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Abstract 
Patients with cerebral stroke symptoms are typically examined using CT scanning due to its 
availability and efficiency. If the stroke is suspected to be ischemic, a contrast agent is injected 
to increase the contrast in the brain. Several images are acquired as the contrast enters the 
brain. This accentuates the vessels and shows how the contrast distributes in the brain. This 
helps to locate the stroke and the tissue that is affected by it, i.e. if is in risk of getting or 
already is irreversibly damaged.  
 
This thesis uses contrast CT images of 11 stroke patients. The images are registered, and 
methods to remove skull and find vessel segments are developed and evaluated. The skull is 
removed by using wavelet coefficient decomposition to detect edges, and then perform 
thresholding and watershed segmentation to isolate the brain. To detect the vessel segments, 
two methods are implemented. One uses adaptive thresholding and the other uses 
unsupervised clustering based on the features that are typical for vessel segments. Both the 
skull removal and the vessel segmentation have visually been shown to be promising. 
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1 Introduction 
1.1 Motivation 
One out of six Norwegians will experience cerebral stroke in their lifetime [1]. This is a 
dramatic event, as it is likely to result in either disability or death. The occurrence increases 
with age, but both children and young adults can be affected [2]. Approximately one third of 
the patients will die and one third will suffer from permanent disabilities, while the remaining 
part will recover with minor or none permanent injuries [3]. It is the main cause of disability 
and requiring residential care, the third most common cause of death in Norway [4] and the 
second most common cause worldwide [5]. Survivors may suffer from reduced movement or 
paralysis, memory disorder, speech problems, reduced vision, change in mental health, etc. 
[6]. 15 000 people in Norway are affected by this yearly [3], which means that there are around 
40 cerebral strokes each day. In addition to changing the lives of the patients and their 
relatives, the costs for treatment and rehabilitation are expensive for the society. 
 
Stroke patients admitted to Stavanger University Hospital (SUS) are examined with computed 
tomography to diagnose the type of stroke, its location and thereby apply the correct 
treatment. 

1.2 Objective 
The aim of this thesis is to segment regions of interest in CT images of stroke patients, with an 
emphasis on finding penumbra and infarct core in CT perfusion maps, and arteries and veins 
in contrast CT images. 

1.3 Limitations 
As the focus will lie on the image processing, complex pathological and physiological 
explanations will not be given. It will be written from a non-medical technologist’s point of 
view, keeping the use of medical terminology at a minimum. When needed, the medical 
explanations will scratch the surface, but hopefully be in-depth enough to give an 
understanding of the phenomena. To get a better view on the many variations and aspects, 
further reading elsewhere is suggested. 
 
Another limitation is the number of patients. Only data from 11 patients are examined in this 
thesis. 
  



 
 
6 
 
 

2 Background 
2.1 Cerebral stroke 
The brain’s blood supply consists of arteries supplying oxygen-rich blood from the heart to the 
brain, and veins returning used blood from the brain to the heart [7].  
 
A cerebral stroke occurs when the blood supply is somehow disrupted, which leads to death 
of brain cells [8]. This happens when one or several arteries located in the head or neck region 
for some reason are malfunctioning. The reason divides the strokes into two main categories 
seen in Figure 1, which both have different variations and subcategories. Correct diagnosis is 
crucial in terms of applying efficient treatment. As the nature of the two types is different, 
wrong diagnosis and treatment may be mortal. 
 

 
Figure 1: Types of stroke. Source: Ó maniki -  stock.adobe.com. Reprinted using Standard Licence. 

A stroke is classified as ischemic when it happens due to reduced or completely blocked blood 
supply, caused by a blood clot occluding an artery [8]. Responsible for 85-90% of the incidents 
[2], this is the most common type.  
 
The affected region of an ischemic stroke is divided into infarct core and penumbra as seen in 
Figure 2, depending on the current state of the tissue. The infarct core consists of tissue being 
irreversibly damaged or dead due to lack of oxygen [9]. The penumbra is surrounding the core, 
and consists of tissue in risk of becoming permanently injured or dead [9]. Thus, it is still 
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salvageable if the oxygen supply is restored in time. If not, it will eventually transform to 
infarcted tissue. 
 

 
Figure 2: Illustration of penumbra and infarct core. The size and shape of both regions will vary. 

If the stroke occurs due to bleeding, or more specifically an artery leaking blood into or around 
the brain, it is classified as hemorrhagic [8], applying to 10-15% of the incidents [2]. 

2.2 Computed tomography 
The introduction of medical imaging is considered as a giant step, allowing visual inspections 
of the body’s interior to be done non-invasive. The first commercial CT scanner was available 
in 1971 [10], and has evolved through the decades in terms of resolution, scanning time and 
other hardware related aspects [11]. Today, CT scans have a central role in investigating and 
diagnosing stroke patients correctly. Due to its availability and efficiency, patients with stroke 
symptoms are initially investigated with CT in many hospitals. The purpose of the investigation 
is to first determine if it is a stroke, determine the type, and eventually localize the infarction 
core, salvageable and dead tissue [12].  
 
CT is derived from traditional x-ray; the images are acquired sending multiple x-rays through 
the organ being investigated [13]. The patient lies down with an x-ray generator and detectors 
placed in a cylinder around the body part that is examined. This is rotated around the organ, 
shooting x-rays from various angles [0°,360°⟩. The intensity from the transmitter to the 
receiver is then reduced due to attenuation in the tissue [14].  
 
The process can be explained by visualizing the x-ray as a straight line passing through a point 
with polar coordinates (𝜌, 𝜃) in a disk, where the disk is the organ. Mathematically, it is 
described in [14] as 
 

𝐼 = 𝐼.𝑒01(2,3), 
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where 
 

𝑅(𝜌, 𝜃) = 5𝑢(𝜌 cos𝜃 − 𝑠 sin 𝜃 , 𝜌 sin 𝜃 + 𝑠 cos 𝜃) 𝑑𝑠. 

 
𝐼 denotes the detected intensity, 𝐼.denotes the transmitted intensity, 𝑠 is the distance from 
the line entering the organ to the point (𝜌, 𝜃) and 𝑢(𝜌, 𝜃) is the attenuation or optical density 
in the point [14]. By combining intensity measurements from multiple orientations and using 
a reconstruction algorithm, it is possible to reconstruct a 2D image or slice of the organ. If 
several 2D images are reconstructed from several positions, these can be stacked together to 
form a 3D image [13]. 
 
The CT images are saved as DICOM files, which is the standard format for storing medical 
images [15]. The files contain both pixel values and multiple lines of metadata. The latter 
consists of detailed information about the patient and the acquisition process. This includes 
patient information, body part examined, exposure time, x-ray tube current, and more. 
Detailed information about the metadata in a CT DICOM file can be found in [16].  
 
The pixel values are typically 12 bits, which means there are 4096 possible intensity values. 
They are corresponding to the Hounsfield scale [17] with or without an offset and a scaling, 
also known as the rescale intercept and rescale slope [16]. Thus, the relationship between a 
HU value and pixel value is: 
 

𝐻𝑈	𝑣𝑎𝑙𝑢𝑒	 = (𝑟𝑒𝑠𝑐𝑎𝑙𝑒	𝑠𝑙𝑜𝑝𝑒) ∗ (𝑝𝑖𝑥𝑒𝑙	𝑣𝑎𝑙𝑢𝑒) 	+ 	𝑟𝑒𝑠𝑐𝑎𝑙𝑒	𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 
 

as described in [18]. 
 
The Hounsfield unit is a measure of the attenuation of x-rays in a material, and is defined by 
arbitrarily setting the attenuation of air and water to be -1000 and 0 [17], respectively.  

2.2.1 Contrast CT 
A contrast agent is injected to get a better view of the cerebral circulation. When the agent is 
given, a CT scan is performed. Unlike non-contrast CT, multiple images of the same slices are 
acquired over a short time period. As seen in Figure 3, this shows how the agent and hence 
the blood distributes in the brain. 
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Figure 3: Same slice of the brain before and after contrast bolus arrives. 

Since each slice of the brain consists of several two-dimensional images from different 
acquisition times, they can be thought of as three-dimensional images. The spatial information 
will then be in the x,y-plane, and the temporal information will be along the z-axis. Being in 
possession of time data in addition to the images, time-density curves are obtained. They 
show how the attenuation change as a function of time when the contrast medium flows 
through the brain, as seen in Figure 4. Such a curve exists for each pixel in each slice. If 30 
512x512 pixel images are acquired of 15 slices and the brain occupies a third of the area, 
approximately 1.3M curves exist. They are the basis for the CT perfusion modality. 
 

 
Figure 4: Time density curve: Attenuation in a pixel change over time as contrast medium is injected. 

Maximum intensity projection (MIP) and minimum intensity projection (MinIP) seen in Figure 
5 are useful visualizations of the temporal information available in a slice. They are two-
dimensional grayscale images depicting the maximum and minimum pixel intensities for each 
pixel along the time-axis.  
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Figure 5: Maximum and minimum intensity projection. Display range: [1000 1200] 

Other measures that can be derived are from the time-density curves are perfusion 
parameters. The simplest is the time to peak (TTP), which is the time from the contrast 
medium is given to the attenuation reaches its maximum. The other measures are found 
mathematically using either deconvolution or non-deconvolution-based methods [19] 
combining the time-density curves for the tissue, and an arterial and a venous input function. 
The most used commonly used measures in terms of stroke diagnosis in addition to the 
already established TTP, are the cerebral blood flow (CBF), cerebral blood volume (CBV) and 
the time-to-maximum of (TMAX) of the residue function as described in [20]. 
 
The resulting parameters are visualized as parametric color-coded maps as shown in Figure 6, 
indicating the values [19]. By convention, red indicates a high value, and blue/purple indicates 
a low value. In general, a normally perfused brain would have roughly symmetrical perfusion 
maps, with short TTP and TMAX, and high CBF and CBV [21]. 
 

 
Figure 6: Parametric maps visualizing different parameters. 

When interpreting these together, trained medical personnel are able to spot the perfusion 
abnormalities that may indicate a possible ischemic stroke. These are typically low CBF and 
CBV, and long TTP in a region. As Figure 6 shows, there is a notable asymmetry in the 
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perfusion; something is going on in the righti hemisphere. The maps indicate reduced CBF and 
CBV, and increased TTP in the same area, i.e. there is an ischemic stroke. 
 
How to precisely classify core and penumbra in perfusion maps, is an ongoing discussion and 
research topic. The results in the studies are varying, as some present arguments for the use 
of one perfusion parameter alone, and others suggest combinations of these. Lin et al [22] 
describes the penumbra as a region with prolonged TTP/Tmax and normal to slightly 
decreased CBV/CBF, and the infarct core as a region with markedly increased TTP/Tmax and 
low CBV/CBF [22].  

2.3 Segmentation – related work 
Several techniques for general purpose image segmentation exist. There are written several 
in-depth reviews of these and more specific methods to segment blood vessels in different 
imaging modalities [23] [24].  
 
Meijs et al. [25] suggest vessel segmentation using a Random Forests classifier [26] with in 
total 9 different features:  
 

• The weightedii temporal average image [25]. 
• The weighted temporal variance image [25]. 
• The Hessian eigenvalues [25]. 
• The first temporal image [25]. 
• The mean, mode, standard deviation and entropy of the weighted temporal variance 

[25]. 
 
One segmentation technique alone is often not enough to achieve an acceptable 
segmentation, so a combination of several are often used.  

2.4 Registration – a brief introduction 
Image registration tries to align different images acquired of the same object/scene onto each 
other [27]. The purpose is to make equal pixel coordinates correspond to the same spatial 
coordinates [27]. This is necessary if either the camera or the object, or both, have different 
positions in the acquisitions [27]. Another cause can be changes in the acquisition process, 
such as different equipment [27]. 
 
As described in [27], a registration procedure can typically be divided into four parts: 
 

1. Extract features from the images. 
2. Match features in the reference and the moving images. 

 
i CT images depict the brain seen from below; the brain’s directions are opposite to the directions in the image. The left hemisphere is in the 

right side of the image, and vice versa. 
ii The weights are used due to different exposure settings in the different temporal images [24]. 
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3. Estimate a geometric transformation to align the corresponding features.  
4. Transform the images. 

 
How the objects differ in the reference and the moving images, can be described by the 
distortion parameters. The most basic are the ones that preserve parallel lines, as seen in 
Figure 7.  
 

 
Figure 7: A visualization of how an image can be distorted. 
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3 Data material 
The data material consists in total of 4620 contrast CT images and 160 parametric maps of 11 
selected, anonymized patients admitted to SUS from 2014 to 2015. All are suffering from 
ischemic strokes located in one of the hemispheres. An overview of the dataset is given in 
Table 1. Some details about the acquisition processes are found in Table 2. 
 
The perfusion images are 30 images acquired from each of the 13-22 slices with slice thickness 
5 mm, as shown in Figure 8. This means there are 390-660 images for each patient. From 
these, parametric maps containing CBF, CBV, TTP and TMAX are generated for each slice. This 
gives 4x13-22 parametric maps for each patient. 
 

• The CT images are grayscale or intensity images of size 512x512 with pixel values in 
the range [0,4095], with rescale intercept -1024 and rescale slope 1. Thus, a pixel value 
can be translated to a HU value by subtracting 1024 from it. 

• The parametric maps are RGB images of size 512x512x3, with each channel having 
intensity values in the range [0,255]. 

 

 
Figure 8: Left: 13 slices of the head. Right: Temporal images of one of the slices.  

Patient 01 02 03 04 05 06 07 08 09 10 11 
Age 64 56 67 69 65 77 87 70 63 67 83 
Sex M F F M M F F M F F M 
Maps 19 13 13 13 13 13 13 13 22 14 14 
Images 390 390 390 390 390 390 390 390 660 420 420 
Slices 13 13 13 13 13 13 13 13 22 14 14 

Table 1: Overview of the dataset. 
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Patients 01-08 09-11 
Xray tube current 416 350 
Exposure time 600 570 
Exposure 250 200 
kVp 80 80 

Table 2: Exposure parameters. 

As seen in Figure 9, the interval between the samples is shorter in the first half of the scan.  
 

 
Figure 9: The images are non-uniformly sampled due to dose considerations. Example from slice 1, patient 01. 

Before starting processing the CT images, it is necessary to look at how they are arranged. 
Their filenames consist of IM followed by six digits in the range from zero to the number of 
images - 1. For patient 01, the first and last images will then be IM000000 and IM000389, 
respectively. A natural assumption will be that they are sorted either by slice or acquisition 
time. When investigating the DICOM-headers containing information about the series of 
images, this is actually not the case.  
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Figure 10: Comparing image index against time from scan start and slice location. Patient 01. 

As seen in the figure, neither the slice location or time from scan start are strictly increasing 
functions of the image index or file number. Therefore, the images have to be rearranged.  
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4 Methods 
4.1 Segmentation of parametric maps 
To segment core and penumbra, the information available in the parametric maps is used. 
Since the metadata for the perfusion maps contain no information about how the pixel values 
and parametric values relates to each other, it is necessary to establish such a relationship. 
This is done by a simple manipulation of the information available in the image, as described 
in Algorithm 1. 
 

Input: Parametric map. Color bar. 
1. Assign a parametric value to each color in the bar, ranging from 0 to the max of the 

parameter range. 
 

2. Find the unique colors in the map. 
 

3. Compare the colors in the bar and in the map. 
 

4. The bar is expanded with the colors that differs. 
 

5. Convert the color bar to the HSV color space. 
 

6. Sort the colors by hue, saturation and value. 
 

7. Assign a parametric value to the added colors by averaging the parametric values 
below and above. 

 
8. Convert the color bar back to RGB. 

Output: Matrix containing the relationship between colors and parametric values. 
Algorithm 1: Manipulation of the pixel information to establish a relationship between pixel values and parameter values 
when no such information is included in the metadata. 

Each map contains a color bar depicting the range of the parameter as seen in Figure 11. The 
TMAX and the TTP maps have equal color bars, but with ranges [0, 12] and [0, 20], 
respectively. The CBF and CBV maps also have equal color bars, but with ranges [0, 100] and 
[0, 6], respectively. The bars have 256 unique colors, which gives 256 possible parametric 
values. Examples of RGB and HSV values in Table 3 demonstrate that the colors can be sorted 
by their HSV values. 
 



 
 
17 
 
 

 
Figure 11: Top: Color bar for CBF and CBV. The ranges are [0, 100] and [0,6]. Bottom: Color bar for TTP and TMAX. The ranges 
are [0, 12] and [0, 20]. Values descend from left. 

Index Red Green Blue Hue Saturation Value 
0 254 0 0 0.00 1.00 1.00 
85 169 254 0 0.22 1.00 1.00 
170 42 128 168 0.55 0.75 0.66 
255 95 0 95 0.83 1.00 0.37 

Table 3: RGB values and corresponding HSV values rounded to the two nearest digits. 

Some dissimilar color bands can occur in the extended bars, so the method is not flawless. 
Notice e.g. that there is a thin, dark line almost at the right edge of the extended bar which 
differs from the surrounding colors. Apart from this, the method seems to function reasonably 
when the original and extended bars are compared by visual inspection, as they look pretty 
similar. 
 

 
Figure 12: Top: Original color bar. Middle: Colors in a map that are not present in the color bar. Bottom: Expanded color bar. 

All the colors have now been associated with a parametric value. Thus, the segmentation of 
the maps can be done by setting the parametric values that best define the regions of 
interests. 
 
The hemisphere affected by the stroke is located by dividing the TMAX mask containing TMAX 
values above 6 into two halves, and then counting the number of pixels. The half with the 
largest number is the region of interest, and the other half is set to zero. Since all the patients 
have strokes located in one of the hemispheres alone, this can be done. The next step is to 
classify the tissue as either salvageable or irreversibly damaged, i.e. penumbra or infarct core. 
This is done by combining the TMAX mask and the CBF mask.  
 
The CBF threshold defining infarct core is set to 30% of the mean CBF in the healthy 
hemisphere. When the infarct core in the ROI is found, the remaining tissue in the TMAX mask 
is classified as penumbra. I.e. the TMAX-CBF mismatch is used to determine the state of the 
tissue. Both the values and the parameters can be changed to see how this affects the 
penumbra and core estimates. 
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4.2 Segmentation of CT images 
To find the vessels in the contrast-enhanced CT images, several processing steps are required. 
These are divided into four main parts, which each contains several sub-parts. 
 

1. The images are rearranged, so that they are sorted in a logical fashion. 
 

2. The images are registered to compensate for patient movement. 
 

3. The skull and other uninteresting parts are removed. 
 

4. The vessel segmentation is performed. 

4.2.1 Rearranging images and removing redundant data 
This method simply just rearranges the images, so that they are sorted temporally. For each 
image, acquisition time and slice location contained in the DICOM header are read. When this 
information is gathered for each patient, the images are sorted by slice and time, respectively. 
This preparation of the data is crucial, and is probably done by default in most of the 
commercially available software in the hospitals. 
 
As an additional step, removal of redundant data is performed in the same method. Only the 
largest object that is brighter than 400, i.e. the head, is kept. This removes parts of the table 
being visible in some of the images, as seen in Figure 13. If it is not removed, it might degrade 
the performance of the registration, as the table is fixed, and the head is not. This also 
suppresses unwanted information present as low-intensity pixel values in the background. 
This is only visible when manipulating the display range for pixel intensities, as seen in Figure 
14. 
 
In addition, all pixel values below 800 are set to 0. This can be done since the brain typically 
has pixel values above 1000 [28]. 
 

 
Figure 13: Parts of the table visible in some of the images. 
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Figure 14: Left: Image displayed with its full intensity range. Right: Same image displayed with intensity range [0,50], meaning 
that all values from 50 and above will be interpreted as white. This reveals low-intensity noise in the background. 

4.2.2 Image registration 
To spatially align the images in each slice, the images are registered using the similarity 
transformation. Thus, translation, rotation and scaling will be compensated for. Two methods 
are evaluated, which use different optimizers and similarity metrics.  
 

Input: All the images in a slice.  
1. Reference = First image. 

 
2. Moving = The remaining images. 

 
3. For each of the moving images: 

a. Compute the phase correlation between the reference and the moving 
images to estimate an initial geometric transform. 

 
b. Use the initial geometric transform as a start, and iteratively find the 

geometric transform that optimizes the similarity metric. 
 

c. Align the moving image to the reference using the geometric transform. 
End 

Output: Images that are spatially aligned. 
Algorithm 2: A description of the image registration. 

The first temporal image in each slice is set as the fixed image, and the 29 remaining are 
registered against this. Both methods are iterative and use an optimizer to get the best 
similarity between the images. The registration is intensity-based but use phase correlation in 
addition to estimate an initial geometric transformation. The difference between the methods 
is the optimization algorithm and the similarity metric used. 
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In the first method, the images are treated as monomodal images. The regular step gradient 
descent algorithm minimizes the mean squared error between the fixed and the registered 
image. The second treats them as multimodal images. The one-plus-one evolutionary 
optimizer maximizes the mutual information contained in the fixed and the registered images. 
Both methods estimate an initial geometric transformation by computing the phase 
correlation described in [29].  
 
The optimal optimization parameters can be found experimentally. Adjusting each of them 
individually and evaluate the result is time consuming. Instead, a simple approach can be to 
adjust the default parameters by the same scaling factor. This is done for the One-Plus-One 
Evolutionary optimizer as follows: 
 

𝐺𝑟𝑜𝑤𝑡ℎ𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐺𝑟𝑜𝑤𝑡ℎ𝐹𝑎𝑐𝑡𝑜𝑟 − 1

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 + 1 

 

𝐸𝑝𝑠𝑖𝑙𝑜𝑛 =
𝐸𝑝𝑠𝑖𝑙𝑜𝑛
𝑆𝑐𝑎𝑙𝑖𝑛𝑔 

 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑎𝑑𝑖𝑢𝑠 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑎𝑑𝑖𝑢𝑠
𝑆𝑐𝑎𝑙𝑖𝑛𝑔  

 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∗ 𝑆𝑐𝑎𝑙𝑖𝑛𝑔. 

 
The intensity levels of the skull are assumed to be constant during the scan, as it is unaffected 
by the bolus. Secondly, it is significantly brighter than the brain. Under these assumptions, a 
measure is to see how the skull is aligned in the images being registered. Logical arrays 
containing pixels brighter than 1900 are found for the reference, the moving and the 
registered images. The thought is that these will contain only the skull. These are then 
combined using an exclusive or operation, and then compared with respect to the number of 
ones. A low number of ones will then indicate a good registration. The means for the images 
are computed, which gives the error for each patient. This is used to evaluate the performance 
of the registration in addition to the traditional performance measures mutual information 
and mean squared error.  

4.2.3 Skull removal 
When the images are registered, the skull can be removed. To do this, it is necessary to state 
the features describing it. 
 

• In contradiction to the brain, the skull is unaffected by the contrast bolus. Thus, its 
intensity values will not change over time, and can be assumed to be in a constant 
range. In addition, the skull is brighter than the rest. 

 
• The skull is characterized by a sudden change in the brightness. 

 
• The sudden change in brightness can also be thought of as high frequencies. 
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Based on these properties, at least three different methods to detect the skull can be derived. 
 

1. The simplest will be to detect it by thresholding. A challenge here is the nature of the 
images. Since each image actually depicts a 5 mm thick slice, a potential problem is 
that bone can be partially occluded by tissue. It will then appear with a lower intensity 
value. Another possible problem is that the density of the bone may vary between the 
patients, and also from slice to slice. Thus, it is discarded. 
 

2. When a change is apparent, it implies that the derivative and thus the gradient of the 
image contain useful information. A method is therefore to use traditional first- or 
second-order operators to detect the edges, which then will correspond to the skull.  
 

3. The transition between the skull and the brain will correspond to a high frequency. 
Since the Fourier transform contains no information about their location, wavelets 
seem like a useful approach. 

4.2.3.1 Edge detection with wavelets 
The idea is that the edges can be characterized by another feature than their gradient, which 
is the frequencies. With these, the images are decomposed into detail and approximation 
coefficients. The high frequencies, i.e. the edges, will then be found in the detail coefficients, 
which are 3 matrices containing the vertical, horizontal and diagonal details. 
 

 
Figure 15: Example of decomposed coefficients. 

As the figure shows, the skull is clearly visible in both the horizontal and vertical detail 
coefficients. There is also some information present in the diagonal coefficients, but this is 
hard to see. These results tell that the wavelet approach also will be able to detect the edges, 
like initially hypothesized. 
 
In the given application, it is desirable to retain the dimensions of the original image. Thus, 
downsampling is both unwanted and unnecessary. This implies the selection of the discrete 
stationary wavelet transform. With a chosen wavelet and a given number of decomposition 
levels, the wavelet coefficients are found. As these can be either positive or negative, some 
sort of standardization is useful. A rescaling is done which maps the coefficients to positive 
integers in the range [1,1000]. 
 
The edge detection is performed in the wavelet domain. This is done by thresholding the detail 
coefficient matrices by an appropriate value, either absolute or relative, and then combine 
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these by logical OR operators. The result will then be a binary mask with the edges, which 
ideally corresponds to the skull. This is then treated in a similar way as the mask in the previous 
subchapter. The al 
 

Input: CT perfusion image, Im 
1. [cH,cV,cD] = Horizontal, vertical and diagonal detail coefficients of Im. 

 
2. [cH,cV,cD] = Rescale coeffcients to the range [1,1000]. 

 
3. T = 14, threshold value found by trial and error. 

 
4. EdgeMask = cH>T OR cV>T OR cD>T 

Output: Binary image, EdgeMask 
Algorithm 3: Algorithm to detect edges using wavelets. 

4.2.3.2 Processing the edge masks 
For the first temporal image in each slice, the skull and other unwanted parts are removed. 
This gives a mask which isolates the brain. The resulting mask can then be applied to the 
remaining 29 images in the slice, since these are registered against the first. To get this mask, 
several processing steps are performed on the binary mask containing the edges found either 
by traditional edge detection or wavelets. 
 
The second part of the algorithm consists of some simple operations performed on the edge 
mask to prepare it for the next steps. The objects are filtered by area, so that only the largest 
objects in the mask are kept. These are then filtered with a Gaussian filter to give smoother 
boundaries, and at last their holes are filled. 
 
The third part consists of segmenting the mask found in the previous part. When the brain 
appears as a fairly round object surrounded by a dense and coherent skull, which typically is 
the case in the upper slices, the previous part alone is enough to isolate it. In the lower slices 
it gets more challenging. The brain can then be separated into many different parts by the 
skull. In addition, there are other disturbing objects as well, i.e. the eyes and more, as seen in 
Figure 16. It is necessary to distinguish between these. 
 

 
Figure 16: The skull is not a coherent, ellipsoid-like edge in the lower slices. 
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The transition between the eyes and the brain are often seen as a narrow passage. The idea 
is to differentiate these from each other by using Watershed segmentation. The eyes will then 
make one catchment basin each, and the brain another, which are separated by the narrow 
transition which will correspond to the ridge line. The steps in Algorithm 4 are from the 
method outlined in [30]. 
 

Input: Binary image, EdgeMask 
1. D = Compute the negative Euclidean distance transform of the inverse edge mask. 

 
2. H_min = Compute the H-minima transform of D to remove the shallowest regions. 

 
3. BW_min = Only the regional minima of H_min. 

 
4. D = Impose BW_min on D. 

 
5. L = Compute the Watershed transform of D. 

Output: Label matrix, L 
Algorithm 4: Algorithm to separate the brain from the rest. 

When the different segments are found, they are analyzed by looking at their properties. This 
is the fourth part. The first property describing a region is the area. The largest region is 
assumed to be a part of the brain. For the remaining regions, the perimeter values and 
Euclidean distance to the largest region are computed. Using the perimeter value P and the 
area A, the circularity measurement defined as  
 

𝐶 =
4𝜋𝐴
𝑃a  

 
in [31] for a region is computed. If either the area or the circularity value is too small, or the 
distance to the largest object is too large, the region is removed. The binary mask will now 
contain ones where the brain is located. When the input image is multiplied by the mask, the 
output will be an image only containing the brain. The algorithm is shown in Algorithm 5. 
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Input: Label matrix, L 
1. A = Compute area of all the regions in L. 

 
2. For all except the largest region: 

P = Perimeter of the region. 
 
CF = Circularity factor of the region. 
 
Dist = Euclidean distance between the region and the largest region. 
 
If cf<0.45 OR Dist>170 OR A<500 

Remove region. 
End 

End 
 

3. BW = Binary mask with all regions. 
Output: Binary mask, BW. 

Algorithm 5: Algorithm for removing objects that are not a part of the brain. 

A walkthrough of the skull removal is shown in Figure 17. 

 
Figure 17: A visualization of the different steps in the skull removal. 

4.2.4 Vessel segmentation 

4.2.4.1 Preprocessing 
The background is completely black with intensity 0, while the brain typically has intensities 
above 1000. This gives a sharp transition between them. This can possibly lead to unwanted 
and unexpected behavior when applying different processing techniques to the images, e.g. 
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when smoothing. To avoid this, the zero elements, i.e. the background, are replaced by the 
mean of the non-zero elements, i.e. the foreground. This is demonstrated in Figure 18. 
 

 
Figure 18: Replacing zeros by mean of non-zero elements to avoid sharp transition between brain and background. 

To reduce the influence of noise and possible errors introduced in the registration, a 
smoothing is necessary. A simple 3D Gaussian smoothing filter specified with standard 
deviations  
 

[𝜎c 𝜎d 𝜎e] = [0.25 0.25 1] 
 
and kernel size 3	𝑥	3	𝑥	5 is applied to the images in each slice. Thus, the images are smoothed 
in both the spatial and temporal direction. These parameters have been chosen by visually 
inspecting the outcome. Other more sophisticated filters have not been taken into 
consideration, but can possibly yield a better result. 

4.2.4.2 Segmentation using adaptive thresholding 
To segment the vessels, the available temporal information has to be exploited. The idea is 
that the vessels will be found in the regions where the change in pixel intensities are most 
prominent. These are best visualized by looking at the MIP and MinIP as described in chapter 
2.2.1. By taking the absolute difference between these, a difference image is created. This will 
then be a visualization of the maximum difference in attenuation during the scan, and is the 
image to be used in the segmentation. 
 
To preserve the edges, but reduce noise, a bilateral filtering as described in [32] is performed 
as a preprocessing step. This is shown in Figure 19. 
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Figure 19: Bilateral filter applied to reduce noise in the difference image. 

Another property that can be exploited is the shape of the vessels. A filter developed to 
enhance vessel-like structures is applied [33].  
 
The segmentation of the vessels is performed on the difference images mentioned in 4.2.4.1. 
The idea is to find the vessels by using the information available in the time density curves. 
The vessels are assumed to be characterized as the pixels with the largest change in 
attenuation. 
 

Input: All temporal images in a slice, ImAll 
1. [MinIP,MIP] = minimum and maximum of ImAll in the t direction. 

 
2. Imdiff =	|MIP-MinIP| 

 
3. B = Apply vessel enhancement filter to Imdiff 

 
4. BW = Apply adaptive thresholding to B. 

Output: Binary mask, BW 
Algorithm 6: Finding vessel candidate segments with difference image and adaptive thresholding 

4.2.4.3 Segmentation using feature extraction and clustering 
Inspired by the work of Meijs et al. [25], a possible vessel segmentation method without 
ground truth available is to perform a clustering of the non-zero pixels, i.e. the tissue. The idea 
is that if proper features that describe vessels are used, the tissue can be divided into vessel 
and non-vessel pixels. As the largest amount of pixels will be non-vessels, the cluster 
containing least observations will correspond to the vessel cluster. 
 
The features that are used are the temporal average and variance, the local entropy and 
standard deviation of the temporal variance and the first temporal image as described in [25]. 
Notice that the temporal average and variance images not are weighted as suggested in [25]. 
This is not necessary since all the temporal images for a patient have the same exposure in 
the given dataset. The features are visualized in Figure 20. In addition, the difference image 
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and the output of the vessel enhancement filter B [33] as described in chapter 4.2.4.2 are 
used.  
 

 
Figure 20: Different features that can be used in a clustering-based segmentation approach. 

As these features seems to accentuate the regions where the vessels are located, these seem 
promising to use in the feature-based segmentation. Thus, the proposed method is described 
in Algorithm 7. 
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Input: Imdiff, B, ImAll 
1. TV = The variance of ImAll in the temporal direction. 

 
2. TA = The average of ImAll in the temporal direction. 

 
3. TV_STD = Local standard deviation of the TV. 

 
4. TV_E = Local entropy of the TV. 

 
5. Im1 = First temporal image. 

 
6. D = Feature vector containing [Imdiff, B, TV, TA, TV_STD, TV_E, Im1]. 

 
7. C = Kmeans clustering of D. 

 
8. BW = Binary mask containing the cluster with least elements. 

Output: Binary mask, BW.  
Algorithm 7: Finding vessel candidate segments with clustering of features that accentuate vessel-like regions. 

4.2.4.4 Remove segments 
Since the time-density curve of a vessel is expected to be shaped as a bell, it is useful to do a 
curve fitting of the data points. Assuming uniform sampling, the TDC can be described by a 
Gaussian function on the form  
 

𝑦(𝑥) = 𝑎𝑒0..ij
c0k
l m

n

+ 𝑑, 
 
where a is the maximal change or the peak in attenuation, b is the time to peak, c is the 
standard deviation and d is an offset along the y-axis. Since uniform sampling is assumed in 
the fitting, the sample number is used on the time-axis. Figure 21 shows a curve fitting applied 
to a time-density curve derived from a vessel segment. 
 

 
Figure 21: Example of curve fitting of a TDC of a given vessel. 
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The parameters obtained from the fit can be used as exclusion criteria and error checking for 
the segments. Example of a bad fit is shown in Figure 22. If any of the are outside the range of 
what is reasonable, the segment is probably not a vessel. Another property that can be 
obtained from the curve fitting, is the goodness of fit. Thus, a segment is excluded if any of 
the following conditions are satisfied: 
 

• R-square less than 0.85 
• Offset (d) greater than 1250 or less than 900 
• Attenuation (a) less than 15 
• Time to peak (b) less than 6 or greater than 29 
• Absolute value of standard deviation (c) larger than 7.5 

 

 
Figure 22: Example of an excluded segment. Since the time-density curve fits bad to a Gaussian, it is likely not a vessel. 

4.2.4.5 Clustering to differentiate vessels 
When the segments containing the vessels are identified, the next step is to determine which 
category each vessel belongs to, i.e. if it is either an artery or a vein. The arteries will be the 
pixels that change first, and the veins will be the pixels that change last. In addition, the change 
in attenuation will help distinguish between the types, as the arteries will have a smaller 
increase than the veins. 
 
Since the dataset comes unlabeled, i.e. there is no ground truth available, training and 
evaluating a classification system is not possible. Instead, it is possible to do a clustering that 
tries to cluster the data into different classes based on the underlying relations in the dataset.  
 
To prepare the data for clustering, it is necessary to perform a standardization of the features. 
This is due to the difference in scale between them. Applying the z-score normalization 
defined in as 
 

𝑥opq =
𝑥 − 𝜇(𝑥)
𝜎(𝑥)  

 
to each feature, where 𝜇(𝑥) and 𝜎(𝑥) denote the measured mean and standard deviation, 
they are given equal expectancy 𝜇 = 0 and standard deviation 𝜎 = 1. 
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To cluster the feature vectors, a k-means clustering is performed to cluster the features into 
two possible clusters. The squared Euclidean distance is the metric to minimize. 

4.3 Implementation 
All methods are implemented in MATLAB r2018a using mainly the Image Processing Toolbox, 
the Statistics and Machine Learning Toolbox and the Wavelet Toolbox. The toolbox Fast 
mutual information of two images or signals developed by J. Delpiano [34] is used to 
compute the mutual information in the registration. Five lines of code from [30] are used to 
improve the Watershed segmentation in the skull removal, and to divide vessel segments 
into smaller parts.  
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5 Experiments and results 
5.1 Segment parametric maps 
The first experiment is to validate if the method is able to determine which hemisphere the 
stroke lies in. The results are presented in Table 4. 
 

Patient 01 02 03 04 05 06 07 08 09 10 11 
Suggested R L R R R L L R L L R 
Truth R L R R R L L R L L R 

Table 4: The hemisphere where the stroke is located for each patient. Hemisphere suggested by the method, and truth. 

As there are no errors, the method is able to detect which hemisphere the stroke is located in 
for all of the patients.  
 
To evaluate the method’s ability to estimate the amount of tissue at risk, the total area of the 
penumbra estimated is compared to the expert’s opinion. This is shown in Figure 23. 
 

 
Figure 23: Total area of penumbra for each patient. 

By visually interpreting the result, the estimated area is greater than the expert’s opinion for 
four of the patients. The estimate is less than the expert’s opinion for five of the patients. 
However, there is not much difference. For two of the patients, the calculated area and the 
expert’s opinion are pretty similar. Based on this result, the method seems to give a decent 
estimate of the total area of the tissue at risk.  
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To evaluate the method’s ability to estimate the amount of irreversibly damaged tissue, the 
total area of the estimated infarct core is compared to the expert’s opinion. rCBF<30% of the 
blood flow in the healthy hemisphere is set as the threshold for the infarct core. The results 
are shown in Figure 24. 
 

 
Figure 24: Estimated infarct core area when using rRBCF<30% as threshold, compared to the expert’s opinion. 

This is not as promising as the penumbra estimate. The method tends to overestimate the 
area of the infarct core for most of the patients compared to the expert’s opinion. The 
differences are significant, but decent estimates can be seen for patient 01 and 04.  
 
If the threshold is set to rCBF<25%, this gives the results presented in Figure 25. 
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Figure 25: Estimated infarct core area when using rRBC<25% as threshold, compared to the expert’s opinion. 

The overestimation is reduced, but the method still gives poor performance. It might be better 
to use another parameter in the method to define the infarct core, and look at how this affects 
the estimated area. If CBV<1.25 is used, this gives the result presented in Figure 26. 
 

 
Figure 26: Estimated infarct core area when using CBV<1.25. 
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The estimated area and the expert’s opinion is now less different for all of the patients. The 
overestimation is significantly reduced compared to when rCBF is used. 

5.2 Registration of CT images 
To determine which optimization algorithm and similarity metric to choose for further 
evaluation, two registrations are performed that treat the images as monomodal and 
multimodal images, respectively. The monomodal registration uses Regular Step Gradient 
Descent algorithm with the optimizer parameters in Table 5, and optimizes the Mean Squared 
Difference. 
 

GradientMagnitudeTolerance 1.00e-04 
MinimumStepLength 1.00e-05 
MaximumStepLength 6.25e-2 
MaximumIterations 100 
RelaxationFactor 0.5 

Table 5: Parameters when treating the images as monomodal images, with the Regular Step Gradient Descent Optimizer 
optimizing the mean squared difference. The default parameters in the Image Processing Toolbox are used as a starting point. 

The multimodal registration uses the One-Plus-One Evolutionary algorithm, and optimizes the 
mutual information. The optimizer parameters used are found in Table 6. 
 

GrowthFactor 1.05 
Epsilon 1.5e-6 
InitialRadius 6.25e-3 
MaximumIterations 100 

Table 6: Parameters when treating the images as multimodal images, with the One-Plus-One Evolutionary Optimizer 
optimizing the mutual information. The default parameters in the Image Processing Toolbox are used as a starting point. 

As the optimizers are different, the only mutual parameter is the MaxiumItereations. All the 
parameters presented are the default parameters suggested in. This yields the result in Figure 
27. 
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Figure 27: Similarity metrics when treating the images as monomodal and multimodal images with different optimizers.  

The result clearly shows that treating the images as monomodal gives poor performance. In 
contradiction to the purpose of the registration, the mean squared error is actually increased 
compared to what it was before. In addition, the mutual information after is reduced 
compared to their values prior to the registration for all patients except number 11. From 
these results, the monomodal registration degrades the similarity between the images. Thus, 
this method is discarded, and the images will have to be treated as multimodal images, even 
though they come from the same scanner and modality. This is probably due to the change in 
contrast during the scan. The registration method selected for further evaluation is therefore 
the One-Plus-One evolutionary optimizer with the mutual information as the similarity metric 
to optimize. Notice that even though the mean squared error is not used as the metric to 
optimize, it is still significantly reduced. 
 
To further improve the registration with respect to the similarity metrics, the parameters are 
adjusted by increasing the scaling factor to 2. This yields the new optimizer parameters found 
in Table 7. 
 

GrowthFactor Epsilon InitialRadius MaximumIterations 
1.025 7.5e-7 3.125e-3 200 

Table 7: Parameters with scaling factor 2. 

As seen in Figure 30, there is a reduction in the mean squared error for all of the patients when 
the scaling factor is set to 2. In addition, the skull seems to align better when inspecting the 
error seen in Figure 28. The mutual information is also increased, but the change here seems 
to be smaller than for the other similarity metrics.  
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To see if the registration can be improved again, the scaling factor is now set to 4. This yields 
the new optimizer parameters seen in Table 8. 
 

GrowthFactor Epsilon InitialRadius MaximumIterations 
1.0125 3.75e-7 1.5625e-3 400 

Table 8: Parameters with scaling factor 4. 

As the results show in Figure 30, there is another reduction present in the mean squared error. 
In addition, the alignment of the skull seems to be better, when inspecting the error in Figure 
28. This tells that registration is improved. However, the mutual information is hardly 
changed, as seen in Figure 29. 
 
To see if there are more improvements to gain, the scaling factor is set to 8. This gives the 
optimizer parameters presented in Table 9. 
 

GrowthFactor Epsilon InitialRadius MaximumIterations 
1.00625 1.875e-7 7.8125e-4 800 

Table 9: Parameters with scaling factor 8. 

As the results show in Figure 30, the reduction in the mean squared error is significantly 
smaller when going from scaling factor 4 to 8 than from 2 to 4. The same goes for the reduction 
of the error, as seen in Figure 28. Based on these metrics, the registration is improved, but not 
as much as before. Again, the mutual information is hardly changed, as seen in Figure 29. 
Judging from these results, the registration is about to converge. Thus, a further increase in 
the scaling factor will probably not result in any large improvements in the registration 
performance. 
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Figure 28: Error before and after registration. 

 
Figure 29: Mutual information before and after registration. 

 
Figure 30: Mean square error before and after registration. 

To get the best possible registration performance with this method, it would be better to tune 
and evaluate the influence of each of the parameters individually. The reason for not doing 
this, is that it is time consuming to do, as the optimization algorithm is iterative. Thus, it is not 
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particularly feasible to do with a limited amount of computational power. However, the 
method suggested with a single scaling factor has shown to be a simple way to improve the 
registration to some extinct.  
 
The similarity metrics are useful to get a measure of the performance, but it is also useful to 
visually inspect the effect of the registration.  
 

 
Figure 31: Images before registration and after registration with scaling factor 1, 2 and 8. Images from patient 4, slice 3. 
Differences between the images are colored as green and magenta. 

By visual inspection, the registration clearly reduces the difference between the images. An 
interesting observation is the similarity between images registered with different scaling 
factors. It is hard to say which of the registrations performs best when inspecting comparing 
the registered images. There is also another important and interesting insight, which also can 
be seen from Figure 28, Figure 29 and Figure 30 containing the similarity metrics. The largest 
jump in similarity comes when the images are registered. The increase when tuning the 
parameters is way smaller.  
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5.3 Skull removal 

5.3.1 Selection of wavelet 
To select which wavelet to be used in the edge detection, several different wavelets are 
evaluated. This is done by visually inspecting the result of the edge detection, and then select 
the one which best accentuates the skull. 1 decomposition level is used as a starting point.  
 
When choosing the Haar wavelet, this gives the detail coefficients seen in Figure 32 
 

 
Figure 32: Detail coefficients when using the Haar wavelet. 

The contours of the skull are clearly visible in both the horizontal and vertical details. There 
are also some diagonal details present. This implies that the Haar wavelet is suitable for 
detecting edges in the given images. 
 
When choosing the Biorthogonal 2.2 wavelet, this gives the wavelet detail coefficients seen in 
Figure 33. 
 

 
Figure 33: Detail coefficients when using the Biorthogonal 2.2 wavelet. 

The contours of the skull are now less visible in all of the detail coefficients. Thus, this wavelet 
does not perform better than the Haar wavelet and is therefore not suited for detecting edges 
in the given application. 
 
When choosing the Daubechies 2 wavelet, this gives the wavelet detail coefficients seen in 
Figure 34 
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Figure 34: Detail coefficients when using the Daubechies 2 wavelet. 

From this result, the Daubechies 2 wavelet performs slightly better than the Biorthogonal 2.2 
wavelet. However, the performance is still worse than the Haar wavelet. 
 
When trying the Discrete Meyer wavelet, this gives the wavelet detail coefficients seen in 
Figure 35. 
 

 
Figure 35: Detail coefficients when using the Discrete Meyer wavelet. 

This result clearly demonstrates that the Discrete Meyer wavelet is not suitable for edge 
detection in the given application, as it hardly detects edges in any of the directions. 
 
When choosing the Biorthogonal 1.5 wavelet, this yields the result presented in Figure 36. 
 

 
Figure 36: Detail coefficients when using the Biorthogonal 1.5 wavelet. 

The performance of the Biorthogonal 1.5 is similar to the Haar wavelet. This is as expected, 
since the non-zero coefficients in the decomposition high-pass filters for the two wavelets are 
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equal. The only difference is the filter length. However, there is a difference in one of the slices 
as seen in Figure 37. The edge detected by the Biorthogonal 1.5 wavelet, seen as cyan in Figure 
37, seems to correspond better to transition between the brain and the skull than the edge 
detected by the Haar wavelet, seen as red in Figure 37. Thus, the Biorthogonal 1.5 becomes 
the selected wavelet. 
 

 
Figure 37: Cyan: Biorthogonal 1.5 wavelet used for edge detection. Red: Haar wavelet used for edge detection. Crop of patient 
11, slice 14. 

5.3.2 Result of the skull removal 
To evaluate the performance of the skull removal, the resulting brain masks for the four lowest 
slices and then every other slice in patient 01 and 06 are presented. These are shown in Figure 
38 and Figure 39, respectively. The result for the other patients are similar. 
 

 
Figure 38: Contour of the brain found when patient 01's skull. The four lowest slices and then every other slice is presented. 
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Figure 39: Contour of the brain found when patient 06' skull. The four lowest slices and then every other slice is presented. 

5.4 Segment arteries and veins in CT images 
The experiments will be to find the vessel candidate segments and thereafter remove the 
segments that likely not are vessels. With no ground truth available, the results of the vessel 
segmentation are best presented visually. Three slices from every other patient are presented. 
A slice where the vessels are particularly prominent is chosen for each patient in addition to 
the top and bottom slices. 

5.4.1 Finding vessels in patient 01 
The vessel segments found in slice 1, 5 and 13 for patient 01 are shown in Figure 40, Figure 41 
and Figure 42, respectively. 
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Figure 40. Vessel segments found in the bottom slice of patient 01. 

 

 
Figure 41: Vessel segments found in slice 5 of patient 01. 
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Figure 42: Vessel segments found in the top slice of patient 01. 

5.4.2 Finding vessels in patient 03 
The vessel segments found in slice 1, 5 and 13 for patient 03 are shown in Figure 43, Figure 44 
and Figure 45, respectively. 

 
Figure 43: Vessel segments found in the bottom slice of patient 03. 
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Figure 44: Vessel segments found in slice 5 of patient 03. 

 
Figure 45: Vessel segments found in the top slice of patient 03. 

5.4.3 Finding vessels in patient 05 
The vessel segments found in slice 1, 4 and 13 for patient 05 are shown in Figure 46Figure 
47Figure 48 
 



 
 
46 
 
 

 
Figure 46: Vessel segments found in the bottom slice of patient 05. 

 
Figure 47: Vessel segments found in slice 4 of patient 05. 
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Figure 48: Vessel segments found in the top slice of patient 05. 

5.4.4 Finding vessels in patient 07 
The vessel segments found in slice 1, 5 and 13 for patient 07 are shown in Figure 49, Figure 50 
and Figure 51, respectively. 

 
Figure 49 Vessel segments found in the bottom slice of patient 07. 
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Figure 50: Vessel segments found in slice 5 of patient 07. 

 

 
Figure 51: Vessel segments found in the top slice of patient 07. 

5.4.5 Finding vessels in patient 09 
The vessel segments found in slice 1, 3 and 22 for patient 09 are shown in Figure 52, Figure 53 
and Figure 54, respectively. 
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Figure 52: Vessel segments found in the bottom slice of patient 09. 

 
Figure 53 Vessel segments found the top slice of patient 11 
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Figure 54: Vessel segments found in the top slice of patient 09. 

5.4.6 Finding vessels in patient 11 
The vessel segments found in slice 1, 5 and 14 for patient 11 are shown in Figure 55, Figure 56 
and Figure 57, respectively. 

 
Figure 55: Vessel segments found in the bottom slice of patient 11. 
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Figure 56: Vessel segments found in slice 5 of patient 11 

 
Figure 57: Vessel segments found in the top slice of patient 11.  

5.4.7 Differentiating arterial and venous vessels 
To differentiate the vessel segments, the following features are tested in a clustering: 
 

(1) TTP and attenuation (A). 
 

(2) TTP alone. 
 

(3) Parameter b derived from the curve fitting and the attenuation (A). 
 

(4) Parameter b alone. 
 
Parameter b will then correspond to the time to peak when uniform sampling of the images 
is assumed. This results in the clusters for patient 01 presented in Figure 58. 
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Figure 58. Clustering when different features are used to differentiate the segments. (1): TTP and attenuation (A). (2): TTP 
alone. (3) Parameter b from the curve fitting and attenuation (A) is used. (4): Parameter b alone. 

Thus, the clustering suggests the segments for a given slice presented in Figure 59. 
 

 
Figure 59: Segments found in a slice using different features in the clustering. 
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6 Discussion and conclusion 
A method to segment penumbra and infarct core in parametric maps has been developed. It 
is possible to choose any pair of parameter combinations to determine the state of the tissue. 
Thus, it can be used as a framework for future experiments. It has been evaluated using 
combinations of TMAX and CBV or CBF. The results showed that the total size of the penumbra 
estimated were similar to the expert’s opinion when choosing thresholds for the parameters 
defined in the literature. When segmenting the infarct core, the method tended to 
overestimate the area using rCBF<30. Choosing CBV<1.25 gave a result that was more similar 
to the expert’s opinion. 
 
The method provides no novel features, except for segmenting parametric maps in MATLAB 
if the relationship between the true parametric values in a dataset and the colors is unknown 
or incomplete. It is meant as an outline for something that might can be used in future 
research. A possibility is, for instance, to explore the use of the parameters in a classifier. 
 
A method to automatically remove the skull and thus isolate the brain in contrast CT images 
of the brain have been developed. Combining edge detection by using wavelets and 
watershed segmentation has been shown to be a robust and promising solution to the 
problem. Assessing the results visually, the method successfully removes the skull, the eyes 
and other unwanted parts to prepare the images for further processing. 
 
Two proposed methods for identifying vessel segments with different approaches have been 
developed. Both methods seem to detect the segments that are most affected by the contrast 
medium, i.e. the regions that probably are vessels. The segments found by the adaptive 
thresholding method tend to be smaller and fewer, in addition to be more disjoint compared 
to the cluster-based method. The overall impression is though that both are able to find 
approximately the same amount of the most prominent segments. 
 
If a vessel segment is affected by the stroke, i.e. if it lies in, drains or supplies the penumbra 
or infarct core, this undoubtedly influences the time-density curve. This again influences the 
curve fitting and the derived parameters. Thus, it is prone to be removed due to too low 
goodness of fit, e.g. However, not doing an error checking and removal based on the time-
density curves at all, will probably include segments that are not vessels. A possibility is to 
adjust the exclusion criteria or completely disable the curve fitting for the cluster-based 
segmentation. After all, the segmentation assumes that the segments are vessels based on 
several features describing in. Another possibility is to enable curve fitting and removal of 
segments only in the healthy hemisphere, as the time-density curves of vessels here will fit 
best to the suggested model. However, if the method is used in a clinical setting, the location 
of the stroke region is not necessarily known in advance.  
 
A constraint when working with the given dataset has been the limited resolution in the z-
direction, due to the slice thickness being 5 mm. Since the resolution in most of the datasets 
is only 13 pixels, it has not been possible to fully exploit the third spatial dimension. Thus, the 
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focus has been to do the segmentation in 2D. However, it is also possible to collect the 
features from all the slices, and then perform the clustering-based segmentation in 3D. This 
has been implemented, but not compared thoroughly to the 2D segmentation. The initial 
impression is promising, though. 
 
An implication of the slice thickness in the given dataset is that it is harder to detect all the 
vessels, since a pixel actually depicts a 5 mm thick volume. If a small vessel is located deep in 
a slice, it may not be visible in the image, and thus not be found. Another hypothetical 
possibility is that what appears as a segment in the images, actually is different vessels that 
are close to each other in the x and y direction, but not in the z direction. 
 
To differentiate and label the vessels with respect to type, more work needs to be conducted. 
If a clustering is performed, the importance and selection of each feature will have to be 
evaluated, as the results show. 
 
A challenge here is the non-uniform sampling of the data. Since the time between the images 
is increased in the second half of the scan, this gives an increase in the distance between the 
data points along the time axis. The clustering interprets this as a separation, while in reality 
there are missing data points in between. If the contrast agent arrives in a vein just before the 
sample rate is reduced, it is prone to be clustered as an artery. The same goes for an artery 
where the contrast agent arrives after the sample rate is reduced. It will then be prone to be 
clustered as a vein. If a vessel is affected by the stroke, it might end up in the wrong cluster 
due to changes in the time-to-peak or the attenuation. 
 
The performance of all the proposed methods will have to be evaluated in relation to ground 
truth. However, it is expected that both the skull removal and the vessel segmentation will 
have good performance. 
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Attachment A: Matlab code 
matlab code.7z attached 




matlab code/ct images/SegAdaptThresh.m

function [BW,imdiff,imdiff_orig] = SegAdaptThresh(ImAll)
% Vessel segmentation using adaptive thresholding.

% maxIP = cellfun(@max,TDC);
% minIP = cellfun(@min,TDC);
% figure
% imshow(maxIP,[1080 1100])

maxIP = max(ImAll,[],3);
minIP = min(ImAll,[],3);
%
[~,~,v] = find(minIP);
minIP(minIP<900 & minIP>100) = mean(v);

[~,~,v] = find(maxIP);
maxIP(maxIP<900 & maxIP>100) = mean(v);

imdiff = (imabsdiff(maxIP,minIP));
% imdiff_orig = imdiff;

imdiff = imbilatfilt(imdiff,100,'SpatialSigma',3);

imdiff = imdiff.*uint16(~bwperim(imdiff>0));
imdiff = imdiff.*uint16(~bwperim(imdiff>0));
imdiff = imdiff.*uint16(~bwperim(imdiff>0));
imdiff = imdiff.*uint16(~bwperim(imdiff>0));

imdiff_orig = imdiff;
imdiff(imdiff>750 | imdiff<15) = 0;
[~,~,v] = find(imdiff);
imdiff(imdiff  ==  0) = mean(v); %zeros are replaced by the mean value of the non-zero elements

%         [~,~,v] = find(imdiff);
%         imdiff(imdiff<3) = mean(v);

% B = fibermetric(imdiff,linspace(3,25,12));
B = fibermetric(imdiff,linspace(2,18,9),'StructureSensitivity',15);
B(B<0.025) = 0;
BW = imbinarize(B,adaptthresh(B,0.3,'NeighborhoodSize',2*floor(size(B)/128)+1,'Statistic','gaussian'));






matlab code/ct images/SegFeatExtr.m

function [D,c,imdiff_origs,imdiffF] = SegFeatExtr(Im)
% Finds vessel-like segments using feature extraction. 
%
% This method relies on the work of Midas Meijs, Ajay Patel, Sil C. van de
% Leemput, Mathias Prokop, Ewoud J. van Dijk, Frank-Erik de Leeuw,
% Frederick J. A. Meijer, Bram van Ginneken & Rashindra Manniesing in
% "Robust Segmentation of the Full Cerebral Vasculature in 4D CT of
% Suspected Stroke Patients", available here:
% https://www.nature.com/articles/s41598-017-15617-w

se = strel('disk',1); % Structuring element used in a local neighborhood.

n = length(Im);

TVF = cell(1,n);
TV_STDF = cell(1,n);
TV_EF = cell(1,n);
BF = cell(1,n);
meanF = cell(1,n);
Im1F = cell(1,n);
imdiffF = cell(1,n);

imdiff_origs = cell(1,n);

for i = 1:n
    ImAll = Im{i}; % All the temporal images in a slice
    Im1 = ImAll(:,:,1); % The first temporal image
    
    maxIP = max(ImAll,[],3);
    minIP = min(ImAll,[],3);
    [~,~,v] = find(minIP);
    minIP(minIP<900 & minIP>100) = mean(v);
    [~,~,v] = find(maxIP);
    maxIP(maxIP<900 & maxIP>100) = mean(v);
    
    imdiff = (imabsdiff(maxIP,minIP));
    imdiff = imbilatfilt(imdiff,'degreeOfSmoothing',100,'SpatialSigma',3);
    imdiff = imdiff.*uint16(~bwperim(imdiff>1));
    
    imdiff_orig = imdiff;
    
    imdiff(imdiff>750 | imdiff<15) = 0;
    imdiffMask = imdiff>0;
    [~,~,v] = find(imdiff);
    imdiff(imdiff<3) = mean(v);
    
    TV = uint16(var(double(ImAll),0,3)).*uint16(imdiffMask);
    
    % Local entropy calculation of TV in the neighboorhood defined by se
    TV_E = entropyfilt(TV,se.Neighborhood);
    TV_STD = stdfilt(TV,se.Neighborhood);
    
    B = fibermetric(TV,linspace(2,18,9),'StructureSensitivity',15);
    
    % The feature vectors
    imdiffF{i} = reshape(double(imdiffMask).*double(imdiff),512^2,1);
    TVF{i} = reshape(double(imdiffMask).*double(TV),512^2,1);
    BF{i} = reshape(double(imdiffMask).*double(B),512^2,1);
    Im1F{i} = reshape(double(imdiffMask).*double(Im1),512^2,1);
    meanF{i} = reshape(double(imdiffMask).*double(mean(double(ImAll),3)),512^2,1);
    TV_STDF{i} = reshape(double(imdiffMask).*double(TV_STD),512^2,1);
    TV_EF{i} = reshape(double(imdiffMask).*double(TV_E),512^2,1);
    
    % Set the non-zero elements to NaN, so they don't interfere with the
    % clustering.
    TVF{i}(imdiffF{i} == 0) = NaN;
    TV_STDF{i}(imdiffF{i} == 0) = NaN;
    TV_EF{i}(imdiffF{i} == 0) = NaN;
    BF{i}(imdiffF{i} == 0) = NaN;
    meanF{i}(imdiffF{i} == 0) = NaN;
    Im1F{i}(imdiffF{i} == 0) = NaN;
    imdiffF{i}(imdiffF{i} == 0) = NaN;
    imdiff_origs{i} = imdiff_orig;
end

D = normalize([...
    reshape(cell2mat(TVF),2^18*length(TVF),1)...
    reshape(cell2mat(imdiffF),2^18*length(TVF),1)...
    reshape(cell2mat(BF),2^18*length(TVF),1)...
    reshape(cell2mat(TV_STDF),2^18*length(TVF),1)...
    reshape(cell2mat(TV_EF),2^18*length(TVF),1)...
    reshape(cell2mat(meanF),2^18*length(TVF),1)...
    reshape(cell2mat(Im1F),2^18*length(TVF),1)],...
    1,'norm');
%
c = kmeans(D,2,'Distance','cosine','Replicates',10);
% cMat = reshape(c,512,512,1);






matlab code/ct images/VesselClustering.m

function [D_slice] = VesselClustering(D_slice,kkk)
% Clustering of vessel segments to determine if it is an artery or a vein.
% The features used are the time to peak (ttp) and maximal change in
% attenuation (A).
figure

for kkk=1:4

D = cell2mat(D_slice);
D_orig = D;
numseg = cellfun('length',D_slice);

D = normalize(D,1);

if kkk>2
    D = [D(:,3) D(:,2)];
% end
else
    D = [D(:,1) D(:,2)];
end
if kkk==2 || kkk==4
    [c1,centr] = kmeans(D(:,1),2,'Distance','sqeuclidean','Replicates',4);
else
    [c1,centr] = kmeans(D,2,'Distance','sqeuclidean','Replicates',3);
end

D = D_orig;

subplot(2,2,kkk)

centrTTP=[centr];
[~,ind] = min(centrTTP);

if ind==1
    plot(D(c1 == 1,1),D(c1 == 1,2),'r.','MarkerSize',12)
    hold on
    plot(D(c1 == 2,1),D(c1 == 2,2),'b.','MarkerSize',12)
    legend('Artery','Vein')
    
else
    c1 = mod(c1,2)+1;
%     disp('nei')
    
    plot(D(c1 == 1,1),D(c1 == 1,2),'r.','MarkerSize',12)
    hold on
    plot(D(c1 == 2,1),D(c1 == 2,2),'b.','MarkerSize',12)
    legend('Artery','Vein')
end

xlabel('TTP')
ylabel('A')
% 
title(['(' num2str(kkk) ')'])
end

for i = 1:length(numseg)
    if i == 1  
%         c1(1:numseg(i))
        D_slice{i}(:,3) = c1(1:numseg(i));
    else
        D_slice{i}(:,3) = c1(sum(numseg(1:i-1))+1:sum(numseg(1:i-1))+numseg(i));
%         length
    end
end






matlab code/ct images/fitTDC.m

function [A,TTP,bFit,L]  =  fitTDC(imdiff, L, ImAll, realTTP)

% A curve fitting of the most prominent TDC in each vessel candidate
% segment is performed. If the TDC fits bad to a Gaussian or has
% unreasonable parameters, the segment is probably not a vessel - then it
% is removed.

n = max(max(L));
A = NaN(1,n);
TTP = NaN(1,n);
bFit = NaN(1,n);

eq = 'a*exp(-0.5*((x-b)/c)^2)+d';
y = linspace(1,30,30);

for i = 1:n
    [row,col,v] = find(imdiff.*uint16(L == i));
    
    
    [~,ind] = maxk(v,10);
    %     figure
    curves = zeros(10,30);
    for j = 1:length(ind)
        curves(j,:) = reshape(ImAll(row(ind(j)),col(ind(j)),:),1,30);
        %         plot(curves(j,:))
        %         hold on
    end
    
    
    x = mean(curves,1);
    
    % figure
    % plot(curves')
    x_orig = x;
    [cA,~] = swt(x,1,'coif5');
    x = iswt(cA,zeros(1,30),'coif5');
    
    [m,ind] = max(x);
    m = m-mean(x(1:5));
    initCoeff  =  [m ind 1 1060];
    
    [f,gof] = fit(y',x',eq,'Start',initCoeff);
    
    coeff = coeffvalues(f);
    a = coeff(1);
    b = coeff(2);
    c = coeff(3);
    d = coeff(4);
    
    if a<30 || b<6 || b>30.5 || abs(c)>6.5 || d<1000 || d>1300 || gof.rsquare<0.8
        %         figure
        %         subplot(311)
        % imshow(imdiff.*uint16(L == i),[0 100])
        L(L == i) = 0;
        %         remove(i) = 1;
        %         if a>300
        % if i == 17
        
        % %                 figure
        %    subplot(312)
        %             plot(y,x_orig)
        %                     hold on
        %         plot(f)
        %         title(num2str([a b c d gof.rsquare]))
        %         subplot(313)
        %         plot(curves')
        %
        %
        %         title([num2str(i) ' ' num2str(b) ' ' num2str(c) ' ' num2str(d) ' ' num2str(gof.rsquare) ' ' num2str(i)])
        %         end
    else
        A(i) = a;
        TTP(i) = realTTP(round(uint8(b)));
        bFit(i) = b;
        
    end
end
% BW = L>0;







matlab code/ct images/hist2.m

function n=hist2(A,B,L) 
%HIST2 Calculates the joint histogram of two images or signals
%
%   n=hist2(A,B,L) is the joint histogram of matrices A and B, using L
%   bins for each matrix.
%
%   See also MI, HIST.

%   jfd, 15-11-2006, working
%        27-11-2006, memory usage reduced (sub2ind)
%        22-10-2008, added support for 1D matrices
%        01-09-2009, commented specific code for sensorimotor signals
%        24-08-2011, speed improvements by Andrew Hill

ma=min(A(:)); 
MA=max(A(:)); 
mb=min(B(:)); 
MB=max(B(:));

% For sensorimotor variables, in [-pi,pi] 
% ma=-pi; 
% MA=pi; 
% mb=-pi; 
% MB=pi;

% Scale and round to fit in {0,...,L-1} 
A=round((A-ma)*(L-1)/(MA-ma+eps)); 
B=round((B-mb)*(L-1)/(MB-mb+eps)); 
n=zeros(L); 
x=0:L-1; 
for i=0:L-1 
    n(i+1,:) = histc(B(A==i),x,1); 
end
end







matlab code/ct images/mi.m

function I=mi(A,B,varargin) 
%MI Determines the mutual information of two images or signals
%
%   I=mi(A,B)   Mutual information of A and B, using 256 bins for
%   histograms
%   I=mi(A,B,L) Mutual information of A and B, using L bins for histograms
%
%   Assumption: 0*log(0)=0
%
%   See also ENTROPY.

%   jfd, 15-11-2006
%        01-09-2009, added case of non-double images
%        24-08-2011, speed improvements by Andrew Hill

if nargin>=3
    L=varargin{1};
else
    L=256;
end

A=double(A); 
B=double(B); 
     
na = hist(A(:),L); 
na = na/sum(na);

nb = hist(B(:),L); 
nb = nb/sum(nb);

n2 = hist2(A,B,L); 
n2 = n2/sum(n2(:));

I=sum(minf(n2,na'*nb)); 

% -----------------------

function y=minf(pab,papb)

I=find(papb(:)>1e-12 & pab(:)>1e-12); % function support 
y=pab(I).*log2(pab(I)./papb(I));







matlab code/ct images/readme

The files mi.m and hist2.m are from:

J. Delpiano, "Fast mutual information of two images or signals," [Online]. Available: https://se.mathworks.com/matlabcentral/fileexchange/13289-fast-mutual-information-of-two-images-or-signals.






matlab code/ct images/rearrangeImages.m

function rearrangeImages(ImageFolder)
% Rearrange images, so that they are sorted  spatially and temporally.
% ImageFolder specifies the folder name where the patient folders are
% located. The code is meant to function with the dataset used in the
% thesis.
%
% In addition, a simple preprocessing of the images is performed:
%     -Keep only the largest region with intensity values above 400.
%     -Set pixels below 800 to zero.

for p = 1:11
    
    if p<9
        folderPath = ([ImageFolder '/PA0' num2str(p) '/ST000000/SE000001/']);
    else
        if p == 9
            folderPath = ([ImageFolder '/PA0' num2str(p) '/ST000000/SE000000/']);
        else
            folderPath = ([ImageFolder '/PA' num2str(p) '/ST000000/SE000000/']);
        end
    end
    
    n = numel(dir(folderPath))-2;
    n22 = n;
    info = cell(1,n);
    SL = zeros(1,n);
    %     time = zeros(1,n);
    for i = 1:n
        if i<11
            info{i} = dicominfo([folderPath 'IM00000' num2str(i-1)]);
        elseif i<101
            info{i} = dicominfo([folderPath 'IM0000' num2str(i-1)]);
        else
            info{i} = dicominfo([folderPath 'IM000' num2str(i-1)]);
        end
        ny1{i} = i;
        ny2{i} = info{i}.SliceLocation;
        ny4{i} = info{i}.AcquisitionTime;
        
        
        
        ny3{i} = info{i}.MediaStorageSOPInstanceUID;
        if length(ny3{i}) == 51
            indn(i) = str2num(ny3{i}(end));
        elseif length(ny3{i}) == 52
            indn(i) = str2num(ny3{i}(end-1:end));
        elseif length(ny3{i}) == 53
            indn(i) = str2num(ny3{i}(end-2:end));
        end
        %         ny4{i,1} = ny3{i}(55:57);
        SL(i) = info{i}.SliceLocation;
        %         time(i) = str2num(info{i}.AcquisitionTime);
        if ~isequal(info{i}.AcquisitionTime,info{i}.ContentTime)
            disp('Nei')
        end
    end
    
    SL = SL';
    u = unique(SL);
    n = length(u);
    %     figure
    %     subplot(211)
    %     plot(time)
    %     subplot(212)
    %     plot(SL)
    
    %Finn indeks til bilete tatt i same posisjon
    a = cell(1,n);
    for i = 1:n
        a{i} = find(u(i) == SL)-1;
    end
    contT = cell(30,4);
    
    for k = 1:n
        sec = zeros(30,1);
        for i = 1:30
            contT{i,1} = info{a{k}(i)+1}.ContentTime;
            contT{i,2} = i;
            contT{i,3} = a{k}(i);
            
            contT{i,4} = info{a{k}(i)+1}.MediaStorageSOPInstanceUID;
            H = str2double(contT{i,1}(1:2))*3600;
            M = str2double(contT{i,1}(3:4))*60;
            S = str2double(contT{i,1}(5:end));
            sec(i,1) = H+M+S;
        end
        
        contT = sortrows(contT);
        
        contentTime = contT(:,1);
        acqTime = str2double(contT(:,1));
        %         timesec{p}{k} = acqTime-acqTime(1);
        sec = sortrows(sec);
        timesec{p}{k} = sec-sec(1);
        for i = 1:30
            tempNumb(i) = contT{i,3};
            tempNumbOrig(i) = contT{i,2};
        end
        tempOrder{p}{k} = tempNumb';
        tempOrderOrig{p}{k} = tempNumbOrig';
    end
    
    if 0
        for k = 1:n
            for i = 1:30
                j = a{k}(i);
                
                if j<10
                    %Image{p}{k}{i} = dicomread([sti 'IM00000' num2str(j)]);
                    infoo = dicominfo([folderPath 'IM00000' num2str(j)]);
                    acqTime(i) = str2double(infoo.AcquisitionTime);
                elseif j<100
                    % Image{p}{k}{i} = dicomread([sti 'IM0000' num2str(j)]);
                    infoo = dicominfo([folderPath 'IM0000' num2str(j)]);
                    acqTime(i) = str2double(infoo.AcquisitionTime);
                else
                    % Image{p}{k}{i} = dicomread([sti 'IM000' num2str(j)]);
                    infoo = dicominfo([folderPath 'IM000' num2str(j)]);
                    acqTime(i) = str2double(infoo.AcquisitionTime);
                end
                
                %I = Image{p}{k}{i};
                %I = I.*uint16(bwareafilt(I>400,1));
                %I(I<800) = 0;
                %Image{p}{k}{i} = I;
                
                
            end
            timesec{p}{k} = acqTime-acqTime(1);
            
            %         if p<9
            %             fname = (['Registered/PA0' num2str(p) '.mat']);
            %         else
            %             fname = (['Registered/PA' num2str(p) '.mat']);
            %         end
            %
            %         save(fname,'Image','-v7.3')
        end
    end
    if 0
        for i = 1:n22
            lengde(i) = length(ny3{i});
            if length(ny3{i}) == 533
                indn(i) = str2num(ny3{i}(end));
            elseif length(ny3{i}) == 50
                indn(i) = str2num(ny3{i}(end-1:end));
            elseif length(ny3{i}) == 51
                indn(i) = str2num(ny3{i}(end-2:end));
            end
            
        end
        indn = indn';
        
        aaaa = [tempOrder{1,1}{1,1}' tempOrder{1,1}{1,2}' tempOrder{1,1}{1,3}' tempOrder{1,1}{1,4}'...
            tempOrder{1,1}{1,5}' tempOrder{1,1}{1,6}' tempOrder{1,1}{1,7}' tempOrder{1,1}{1,8}'...
            tempOrder{1,1}{1,9}' tempOrder{1,1}{1,10}' tempOrder{1,1}{1,11}' tempOrder{1,1}{1,12}'...
            tempOrder{1,1}{1,13}']'+2;
        
        find(ismember(aaaa,indn) == 0)
    end
end



if 0
    %%
    save('timesec.mat','timesec')
    
end
if 0
    save('Image.mat','Image','-v7.3')
end







matlab code/ct images/reg_ct.m

function reg_ct
% Register images using one of the optimizers and similarity metrics
% available in the Image Processing Toolbox. The phase correlation is
% comptued to estimate an initial geometric transform. If the modality
% 'multimodal' is selected, the One-Plus-One evolutionary optimizer
% optimizing the Matte's mutual information is used. To improve the
% registration results, the default parameters can be adjusted by a
% scaling:
%
%     optimizer.InitialRadius = optimizer.InitialRadius/scaling;
%     optimizer.Epsilon = optimizer.Epsilon/scaling;
%     optimizer.GrowthFactor = (optimizer.GrowthFactor-1)/scaling+1;
%     optimizer.MaximumIterations = optimizer.MaximumIterations*scaling;
%
% The images used in the skull removal and segmentation are registered with
% the Similarity transform and treated as multimodal images with scaling=8.
% It is preferable to have enough computational power available, as it is
% ~4000 images that are registered with an iterative algorithm.
%
% If the Parallel Computing Toolbox not is installed, the 'parfor' in the
% inner loop will have to be replaced with 'for'.

load Image.mat

modality = {'monomodal' 'multimodal'};
modind = 2;
transform = 'similarity'; % geometric transform

[optimizer, metric] = imregconfig(modality{modind});

scaling = 0.25;

if modind==2
    optimizer.InitialRadius = optimizer.InitialRadius/scaling;
    optimizer.Epsilon = optimizer.Epsilon/scaling;
    optimizer.GrowthFactor = (optimizer.GrowthFactor-1)/scaling+1;
end
optimizer.MaximumIterations = optimizer.MaximumIterations*scaling;

SkullError = cell(1,11);
MutualInfo = cell(1,11);
MeanSquareError = cell(1,11);

slices = [ones(1,8)*13 22 14 14];
MI = zeros(30,2);
MSE = zeros(30,2);
SkullE = zeros(30,2);
movingReg = cell(1,30);
ImageRegistered = cell(1,11);

for p = 1:11
    Imp = Image(p);
    for k = 1:slices(p)
        Imk = Imp{1}{k};
        fixed = Imk{1};

        parfor i = 2:30  
            moving=Imk{i};
            if p==8 && k==13 % Disabling phase correlation in patient 8, slice 13 gave better results
                movingReg{i} = imregister(moving, fixed, transform, optimizer, metric);
            else
                movingReg{i} = imregister(moving, fixed, transform, optimizer, metric,'InitialTransformation',imregcorr(moving,fixed));
            end

            MI(i,:) = [mi(fixed,moving,4096) mi(fixed,movingReg{i},4096)];
            MSE(i,:) = [immse(fixed,moving) immse(fixed,movingReg{i})];
            SkullE(i,:) = [numel(find(xor(fixed>1900,moving>1900))) numel(find(xor(fixed>1900,movingReg{i}>1900)))];
        end
        movingReg{1} = fixed;
        ImageRegistered{p}{k} = movingReg;
        
        MutualInfo{p}{k} = MI;
        MeanSquareError{p}{k} = MSE;
        SkullError{p}{k} = SkullE;
        
        disp(['Currently registering p=' num2str(p) ', k=' num2str(k)])
    end
end

save(['ImageRegistered_Sim_Scale' num2str(scaling) '.mat'],'ImageRegistered','-v7.3')
save(['MutualInfo_Sim_Scale' num2str(scaling) '.mat'],'MutualInfo')
save(['MeanSquareError_Sim_Scale' num2str(scaling) '.mat'],'MeanSquareError')
save(['SkullError_Sim_Scale' num2str(scaling) '.mat'],'SkullError')






matlab code/ct images/removeSkull.m

function [I,bw]=removeSkull(Im)
%% Skull removal by using traditional edge detection

type={'Sobel' 'Prewitt' 'Roberts' 'Canny' 'log'};
for m=3:3
    [~,t]=edge(Im,type{m},'nothinning');

    [edgeMask,~]=edge(Im,type{m},'nothinning',t/12);
end

bw=uint8(Im>0)&~edgeMask;
bw=logical(imfill(imgaussfilt((uint8(bwareafilt(bw,8,8))),5)));
%% 
% This section uses code from 
% "Watershed transform question from tech support", by Steve Eddins
% Available here: https://blogs.mathworks.com/steve/2013/11/19/watershed-transform-question-from-tech-support/
D = -bwdist(~bw);

H_min = imhmin(D,7);
BW_min = imregionalmin(H_min);

D = imimposemin(D,BW_min);

D(~bw) = Inf;

L = watershed(D);
L(~bw) = 0;
%%
A=zeros(1,max(max(L)));

for n=1:max(max(L))
    A(n)=bwarea(L==n); % Area of region n
end

[~,largest]=max(A);

for n=1:max(max(L))
    if n~=largest
        P=regionprops(L==n,'Perimeter');
        P=P.Perimeter; % Perimeter of region n 
        
        cf=4*pi*A(n)/P.^2; % Circularity factor of region n
        
        c=regionprops(L==n,'Centroid'); % Centroid of region n
        cLargest=regionprops(L==largest,'Centroid'); % Centroid of largest region
        
        distance=pdist([c.Centroid; cLargest.Centroid]); % Euclidean distance between regions
              %  disp([num2str(n) ' cf=' num2str(cf) ' distance' num2str(distance) ' A' num2str(A)])
        if cf<0.45 || distance>170 || A(n)<500
            L(L==n)=0;
        end
    end
end

bw=L>0;
I=Im.*uint16(bw);






matlab code/ct images/removeSkull2.m

function [I,bw] = removeSkull2(Im,thold)
%% Skull removal by using wavelet coefficient thresholding
% thold = 14;

[~,cH,cV,cD] = swt2(Im,1,'bior1.5');

cH = wcodemat(cH(:,:,1),1000);
cV = wcodemat(cV(:,:,1),1000);
cD = wcodemat(cD(:,:,1),1000);

% 
% 
% figure
% subplot(241)
% imshow(Im,[]),title('Input')
edgeMask = cH>thold|cV>thold|cD>thold; % Thresholding the Wavelet coefficients
% subplot(242)
% imshow(edgeMask,[]),title('Edge mask')
bw = (Im>0)&~edgeMask;
% subplot(243)

% imshow(bw,[]),title('~(Edge mask) & (Input)>0')
bw = (logical(imfill(imgaussfilt((uint8(bwareafilt(bw,8,8))),5))));
% subplot(244)
% imshow(bw,[]),title({'Smooth, fill and ','remove small objects'})
% figure
% imshow(bw,[])
%% 
% This section uses code from 
% "Watershed transform question from tech support", by Steve Eddins
% Available here: https://blogs.mathworks.com/steve/2013/11/19/watershed-transform-question-from-tech-support/
D = -bwdist(~bw);

H_min = imhmin(D,7);
BW_min = imregionalmin(H_min);

D = imimposemin(D,BW_min);

D(~bw) = Inf;

L = watershed(D);
% figure
% imshow(L,[])
L(~bw) = 0;
% figure
% imshow(L,[])
%%
A = zeros(1,max(max(L)));

for n = 1:max(max(L))
    A(n) = bwarea(L == n); % Area of region n
end

[~,largest] = max(A);

for n = 1:max(max(L))
    if n ~= largest
        P = regionprops(L == n,'Perimeter');
        P = P.Perimeter; % Perimeter of region n 
        
        cf = 4*pi*A(n)/P.^2; % Circularity factor of region n
        
        c = regionprops(L == n,'Centroid'); % Centroid of region n
        cLargest = regionprops(L == largest,'Centroid'); % Centroid of largest region
        
        distance = pdist([c.Centroid; cLargest.Centroid]); % Euclidean distance between regions
              %  disp([num2str(n) ' cf = ' num2str(cf) ' distance' num2str(distance) ' A' num2str(A)])
        if cf<0.45 || distance>170 || A(n)<500
            L(L == n) = 0;
        end
    end
end
% rgb2 = label2rgb(L);%,'jet',[.5 .5 .5]);
%  subplot(247)
% subplot(322)
%  imshow(L,[0 10]),title('The kept segment(s)')
bw = L>0;

I = Im.*uint16(bw);
end






matlab code/ct images/removeSkullMain.m

% Main script to remove the skull. Use function removeSkull2 to use
% wavelet coefficient thresholding. Use function removeSkull to use
% traditional edge detection.

close all
warning off
% clear all
load ImageRegistered.mat
Image = ImageRegistered;
slices = ones(1,8)*13;
slices = [slices 22 14 14];

ImageSkullRemoved = cell(1,11);
%%
close all

for p = 1:1
    figure
    for k = 1:slices(p)
        for i = 1:1
            if i == 1
                Im_in = ImageRegistered{p}{k}{i};
                %                 [ImageSkullRemoved{p}{k}{i},bw] = removeSkull(Im_in); Trad. edge detection
                [ImageSkullRemoved{p}{k}{i},bw] = removeSkull2(Im_in,14); % Wave.coeff thresh.    
            else
                ImageSkullRemoved{p}{k}{i} = Im_out;
            end
        end
        if 1
            if 0
                figure(p*100+k)
            end
            
            if p~=9
                subplot(4,4,k)
            else
                subplot(5,5,k)
            end
            imshow(Im_in,[])
            %         hold on
            %         visboundaries(bwboundaries(bw1),'color','r','LineWidth',1,'EnhanceVisibility',false)
            %                 hold on
            %                         visboundaries(bwboundaries(bw),'color','c','LineWidth',1,'EnhanceVisibility',false), title('Countor of the brain')
            hold on
            visboundaries(bwboundaries(bw),'color','c',...
                'LineWidth',1,'EnhanceVisibility',false),
            
            title([{'Countor of the brain.'},...
                {['Patient 0' num2str(p) ', slice '...
                num2str(k)]}])
        end
    end
end

if 0
    save('ImageSkullRemoved.mat','ImageSkullRemoved','-v7.3');
end






matlab code/ct images/segVesselsMain.m

% This is the main script of the vessel segmentation and clustering.

clear all
close all
warning off

slices = [ones(1,8,'uint8')*13 22 14 14];
thickness2 = linspace(2,6,3);
load timesec

se = strel('disk',2);

FeatExtr = 1; % feature extraction segmentation = 1, adaptive threshold segmentation = 0
seg3D = 1; % Perform the cluster-based segmentation in 3D.
%%
close all

tic
for p = 7
    D_Slice = cell(slices(p),1);
    if p<10
        load(['ImagesPA0' num2str(p)])
    else
        load(['ImagesPA' num2str(p)])
    end
    
    imdiff_orig = cell(1,slices(p));
    L_slice = imdiff_orig;
    ImmS = cell(1,slices(p));
    for k = 1:slices(p)
        I = Im{k};
        
        Imm = zeros(512,512,30,'uint16');
        ImmOrig = false(512,512,30);
        
        for i = 1:30
            Imm(:,:,i) = I{i};
            im = Imm(:,:,i);
            ImmOrig(:,:,i) = im>0;
            [~,~,v2] = find(im);
            im(im == 0) = mean(v2);
            Imm(:,:,i) = im;
        end
        
        Imm = imgaussfilt3(Imm,[0.25 0.25 1]);
        ImS{k} = Imm.*uint16(ImmOrig);

        if ~seg3D
            
            if FeatExtr
                [BW,imdiff,imdiff_orig{k}] = SegFeatExtr(ImS);
            else
                [BW,imdiff,imdiff_orig{k}] = SegAdaptThresh(Imm);
            end
            
            BW = imclose(BW,se);
            BW = logical(uint8(bwareaopen(BW,10)));
            %% 
            % This section uses code from
            % "Watershed transform question from tech support", by Steve Eddins
            % Available here: https://blogs.mathworks.com/steve/2013/11/19/watershed-transform-question-from-tech-support/
            
            D = -bwdist(~-BW);
            
            H_min = imhmin(D,4);
            BW_min = imregionalmin(H_min);
            
            D = imimposemin(D,BW_min);
            
            D(~BW)  =  Inf;
            L = watershed(D);
            L(~BW) = 0;
            %%
            realTTP = timesec{p}{k}(:)';
            
            [A,TTP,bFit,L] = fitTDC(imdiff,L,Imm,realTTP);
            L_slice{k} = L;
            D_Slice{k,:} = [TTP;A;bFit]';
        end
    end
    %%
    if FeatExtr && seg3D
        [D,c,imdiff_orig,imdiffF] = SegFeatExtr(ImS);
        
        cNy = reshape(c,2^18,length(imdiffF),1);
        cNy = reshape(cNy,512,512,length(imdiffF));
        
        for kk = 1:length(imdiffF)
            figure
            subplot(121)
            imshow(imdiff_orig{kk},[0 100])
            hold on
            [~,ind] = min([numel(find(cNy(:,:,kk) == 1)) numel(find(cNy(:,:,kk) == 2))]);
            
            bw = imclose(cNy(:,:,kk) == ind,se);
            bw = bwareaopen(bw,10);
            visboundaries(bwboundaries(bw),'color','g','LineWidth',1)
            subplot(122)
            imshow(bw)
        end
        
    end
    
    %% Cluster vessel segments and show the results
    if ~(FeatExtr && seg3D)
        close all
        
        [D] = VesselClustering(D_Slice);
        
        for k = 1:slices(p)
            
            figure
            imshow(imdiff_orig{k},[0 100])
            hold on
            
            Bwart = false(512,512);
            Bwven = false(512,512);
            
            for i = 1:max(max(L_slice{k}))
                if D{k}(i,3) == 1
                    Bwart = (L_slice{k} == i)|Bwart;
                elseif D{k}(i,3) == 2
                    Bwven = (L_slice{k} == i)|Bwven;
                end
            end
            
            visboundaries(bwboundaries(Bwart),'Color','r','LineWidth',1,'EnhanceVisibility',true)
            hold on
            visboundaries(bwboundaries(Bwven),'Color','b','LineWidth',1,'EnhanceVisibility',true)
        end
    end
end








matlab code/ct images/stacking3d.m


clear all
load ImageRegistered
Image3=ImageRegistered;
load timesec

for i=1:30
    ImmTime(:,:,i)=Image3{1}{13}{i};
end

for i=1:13
    Imm(:,:,i)=(Image3{1}{i}{1});
   
end


% I = repmat(img.X,[1 1 5]);
% cmap = img.map;
I=ImmTime;
% hh=image(Imm(:,:,1));
close all
%# coordinates
%%
close all
figure(1)
I=ImmTime;
[X,Z] = meshgrid(1:size(I,2), 1:size(I,1));
Y = ones(size(I,1),size(I,2));
% load timesec

t=timesec{1}{1};
%# plot each slice as a texture-mapped surface (stacked along the Z-dimension)
subplot(122)
for k=1:size(I,3)
%     if k==30
    kk(k)=surface('XData',X, 'ZData',Z, 'YData',Y*t(k), ...
        'CData',double(I(:,:,k)), 'CDataMapping','direct', ...
        'EdgeColor','none', 'FaceColor','flat');
% %     
    alph=double(I(:,:,k)>0);
    alpha(kk(k),alph)
% hold on
%     end
end
title('Temporal images of one slice')
% pbaspect([1 3 10])
aa=linspace(0,1,4095)';
cmap=[aa aa aa];

colormap(cmap)
% view(-97.5,5)
% alpha(alph)
xlabel('Pixel coordinates')
ylabel('Time')
zlabel('Pixel coordinates')
view(-45,20)%, box on, axis tight square
% set(gca, 'YLim',[0 2],'ZLim',[50 450],'XLim',[50 450],'Color',[0 0 0])
set(gca, 'YLim',[0 max(t)+1],'ZLim',[50 450],'XLim',[50 450],'Color',[0 0 0])

pbaspect([1 1.5 1])

%
% close all
I=Imm;
% figure(2)
[X,Y] = meshgrid(1:size(I,2), 1:size(I,1));
Z = ones(size(I,1),size(I,2));
% load timesec

subplot(121)
t=timesec{1}{1};
%# plot each slice as a texture-mapped surface (stacked along the Z-dimension)
for k=1:size(I,3)
%     if k==30
    kk(k)=surface('XData',X, 'YData',Y, 'ZData',Z*k, ...
        'CData',(I(:,:,k)), 'CDataMapping','direct', ...
        'EdgeColor','none', 'FaceColor','flat');
% %     
    alph=double(I(:,:,k)>0);
    alpha(kk(k),alph)
% hold on
%     end
end
title('Slices from same sample/time')
% pbaspect([1 3 10])
% cmap=[linspace(0,1,4096)' linspace(0,1,4096)' linspace(0,1,4096)'];

colormap(cmap)
% view(-97.5,5)
% alpha(alph)
xlabel('Pixel coordinates')
ylabel('Pixel coordinates')
zlabel('Slice number')
view(-45,20)%, box on, axis tight square
set(gca, 'ZLim',[0 13+1],'YLim',[50 450],'XLim',[50 450],'Color',[0 0 0])

pbaspect([2 2 1])






matlab code/parametric maps/expandBar.m

function [barCBF,barCBV,barTTP,barTMAX]=expandBar(barCBF,barCBV,barTTP,barTMAX)
%% 
imTMAX_Reshape=reshape(imTMAX,dimCBV(1)*dimCBV(2),3);
imTMAX_Reshape( all(~imTMAX_Reshape,2), : ) = [];
[C,~,~] = unique(imTMAX_Reshape,'rows');

imTMAX_Reshape=reshape(imTMAX,dimCBV(1)*dimCBV(2),3);
imTMAX_Reshape( all(~imTMAX_Reshape,2), : ) = [];

barC=unique(cat(1,bar2,C),'rows');

bar5HSV=rgb2hsv(reshape(barC,length(barC),1,3));
bar5HSV=reshape(bar5HSV,length(barC),3,1);
bar5HSV=sortrows(bar5HSV);

barTMAXHSV=reshape(rgb2hsv(barTMAX),256,3,1);
barTMAX=uint8((hsv2rgb(reshape(bar5HSV,length(barC),1,3)))*255);
barTMAXRGB=reshape(barTMAX,length(barC),3,1);

imCBV_Reshape=reshape(imCBV,dimCBV(1)*dimCBV(2),3);
imCBV_Reshape( all(~imCBV_Reshape,2), : ) = [];
[C,~,~] = unique(imCBV_Reshape,'rows');

bar4=unique(cat(1,bar3,C),'rows');

bar4HSV=rgb2hsv(reshape(bar4,length(bar4),1,3));
bar4HSV=reshape(bar4HSV,length(bar4),3,1);
bar4HSV=sortrows(bar4HSV);
bar4HSV(275:end,:)=sortrows(bar4HSV(275:end,:),-3);

barCBVHSV=reshape(rgb2hsv(barCBV),256,3,1);
barCBV=uint8((hsv2rgb(reshape(bar4HSV,length(bar4),1,3)))*255);






matlab code/parametric maps/imshow2.m

function imshow2(I)
figure
imshow(imresize(I,4),[])
end






matlab code/parametric maps/mapSegmentation.m

close all
clc
clear
load sortMaps


slices=[19 ones(1,7)*13 22 14 14];

figs=0; % Vis figurar? 1=ja, 0=nei
tic
name={'CBF' 'CBV' 'TTP' 'TMAX'};
pasient=cell(1, 11);
bilde=cell(1, 22);
map=[0 255 255;0 0 153]/255; % Fargar for penumbra og kjerne
for p=1:11
    if p<10
        pasient{p}=['0' num2str(p)];
    else
        pasient{p}=num2str(p);
    end
end

for k=0:21
    if k<10
        bilde{k+1}=['0' num2str(k)];
    else
        bilde{k+1}=num2str(k);
    end
end



for k=1:22
    if k<10
        bilde2{k}=['0' num2str(k)];
    else
        bilde2{k}=num2str(k);
    end
end
%% Terskelverdiar
tCBF=30;    % tal mellom 0 og 100. Absolutt.
tCBV=1.25;     % tal mellom 0 og 6
tTTP=15;     % tal mellom 0 og 20
tTMAX=6;    % tal mellom 0 og 12
rCBF=0.25    ;  % Relativ CBF, tal mellom 0 og 1.
%% Structuring elements
seTMAX = strel('disk',12);
seCBF = strel('disk',5);
seCBV = strel('disk',5);
%% Angir intervall for dei ulike parametra
tCBF_range_orig=linspace(100,0,256);
tCBV_range_orig=linspace(6,0,256);
tTTP_range_orig=linspace(20,0,256);
tTMAX_range_orig=linspace(12,0,256);
uu=zeros(11,24,4);
%% Heile driten

for p=1:1
    a=dir(['PerfusionCT2/PA' num2str(pasient{p}) '/ST000000/SE000005/']);
    info=dicominfo(['PerfusionCT2/PA' num2str(pasient{p}) '/ST000000/SE000005/IM000000']);
    pixelarea=info.PixelSpacing;
    pixelarea=pixelarea(1)*pixelarea(2);
    for k=slices(p):-1:1
        %str2double(a(end).name(end-2:end))
%         sortMaps{p}(k,2)
        [imCBF,imCBV,imTTP,imTMAX]=readMaps(pasient{p},bilde{sortMaps{p}(k,2)});
        
        % figure
        % subplot(2,2,1), imshow(imCBF), title('CBF')
        % subplot(2,2,2), imshow(imCBV), title('CBV')
        % subplot(2,2,3), imshow(imTTP), title('TTP')
        % subplot(2,2,4), imshow(imTMAX), title('TMAX')
        
        [imCBF,barCBF,~]=removeBar(imCBF);
        [imCBV,barCBV,barC]=removeBar(imCBV);
        [imTTP,barTTP,barT]=removeBar(imTTP);
        [imTMAX,barTMAX,~]=removeBar(imTMAX);
%         figure
%         imshow(imTTP)
        if 1
        if figs
            figure
            subplot(141),imshow(imCBF),title('CBF')
            subplot(142),imshow(imCBF(:,:,1)),title('Red')
            subplot(143),imshow(imCBF(:,:,2)),title('Green')
            subplot(144),imshow(imCBF(:,:,3)),title('Blue')
            
            figure
            subplot(141),imshow(imTMAX),title('TMAX')
            subplot(142),imshow(imTMAX(:,:,1)),title('Red')
            subplot(143),imshow(imTMAX(:,:,2)),title('Green')
            subplot(144),imshow(imTMAX(:,:,3)),title('Blue')
        end
        if k==0
            barCBF_orig=barCBF;
            barCBV_orig=barCBV;
            barTTP_orig=barTTP;
            barTMAX_orig=barTTP;
        end
        dimCBV=size(imCBV);


        %% Legg til fargeverdiar som ikkje er i skalaen
        for j=1:4
            im_Reshape=reshape(eval(['im' name{j}]),dimCBV(1)*dimCBV(2),3);
            t_range=eval(['t' name{j} '_range_orig']);
            
            if j==1 || j== 2
                bar=barC;
            elseif j==3 || j==4
                bar=barT;
            end
            bar_orig=reshape(bar,256,1,3);
            im_Reshape( all(~im_Reshape,2), : ) = [];
            [C,~,~] = unique(im_Reshape,'rows');
            uu(p,k+1,j)=length(C);
            C(:,4)=NaN;
            barHSV=reshape(rgb2hsv(bar_orig),256,3,1);
            %             medlem=ismember(reshape(C(:,1:3),length(C),3,1),reshape(bar_orig,256,3,1),'rows');
            %             medlem=find(~medlem);
            %             medlem=length(medlem);
            %             uuu(k,m+1,j)=medlem;
            range2=[barHSV t_range'];
            range=double(cat(1,range2,double(C)));
            
            Chsv=reshape(range(257:end,1:3),length(range(257:end,1:3)),1,3);
            hsvans=reshape(rgb2hsv(uint8(Chsv)),length(rgb2hsv(Chsv)),3,1);
            
            hsvans(:,4)=NaN;
            range(257:end,:)=hsvans;
            range3=range;
            range=sortrows(range,[1 -2 3]);
            range3=range;
            for i=1:length(range)
                if isnan(range(i,4))
                    if i==1
                        range(i,4)=max(range2(:,4));
                    elseif i<length(range)
                        indD=i;
                        indI=i;
                        while indD>1 && isnan(range(indD,4))
                            indD=indD-1;
                        end
                        while indI<length(range) && isnan(range(indI,4))
                            indI=indI+1;
                        end
                        if indD==1
                            range(i,4)=max(range2(:,4));
                        elseif indI==length(range)
                            range(i,4)=0;
                        else
                            range(i,4)=mean([range(indD,4) range(indI,4)]);
                        end
                    elseif i==length(range)
                        range(i,4)=0;
                    end
                end
            end
            
            range=sortrows(range,-4);
            t_range=range(:,4);
            bar=uint8(hsv2rgb(reshape(range(:,1:3),length(range(:,1:3)),1,3))*255);
            eval(['bar' name{j} '=bar;']);
            eval(['t' name{j} '_range=t_range;']);
            %             bars
        end
        
        %% Indeks for terskelverdiar
        [~,i_tCBF]=min(abs(tCBF_range-tCBF));
        [~,i_tCBV]=min(abs(tCBV_range-tCBV));
        [~,i_tTTP]=min(abs(tTTP_range-tTTP));
        [~,i_tTMAX]=min(abs(tTMAX_range-tTMAX));
        %% Lagar maske ut frå terskling, TMAX
        maskTMAX=threshold(imTMAX,barTMAX,i_tTMAX,'over');
        %% Finn ROI ut frå TMAX
        if k==slices(p)
            midt=round(size(maskTMAX,2)/2);
            left=numel(find(maskTMAX(:,midt:end)));
            right=numel(find(maskTMAX(:,1:midt-1)));
            
            if left>right
                ROI='L';
                maskTMAX(:,1:midt-1)=0;
                imCBF_cl=imCBF(:,midt:end,:); % CBF i frisk hjernehalvdel
            else
                ROI='R';
                maskTMAX(:,midt:end)=0;
                imCBF_cl=imCBF(:,1:midt-1,:); % CBF i frisk hjernehalvdel
            end
            
            %         disp(['Slag lokalisert i ' ROI ' hjernehalvdel'])       
        else
            if ROI=='L'
                maskTMAX(:,1:midt-1)=0;
                imCBF_cl=imCBF(:,midt:end,:);
            else
                maskTMAX(:,midt:end)=0;
                imCBF_cl=imCBF(:,1:midt-1,:);
            end
                
        end
        %% Finn contralateral CBF
        dim_imCBF_cl=size(imCBF_cl);
        imCBF_cl=reshape(imCBF_cl,dim_imCBF_cl(1)*dim_imCBF_cl(2),3);
        imCBF_cl( all(~imCBF_cl,2), : ) = [];
        mean_CBF_cl=uint8(mean(imCBF_cl));
        barCBFHSV=rgb2hsv(barCBF);
        mean_CBF_clHSV=rgb2hsv(reshape(mean_CBF_cl,1,1,3));
        
        
        barCBFHSV=[reshape(barCBFHSV,length(barCBFHSV),3,1) tCBF_range];
        mean_CBF_clHSV=[reshape(mean_CBF_clHSV,1,3,1) NaN];
        barCBFHSV=[barCBFHSV;mean_CBF_clHSV];
        barCBFHSV=sortrows(barCBFHSV,1);
        ind=find(isnan(barCBFHSV(:,4)));
        if ind<length(barCBF)
            meanCBF=mean([barCBFHSV(ind+1,4) barCBFHSV(ind-1,4)]);
            tCBF=rCBF*meanCBF;
            met='Relativ';
        else
            disp('nei')
            tCBF=30;
            met='Absolutt';
        end
        %% Filtrerer maske, TMAX
        maskTMAX=uint8(maskTMAX);
        if figs
            figure
            subplot(3,3,1)
            
            imshow(maskTMAX,[]),title('MaskeTMAX før filtrering')
        end
        maskTMAX = imclose(maskTMAX,seTMAX);
        
        maskTMAX = imgaussfilt(maskTMAX,5);
        
        maskTMAX=bwareafilt(logical(imfill(maskTMAX,8)),1);
        if figs
            subplot(3,3,2)
            imshow(maskTMAX,[]),title('MaskeTMAX etter filtrering')
        end
        %% Lagar maske ut frå terskling, CBF
        maskCBF=threshold(imCBF,barCBF,i_tCBF,'under');
        % imshow2(maskCBF),title('maskCBF')
        % imshow2(imfuse(imCBF,maskCBF,'blend')), title('imCBF,maskCBF')
        %% Lagar maske ut frå terskling, CBV
        maskCBV=threshold(imCBV,barCBV,i_tCBV,'under');
        % imshow2(maskCBV),title('maskCBV')
        % imshow2(imfuse(imCBV,maskCBV,'blend')), title('imCBV,maskCBV')
        %% Filtrerer maske, CBV
        maskCBV=uint8(maskCBV&maskTMAX);
        if figs
            subplot(3,3,7)
            imshow(maskCBV,[]),title('MaskeCBV før filtrering')
        end
        maskCBV=imfill(maskCBV,8);
        
        maskCBV = imgaussfilt(maskCBV,4);
        
        maskCBV = imclose(maskCBV,seCBV);
        
        maskCBV=imgaussfilt(maskCBV,3);
        maskCBV=bwareafilt(logical(maskCBV),1);
        if figs
            subplot(3,3,8)
            imshow(maskCBV,[]),title('MaskeCBV etter filtrering')
        end
        %% Filtrerer maske, CBF
        maskCBF=uint8(maskCBF&maskTMAX);
        if figs
            subplot(3,3,4)
            imshow(maskCBF,[]),title('MaskeCBF før filtrering')
        end
%         maskCBF=imfill(maskCBF,8);
        
%         maskCBF = imgaussfilt(maskCBF,4);
        
%         maskCBF = imclose(maskCBF,seCBF);
        
        maskCBF=imgaussfilt(maskCBF,5);
%         maskCBF=bwareafilt(logical(maskCBF),1);
        
        if figs
            subplot(3,3,5)
            imshow(maskCBF,[]),title('MaskeCBF etter filtrering')
        end
        %% Filtrerer maske, TMAXCBF
        %Bestemmer penumbra og infarktkjerne ut frå TMAX-CBV mismatch
        if figs
            subplot(3,3,3)
            imshow(imfuse(imTMAX,maskTMAX,'blend')),title('ROI')
        end
        labels=label2rgb(uint8(maskTMAX)*1+uint8(maskCBF)*1,map);
        if figs
            subplot(3,3,6)
            imshow(labels),title(['Kjerne og penumbra, TMAX-CBF ' met])
        end
        labels2=label2rgb(uint8(maskTMAX)*1+uint8(maskCBV)*1,map);
        if figs
            subplot(3,3,9)
            imshow(labels2),title('Kjerne og penumbra, TMAX-CBV')
        end
        if 1

                MIP_markering=imread(['CT_perfusion_markering/Patient' pasient{p} '/' pasient{p} bilde2{k} '.jpg'] );
                

                
         
            dim=size(MIP_markering);
            % (dim(2)-512)/2
            MIP_markering_ny=imresize(MIP_markering,512/dim(1));
            dim2=size(MIP_markering_ny);
            MIP_markering_ny(:,1:round((dim2(2)-512)/2),:)=[];
            MIP_markering_ny(:,513:end,:)=[];
%             figure
%             imshow(MIP_markering_ny)
%             hold on
%             visboundaries(bwboundaries(maskTMAX),'color','c','LineWidth',1,'EnhanceVisibility',false), title('Countor of the brain')
%             hold on
%             visboundaries(bwboundaries(maskCBV),'color','m','LineWidth',1,'EnhanceVisibility',false), title('Countor of the brain')
            areal{p}{k}=numel(find(maskTMAX==1))*pixelarea;
            
            arealCore{p}{k}=numel(find(maskCBV==1))*pixelarea;
            if (p==3 & k==11) | (p==1 & k==19)  | (p==5 & k==7) | (p==8 & k==8)
                disp('ja')
                areal{p}{k}=0;
                arealCore{p}{k}=0;
            end
%             title(num2str(areal{p}{k}))
        end
        %print(['Figurer/PA' pasient{k} '_IM' bilde{m+1}],'-dpng')
        end
    end
end
toc






matlab code/parametric maps/parametersort.m

close all
clear all
times=blanks(13);
slices=[19 ones(1,7)*13 22 14 14];
for p=9:9
    if p<10
    sti=['PerfusionCT2/PA0' num2str(p) '/ST000000/SE000007/'];
    else
        sti=['PerfusionCT2/PA' num2str(p) '/ST000000/SE000007/'];
    end
    info=cell(1);
    ny3=cell(1);
    ny4=0;
    for i=1:slices(p)
        %     figure
        %     info{i+1}=dicominfo(['PerfusionCT2/PA02/ST000000/SE000007/IM00000' num2str(i)]);
%         sti='PerfusionCT2/PA02/ST000000/SE000007/IM00000'
        if i<11
            %         imshow(dicomread(['PerfusionCT2/PA02/ST000000/SE000007/IM00000' num2str(i-1)]))
            info{i}=dicominfo([sti 'IM00000' num2str(i-1)]);
            
        else
            %         imshow(dicomread(['PerfusionCT2/PA02/ST000000/SE000007/IM0000' num2str(i-1)]))
            info{i}=dicominfo([sti 'IM0000' num2str(i-1)]);
            
        end
        
        ny3{i}=info{i}.MediaStorageSOPInstanceUID;
        ny4(i)=str2num(ny3{i}(end-2:end));
    end
    
    ny4=ny4'-min(ny4);
    
    aaa{p}=sortrows([ny4 linspace(1,slices(p),slices(p))']);
    % sort([ny ny2])
    
    
    % cell2mat(arrrr)
end
%%
if 1
    close all
    for i=1:slices(p)
        figure
        %     info{i+1}=dicominfo(['PerfusionCT2/PA02/ST000000/SE000007/IM00000' num2str(i)]);
        j=aaa{p}(i,2)-1;
        %     j=i-1;
        if j<10
            imshow(dicomread([sti 'IM00000' num2str(j)]))
            %         info{i}=dicominfo(['PerfusionCT2/PA02/ST000000/SE000007/IM00000' num2str(i-1)]);
            
        else
            imshow(dicomread([sti 'IM0000' num2str(j)]))
            %         info{i}=dicominfo(['PerfusionCT2/PA02/ST000000/SE000007/IM0000' num2str(i-1)]);
            
        end
        
    end
end







matlab code/parametric maps/readMaps.m

function [imCBF,imCBV,imTTP,imTMAX] = readMaps(pasient,bilde)
%% Les inn parametriske kart
sti = (['PerfusionCT2/PA' pasient '/ST000000/SE00000']);

indCBF = 4;
indCBV = 5;
if pasient == '07'
    indTMAX = 7;
    indTTP = 8;
else
    indTMAX = 6;
    indTTP = 7;
end

imCBF = dicomread([sti num2str(indCBF) '/IM0000' bilde]);
imCBV = dicomread([sti num2str(indCBV) '/IM0000' bilde]);
imTTP = dicomread([sti num2str(indTTP) '/IM0000' bilde]);
imTMAX = dicomread([sti num2str(indTMAX) '/IM0000' bilde]);






matlab code/parametric maps/removeBar.m

function [Im,bar,bar2]=removeBar(Im)

bar=Im(129:384,455,:);
Im(:,432:end,:)=0;
Im(119:126,429:431,:)=0;
for i=1:3
    if i==1
        bar2(:,i)=bar(:,:,1);
    elseif i==2
        bar2(:,i)=bar(:,:,2);
    else
        bar2(:,i)=bar(:,:,3);
    end
end
% bar2(~any(bar2,2),:)=[];
% bar3(:,:,1)=bar2(:,1:50);
% bar3(:,:,2)=bar2(:,51:100);
% bar3(:,:,3)=bar2(:,101:150);
% imshow2(bar3)
end






matlab code/parametric maps/threshold.m

function mask = threshold(im, bar, i_t, range)
[m,n,~]=size(im);
mask=false(m,n);
BW={false(m,n,3)};
T=zeros(1,3);
if isequal(range,'over')
    for i=1:i_t
        for j=1:3
            T(j)=bar(i,1,j);
            BW{:,:,j}=im(:,:,j)==T(j);
        end
        mask=mask|(BW{1}&BW{2}&BW{3});
    end
elseif isequal(range,'under')
    for i=i_t:length(bar)
        for j=1:3
            T(j)=bar(i,1,j);
            BW{:,:,j}=im(:,:,j)==T(j);
        end
        mask=mask|(BW{1}&BW{2}&BW{3});
    end
end
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