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Abstract

Tables contain a significant amount of valuable knowledge in a structured form. In
recent years, a growing body of studies related to tables has been conducted in different
application domains. To the best of our knowledge, utilizing neural embeddings regarding
table corpus is rather unexploited. In this thesis, our goal is to employ neural language
modeling approaches to embed tabular data into vector spaces, which are leveraged and
contributed to table-related tasks. Specifically, we consider different tabular data, such as
sequences of words, table entities, core column entities, and heading labels in relational
tables, for training word and entity embeddings.

These embeddings are utilized subsequently in three particular table-related tasks, i.e.,
row population, column population, and table retrieval, by incorporating them into
existing retrieval models as additional semantic similarity signals. The main novel
contribution of Table2Vec is a neural method for performing multiple table-related tasks
developed specially on table corpus.

We further conduct an evaluation of table embeddings on the task level. The results
show that Table2Vec can significantly and substantially improve upon the performance
of state-of-the-art baselines. In the best case, Table2Vec outperforms the corresponding
baseline by 40%.
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Chapter 1

Introduction

In recent years, we have witnessed significant improvements regarding the performance
of speech recognition, machine translation, and completion prediction tasks. These
achievements were largely credited to the use of neural network models [1–3]. A growing
body of research, which is about introducing these neural approaches to information
retrieval (IR), has been conducted with the goal of advancing the state of the art or
even achieving breakthrough performance as in these other fields. Vector representations
are fundamental to retrieval models in which terms are usually the smallest unit of
representation. Therefore, many retrieval models, both non-neural and neural ones, focus
on learning good vector representations of terms.

One-hot vector representations Traditionally, people tend to represent data with
high-dimension (up to millions of dimensions) vectors, for example, in audio and image
data. In natural language modeling, terms, e.g., words and entities, are represented by
one-hot vectors which are used to distinguish each term from every other term in the
vocabulary. Each vector consists of 0s in all cells with the exception of a single 1 in a
cell used uniquely to identify the term, see Fig. 1.1(a). One-hot vector representations
provide no useful information regarding the relationships that may exist between the
individual terms, and furthermore lead to data sparsity. Consequently, more samples are
needed to train a model.

Semantic vector representations Neural language modeling learns the semantics of
terms from term sequences and embeds them to a continuous vector space. In semantic
representations, terms are represented in a form of more dense vectors that can illustrate
the relationships between different terms. Values are real numbers in these vectors.
Figure 1.1(b) shows an example of semantic representations with high values shadowed.
Given the term “dog”, we can see “cat” is more similar to it than “pineapple”, because
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2 Chapter 1 Introduction

(a) One-hot representation (b) Semantic representation

Figure 1.1: Illustration of two vector representations.

they both are animals and pets. Apparently, semantic representations can leverage the
relationships between terms and resolve the issue of data sparsity efficiently.

Traditional retrieval models works in a way of extracting the useful information from
a huge corpus of text documents. According to our observation, there are hundreds
of millions of tables in web pages. These tables are much richer sources of structured
knowledge than free-format text. Therefore, it is important to introduce IR techniques to
table-related applications. Recently, a body of interesting research has developed around
exploiting web tables for various tasks: (i) table search or table mining [4–6], (ii) table
extension or completion [7–10], (iii) knowledge base (KB) construction [11, 12].

In this thesis, we focus on three particular table-related tasks: row population, column
population, and table retrieval. These tasks consider relational tables, which describe a
set of entities placed in a core column, along with their attributes in additional columns.
Specifically, we use Wikipedia Tables corpus [13]. The corpus has been extracted from
Wikipedia and consists of 1.6 million high-quality relational tables [5, 14].

Table population is the task of populating a given seed table with additional elements.
Specifically, we address the row population and column population tasks proposed in [7].
The former aims to complement the core column of a relational table with additional
entities, while the latter aims to complement the header row with additional column
headings, see Fig. 1.2 as an illustration. Table retrieval is the task of returning a ranked
list of tables for a keyword query, see Fig. 1.3.

Prior table-related work has considered embeddings, both pre-trained ones and task-
specific ones. For example, Zhang and Balog [4] use pre-trained word and entity em-
beddings for table retrieval. Ghasemi-Gol and Szekely [15] develop table embeddings for
table classification and Gentile et al. [16] train table embeddings for web table entity
matching. To the best of our knowledge, no studies have been conducted on training
table embeddings specifically for table population and retrieval tasks. To fill the gap, we
propose Table2Vec, a novel approach that introduces neural language modeling to map
different table elements into semantic vector spaces, which can benefit these tasks.
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Figure 1.2: Illustration of table population. Leftmost column and column heading
labels are shadowed as grey. The user can add additional rows or columns by clicking
the corresponding button, followed by auto-returning a list of suggestions.

1.1 Approach and Contributions

In this study, we train four variants of table embeddings by utilizing different table
elements. Specifically, word embeddings (Table2VecW) consider all the terms within
a table, and are leveraged for table retrieval. Two different entity embeddings are
obtained by considering only core column entities (Table2VecE*) and all table entities
(Table2VecE). The former is employed for the row population task, while the latter
is employed in table retrieval. Heading embeddings (Table2VecH) are generated for
the column population task by utilizing table heading labels. In summary, based on
Wikipedia Table corpus, we have designed different embeddings for various tasks. The
following research questions are addressed though the experiment:

RQ1 Can Table2Vec improve table population performance against the state-of-the-art
baselines?

RQ2 Would different training datasets affect the embeddings, thus the retrieval results?

RQ3 Which of the semantic representations performs better in table retrieval?

We further summarize the main contributions of this thesis are as follows:

• We employ neural language modeling to train word and entity embeddings on
Wikipedia Tables corpus by utilizing different table elements.

• We involve information retrieval techniques in various table-related tasks instead
of traditional document retrieval.

• We develop new methods by employing the trained embeddings for table population
and retrieval.
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Figure 1.3: Illustration of table retrieval. Given the keyword query, the system
responds with a ranked list of tables.

• We perform evaluation on the embedding and task level, and provide further
insights and analysis.

1.2 Outline

The content of this thesis is organized in the following manner: Chapter 2 presents an
overview regarding the area of retrieval incorporating neural language modeling. It also
covers the recent studies in table-related application domains. At the end of this chapter,
we further introduce those table-based research that has employed neural language
modeling. In Chap. 3, we describe the neural language models and their optimization
methods in detail, followed by introducing our four variants of table embeddings as inputs
to the chosen neural language model. We present new methods for table population and
retrieval tasks in Chap. 4, by involving the Table2Vec embeddings that were derived
before. In Chap. 5, we further report our experimental setup, results of table population
and retrieval, and a detailed analysis for each individual task. Finally, a summary of the
thesis and description about the future work are presented in Chap. 6.



Chapter 2

Overview of Neural Retrieval and
Table-Related Applications

In this chapter, we first introduce some fundamental concepts of retrieval, such as retrieval
tasks, evaluation metrics and traditional retrieval models, in Sect. 2.1. Section 2.2 gives
an overview of neural retrieval. In Sect. 2.3, we present the related work for different
table-based tasks.

2.1 Fundamental Concepts of Retrieval

Information retrieval is the process of entering a keyword into a system, and the system
in turn responds with a list of ranked results from the data collection, see Fig. 2.1 as an
illustration of the basic retrieval process. The retrieved results are ranked according to
their relevancy to the query. An example of the real-world information retrieval system
is the search engine, where search results may be passages of text or full text documents.
In this section, we present an overview of text-based IR, such that we can refer to them
in subsequent sections.

2.1.1 Text-Based Retrieval Tasks

There are two different application domains of text-based IR, i.e., ad hoc retrieval systems
and question answering systems.

Ad Hoc Retrieval. Document retrieval is a classic problem in text-based IR. It has
been not only reported as the main task in the Text Retrieval Conference [17], but also
implemented by commercial search engines such as Google, Bing, and Firefox. Document

5
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Figure 2.1: Basic information retrieval process.

retrieval is “ad hoc” because the number of possible queries is huge. Given a query that
textually describes a user’s information need and a collection of textual documents, the
goal of ad hoc retrieval is to find the relevant documents, and ideally, the top ranking
ones are the documents satisfying the information need of the user.

Question Answering. Many research has been conducted in the area of question
answering, which is the task of (i) ranking spans of text or passages. Voorhees and
Harman [17] introduced the IR systems to retrieve spans of text in response to given
questions, rather than documents, (ii) choosing between multiple choices. Based on deep
neural networks, Hermann et al. [18] proposed a new methodology that can learn to
read real documents and answer complex questions with minimal prior knowledge of
language structure, or (iii) synthesizing textual answering by gathering evidence from one
or multiple sources, Nguyen et al. [19] designed and developed of a new comprehensive
real-world dataset of its kind in both quantity and quality, named Ms Marco, for the
same task of reading comprehension and question answering.
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2.1.2 Evaluation Metrics

Evaluation is key to build effective and efficient information retrieval systems, because
the effectiveness, efficiency and cost of the IR process are related. IR systems respond
users with a list ranked results, and the users are more likely to pay attention to these
top-ranked ones. IR evaluation metrics, therefore, focus on rank-based comparisons of
the retrieved result. These metrics are typically calculated at a rank position, k, and
then averaged over all queries in the test set. In the following parts, we describe some of
these standard metrics used most frequently in IR evaluations.

Precision and Recall. Precision and recall both compute the fraction of relevant
documents retrieved for a query q. We refer Aq as the set of relevant documents and Bq

as the set of retrieved documents from data corpus respectively, and formulate:

Precision = |Aq ∩Bq|
|Bq|

.

Recall = |Aq ∩Bq|
|Aq|

,

Mean Average Precision. The average precision for a ranked list of results against
query q is given by:

AvgP (q) =
∑n

k=1 Pq(k)× relq(k)
|Aq|

,

where where k is the rank in the sequence of retrieved documents, n is the number of
retrieved documents. relq(k) is an indicator function equaling 1 if the item at rank k
is a relevant document, 0 otherwise. Pq(k) is the precision at cut-off k in the returned
ranked list of results. The Mean Average Precision for a set of queries is the mean of the
average precision scores for each query:

MAP =
∑Q

q=1AvgP (q)
|Q|

, (2.1)

where Q is the total number of queries.

Mean Reciprocal Rank. Mean reciprocal rank is computed as the reciprocal rank of
the first relevant document averaged over all queries:

MRR = 1
|Q|

Q∑
i=1

1
ranki

, (2.2)

where ranki refers to the rank position of the first relevant document for the i-th query.

Normalized Discounted Cumulative Gain. Discounted cumulative gain (DCG) is
a popular measure for evaluating web search and related tasks. It is based on two
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assumptions, (i) highly relevant documents are more useful than marginally relevant
document, (ii) the lower the ranked position of a relevant document, the less useful
it is for the user, since it is less likely to be examined. DCG uses a graded relevance
judgment of documents from the result set to evaluate the gain, of a document based on
its position in the result list. Gain is accumulated starting at the top of the ranking and
may be reduced, or discounted, at lower ranks. DCG is the total gain accumulated at a
particular rank position p:

DCGp = rel1 +
p∑

i=2

reli
log2 i

,

where reli is the graded relevance level of the document retrieved at rank i. An alternative
formulation of DCG emphasizes on retrieving highly relevant documents, and given by:

DCGp =
p∑

i=1

2reli − 1
log(1 + i) , (2.3)

Since result set may vary in size among different queries or systems, we introduce the
normalized version of DCG (NDCG) to compare performances. In NDCG, numbers
are averaged across a set of queries at specific rank values, typically at rank 5, 10,
15, 20, e.g., DCG at rank 5 is 6.11 and at rank 10 is 7.28. Usually, DCG values are
normalized by comparing the DCG at each rank with the DCG value for the perfect
ranking, which makes averaging easier for queries with different numbers of relevant
documents. Formally,

NDCGp = DCGp

IDCGp
, (2.4)

where IDCGp represents the ideal DCG. IDCG is computed the same way as Eq. (2.3),
but assuming an ideal rank order for the documents up to position p.

2.1.3 Traditional Retrieval Models

In this section, we present a few traditional information retrieval models, which usually
serve as the state-of-the-art baselines for comparison purpose against these modern
models that involving neural methods.

The Importance of Terms. Intuitively, terms that appear more frequently in a
document should get higher weights, e.g., the more often a document contains the term
“phone”, the more likely that the document is “about” phones. Besides, terms that
appear in many documents should get low weights, e.g., “a”, “the”, and “is”. There
are two ways to capture the term importance mathematically: (i) term frequency (tf),
which reflects the importance of a term in a document (or query); (ii) inverse document
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frequency (idf), which reflects the importance of the term in the collection of documents.
The more documents that a term occurs in, the less discriminating the term is between
documents, consequently, the less useful for retrieval tasks. Formally,

idft = log N
nt

,

where N represents the total number of documents and nt is the number of documents
that contain term t. We further combine tf and idf weights to formulate:

tfidft,d = tft,d · idft ,

BM25. BM25 was created as the result of a series of experiments [20]. It is a popular and
effective ranking algorithm. The reasoning behind BM25 is that good term weighting is
based on three principles, i.e., inverse document frequency, term frequency, and document
length normalization. Formally, BM25 is given by:

BM25(d, q) =
∑
t∈q

ft,d · (1 + k1)
ft,d + k1(1− b+ b |d|avgdl )

· idft , (2.5)

where b(b ∈ [0, 1]) refers to the document length normalization. b equals to 0 and 1
represent no normalization at all and full length normalization respectively. k1 works
in a way of calibrating term frequency scaling. k1 = 0 corresponds to a binary model,
and large values of k1 correspond to using raw term frequencies. Empirically, k1 is set
between 1.2 and 2.0, and a typical value is 1.2. BM25 combines the contributions from
individual terms but ignores any phrasal or proximity signals between the occurrences of
the different query terms in the document. BM25F, an extension of BM25, managed to
incorporate multiple fields in the model, e.g., title, body, and anchor texts.

Language Model. Language model has been widely used in various real-world appli-
cations, e.g., speech recognition, machine translation, and completion prediction. It
is based on the notion of probabilities and processes for generating text. In standard
language modeling approach, we rank documents d according to their likelihood of being
relevant given a query q and formulate:

P (d|q) = P (q|d) · P (d)
P (q) ∝ P (q|d) · P (d) ,

where P (d) is the probability of the document d being relevant to any query. P (d|q)
represents the query likelihood given by:

P (q|d) =
∏
t∈q

P (t|θd)ft,q ,
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where ft,d is the number of times t appears in q. P (t|θd) is a multinomial probability
distribution Smoothing parameter over the vocabulary of terms. Most formulations of
language modelling based retrieval typically incorporate some form of smoothing [21] by
sampling terms from both the document d and the full collection D. The two common
smoothing methods are:

Jelinek-Mercer smoothing.

P (t|θd) = (1− λ)P (t|d) + λP (t) ,

where λ is the smoothing parameter and same amount of smoothing is applied to
all documents.

Dirichlet smoothing.
p(t|θd) = ft,d + µ · p(t)

|d|+ µ

where smoothing parameter is µ, and smoothing is inversely proportional to the
document length.

Both BM25 and language modelling based approaches estimate document relevance
according to the occurrences of only the query terms in the document. The position
of these occurrences and the relationship with other terms in the document are not
considered.

2.2 Neural Language Modeling in IR

In recent years, the use of neural language modeling has significantly benefited both the
research and real-world applications. A growing body of research about incorporating
these neural approaches to the field of information retrieval have been conducted, with
the goal of advancing the state-of-the-art systems or even achieving performance im-
provements as in these other fields. According to Fig. 2.1, there are three key operations
in the information retrieval process, i.e., (i) generate query representation, (ii) generate
document representation, and (iii) comparison metric. Incorporating neural approaches
to information retrieval is fundamentally using neural network models in these three key
operations. Figure 2.2 shows different examples of utilizing neural language models in IR
and we will discuss these in detail in the following sections.
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(a) (b)

(c) (d)

Figure 2.2: Illustration of four different neural language models employed in IR.

2.2.1 Neural Retrieval Models

Many retrieval problems are by nature ranking problems. Learning to rank is a task of
automatically constructing a ranking model by using training data, such that the model
can sort new objects according to their degrees of relevance [22]. Figure 2.2(a) illustrates
a learning to rank neural retrieval process using manually designed features. A deep
neural network is then introduced as a comparison metric to assess the relevance against
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query-document joint representations. Traditionally, features of leaning to rank models
in information retrieval can be concluded into three categories: query-level features,
document-level features and query-document features.

Neural methods can also be used to expand the query before employing the basic
information retrieval model [23, 24], see Fig. 2.2(b) as an illustration. Kuzi et al. [25]
have presented a suite of query expansion methods, which are based on word embeddings,
to expand the query with terms that are semantically related to it as a whole or to its
terms. In addition, they achieved meaningful improvement over the performance by
integrating the query expansion methods with a pseudo-feedback-based query expansion
approach.

In traditional retrieval models, terms have discrete or local representations, and the
relevance of a document is determined by the exact matches of query terms in the body
text. Unlike traditional learning to rank model, the model in Fig 2.2(c) depends less on
manually generated features and introduces semantic features to derive a good matching
pattern. Mitra et al. [26] have proposed a novel document ranking model composed of two
separate deep neural network sub-models, one that matches using a local representation
of text, and another that learns embeddings before matching, both of which have achieved
significantly improvements over traditional retrieval baselines.

Many neural retrieval models depend on learning useful low-dimensional embeddings
of query and document text, and then use them within traditional retrieval models or
in conjunction with simple similarity metrics. Figure 2.2(d) shows the neural retrieval
model that focus on learning effective representations of text by incorporating neural
methods. We further note that this model employs neural approaches in all the core
operations that we have introduced at the beginning of the section. As we discover, it
can also learn the embeddings by optimizing directly for the retrieval tasks [27] or in an
unsupervised setting [28].

2.2.2 Unsupervised Term Embeddings

So far we have presented a comparison regarding the different neural retrieval approaches.
According to our observation, term embeddings are incorporated into these approaches
for inexact matching. There are two different types of involvement against the term
embeddings, (i) using embeddings to compute query-document relevance, (ii) use em-
beddings to generate suitable query expansion candidates from a global vocabulary and
then perform information retrieval based on the expanded query. We will discuss both of
them in the remainder of this section.
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Query-Document Relevance Assessment. In this scenario, each individual terms
from the vocabulary is represented as an embedding vector. The query and the document
are subsequently represented as a dense vector respectively. The query and the document
embeddings themselves can be compared using a variety of similarity measurement
metrics, such as cosine similarity,

sim(q, d) = cosine(~vq, ~vd) = ~vq · ~vd

‖~vq‖‖~vd‖
,

Query Expansion. Rather than computing the query-document relevance directly, this
approach first uses term embeddings to find good expansion candidates from a global
vocabulary, and then retrieves documents using the expanded query. One of the ways to
compute the relevance between query q and a term candidate tcandi is given by:

score(q, tcandi) = 1
|q|

∑
tq∈q

cos(~vq, ~vtcandi
) ,

2.3 Table-Related Retrieval Applications

There are a vast amount of tables in web pages. These tables contain useful information,
and has raised great interest in information retrieval field. Although web tables have
proved to be useful sources, retrieving useful information from millions of tables on web
is a problem on its own account. An increasing amount of research has been conducted
to show the value of leveraging tabular data in various applications, including table
extension, table mining, and table search. In the remainder of this section, we will
introduce these applications and the related research work in detail.

2.3.1 Table Extension

Table extension is the task of populating a seed table with additional elements (e.g., rows
and columns) or filling the missing values in a seed table (e.g., empty table cells), based
on the corpus of tables. The task of row population is also related the problem of entity
set completion.

Entity Set Completion

Entity set completion is to extend seed entities with additional entities that are returned
by the retrieval systems (or algorithms) [8]. These entities are arranged in a descending
order against their relevance with seed entities. An example system that does set
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expansion is Google Sets, which carries out the set expansions task using propriety
algorithms. The system was discontinued in 2011.

Wang and Cohen [29, 30, 31] have addressed the set completion problem by presenting the
SEAL (Set Expander for Any Language) system, which expands entities automatically
by incorporating multiple examples from the Web. SEAL is capable of handling various
languages and there are two components of the system: (i) Extracting. SEAL constructed
the character-level wrappers for each web page and extracting the context sequences
that contains all seed entities. These context are subsequently applied on their source
pages to extract candidate entities in addition to the given seed entities. (ii) Ranking.
In the SEAL system, web pages, wrappers and candidate entities are modeled as nodes
in the graph, and random walk techniques are used to rank candidates during iterations.
Similar iterative phrases have been employed by He and Xin [32], which has proposed
a method that completing the entity sets by deriving other entities belonging to the
same concept set against seed entities. Multiple web data sources have been exploited to
discover such relevant entities, including lists extracted from web pages and user queries
from a web search engine. Instead of using random walk ranking, they proposed a new
general framework based on iterative similarity aggregation.

Yakout et al. [9] presented the Infogather system to automate information gathering
tasks. It comes with three core operations: (i) augmenting entities with attribute name.
(ii) augmentation by example. Instead of providing the augmenting attribute name, the
user provides the query table with some complete records as examples. (iii) discovering
important attributes of a given set of entities. These operations are based on entity-
attribute tables which are also referred as relational tables and 2-dimensional tables [33].
The key contribution of Infogather system is that it can obtain much higher precision and
coverage by leveraging indirectly matching tables in addition to the directly matching
ones. Specially, Infogather system addresses the problem of spuriously matched tables
by developing a holistic matching framework based on topic sensitive pagerank. An
augmentation framework that aggregates predictions from multiple matched tables is
also employed by the system. In addition, a novel architecture for Infogather system
that leverages preprocessing in MapReduce to achieve extremely fast response times at
query time is proposed. The experiments are based on real-world datasets and 573M web
tables from a crawl of Microsoft Bing search engine. The results show that the approach
proposed has significantly improved the precision and coverage and achieved four orders
of magnitude faster response times against the state-of-the-art baseline. The related
tables that matched can be employed in both row and column population tasks.

Detecting related tables has been proved a powerful tool for extending seed tables with
additional data and enables effective reuse of available public data. Das Sarma et al. [8]
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have performed a task of detecting highly related tables on Wikipedia Tables corpus
given an input table, by incorporating algorithms of entity complement. The key function
of these algorithms is to determine that the entities in a candidate table are a coherent
expansion of the entities in a seed table. Hence, the entity set completion is based on the
coherency. Specifically in their paper, they have proposed two approaches to compute
entity consistency score, (i) For each additional entity in table T1, compute its relatedness
to each entity in T2, and then aggregate the pairwise entity relatedness; (ii) take the set
of additional entities in T1 as a whole, and directly compute its consistency with respect
to T2.

An aspect-based framework named QBEES that conducts searching similar entities based
on one or more example entities has been proposed by Metzger et al. [34, 35, 36]. The core
idea of this model is aspect-based similar entity retrieval. Given an RDF triple,(subject,
predicate, object) and an entity e, we consider all the arcs that are incident with q in
knowledge graph, thus we have the triples(e, predicate, object). An aspect of e is then
given by the duple (predicate, object). There are three different aspect-based entity
characterization models, (i) type aspect, where the set of all type aspects of an entity e
reflects the set of all types. (ii) relational aspects, which captures the information which
relations an entity is involved with. (iii) factual aspects, which means the rdf triple
contains entity e presents a fact about it, e.g., (Paris, LocatedIn, Europe), It is a fact
that “Paris” is located in “Europe”.

Instead of limiting the focus on entities themselves, Bron et al. [37] have employed
additional textual descriptions of the candidate entities in addition to seed entities. They
combine a text-based language model with a structure-based model derived from different
aspects about the entity, i.e., type aspect and factual aspect. The text-based language
model for an entity is constructed from terms appearing in facts about that entity and
in descriptions of types and other entities connected to it. In the structure-based model,
entities are represented by their facts with a uniform weight. Given a set of seed entities,
types and facts that appear in many seed entities have higher weight against the retrieving
results. Both [34, 37] have emphasized the use of entity aspects. The latter does not
include a term component and in particular does not assume a textual description of the
target entities as in [37]; Besides, the structure-based features in the aspects is more
general in the latter paper, which also includes priors incorporating the entity importance
as well as assigning different weights to different features.
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Table Extension

We have already introduced related work of table extension that regarding set completion
in §2.3.1. Table extension focus on columns is a task of extending the seed table with
new columns, which are retrieved based on the given seed table. The Mannheim Search
Join Engine by Lehmberg et al. [38] operates on a large amount of web tables and
performs such table extension operations automatically. The Mannheim Search Join
Engine searches the web table corpus for additional tabular data describing the entities
contained in the seed table. The discovered data is used to rank the candidate tables, and
relevant columns from the top-k ranked tables are then used to join with the seed table.
Schema matching and data fusion techniques were employed in the whole process. At last,
the user is provided with an extended table by the Mannheim Search Join Engine. The
evaluation of the Mannheim Search Join Engine was operated on the table corpus derived
multiple sources, which contains HTML tables, Linked Data and Microdata annotations
win tabular form. The Mannheim Search Join Engine achieved very prominent results
for the tasks of extending tables describing diverse entities, such as cities, companies,
countries.

Cafarella et al. [5] have proposed an efficient relational data integration system called
Octopus, which consists of a sequences of operators, i.e., Search, Context, Extend.
Specifically, the user starts with the Search operator, which returns a cluster of relevant
and related tables, he then choose two extracted relational tables and uses Context
operator on both tables and modifies them to contain additional columns, using data
derived from the source Web page embeds these two tables. At last Extend operator
enables the user to add more columns to a table by performing a join with the other
one. There are two different underlying algorithms developed for Extend operation in
Octopus, i.e., JoinTest and MultiJoin. The former looks for an extracted web table that
is “about” the topic and has a column that can join with the indicated join column and
it relies on a combination of Web search and key-matching to perform schema matching.
The latter attempts to join each tuple in the source table with a potentially different
table and addresses the problem of schema matching via a column-matching clustering
algorithm.

Zhang and Balog [7] have proposed a smart Assistance that helps the user to extend the
tables with additional rows and column labels, concentrating on a particular family of
web tables, i.e., these that have an entity focus in their leftmost column. Specifically,
they have proposed two specific tasks for providing intelligent assistance with tables:
row population and column population. The former is the task of generating a ranked
list of entities to be added to the leftmost column of a given seed table, while the latter
is about generating a ranked list of column labels to be added to the column headings
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of a given seed table. They have developed generative probabilistic methods for both
tasks and enhanced the performance by combining the approaches from the literature
with their novel components. This is the most related research to this thesis. Instead of
using probabilistic methods for measuring relevance, we incorporated neural methods to
deriving term embeddings for row and column population tasks in this thesis.

Data completeness is one of the most important indicators of data quality. Data comple-
tion is an essential premise for many subsequent data-related work. The completeness
of tabular data is particularly critical because tables are highly organized and each cell
represent different content against the table topic. Another type of table extension is
the task of filling the empty cells in a seed table. Traditionally, statistical techniques
are employed for filling the missing values. Ahmadov et al. [10] proposed a hybrid data
imputation approach based on external data source such as relational web tables. This
approach takes the characteristics of the incomplete dataset into account, for the purpose
to look up missing values, or using a statistical approach such as regression analysis, or
combine both approaches to find the most qualified data. Two keyword subqueries were
introduced based on the input table to search entities and attributes separately.

2.3.2 Table Mining

Tables contains a vast amount of structural information that can be potentially useful
for many application areas, e.g., knowledge base extension or completion. Table is a
not only fundamental problem on its own, but also broadly used as a core component
in other tasks, such as table extension, many existing table extension approaches using
table mining as the premise of their experiment [2, 5, 8]. Recently, a growing body of
research has been carried out in the area of table mining [11, 39–46].

The database corpus that is contained within the raw HTML tables is particularly
valuable, it consists of data from millions of websites and a vast amount of topics.
Cafarella et al. [14] pioneered in the area of extracting and leveraging the relational
information embedded in HTML tables and proposed the WebTables system. In the
process, 14.1 billion HTML tables are extracted from Google’s web crawl and 154M that
contain high-quality relational data are mined for later usage. The WebTables system
mines the good relations by combining hand-written detectors and statistically-trained
classifiers, and uses a human marked test set to evaluate the mining performance. They
further recovered the relations of some tables which are valuable for a knowledge base
construction.

A neural network system being trained in an end-2-end fashion for natural language
questions-answering on knowledge base tables, Neural Enquirer, has been introduced
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by Yin et al. [47]. Given examples of queries and answers, the system can learn to
understand queries and execute them on a knowledge base table in a supervised manner.
Specifically, given an natural language query q and a knowledge base table T , Neural
Enquirer executes q again T based on their embeddings and yields a ranked list of
answers. The different embeddings are generated from a query encoder and table encoder
for q and T separately, which are then as input to a series of neural network executor.
An executor yields intermediate execution results, referred to as annotations, which are
saved in the external memory of the executor. A query is executed sequentially through
a stack of executors, and only the last one outputs the probability of an entry in T being
the answer. Such a cascaded system enables the model to answer more complex queries.

Data in tables can be efficiently leveraged to enrich existing knowledge bases such as
DBpedia [48], Freebase [49], YAGO [50]. KB is typically a large, directed graph that
utilizes RDF triples to represent the relations between different nodes. Knowledge bases
have information of a vast number of open domain entities and have been widely used
against entity retrieval area. So far, many approaches have been proposed to enlarge
the population of entities in a KB. Although the size of KBs keeps growing along with
these efforts, we still have a limited coverage of entities against the number of real-world
entities. The current Web contains a huge amount of tables, among which millions of
tables contain high-quality relational data. Of these high qualified tables, there are
many entity-attribute tables that contain information of some entities of the same type.
An instance-based schema mapping solution is employed in Zhang et al. [12] to find
the effective mapping between an entity-attribute table and a knowledge base via some
matched data examples. Besides they also proposed efficient approaches for finding the
matched data examples as well as the overall mapping of a table and a KB.

The web contains vast sources of structured data, such as HTML tables and spread
sheets, both of these can be used for a knowledge base augmentation. The semantics of
these structured data are usually ambiguous, presenting us from extracting triples against
the web tables. Sekhavat et al. [11] have provided a probabilistic approach for extending
an existing knowledge base (YAGO) with facts from tabular data by leveraging a web
text corpus and natural language patterns associated with relations in the knowledge
base. Prior approaches use mainly natural language understanding to determine whether
two entities are related, [11] assumed all entities in the same row of a table are related
by construction, and also labeled pairs of columns in the table with relations coming
from an established knowledge base. Similar research has been described in other paper
as well, e.g., Wang et al. [51] have described an approach for building a comprehensive
knowledge base using linguistic patterns.
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2.3.3 Table Search

Traditional retrieval model is particularly targeting the document retrieval problems
which is by nature text-based retrieval problems. Tables are highly structured as well as
contain massive information, hence they are of huge value. It is potentially for a user
in need of structured data or information to find a table from database that fulfills the
needs. The existing text-based retrieval model performs poorly in terms of structural
data like tables. Table search is a fundamental problem on its own, as well as often used
as the first step in other tasks [9, 38, 52]. Numerous studies have been developed around
table search.

Cafarella et al. [14] proposed an approach for the table search, which performs a keyword
relation search over a corpus of relational tables. Specifically, given a keyword query,
the underlying idea is utilizing the top-ranked results (documents or passages) returned
by a web search engine, and then extract the top-k tables from those results. Table
search is also important in integrating web data. The data integration model, Octopus
system in [5] introduced an Search operator that takes a search-style keyword query and
returns a set of relevance-ranked and similarity-clustered web tables. More specifically,
The Search operator takes as input an extracted set of relations S and a user’s keyword
query string q. It returns a sorted list of clusters of tables in S, ranked in a descending
order against their relevance to q. In this case, the set of relations S can be considered
all the relations found on the Web. To summary, the table search approach here is as a
modification of document search, by adding new signals to ranking documents, such as
hits on the schema elements and left-hand columns. The weights of the new signals were
determined by machine learning techniques.

Traditional retrieval is in a fashion of answering keyword query, and returns a list a
ranked results. Pimplikar and Sarawagi [6] propose an ad hoc table search system that
based on exploiting multiple sources of web structured data, which takes the keyword
query with description about each column of the table as input and returns the user with
a multi-column table. The table search can be viewed as a schema matching problem
between the query column descriptions and a Web table. Schema matching [53, 54] has
traditionally been applied for integrating databases that contain a consistent and clean
set of tables and the main challenge is in managing the complex alignment between the
large number of schema elements on each side. In contrast, [6] matches a few query
columns to a large number of unlinked and noisy web tables.

The amount of web data is vast and keeps growing, raising the importance of techniques
in terms of searching the Web. Web tables allows a user to get information in a structured
form, which arising the attention of web table search. Vinyals and Le [1] have proposed
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techniques to support a user in browsing and exploring a result for Web Table search.
they focus on presenting the user with effective results, and target this problem in two
approach, (i) table selection, It combines the relevance scores obtained from web table
search with measures for similarity of the schema and the data tuples of web tables,
thereby accounting for diversity in the presented result; (ii) table summerization, which
selects a set of representative tuples of a table that induce little information loss with
respect to non-selected tuples and preserve regularities of underlying data.

In recent years, people have looked at the problem of discovering semantics of tables in
the context of web tables, where the goal is to have a better web table understanding
to benefit web table search. Venetis et al. [55] described an approach for recovering the
semantics of web tables, by leveraging the text on the web. Specifically, table search
was aided by these annotations on the table gnerated in the semantic recovering process.
Given a query in a form of combining class name and property, i.e., q = (C,P ), it
consider tables in the corpus that have the class label C in the top-k class labels, and
then performs ranking on these tables based on a weighted sum of the following signals
collected through different table elements: occurrences of the property P on the tokens
of the schema row, occurrences of P on the assigned binary relations of the table, page
rank, incoming anchor text, number of rows and tokens found in the body of table and
the surrounding text. The weights were derived by training on a set of examples.

In a most recent trend, neural language models are introduced for table-related tasks
to catch semantics, such as table search, and achieved significant success. Zhang and
Balog [4] propose an ad hoc seach by leveraging the semantics similarity between table-
query pairs. Given a keyword query, the ranking of the results is established based on
different degrees of semantic relevancy. Instead of using traditional lexical matching,
they represent both queries and tables in some semantic (vector) space, and measuring
the similarity of those vector representations. They have introduced various semantic
representations to complete this mission, and focus on representing single terms (e.g.,
words, entities) rather than table and query themselves: (i) bag-of-concept, two different
semantic representations are generated by leveraging entities and categories form DBpedia
respectively. (ii) embeddings, two pre-trained embeddings model are introduced for the
table search task, i.e., word embedding [56] derived on Google News Data, and graph
embedding [57] trained on DBpedia. This is the work most related to this thesis, in
contrast, instead of using pre-trained models, we train embeddings based on WikiTables
specifically for table search task.
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2.3.4 Neural Models in Table-Related Application

As we mentioned above, web tables have proved to be useful sources in information
retrieval and knowledge extraction. Leveraging data within these tables is difficult
because of the wide variety of structures, formats and data encoded in these tables.
Neural language models have been developed as an alternative to represent raw texts as
a bag of terms in the natural language processing field. In neural networks, terms are
represented as vectors in the embedding space. To enhance the performance of retrieval,
a growing body of studies that combine neural network and retrieval have been developed
around. Some of these particularly focus on web tables.

Tables are in a form of structured data. Table type is essential premise for exploring the
power of Web tables, and it is important to understand the semantic structures of tables
in order to utilize them in various tasks. Nishida et al. [58] proposed a supervised deep
learning method (TabNet) using a hybrid deep neural network architecture for table type
classification , based on Hierarchical attention networks. More recently, Ghasemi-Gol
and Szekely [59] present a neural method, TabVec, to resolve the problem of discovering
data tables on the web and determining how data are organized within these tables on
a large corpus of web data. The underlying idea of TabVec is (i) generating semantic
vector representation for a tables cell, (ii) embedding tables themselves into a vector
space by leveraging multiple context definition in a table, (iii) utilizing these table
embeddings to support table type classification, such as categories of entity, relational,
matrix, list, and non-data respectively. User annotations are used for examining these
clusters, but not the training data. They further implement the evaluation of TabVec
on four different real-world datasets, three of which are from unusual domains and the
other is a sample from Common Crawl. In our thesis, Table2Vec also have employed
semantic vector representation for tables, but it focus in terms of table terms (entity and
words) embeddings instead of the whole table embeddings. As for the application, we
use Table2Vec for table population and retrieval tasks rather than table classification.
At last we have evaluated its performance over Wikipedia Tables corpus.

Many classic blocking methods are derived for data from relational databases with clearly
defined schemas. Web tables are an interesting data source for many knowledge intensive
tasks, and data from web tables more likely without an explicit schema, which arise the
importance and challenge of partitioning the web tabular data. Gentile et al. [16] propose
an effective approach for entity matching on web tables, which is the task of identifying
records that refer to the same entity, by incorporating neural language model to block
these data and subsequently reduce the comparison complexity. The general idea is
to use word embedding which gives a lower vector dimensionality to generate a latent
representation of table, instead of using classic bag-of word representation. And then



22 Chapter 2 Overview of Neural Retrieval and Table-Related Applications

measure the similarity between tables by using cosine similarity. They further assume
that the header rows, and attribute value relationship is known in order to create the
context sentences for words within tables.

Based on popularity of Linked Open Data in data mining and information retrieval areas,
RDF2Vec is proposed by Ristoski and Paulheim [57]. The underlying idea is to use
neural language approaches for unsupervised feature extraction from sequences of entities.
Converting RDF (Resource Description Framework) graphs to sequences are done by using
(i) graph walks [60], and (ii) Weisfeiler-Lehman Subtree RDF Graph Kernels [61]. They
derive the RDF graph embedding from two different knowledge graphs, i.e., DBpedia,
which is extracted from structured data in Wikipedia, and Wikidata [62], which is a
free collaborative knowledge graph operated by the Wikimedia foundation which also
hosts various language editions of Wikipedia. The evaluation proved these models are
capable of outperforming standard feature generation approaches in various tasks, such as
machine-learning classification and regression, document similarity and entity relatedness,
content-based recommender systems. Constructing embeddings from such huge KB
graphs seems costly, but the embeddings can be reused on various tasks,e.g., Zhang and
Balog [4] have employed the pre-trained graph embeddings based on DBpedia to serve
an ad hoc table search task.

To the best of our knowledge, utilizing neural embedding methods regarding web tables
is rather unexploited. Specifically, no work before has trained embeddings particularly
for table-related tasks. Some research has employed the vectorization methods [4, 16, 59]
by incorporating pre-trained embedding models. As we observed, these research only
focus on one specific task, which gives us no proof whether the methods can benefit
other table tasks. To fill in this gap, we focus on training neural embeddings from tables
themselves, and then use these embeddings to exploit up to three different table tasks in
this thesis.
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Training Table2Vec Embeddings

In this chapter, the content is arranged in the following manner. We introduce the neural
language models for training embeddings and their optimization methods in Sect. 3.1,
and then detail the four variants of table embeddings in Sect. 3.2.

3.1 Neural Models for Training Embeddings

Traditionally, many natural language processing systems represent terms in context with
one-hot vectors, in which no semantic information been captured. This choice has its own
advantages such as simplicity, robustness and high efficiency in terms of simple models.
When it comes to a larger dataset or more complex models, we start to experience
the defects of this method, such as computationally inefficient and low performance.
With the progress of neural language modeling techniques in recent years, it has become
possible and effective to train more complex models on much larger data set. One of
the most successful concept is to use distributed representations of words [63] and they
typically outperform the traditional models [64–66].

We base the training of our table embeddings on the Word2Vec [56] neural network
model. It is proved to be a computationally efficient two-layer (with one hidden layer)
Neural Language Model that learns the semantic meaning of terms from raw sequences
and projects those terms to a vector space where similar terms are close to each other.
There are two predictive models for Word2Vec, i.e., continuous bag-of-words(CBOW)
and skip-gram. Since learning term representations is essentially unsupervised, methods
are needed to “create” labels to train the model. Skip-gram and CBOW are two ways of
creating the “task” for the neural network. Figure 3.1 shows both two architectures of
Word2Vec and we further discuss both models in detail in the following subsections.

23
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3.1.1 Continuous Bag-of-Words Model

CBOW uses continuous distributed representation of the context and works in a way that
using context to predict the input. The input is comprised from all the surrounding terms
in a given window area, e.g., the given window size in Fig. 3.1(a) is 3; Specifically, the
vector in the projection layer is the average by all input vectors which are retrieved by the
input weight matrix; Then further utilizing the weights from the output weight matrix
to calculate a score for each term in the vocabulary, which represents the probability of
the term being a target. Formally, given a sequence of training terms t1, t2, t3, . . . , tn,
the objective of the CBOW model is to maximize the average log probability:

1
n

n∑
i=1

log p(ti|ti−c...ti+c) ,

where c refers to the window size and the probability p(ti|ti−c...ti+c) is computed by:

p(ti|ti−c...ti+c) =
exp(~v>~v′ti

)∑V
t=1 exp(~v>~v′t)

,

where V is the size of vocabulary, and ~v is the average of all input vectors that represent
the surrounding terms, formally,

~v = 1
2c

∑
−c≤j≤c,j 6=0

~vi+j ,

3.1.2 Basic Skip-gram Model

Skip-gram model does the inverse of CBOW by using a given input to predict the nearby
terms, see Fig. 3.1(b). The input vector is retrieved by the input weight matrix; Then
skip-gram further utilizes the weights from the output weight matrix to calculate a
score for each term in the vocabulary, which represents its distance from the input term.
More formally, given a sequence of training terms t1, t2, t3, . . . , tn, the objective of the
skip-gram model is to maximize the average log probability:

1
n

n∑
i=1

∑
−c≤j≤c,j 6=0

log p(ti+j |ti) ,

where c is the size of training context, and the probability p(ti+j |ti) is calculated using
the following softmax function:

p(to|ti) =
exp(~v′to

>~vti)∑V
t=1 exp(~v′t

>~vti)
,
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(a) The CBOW model (b) The skip-gram model

Figure 3.1: Word2vec neural network architecture.

where V is the size of vocabulary, and ~vti and ~v′to
are the input and output vector

representations of term t, respectively. Note that there are actually two representations
of a term (apart from the one-hot vector), ~vt is the embedded vector for t as the center
word, and ~v′t is the vector representation for t as the context word. Semantically similar
terms share more similar vector representations, and the dot product between those
vectors results in higher values, which means higher probabilities after softmax.

In our scenario, we consider terms to be words, entities, or heading labels in a table.
According to [64], skip-gram model works well with small amount of the training data,
represents well even rare terms or phrases. CBOW is several times faster to train than the
skip-gram, and obtains slightly better accuracy for the frequent words; Which makes sense
since with skip gram, you can create a lot more training instances from limited amount
of data, instead of increasing the size of training corpus to deal with the data sparsity
problem; As for CBOW, you will need more data for deriving the neural network, since
you are conditioning on context, which can get exponentially huge. Hence, we employ the
skip-gram model in this thesis for training our table embeddings because it can leverage
limited data within a table and form more training examples compared to CBOW. The
basic skip-gram model is impractical due to its large vocabulary size V results in large
training sets and training time consumes. Thus we also employ optimization method to
make the training of our models computationally more efficient.

3.1.3 Optimization

As we have mentioned above, the size of our term vocabulary V means that the skip-gram
model has a vast amount of weights to be tuned, which means that training this model
is going to be a considerably tough task. Recently, optimization methods for improving



26 Chapter 3 Training Table2Vec Embeddings

the training performance of such model have been proposed and achieved very noticeable
results and we will specifically discuss these methods in the following parts:

Sub-sampling of Frequent Terms

In the skip-gram model, infrequent terms usually matter more than frequent terms, e.g.,
“an”, “the”,and “of”, since frequent terms reveal much less useful information. Given a
context, “many of the students like the library”, the co-occurrence of “students” and
“library” benefits more for the skip-gram model than the co-occurrence of “the” and
“students”. By sub-sampling frequent terms, not only the vocabulary size V becomes
smaller but also the quality of the embeddings is improved. In sub-sampling, we grant
each term a probability that formulated by:

p(ti) = 1−
√

τ

f(ti)
,

where ti is a term from the vocabulary, τ is the threshold which usually empirically set
as 10−5, and f(ti) refers the term counts of ti in the training corpus. and p(ti) represents
the probability of keeping termti.

Hierarchical Softmax

Hierarchical softmax is very interesting from a computational point-of-view compared
with the full softmax in which the probability of any one output depends on a number of
model weights that is only logarithmic in the total number of outputs. More in detail,
rather than evaluating V output nodes in the neural network to obtain the probability
distribution, it is needed to evaluate only approximate number of log2 V nodes.

O(V )→ O(log2 V ) ,

which is significantly faster than the full softmax. The log2 V nodes are selected by
the binary tree, where leaves represent probabilities of terms; Each of the terms can be
reached by a path from the root through the inner nodes, which represent probability
mass along that way. Formally, the Hierarchical Softmax is given by:

p(t|ti) =
L(t)−1∏

j=1
σ(〈n(t, j + 1) = ch(n(t, j))〉~v′n>~vti) ,

Where angled braces represent boolean checking if the case is true or false; L(t) is the
depth of the tree; ch(n) is the child node of n, and n(t, j) refers the j-th node on the
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Figure 3.2: Illustration for Hierarchical Softmax.

path from the root to term t. And specifically, σ(x) is formulated by:

σ(x) = 1
1 + exp(−x)

Figure 3.2 shows an example of the Hierarchical Softmax. We can see n(t3, 1) is the root
node, t3 is the corresponding leaf node; it is obvious that we are performing three steps
of computations, which is a sufficient decrease in the number of operations.

Negative Sampling

. We know that in the basic skip-gram model, all weights would be updated slightly by
every single one of our training instances, which is extremely computationally inefficient.
The negative sampling handles this issue in a way of having each training instance only
modify a small percentage of the weights, instead of all of them. More in detail, with
negative sampling, we are going to randomly select just a few “negative” terms to update
their weights for.

The “negative samples” are chosen using a “unigram distribution”. Essentially, the
probability for selecting a term as a negative sample is related to its frequency, with more
frequent terms being more likely to be selected as negative samples. In the Word2Vec,
you can see the equation* for this probability as follows,

P (ti) = f(ti)
3
4∑n

j=0(f(tj)
3
4 )

We can see each term is given a weight equal to it’s frequency (term count) raised to
the 3/4 power. The probability for a selecting a term is just it’s weight divided by the
sum of weights for all terms. The decision to choose the frequency powered by 3

4 appears
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to be empirical. And according to experiments by Mikolov et al. [56], the number of
negative samples in the range 5 to 20 are useful for small training datasets, while for
large datasets the number can be as small as 2 to 5.

To summary, Hierarchical Softmax and negative sampling do not seem to be exclusive;
Specifically, we employ negative sampling for deriving all our table embeddings, and
sub-sampling when we base the training on single words. It’s also worth noting that
by sub-sampling frequent terms and using negative sampling, we can not only reduce
the compute complexity of the training process, but also improve the quality of their
corresponding table embeddings.

3.2 Content Extraction

3.2.1 A Brief Introduction of Tables

Tables are highly structured. A table is a collection of related data arranged in a highly
structured format within a database. It consists of columns, rows and cells. Table
elements in a web table include (see also Fig. 3.3):

1. pgTitle, the main text that describes the web page which embeds the table.

2. secondTitle, the title of the web page section that contains the table.

3. caption, the title of the table which gives a brief description of content within the
table cells, i.e., topic of the table.

4. colHeadings, a list column heading labels, usually corresponding to the first row.

5. tableCells, content of the table cells, include the heading row.

As we discovered, content from the same table is most likely related and shares some
similar semantic information. Besides, content from different elements of the same table
are usually differs from each other, because they focus on different aspects of the table
topic, e.g., given a table that describes countries, then we know the content inside
the table, tableCells, is related to the topic “country”; But each column is most likely
about different attributes like names, populations, areas, etc., while each row is probably
about information of one single country; Moreover terms in tableCells might be numbers,
symbols, or even link to entities. To summarize, How to leverage different table elements
and extract the rightful content for table raw representation that used for training table
embeddings are problems themselves.
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Figure 3.3: An example of Wikipedia page.

3.2.2 Four Variants

In this thesis, we employ skip-gram of Word2Vec, a neural language model which has been
proved semantically efficient to capture term features. Such model learns the semantics
of terms from raw sequences and represent terms in a continuous vector space where
semantically similar ones from the raw context are mapped to nearby points. We propose
that tables can be represented as sequences of terms, (t1, t2, . . . , tk), because content
from the same table is most likely topically coherent.

In terms of the table elements, we select four types of raw representations to repre-
sent the table and for training different neural embeddings. Table 3.1 lists the input
(second column), which corresponds to the four types of embeddings (first column).
Correspondingly, we train four different types of table embeddings by using different raw
representations as input; These are well illustrated in Fig. 3.4. Note that all embeddings
are trained using the same neural model, but they differ in (i) what constitutes as a term
and (ii) which table elements are used for training the model. We further introduce the
four variants in the following.

Table2VecW It is conventional to only use words for training neural networks. In this
scenario, tables/queries are represented as sequences of individual words, which
are qualified inputs of the neural language model. In a real-world web pages, many
words are exclusive to the tables, and do not appear in the tableCells, hence, Our
method Table2VecW takes the words appearing in all elements of a table into
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Table 3.1: Table2Vec embeddings.

Method Input Semantic repr.

Table2VecW all table data word embeddings
Table2VecH heading labels heading embeddings
Table2VecE all entities entity embeddings
Table2VecE* core column entities entity embeddings

(a) Table2VecW (b) Table2VecH

(c) Table2VecE (d) Table2VecE*

Figure 3.4: Illustration of different Table2Vec embeddings.

consideration, so that we can capture the topical information of the table to the
utmost extent. Specifically, it considers the page title, section title, table caption,
table heading labels, and all table cells; see Fig. 3.4(a) as an illustration. Note only
in this table embedding the sub-sampling of frequent words is considered.

Table2VecH Some words together holds a much different meaning than individual
words, e.g., “New York” is a word pair that represents name of a city in America,
but if we want to predict “York” from “New” with Table2VecW model, most likely
the result is not pleasant. So it makes sense to treat “New York” as a word itself
and has its own vector representation. Hence we propose Table2VecH. Instead
of using single words, our method further leverage both the table structure and
word-pairs by representing tables as sequences of table column labels extracted
from column headings. Note that each column heading cell is treated as a single
term, as is shown in the shadowed area in Fig. 3.4(b). The raw input is: “Region
Release_Date Label Release_format” for Table2VecH in the illustration.

Table2VecE An entity is something that exists as itself, it need not be of material
existence. Tables, especially relational tables, often contain entities which are
semantically more meaningful than words. Moreover, the number of entities is much
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less than that of the words, such that we can have a lighter training process. Hence
we propose Table2VecE which takes sequences of entities as input, by extracting
all entities that appear within tableCells; see the shadowed area in Fig. 3.4(c).
According to the example, the input for Table2VecE is: “United_kingdom DVD
Ireland DVD . . . Spain Music_Download”

Table2VecE* Relational tables describe a set of entities as well as their attributes in
the columns. These entities are placed in the core column. Table2VecE* only
concern entities from first column of the table, as is shown in Fig. 3.4(d). The
raw representation of the example in this scenario is: “United_kingdom Ireland . . .
Singapore Spain”.

So far, we have introduced all the four variants, and we will further discuss the application
of those representations in the following chapter.





Chapter 4

Utilizing Table2Vec Embeddings

In this chapter, we present new methods for table population and retrieval tasks by
involving the Table2Vec embeddings that were introduced in Sect. 3.2.

4.1 Introduction

For all tasks, we keep our focus on relational tables. Specifically, the table population
task is considered in two flavors: row population and column population, and conducted
based on entity-focused tables, which only have entities, more precisely unique entities
as values in the left most column; It is also assumed that entities mentioned in the table
are recognized and disambiguated by linking them to entries in a knowledge base [13].
Formally, let us define an N ×M Table T:

T = {ci,j ; 1 ≤ i ≤ N, 1 ≤ j ≤M} ,

where ci,j denotes the table cell. If a table is an entity-focused table, then:

ci1 = {ei; 1 < i ≤ N} ,

where (e1, e2, . . . , eN ) are entities different from each other.

We shall refer the input table for our table population tasks as a seed table, T , which
represents the table that has been edited by the user. Specifically, we assume the
seed table already has the elements such as a caption, and some heading labels in the
colHeadings and some entities in the left most column. Note that we do not employ the
values in the other table cells in our task. In the seed table the set of entities from the

33
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core column are referred as seed entities E, and the set of column labels are denoted as
seed labels L.

4.2 Row Population

Row population is a task of returning a list of entities, based on their likelihood of being
added to the core column of the seed table T as the next row. The ranking is established
based on the similarity score of a candidate entity e to the seed table entities E. And the
one with the highest score is most likely to be the target added to a new row. In this
task, we measure entity similarity by two approaches: using a knowledge base and using
Table2Vec embeddings.

4.2.1 Baselines

We employ three probabilistic ranking methods from [7] as our baselines, which rank
candidate entities according to Pkb(e|E). Candidate entity selection method is also
consistent with that in the source paper. Intuitively, candidates are identified from
two sources: knowledge base and table corpus. Candidates from knowledge base are
selected by the overlapping of types and categories properties between a candidate the
seed entities, formally, we formulate:

score(e, E) = |Pe ∩ (∪n
i=1Pe′i

)| ,

where Pe is a set of properties against entity e, and e′ represents a seed entity. We
identify candidates from table corpus according to how similar the caption is compared
with that of the seed table based on BM25 retrieval algorithm, see Eq. (2.5). Tables
contain seed entities also have a higher chance to be selected. We further describe our
baseline methods in detail:

BL1 Entity similarity is measured based on the similarity of relations of e, obtained
from RDF triples, and those of the seed tables entities E. Formally, given a
subject-predicate-object triple, (s, p, o), a relation for an entity e is then defined as:

ê = {(p, o) ∪ (s, p)

where (p, o) means in the triple s is an entity, (s, p) refers to o is an entity; Each
entity is then represented as a set of relations, (ê1, ê2, ..., ên); Specifically, the
relevance is measured based on the occurrence of each relation of candidate entity
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e over the set of relations generated by seed table entities. In this case,

Pkb(e|E) =
∑
r∈ê

∑n
i=1〈r = êi〉
|ΥE |

,

where angled braces represent boolean checking if the case is true or false, which is
true if r occurs in the representation of êi and is false otherwise. |ΥE | denotes the
total number of relations by all seed entities.

BL2 It uses the Wikipedia Link-based Measure [67] to estimate the semantic relatedness
of entities based on their outgoing links (in the knowledge base).

Pkb(e|E) ∝ sim(e, E) = 1− log(max(|Se|, |SE |))− log(|Se ∩ SE |)
log(|Θ| − log(min(|Se|, |SE |)))

where Θ denotes the sum of entities in the knowledge base. Se and SE are the sets
of outgoing links from e and E respectively.

BL3 It relies on the Jaccard similarity between outgoing links of entities.

Pkb(e|E) ∝ sim(e, E) = |Se ∩ SE |
|Se ∪ SE |

4.2.2 Using Table2Vec Embeddings

Recall that we have two entity embeddings, Table2VecE and Table2VecE*. The former is
trained on all entities contained in the tableCells, while the latter considers only entities
in the core column. Given that the row population task focuses on the core column, we
employ the Table2VecE* embeddings here. Note that our candidates are selected by
returning top-k ranked entities based on relevance between e′ and e. We measure the
similarity of each candidate entity e, against the seed entities e′ ∈ E, using the cosine
similarity of their respective embedding vectors:

sim(e, E) = 1
|E|

∑
e′∈E

sim(e, e′) = 1
|E|

∑
e′∈E

~ve · ~ve′

‖~ve‖‖ ~ve′‖
, (4.1)

where |E| is the size of seed entity set, and ~ve and ~ve′ are the embedding vectors of the
candidate and seed entities, respectively.

We then combine the baseline similarity with the Table2Vec-based similarity using the
following linear mixture:

P (e|E) = αPkb(e|E) + (1− α)Pemb(e|E) ,
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where Pkb is the similarity measured using the knowledge base and Pemb is based on
table embeddings, and equals to Eq. (4.1).

4.3 Column Population

Column population is the task of returning a ranked list of labels, l1, l2, . . . , lk, given a
seed table T . The returned column heading labels are ranked based on their relevance to
the seed labels L. Similarly to row population, we consider two label similarity measures.
Note that we treat all the content in a table heading cell as a label.

4.3.1 Baseline

For comparison we employ the column labels candidate selection method by [7]. Candi-
dates are identified from the tables that hold similarity with the seed table in seed column
labels. Similarly we use BM25 algorithm to get a rank of tables from the table corpus.
The baseline method, using a table corpus, is taken from [7]. First, relevant tables are
retrieved from the table corpus. Then, the probability of a candidate label being relevant
P (l|L) is estimated based on the occurrences of that label in relevant tables. Formally,
the probabilistic method against table relevance assessment is given by:

P (T |L) = |TL ∩ L|
|L|

where T means tables from corpus, TL denotes the set of labels of a table from corpus.
Based on the occurrence of column heading labels in the relevant table, and we define a
label likelihood function as:

P (l|T ) =

1, if l is in T

0, otherwise

where l refers as a column label. Our ultimate goal is to assess the relevance between a
label and seed labels which is calculated by:

P (l|L) =
∑
T

P (l|T )P (T |L)

4.3.2 Using Table2Vec Embeddings

We utilize embeddings trained on table headings, Table2VecH, for column label relevance
estimation. Similarly to row population, we employ cosine similarity based on the
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Table 4.1: Summery of features used by table retrieval task. Note that the baseline
features include query features, table features, and query-table features [4].

Baseline Features

qlen Sum of terms in the query q
idff Sum of query idf scores in the field f
numRows Number of table rows
numCols Number of table columns
numEmptyCells Number of empty tabular cells
PMI The Attribute Correlation Statistics Database based schema coherency score
inLinks Number of in-links to the page that contains the table
outLinks Number of out-links from the page that contains the table
pageViews Number of page views
tableImportance The inverse of number of tables on the page
tablePageRatio Ratio of table size to page size
#hitsLC Total query term frequency in the leftmost column cells
#hitsSLC Total query term frequency in second-to-leftmost column cells
#hitsB Total query term frequency in the table data
qInPgTitle Ratio of number of query terms occurrences in page title to total number of terms
qInTableTitle Ratio of number of query terms occurrences in table title to total number of terms
yRank Rank of the table?s Wikipedia page given by Web search engine for the query
simInMLM score given by Mixture Language Models between query and different table fields

embedding vectors of the candidate label l and seed labels l′ ∈ L. Then, we combine
these baseline estimate with the embedding-based similarity using:

P (l|L) = αPkb(l|L) + (1− α)Pemb(l|L) .

where the computing of Pemb(l|L) follows analogously to Eq. 4.1.

4.4 Table Retrieval

4.4.1 Overview

Table retrieval is the task of returning a ranked list of tables in response to a keyword
query q, based on their relevance to q. For this task, we employ a feature-based method
as a baseline, which is referred to as the LTR method in [4]. This method considers a
rich set of query, table, and query-table features. We utilize the word-based and entity-
based table embeddings, Table2VecW and Table2VecE, to compute additional semantic
matching features. Specifically, each type of embedding contributes four features, for each
of the similarity methods in [4]. For performance comparison, we also employ pre-trained
Graph2Vec [57] and Word2Vec embeddings [56].

4.4.2 Baseline

LTR employs all the baseline features listed in Table 3. We further explain some important
features in detail, note that:

idff (q) =
∑
t∈q

idff (t)
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Figure 4.1: Computing query-table similarity using semantic representations.

where idff (t) is the idf score of term t in field f which are listed in Table 1. Another
important feature is point-wise mutual information(PMI) which is calculated by:

PMI(li, lj) = log(P (li, lj)/(P (hi)P (hj)))

4.4.3 Using Table2Vec Embeddings

Now the remaining problem is how to compute the query-table relevance based on the
different semantic representations separately. Given that both the table and query are
vectors now, we introduce cosine similarity as the relevance assessment method. For
comparison purpose, we employed the methods by [4]: early fusion and late fusion. Let
us start with early fusion and some terms definition, ~Cq refers to the centroid of query
term vectors, similarly, ~Ct denotes the centroid of table term vectors, and a term refers
to an entity in entity embeddings, a word in word embeddings. More formally,

~Cq =
∑

n

~qi/n , i = 1, 2, . . . , n
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~Ct =
∑
m

~tj/m , j = 1, 2, . . . ,m

where n, m are the number of terms in query and table respectively, ~qi and ~tj are term
vectors. Note that for word embedding, tf-idf weighting is employed to each term vectors
in the above calculation. And the query-table relevance is given by:

sim(q, T ) = cosine( ~Cq, ~Ct) =
~Cq · ~Ct

‖ ~Cq‖‖~Ct‖
,

The late fusion method conducts pairwise cosine similarity between table terms and
query terms first, and then aggregates those results. The query-table relevance is then
given by an aggregation function, which consists of three aggregators: (i) maximum of
sim(~qi,~tj), (ii) sum of sim(~qi,~tj) (iii) average of sim(~qi,~tj). Note that late fusion has
no exception for word embeddings. In this thesis, we combine the results computed by
all four methods to yield the final similarity score, see Fig. 4.1 for an illustration.

We have further introduce Graph embeddings by [57] and use it on Wikipedia Tables
corpus. And employ pre-trained Word2Vec embeddings with 300 dimensions, derived on
Google News data, for performance comparison.





Chapter 5

Evaluation

In this chapter, we present our experimental setup, and the results for individual task
followed by further analysis. We consider several standard retrieval evaluation metrics.
For table population, we use Mean Average Precision (MAP, see Eq. (2.1)) as the main
metric and Mean Reciprocal Rank (MRR, see Eq. (2.2)) as a supplementary metric
for performance evaluation. Table retrieval performance is evaluated by Normalized
Discounted Cumulative Gain (NDCG, see Eq. (2.4)) with a cut-off at 5, 10, 15 and 20.
To test significance, we use a two-tailed paired t-test and write ◦ to denote not significant,
and †/‡ to denote significance at the 0.05 and 0.01 levels, respectively.

5.1 Experimental Setup

5.1.1 Data

We use the Wikipedia Tables corpus [7], which contains 1.6 million high-quality relational
tables in our experiment. The information provided by a single individual table can be
categorized into two fields: textual fields like page title, second page title, table caption,
table headings, table data, and statistical fields like number of rows, number of columns,
number of numeric columns and number of header rows.

We use contents from only textual fields both for training the Table2Vec embeddings
and for the retrieval experiments. And we have detailed the raw representations for
training in Sect. 3.2.2. Additionally, for the word-based embedding, Table2VecW, we
have filtered out empty strings, numbers, HTML tags, and stopwords from the raw
text during training to obtain a better representation. For Table2VecH, we employ no
normalization for the labels, i.e., “year(s),” “year:,” and “year” will be treated as different
labels in our experiment. Specifically, Word2Vec is trained on Google News data with
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Table 5.1: Statistics for Table2Vec embeddings. Neg is short for negative sampling.
Embedding Total terms Unique terms Neg Win_size
Table2VecW 200,157,990 1,829,874 25 5
Table2VecH 7,962,443 339,433 25 20
Table2VecE 24,863,683 2,159,467 25 50
Table2VecE* 5,367,837 1,285,708 25 50

Table 5.2: Statistics for Wikipedia Table corpus. tables* represents the tables that
have more than 5 rows and 3 columns. Core column refers to the left most column.

Core column Tables in total Tables* in total
existing entities 726,913 212,923
60% entities 556,644 139,572
80% entities 483,665 119,166
100% entities 425,236 78,611
100% unique entities 376,213 53,354

300 dimension, and Graph2Vec is trained on DBpedia 2015-10, which contains 4,641,890
instances and 1,369 mapping-based properties, with 200 dimensions.

Table 5.1 shows the statistics of different Table2Vec embeddings trained by skip-gram
200-dimensional models. The decision to choose 200-dimensional model is both empirical
and for obtaining as good as possible results quickly. It seems like that we are facing
time constrained optimization problem in terms of choosing embedding size, as it can be
expected that using higher dimensional word vectors will improve the accuracy. Mikolov
et al. [68] has experimentally proved that after some point, adding more dimensions
against the same training dataset provides diminishing improvements. Note DBpedia is
used as our knowledge base, which is consistent with the original experiments.

Recall that for table population tasks, we employ a specific type of tables, entity-focused
tables, which contains only unique entities in the left most column. We further constrain
our experiment on the entity-focused tables that have more than five rows and three
columns, so that we can obtain enough samples to simulate a real-world problem. Table 5.2
reports the statistics of Wikipedia Tables corpus. It is obvious that many tables have
an entity focus. To be able to perform an automated evaluation without any human
intervention, we employ entity focused tables that have at least six rows and four columns.
According to Table 5.2, there are 53k tables in total that meet our requirements.

5.1.2 Constructing Groundtruth

The test inputs and ground truth assessments are obtained for the three tasks as follows:
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(a) Row population (b) Column population

Figure 5.1: Illustration of evaluation methodology against table population. E and L
represent the seed entities and seed labels respectively, and gt is the corresponding
groundtruth.

• Row population: we use the test set from [7]. It contains 1000 relational tables
(N + 1 rows and M columns), of which each table has at least six rows and four
columns. Note that the first row is column heading labels, and we refer remaining
N rows as data rows. For evaluation, we take entities from the first i data rows
(i ∈ [1..5]) as seed entities, and the remaining (N − i) entities as ground truth. The
test set contains 21, 502 unique entities, see Fig 5.1(a).

• Column population: we use the test set from [7], consisting of 1000 relational tables.
We take column heading labels from the first j columns (j ∈ [1..3]) as seed labels,
and the rest labels as ground truth. There are a total of 7, 216 unique column
heading labels in this test set. Figure 5.1(b) illustrates the methodology of column
population.

• Table retrieval: we use a set of 60 queries from 2 independent sources (30 queries
from each, see Table 5.3) and corresponding ground truth relevance labels from [4],
which amount to a total of 3, 120 query-table pairs with a three-degree relevance
assessment: (i) 0(non-relevant), which indicates the topic related to the table is
unclear or different from the given key-word query topic. (ii) 1(relevant), which
means some part of the table(cells and values) are related to the given query topic.
(iii) 2(highly-relevant), which means large blocks or several values could be used
directly from it when creating a new table on the query topic. Out of all the queries,
377 are labeled as highly relevant, 474 as relevant, and 2269 as non-relevant.
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Table 5.3: illustration of two query sets.
No. QuerySet 1 QuerySet 2
1 world interest rates table football clubs city
2 2008 beijing olympics healthy food cost
3 fast cars capitals attractions
4 clothing sizes diseases mortality
5 phases of the moon cigarette brands market share
6 usa population by state apples market share
7 prime ministers of england healthy food nutritional value
8 ipod models hormones effects
9 bittorrent clients household chemicals strength
10 olympus digital slrs lakes altitude
11 composition of the sun laptops cpu
12 running shoes asian countries currency
13 fuel consumption diseases risks
14 stock quote tables external drives capacity
15 top grossing movies baseball teams captain
16 nutrition values maryland counties population
17 state capitals and largest cities in us countries capital
18 professional wrestlers diseases incidence
19 company income statements eu countries year joined
20 dog breeds irish counties area
21 ibanez guitars cereals nutritional value
22 used cellphones erp systems price
23 world religions cats life span
24 stocks broadway musicals director
25 academy awards infections treatment
26 2008 olympic gold medal winners food type
27 currencies of different countries board games number of players
28 science discoveries google products reviews
28 pga leaderboard constellations closest constellation
30 pain medications games age

5.2 Row Population

We present the results of row population task in Sect. 5.2.1, followed by further analysis
in Sect. 5.2.2.

5.2.1 Experimental Results

Recall that we have introduced different candidate entities selection methods in 4.2.1,
i.e. from entity category by KB, table caption, and table entities, and from embeddings.
Correspondingly, we explore the row population performance on four alternative baselines
in our task: (i) using relations of entity, (ii) estimating the semantic relatedness of entities
based on outgoing links of them, (iii) based on Jaccard similarity, (iv) based on nearby
words: Table2VecE*. Note that the former three baselines are introduced from literature.

The overall row population results are listed in Table 5.4. The top three lines show the
results of the literature baselines. The middle line illustrates the result of our approach
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Table 5.4: Row population performance. Statistical significance is tested against the
respective baseline.

#Seed entities (|E|)
Method 1 2 3 4 5

MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

BL1 0.4360 0.5552 0.4706 0.5846 0.4788 0.5856 0.4786 0.5779 0.4711 0.5618
BL2 0.2612 0.4779 0.2778 0.4887 0.2845 0.4811 0.2846 0.4808 0.2817 0.4689
BL3 0.2912 0.5024 0.3024 0.4927 0.3028 0.4815 0.2987 0.4780 0.2910 0.4609
Table2VecE* 0.4982‡ 0.7623‡ 0.5522‡ 0.8081‡ 0.5598‡ 0.7993‡ 0.5543‡ 0.7787‡ 0.5476‡ 0.7744‡

BL1+Table2VecE* 0.5581‡ 0.7414‡ 0.6147‡ 0.8141‡ 0.6400‡ 0.8424‡ 0.6524‡ 0.8427‡ 0.6533‡ 0.8372‡

BL2+Table2VecE* 0.5461‡ 0.7710‡ 0.6027‡ 0.8317‡ 0.6187‡ 0.8440‡ 0.6217‡ 0.8389‡ 0.6223‡ 0.8410‡

BL3+Table2VecE* 0.5461‡ 0.7710‡ 0.6027‡ 0.8317‡ 0.6187‡ 0.8440‡ 0.6217‡ 0.8389‡ 0.6223‡ 0.8410‡

Table2VecE*. The bottom three lines are the results of combining the baselines with
Table2VecE*. Out of the three literature baselines, BL1 performs far better than the
other two in terms of both MAP and MRR. This indicates relations given by RDF triples
are more beneficial for capturing entity similarity information. We further notice that
Table2VecE* significantly outperforms all other baseline methods (p < 0.01).

We further combine Table2VecE* with three literature baselines to enhance the perfor-
mance. Note that the combination involves a mixture parameter α (cf. Eq. (4.2.2)). To
understand the potential of using table embeddings, we perform a grid search in steps of
0.1 for the value of α, and report results using the α value that yielded the best MAP
score, see Fig. 5.2. The best performing α values for BL1, BL2, and BL3 are 0.4, 0.0, and
0.0, respectively. This means that the latter two baselines do not contribute at all to the
combination. That is, the bottom two rows of Table 5.4 are based only on Table2VecE*,
hence the scores in these two rows are identical. It also indicates Table2VecE* benefits
from the candidate selection method by three literature baselines, given the performance
is higher than Table2VecE* itself in terms of both MAP and MRR.

Overall, we find that the combined methods outperform the respective baselines sub-
stantially and significantly (p < 0.01). BL1 + Table2VecE* yields the best performance
in terms of MAP, which means Table2VecE* and BL1 are complementary with each
other. It is worth pointing out that the performance of this combined methods improves
more with more seed entities than the baseline BL1, which flattens out already after two
seed entities. This indicates the seed entities are better utilized in our embedding-based
method.

5.2.2 Analysis

We continue to present our analysis of how the combination methods at bottom block of
Table 5.4 influence individual tables. Figure 5.3 shows the result of Average Precision(AP)
difference over individual tables in terms of input at #5. Note that BL1 and E1* refer
to the AP difference of combination method(Table2VecE* & BL1) against baseline BL1
and baseline Table2VecE* respectively. When the difference(∆) is smaller than 0.05, we
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(a) (b) (c)

Figure 5.2: Effect of varying the interpolation parameters for combination methods in
row population. Note that from left to right, each subfigure is corresponding to
combination methods involving BL1, BL2, BL3 respectively.

Figure 5.3: Row population performance of individual tables in terms of Average
Precision difference at #E = 5.

Figure 5.4: Row population performance of individual tables in terms of Reciprocal
Rank difference at #E = 5.

consider no change in terms of AP. The left and right bar groups refers to the number of
tables that have negative and positive improvements separately. When the difference(∆)
is larger than 0.25, we assume significant change against AP, the left most bar group are
the tables that hurt most and the right most bar group indicates tables that benefit the
most.

According to Fig. 5.3, out of all the combination methods in Table 5.4, the number
of tables have negative growth(∆ < −0.05) are much less than that have positive
growth(∆ > 0.05), which indicates the fact that the combination of Table2VecE* and
three other baselines outperforms corresponding individual methods. For BL2 and BL3,
more than 800 tables have increased their AP performance. Recall that those two
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Table 5.5: Column population performance.
#Seed column labels (|L|)

Method 1 2 3
MAP MRR MAP MRR MAP MRR

Baseline 0.2507 0.3753 0.2845 0.4037 0.2852 0.3552
Baseline + Table2VecH 0.2551◦ 0.3796◦ 0.3322‡ 0.4400◦ 0.4000‡ 0.5080‡

methods themselves does not contribute at all to the combination performance, which
means Table2VecE* contributes significantly in the ranking of relevant elements. We
further analyze the ∆AP over Table2VecE*, the number of tables in different groups are
the same when the combined method contains BL2, and BL3. More in detail, 439 tables
has AP improved against Table2VecE*, and 155 tables achieve significant improve. When
the combined method contains BL1, there are 524 tables benefits from the combination
against Table2VecE*, and 236 tables have obtained ∆ > 0.25.

Figure 5.4 shows the result of reciprocal rank improvement over individual tables. We
note that for all methods, a large amount of tables their Reciprocal Rank remain no
change (∆ < 0.05). Also the number of tables in the group of 0.15 < ∆ < 0.25 are less
than 100. Specifically according to the right most bar group, 325 tables have achieved
significantly improvement against BL1, and more than 500 tables have largely improved
their reciprocal rank against BL2 and BL3 (∆ > 0.25). E2* and E3* have the same
behavior, this is consistent with the result in Table 5.4 and they have 169 tables with
Reciprocal Rank improved. When it comes to E1*, the number of tables improved
becomes larger (207) and there are 175 table in the right most bar group (∆ > 0.25).
We further notice that Fig. 5.3 and 5.4 have similar behavior in terms of distribution of
the number of tables.

5.3 Column Population

We report the column population results and analysis in Sect. 5.3.1 and Sect.5.3.2
respectively.

5.3.1 Experimental Results

In Sect. 4.3.1 we have introduced our candidate selection method for column population,
i.e., (i) using table caption, (ii) using column heading labels, (iii) using table entities.
For both performance and comparison reasons, we employ the same candidates from [7]
in our baseline and combined method. The candidates are chosen by the combination of
all three methods listed above.
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Figure 5.5: Effect of varying the interpolation parameters for combination method in
column population.

Figure 5.6: Column population performance of individual tables in terms of Average
Precision.

Table 5.5 shows column population performance. Out of all input levels, we find that
the combined method involving Table2VecH has achieved performance improvement
against baseline in terms of both MAP and MRR. More specific, the combined method
significantly outperforms the baseline method (p < 0.01) in terms of MAP when seed
number exceeds 1, and when |L| = 3 it achieves substantial and significant improvements
(p < 0.01) both in terms of MAP and MRR. Moreover, while the baseline performance
does not improve with more seed column labels, the combined method can effectively
utilize larger input sizes and keeps improving the performance.

According to Fig. 5.5, the interpolation parameter (cf. Eq. (4.3.2)) that yielded the
best performance for the combined method is α = 0.01, which indicates Table2VecH
similarity is assigned much more importance than the baseline. Note that while |L| = 1,
the Mean Average Precision is not the highest at the point α = 0.01. But with more
inputs given, it becomes clear that the best performance is achieved at α = 0.01, hence
we reported the result at this point in Table 5.5. We further notice for both methods,
performance improves along with more seed column labels, because more information is
given for determining the related labels. This phenomenon is consistent with that in our
row population task.
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Figure 5.7: Column population performance of individual tables in terms of
Reciprocal Rank.

5.3.2 Analysis

We continue our analysis of individual tables performance in column population. Fig-
ure 5.6 shows the result of Average Precision difference over individual tables in terms
of three different input levels, #1, #2, #3. We notice that the number of tables that
have no significant change (∆ < 0.05) are the largest among all bar groups. We also
notice that the number of tables that have positive Average Precision improvement
increases along with the more inputs. More in detail, the number of tables with positive
improvement are 85, 323, 446 for inputs at #1, #2, #3 respectively. This is because of
more information given by more inputs, and eventually we achieve better rankings of
some individual tables. We can see from Fig. 5.6, the number of tables remain no change
decreases dramatically from 866 to 367 along with more inputs.

Figure 5.7 shows the result of reciprocal rank difference over individual tables, similarly a
large amount of tables their Reciprocal Rank remains no change(∆ < 0.05). We further
notice that Fig. 5.6 and 5.7 have the same behavior.

5.4 Table Retrieval

In Sect. 5.4.1 we present the evaluation results of table retrieval tasks, and in Sect. 5.4.2
the further analysis is performed in detail.

5.4.1 Experimental Results

Table 5.6 reports the table retrieval results together with the significance testing results
against the baseline. For all methods, their performance improve along with bigger
cut-off point and at NDCG@20, they achieve the highest performance. We notice that
the performance of all the methods improve over the baseline in terms of NDCG@5 but
these improvements are not significant yet. With the cut-off point getting bigger, we
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Table 5.6: Table retrieval evaluation results. Statistical significance is tested against
the baseline.

Method NDCG@5 NDCG@10 NDCG@15 NDCG@20
Baseline 0.5527 0.5456 0.5738 0.6031
Baseline + Word2Vec 0.5954◦ 0.6006† 0.6315‡ 0.6588†
Baseline + Graph2Vec 0.5844◦ 0.5764◦ 0.6128◦ 0.6340◦
Baseline + Table2VecW 0.5974◦ 0.6096‡ 0.6312‡ 0.6505†
Baseline + Table2VecE 0.5602◦ 0.5569◦ 0.5760◦ 0.6161◦

start to achieve statistically improvement over some methods. We note that Table2VecW
and Word2Vec have very comparable performance to each other and they outperform all
other methods and significantly improve over baseline method (p < 0.01). For Graph2Vec
and Table2VecE, we achieve improvements over the baseline in terms of all NDCG cut-off
points, but these are not statistically significant.

The lack of difference between the two word embeddings indicates that it does not make
a difference for the table retrieval task whether word embeddings are trained specifically
on tables or not. These results also show that word embeddings are more beneficial for
table retrieval than entity and graph embeddings.

5.4.2 Analysis

We further conduct analysis of all four different semantic representations listed in Table 5.6
against the baseline method in terms of individual queries, and compute the query-level
differences on the two query subsets between the baseline and our embeddings Table2VecE
and Table2VecW.

In Fig. 5.8, we present the results for both our table embedding methods and baseline
against two query subsets, QuerySet 1 and QuerySet 2, in terms of NDCG@20. We
note that both our table embeddings methods outperform the baseline over two query
subsets. Moreover, out of three methods, the performance on QuerySet 1 exceeds that on
QuerySet 2 which contains more specific queries. Table2VecW has the best performance
among those three, which is consistent with our discover before in Table 5.6.

Figure 5.9 shows the performance of different semantic methods against baseline over
individual queries in terms of NDCG@20. We note that out of four methods, almost
half of the queries their performance remains no change(∆ < 0.05). We notice that
Word2Vec and Graph2Vec have similar distribution patterns. The former one has less
queries that were impaired and more that were improved, while the queries that were
significantly helped were less. Word2Vec outperforms Graph2Vec in terms of the overall
improvement. We further note Table2VecE has least queries that were significantly
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Figure 5.8: Table retrieval results against query subsets in terms of NDCG@20.

(a) Word2Vec (b) Graph2Vec (c) Table2VecW (d) Table2VecE

Figure 5.9: Performance of different methods against baseline over individual queries
in terms of NDCG@20.

helped among all the methods, which is consistent with its overall performance in Table
5.6. As for Table2VecW, it has less queries that were significantly hurt (left most bar)
compared with other methods, and only 9 queries(the left three bars) were hurt in total.
Figure 5.10 illustrates the differences between baseline and Table2VecW over individual
queries in two query subset respectively against NDCG@20. And we present the retrieval
results of the queries we discuss in the following parts in Table 5.7. The left (or right)
most bar represents the query with most significant improvement(or impairment) over
baseline.

For Fig. 5.10(a), the left most bar corresponds to the query, stocks, which has three
relevant tables in the corpus. For the baseline method, it has retrieved none of those
tables, while Table2VecW managed to return the all the relevant ones in the top 4 with
the highly relevant one at the rank of 1. The improvement is up to 0.936 in this case. We
also checked out the rank of stocks by Table2VecE, which remain no change compared
with baseline method. The right most bar represents the result of query used cellphones,
which has only one relevant tables. The baseline method returned the relevant table in
the 9th place, while Table2VecW did not retrieve it at all. And the improvement in this
case is -0.301. For table2VecE, it managed to retrieve the table at the 18th place.

For Fig. 5.10(b), the query that the left most bar represents is food type. The baseline
method managed to return 6 highly relevant tables in the top 18 result, while our
method has found 7 highly relevant and 1 relevant results in the top 19. In this case
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(a) QuerySet 1 (b) QuerySet 2

Figure 5.10: Query-level differences on the two query subsets between the baseline
and Table2VecW.

(a) QuerySet 1 (b) QuerySet 2

Figure 5.11: Query-level differences on the two query subsets between the baseline
and Table2VecE.

the improvement over baseline is 0.2978. Table2VecE also has achieved improvement
against this query. The right most bar is the result of query hormones effects. The
main difference of baseline and Table2VecW results is that the baseline method managed
to return 1 more highly relevant tables, Bisphenol A/Low-dose exposure in animals, at
the rank of 14. Here the impairment is 0.1302. Compared with baseline, Table2VecE
managed to get a better rank of the results, hence an improvement of 0.0569 against the
performance.

Figure 5.11 illustrates the differences between baseline and Table2VecE over individual
queries in two query subset respectively against NDCG@20. In the Fig. 5.11(a), com-
position of the sun is the query corresponds to the left most bar, and it has 1 highly
relevant and 1 relevant tables in the corpus. Table2VecE beats baseline method in this
scenario because it managed to return the highly relevant one in the first place instead
of the second which gives us the improvement of 0.2805. Table2VecW also achieved good
results over this query. The right most bar represents the result of query nutrition values.
The baseline method managed to return up to 10 highly relevant and 1 relevant results
in the top 16, while Table2VecE found only 6 highly relevant ones. This undermined the
performance up to 0.3176. Against this query, Table2VecW outperforms Table2VecE but
not the baseline.

For Fig. 5.11(b), the query eu countries year joined improved the most against baseline
method and two tables are marked as relevant to it in the table corpus. Table2VecE
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Table 5.7: Examples of retrieval results for table embeddings. Note Rel. denotes the
relevance level, B. represents our baseline method, W. and E. here refer to Table2VecW
and Table2VecE respectively. (+) and (−) refer to the query performance is improved
or impaired separately.
Query Rel. B. W. E.
(+)stocks:
Stocks for the Long Run/Key Data Findings: annual real returns 2 - 1 -
Hang Seng Index/Selection criteria for the HSI constituent stocks 1 - 3 -
TOPIX/TOPIX New Index Series 1 - 4 -
(−)used cellphones:
List of companies of Taiwan/D 1 9 - 18
(+)food type:
List of Philippine dishes/Miscellaneous and street food 2 3 1 1
List of Spanish dishes/Others 2 9 7 9
List of Philippine dishes/Pickles and side dishes 2 15 9 10
List of Spanish dishes/Breads and pastries 2 16 3 5
List of Philippine dishes/Breads and pastries 2 17 5 6
List of Malaysian dishes/Dishes 2 18 10 18
List of Malaysian dishes/Noodle dishes 2 - 17 19
List of rice dishes/Rice dishes 1 - 19 -
(−)hormones effects:
List of human hormones/Steroid 2 1 1 1
Bioidentical hormone replacement therapy/Lack of evidence for claims 1 2 2 4
Anterior pituitary/Major hormones secreted 2 3 3 2
Reference ranges for blood tests/Thyroid hormones 1 4 7 6
Hypothalamus/Endocrine hormones 2 7 14 3
Bisphenol A/Low-dose exposure in animals 2 14 - 13
Query Rel. B. E. W.
(+)composition of the sun:
Atmosphere of Jupiter/Elemental abundances relative to hydrogen in Jupiter and Sun 2 2 1 1
White dwarf/Composition and structure 1 3 3 4
(−)nutrition values:
Goat/Basic composition of various milks (mean values per 100g) 2 1 1 1
Crunchie/Nutrition information 2 2 3 3
Parenteral nutrition/Total parenteral nutrition 2 3 4 4
Space Raiders/Nutrition information 2 5 5 5
Sprite Zero/Nutrition 2 6 - 6
Jelly Tots/Nutrition information 2 7 6 11
Pepita/Nutrition 1 8 - 8
Solanum quitoense/Nutrition 2 9 - 9
Indomie Mi goreng/Nutrition Information 2 12 12 13
V8 (beverage)/11.5 fluid ounce (340 mL) can of V8 100% Vegetable Juice (United States) 2 15 - -
Oak (flavoured milk)/Nutrition 2 16 - 16
(+)eu countries year joined:
Mandatory renewable energy target/Selected EU countries 1 - 15 -
National identity cards in the European Economic Area/Overview of national identity cards 1 - 18 -
(−)cereals nutritional value:
Sesame/Sesame seed kernels, toasted 2 1 2 1

outperforms the baseline against this single query because it retrieved both relevant
result in the 15th and 18th place while both the baseline method and Table2VecW found
no match at all. And this gives us an improvement of 0.2976 in terms of NDCG@20.
cereals nutritional value is the query that hurt most in this case with the impairment
of 0.3691 in the performance. Both methods have successfully retrieved the only highly
relevant table, the difference is that the baseline gives a higher rank against Table2vecE.





Chapter 6

Conclusion and Future Work

In this chapter, we present the summary and outlook of our research. Section 6.1 gives a
brief conclusion regarding our work and followed by explanation about the three research
questions given in Chap. 1. In Sect. 6.2, we report the future directions of our research.

6.1 Conclusion

Tables contain information in a structured form which are significantly useful to many
table-related applications. How to leverage tabular data is a problem on its own count.
In this thesis, our goal was to investigate the performance of different table-related tasks
while introducing neural embeddings derived particularly for these tasks. Specifically, We
have introduced Table2Vec, a neural language model for training four different kinds of
embeddings on various table elements. These embeddings are derived based on Wikipedia
Tables corpus which contains only high-quality relational tables, and have subsequently
been utilized in various table-related tasks, such as table population and table retrieval.

For table population, we have concentrated on tables with an entity focus and exper-
imented on two different types of tasks regarding rows and columns respectively. In
more detail, Table2VecE* considers entities from the left most column of the table, and
have been leveraged for row population task. For column population, we have trained
an embedding called Table2VecH based on table column labels extracted from column
headings. We have employed cosine similarity to calculate entity and label pairwise
similarity for row and column population respectively. these calculations were based on
the semantic vector representations we have obtained. For evaluation, we have chosen
candidates through a KB and introduced a process that simulates a user through his
work of populating a table with additional rows and columns. We have shown that our
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methods significantly and substantially outperform all baselines. Especially, when the
number of seed labels becomes larger, Table2VecH achieves 40% relative improvement
over the baseline. For both methods, combining with an effective baseline has leaded to
further improvements.

Table retrieval is a task of returning a ranked list of tables in response to a keyword query.
We have investigated a novel semantic retrieval framework using neural word and entity
embeddings, where queries and tables are represented as semantic vectors. We have
proposed Table2VecW where embeddings are based on all words appearing in a table, and
Table2VecE which extracts all table entities to train the model. We have experimented
on a combination of multiple vector similarity measures for matching those semantic
representations. For evaluation, we have employed the metrics and test collection by [4].
The results have shown significantly improvement of retrieval effectiveness against a
strong baseline.

Recall that we have proposed our research questions in Chap. 1. After the evaluation
and analysis of our results, we are ready to answer them.

RQ1 Can Table2Vec improve table population performance against the state-of-the-art
baselines?

Neural embeddings have shown interesting applications to many existing table-related
domains such as table classification [16, 59], table retrieval [7] but table population. We
have proposed a novel approach utilizing table embeddings to help a user populate a seed
table, and evaluate the performance against baselines using a knowledge base. According
to the results and analysis in Sect. 5.2 and Sect. 5.3, we conclude that methods that
have incorporated our Table2Vec neural embeddings significantly outperform the state
of the art.

RQ2 Would different training datasets affect the embeddings thus the retrieval result?

We consider this research question in terms of table retrieval task. There are some pre-
trained embeddings available for us to use directly in our tasks, such as word embeddings
by [56] based on Google News Data. In this thesis, we have derived our own neural word
embeddings from Wikipedia Tables corpus. In the experiment process, we employ both
models in the table retrieval task, and the results in Sect. 5.4 have shown that it does
not make a difference for the table retrieval task whether word embeddings are trained
specifically on tables or not.

RQ3 Which of the semantic representations performs better in table retrieval?

In this thesis, we have investigated different types of semantic representation in the
task of table retrieval, see Table 5.6. According to our observation, Table2VecE and
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Graph2Vec have achieved improvements over the baseline, but these are not statistically
significant. The method employing Table2VecW outperforms the start-of-the-art baseline
by over 10%. This is on par with using pre-trained Word2Vec embeddings using Google
News data. To summary, word embeddings yields out the best performance among all
the semantic models.

6.2 Future Work

In this thesis, we have investigated the performance of various table-related tasks while
incorporating neural word and entity embeddings. We have achieved considerable
improvements over the state-of-the-art baselines. We have derived these embeddings
particularly on Wikipedia Tables corpus which contains only high-quality relational
tables. In the future, we wish to extend our experiments to other corpus of data, as
well as other types of tables, e.g., entity table and matrix table. We also plan to employ
these Table2Vec embeddings for additional table-related tasks, and further extend our
approach to embed tables themselves, instead of specific table elements.





Appendix A

Resources

Resources developed within this thesis are available at the following GitHub repository:
https://github.com/ninalx/table2vec-lideng

• table2vec-lideng/gt/: This directory contains groundtruth files for three table tasks.

• table2vec-lideng/runfile/: The directory consists of run files for table retrieval and
column population. Run files for row population are too large to be added on
GitHub.

• table2vec-lideng/python/: This directory has Python programs, for indexing tables,
generating groundtruth files, generating run files, etc.

• table2vec-lideng/data/: We put other important data under this path, for example,
test table IDs and search queries.
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