

Testing Different Ways to analyse Data from Well Sensors Using
Neural Networks and Image Processing

Fredrik Haugsand, UiS

Abstract— This thesis focuses on evaluation and testing
different approaches of image recognition, neural net-
works and data analytics with application to the analysis
of data collected from sensors installed in wells operated
in the oil and gas industry. Simple image recognition
algorithms are compared with a newly implemented
approach for feature extraction. Two different neural
networks are also described and implemented, to com-
pare against the image recognition. Image recognition
algorithms had a limited amount of success due to the
sample size of images, while neural networks and feature
extraction are viable methods to analyse and classify
pressure transients.

I. INTRODUCTION

Using and implementing neural networks in the
petroleum industry was widely used in the late 90’s
and early 00’s [15]. Lately, implementing these net-
works has gained resurgence because of new big data
sets accumulated in the industry with the installation
of different sensors in oil fields. This resurgence is
mirrored across the industry, which makes it important
to find a cutting-edge technology, not only to reduce
costs, but to improve safety and data collection.

II. BACKGROUND & OBJECTIVES

In this thesis, we will consider synthetic cases sim-
ulating an injection well with a Permanent Downhole
Pressure Gauge (PDG). The PDG sensors are typically
measuring pressure with high accuracy, while well
production or injection rate is sometimes measured
for a cluster of wells, where a problem with rate
allocation between the wells occurs. In this thesis, we
will try to address the rate allocation problem in the
sense of separating different well pressure transient
responses. Such a difference is observed in any long
well history and may be caused by (1) superposition
effects, where sequential pressure transients cumulative
effect from previous changing rate periods, (2) change
in well boundary conditions, e.g. interference with a
nearby well or approaching a flow barrier, (3) change

of well (like skin) and reservoir (like permeability)
parameters with time, and many others [14]. The main
objective of the thesis is to (1) evaluate and test differ-
ent pattern recognition approaches to separate pressure
transient responses in a well history based on change in
”pressure” pattern behavior. (2) Consistency analysis of
the well surveillance data as example of pressure and
rate measurements. (3) Automate routine procedures of
pressure transient analysis.

Fig. 1. Injection well [4]

III. RELATED WORK

The methods discussed and implemented in this
thesis have been tried in other fields of study, mainly
in medical studies and data analysis of exponential

2

data. Some of the methods described in these papers
gave inspiration for a similar implementation. A few
important papers of note, both in data analytics in oil
fields and pattern recognition are listed and shortly
described below.

J.R. Parker, University of Calgary, uses curves plot-
ted from data collected on a respirometer to create
objects one can analyse using computer vision [17].
Some of the noteworthy algorithms used to classify
data in this paper are geometrical classifiers, slope
histograms, image moments and outline features. Not
all of these classifiers are viable to be implemented into
this thesis, but outline features, geometrical classifiers
and the method of creating objects are tested and
incorporated into this thesis.

Paul L. Rosin, Cardiff University, describes how
to calculate geometrical shapes using old and new
algorithms (2002) [19]. While it describes and com-
pares algorithms for different geometrical shapes, the
algorithms this thesis incorporates is the algorithm to
calculate ellipticity. This paper proposes two methods
for calculating ellipticity, the classical method and the
Euclidian method. This thesis will use the classical
method, as the Euclidian method works better on
rounder objects.

Karthik Raghupathy, Cornell University, discusses
how to detect and analyse curves in images by using
a Generalized Radon Transform [18]. This was not
implemented into the thesis, but the structured way
of analysing images helped in understanding how an
image can be processed.

Roland Horne & Chuan Tian, recurrent neural net-
works(RNN) mainly uses two recurrent neural net-
works, NARX and a regular RNN [21]. The goals of
these networks are to learn how pressure responds as
a function of time and rate. They successfully achieve
this and is tested on the provided data in this thesis.

Roland Horne & Chuan Tian, machine learning
applied to multiwell test analysis and flow rate re-
construction [20]. This paper uses machine learning to
reconstruct flow rate both in single-well and multiwell
systems. They successfully recreate rate as a function
of time and pressure, both with perfect and noisy data.

IV. DATA PRE-PROCESSING

All tables and algorithms are in the appendixes. If a
table or algorithm is referenced, seek the appendix. The
original data set consisted of two columns, time[Hr]
and pressure[PSI] in one continuous reading, as seen
in Table IV. Data stored in this fashion is useful for

showing how the well operates over a period of time,
but does not contain enough information to use in a
neural network or image processing efficiently. This
section describes how the data is pre-processed into
a form easily read by the chosen neural networks.
Pressure as a function of time, with changes in rate
displayed as vertical lines (figure 2).

Fig. 2. Syntethic data

To contain data on changes in rate and where a neural
network might expect a change to happen, rate[STB/D]
is added as a column to the data set. Adding rate to the
data allows for further processing, as a change in rate
signifies the beginning of a new time window.

For each change of rate, time and pressure are
divided into windows based on the rate history, as seen
in table V. If the time and pressure window has a
constant rate, this is referred to as a pressure transient.
For each pressure transient, the last instance of time in
the previous window is subtracted from the initial time
to create a time window to analyse.

Rate is processed accordingly, with an extra con-
straint to eliminate unwanted data collection, as shown
in Table VI. If the rate of the current window is larger
than the previous, the later rate is subtracted from the
former. This creates a rate not affected by the previous
rate, as leaving the rate in the original fashion would
create an artificially high rate. If the rate of the current
window is smaller than the former, rate is set to null.
Data of rate drops is not relevant for this thesis, as it
does not symbolize a pressure transient.

p[i]− p@dt[i] = 0 (1)

Where i is the specific instance of the pressure in
a transient. p@dt is the reference number for that
specific transient. For example, the first transient in
the data set has 2000 as the reference number, as it is
the very first pressure in that specific transient.

3

Pressure is initially processed the same way as time
and rate, but requires another step to normalize the
data. Pressure is the one type of data that is normalized
against an initial reference point based on the rate. After
the last instance of the previous window is subtracted
from the first in the current window, the rates of these
are compared. If there is a pressure transient present,
pressure is required to be normalized. To create this
reference point, the initial pressure of the first window
is used as a guideline. All later windows of the same
pressure transient should have an initial value and
similar growth as this window.

The reference point pressure is normalized against is
calculated by the division of rate between the current
and former rate window. Using this method, two types
of pressure transients were observed.

The automated process normalizing this data is de-
pendent on unprocessed time and pressure, and on
a list of rate changes. The following image shows
the input/output-processing of the data. Algorithm 1
in appendix 2 shows pseudocode for how the data is
processed.

∆p,∆p′ = d(∆dP [i])/d(ln(∆dQ[i])) (2)

where i is the instance of the pressure in a specific
transient. This is the Bourdet derivative, created to
find the derivative in pressure [14].

dP [i]/dQ[i] (3)

Where i is the specific instance of the pressure in
a transient. dQ[i] is the corresponding rate for the
pressure in a transient. Removal of all nil values in
the rate is vital for this operation to work.

A. DATA TYPES ANALYSIS

The previous section mentioned two different pres-
sure transients. This subsection briefly shows and de-
scribes the differences between those two.

Figure 3 displays a stereotypical pressure transient
of each type. As seen in the image, the slope of each
pressure transient has a different reaction over time.

Fig. 3. Pressure transients curve compared

The data set has a total of 94 windows, where 38
are considered not to be of any transient, as rate is set
to 0. There are 46 type A and 10 transient type B.
Table VII shows the initial window, while table VIII
illustrates the first pressure transient of type B, of the
pressure transients displayed in figure 3. Looking at
the pressure and pressure reference, one can see that
when the initial window is the reference point, it has a
reference of 1.

The tables and image show that the pressure tran-
sients have a different starting point, because the ref-
erence number for transients of type B is smaller than
type A.

These differences cannot be considered as conclusive
differences between the two transients, as there are
outliers in both cases. These outliers might make some
of the transitions longer or shorter than the average.
If a transient is shorter than average, there are fewer
data points to measure and visually distinguish between
them. The average length of the windows, as well as
the amount of windows with a rate smaller than 100,
is displayed below. The amount of rate history with a
length between 0 and 40 is set as 0 in the calculation
of reference points, as this rate is a fluctuation of 0
STB/D.

4

Function Result Unit
Average: 55,9 Hr

Mean: 23,1 Hr
Min: 0,036 Hr
Max: 336,2 Hr

Rate: 0-10: 15
Rate: 10-20: 6
Rate: 20-30: 2
Rate: 30-40: 4

Rate: 40-: 16

TABLE I
STATISTICS DATA

Fig. 4. Pressure transient object compared

B. CONSIDERED TYPES OF SOLUTIONS

• Image processing
• Neural networks
• Data analysis
• Feature extraction
These solutions were considered because between

them, it should be possible to classify objects with
slight differences. Not all of the solutions are able to
distinguish between objects created by pressure tran-
sients reliably. Image processing will create and use ob-
jects and compare these to each other, to train a model
to classify the objects effectively. Neural networks will
do the same, but will use the pre-processed data instead
of objects. This thesis incorporates one new method;
a method based on segmented feature extraction. This
will combine feature extraction and data analysis to
classify each pressure transient processed.

V. IMAGE PROCESSING

A. Circularity

Circularity is a measure of how closely the shape of
an object approaches that of a mathematically perfect
circle. Circularity is a function of the objects roundness

and is applied in two dimensions, such as the cross-
sectional circles along a cylindrical object [19].

Fcirc =
4π ∗A
P 2

(4)

Where P is the perimeter of a circle.

Fig. 5. Circularity detected

Roundness is calculated by the gross features of the
shape, rather than the definition of edges and corners
[13], [19]. This means that an object can have a poor
performance in circularity based on the eccentricity and
number of sides. Function 4 shows how circularity is
calculated.

Circularity was not a successful classifier for differ-
entiating between the two different pressure transients,
as the objects created were too big to calculate cir-
cularity on. To calculate circularity, the objects had
to be shrunk by 200%. While objects were detectable
when small enough, it is not possible to distinguish
between pressure transients. Therefore, circularity was
not developed further, as the variables needed to cre-
ate enough variables to distinguish between transients
would need to be hard-coded into the classification.
This will not allow for any leeway in case of abnormal
objects, as seen in function 4.

B. Bag of words, vector space model

Bag of words, or vector space models is a classi-
fication method to distinguish between images using
multiple small features in a set of images. These
features are commonly called words, from a similar
method in natural language processing(NLP) [7].

Using an example from NLP to describe the method,
a bag of words is a collection of features/words in a
document, disregarded for position, grammar or word

5

order. This allows for a machine learning method to be
trained on the number of words found in the document.
Implemented for image classification, it counts the
words over a histogram, to find the most likely class
the image belongs to. The model containing the words
is in image recognition trained by using a codebook
generator.

A codebook generator converts each feature to a
vector-representation that maps features to a certain im-
age. This vector representation is made using speeded
up robust features(SURF). SURF detects interest points
in an image and creates an integer approximation of
each feature represented by a word.

c∗ = argmaxcp(c)
N∏

n=1

p(wn |c) (5)

w = each patch w is a V-dimensional vector that has
a single component that equals to one and all other
components equal to zero (for k-means clustering
setting, the single component equal one indicates the
cluster that w belongs to [7]). c = category of the image

To test and implement the bag of words model, it
was conducted on three different image sets. These
image sets contained images based on proven pressure
transients, and were used to optimize the return of data
and results.

The three different image sets created were image
sets based on the full length of the pressure tran-
sient, the average length and the shortest period. These
lengths were chosen to see if there were differences in
the images created by the pressure transient, based on
the objects created by the pressure transients.

The best performing image set was created by
converting pressure transients into an object spanning
from the curve to the x-axis. This creates a series
of objects corresponding to the size of the pressure
transient. The objects created are therefore not of a
predetermined size, which can lead to underperforming
training sessions. To determine the accuracy reliably
under these conditions, the model is trained 5 times
to find the average accuracy. This is seen in table IX,
where the 5 times are listed accordingly.

Fig. 6. Full size pressure transient object

The average and short image sets are created by
limiting the scale of time while creating the objects.
Limiting this scale makes sure that all of the objects in
these image sets start and end at the same coordinates.
This removes excess, unwanted data from the images,
which reduces accuracy. Considering that all of the
images are of the same size, it limits the amount of
pressure transient objects available in the average set,
as not all objects are long enough to create an object
that matches the decided coordinates. The image sets
containing the full and short objects contain 10 images
of each transient. The average image set contains 6
objects of each object. This means that the reliability
of the results attained using the image sets containing
10 objects is higher than the set containing 6. This
because the accuracy or error of the image set with
fewer images will be artificial high in case of mistaken
classification. As seen in table X, the accuracy of the
bag of words model on the short image sets, the average
accuracy over 5 iterations is 0.486. This classification
accuracy is expected, as much of the information in
the objects is found by comparing the last halves of
the objects.

The average image set contains in total 12 images,
in which there are 6 images of each pressure transient.
Both image sets contain 6 images because the model is
trained on an equal number of images from each class.
Using this method gives an advantage the short image
classifier did not have. These objects contain all of the
data available up until the average length of the curve.
This means that the model should be able to train the
model to a higher degree than the short image model.
While there is more data to train the model, it also
has a higher fluctuation in accuracy when it classifies
discrepancies due to the increased effect each image

6

Fig. 7. Limited pressure transient object

has on the classification. The average accuracy for this
model is at 0.66, which is high due to the 5 times
the model was trained, it correctly classified all of the
images once, as seen in table XI.

While this result is good, it is not consistent enough
to implement further. If the data set was larger, more
pressure transients with this length could be found. This
would theoretically even out the accuracy of the model,
possibly to an accuracy higher than 0.66. However,
since the used data set is not large enough to find more
pressure transients of this length to increase the sample
size, this method will not be developed further.

Fig. 8. Average pressure transient object

C. Blob detection

g(x, y, t) =
1

2πrt
e

x2+y2

2t (6)

Where t is a scale space representation [8].

In computer vision, blob detection methods are
aimed at detecting regions in a digital image that differ
in properties, such as brightness or color, compared
to surrounding regions. Informally, a blob is a region
of an image in which some properties are constant or
approximately constant; all the points in a blob can
be considered in some sense to be similar to each
other. The most common method for blob detection is
convolution [8].

Given some property of interest, expressed as a
function of position on the image, there are two main
classes of blob detectors: (1) differential methods,
which are based on derivatives of the function with
respect to position, and (2) methods based on local
extrema, which are based on finding the local maxima
and minima of the function. With the more recent
terminology used in the field, these detectors can also
be referred to as interest point operators, or alternatively
interest region operators.

There are several motivations for studying and de-
veloping blob detectors. One main reason is to provide
complementary information about regions, which is not
obtained from edge detectors or corner detectors. In
early work within the area, blob detection was used
to obtain regions of interest for further processing.
These regions could signal the presence of objects or
parts of objects in the image domain with application
to object recognition and/or object tracking. In other
domains, such as histogram analysis, blob descriptors
can also be used for peak detection with application to
segmentation. Another common use of blob descriptors
is as main primitives for texture analysis and texture
recognition. In more recent work, blob descriptors
have found increasingly popular use as interest points
for wide baseline stereo matching and to signal the
presence of informative image features for appearance-
based object recognition based on local image statistics.
There is also the related notion of ridge detection to
signal the presence of elongated objects [8].

In this thesis blob detection is used to train other
models, to improve their performance and increase
reliability. Bag of words, object recognition and deep
learning object classification all use blob detection to
rotate and compare the objects. This is most prominent
in object recognition, as blob detection is a vital part
of comparing the objects in these images.

7

D. Object recognition

We hoped that using object recognition with blob de-
tection as a method to process the images before com-
parisons, would differentiate between different pressure
transient objects. This was conducted by comparing the
edges of an object. The edges are compared to edges in
another image to see how similar the objects are. This
implementation was not a deep learning model, as it
was implemented using deep learning object classifica-
tion. There are some advantages in not using a deep
learning image classificator (1) objects are compared
directly to each other, (2) similar objects will get a
better score and (3) implementation requires less than
a deep learning model.

Comparing these images were done using
OpenCV(Open Source Computer Vision). OpenCV is
a library with support for real-time object detection
and recognition. It is one of the most popular libraries
used in computer vision [10].

I1(A,B) =
∑

i=1...7

∣∣∣∣(1

mA
i

)− (
1

mB
i

)

∣∣∣∣ (7)

I3(A,B) =
∑

i=1...7

∣∣(mA
i)− (mB

i)
∣∣

|mA
i |

mA
i = sign(hAi) ∗ loghAi

mB
i = sign(hBi) ∗ loghBi

where
hBi , h

A
i

are the Hu moments of A and B, respectively [6].
This function has three different functions to com-

pute similarity. Function 7 shows how the Hu moments
are calculated for the two most reliable functions. A
Hu moment is a weighted average of the image pixels
intensity, to describe a method after segmentation. The
performances of these functions are listed in Table XIII,
whereas a lower number means that the image is simi-
lar. The performance of CV l1(I1) is the highest of the
three functions, but it shares the same limitation as the
other two functions. While CV l1 can recognize objects
of the same pressure transient, it will also wrongfully
recognize the other pressure transient as the same. This
error is most prominent in this function, as the other
two functions struggle to recognize pressure transients
of the same type. This error is less predominate using

CV l3, but the rate of error using CV l1 to find similar
pressure transients is also higher. This error is most
likely due to the overlap between the different types of
transient being so large, as seen in figure 9.

Fig. 9. Overlap pressure transients

This rate of error means that while it is possible to
recognize objects of the same pressure transients, it
is not reliable enough for further development, when
deep learning object recognition libraries can be im-
plemented.

E. Deep learning object classification

Deep learning object classification uses a large pool
of negative images with a pre-trained convolutional
neural network(CNN) to extract features from images.
This feature extraction can be compared to a bag of
words model, but with more advanced classifiers. The
model is trained against the pool of negative images to
increase accuracy. If the amount of images increases,
the accuracy should theoretically also increase. To ease
the training curve and increase accuracy, deep learning
object classification uses a learning framework called
ResNet(Deep residual learning for image recognition).
ResNet increases the references to the layer inputs,
which has been tested to work with an error rate of
0.0357 on ImageNets training set. This training set
contains 14.1 million images over 21814 categories.

Fig. 10. Deep learning object classification [23]

By importing the three image sets compared in the
bag of words section into the deep learning object
classifiers, the image sets are trained against each other.

8

After the model is trained, it uses select images from
each of the image sets to test the classifier. The accu-
racy of this classifier is interesting, as it has a limited
amount of images to train against. Table XIV shows
the results of the deep learning object classificator
[23]. The image set with the best performance was as
in the bag of words model, the image set with full
sized pressure transients. The average accuracy over
5 iterations is 0.642, which means that it is possible
to use object classification to some degree. However,
the accuracy of this model is concentrated on pressure
transient type A. It classifies pressure transients of type
A with 0.8571 efficiency, and pressure transient type B
with 0.4285. This incline in accuracy towards transient
type A is not expected, but is intelligible as the images
in transient type A has a consistent high length. The
accuracy for the short and average image set is 0.5,
which means that deep learning object classification
cannot be used on these image sets.

VI. NEURAL NETWORK

For the scope of testing and implementing neural
networks and comparing them against the methods
previously discussed, the networks were implemented
and tested in Matlab. This was opted into, because it
features a series of neural networks ready to use. Other
options than Matlab were Tensorflow and Keras, where
Keras is better for time series as Tensorflow converts
all input data to tensors. Matlab also offers features to
optimize an NN based on the available data. While this
will not specify how many hidden layers and neurons
the NN has, it will quickly find a network with a close
approximation to the best available response.

Therefore, this section has two parts. The first part is
where the tool is used on the image set. The second part
is where different types of RNNs are used to classify
and predict processed data. While these two parts are
based on the same original data, they cannot be com-
pared with each other, as the usage is fundamentally
different.

A. Neural network classifier

The Matlab neural network classifier lets you insert a
data set and find the best match [1]. This was conducted
on a set of data composed of 10 images of transient type
A and B. Using this data allows for a direct comparison
against image recognition and feature extraction. By
running this classificator, there are two main issues
you have to consider. The first being that you have
to make sure the data is a good fit for the classification

before you start, as this classificator will not see errors
in the data set. The second is how deep you want to
run the comparison, while a light comparison between
the neural networks will give a rough guide to the end
result, an in-depth comparison might find a network
well suited for the data.

As one can see in the figure below, the best classi-
fication network is a coarse tree. This means that the
optimal solution is a neural decision tree [12]. A neural
decision tree is a symbiotic melt between a neural
network and a decision tree.

Fig. 11. Neural network classifier

Comparing this to the optimal solution in image
recognition, it is slightly more reliable. This means that
a solution working on the data behind the objects will
provide better results than a pure image-based classifi-
cator. The following images show the data represented
as a function of pressure and time and the confusion
matrix of the neural decision tree. The confusion matrix
should show a perfect green line in the diagonal, but
since it is not continuous, the rate of false negatives are
too numerous.

9

Fig. 12. Pressure transients

Fig. 13. Confusion matrix for an coarse tree

B. Recurrent Neural network

Fig. 14. Recurrent neural network [5]

Neural networks can be sorted into two different
categories. These categories are feed-forward and feed-
back neural networks. The difference between them is

how they behave in comparison to each other. Feed-
forward can only send data forward through the net-
work, from input to output. This means that there are
no loops in the network. For a feed-forward network
to learn, they require a series of networks to send the
data forward into the chain [3].
A feedback (recurrent) network can send data both
ways through the network by using local loops. Feed-
back networks are usually more complicated than feed-
forward, as the setup is more advanced. Feedback
networks can save a certain amount of data from one
state to the other, which allows them to memorize the
previous states. This is why feedback networks are used
in translation software.

In this thesis, the used recurrent neural networks
are multilayer perceptron (MLP) and nonlinear autore-
gressive neural network with external input (NARX).
These types of networks were chosen because it gives
the opportunity to compare the most common recurrent
neural network, with a network designed for time series
prediction.

Multilayer perceptron(MLP)
This is one of the most regular ANN in use today,
as it is easy to expand and add new layers. MLP
consists of at least three layers with nodes; input,
hidden and output. MLPs are usually used in fitness
approximation, as they have a strong ability to solve
problems stochastically. Some examples are image and
voice recognition. The previously discussed MNIST
database often uses MLP [24].

Time delay neural network(TDNN)
TDNN is specifically made to classify patterns where
time is a vital component of the data. An example
of this is voice recognition with underlying phonetic
features. TDNN is a backpropagational network [11].

Nonlinear autoregressive neural network with
external input(NARX)
NARX is a dynamical neural architecture used for
input-output modeling of nonlinear dynamical systems.
When applied to time series prediction, the NARX
network is designed as a TDNN, without the feedback
loop of delayed outputs [22] [16].

y(t) = f(x(t−1), ..., x(t−d), y(t−1), ..., y(t−d)) (8)

where d are past values of y(t), given another series
x(t).

The classical MLP neural network was tested by two

10

different inputs, to see whether there was a correlation
between all three of the factors in the data. The input-
output scheme of the first test was time, pressure as
input and rate as output. The test was run to investigate
if there was a direct correlation between rate and
pressure. If there is a direct correlation between these
variables, one can use this to create a method to return
one variable to recreate rate based on the input. The plot
of the fit for time-pressure /rate shows that there is no
direct correlation between these data. If there was, the
black dots would cross the plots in a diagonal manner.

Fig. 15. MLP fit as a function of rate

The second MLP test had the most concise results
with time and rate as input and pressure as output.
The results show that even though the training is not
perfect, it might be due to many different factors such
as lack of data, not optimized performance of the neural
net or a bad batch of segmented data. The following
shows a correlation between the rate as a function of
time against pressure. This was expected, as the rate is
constant for each change in pressure.

This method requires the batch size to be so large
that it at least contains the change in rate, so that the
network can learn from the previous period.

Fig. 16. MLP fit as a function of pressure

While the results with time-rate as input showed a
certain correlation, it is not the optimal approach for
a dynamic time series. The optimal approach for this
solution is a network that trains the network over time.
Some of these networks were mentioned in the neural
network description, but the network used and tested
here is the NARX network.

The graph below shows the output and targets as a
function of time, as well as the rate of error. Seeing
the output and targets against each other is interesting,
but the graph of note is the one containing the error.
This error spikes every time there is a shift in rate.
This is not necessarily a negative, as it shows room
for improvement. This particular network was tested 5
times for every change in hidden layers and time delays
to ensure reliability.

Fig. 17. NARX response and error

Table XIV shows the average mean square er-
ror(MSE) and regression for the data set proven most

11

optimal in the MLP network. The table shows the MSE
and R as a function of the amount of layers used. The
solution with the least amount of error was 20 hidden
layers. Even though this MSE seems extremely high,
this is the total MSE for testing, training and validation.
The lower the MSE, the better the solution. Considering
that it is so high, the solution is not optimal. This could
be a consequence of the data set not being large enough,
or the training function not being optimized for this
data.

Layers&Delay MSE R
10:2 12810,46411 9,556634
20:2 12674,86273 9,555272
30:2 13086,3958 9,545762
40:2 14401,4155 9,501542

TABLE II
LAYERS, DELAYS AND MSE

VII. FEATURE EXTRACTION

The final method showed the most promising results.
Feature extraction involves reducing the amount of

resources required to describe a large set of data. When
conducting analysis of complex data one of the major
problems stems from the number of variables involved.
Analysis with a large number of variables generally
requires a large amount of memory and computation
power.It may also cause a classification algorithm
to overfit training samples and generalize poorly to
new samples. Feature extraction is a general term
for methods constructing combinations of variables to
get around these problems while still describing the
data with sufficient accuracy. Many machine learning
practitioners believe that properly optimized feature
extraction is the key to effective model construction
[9].

Feature extraction is an area that can be expanded
into as many subparts as there is data for. Our approach
to feature extraction is unique in the way it processes
the data and in the computations done to compare the
transients. While feature extraction has been used in
oil well analysis before, it has not to our knowledge
been used in this specific way. Our method differs from
existing methods by separating the data into segments.
As previously mentioned in the data processing part,
the amount of data as a function of time is decreasing
from the first logging. This means that when the data
is segmented, it has to preserve the data and even out
the number of data points per segment. If the initial
segment has 50 points of data, and the later segments

have 10, this will be a possible point of error and
improvement. While the amount of data has to be
segmented into gradually equal parts, it also needs
enough points of data to get a useful reading of the
data. If the initial segment is divided too far, negative
consequences by the curve reading as linear instead of
exponential will show.

After analysing the data, the segmentation was de-
cided to happen at 7 different points. The following
table shows where this division is, as well as how many
of the transients have a maximum length inside that
period of time.

Points amount
0-5: 13

5-10: 3
10-50: 9
50-100: 5

100-200: 6
200-: 6

TABLE III
DATA SEGMENTATION POINTS

After this division, we have a series of calculations
run on each segment. These calculations show the main
point of expansion and whether the method should
be extended at a later stage. The initial thought is to
make each function as simple as possible, to extract
the essence of the transient curve. The functions used
in this thesis are length, degree and slope.

Length =
√

(x2 − x1)2 + (y2 − y1
2)

Slope =
(y2 − y1)
(x2 − x1)

Degree = tan−1
(

(y2 − y1)
(x2 − x1)

)
, (9)

where x1 and y1 are the initial coordinates of the
curve, respectively to the axis’s.

Using these functions on all of the segments, we
collect the data and compare the results against the
other corresponding segments of the other transients.
While the data is not conclusive for one of the
segments, the analysis can distinguish between curves

12

if there is sufficient data.

Fig. 18. Feature extraction on Segmentation

For each segment and later each transient, the results
of the functions are weighted against a predetermined
limit for division between the different transients. This
weighting is how the final result is decided for each of
the total transients processed. To make this weight fair
in terms of how the weights are added, it is calculated
by an average of the difference between each transient
used on the initial processing.
To find these limits, 10 transients of each type was
processed manually, to find the length, degree and slope
of each segment. This processing is also where the
average total length as a function of time was disclosed.

Algorithm 2 in Appendix II shows how the program
sorts through the data. The algorithm describes how
the data is processed against the weights and how the
data is read in. Pre-processed is not included in this
algorithm, as it was described in section 3.

The following figures show the differences between
the two main transient types as a function of time
and the chosen variables. One notices that the major
differences is not how the length changes from segment
to segment between the two types. While length can
be a deciding factor for the weighting of a transient,
it will in most cases be a neutral factor. The deciding
factors for distributing the weights across the transients
are degree and slope, as these functions have the largest
characteristic contrasts. One can argue that since degree
is a function of the arctan of the slope, it will always
be different, but the scope of the different changes is
larger on the arctan than slope.

Fig. 19. Slope trasient A

Fig. 20. Slope trasient B

Fig. 21. Length transient A

Fig. 22. Length transient B

13

Fig. 23. Degree transient A

Fig. 24. Degree transient B

VIII. RESULTS AND DISCUSSION

Throughout the thesis, the results of each section
have been discussed shortly, but the methods have
not been compared. To summarize the results of each
method, four methods of image recognition were used.
Deep learning was the most successful method. Deep
learning had an average accuracy of 0.637 for the best
method. While this result shows that it is possible
to distinguish between the transients in using, it is
not promising enough to warrant further development.
Especially since the tool used to achieve this result runs
the data on a variety of networks to find the best fit.
Testing with neural networks was limited, but the re-
sults displayed are promising to a certain degree. While
a neural network can be promising, the conditions for
effectivity is not an issue this thesis has tried to find.
Therefore, while one can claim that the results can
be tested more effectively, this span of development
belongs to another project.
Feature extraction in collaboration with segmentation is
the newly developed concept that has not been tested
on extended data sets. The data set used to develop
the concept works reasonably well if the length of the
transient is higher than 10 hours. After 10 hours the
clear differences between the two transients become
more distinguished and feature extraction performs
well.

Overall the thesis has gone well, with multiple initial
goals, in which most have been fulfilled.

Code used/developed is published on Github:
https://github.com/Fhaug/masterthesis [2].

IX. FURTHER WORK

With the results displayed in this thesis, it comes as
a natural extension that there could be multiple new
projects with this thesis as a base. The most logical
follow up to this thesis is developing the program used
to clean the data and check which type of transient the
current period contains to make it versatile enough to
receive data not pre-processed to a certain degree. This
will naturally improve a neural network, since it will
make more data available for an eventual deep learning
approach.

Improving feature extraction can also be a viable
project, if it is extended to a degree in which the results
are improved by finding more basic functions one can
use.
On an academic note, the thesis can also be used as
a base for a paper in an oil conference, since ANN
and predicting response has had a recent resurgence in
popularity.

ACKNOWLEDGMENT

Chunming Rong, main counsellor and a source of
inspiration.
Anton Shcipanov, for giving me an opportunity to
make this thesis a reality and always being available.
Cristina Hegdehus, counsellor and helping with
everything from venting ideas to showing how an NN
works.
Antorweep Chakravorty, for the weekly meetings.

LIST OF FIGURES

1 Injection well [4] 2
2 Syntethic data 3
3 Pressure transients curve compared 4
4 Pressure transient object compared 5
5 Circularity detected 5
6 Full size pressure transient object 6
7 Limited pressure transient object 7
8 Average pressure transient object 7
9 Overlap pressure transients 8
10 Deep learning object classification [23] . 8
11 Neural network classifier 9
12 Pressure transients 10
13 Confusion matrix for an coarse tree . . . 10
14 Recurrent neural network [5] 10
15 MLP fit as a function of rate 11
16 MLP fit as a function of pressure 11

14

17 NARX response and error 11
18 Feature extraction on Segmentation . . . 13
19 Slope trasient A 13
20 Slope trasient B 13
21 Length transient A 13
22 Length transient B 13
23 Degree transient A 14
24 Degree transient B 14

LIST OF TABLES

I Statistics data 5
II Layers, delays and MSE 12
III Data segmentation points 12
IV Original synthetic data 15
V Data with rate 16
VI Time, pressure and rate windows 16
VII Delta pressure transient A 16
VIII Delta pressure transient B 16
IX Full transient 16
X Cut/short transient 17
XI Average transient 17
XII Object recognition 17
XIII Object recognition 17
XIV Deep learning object classification results 17

APPENDIX I
TERMS AND EXPLANATIONS

NN: Neural Network
ML: Machine Learning
TF: TensorFlow
ANN: Artificial Neural Network
PBU: Pressure Build Up
GRNN: Generalized Regression Neural Network
TDNN: Time Delay Neural Network
MLP: Multilayer Perceptron
LSTM: Long Short-Term Memory
NARX: Nonlinear autoregressive neural network with
external input
Window: One specific type of PBU
Period: A general PBU
Transient: A period of constant rate
SURF: Speeded Up Robust Features
RESNET: Deep Residual Learning for Image
Recognition
BOW: Bag of words
MSE: Mean Square Error
R: Regression

APPENDIX II
TABLES

Time Pressure
0 2000

0,006058868 2092,738568
0,012117736 2125,95201
0,018176604 2149,77305
0,024235472 2168,851204
0,03029434 2184,962183
0,036353208 2199,005331

... ...
158,3387793 3429,98346
162,9916663 3434,93584
162,9977252 3459,30313
163,0037841 3468,03412
163,0098429 3474,29788
163,0183459 3481,10295
163,0308266 3488,81815

TABLE IV
ORIGINAL SYNTHETIC DATA

15

Time Pressure Rate
0 2000 -6742,395145

0,006058868 2092,738568 -6742,395145
0,012117736 2125,95201 -6742,395145
0,018176604 2149,77305 -6742,395145
0,024235472 2168,851204 -6742,395145
0,03029434 2184,962183 -6742,395145
0,036353208 2199,005331 -6742,395145

...
158,3387793 3429,98346 -6742,395145
162,9916663 3434,93584 -6742,395145
162,9977252 3459,30313 -8513.514103
163,0037841 3468,03412 -8513.514103
163,0098429 3474,29788 -8513.514103
163,0183459 3481,10295 -8513.514103
163,0308266 3488,81815 -8513.514103

TABLE V
DATA WITH RATE

Time Pressure Rate
0,006058868 2092,738568 -6742,395145
0,012117736 2125,95201 -6742,395145

...
153.685892337064 1420.99252766959 -6742.39514525
158.338779362954 1426.078613439 -6742.39514525
162.991666388843 1431.02508116768 -6742.39514525

- - -
0.00605886803802491 92.4820093068201 -1771.11895846
0.0121177360750266 125.625192445101 -1771.11895846
0.0181766041130231 149.429059372595 -1771.11895846
0.026679606204027 175.245055402413 -1771.11895846

TABLE VI
TIME, PRESSURE AND RATE WINDOWS

Time Pressure Pressure reference
0,006058868 92,73856774 1
0,012117736 125,9520098 1
0,018176604 149,7730505 1
0,024235472 168,851204 1

...
136,9726957 1405,201218 1
153,6858923 1424,883655 1
158,3387794 1429,983461 1
162,9916664 1434,935841 1

TABLE VII
DELTA PRESSURE TRANSIENT A

Time Pressure Pressure reference
0,006058868 116,2940324 0,746117418
0,012117736 157,2203992 0,746117418
0,018176604 186,2593974 0,746117418
0,026679606 217,451352 0,746117418

...
235,8400236 742,1599869 0,746117418
266,1343638 745,6384904 0,746117418
279,1921819 747,1229674 0,746117418

292,25 748,5980009 0,746117418

TABLE VIII
DELTA PRESSURE TRANSIENT B

Full image
Known AS BS
AS 0.00 1.00
BS 0.57 0.43
average 0.21
AS 0.71 0.29
BS 0.29 0.71
average 0.71
AS 0.86 0.14
BS 0.71 0.29
average 0.57
AS 0.14 0.86
BS 0.29 0.71
average 0.57
AS 0.71 0.29
BS 0.43 0.57
average 0.57

Total average 0.512

TABLE IX
FULL TRANSIENT

16

Cut image
Known AS BS
AS 0.57 0.43
BS 0.71 0.29
average 0.43
AS 0.00 1.00
BS 0.14 0.86
average 0.43
AS 0.71 0.29
BS 0.57 0.43
average 0.57
AS 0.14 0.86
BS 0.29 0.71
average 0.57
AS 0.71 0.29
BS 0.86 0.14
average 0.43

Total average 0.486

TABLE X
CUT/SHORT TRANSIENT

Average transient
Known AS BS
AS 1.00 0.00
BS 1.00 0.00
average 0.5
AS 1.00 0.00
BS 0.33 0.67
average 0.83
AS 1.00 0.00
BS 1.00 0.00
average 0.50
AS 1.00 0.00
BS 0.00 1.00
average 1.00
AS 1.00 0.00
BS 1.00 0.00
average 0.50

Total average 0.66

TABLE XI
AVERAGE TRANSIENT

TABLE XII
OBJECT RECOGNITION

Method AB A2B A3B AB2
CV l1 0.0049 0.0374 0.1069 0.0599
CV l2 0.0140 0.1271 0.4073 0.2292
CV l3 0.0051 0.0364 0.1058 0.0554

AA AA2 AA3 AA4
CV l1 0.0 0.0325 0.1019 0.0666
CV l2 0.0 0.1130 0.3932 0.2461
CV l3 0.0 0.0301 0.0910 0.0600

BB BB2 BB3 BB4
CV l1 0.0 0.0649 0.0290 0.3424
CV l2 0.0 0.2433 0.1023 1.7111
CV l3 0.0 0.0580 0.0262 0.3033

TABLE XIII
OBJECT RECOGNITION

Deep learning object classificator results
Known AS BS
Original AS 0.8571 0.1428
Original BS 0.5714 0.4285
average 0.642
Cut AS 0.00 1.00
Cut BS 0.00 1.00
average 0.5
Average AS 0.00 1.00
Average BS 0.00 1.00
average 0.5
Total average 0.547

TABLE XIV
DEEP LEARNING OBJECT CLASSIFICATION RESULTS

17

APPENDIX III
ALGORITHMS

Algorithm 1: Data processing
Result: Data processed
Load data into List;
while While transient segment do

initialTime = 0;
for i in length(data) do

c
end
ompare time against time where rate changes;
if time equals rate change then

initialTime = time;
listTime.append (time[i] - initialTime) ;
listPressure.append
(pressure[i]-2000)/(rate[i]/rate[-1]));

else
listTime.append (time[i] - initialTime) ;
listPressure.append
(pressure[i]-2000)/(rate[i]/rate[-1]));

end
end
for i in length(listTime) do

p
end
rint(listTime[i], listPressure[i], listRate[i]) ;

Algorithm 2: Segmentation algorithm
Result: Weighting of segments
initialization;
while While transient segment do

initialize weight;
initialize T(transient variable);
if Length longer than X then

Weight +=1;
else

Weight -= 1;
end
if Slope higher than Y then

Weight +=1;
else

Weight -=1;
end
if Degree lower than Z then

Weight +=1;
else

Weight -=1;
end

end
if weight >=T then

Transient = A;
else

Transient = B;
end18

REFERENCES

[1] Feature extraction.
[2] Fredrik haugsands github repository.
[3] Neural network toolbox.
[4] Oil well image.
[5] Recurrent neural network image.
[6] Structural analysis and shape descriptors.
[7] Bag-of-words model in computer vision, Jun 2018.
[8] Blob detection, Jun 2018.
[9] Feature extraction, Jun 2018.

[10] Opencv, Jun 2018.
[11] Time delay neural network, May 2018.
[12] Balestriero and Randall. Neural decision trees, Mar 2017.
[13] Ariel Balter. How to calculate circularity, Apr 2017.
[14] Dominique Bourdet. Well test analysis the use of advanced

interpretation models. Elsevier, 2002.
[15] A.o. Kumoluyi. Higher-order neural networks in petroleum

engineering. SPE Western Regional Meeting, 1994.
[16] Jos Maria P. Menezes and Guilherme A. Barreto. Long-term

time series prediction with the narx network: An empirical
evaluation. Neurocomputing, 71(16-18):33353343, 2008.

[17] J.r. Parker. Scientific curve classification by combining simple
algorithms. Proceedings First IEEE International Conference
on Cognitive Informatics.

[18] Karthik Raghupathy. Curve tracing and curve detection in
images. 06 2018.

[19] Paul L. Rosin and Jovia Uni. 2d shape measures for computer
vision. Handbook of Applied Algorithms, page 347371.

[20] Chuan Tian and Roland N. Horne. Machine learning applied
to multiwell test analysis and flow rate reconstruction. SPE
Annual Technical Conference and Exhibition, 2015.

[21] Chuan Tian and Roland N. Horne. Recurrent neural networks
for permanent downhole gauge data analysis. SPE Annual
Technical Conference and Exhibition, 2017.

[22] Hang Xie, Hao Tang, and Yu-He Liao. Time series prediction
based on narx neural networks: An advanced approach. 2009
International Conference on Machine Learning and Cyber-
netics, 2009.

[23] Joyce Xu. Deep learning for object detection: A comprehen-
sive review, Sep 2017.

[24] Zhang, Ren, Sun, and Jian. Deep residual learning for image
recognition, Dec 2015.

19

