects with their alternative names.

UnitedKingdom = [UK]

UK = []

Since UK is alternative name of United Kingdom, we can infer that the UK and
United Kingdom are same country, hence, we cannot have UK as separate country. So
we have to merge the two into UnitedKingdom = [UK]

Case 2:

Let say we have the following two country type objects and their alternative names.

Netherlands = [NL,NLD]

TheNetherlands = [NLD]

Since the alternative names of the two objects have a similar item (NLD), we can infer
that the two objects are same. So we have to merge them into one. The final object will
be:

Netherlands = [NL,NLD, TheNetherlands]

Case 3:

Let say we have the following objects:

F3 = [F03, F03B,F03b]

F3_1 = []
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And we have a relationship as:
F03b→ F3_1

Since, F03b is an alternative name of object F3, we have to change the relationship into:

F3→ F3_1

Also, the name of the object in one sheet can appear as an alternative name of that very
same object. Having the same value for an object’s name and its alternative name is a
clear redundancy. We need to clean up this type of redundancy as well. Furthermore,
there is some inconsistency in data. For example, there are some alternative names
whose object’s names are null or empty. An alternate name without an associated object
is a clear violation of the rule, hence we need to clear such data inconsistency as well.
Finally, not all the cells have valid values. For example, some of the cells have N/A,
None, (none) , - etc. We need to take care of the rows that have invalid cell values.

3.4 Saving Objects and Relationships for Future use

From the full dataset provided by LOOPS, we extracted 10 types of objects and 23
different type of relationships among them. We need to save the extracted objects and
their relationships for building the graph in a later stage. The extracted information are
saved as structured Excel file where we have several sheets. Each sheet represents a type
of object or a type of relationships depending on the name of the sheets. The object
sheet has name that starts with obj_X where X is the type of the object. Similarly, the
relationship sheet name start with rel_X_has_Y where X and Y are two object types.
For instance, if we have country and license type objects, we are effectively saving all the
country type and license type objects into obj_country and obj_license sheets respectively
and the relationship from country to license is saved in rel_country_has_license sheet.
Figure 3.5 and 3.6 show the structure of the saved objects and relationships respectively.

3.5 Experimental Setup and Result

For evaluation of the object extractor system, we need a dataset with the known number of
objects and relationships. Unfortunately, for this experiment, LOOPS doest not provide
us a dataset with the known number of objects and relationships. Therefore, we make a
sample dataset by taking a Type I and a Type II sheets from the original dataset. Then
we use object extractor to extract objects and relationships. We manually cross-check the
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Figure 3.5: Structure of object sheet

Figure 3.6: Structure of relationship sheet

number of objects and relationships in the sample dataset with the number of objects
and relationships extracted by the system. The information about the sample dataset
and the number of objects extracted by object extractor is given in Table 3.1.

Objects Number of Objects Unique Objects Extracted Objects Remark
Country 1690 250 250 100%
License 1562 400 393 98%
Unit 115 14 14 100%
Block 92 92 92 100%

Pipeline 2 2 2 100%

Table 3.1: object extraction by object extractor
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In the sample dataset, there are five different types of objects: Country, License, Unit,
Block and Pipeline. The object extractor system extracts all unique Country, Unit, Block
and Pipeline objects without any miss (100%). In case of the license, there are 400
unique license objects, however, the system extracts 393 of them. So we take a deep
analysis for License objects along with their alternative names. It is found that, for the
license objects, there are some objects that share common alternative names. When two
objects having similar type have one or more common alternative names, those objects
are considered to represent the same object and hence are merged into a single object.
Therefore, the number of extracted license objects is less than the number of unique
license objects in the sample dataset.

In the sample dataset, there are three type of relationship: country_has_license, coun-
try_has_unit and license_has_unit. The object extractor system extracts all of the
relationships accurately.

3.6 Conclusion

The object extractor extracts objects, their alternative names and the relationship among
the objects from Excel file. The system also normalizes the extracted information. It
handles data redundancy and data ambiguity as well. The system saves the extracted
information into the structured file that can be used directly to build the graph.

In the next chapter, we use the information we have extracted from LOOPS dataset
and represent them as a graph. Furthermore, we use the graph for recognizing entities
and inferring new information that is hidden in the dataset.
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Chapter 4

Implementation of Graph for Entity
Recognition and Inference

4.1 Introduction

In the previous chapter, we build a system that extracts information from Excel files
provided by LOOPS. The system basically extracts two types of information: objects and
relationships. In this chapter, we discuss different types of graphs and their representation
and we choose a suitable graph to represent the information we extracted. Finally, we
build a system called GER that recognizes the entities in an unseen dataset and infer
more information about the recognized entities using graph theories.

4.2 Type of Graphs

Formally a graph is represented as G= (V, E) where V = v1, v2, ..., vn is a finite set of
nodes and E ⊆ V × V,E = (vi, vj), i 6= j represents the set of edges in the graph.

Graphs can be categorized in different ways based on their edge types, orientation, the
presence of weights etc.

Directed and Undirected Graphs: A graph G is directed if there is a direction
between the nodes in edges. Each edge in a directed graph has a start node and end
node and edge e(vi, vj) is not similar to edge e(vj , vi). On the other hand, the nodes in
an edge of an undirected graph do not have a direction, hence edge e(vi, vj) is symmetric
to edge e(vj , vi).
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Labeled and Unlabeled Graph: A graph G is a labeled graph if the nodes and/or
the edges are labeled with some data in addition to the data that identifies the node and
the edge. Otherwise, the graph is an unlabeled graph. If only the nodes have the labels,
it is called node labeled graph and if labels are only for edges, it is called edge labeled
graph.

Wighted and Unweighted Graph: A graph G is a weighted graph if the graph is an
edge labeled graph and the labels can be operated on by the usual arithmetic operators,
including comparisons like using less than and greater than.

Simple Graph: A simple graph is an undirected, unweighted graph where no self-loops
or multiple edges between the same pair of nodes is allowed. If the graph is directed, it
is called simple directed graph.

Multigraph: A multigraph is a graph where multiple edges between two nodes are
allowed. If the graph is a directed graph, is called directed multigraph.

Pseudograph: A pseudograph is a graph that allows multiple edges and self loop. A
pseudograph can be directed or undirected.

Figure 4.2 shows such graphs.

4.3 Representation of graphs

There are two standard ways to represent a graph G = (V,E): as a collection of adjacency
list or as an adjacency matrix. If the graph is sparse graph -those for which |E| is much
less than |V |2 - adjacency list is the method of choice as it takes less space. An adjacency
matrix is preferable if the graph is dense - |E| is close to |V |2- or when we need to be
able to tell quickly if there is an edge between two nodes [6]. Figure 4.2 shows two
representation of a directed graph G.

4.4 Representing LOOPS data in graph

In the previous chapter, we extracted objects and relationships from the Excel file and
save the information into a structured Excel file so that we can represent the extracted
information in a graph. In above sections, we discuss different type of graphs and their
representation using adjacency list and adjacency matrix. Having the data on hand, now
we can choose a suitable graph that can represent the LOOPS data.
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(a) Simple graph (b) Multigraph (c) Pseudograph

(d) Simple directed graph (e) Directed multi graph (f) Directed pseudo graph

(g) Labeled graph (h) Weighted graph

Figure 4.1: Different type of graphs

Figure 4.2: Representation of graph

After analyzing the relationships in LOOPS data, we find that there are no self-loops or
parallel edges between two objects. Furthermore, the relationships have defined start
and end such as country_has_license, license_has_unit etc. Hence, the most suitable
graph for LOOPS data is simple directed graph.
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Here we explain some important vocabularies that we often use for a directed graph. For
example, in a directed graph G, if we have a relationships from nodeU to nodeV, then:

• nodeU is a predecessor of nodeV

• nodeV is a successor of nodeU

• edgeUV is an outgoing edge for nodeU

• edgeUV is an incoming edge for nodeV

• nodeU is a source of edgeUV

• nodeV is a target of edgeUV

For building the graph, we use Google Guava library written in Java that comes with
common utility methods for adding or removing nodes and edges, getting predecessor
and successor etc.

The node is represented as a Java class. The representation of the Node along with it’s
attributes is shown in Listing 4.1.

1 Class Node {
2 String name;
3 String node_type;
4 String Set<String> alternative_names;
5 // add other properties here ...
6 }

Listing 4.1: Representation of node in Java

In Listing 4.2, the process of building graph using Guava is shown as pseudocode.
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1 // initialize Guave Value Graph
2 Graph G = new ValueGraph()
3 // add nodes to the graph
4 forEach object_sheet in ExcelFile {
5 // object_sheet name has format: obj_X , where X is object type
6 // eg: obj_country, obj_license etc
7 node_type = object_sheet.name().replace("obj_", "");
8 forEach row in object_sheet {
9 //row[0] = name, row[1] = alternative names

10 Node node = new Node(row[0], node_type, row[1])
11 G.addNode(node); // add node to graph
12 }
13 }
14
15 // add relationships between nodes
16 forEach rel_sheet in ExcelFile {
17 rel_name = rel_sheet.name().replace("rel_", "")
18
19 // relationship sheet name has format: rel_X_has_Y, wher X and Y are object types
20 // eg: rel_country_has_license, rel_license_has_unit etc
21 fromType, toType = rel_name.split("_has_")
22 forEach row in rel_sheet {
23 // find the node in G for given name and type
24 // row[0] = fromNode name, row[1] = toNode name
25 fromNode = findNodebyNameAndType(row[0], fromType);
26 toNode = findNodebyNameAndType(row[1], toType);
27
28 if fromNode AND toNode NOT NULL {
29 G.putEdgeValue(fromNode, toNode, rel_name)
30 }
31 }
32 }

Listing 4.2: Pseudocode for building graph

Figure 4.3 visualize the LOOPS data in a graph.

4.5 Graph-based Entity Recognition

Entity Recognition (ER) is a hot topic among natural language processing group. A
substantial amount of work has been done for recognizing Named Entities from the text.
Named Entity Recognition (NER) technology recognizes proper nouns (entities) such
as location, person name, date, address etc and associate them with appropriate types.
The entities in Natural languages are sometimes pretty ambiguous. For example, a text
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Figure 4.3: Visualization of LOOPS data in a graph

containing Washington may refer to US president George Washington or Washington
DC depending on the surrounding context.

However, it is important to note that the entity recognition we are interested in this
thesis is not to be mistaken with the Named Entity Recognition. In this thesis, the set
of vocabularies for the entities are subjected to the entities of Oil & Gas industries. All
the entities in our thesis are the objects that belong to this specific area.

Unlike NER, the type of entities we are interested in is not the pronouns in natural
language. Our entities are the type of objects in Oil & Gas sectors such as Country
objects, License object, Well objects etc. All the entities in our domain are represented as
nodes in a graph. If we are given a text, our task for the entity recognition is to find out
the nodes from the graph whose names or alternative names match with the word or
words from the text.

Now, we will formally describe how entity recognition in our domain works. All the
objects and their relationships we extracted in the previous chapter are our entities
and we treat them as ground truth. We represent our ground truth in a graph. Now,
suppose we are given a text containing Drilling stop at F3-1. Our task is to check
and recognize if the text contains any entities that are in our ground truth. If we can
recognize any entities, we need to report back with what are the recognized entities
and what are their types. Although disambiguation is a crucial and challenging task in
NER, we do not deal with the disambiguation in this research. If a text matches for two
different entities with different types, we need to report both the entities and their types.
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For instance, if in the given text F3-1 matches with F3 (License) and F3-1 (Well),
the system need to give both as output.

Similar to the normalization we perform in object extraction, we need to normalize the
text for the input file as well. We use the same normalization technique for normalizing
input data.

From the implementation point of view, we already extracted our entities and build a
graph with all the entities as nodes. Therefore, recognition of entities from a text should
be straightforward. We have to iterate the nodes from the graph and match the text
with the name and alternative names of the node to see if there is a match. If a match is
found for a node, we can return the name and type of the node as a recognized entity.
Listing 4.3 shows the pseudocode for entity recognition.

1 Function entityRecognition(G, filename) {
2 File inputFile = readExcelFile(filename) // read the input file
3 forEach row in inputFile {
4 forEach cell in row {
5 text = cell.value()
6 text = normalizeText(text) // normalize the text
7 // iterate each node in graph
8 forEach node in G.nodes() {
9 if isContain(text, node.name) OR isContain(text, node.alternative_names()) {

10 // save the recognized node to file
11 addToResult(node)
12 }
13 }
14 }
15 }
16 }

Listing 4.3: Pseudocode for Entity Recognition in a graph

4.6 Graph-based Inference

An inference is an idea or conclusion that’s drawn from evidence and reasoning. An
inference is an educated guess [7]. If we have an evidence, using that evidence, we can
infer other knowledge. Ancient Greek philosophers defined a number of syllogisms that
can be used as building block for reasoning. A famous example of inference is:

1. All humans are mortal.

2. All Greeks are humans.
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3. Therefore, All Greeks are mortal.

In the above section, we recognize entities in a file using the graph. By taking the
motivation from above syllogisms, we can infer more knowledge about the recognized
nodes. For example, if we get a string Gunnild went to Oslo last week, and we have
a graph like:

Norway
hasCapital−−−−−−−→ Oslo

We can infer that Gunnild was in Norway last week as she was in Oslo which is the
capital of Norway in our graph. However, if the text is Gunnild went to Norway last
week, we cannot infer that she went to Oslo last week.

It is easy to retrieve the knowledge if two nodes are directly connected. However, in the
graph, the two nodes may not be connected directly. The two nodes may be connected
by multiple hops in the graph. Retrieving appropriate nodes via variable length paths
relevant for entity recognition is a challenge.

We can overcome the challenge by using the power of the graph, especially by using
graph traversal techniques. There exist two popular graph traversal algorithms. These
are Bread First Search and Depth First Search.

Bread First Search (BFS): BFS starts at a node in a graph and explores the neighbor
nodes first before visiting the next level neighbors. It can be used for both directed and
undirected graph. A graph may contain cycles, so the algorithm may come to the same
node again and again. To avoid processing a node more than once, the algorithm marks
a visited node with a boolean flag.

Depth First Search (DFS): DFS starts at a node and explores as far as possible along
each branch before backtracking. For instance, if the search starts at v, it visits one of
v’s unexplored neighbors say u. From u, it continue the same process. If the algorithm
reaches a node say x from where there are no reachable nodes, it backtracks to the node
from where it was discovered. From that node, it visits one of the unexplored nodes if
there are any, otherwise, it backtracks again. Similar to BFS, DFS can be used for both
directed and undirected graph and it also uses a boolean flag to remember the visited
nodes.

Which algorithm to choose heavily depends on the structure of the graph and location of
the searched-for items. For example, if the solution is not far from the start node, then
BFS might be better but if the search-for items are frequent and located deep in the
graph, then DFS might perform well.
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For the graph-based inference in this thesis, we use an algorithm that is similar to BFS.
In BFS, the algorithm usually starts from a node and visits its successors. In other words,
the algorithm visits from a parent node to its child nodes. However, for the inference, we
need the opposite behavior. Therefore, we need to visit from a node to its predecessors.

We need to follow two rules while inferencing. The rules are defined as:

Rule 1: The inference algorithm should not infer more than one object with similar
type.

Rule 2: If an object z infers two objects x and y and both x and y are of same type,
then choose an object that is closer to z as result. If both x and y have same distance
from z, then one object randomly.

Figure 4.4 shows a graph with 8 nodes. Each node has two fields: the name and the
type. If we get a text : W1, W2 and W3 exploration and run the entity recognition
algorithm discussed above with the text and the graph, the system will recognize W1
(well).

Figure 4.4: Example of Inference

Now, we can use our inference algorithm to know more information about the recognized
node W1. If we use the BFS in reverse order taking W1 as starting node ( i.e traversing
by following backward direction), the nodes we can explore from starting node are:

at 1 hope distance: F1 and U2

at 2 hops distance: L2 and U1

at 3 hops distance: NO, UK and L1

However, there are multiple nodes with the same type in the explored list of nodes such
as [U1, U2], [L1, L2] and [NO, UK].
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According to the rules, we cannot infer more than one object that are of the same type.
Therefor, the inference algorithm will infer U2 over U1 as U2 has a shorter distance to
W1. Similarly, L2 will be inferred instead of L1. For NO and UK, both nodes have same
type and are at same distance from W1. Therefore, the first visited node will be selected
as inferred node.

The set of inferred nodes will be :

F1(field), U2(unit), L2(license), NO(country)

OR

F1(field), U2(unit), L2(license), UK(country)

depending on the algorithm that visit NO or UK node first.

The steps for the inference algorithm are given in Listing 4.4.

1
2 function Inference(G, start) {
3 inferedNodes = {} // holds inferred nodes
4 Q = {}; // empty queue
5 ENQUEUE(Q, start) // add item to Q
6 start.visited = true; // set visited flag
7 while (Q is not empty) {
8 u = DEQUEUE();
9 // iterate each predecessor of node u

10 for each v in G.getPredecessors(u)) {
11 if (v is not visited) {
12 ENQUEUE(Q, v) // add v to Q
13 v.visited = true; // set visited flag for v
14 // add v to inferedNodes if type if v node is not present
15 if not inferedNodes.haveNodeType(v.getType) {
16 ENQUEUE(inferedNodes, v) // add node v to inferred node
17 }
18 }
19 }
20 }
21 return inferedNodes;
22 }

Listing 4.4: Algorithm for Inference in a graph
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4.7 Experimental Setup and Result

In this section, we evaluate GER system that we build for graph-based entity recognition
and inference. For the experimentation of GER, LOOPS provides us with sample objects
and relationships for the graph and a sample dataset for recognizing and inferencing
entities in the dataset using the graph. There are 40 objects and 35 relationships. The
sample dataset for entity recognition and inferencing is shown in Figure 4.5.

Figure 4.5: Sample dataset for entity recognition and inferencing

In the sample dataset, there are 425 rows and 12 columns. GER system reads each cell
value of the dataset and recognizes the entities if there are any. If the system recognizes
an entity, it tries to infer more entities for the recognized entity. The recognized and
inferred entities are added to the dataset as new columns. Recognized entities have a
header with format erType such as erCountry and the inferred entities have header
with format eiType such as eiCountry. Figure 4.6 shows a sample of the entities
recognized and inferred in the sample dataset.

The number of recognized and inferred entities in sample dataset is given in Table 4.1.
We cross check the result with the provided solution set and found that GER system
recognizes all the entities and inferred all the possible entities accurately.

4.8 Conclusion

GER system recognizes entities and inferred more entities for each recognized entities.
We tested the system against a sample dataset and verify that the system is able to
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Figure 4.6: Sample of recognized and inferred entities

Objects Recognized Inferred
Country 157 260
License 130 7
Unit 40 4

Business Area 113 0
Project 8 0

Table 4.1: Result of recognized and inferred entities for sample dataset

recognize and infer all the entities that are in the graph. The system is able to recognize
entities in a text irrespective of the formatting of the text. This is possible because of
the normalization of the text before recognizing entities.
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Chapter 5

Link Prediction - Unsupervised
Approach

5.1 Introduction

Prediction has long been an integral part of scientific studies since ancient times. For
instance, studying the movement of stars and interstellar objects can help researchers
predict astronomical phenomena such as eclipse, novae etc. Similarly, by studying the
topology of the network and node’s attributes, we can predict the missing links or the
links that are going to be added in the future. Many social, biological and information
systems can be described by networks, where nodes represent entities (individual) and
links denote the relationships (interaction) between the nodes. Therefore, the study of
complex networks has attracted increasing attention and become a common focus of many
branches of science [8]. However, mining and analyzing network data is a non-trivial
task as real network data is often incomplete and dynamic. Therefore predicting the
missing links in the current network and newly added links in the future is very important
for understanding the evolution of the networks and completing the current networks.
Link prediction, a task to predict the missing links or new links that will be added to
the network in the future has many important applications. It can be used in social
networks for new friends recommendation or in e-commerce for recommending products
to customers. Link prediction can also be used by security agencies for predicting possible
collaboration between criminals [9]. Formally, link prediction can be stated as below [10]:

Definition 5.1. In a network G = (V, E), V is the set of nodes and E is the set of
edges. The link prediction task is to predict whether there is or will be a link e(x, y)
between a pair of nodes x and y, where x, y ∈ V and e(x, y) ∈ E.
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Link prediction falls into two categories: structual and temporal [10, 11]. Figure 5.1
illustrates the two types of link prediction.

Structural link prediction refers to the problem of finding missing or hidden links in
the networks that may exist but are not directly visible [12]. This type of link prediction
can be used to infer missing links from an observed network such as inferring unobserved
protein-protein interaction or finding existing criminal links which often remain hidden
in a network.

Temporal link prediction refers to the problem of finding new links by studying the
temporal history of a network [13]. In this type of link prediction, we usually have
information about the network till time t and our goal will be predicting new links that
may appear at some point of time in the future say t+k. This type of link prediction is
primarily used in collaboration network- which researchers are going to collaborate in the
future, social network - which users will become friends and e-commerce websites - which
products will the customer buy.

Figure 5.1: Link prediction types

The first type of link prediction uses a static network and make the network complete by
adding the predicted possible missing links to the network and the later type works with
the network evolution [12]. In this thesis, our aim is to predict the missing links in an
observed network so that we can complete the network by adding those missing links to
the network which will facilitate our main ambition of inferring hidden facts from the
network.

Liben-Nowell et al. [12] demonstrated link prediction by using features intrinsic to the
network itself. Their research proved that the network topology indeed contains latent
information from which to infer future interaction. Al Hasan et al. [13] explored the use
of supervised machine learning methods (Decision Tree, SVM, Naive Bayes) to predict
links in co-authorship networks.
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In this chapter, we take an unsupervised approach to predict the missing link for
different networks from different domains. In the next chapter, we discuss the supervised
approaches and compare the two approaches for predicting missing links.

5.2 Graph notation and terms

In this section, we briefly explain some of the characteristics and notation of the graph
we used throughout the link prediction task. We are given a graph or network G =
(V, E) where V is the set of nodes or vertices and E is the set of edges or links .The
notations are shown in Table 5.1.

Symbol Meanings
G Graph
V Set of nodes in G
E Set of existing edges in G
U Set of all possible edges in G (universal set)
X Set of nonexistent links in G
Γ(x) Set of neighbors of node x
Γin(x) Set of incoming neighbors of node x
Γout(x) Set of out going neighbors of node x
|.| Size of the set
e(x, y) An edge between x and y such that (x, y) ∈ V and e(x, y) ∈ E
score(x,y) Similarity score for an edge e(x, y)
D Density of G
Degavg Average degree of G
C Cluster coefficient of G

Table 5.1: Notation and terms

For a directed graph, if self loops are not considered, the size of universal set of edges
is |U | = |V |(|V | − 1) and for an undirected graph, |U | = |V |(|V |−1)

2 . The density of a
directed graph is D = 2|E|

|U | and for undirected graph, D = |E|
|U | . The set of nonexistent

links is X = U − E.

5.3 Data Preparation

For this experiment, LOOPS provides us a dataset containing information of the oils
and gas related fields. The dataset initially had 5042 nodes and 4504 edges. There are
13 different types of nodes such as Country, License, Well etc. The edges connect two
different types of nodes. The dataset can be represented by a directed unweighted graph
G = (V, E) where V is the set of nodes and E is the set of directed edges. In the original
dataset, a vast majority of the nodes are isolated and only 1773 nodes are connected.
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For our link prediction task, we removed all isolated nodes as the algorithms we used for
link prediction cannot predict link for isolated nodes, and hence our final network has
1773 nodes and 4504 edges.

For experimental purpose, we use three more real-world datasets. Two of the datasets
come from Koblenz Network Collection. These are Jazz musicians network dataset [14]
where each node represents a Jazz musician and the edge denotes that two musicians
have played together in a band and Hamsterster friendship dataset [15] where each
node is a user of hamsterster.com website and the edges represent the friendship. The
other dataset is USAir dataset [16] where each node represents an airport and the edges
represent the airlines. All these three datasets are represented with an unweighted and
undirected graph. A summary of the basic topological features of networks is given in
Table 5.2.

Nets |V| |E| |U| D Degavg Type
Loops 1773 4504 3141756 0.0029 5.08 Directed
Jazz 198 2742 19503 0.141 27.70 Undirected

Hamsterster 1858 12534 1725153 0.0073 13.50 Undirected
USAir 332 2126 54946 0.0387 12.81 Undirected

Table 5.2: The basic topological features of the networks.

5.4 Experimental Setup and Evaluation Metric

For the missing link prediction, our task is to estimate the existence tendency of all
non-observed links based on network topology and nodes attributes. Consider, we are
given a graph G = (V, E) where V is the set of |V| nodes and E is the set of |E| edges.
As we described above, our universal set of links is U and the set of nonexistent links is
X = U - E. If there are missing links in the network, they must be in X and our task is
to find out these missing links.

To find out the missing links, we use heuristic algorithms. Each algorithm takes an
edge e(x,y) from the set of X as input and calculates a similarity score score(x,y). If we
calculate the scores for each nonexistent links and order them by their score in descending
order, we can consider that the top-k highest score links are more likely to exist.

Generally, we do not know which links are missing or future links. So we can not blindly
trust the algorithms that return the top-k highest score links as missing links. To build
trust in our algorithms, we need to test the accuracy of the algorithms first. It is a
well-established rule for training and learning algorithms that the existing dataset is
divided into two parts: training set and testing set. The training set is treated as the
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known information and the algorithm is trained using the training set. After training the
algorithm, the algorithm is used to predict the result of the testing set. Since we know
the actual result of the test set, we can compare the result predicted by the algorithm
with the actual result using some well-known evaluation metrics.

For the link prediction, our dataset is a graph G = (V, E). To test the accuracy of the
algorithms, we divide the set of E into two parts: training set ET and test or probe
set EP . We build a new graph Gt = (V, ET ) and use our algorithms to predict the
missing links in Gt. Here, one has to notice that the set of EP is a subset of nonexistent
links X for Gt. When the algorithm returns the top scoring missing links, we can check
whether links from EP appears in the top scoring links. The more the links from EP are
in top scoring links, the more the accuracy of the algorithms is. Figure 5.2 visualizes the
representation of the dataset in details.

Figure 5.2: Universal set of edges where ET is training set, EP is test set and X is
nonexistent links.

From the Figure 5.2, the following rules hold for the dataset.

U = ET ∪ EP ∪X

E = ET ∪ EP

ET ∩ EP = ∅

ET ∩X = ∅

EP ∩X = ∅

Dividing dataset into training and testing sets can cause the isolation of some nodes in
the network which in turn will give undesired results as the link prediction methods we
selected cannot predict unconnected nodes. Hence, we need to be extra careful while
splitting the edges into training and test set so that none of the nodes in the network
become isolated. We make sure that the pair of nodes x, y in each e(x, y) of in EP at
least has a degree of two. In all network, the training set ET constitutes 90% of the
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edges of E while test set EP contains the remaining 10% of the edges. The statistic of
the training, testing, and nonexistent links are shown in Table 5.3.

Nets |E| |ET | |EP | |X|
Loops 4504 4054 450 3137702
Jazz 2742 2468 274 17035

Hamsterster 12534 11281 1253 1713872
USAir 2126 1914 212 53032

Table 5.3: Statistics of training, testing and nonexistent links

The prediction quality is evaluated by two standard metrics. The first one is called
the area under the receiver operating characteristic curve (AUC). The metric gives the
probability that a randomly chosen link from EP gives a higher score than a randomly
chosen link from X (nonexistent links). If we run the algorithms for n independent
comparisons, say n′ occurrences of links from EP gives a higher score and n′′ occurrences
of links from EP and X have the same score, then we define the accuracy as:

AUC = (n′ + 0.5 ∗ n′′)
n

If all the score are generated from an independent and identical distribution, the accuracy
should be 0.5. Therefore, the degree to which the accuracy exceeds 0.5 indicates how
much better the algorithm performs than pure chance [8]. The second metric we used
is called Precision, which is a well-known metric widely used in information retrieval.
Precision is defined as the fraction of retrieved documents that are relevant. In other
word, if we take top K links as predicted links, among which Kr links are right (i.e, there
are Kr links in the test set EP ), then the precision is P = Kr

K [17].

5.5 Link Prediction Methods

In this section, we discuss five commonly used link prediction methods that use network
topology in the prediction process. All the methods described here assign a connection
weight score(x,y) to pair of nodes (x,y) based on the input graph G. We can view the
score(x,y) as a measurement of proximity or similarity between node x and node y relative
to the network topology.
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5.5.1 Common Neighbors

This method is based on assumption that two nodes x and y with a large overlap in
their neighbor set of Γ(x) and Γ(y) will be connected in the future. In a social network,
common neighbors is a very strong feature for predicting future link between two users.
Two users with a lot of mutual friends are more likely to be friend in the future. The
score for common neighbors is calculated as:

score(x, y) =

|Γ(x) ∩ Γ(y)| if G is undirected

|Γout(x) ∩ Γin(y)| if G is directed

5.5.2 Jaccard’s Coefficient

Jaccard’s coefficient or Jaccard index is a well-known similarity metric commonly used in
information retrieval. Let F be a set of features that are either in x or y. If we randomly
pick a feature f from F, what is the probability that both x and y have the feature f. If
we take the features here to be neighbors in graph G, we can measure how likely is a
neighbor of x is to be a neighbor of y and vice versa. We can calculate the score (x,y) as
Jaccard’s Coefficient as:

score(x, y) =


|Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| if G is undirected
|Γout(x)∩Γin(y)|
|Γout(x)∪Γin(y)| if G is directed

5.5.3 Adamic/Adar Index

Adamic and Adar [18] consider a measure to see if two personal home pages are strongly
related. To do this, they compute features of the pages and define the similarity between
two pages to be

similarity(x, y) =
∑

shareditems

1
log[frequency(shareditems)]

The shared items that are unique to fewer users are weighted more than commonly
occurring items. If we consider the shared items as common neighbors, we can define the
adamic/adar index measure for link prediction as, if a common neighbor of x and y has
more neighbors, then it is less likely that he will introduce x and y with each other then
in case he has only a few friends. The score for adamic/adar is calculated as:
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score(x, y) =


∑

z∈(Γ(x)∩Γ(y))

1
log(|Γ(z)|) if G is undirected

∑
z∈(Γin(x)∩Γout(y))

1
log(|Γout(z)|+ε) if G is directed

where ε is a very small number (ε� 1) to avoid denominator to be zero.

5.5.4 Preferential Attachment

Work by Barabasi et al [19] on collaboration networks suggests that there is a positive
correlation between the probability of collaboration between two nodes x, y and the
product of the number of their neighbors. It is also one of the well-known concepts in
social networks that users with more friends tend to create more connection in the future.
This corresponds to the measure:

score(x, y) =

|Γ(x)| ∗ |Γ(y)| if G is undirected

|Γout(x)| ∗ |Γin(y)| if G is directed

5.5.5 Resource Allocation

Motivated by transferring resource between two unconnected nodes with their common
neighbors playing the role of transmitters, T. Zhou et al. [20] proposed a similarity
measure as:

score(x, y) =


∑

z∈(Γ(x)∩Γ(y))

1
|Γ(z)| if G is undirected

∑
z∈(Γin(x)∩Γout(y))

1
|Γout(z)| if G is directed

5.6 Result and Discussion

In this section, we present the result of our experimental evaluation. The prediction
accuracy measured by precision and AUC is shown in Table 5.4 and Table 5.5 respectively.
For calculating the precision, we set K = |EP |, which means the number of retrieved
elements equals the number of relevant elements. Under this specific choice of K, precision
is equal to another metric call recall. Recall is defined as the fraction of relevant elements
that have been retrieved over the total amount of relevant elements.
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In term of precision, for Loops and Jaaz, adamic/adar score highest with the accuracy
of 0.760 and 0.755 respectively. On the other hand, Common Neighbor yields highest
accuracy in term of precision for Hamster dataset while for USAir, Resource Allocation
gain the accuracy of 0.425. In term of AUC, Preferential Attachment gives highest
accuracy for both Loops and Jazz datasets. Jaccard coefficient and Resource Allocation
achieve highest accuracy for Hamster and USAir with the accuracy of 0.883 and 0.969
respectively.

Nets CN JC AA PA RA
Loops 0.127 0.016 0.131 0.029 0.120
Jazz 0.515 0.496 0.522 0.117 0.518

Hamsterster 0.035 0.029 0.032 0.029 0.030
USAir 0.335 0.066 0.354 0.311 0.425

Table 5.4: Prediction accuracy measured by Precision

Nets CN JC AA PA RA
Loops 0.688 0.687 0.688 0.760 0.689
Jazz 0.931 0.969 0.958 0.755 0.969

Hamsterster 0.809 0.883 0.815 0.870 0.815
USAir 0.962 0.932 0.967 0.939 0.969

Table 5.5: Prediction accuracy measured by AUC

Finally, we measure the execution time for each algorithm that we use for link prediction.
The elapsed time for each algorithm is given in Figure 5.3. Surprisingly, for Jazz,
Hamsterster and USAir datasets which are undirected graphs, adamic/adar takes the
longest time while Preferential Attachment takes the least amount of time to execute. For
the Loops dataset which is a directed graph, a totally opposite phenomenon is observed:
adamic/adar taking least amount of time while preferential attachment consumed most
of the time for calculating scores for missing links.

Most of the previous link prediction researches were carried out on collaboration or
social networks where the graph evolves along with the time. In a time series dataset,
the training and test sets are split based on the snapshot of a time. Since none of our
datasets comes with time evolution, we have to split the training and test sets randomly.
Randomly splitting the edges can have the negative impact on calculating the accuracy
of the algorithms as splitting in such way can change the topology of the original network.
Taking this into mind, we can assume that if the algorithms are applied on an actual
unobserved set of links (without splitting edges), the algorithms would perform better.
Moreover, from the result, we can clearly see that the algorithms for all dataset performed
well above the random predictor. So we can conclude that the network topology indeed
contains the crucial ingredient to predict missing or future links.
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(a) Loops (b) Jazz

(c) Hamsterster (d) USAir

Figure 5.3: Comparison of execution time for different algorithms on different datasets
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Chapter 6

Link Prediction - Supervised
Approach

In the previous chapter (Chapter-5), we discussed what link prediction is and we demon-
strated link prediction using unsupervised approach. In this chapter, we use supervised
machine learning approach to predict the missing links in a network. Though we compile
supervised learning approach into a separate chapter, we will be using the same networks
and the terms that we used in the previous chapter. Hence, readers are advised to read
the previous chapter before proceeding.

6.1 Supervised Learning

Before diving into the problem, we need to understand what is supervised and unsu-
pervised learnings and how they differ from each other. In machine learning, learning
algorithms are typically characterized as supervised and unsupervised. In supervised
learning problem, we start with a data set containing training examples with associate
correct labels which is often called as training set. Once the model is learned using the
training set, it can be applied to a set of unlabeled items, called test set, in order to
automatically apply labels. For example, if we are given a set of emails that have been
labeled as spam or not spam, a classification model can be learned using the given set
of emails. Then we can apply the model to classify if an incoming email is spam or not
spam.

Unsupervised learning algorithms, on the other hand, do not have labeled data. For
instance, the link prediction we implemented in the previous chapter falls under the
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category of an unsupervised solution since no labeled training set is adapted to derive a
prediction model.

6.2 Limitations of Unsupervised Link Prediction

The unsupervised link prediction presents some limitations. In unsupervised approach,
the algorithm ranks the pair of non-connected nodes according to their score and we
choose top K ranked pairs of nodes as predicted links. However, what should the value
of K be is still an open question with no concrete answer. Another problem with the
unsupervised approach is that the algorithm that is used for ranking of node pairs
uses only one metric (for example, common neighbors). Using a single metric may not
completely explore different structural patterns contained in the network. Considering the
above limitations, many researchers adopted the link prediction problem as a supervised
machine learning problem.

6.3 Dataset and Evaluation metrics

For supervised learning approach, we use the same datasets that we used for link
prediction in unsupervised approach. A summary of the dataset is given in Table 5.2.
The notation and the terms we often use for the network can be found in Table 5.1.

For evaluating the classification model, we adopted five different performance metrics.
Precision, Recall, F1-measure, AUC Score, and Accuracy. With the help of the confusion
matrix shown in Table 6.1, we describe how each metric works.

Predicted: YES Predicted: NO
Actual: YES TP FN
Actual: NO FP TN

Table 6.1: The confusion matrix

Accuracy: Accuracy can be defined as the number of correctly predicted labels in the
test network out of the total number of possible examples of unobserved links.

Accuracy = TP + TN

TP + TN + FP + FN

Precision: Precision can be defined as the fraction of correctly predicted links out of
total prediction made.
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Precision = TP

TP + FP

Recall: Recall is defined as the fraction of correctly predicted links out of the total
number of actual new links.

Recall = TP

TP + FN

F1-measure: F1-measure is defined as the harmonic mean of precision and recall.

F1−measure = 2 ∗ Precision ∗Recall
Precision+Recall

Area Under ROC curve (AUC): AUC is the probability that a randomly chosen
positive example ranks above a randomly chosen negative example.

6.4 Feature Selection

A key part of many machine learning algorithm is feature selection. In link prediction,
a combination of topological and non-topological features are used depending on the
availability of such features in the network of consideration. For instance, Al Hasan et al.
[13] consider features that are both intrinsic to the network (sum of common neighbors,
shortest path, clustering index etc) and extrinsic to the network ( sum of keywords, sum
of paper, keyword match count etc) and got promising results with accuracy more than
85%.

Unfortunately, in our dataset, there are no extrinsic features. So, all the features we
use for supervised link prediction are intrinsic features - topological features. Each link
prediction method we used in unsupervised link prediction is used as a feature for
supervised link prediction. The features are listed below.

• Common Neighbors (5.5.1)

• Jaccard’s Coefficient (5.5.2)

• Adamic/Adar Index (5.5.3)

• Preferential Attachment (5.5.4)

• Resource Allocation (5.5.5)
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• Shortest Path

The shortest path is the path between node x and y where (x, y) ∈ V and e(x, y) ∈ X.

For the Loops dataset which is a directed network, we use two more features. These are:

• Common In Neighbors

• Common Out Neighbors

Common In Neighbors is:

score(x, y) = |Γin(x) ∩ Γin(y)|

Common Out Neighbors is:

score(x, y) = |Γout(x) ∩ Γout(y)|

Features normalization is an important preprocessing step in many machine learning
algorithms. So we normalize the features such that they have the properties of a standard
normal distribution with a mean of zero and a standard deviation of one before using
them in the classification model.

6.5 Class imbalance and under-sampling

In a typical binary classification problem, positive and negative classes are approximately
balanced. As a result, we can calculate expectation for a baseline classifier performance.
For example, if the classes are balanced, we can assume that a classifier that predicts the
label randomly or a classifier that assigns all positive or all negative classes will have a
performance of 0.5 for all the evaluation metrics mentioned above.

However, binary classification problems that exhibit class imbalance do not share this
property [10]. Link prediction domain is an extreme example of class imbalance. The
number of present links (positive class) in a network is magnitude smaller than the
number of absent link (negative class) in the network. For example, in our Loops
dataset, the number of present links is 4504 while there are over 3 millions absent links.

Accuracy metrics is biased toward class imbalance. For instance, if the ratio of positive
and negative class distribution is 10:90, and a classifier algorithm that just classifies all
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instances to be negative will have the accuracy of 90%. Even though the accuracy is very
high, this type of classifiers are useless as they do not predict any of the positive instances.
Also, during the training period of the algorithm, due to extreme class imbalance, the
information carried by positive class get diluted in the vast negative class. Moreover,
unlike classical classification problem where overall prediction accuracy is important, in
link prediction, classification of positive examples are more important [11].

A straightforward remedy to class imbalance is under-sampling or down-sampling of
majority class. In under-sampling, some of the instances from majority class are randomly
removed from the training set. M. Kubat et al. [21] proposed to selectively under-sample
the majority class while keeping all minority class. A careless under-sampling may lose
valuable information and so, a careful selection should be made on the criteria deciding
which examples are to be discarded from the training sets. In our case, we keep all the
positive instances and take the same number of negative instances that are within three
hops distance.

6.6 Link Prediction using Supervised Learning

After the work of Liben-Nowell et al. [12], who demonstrated that simple topological
features representing relationships between pairs of non-connected nodes in a complex
network can be used for predicting new forming links, many attempts were made to
combine the effects of individual topological features in order to enhance the overall
prediction performance of the approach. Most of these works use machine learning
algorithms.

The first approach we studied is proposed by Al Hasan et al. [13] who converted the
link prediction problem into a binary classification problem where the examples are
non-connected pairs of nodes in the network. They use different supervised learning
methods such as SVM, Decision Tree, and Naive Bayes to predict links in co-authorship
networks obtained from BIOBASE and DBLP datasets. They partition the network into
two non-overlapping graphs G1 and G2 based on the publication years. G1 is used as the
training years. They calculate features from G1 for all nonexistent links and each such
link is assigned a positive or negative label depending on whether that nonexistent link
in G1 is formed in G2. Having a set of nodes with features and label, one can construct
any classification algorithm to generate a model which can further be used to classify
test instances with the same feature vector.

Taking the motivation from Al Hasan et al. [13], we devised a model to predict the
missing links in a network using supervised learning. Consider, we are given a network
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Gcore = (V,E) and the set of absent links or nonexistent links in Gcore is denoted by X.
Our task is to identify if there are any potential missing links in the set of absent links X.

To predict the missing links, we use the following rules:

• Let E′′ hold 10% of the random edges from Gcore.

• We build a train graph Gtrain = (V,E − E′′). In other word, Gtrain is build upon
the original graph by randomly removing 10% of the edges.

• For each non existent links e(x, y) in Gtrain i.e e(x, y) /∈ (E − E′′), an example is
build using the following information.

– A feature set of topological attributes for e(x, y) is computed. In section 6.4,
we detail a list of topological features.

– A class label is associated to the example: if the link e(x, y) exist in Gcore,
e(x, y) is a positive example. It is a negative example otherwise.

A graphical representation of features generation and label assignment for training data
is shown in Figure 6.1. In the figure, only two features are considered.

Figure 6.1: Generation of training set on sample graph

The statistic of training set before and after under-sampling is shown in Table 6.2.

Since the examples are extremely imbalance, we perform under-sampling as discussed in
Section 6.5. We keep all the positive instances and select an equal number of negative
instances from the pool of negative examples that are within three hops distance. We
then normalize the features such that the features have a mean of zero and standard
deviation of one.
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Nets Train (Before sampling) Train (After sampling)
+ve -ve +ve -ve

Loops 450 3137252 450 450
USAir 212 52820 212 212
Jazz 274 16761 274 274

Hamster 1253 1712619 1253 1253

Table 6.2: Number of positive and negative classes in different datasets

Finally, a supervised learning technique is applied to compute a predictive model that
discriminates positive examples from negative ones.

Traditionally, in machine learning, the models are evaluated on examples which have
not been seen by the system while learning. One of the most used ways to evaluate
classification models in machine learning is K-fold cross-validation. In K-fold cross-
validation, the training dataset is divided into K subsets. The validation is performed
for K times. Each time, one of the K subset is used as the test set and the other K-1
subsets are put together to form a training set. The final result is the average of all
trials. K-fold cross-validation significantly reduces model over-fitting and under-fitting
as all the subsets are being used both as training set and test set. In this research, we
use 10-fold cross validation for the result reported. The classification algorithms we used
for this research are discussed in next section.

6.7 Classification Algorithms

For supervised learning, there exist so many algorithms. Depending on the domain and
dataset, different algorithm performs differently. In this research, we experimented with
three different classification algorithms. The algorithms that we used are Decision Tree,
Random Forest and SVM with linear kernel. For all the classification algorithms, we use
Scikit-Learn, a machine learning library for Python programming language.

Then we compare the performance of the above classifiers using different performance
metrics such as accuracy, precision, recall etc. More details of the performance metrics
are discussed in Section 6.3. For all the algorithms, we used 10-fold cross validation for
the result reported.

6.8 Result and Discussion

Table 6.3, 6.4, 6.5 and 6.6 shows the performance comparison for different classifiers
on Loops, USAir, Jazz and Hamster datasets respectively. For Loops, USAir and Jazz,
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all the classifier exceed the accuracy above 80%. For the Hamster, the accuracy for all
models reached above 70%. From the result, we can see that Random forest classifier
gives highest accuracy for Loops and Jazz datasets whereas Decision Tree performs better
in USAir and Hamster datasets.

Comparing the result with the unsupervised approach, we can see a huge improvement
in all the datasets. Since the accuracy and all other performance measures exceed the
baseline classifier which could be around 50%, we can conclude that the features we
selected have good discrimination ability. In unsupervised link prediction, each method
uses a single topological attribute for calculating the score. In supervised learning,
however, we combine different topological attributes into the set of a feature vector. As a
result, we can assume that link prediction using supervised learning achieve good result
compare to unsupervised approach.

Loops Dataset
Classifier Accuracy Precision Recall F1-measure AUC
SVM 0.800 0.817 0.769 0.774 0.800

Random Forest 0.851 0.848 0.856 0.846 0.851
Decision Tree 0.822 0.819 0.829 0.817 0.822

Table 6.3: Performance of different classification algorithms for Loops dataset

USAir Dataset
Classifier Accuracy Precision Recall F1-measure AUC
SVM 0.856 0.933 0.768 0.836 0.856

Random Forest 0.877 0.893 0.858 0.871 0.877
Decision Tree 0.889 0.917 0.858 0.881 0.889

Table 6.4: Performance of different classification algorithms for USAir dataset

Jazz Dataset
Classifier Accuracy Precision Recall F1-measure AUC
SVM 0.900 0.927 0.873 0.896 0.900

Random Forest 0.924 0.935 0.913 0.922 0.924
Decision Tree 0.855 0.857 0.859 0.852 0.855

Table 6.5: Performance of different classification algorithms for Jazz dataset

Hamster Dataset
Classifier Accuracy Precision Recall F1-measure AUC
SVM 0.753 0.777 0.709 0.741 0.753

Random Forest 0.748 0.799 0.664 0.723 0.748
Decision Tree 0.759 0.785 0.712 0.746 0.759

Table 6.6: Performance of different classification algorithms for Hamster dataset
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Chapter 7

Conclusion and Further Work

This chapter concludes this thesis and presents suggestions for further work.

7.1 Conclusion

For this thesis, LOOPS provides us the required dataset. In the dataset, we notice that
there exists so many redundant, conflicting and inconsistent data. Therefore, we devise
a system called object extractor that extracts only relevant information from the raw
dataset. The information we extract is refurbished so that the data are consistent. We
effectively handle data ambiguity and data redundancy for a better representation of
data with very little to no noise. Due to the large size of the data, we have to come up
with an effective data structure that can manipulate the large volume of data within a
reasonable time.

The object extractor system basically extracts object and their attributes and the rela-
tionships between different objects. To represent the extracted information, we develop
ger, a system that represents the extracted data using a graphical data model. By using
ger system, we demonstrate that if we store the data as graph, we can recognize the
entities in a file using the graph and infer more knowledge about the recognized data
using graph traversal techniques. We also demonstrate that, for the linked data, it is
possible to use graph algorithms for hierarchical inference.

In the network generated by ger system, we notice that some of the links are missing.
Therefore, we are interested if we can predict the missing links in the network. We
analyze the topology of the graph and implement link prediction algorithms to add the
potential missing links to the graph. We use both supervised and unsupervised link
prediction methods and we find that the supervised link prediction method can predict
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missing link better than it’s counterpart. We notice that the topology of the graph
carries vital information that can be used to predict missing link in a network.

We initially thought that, if we use link prediction and add potential missing links to
the graph, the graph will give a better result for inferencing. However, to our surprise,
there was no change in the result for inferencing. This is because the inferencing we use
in this work is hierarchical inference. In a hierarchical inference, if B is subclass of A
and C is subclass of B, then we can infer that C is also subclass of A because there is a
path from A to C via B. Adding a direct path from A to C will make no difference for
reference as long as there is a via path from A to C. Link prediction predicts and adds
the missing links such as a direct link from A to C. The benefit of the link prediction
would be apparent if we can use link prediction and add links to the nodes that are
isolated in the original graph. Unfortunately, the link prediction algorithms we use do
not support isolated nodes as we do not have enough features except the topological
features. For isolated nodes, there are no topological features, hence the isolated nodes
are not considered for link prediction in this work.

Although link prediction does not have much impact on the domain of this work, we
gain a considerable knowledge from studying the topology of the data. Networks such as
social and collaborative networks show a great demand for link prediction. Therefore, we
believe that the effort we put for link prediction in this thesis is a good effort that we
can utilize in other domain of networks.

Finally, we firmly believe that the linked data representation with graph and analyzing
the graph gives a deep insight of the data that will facilitate in taking further action.

7.2 Further Work

This section provides some thoughts on further improvement of the work presented in
this thesis.

Storing data in graph database: The data we use for building graph is stored in
memory. Therefore, every time we use the algorithm, we need to load data and build the
graph. Storing the graph in a graph database will eliminate the graph building process
on every use.

A more intelligent Entity Recognition Algorithm: The entity recognition algo-
rithm we use in this thesis is a simple and generic substring matching algorithm. For
example, if we have a node "D12 E" in the graph and a text "D12 Enable" is given as
input, the algorithm would match "D12 E" for the text "D12 Enable ". If we do not want
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to have such behavior, a more complex algorithm that understands the formatting of the
text should be implemented.

Link prediction for isolated nodes: The algorithms used for link prediction do not
support isolated nodes. We believe, an algorithm that can predict missing link for isolated
nodes will make the graph more connected.
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Appendix A

Appendix

1 import networkx as nx
2 from math import log
3 import sys
4
5
6 def base_common_neighbors(G, u, v):
7 if G.is_directed():
8 return (w for w in G.successors(u) if w in G.predecessors(v) and w not in (u, v))
9 return nx.common_neighbors(G, u, v)

10
11
12 def common_neighbors(G, u, v):
13 return len(list(base_common_neighbors(G, u, v)))
14
15
16 def common_neighbors_in(G, u, v):
17 return len(list((w for w in G.predecessors(u) if w in G.predecessors(v) and w not in (u, v))))
18
19
20 def common_neighbors_out(G, u, v):
21 return len(list((w for w in G.successors(u) if w in G.successors(v) and w not in (u, v))))
22
23
24 def jaccard_coefficient(G, u, v):
25 if G.is_directed():
26 union_size = len(set(G.successors(u)) | set(G.predecessors(v)))
27 if union_size == 0:
28 return 0
29 return len(list(base_common_neighbors(G, u, v))) / union_size
30 else:
31 jc = list(nx.jaccard_coefficient(G, [(u, v)]))
32 return jc[0][2]
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33
34
35 def adamic_adar(G, u, v, epsilon=0.001):
36 if G.is_directed():
37 return sum(1 / log(G.out_degree(w) + epsilon) for w in base_common_neighbors(G, u, v))
38 else:
39 aa = list(nx.adamic_adar_index(G, [(u, v)]))
40 return aa[0][2]
41
42
43 def resource_allocation(G, u, v):
44 if G.is_directed():
45 return sum(1 / G.out_degree(w) for w in base_common_neighbors(G, u, v))
46 else:
47 ra = list(nx.resource_allocation_index(G, [(u, v)]))
48 return ra[0][2]
49
50
51 def preferential_attachment(G, u, v):
52 if G.is_directed():
53 return G.out_degree(u) ∗ G.in_degree(v)
54 else:
55 pa = list(nx.preferential_attachment(G, [(u, v)]))
56 return pa[0][2]
57
58
59 def shortest_distance(G, u, v):
60 try:
61 sp = nx.shortest_path_length(G, u, v)
62 except nx.NetworkXNoPath:
63 sp = sys.maxsize
64 return sp

Listing A.1: Feature score calculation for supervised link prediction

1 from sklearn.preprocessing import StandardScaler
2 import numpy as np
3 from sklearn.tree import DecisionTreeClassifier
4 import tools
5 from sklearn.model_selection import StratifiedKFold
6 import sklearn.metrics as metrics
7
8
9 def decision_tree_model(train_file):

10 X_train, Y_train = tools.load_features(train_file)
11
12 # normalize data
13 scaler = StandardScaler()
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14
15 X_train = scaler.fit_transform(X_train)
16
17 # tuned hyperparameters
18 parameters = {
19 "criterion": "entropy", # default = gini
20 "max_depth": 5, # 9
21 "min_sample_leaf": 4
22 }
23 # instantiate classifier
24 decission_tree_clf = DecisionTreeClassifier(criterion=parameters["criterion"],
25 max_depth=parameters["max_depth"],
26 min_samples_leaf=parameters["min_sample_leaf"])
27
28 k = 10
29 kf = StratifiedKFold(n_splits=k)
30 precisions = []
31 recalls = []
32 f1_scores = []
33 accuracies = []
34 auc_roc_scores = []
35
36 print("\n Decision Tree Classifier starting... \n")
37 for train_index, test_index in kf.split(X_train, Y_train):
38 x_train, x_test = X_train[train_index], X_train[test_index]
39 y_train, y_test = Y_train[train_index], Y_train[test_index]
40
41 decission_tree_clf.fit(x_train, y_train)
42 y_pred = decission_tree_clf.predict(x_test)
43
44 accuracies.append(metrics.accuracy_score(y_test, y_pred))
45 precisions.append(metrics.precision_score(y_test, y_pred))
46 recalls.append(metrics.recall_score(y_test, y_pred))
47 f1_scores.append(metrics.f1_score(y_test, y_pred))
48 auc_roc_scores.append(metrics.roc_auc_score(y_test, y_pred))
49
50 print("\n==== Report======\n")
51 print("Accuracy Avg: %.3f \n" % (np.mean(accuracies)))
52 print("Precision Avg: %.3f \n" % (np.mean(precisions)))
53 print("Recall Avg: %.3f \n" % (np.mean(recalls)))
54 print("F1−measure Avg: %.3f \n" % (np.mean(f1_scores)))
55 print("AUC Avg: %.3f \n" % (np.mean(auc_roc_scores)))

Listing A.2: Decision Tree algorithm for supervised link prediction

1 from sklearn.preprocessing import StandardScaler
2 import numpy as np
3 from sklearn.ensemble import RandomForestClassifier
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4 import tools
5 from sklearn.model_selection import StratifiedKFold
6 import sklearn.metrics as metrics
7
8
9 def random_forest_model(train_file):

10 X_train, Y_train = tools.load_features(train_file)
11
12 # normalize data
13 scaler = StandardScaler()
14 X_train = scaler.fit_transform(X_train)
15
16 # tuned hyperparameters
17 parameters = {
18 "n_estimators": 100,
19 "criterion": "entropy", # default = gini
20 "max_depth": 5, # 9
21 "min_samples_leaf": 5, # 10
22 "bootstrap": True,
23 "n_jobs": −1
24 }
25
26 # instantiate classifier
27 rf_clf = RandomForestClassifier(
28 n_estimators=parameters["n_estimators"],
29 criterion=parameters["criterion"],
30 max_depth=parameters["max_depth"],
31 min_samples_leaf=parameters["min_samples_leaf"],
32 bootstrap=parameters["bootstrap"],
33 n_jobs=parameters["n_jobs"]
34 )
35
36 k = 10
37 kf = StratifiedKFold(n_splits=k)
38 precisions = []
39 recalls = []
40 f1_scores = []
41 accuracies = []
42 auc_roc_scores = []
43
44 print("\n Random Forest Classifier starting... \n")
45 for train_index, test_index in kf.split(X_train, Y_train):
46 x_train, x_test = X_train[train_index], X_train[test_index]
47 y_train, y_test = Y_train[train_index], Y_train[test_index]
48
49 rf_clf.fit(x_train, y_train)
50 y_pred = rf_clf.predict(x_test)
51
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52 accuracies.append(metrics.accuracy_score(y_test, y_pred))
53 precisions.append(metrics.precision_score(y_test, y_pred))
54 recalls.append(metrics.recall_score(y_test, y_pred))
55 f1_scores.append(metrics.f1_score(y_test, y_pred))
56 auc_roc_scores.append(metrics.roc_auc_score(y_test, y_pred))
57
58 print("\n==== Report======\n")
59 print("Accuracy Avg: %.3f \n" % (np.mean(accuracies)))
60 print("Precision Avg: %.3f \n" % (np.mean(precisions)))
61 print("Recall Avg: %.3f \n" % (np.mean(recalls)))
62 print("F1−measure Avg: %.3f \n" % (np.mean(f1_scores)))
63 print("AUC Avg: %.3f \n" % (np.mean(auc_roc_scores)))

Listing A.3: Random Forest algorithm for supervised link prediction

1 from sklearn.preprocessing import StandardScaler
2 import numpy as np
3 from sklearn import svm
4 import tools
5 from sklearn.model_selection import StratifiedKFold
6 import sklearn.metrics as metrics
7 import pandas as pd
8
9

10 def svm_model(train_file):
11 X_train, Y_train = tools.load_features(train_file)
12
13 # normalize data
14 scaler = StandardScaler()
15 X_train = scaler.fit_transform(X_train)
16
17 if testfile is not None:
18 X_test = pd.read_csv(testfile, index_col=None)
19 del X_test["node1"]
20 del X_test["node2"]
21 X_test = scaler.fit_transform(X_test)
22
23 # tuned hyperparameters
24 parameters = {
25 ’C’: 0.1,
26 ’gamma’: 0.01,
27 ’kernel’: "linear"
28 }
29 # instantiate classifier
30 svm_classifier = svm.SVC(C=parameters[’C’],
31 gamma=parameters[’gamma’],
32 kernel=parameters[’kernel’],
33 probability=True)
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34
35 k = 10
36 kf = StratifiedKFold(n_splits=k)
37 precisions = []
38 recalls = []
39 f1_scores = []
40 accuracies = []
41 auc_roc_scores = []
42
43 print("\n SVM Classifier starting... \n")
44 for train_index, test_index in kf.split(X_train, Y_train):
45 x_train, x_test = X_train[train_index], X_train[test_index]
46 y_train, y_test = Y_train[train_index], Y_train[test_index]
47
48 svm_classifier.fit(x_train, y_train)
49 y_pred = svm_classifier.predict(x_test)
50
51 accuracies.append(metrics.accuracy_score(y_test, y_pred))
52 precisions.append(metrics.precision_score(y_test, y_pred))
53 recalls.append(metrics.recall_score(y_test, y_pred))
54 f1_scores.append(metrics.f1_score(y_test, y_pred))
55 auc_roc_scores.append(metrics.roc_auc_score(y_test, y_pred))
56
57 print("\n==== Report======\n")
58 print("Accuracy Avg: %.3f \n" % (np.mean(accuracies)))
59 print("Precision Avg: %.3f \n" % (np.mean(precisions)))
60 print("Recall Avg: %.3f \n" % (np.mean(recalls)))
61 print("F1−measure Avg: %.3f \n" % (np.mean(f1_scores)))
62 print("AUC Avg: %.3f \n" % (np.mean(auc_roc_scores)))

Listing A.4: SVM algorithm for supervised link prediction
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