

Abstract

Most industrial production processes require parts to be painted, both for
aesthetic and quality purposes. The painting process is often automated with
the benefits of better paint coverage, less waste of paint, high consistency be-
tween batches and reduced production time. One way to automate this process
is to mount a spray-painting gun on an industrial robot. The robot then moves
along a preprogrammed path and covers the object in paint.

Before it can be used the robot must be programmed. This consists of
determining the path the robot should follow and when it should spray paint.
A new paint program must be made every time the product is changed or a new
part needs to be painted. This project has developed an intuitive and efficient
way of creating said paint programs.

The approach is to use the fluid motion of the human arm and experience
of painters to create the robot’s path. This is performed with the use of motion
tracking technology. The operator holds a hand held device which is tracked
in three-dimensional space. When the operator moves the device as if painting
the object, the traced path is recorded and used to create the paint program.
The virtual reality system HTC Vive has been used for the motion tracking. It
has shown promising results in precision and reliability in the past, which have
been confirmed by this project.

The project has implemented an interface to retrieve information from the
HTC Vive system. Two approaches to the paint program creation has been
developed. The first approach records the path independently of the robot and
creates the paint program. It is then loaded onto the robot and can be used
to paint the object. The second approach uses motion tracking to control the
robot in real-time. While the operator controls the robot the object is painted
and the path is recorded. The path is then used to create the paint program
which can be loaded onto the robot to paint new objects.

Both of the implemented solutions have shown promising results. They
allow the user to create simple paint programs in a matter of minutes with little
to no training needed. There are some limitations when creating more advanced
paint programs, especially in regards to determining the correct orientation of
the paint gun tool. More work would be necessary to make the implemented
solutions ready to be used commercially.

1

Contents
List of Figures 4

Code excerpts 5

1 Introduction 6
1.1 Industrial painting . 6
1.2 Automation of spray painting 6
1.3 This project’s idea . 7
1.4 Defining the tasks . 7
1.5 Structure of the report . 7

2 Prerequisites 9
2.1 Motion tracking . 9

2.1.1 HTC Vive . 9
2.1.2 OpenVR API . 11

2.2 Robotics . 13
2.2.1 3D transformations . 13
2.2.2 ABB robots . 15
2.2.3 Externally Guided Motion - EGM 16
2.2.4 Simplified Robot Programming - SRP 17

2.3 Programming tools . 18

3 Implementation 20
3.1 Hardware . 20
3.2 Software . 21
3.3 ViveTracker . 21
3.4 Simplified Robot Programming 23

3.4.1 System overview . 23
3.4.2 Implementing new sensor 24
3.4.3 New recording mode . 25
3.4.4 Reachability checking 25

3.5 Online Teaching . 28
3.5.1 System overview . 28
3.5.2 Robot program . 29
3.5.3 PC application . 32
3.5.4 Continuous mode . 34
3.5.5 Point to point mode . 37

2

4 Tests and results 40
4.1 Simplified Robot Programming 40

4.1.1 Continuous recording 41
4.1.2 Point to point recording 42
4.1.3 Reachability checker . 43

4.2 Online Teaching . 43
4.2.1 Continuous mode . 44
4.2.2 Point to point mode . 45

5 Discussion 46
5.1 Hardware . 46

5.1.1 Sensor system . 46
5.1.2 Controller . 46

5.2 ViveTracker interface . 48
5.3 Simplified Robot Programming 48

5.3.1 Recording mode . 49
5.3.2 Reachability checking 49
5.3.3 Improvements and future work 51

5.4 Online Teaching . 51
5.4.1 Calibration and recording 52
5.4.2 Possible solutions to singularity problems 54
5.4.3 Improvements and future work 55

6 Conclusion 56

7 References 57

Appendices 60

A Online Teaching source code 60

3

List of Figures
1 HTC Vive - c©2016 BagoGames, license (CC BY 2.0) 10
2 HTC Vive room setup - c©HTC Corporation, with permission . 11
3 HTC Vive Tracker - c©HTC Corporation, with permisson . . . 11
4 IRB52 - c©ABB AB Robotics, with permisson 15
5 EGM motion - c©ABB AB Robotics, with permisson 17
6 EGM UDP interface - c©ABB AB Robotics, with permisson . . 17
7 Simplified Robot Programming - c©ABB AB Robotics, with per-

misson . 18
8 Vive controller - c©HTC Corporation, with permisson 22
9 SRP system overview . 23
10 SRP GUI - c©ABB AB Robotics, with permisson 24
11 SRP settings - c©ABB AB Robotics, with permisson 25
12 SRP create reachability checker - c©ABB AB Robotics, with per-

misson . 26
13 IRB52 working area - c©ABB AB Robotics, with permisson . . 27
14 Reachability checker - c©ABB AB Robotics, with permisson . . 27
15 Online Teaching system overview 29
16 Configuring UDP - c©ABB AB Robotics, with permisson 29
17 Configuring EGM - c©ABB AB Robotics, with permisson . . . 30
18 Signals - c©ABB AB Robotics, with permisson 30
19 Online Teaching - Menu . 33
20 Online Teaching - Netscan . 33
21 Online Teaching - Work object 34
22 Online Teaching - Continuous mode 35
24 Online Teaching - Point to point mode 37
23 Online Teaching - sequence diagram 39
25 Recorded path - Continuous flat 41
26 Recorded path - Continuous object 41
27 Recorded path - P2P flat . 42
28 Recorded path - P2P object 42
29 Reachability checker test- c©ABB AB Robotics, with permisson 43
30 Recorded path - Continuous 44
31 Recorded path - P2P . 45

4

Code excerpts
1 ViveTracker UpdateData . 21
2 Haptic pulse . 22
3 Online Teaching RAPID EGMRun 32
4 Online Teaching work object 34
5 Online Teaching calibration . 36
6 Online Teaching sent data . 36
7 RAPID - DPad Trap routine 38

5

1 Introduction

1.1 Industrial painting
Painting parts is an integral element of most industrial production processes.
It can be important both for aesthetic purposes and to prolong the lifetime of
the product. Covering an object in paint can be done in several ways. Possible
applications include dipping the object in paint, spray painting or direct appli-
cation with a roller or brush. The process of spray painting will be the focus in
this project.

Spray painting uses a tool or "gun" that through compressed air or other
means propels the paint towards the surface to be covered. The painter moves
the gun to cover the object satisfactory. This is tedious and repetitive work
and generally very time consuming for humans to perform. Fumes from the
paint are also often detrimental to human health, making protective equipment
and precautions necessary. These are some of the reasons why spray painting is
often automated.

1.2 Automation of spray painting
One way to automate the spray painting process is to mount the paint gun on
an industrial robot. The robot then moves along a preprogrammed path and
sprays paint to cover the object. The object can both be fixed in place or moving
on a conveyor. In general an automated system will give better and more even
coverage of the object with less waste of paint. It also ensures that the result is
the same every time. Painting can also be done much faster and an automated
system can decrease both production time and cost. All this depends on the
robot being properly programmed.

Programming a paint robot is often called teaching and consists of generating
the path the robot should follow and determining when the paint gun should be
turned on and off. There are several ways to program a robot, but they are in
general time-consuming and need highly skilled programmers. In many cases it
might be necessary with external consultants when paint programs for new parts
need to be made, which increases the time usage and costs of making changes to
the production process. When high precision is needed or when the production
volume is high, the time and money spent on optimizing the automated painting
is offset by the high gain in efficiency. For smaller volumes, however, the long
time spent automating the process might not be worth it compared to spray
painting it manually.

6

1.3 This project’s idea
The motivation behind this project is to make the process of teaching paint
robots simpler and more efficient. The idea is to convert the fluid motion of the
human arm and the prowess of experienced spray painters into robot programs.
With the use of motion tracking technology the operator’s hand movement can
be recorded and used to create the paint program. This is a very intuitive way of
teaching the robot which requires very little training and no in-depth knowledge
about robots. The time saving potential of such a system is also large. This
project will seek to develop such a system.

1.4 Defining the tasks
The project is in cooperation with ABB Robotics, Bryne. It is divided into two
parts that have approximately the same amount of focus. The two tasks show
slightly different approaches to solving the same problem.

ABB has an existing system called Simplified Robot Programming that uses
external motion tracking to teach paint robots. The sensor used in this system
has some restrictions that severely hinders the usability. The first task consists
of expanding this system to use a new sensor with better capabilities. It also
involves adding new functionality to the system to increase its merit for teaching
paint robots.

The second task builds on a project conducted at University of Stavanger in
fall of 2017 [6]. This used motion tracking of a hand held device to control an
ABB robot in real-time. The task is to create a system where the paint robot
moves and paints in real-time while the path is being recorded. Similarly to the
first task, functionality to make it as user friendly as possible should be added.

For both tasks the output from the system must be on a form that can be
run on ABB’s paint robots. It must also be able to use existing software for
displaying and editing the programmed paths. The project will only focus on
the creation of the robot paths. Other aspects of automated painting such as
the tools used will not be touched upon.

1.5 Structure of the report
This report consists of six chapters. Chapter 1 is this introduction with back-
ground and task definitions. The next chapter will cover prerequisites that may
be necessary to read the report. This includes some theory about robotics and
an introduction to existing solutions used in the project. Chapter 3 covers the

7

implementation of the created systems. In chapter 4 tests of the different so-
lutions are presented. Chapter 5 discusses the different solutions, highlighting
challenges and possible improvements that could be made. The last chapter
presents the conclusion of the project and to what degree the presented tasks
have been solved.

8

2 Prerequisites
This section presents some subjects the reader should be familiar with before
reading the rest of the report. It includes technologies and solutions that the
systems created in the project are dependent on.

2.1 Motion tracking
Tracking is in this context understood as determining an objects position as a
function of time. For an object in 3D this involves finding both its position and
orientation, often called the pose of the object. This position will be relative to
a reference frame defined by the system. There are many ways of approaching
the problem and examples of systems using cameras, infrared lights or physical
cables to find the position exists.

To be usable in conjunction with robots such a system needs high precision
and good reliability. Such systems for the corporate market have existed for
a while, but often sports a high price tag. The recent surge in popularity of
Virtual Reality (VR) systems is bringing the possibility of high quality motion
tracking to a much broader market.

Virtual Reality
Virtual Reality systems lets the user step into a computer generated 3D en-
vironment. The user wears a headset with a stereoscopic display that shows
the virtual world. The level of immersion of such a device is far greater than
watching on a screen. If the system includes tracking of the headset’s position,
the user can move and look around in the virtual world. Through the use of
hand held controllers the user can also interact with the virtual environment.
To achieve this the position and orientation of all these devices in relation to
each other and the play area must be known. Virtual reality started as a tool for
interactive movies and games, but the high performance and relatively low cost
of these systems are also making them popular for uses outside of entertainment.

2.1.1 HTC Vive

HTC Vive is a VR system developed through a cooperation between HTC Cor-
poration and Valve Corporation. It was released in 2016 and was created to be
used with games and other virtual reality media. This section will explain the
basis for the system’s tracking and key capabilities of the system as a sensor.

9

Figure 1: HTC Vive set with the
Head Mounted Display (HMD), two
controllers and two Lighthouses

The HTC Vive set consists of the three
main parts seen in figure 1. The HMD is
worn on the user’s head and provides a stereo-
scopic display of a virtual environment. The
two hand controllers are used to interact with
the environment through several buttons on
the controllers. The Lighthouses are fixed base
stations mounted in the room. They are vital
to the tracking performance of the system.

How tracking is performed
To track the devices the systems combines two
methods. The pose of each device is found
relative to each other and to a fixed reference frame defined by the system.

The first method is the use of an inertial measurement unit (IMU). This is
a combination of an accelerometer and a gyroscope which measures the change
in acceleration and orientation. Through integration it can find the position
as it changes over time. The device does not know its absolute position in 3D
space, but only where it has moved relative to where it started. Inaccuracies
in the measurements will accumulate over time and cause increasing error from
its actual position. To correct this error the device’s position is periodically
updated from a stationary reference, the Lighthouses.

The Lighthouses alternately scan the room with two infrared laser lines, hor-
izontal and vertical. This infrared light is used by the devices to update their
current pose and correct the estimate found by the IMU. Each device has a
number of optical sensors distributed around the device. The IR lasers from the
Lighthouses will hit these optical sensors at different times depending on the
device’s orientation. These time differences are then used to calculate the abso-
lute pose of the device. When two Lighthouses are used they are synchronized
through a flash before each scan starts. It is possible to use only one Lighthouse
with a reduction in tracking precision. Figure 2 shows how the devices work
along with the Lighthouses to facilitate tracking.

Some key capabilities of the HTC Vive tracking system are listed below:[18]

• Provides position and orientation data for each tracked device (6 DOF).

• Refresh rate 250Hz.

• Jitter of 0.3 mm, up to 2.1mm if only one lighthouse is used.

• Expected practical precision around 2 mm.

10

Figure 2: HTC Vive room setup. [16]

Figure 3: HTC Vive
Tracker. [17]

HTC have also made a smaller device called the Vive
Tracker. It is an accessory meant to be mounted on devices
to facilitate tracking and sports the same capabilities as
the other tracked devices. It has a standard camera mount
and a port for communication. Initially it targeted devel-
opers to be used in products but is now also available to
the general public.

2.1.2 OpenVR API

Along with the HTC Vive hardware Valve released an Application Program
Interface (API), OpenVR API. This is an open source API that lets developers
interact with different virtual reality hardware through the same programming
interface. The API will detect what kind of hardware is being used and initializes
the specific implementation. OpenVR can be run in different modes. The
background mode where no rendering window for the display is required will be
used in this project.

As openVR is a C/C++ library some adaptions must be made to be able to
use it in C#. C++ creates unmanaged code which runs directly on the operating

11

system whereas C# creates managed code which runs in a Common Language
Runtime. For previous projects ABB has implemented a C++/Common Lan-
guage Interface as a bridge between the unmanaged OpenVR API and managed
C#. This creates several layers of code between OpenVR and the C# API, in-
creasing the complexity. To make changes it has to be propagated down through
all the layers. Now the OpenVR API also includes a C# file which uses mar-
shaling to bridge the gap between managed and unmanaged code. Functions
can then be called directly in C# and makes development much simpler. This
openvr_api.cs that implements the marshaling will be used in this project.

OpenVR has structures and functions that can be used to interact with the
hardware. Those that are relevant to this project are described under:

• OpenVR.Init(*) initializes the connection to the hardware through SteamVR.

• GetControllerState(*) returns the state of the selected controller as a
VRControllerState_t.

• GetControllerStateWithPose(*) returns the state but also includes the
latest updated pose of the controller.

• GetTrackedDeviceActivityLevel(*) returns the activity level of the device.
Can be used to check if the controller is ready and tracking.

• TriggerHapticPulse(*) triggers a haptic pulse on the controller causing it
to vibrate.

• VRControllerState_t holds the state of the controller’s inputs. This in-
cludes buttons, analog trigger and trackpad.

• TrackedDevicePose_t holds the information about a device’s pose. It
contains a 3x4 matrix with the pose and 3D vectors with velocity and
angular velocity.

SteamVR
The application using OpenVR does not connect to the hardware directly. This
is handled by the SteamVR application. It connects to the HTC Vive devices
and maintains their connection status. SteamVR has a room setup option where
one can define the working area and the coordinate axes. When OpenVR is
initialized it connects to SteamVR to retrieve information from the devices. As a
consequence the SteamVR application must be running as long as the HTC Vive
devices are being used. By default the SteamVR application requires the HMD
to be present for it to run. For applications that only uses the controllers, this

12

can be a nuisance. It can be circumvented by changing the option "requireHmd"
to false in the settings file for SteamVR.

2.2 Robotics
The field of robotics is vast and giving a full intro to the field in this report is
not feasible. This section will give a very brief introduction to robots based on
[1] and then focus on the aspects most important to this project.

A robot manipulator is a chain of links connected by joints. A joint is
usually either revolute (rotating motion) or prismatic (linear motion). The
relative displacement between two links is called the joint variable. Knowing all
the joint variables the exact position of each point on the robot manipulator can
be inferred. The point in interest is usually the end effector which is the end of
the final link where a tool typically is mounted. The workspace of the robot is all
the possible positions this end effector can reach given all possible combinations
of joint variables. This is dependent on the geometry of the manipulator and
possible constraints on the joints. An object in three dimensional space is
described by six degrees of freedom (DOF), three for position and three for
orientation. To be able to reach an arbitrary point with an arbitrary orientation
a robot manipulator therefore needs six independent DOF, which is the reason
most industrial robot arms possess at least six joints.

2.2.1 3D transformations

Each object in three-dimensional space has its own coordinate system. For
some objects this is fixed like the base of a robot. Other objects like the end
effector of the robot or a motion tracked device will move and the coordinate
system moves with it. For several robots or systems to be able to interact they
need to be able to describe their position in a common reference system. To
facilitate this, 3D transformations are used. A 3D transformation consists of a
translation and a rotation and describes one coordinate frame relative to another
frame. One way of describing such a transformation is by use of homogeneous
transformations ([1] chapter 2.7). This describes the transformation with a
4x4 matrix including both the translation and rotation part. Another way of
describing such a transformation, which is much used when working with robots,
is through the use of a translation vector and rotation quaternions.

Quaternions
Quaternions are an extension of the complex numbers. A quaternion q is gen-

13

erally represented on the form:

a+ bi+ cj + dk

[3] where a, b, c and d are real numbers while i,j and k are the fundamental
quaternion units. These quaternion units are connected by the formula

i2 = j2 = k2 = ijk = −1

Other common notations for quaternions are q = W + Xi + Y j + Zk or q =
q0 + q1i + q2j + q3k. The notation used by ABB is q0-q3. Quaternions have
their own set of algebraic rules. Quaternion multiplication is for example not
commutative, meaning that the order of the factors is not arbitrary:

q1 ∗ q2 6= q2 ∗ q1

A unit quaternion is a quaternion with norm 1. These are also called versors,
orientation- or rotation quaternions as they can be used to describe rotations
in three dimensions. These are much used in robotics and 3D modeling because
they are computationally efficient and interpolation between two orientations
is simple. Another advantage is that they are not susceptible to "gimbal lock"
which occurs when two axes aligns, resulting in loss of one degree of freedom.[4]
Understanding the practical meaning of a quaternion can be hard for humans
but it can be seen as similar to an axis/angle representation of rotations. q1-q3
can be understood as a vector defining an arbitrary axis of rotation in three
dimensions. The real part q0 then describes the angle of rotation around this
axis. The internet site in [11] is a powerful tool that can be used to visualize
quaternions and convert to Euler angles which are easier for humans to interpret.
Some unit quaternion relations used in this project are given below.

Given a vector p and a quaternion q the resulting vector p′ rotated by q is
found from:

p′ = q ∗ p ∗ q−1

If given two orientations q1 and q2 as quaternions the relative rotation q3 from
q1 to q2 can be found from:

q3 = q−11 ∗ q2
An arbitrary number of rotation quaternions can be combined to form an equiv-
alent rotation:

q3 = q2 ∗ q1
which is equivalent to a rotation of q1 followed by q2.

14

2.2.2 ABB robots

Figure 4: IRB52 with axes overview. [28]

ABB has a lineup of many different
robots in its arsenal. The ones most
commonly used for paint operations
are six axis robots with all revolute
joints like the IRB52 seen in figure
4. It has a base that is fixed to the
ground/wall/ceiling and a tool mount
at the end of the final link. Dif-
ferent versions of this kind of robot
will be used in the project. For the
robot to be able to operate it needs
a controller. The controller handles
communication, I/O-signals and many
other important features. For paint
robots the controller also incorporates
the paint process control, IPS. The
controller usually has some sort of
teach-/flex pendant that lets the op-
erator interact with it.

RobotStudio is the programming environment for ABB robots. It can be
used both for offline programming and simulation and to remotely connect to
real robots. The programming language used for ABB robots is called RAPID.
It is a high level language specifically created to program robots. The language
defines structures and routines to control program flow, robot movement, I/O
signals and much more. Some important terms to know when working with
ABB robots are explained below.

• The Tool Center Point - TCP of a robot is the point that will be moved
to the target. By default this is the tool mount at the end effector. By
adding a tool to the robot the TCP will move according to the geometry
of the tool.

• Work objects are RAPID’s way of defining different coordinate reference
frames. If a set of targets are defined in one work object, they can all be
moved together by moving the work object.

• A robtarget consists of a position and orientation and defines where the
TCP should be if the robot moves to this target.

15

• Singularties are points where the robot configuration to reach this point
is not unique. The robot does not know which configuration to use and
will generally lead to errors and program interruption.

• A Brush defines a set of parameters for the paint tool, effectively deter-
mining the shape and volume of paint being sprayed. It is defined in a
brush table and the SetBrush command with the correct brush number is
used to trigger paint on and off.

Two other ABB programs are used in this project. Robview is a PC tool for
monitoring and controlling robot cells. ShopFloorEditor lets the user visualize
and edit created paint programs.

2.2.3 Externally Guided Motion - EGM

Externally Guided Motion is a relatively new module for use with ABB robots.
It offers three different features:

• EGM Position Stream - Positions of mechanical units in RAPID tasks are
sent to external equipment.

• EGM Position Guidance - Robot follows a path generated by an external
device.

• EGM Path Correction - Programmed path is modified by measurements
from external device.

For this project EGM Position Guidance will be used. The purpose of the
module is to let the robot react fast to input from an external sensor.

EGM is an advanced tool that gives the programmer low level access to the
robot controller by bypassing functions such as path planning. This makes it
possible to read and write positions directly to the motion system at high rates,
up to 250Hz. Position references can either be sent as joint variables or poses.
Necessary filtering and state handling is performed by EGM Position Guidance.
Expected time from when a new position is given to when it starts to affect the
robot’s position is typically around 20ms.

EGM Position Guidance also has some limitations. Since path planning
is circumvented linear movements cannot be expected. Neither can a specific
speed or time used for a movement be ordered. The robot path is created directly
from the external program input and faulty inputs may result in sudden and
damaging movements. If the robot encounters a singularity the movement will
be stopped and it must be moved out of the singularity before a new EGM
movement can be started.

16

Figure 5: Simplified view of EGM control system. [22]

Sensor protocol
The position reference source can be from a signal interface or through a sensor
protocol. To utilize the high rate of EGM a fast protocol is needed. To this
effect UDP is used as transport protocol along with Google Protocol Buffers
[12] (Protobuf) for encoding. Protobuf is a way of serializing/de-serializing
data very efficiently. The sensor acts as the server and communication must be
started by the robot. After the first message data can be sent in both directions
independently of each other. Figure 6 shows the flow of data through EGM
module during operation.

Figure 6: Data flow using UdpUc interface with EGM. [22]

2.2.4 Simplified Robot Programming - SRP

Simplified Robot Programming is a plugin to Robview. It is designed to let the
user create paint programs for industrial paint applications fast and efficiently.
The system consists of three main parts seen in figure 7.

• The Polhemus Liberty system handles the motion tracking through the
use of electromagnetic fields.

17

• The teaching handle is the tool the operator uses to control the system
and functions as a dummy paint gun.

• SRP plugin in Robview running on a PC.

Figure 7: SRP system overview. [32]

The Polhemus Liberty Source
generates an electromagnetic dipole
field. This field is sensed by a
sensor inside the SRP Teach Han-
dle to find the position and ori-
entation of the handle. To cre-
ate paint programs the operator
"paints" the object by moving the
teach handle and holds the trigger
button when paint should be ap-
plied. Recording can be started
and stopped by buttons on the
teach handle. The traced path
and trigger points are then used
by the SRP software to create the
paint program. SRP also has built
in algorithms for reducing redun-
dant points in the path. For a
straight line only the starting- and
ending point is needed, which makes the path easier to edit afterwards. When
the paint program has been created it is fully editable in other ABB tools such
as ShopFloorEditor or RobotStudio.

The system works well and can cut programming time for creating new
paint programs drastically. Using the system takes little training and will feel
like second nature to an experience painter. The biggest challenge with the
system is that the motion tracking uses electromagnetic fields. These can be
affected by large metal objects in the working area and special precautions must
be made when painting metal objects.

2.3 Programming tools
The programming language used for creating PC applications is C#. This was
mandatory since SRP is written using this language. The IDE used is Visual
Studio. It is a powerful programming environment with many helpful tools and
robust debugger. Creating Graphical User Interfaces (GUI) is also simple with

18

the built-in graphics designer. As C# is ABB’s preferred programming language
for PC applications it also gives access to powerful tools for interacting with
ABB robots.

The PC SDK library provides a framework for interacting with an ABB
robot from a PC application. Communication with the controller is made pos-
sible by creating a controller object. The object is then used to log onto the
controller.

The ABB.Robotics.PC namespace is divided into domains for the different
aspects of the robot. The ones used in this project are described below.

• Rapid domain lets the application start/stop rapid execution and interact
with variables in the RAPID modules on the robot.

• I/O System domain enables the application to interact with the inputs and
outputs of the robot. For example outputs from the robot can be read
by the application and be acted upon, or the program can set simulated
input signals to control RAPID program flow.

• Configuration domain gives the application access to change the controller
configurations.

• Motion domain lets you access the mechanical units of the system for
example to read position data.

• File system domain gives access to the controller’s file system. New pro-
gram modules can be put in the controllers file structure and loaded into
the current RAPID program to be run.

RobotStudio SDK is another C# library from ABB. It includes the ABB.Robotics.Math
namespace that has data structures and functions for important mathematical
structures when working with robots. Examples are 3/4D vectors, 3x3/4x4
matrices and quaternions. These structures have the necessary operators to
interact with themselves and to convert between different structures.

19

3 Implementation
This section covers the implementation of the created systems. It is divided into
one section for hardware and one for software. The project has mainly consisted
of software development, and the hardware section mainly presents the choices
of hardware and the reasoning behind them.

3.1 Hardware
For the choice of sensor a set of wanted criteria was made. The chosen system
should if possible fulfill all of the criteria below.

• Good precision, preferably 1,5mm or better.

• High update rate. As low as 4ms if possible as this is the shortest possible
time between position updates for EGM.

• Not affected by metals in the working area.

The sensor chosen for the project is the VR system HTC Vive described in
section 2.1.1. This has been used by ABB in several other projects and has
shown very promising results. It has been thoroughly tested to be used for
external tracking of robots in a masters thesis by Kristian Sletten. [5] These
results show that it has sufficient precision and reliability for the intended use.
More testing to ascertain the viability of the system in this project will not be
performed. Because of the familiarity to this system and its capabilities, other
sensors were not considered.

To operate the systems a hand held controller (Human Machine Interface
- HMI) is needed. This lets the user interact with the program and teach the
robot. For this project three different options were considered for the HMI.

• Using the HTC Vive controller included in the VR set

• Using the proprietary Teach Pendant already used in SRP and mounting
a Vive Tracker to handle tracking

• Creating a new tool with an integrated mount for the Vive Tracker

After consideration the first option was chosen. The HTC Vive controller
is comfortable to hold and has many buttons that are readily available. It also
has a haptic feedback unit which can give feedback to the user without relying
on the screen. It is also the option that is least time consuming and leaves more

20

time to focus on software development. For a more in depth look at the pros
and cons of the three options see discussion in section 5.1.2.

For development and testing an ABB IRB52 robot with a paint gun tool
was made available. The systems should be compatible with any paint robot,
so the choice of robot is not of great import. Virtual controllers and robots in
RobotStudio have also been used for testing.

3.2 Software
This section covers the software implementation of the systems and is the main
part of the project. The implementation of OpenVR which is shared between
the two systems is presented first.

3.3 ViveTracker
Since the solution is used by both the systems, it is kept as simple as possible. It
merely acts as an interface to the hardware. More advanced functionality such
as storing paths and timing is left to the systems. As only the Vive controller
is used in this project, only functions for the controller is implemented.

The solution consists of two classes. The ViveData class holds all the
information. It has fields for the pose matrix, a vector and quaternion represen-
tation of position and the device’s activity- and button states. ViveTracker is
the class that connects to the hardware and handles communication. It has a
ViveData field to hold the information and functions to interact with the hard-
ware. The object can only handle tracking of one controller, but it is possible
to use two controllers by creating two ViveTracker objects with different device
indexes.

Listing 1: Code excerpt from ViveTracker.UpdateData().

The Initialize() function opens up a connection to the hardware by calling
OpenVr.Init(*). To get new information from the controller UpdateData() is
used. The controller’s state is retrieved by the code in listing 1. Then some
conversions are performed to be able to use the information. The pose of the
controller is given as a 3x4 pose matrix. This is converted to a 4x4 Matrix in the
ABB.Robotics.Math namespace. This namespace also has functions to extract

21

the 3D vector and quaternion representation of the position which is what is
used by ABB robots. The controller’s reference frame is centered around a point
in the middle of the controller approximately where the menu button is located.
The ViveTracker object also has an optional 4x4 transformation matrix that
can be used to move or rotate this reference point for example to the tip of the
controller.

Figure 8: Vive controller with button names. [16]

The button states are stored
in the VRControllerState_t struc-
ture. It has a 64 bit unsigned in-
teger with one bit for each but-
ton that is pressed. To check
whether a button is pressed a log-
ical & operation with the correct
button mask is used. The but-
tons used and their names are
shown in figure 8. To get ac-
cess to more buttons the trackpad
was divided into four. The track-
pad measures the finger’s position
in 2D. By checking if the x or y
axis respectively is larger than a
threshold the position of the fin-
ger is determined. This is com-
bined with the button mask for
the push button to get four new buttons called dPad- up/down and left-
/right. This gives a total of seven buttons that can be used when programming.

Listing 2: Program excerpt: Hap-
ticPulse(*)

HapticPulse(*) makes the controller vi-
brate to give feedback to the user. The haptic
pulse in OpenVr has a max duration of 3900
µs and can only be triggered once every 5ms.
To get longer durations a new task that runs
independently of the main task is started and
triggers a haptic pulse every 5ms for the de-
sired duration. See code in listing 2

22

3.4 Simplified Robot Programming
New functionality implemented in SRP is based on wishes expressed by ABB:

• Integrate the new sensor HTC Vive into the system.

• Adding a new recording mode called point to point.

• Automatically check if the recorded path can actually be run on the robot.

The implementation of these new features will be described in this section.
The SRP plugin is too comprehensive to be described in full in this report.

Only the changes made to the program in this project will be presented here. All
changes have been made with the thought in mind that it should be backwards
compatible with the existing sensor.

3.4.1 System overview

Figure 9: Block schematic showing the different elements.

Figure 9 shows an overview of the system. The operator controls opera-
tion through the hand held Vive controller. Pose of the controller and button
presses are retrieved by ViveTracker through the SteamVR software. A path is
recorded by the operator tracing the object with the controller, holding the trig-
ger button when paint should be administered. The recorded path is then used
to create a paint program in RAPID code which can be viewed in for example
ShopFloorEditor or RobotStudio. This paint program can then be transfered
to the robot and used to paint the object. A screenshot of SRP’s GUI can be
seen in figure 10.

23

Figure 10: View of the SRP GUI ready to start new recording

3.4.2 Implementing new sensor

SRP has been programmed with the possibility of adding new sensors. It uses
an interface IMotionSensor to facilitate this. To use the Vive as the sensor a
new class MotionSensorHtc which implements this interface is created. The
user can then choose which sensor to use in the program’s settings.

When the MotionSensorHtc object is created by the program, a new Vive-
Tracker object is made and instantiated and initialized. It then starts an update
loop on a separate thread that runs UpdateData() every 4ms. Every time the
updated position changes an event is created with the new sensor information.
Other classes in the program subscribe to this event to react to changes in
position.

Three buttons are used to control the program from the controller:

• The trigger button on the Vive controller is equivalent to the Teach Han-
dle’s trigger. It lets the user trigger paint on and off while recording a
path.

• The menu button replaces the A button on the Teach Handle. This starts
and stops recording.

• The grip button is the same as the Teach Handle’s B button. It adds
an extra option to trigger events other than paint on and off along the
programmed path.

24

The new motion sensor object also includes an implementation of the Vive
controller’s vibrate function. Vibration is triggered when recording starts and
stops so the user does not need to see the screen to confirm the recording state.

The existing solution currently has one recording mode, continuous. In this
mode the operator records a continuous path by tracing the path with the teach
handle. The point to point recording mode instead lets the operator record
discrete points and the program creates a linear path between them. For simple
objects where only straight lines are needed this can be more efficient. This can
also lead to higher precision because it negates unwanted shaking of the hand
while recording.

3.4.3 New recording mode

Figure 11: New settings options in
SRP

To implement point to point recording an op-
tion to change recording mode has been added
to the settings as seen in figure 11. A la-
bel showing the current operating mode has
also been added to the SRP main window as
seen to the left of the "Start recording" but-
ton in figure 7. Continuous mode uses a class
called ContinuousPathProcess to handle
the recording process. A new class PointTo-
PointProcess is created to handle the recording process for point to point
mode. This class has functions to create new recording, start/stop recording
and to add points to the recording. While in the continuous case every new
position is added to the path, for the point to point mode a new point is added
when the user presses the A/menu button. Whether the trigger is pressed or
not when a point is recorded determines if paint should be triggered on or off
at this position. When recording mode is changed, the current process object
is disposed off and a process object for the new recording mode is instantiated.
Where the displayed messages of the UI differ between the two modes, a check
for recording mode has been added and the correct text is displayed.

3.4.4 Reachability checking

Being able to check if a path is invalid without having to run it on the robot
or check it in RobotStudio can save a lot of time when creating new paint
programs. This will not give any information about the quality of the paint
job, but can confirm that it is possible or safe to run on the robot. To facilitate
this, a framework for checking if added points are reachable has been created.

25

This framework includes a IReachabilityCheck interface which implements
the function CheckPointReachable(*). This function takes a point as input and
returns a boolean value whether the point is reachable or not. Implementing this
interface lets any new reachability checker easily be integrated in the system.

Figure 12: Window for creating new reachability checker.

Figure 11 shows the option to turn reachability check on. When this is
selected the window shown in figure 12 will appear when the settings window
is closed. The form lets you choose which type of reachability checker to be
employed and set necessary parameters. The parameters can either be self
defined by the user or a set of premade limits for some common manipulator
arms can be made. The limits are defined from the robot’s base coordinate
system, but the reachability check in the program is based on the position in
the current work object. The offset of this work object in relation to the robots
base must therefore be specified for the reachability check to be valid. The
different reachability checker types are described in the following.

Static box checker creates a right prism with the upper and lower limits
given as parameters. To be reachable the point must be within the box. The
CheckPointReachable(*) function compares the input position’s X,Y and Z-
components to the upper and lower limits and returns true if all checks are
successful.

Static ellipsoid creates an inner and an outer ellipsoid based on the given
parameters. To be reachable the point must be outside the inner ellipsoid and
inside the outer ellipsoid. The general formula of an ellipsoid is given by: [2]

x2

a2
+
y2

b2
+
z2

c2
= 1

26

where a,b and c are the semi-axes of the ellipsoid. To check whether a point is
inside or outside the ellipsoid the position’s X,Y and Z-coordinates are plugged
into this formula. If the result is larger than 1 for the inner ellipsoid and smaller
than 1 for the outer ellipsoid the point is reachable. An example with inner and
outer limits has been made for the IRB52 robot based on the drawings in figure
13.

An option for a dynamic model of the robot to check reachability was also
added to the form. Implementing such a dynamic model was outside the scope
of this project.

Figure 13: Drawing showing the working area of an IRB52 robot [28]

Figure 14: Reachability checker showing different states.

27

When the reachability check has been activated and the checker created, the
window seen in figure 14 will be visible in the SRP window. It shows whether
the point is reachable or not and the controller also starts vibrating when it is
outside the reachable area. If the controller moves outside the reachable area
during a continuous recording, the controller will vibrate to give feedback to the
operator of an error and recording will be stopped. For point to point mode it
will not add a point to the path if it is not reachable and the message in the
rightmost window of figure 14 will be displayed.

3.5 Online Teaching
The goal of the second task is to have the robot paint the object in real-time
while the path is being recorded. This gives immediate feedback about the
paint program’s quality and whether the robot can reach all the points along
the path. Some wishes for the system’s capabilities are listed below:

• Operator controls robot’s movement in real-time.

• Generated paint program is based on feedback from the robot.

• Continuous and point to point recording mode.

• Usable with a wide range of robots.

The system Online Teaching is created to fulfill this task. It consists of a PC
application and a RAPID program on the robot. Program logic is mostly con-
tained in the PC program, and the robot side mainly handles robot movement.

3.5.1 System overview

An overview of the full system can be seen in figure 15. As for SRP the pro-
gram is controlled through the hand held Vive controller. ViveTracker retrieves
the controller’s pose and state through SteamVR. Position data is handled by
EGMSensor which sends position reference to the robot controller and receives
feedback data at a rate of 250Hz. Button presses are handled by the GUI which
in turn controls RAPID program flow through changing RAPID variables di-
rectly or setting simulated digital input signals to the controller. When robot
movement is activated by the operator, the robot will mirror the controller’s
movement in both position and orientation.

28

Figure 15: Block schematic showing the different elements.

To make a recording the feedback data from the robot is stored in the PC
application along with brush and time information. The recording is saved as
a text file which can be read by the SRP plugin of RobView and create a full
paint program in RAPID code. This can then be loaded onto the robot and
used to paint objects.

3.5.2 Robot program

Figure 16: Configura-
tion of UDP communi-
cation.

The robot part of implementation consists of setting up
Externally Guided Motion and writing the RAPID pro-
gram to run on the robot. How to set up and use EGM
is found in [22] from page 344 and onwards. This also in-
cludes sample RAPID code that is used as a basis. To use
EGM the robot controller needs to be properly configured.
This can be done by connecting to the robot controller
through RobotStudio and accessing the controller’s con-
figurations. The first is to setup the UDP communication

as seen in figure 16. "Remote Address" is the IP address of the PC running the
application, and the chosen port must be the same both on the robot and PC
side.

29

Figure 17: Configuration of EGM
motion data.

Figure 17 shows how motion data for EGM
is configured. It defines what should happen
when the movement is stopped and some im-
portant tuning parameters. To facilitate com-
munication between robot and PC applica-
tion the signals seen in figure 18 are also cre-
ated. These are simulated digital input signals
which can be set or reset through PC SDK’s
I/O-System domain. Connecting the signals
to interrupts in the RAPID code lets the PC
application control program flow on the robot.

Figure 18: Simulated digital input signals.

Tuning of EGM
The most important tuning parameters of EGM are described below. Values
for this project have been chosen based on tests performed in [6].

• Default Ramp Time defines the time from when EGM movement is
started until it should be correctly following the external position ref-
erence. Short ramp time can cause increased strain on the robot when
movement is started.

• Proportional Position Gain adjusts the weight of the external sensor
position data when determining speed reference sent to robot (see figure
5). Higher values gives faster response, and the max value of 20 is used
here.

• LPfilter describes how heavily the position reference should be filtered
before being applied. Lower values give faster reaction to changes but
more oscillatory motion. A value of 6 is used in this project.

• MaxSpeedDeviation defines the maximum combined speed of all joints
in degrees/second. This parameter is set in the EGMActPose command
described below and a value of 50 has shown to give good results.

30

RAPID
The RAPID program handles communication with the PC application and the
robot’s movement. It consists of variables, procedures (similar to functions or
methods in other languages) and trap routines that are started by interrupts
(similar to event handlers). Communication with the PC application happens
in three ways.

• Position data is sent at a high rate through the EGM sensor.

• RAPID variables can be changed directly from the PC application by
using PC SDK’s Rapid Domain.

• Button presses on the Vive controller sets or resets simulated digital input
signals to the controller. These input signals trigger interrupts which
controls program flow of the RAPID program.

The RAPID program consists of four modules. EGM is the largest and
contains everything that is shared between the different modes. It has work
object and tool definitions, defines all variables for communication with the PC
application and defines interrupt identities. When RAPID execution is started
the robot moves to a given start position, sets up UDP communication and
EGM then switches to the module corresponding to the mode chosen in the PC
program. The procedures of the EGM module are described below:

• SetUpUDP() starts the UDP communication with the PC application
through the EGMSetupUC command. The EGMsensor in the configura-
tions defines which IP and port to use.

• EGMSetup() initializes EGM by defining the work object, tool and other
parameters with the EGMActPose command.

• EGMRun() starts the actual movement of the robot by using the EGM-
RunPose command. See code in listing 3.

• PlayRecordingProc() lets the operator preview the recorded path by run-
ning it on the robot.

The three other modules - Testing, Continuous and PointToPoint - each
corresponds to a mode in the PC application. They are similar in structure and
the Continuous module will be used as an example.

The main procedure is started from the EGM module. It starts by setting
up the necessary interrupts and connecting them to trap routines. Then it

31

Listing 3: RAPID code excerpt showing EGMRunPose command.

runs a while loop waiting for input from the PC application to either start
an EGM movement or to run a recorded path. This module has three trap
routines that are activated from the controller. Pressing/releasing the trigger
button activates/deactivates spraying of paint. The grip button’s trap routine
gives the operator "control" of the robot by starting an EGM movement. A
subsequent press of the button will stop the movement.

3.5.3 PC application

EGMsensor
The setup of the EGM sensor protocol follows the guide on page 360 of [22]. A
.proto file is provided by ABB. This file is then compiled into C# code using
protobuf-csharp-port [13]. The generated C# file egm.cs contains the necessary
definitions and functions for serialization and de-serialization of the data packets
to be sent. It defines the data structures EgmRobot and EgmSensor which are
sent from the robot and sensor respectively. The header is common for both
structures and includes the sequence number, timestamp in milliseconds and
whether it is sent from the robot or sensor. A packet from the robot carries the
position feedback from the robot, while the sensor packet includes the planned
position the robot should go to next.

An example file egm-sensor.cs is provided by ABB. This file is adjusted to fit
the needs of this project. To use it a sensor object is created. When started it
starts listening for communication on the given port, in this case 6510, the same
port as in the robot’s configurations. After communication has been established
by the robot controller, data messages will be sent both ways independently of
each other until communication is halted.

32

Menu

Figure 19: Screenshot showing menu
of Online Teaching.

The simple menu of Online Teaching is shown
in figure 19. It gives access to the different
parts of the application. To be able to use the
application it must first be connected to the
robot. The "Connect to robot" button opens
the window shown in figure 20. This window
loosely follows the "Create a simple PC SDK
application" guide in [21]. It shows all the
available robot controllers on the network and
lets the user choose which to connect to. This
instantiates a controller object which is used
to log on and acts as the interface to the robot
controller.

Figure 20: Netscan showing available robot controllers on the network.

The two next support functions are used to prepare the robot controller the
first time it is used with the PC application. As shown in the previous section
some configurations must be made before EGM can be used. All these config-
urations are added automatically through the use of PC SDK’s configuration
domain by pressing the "EGM configurations" button. The IP address of the
PC running the application is the only parameter that changes. It is found auto-
matically by code suggested in [10]. The next button then transfers the program
modules from the PC to the controller’s file system and loads it into the current

33

task. The controller configurations and RAPID program is then ready to be
run without needing to log onto the controller through RobotStudio.

Figure 21: The work object creation
form.

The "Set workobject" button opens the
form shown in figure 21. This lets the user
create a new coordinate reference frame for
the HTC Vive that corresponds to the robot’s.
This ensures that the robot will follow the
controller’s movement correctly. The form
asks the user to define three points by moving
the controller and pressing the trigger button.
First an arbitrary initial point is recorded.

The second point should then be in the robot’s positive x-axis and the third
point in the robot’s positive y-axis relative to the first point. The rotation ma-
trix is then found from the code in listing 4. When the 3D position vector from
the Vive controller is multiplied with the found 3x3 rotation matrix it will give
the position in the robot’s coordinate system.

Listing 4: Code excerpt showing creation of transformation matrix.

The buttons on the left lets the user choose the preferred mode. Testing is
used for development and testing and will not be explained in detail. It shows
both the Vive and robot positions and other relevant debug information in the
GUI. The other two will be presented in the following sections.

3.5.4 Continuous mode

The functionality of the program is handled by a windows form. It holds all
the variables and functions. The controller object and work object from the
menu is passed to the form when created. Initialization of the form creates a
new EGMSensor object which starts listening for a connection attempt from the
robot. A ViveTracker object is created to start tracking of the controller. The
controller object is also used to log onto the controller, start RAPID execution
and get the digital signals needed to interact with the RAPID program. When
initialization is complete it opens the Graphical User Interface.

Figure 22 shows the GUI of continuous mode with the different recording
states. The sensor status reflects the activity state of the Vive controller while
the robot status is whether the RAPID program is running on the robot. Both
must be green in order to start recording. The brush selector sets the correct
brush to be used by changing a variable in the RAPID code. If a recording has

34

been made there are buttons to save the recording, preview by running it on
the robot or reset the recording. The GUI is updated every 100ms by a timer.

Program flow is handled by a timer with an interval of 4ms. As the smallest
interval of the built in windows timers was up to 15 ms, a better timer was
needed. A time from the custom made MicroLibrary [9] was used. This timer
counts the elapsed µs between intervals and has much better resolution at a
cost of more computational resources being used. The timer method runs Up-
dateData() to get new information from the controller then checks if any of the
buttons have changed state since last update.

Figure 22: GUI screenshots showing different states of continuous recording mode.

35

Calibration
To "take control" of the robot the operator presses the grip button on the
controller. This makes the robot follow the movement of the controller in a
1:1 ratio. The robot’s and controller’s positions are not absolutely mapped in
relation to each other. When the grip button is pressed the current position
is used as a reference point and position data is defined relative to this point.
The code in listing 5 shows how the calibration is computed. First the current
position of the Vive controller is stored in the CalibVive variable. Then the
position of the robot is obtained from the robot, converted to the right format
and stored in OffsetRobot. These variables define the reference point for the
position part of the pose. Along with the work object predefined by the operator,
which is a 3x3 rotation matrix, these are used when calculating the position to
be sent to the controller as seen in listing 6.

Listing 5: Code excerpt showing position and orientation calibration.

Calibration of orientation is done separately. The current orientation of
both the Vive controller and the robot is found as quaternions. This is used to
find the transformation between the two orientations using formulas described
in section 2.2.1. The resulting quaternion is used when calculating new robot
orientations as seen in listing 6. The next time the sensor sends position data
to the robot controller PlannedPos and PlannedOrient will be used.

Listing 6: Code excerpt showing data sent.

Recording
When EGM is running and the robot is following the controller’s movement,
recording can be started by pressing the menu button. The controller vibrates
to confirm that recording has started, a timer is started to keep track of the
time and a boolean to start recording is set to true. While an EGM movement

36

is active the robot sends position feedback to the PC application every 4ms.
When recording this feedback is stored in a list of RobTargets along with the
current time and the brush number. When the button is pressed again recording
is stopped and the buttons to preview/save recording are enabled.

The recorded path can be previewed on the robot without creating a full
RAPID program. This is done by writing the position and brush value to
arrays stored on the robot. The path is then run by using PlayRecordingProc()
procedure in the EGM module. To create a paint program from the recorded
path, the SRP plugin in RobView is used. The recording is saved in a text
file in a comma separated value (CSV) format. This text file can be loaded in
the SRP plugin and the RAPID code for the paint program can be generated
automatically.

The sequence diagram in figure 23 shows how the operator, PC application
and robot controller interact during a simple recording.

3.5.5 Point to point mode

Figure 24: GUI screenshot showing point to
point mode during recording.

The point to point mode uses the same
structure as the continuous mode. It
uses a timer to control program flow
and calibration is done in the same
way. The difference is in regards to
recording as can be seen in the record-
ing help text in figure 24. After
recording is initiated by pressing the
menu button, the operator uses the
trackpad’s four individual buttons to
record points. An index is used to
keep track of current position in the
recording.

Pressing up on the trackpad adds
the current position of the robot to the path at the current index along with
the trigger status. The position is retrieved directly from the robot in the same
way as when doing the calibration in listing 5.

To delete a point the operator presses down on the trackpad. The point at
the current index is removed and index is reduced by one. To move the robot
to the correct position a variable in RAPID is updated with the correct new
position. Then the signal DpadButton is set to trigger the interrupt to run
the correct trap routine seen in listing 7. First the EGM movement is stopped,
then the robot is moved to the correct position with the MoveL command. As

37

EGM movement is stopped the operator must press the grip button to again
take control of the robot.

Listing 7: Code excerpt from PointToPoint module showing Dpad trap routine.

Left and right buttons on the trackpad lets the operator move between
recorded points. This is done by incrementing or decrementing the index by
one, updating the position in the RAPID program and using the Dpad trap
routine to move the robot to the new position.

38

Figure 23: Sequence diagram of simple recording process.

39

4 Tests and results
To verify proper operation of the systems some simple tests are performed. The
tests seek to test the functionality of the systems and are mainly qualitative in
nature. Tests to specifically test the hardware were not designed. However, all
the tests rely on the hardware and will discover if there are challenges with the
chosen solutions.

4.1 Simplified Robot Programming
The general functionality of the program is tested first. A Vive controller and
Lighthouse is connected through SteamVR and RobView with the SRP plugin is
running. The controller is recognized by the program and its position is being
tracked. Pressing the menu button will start/stop recording and the trigger
button is in charge of paint triggering. It is possible to change between the two
recording modes and the UI is updated to reflect the correct mode.

The main part of the test consists of making some simple paint programs.
Two paths are recorded for each mode and then displayed using ShopFloorEd-
itor. The paint programs are also loaded onto a virtual IRB52 robot to check
that it will run on the robot.

40

4.1.1 Continuous recording

The first recorded path is to simulate painting a flat surface. The controller is
held against a level surface and the orientation is kept the same for the whole
recording. Moving the controller and holding the trigger button when paint
should be sprayed the path is recorded.

For the second path an imaginary 3D object is painted. The controller is
moved along a level surface before being tilted 90 degrees and moved straight
up. It is then moved down along a semi-circle until it reaches the level surface.
The controller is then moved to perform the same motion perpendicular to the
first path. The results from the two recorded paths are seen in figure 25 and 26.

Figure 25: Continuous recording of a flat surface.

Figure 26: Continuous recording of a 3D object.

41

4.1.2 Point to point recording

For the first point to point path the same surface as for the continuous case is
painted. The controller is moved along the path and the points are added by
pressing the menu button. The trigger button is held when painting should be
activated for that point.

The second path consists of painting a 3D box. Straight lines are recorded
covering all visible sides of the box, first along one axis then along the axis
perpendicular to the first. The two recorded paths can be seen in figures 27 and
28.

Figure 27: Point to point recording of a flat surface.

Figure 28: Point to point recording of a 3D object.

42

4.1.3 Reachability checker

Figure 29: Creating different reach-
ability checkers to test functionality.

To test the reachability checker, checkers with
different parameters have been created. The
hand controller is then moved in the positive
and negative direction for all three axes to de-
termine that the checker gives the correct out-
put.

For the static box option a small cube
is defined like in figure 29. The reachabil-
ity checker gives green while the controller is
within the given limits and red when it is out-
side. To check the work object offset it is
tested with 200mm offset in each direction.
The reachable area moves along the indicated
direction as expected.

The static ellipsoid is tested in the same way. A few different checkers with
varying parameters are tested. Moving along each axis the checker is red when
the is position outside the outer ellipsoid, then turns green when entering the
area between the two. It then turns red when inside the inner ellipsoid and back
to green when it enters the area between the ellipsoids on the opposite side. This
is true for each axis. Testing the offset of the work object is conducted like in
the static box case with the same results.

Both of the implemented reachability checkers works as expected. It is
also tested that recording is aborted if an unreachable point is added in the
continuous case, and a point that is unreachable will not be added to the path
in point to point mode.

4.2 Online Teaching
Online Teaching is tested by creating a new virtual IRB52 robot in Robot-
Studio, and the PC application is started in Visual Studio. A Vive controller
and Lighthouse is connected through SteamVR and is tracking. The virtual
controller is visible when the netscan window is opened and connection is suc-
cessful. Through the described support functions the needed configurations and
RAPID modules are automatically loaded onto the controller. After a controller
restart the virtual robot is ready.

43

4.2.1 Continuous mode

To test continuous mode the corresponding GUI is opened. Upon opening rapid
execution is automatically started and the robot moves to its designated initial
position. The status of the sensor and robot are correctly displayed. To take
control of the robot the grip button is pressed. The robot starts following
the controller’s movement, mirroring both position and orientation. Movement
is smooth and no discernible delay between controller and robot can be seen.
Pressing grip button again stops the robot from moving. To test correct calibra-
tion the controller is held with differing position and orientation while pressing
the grip button to see that EGM movement can be started with an arbitrary
pose on the controller.

Recording is tested by taking control of the robot and pressing menu button
to start recording. The robot is moved to paint a flat surface similar to the first
path recorded for SRP. After recording is done the recording is previewed on
the robot and then saved as a text file. The text file is opened in SRP and the
RAPID paint program in figure 30 is created.

Figure 30: Continuous recording of a flat surface.

A test to record a 3D object is also tried. Recording a full path of an
object similar to the second test for SRP is not successful, and the test fails.
During recording the robot either runs into a constraint for one of the joints
or encounters a singularity resulting in movement and program execution being
stopped.

44

4.2.2 Point to point mode

Similar tests are performed for the point to point mode. The preliminary tests
for the GUI and taking control of the robot in different positions are carried out
like in the continuous case with the same results.

A recording of the same flat surface as in the continuous case is made.
Points are added by moving the robot to the wanted position and pressing up
on the trackpad. The trigger button is held when paint should be turned on
and released when it should be turned off. When all the points are recorded
it is previewed on the robot and saved like in the continuous case, see figure
31. Using the right and left trackpad buttons the robot is cycled through all
the recorded points. Deleting points is also tested by pressing down on the
trackpad.

Figure 31: Point to point recording of a flat surface.

Similarly to the continuous case a test to record a 3D box is performed.
Again the test fails due the robot encountering singularities or joint constraints.

45

5 Discussion
This section will discuss the implemented solutions and results of performed
tests. It will highlight important weaknesses and propose possible improvements
that could be made to the created systems.

5.1 Hardware
5.1.1 Sensor system

The HTC Vive as a motion tracking system has as expected performed well in
this project. It was chosen largely because of good experiences with using the
system in the past. Some considerations about the system are presented in the
following section.

The precision of the system has proven adequate for use with paint robots.
The speed of the robot while painting generally has the largest impact on the
quality of the paint job. Errors on the magnitude of a few mm in the recorded
path are insignificant. The largest discrepancy between the recorded path and
the theoretical optimal path will in most cases be due to the human aspect.

One of the greatest strengths of the HTC Vive is that it uses infrared light for
tracking. This makes it less prone to disturbances in the tracking area. The main
issue with this approach is if line of sight between controller and Lighthouse is
broken. This could occur when tracing large 3D objects while recording. When
using only one Lighthouse this did happen on occasion, making the recording
corrupt. However, this was never an issue when using two Lighthouses, which
is the recommended setup. A new and better base station is also being released
this year [15]. This will include the possibility of having more than two base
stations in a room setup, further increasing the trackable area and reducing
problems with occlusion.

HTC Vive also has a comfortable price tag compared to other solutions
specialized for the corporate market. For small or medium sized businesses,
which is the main target group for the software, the cheaper hardware could be
a deciding factor in acquiring the system.

5.1.2 Controller

The HTC Vive controller was chosen as the HMI for this project. This was
largely because of the familiarity to using the controller, and to free up time to
spend on software development. However, from the viewpoint of the operator

46

using the system this is not necessarily the best choice. Some pros and cons of
the three stipulated choices are discussed in the following.

HTC Vive controller
One advantage of using the HTC Vive controller is that it is mass produced and
readily available. It can be bought either directly from the HTC store or from
most electronics retailers. As the popularity of Virtual Reality is rising and
HTC Vive already has many interesting uses, many of the target group for this
software may already own an HTC Vive set and no extra hardware is necessary.
The Vive controller has a good amount of buttons that are versatile and well
placed on the controller for ease of use. It also has a useful vibrating function
that enables the program to give feedback to the operator without needing to see
the computer screen. Using the Vive controller in addition makes the software
more streamlined, as both the position tracking and buttons are handled by the
same ViveTracker interface.

One weakness of the controller is that is does not resemble a paint gun.
For an experienced painter the HMI looking and handling like a standard paint
gun could make the transition to recording paint programs easier. Adding cus-
tom add-ons is also complicated when using the controller and could require
modifications that would void the warranty.

SRP Teach Handle
Using the existing teach handle would create little extra work. A mount for the
smaller Vive Tracker would need to be made and, the position and orientation
of the tracker relative to the tip of the teach handle must be found. This would
make it possible for users of the existing system to upgrade to the new sensor
by buying only the Lighthouses and Vive Tracker. The teach handle already
has a laser light that is activated when the trigger is pressed. Making additional
add-ons to the teach handle would be relatively simple.

The greatest weakness of the teach handle is that it has a limited amount of
buttons, only the trigger and two function buttons. This limits extra support
functionality that could be added. Having the ability to change brush number
or paint color on the fly while recording is a nice possibility. The Vive Tracker
being mounted on the teach handle would also make it bulkier and heavier. This
could make it more cumbersome to use when recording paths.

Making a new HMI
Making a new HMI would be a lot more work, but could be rewarding in the
long term. An optimal place for the Vive Tracker mount could be made. The

47

amount of buttons and their placement could be optimized both in terms of
needed functionality and ease of use. Having a mount for a phone or tablet on
the hand held controller would create endless customization options. With a
phone app connected to the software the user could customize what information
and options to display on the phone.

The main disadvantage of this option is of course the increased development
time. Making a proprietary tool that is produced in low volume might also
increase the price of the hardware for the user.

5.2 ViveTracker interface
The implemented ViveTracker interface has worked well. It adds only one layer
of code between the application using it and the OpenVR API. This makes
making changes and adding new functionality simple. As it is being used by
both SRP and Online Teaching the the complexity of the interface is kept as
low as possible. Higher level functions like storing paths is not implemented.
The segregation of the trackpad into four separate buttons gives more options
to the developer.

Data is only updated when the UpdateData() function is called. This means
that the system using the interface must utilize some form of timer or update
loop to periodically update the state of the controller. If this update loop needs
to run at a high rate it uses significant computer resources. To alleviate this issue
an event base data update could be used. The OpenVR API includes a set of
events that can be subscribed to. By using events for position and button state
the ViveTracker interface could inform the higher level system as soon as a state
change happens instead of waiting for the system to ask for new information.
This could both increase responsiveness and reduce the computational resources
used.

5.3 Simplified Robot Programming
As SRP is already an existing product it has a higher degree of finish than the
other system. This makes implementing new functionality both simpler and
harder at the same time. Although it already has frameworks for UI and error
handling for example, a lot of time needs to be used to understand the existing
code and how it interacts before changes can be made. All changes are made to
be backwards compatible with the current sensor. This puts some limitations
on what can be implemented, for example limiting the software to using three
buttons.

48

Using the HTC Vive as the sensor has worked well. Its biggest improvement
over the current sensor is that no precautions need to be made when painting
metal objects. Adding support for the HTC Vive does not necessarily mean
that the Polhemus Liberty system is obsolete. The choice of sensor system can
be tailored to fit the needs of the user.

5.3.1 Recording mode

The performed tests show that creating paint programs is simple and efficient.
Output from the paint program creation corresponds well to the path traced
by the controller. The continuous flat surface recording shows the effect of the
reducer algorithm. For the straight lines only a few points are needed to describe
the path and redundant points are removed, while for the curved parts many
points are needed. The RAPID code shows that the trigger points are detected
correctly through the SetBrush commands.

The recording of a 3D object shows that more advanced paths can also be
recorded. However, for parts of the recording the orientation seems to be slightly
off. This could be due to the controller not being held perfectly perpendicular
to the recorded path, but could also be due to the transformation of the Vive
controller’s reference frame. It is translated and rotated so that the origin
is at the tip of the controller and the Z-axis points straight out of the tip.
This transformation was found based on tests performed with the controller, as
official information about the controller’s coordinate axes could not be found.
If this rotation is slightly off it could cause the orientation in the recording to
be suboptimal.

The addition of the point to point recording mode makes the software more
versatile. The biggest advantage is that the finished paint program has much
fewer points. This makes editing the paint program after creation simpler.
One drawback to the mode is that the speed of the robot can not be as easily
controlled. Neither the time nor speed between recorded points is relevant in
this mode, and the default speed in the program settings must be used when
creating the paint program. This means that having different speeds for different
segments is not possible. However, the speed can still be changed in the editing
software afterwards, and with such few points in a recording this would be
relatively simple.

5.3.2 Reachability checking

The reachability checking framework is working according to the specifications.
It lets the operator create different reachability checkers and gives the correct

49

output and feedback to the user. The two implemented checkers has some merit,
but also some glaring weaknesses that will be discussed here.

The static box checker’s biggest advantage is its simplicity. It is very easy
for the operator to create and understand what it signifies. The most relevant
usage is for safety and space considerations. If the robot being used has a
clearly defined area of legal operation, for example to avoid hitting walls or
other objects in the working area, this area can be defined in the SRP plugin
and it will give feedback if the path is within these safe limits. This can avoid
dangerous situations if the recorded program is to be run directly on the robot
after recording. The biggest weakness is that it does not take into account the
orientation of the tool. Large portions of the manipulator arm can be outside
the "safe" area even if the recorded TCP is inside. However, for simple paint
operations like when flat objects are painted, the orientation of the tool stays
mostly the same for the whole operation. These issues must be taken into
consideration when discerning if the reachability checker can be trusted or not.

Static ellipsoid reachability checker is closely tied to the robot’s working area.
It is simple to define the inner and outer limits based on drawings of the robot’s
working area like in figure 13. Although it gives a good indication whether a
point is reachable based on the geometry of the robot, this method also suffers
from not taking orientation into account. Using the dexterous working area
(the area the manipulator can reach with an arbitrary orientation of the tool[1])
instead would alleviate this issue somewhat, but would give a more restrictive
reachability check.

To answer the main issue with both these methods a dynamic model reach-
ability checker could be implemented. Developing such a dynamic model based
on the kinematics of the robot is very time consuming, especially given the sheer
amount of different robots ABB has in its lineup. However, ABB already have
a framework for simulation of robot manipulators called RCS [26]. It is based
on the Realistic Robot Simulation Interface Specification (RRS) [27]. After ini-
tializing a robot manipulator the user can send a position to the service and
get feedback on whether it is reachable or not. It is not known how fast the
response is and whether it would be possible to run in real-time. If running
in real-time is not feasible, the whole path could be simulated using RCS after
recording. This would still be simpler and save time compared to loading the
program into RobotStudio to check reachability.

The suggested reachability checkers are not necessarily mutually exclusive
in use. It would be possible to combine two or more checkers to run at the same
time. For example a static box checker could be used to account for safety or
space restrictions while an ellipsoid checker determines if the recorded path is

50

actually inside the robot’s working area.

5.3.3 Improvements and future work

If an object consists of both straight and curved surfaces, being able to change
recording mode on the fly would be intriguing. The straight surfaces could be
recorded with straight lines using point to point, while the curved surfaces would
be recorded using continuous motion. This would get the best of both worlds
from the two recording modes. For straight lines it gets the added precision and
simplicity of point to point while still being able to record curved paths. This
would require a button on the controller to switch mode and would be harder to
implement with the SRP Teach Handle. An indicator on the controller showing
the current recording mode would also be helpful to the operator.

The creation of the paint program based on the recorded path could also
be optimized. For example the speed does not need to be the same throughout
the whole recording. While painting, the speed of the robot is important to the
thickness of the applied paint, but not when paint is triggered off. A higher
speed could be used when the robot is moving without painting. This would
reduce cycle time and could increase productivity.

Having the ability to change program settings directly from the controller
would also be a useful addition. Changing parameters such as paint color or
brush number without needing to access the PC application could speed up
programming even further. The controller could be customizable by mapping
different functionality to the trackpad buttons depending on the user’s needs.

5.4 Online Teaching
The tests performed show that the Online Teaching system is working but has
some significant weaknesses. A lot of work is needed before it can be considered
ready. The main selling point of the system is that it allows the operator
to paint the object in real-time while the path is being recorded. This gives
immediate feedback about the quality of the paint job and that the recorded
path is reachable by the robot. This could save a significant amount of time
compared to other methods of robot teaching if the first recorded paths does
not give a satisfactory result. It works both with virtual and real robots, but
controlling the robot by looking at the screen is awkward. The system is mainly
designed to be used with a real robot. If programming is to be done offline
(without the robot) SRP is a more natural choice.

Controlling the robot with the controller feels simple and intuitive. Little
practice is needed before it feels like second nature, although finely maneuvering

51

the robot to a given position and orientation can be challenging. Controlling
the robot translates well to paint operations where the speed and fluidness of
the motion is more important to get a good result than millimeter precision.
Although there is a slight delay between the controller and robot’s movement, it
is small enough that to the operator it feels like the robot follows the controller
in real-time.

The system is targeted towards creating simple paint programs for proto-
typing and low volume production. Therefore the ease of installation and use
of the system is important. A typical user might not have extensive experience
with RobotStudio or ABB robots. All the necessary configurations are done
automatically. As of now the only thing that must be done manually when
setting the system up with a new controller is to define the work object and
start position in the RAPID code. It should be possible to also automate this
by telling the user to move the robot to the preferred initial position before
starting the configuration procedure. The program could then get the current
position from the robot directly and write it into the RAPID code. Then the
user only needs to install the Lighthouses to give good coverage of the teaching
area and set up the work object before the system is ready to start recording.

A lot of effort have not been put into UI design, error handling and adding
setting options. The focus have been to make the system work and show the
possibilities with real-time teaching. It is also cumbersome to first save record-
ings as a text file which needs to be opened in SRP to create the RAPID paint
program. If the Online Teaching system is to be developed further to make it
into a finished product however, it would most likely be integrated as a plugin
to existing ABB software like RobView or RobotStudio. Then it would have
access to a plethora of settings, options and functionality directly.

5.4.1 Calibration and recording

Calibration
Calibration of the position part of the pose works well. When EGM movement
is initiated a reference point is set and new positions are calculated relative to
this point. Since both the controller and robot position is used when calibrating,
both the controller and robot can be in arbitrary positions when EGMmovement
is activated. This is especially important for the point to point recording mode.
If the operator uses the buttons to check previous recorded points, the robot
will move to these points. Then when the operator wants to take control of
the robot again it could be in a different position from when the previous EGM
movement ended.

Orientation calibration have proven to be more challenging. The chosen

52

implemented solution works well when a tool with no rotation relative to the
wrist center point is used. When the robot is moving it rotates around the same
axes as the controller. This is not the case when a tool with a rotational element
is introduced. The calibration is still correct when the button to take control
is pressed, it does not start changing orientation immediately. However the
axes of rotation does not correspond correctly between the controller and the
robot. This is very confusing for the operator and makes it nearly impossible to
record paths with changing orientations. Adding the rotation quaternion of the
tool definition into the calibration equation has been tried, but this only make
matters worse. Then the robot moves to a new orientation immediately when
the button to take control is pressed even though the controller is held still.
This problem is a serious issue that needs to be worked out, as for most paint
gun tools the TCP is rotated relative to the wrist. With the current system it
works best when flat surfaces are painted and the orientation does not need to
change.

Recording
The performed tests show that recording works well when painting a flat surface.
Both the continuous and point to point mode show promising paint programs.
The position and orientation is easily seen from the graphical view. Both show
three straight lines perpendicular to the painted surface and the orientation of
the tool is kept the same for the entire recording. Correct triggering of paint
application can be seen in the RAPID code with the SetBrush instructions
turning paint on and off. Again, the main difference between the two modes is
the amount of points. If the program needs to be edited after creation, fewer
points is preferred.

When trying to create a more advanced paint program of a 3D object, the
system failed. The test was performed many times but was never able to com-
plete a full recording. Almost every test failed due to encountering a singularity.
That the solution would be prone to the robot encountering singularities was an
expected issue. Since EGM bypasses path planning it has no way of choosing a
configuration when a singular point is reached. If the robot encounters a singu-
larity during an EGM movement an error occurs and rapid execution is halted.
The cause of a singularity is often because of the wrist configuration. Only
being able to create paint programs for flat surfaces is a limitation that severely
reduces the usefulness of the system. A few possible solutions are discussed in
the next section.

53

5.4.2 Possible solutions to singularity problems

Using a more advanced robot
Many ABB paint robots use a more advanced wrist configuration called a hollow
wrist. This is a wrist made specifically for paint robots. It is hollow in the
middle so that paint hoses can be brought to the paint gun inside the wrist
instead of being fastened to the outside of the robot. This wrist configuration is
also more robust and is less prone to experiencing singularities. However, from
testing performed it seems that robots with hollow wrists are not compatible
with EGM. When an EGM movement was started on these robots, the robot
would start drifting off uncontrollably even though the position reference sent
to the EGM module was constant. This was the same for several types of
robots like IRB5500 and IRB5400, both live and virtual. This problem was
never encountered on a robot without the hollow wrist configuration and it is
assumed that the hollow wrist is not compatible with EGM in its current state.
Until this is fixed, using robots with hollow wrists with the Online Teaching
software is not feasible. This severely limits the usefulness of the system as a
large amount of robots used in industrial painting processes uses this wrist.

Monitoring kinematics
Another approach to avoid singularities would be to check the position reference
for singularities before it is sent to the robot. This could be implemented in
the software itself by using the kinematics of the connected manipulator, or by
using a framework like the RCS described earlier. As EGM is running at a
rate of up to 250Hz this requires the position check to be very fast. If a too
large delay is introduced between the controller’s and the robot’s movement it
would be harder for the operator to control the robot. One way to alleviate
the strict time requirement would be to predict the controller’s future position.
The position can then be checked for singularity before it is time to send it to
the robot.

Hybrid approach
If the problems with singularities are not possible to solve in real-time at the
moment, an approach similar to SRP could be used. The software is still con-
nected to the robot, but the robot is not controlled directly with the controller.
The path is recorded similar as for SRP, but can be instantly run on the robot
through the preview procedure in Online Teaching. It would even be possible to
record the path in segments, checking the quality of each segment before moving
on. This would not need the use of EGM, and will not suffer the limitations this
introduces. For the point to point mode the robot could move automatically to

54

a new point when it was added. This gives a semi-real-time approach to robot
teaching.

5.4.3 Improvements and future work

An option to "lock" the robot on a given axis or in a given orientation could
be added. If painting a flat surface the distance from the tool to the object
and the orientation of the paint gun does not need to change through the entire
recording. The robot is first brought to the starting location. By pressing a
button the orientation and one axis is locked and the robot can only be moved
in the plane parallel to the object to be painted. This could possibly also be
stored as a setting if flat surfaces of different sizes need to be painted. Keep-
ing the orientation locked should also reduce the probability of encountering
singularities.

It would also be possible to add support for other sensors. If a Virtual
Reality system compatible with the OpenVR API was to be added, minimal
changes to the ViveTracker interface would be needed. The rest of the software
is invariant to what sensor is being used. Adding support for the Polhemus
Liberty would let users currently using SRP adopt the new Online Teaching
without needing any new hardware.

Integrating the Online Teaching system into existing ABB software would
also be a reasonable future development goal. A natural choice would be Rob-
View, either as a part of SRP or as a separate plugin.

55

6 Conclusion
The purpose of this project was to develop an intuitive, efficient and simple way
of teaching paint robots. This was done by using motion tracking to capture the
movements of the human hand while simulating painting an object. The virtual
reality system HTC Vive has been used for the motion tracking, and a software
interface to interact with the hardware has been implemented. The HTC Vive
system has performed as desired and is a viable solution for the intended use.

The project has been comprised of two tasks with a roughly equal amount
of focus. Both tasks seek to implement a system for teaching paint robots using
motion tracking, but with slightly different approaches.

The first task consisted of expanding the existing ABB software Simplified
Robot Programming. This system lets the user create paint programs by tracing
a path with a hand held device. It has been adapted to use the HTC Vive as its
sensor, and new functionality in terms of a new recording mode and reachability
checking has been added. Tests of the system show promising results and the
system shows a high level of completeness. Little work would be necessary to
make it ready for release as a finished product and the task is deemed completed
satisfactory.

The system Online Teaching has been created to answer the second task. It
lets the user control an ABB paint robot with the hand held Vive controller to
paint an object in real-time. The path of the robot while painting is recorded
and used to create the paint program. Tests show that simple paint programs
for flat surfaces can be created, but the solution has several serious issues. The
main problems are with calibration of orientation between the Vive controller
and robot, and the robot encountering singularities. This results in program
error and halted movement while recording more advanced paths. Possible
solutions to the given issues have been proposed. The system in its current
state is seen as a prototype or proof of concept and the task is completed only
in part. Much work would be necessary to make this usable for paint robot
teaching.

56

7 References
[1] Hutchinson Spong and Vidyasagar. Robot Modeling and Control. John

Wiley & Sons, United States, 2006.

[2] Robert A. Adams and Cristopher Essex. Calculus - A complete course.
Pearson Canada Inc, Toronto, Canada, 2010.

[3] John Vince. Quaternions for Computer Graphics. Springer-Verlag, Lon-
don, UK, 2011.

[4] Gergely Vass. Avoiding gimbal lock. Computer Graphics World, 32, June
2009.

[5] Kristian Sletten. Automated testing of industrial robots using htc vive for
motion tracking. Master’s thesis, University of Stavanger, 2017.

[6] Eivind Haus and Kåre Reime. 3D Pantograf - Styring av ABB Robot med
HTC Vive, 2017.

[7] Microsoft. C# Guide, 2017. https://docs.microsoft.com/en-
us/dotnet/csharp.

[8] Microsoft. C# Reference, 2017. https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/index.

[9] Ken Loveday. Microsecond and Millisecond C# timer, 2013.
https://www.codeproject.com/Articles/98346/Microsecond-and-
Millisecond-NET-Timer.

[10] stackoverflow user: Mr.Wang from Next Door. Get local ip address, 2017.
https://stackoverflow.com/questions/6803073/get-local-ip-address.

[11] Quaternions, 2016. https://quaternions.online/.

[12] Google. Protocol Buffers, 2017. https://developers.google.com/protocol-
buffers/docs/csharptutorial.

[13] Google. protobuf-csharp-port, 2015. https://github.com/jskeet/protobuf-
csharp-port.

[14] Valve. Open VR API Documentation, 2015.
https://github.com/ValveSoftware/openvr/wiki/API-Documentation.

57

[15] Ben Lang. SteamVR Tracking 2.0, 2018.
https://www.roadtovr.com/steamvr-tracking-2-0-will-support-33x33-
foot-playspaces-with-4-base-stations/.

[16] HTC Corporation. Vive PRE User Guide. United
States, 2016. https://www.htc.com/managed-
assets/shared/desktop/vive/Vive_PRE_User_Guide.pdf.

[17] HTC Corporation. HTC Vive Tracker - Developer Guidelines. United
States, 2017. Version 1,5.

[18] Oliver Kreylos. Lighthouse tracking examined,
2016. https://drive.google.com/drive/u/0/folders/0B4v-
rRe4YjiTRlViektrOVBRdWs.

[19] ABB AB Robotics. RobotStudio SDK - API reference, 2018.
http://developercenter.robotstudio.com/robotstudio.

[20] ABB AB Robotics. PC SDK - API reference, 2018.
http://developercenter.robotstudio.com/pcsdk.

[21] ABB AB Robotics. PC SDK - Manuals, 2018.
http://developercenter.robotstudio.com/pcsdk/manuals?Url=html

[22] ABB AB Robotics. Application manual - Controller software IRC5.
Västerås, Sweden, 2018. Document ID: 3HAC050798-001, revision: G.

[23] ABB AB Robotics. Technical reference manual - RAPID Instruc-
tions,Functions and Data types. Västerås, Sweden, 2018. Document ID:
3HAC050917-001, revision: G.

[24] ABB AB Robotics. Technical reference manual - RAPID overview.
Västerås, Sweden, 2018. Document ID: 3HAC050947-001, revision: G.

[25] ABB AB Robotics. Technical reference manual - RCS. Västerås, Sweden,
2016. Document ID: 3HAC048817-001, revision: C.

[26] ABB AB Robotics. User’s guide - RCS. Västerås, Sweden, 2017. Document
ID: 3HAC048818-001, revision: C.

[27] G.Schreck R. Bernhardt and C. Willnow. Realistic robot simulation. Com-
puting and Control Engineering Journal, 6, August 1995.

58

[28] ABB AB Robotics. Product manual - IRB 52. Bryne, Norway, 2017.
Document ID: 3HNA011253-001, revision: 19.

[29] ABB AB Robotics. RobTracker Documentation. Bryne, Norway, 2017.

[30] ABB AB Robotics. Trouble Shooting Manual. Bryne, Norway, 2017.

[31] ABB AB Robotics. Product manual - Simplified Robot Programming.
Bryne, Norway, 2016. Document ID: 3HNA023965-001, revision: 3.

[32] ABB AB Robotics. Simplified Robot Programming - Data sheet, 2015.

59

Appendices
A Online Teaching source code

60

Online Teaching/.vs/Online Teaching/v15/Server/sqlite3/db.lock

Online Teaching/.vs/Online Teaching/v15/sqlite3/db.lock

Online Teaching/GUI/obj/Debug/GUI.csproj.CopyComplete

Online Teaching/GUI/obj/Debug/TemporaryGeneratedFile_036C0B5B-1481-4323-8D20-8F5ADCB23D92.cs

Online Teaching/GUI/obj/Debug/TemporaryGeneratedFile_5937a670-0e60-4077-877b-f7221da3dda1.cs

Online Teaching/GUI/obj/Debug/TemporaryGeneratedFile_E7A71F73-0F8D-4B9B-B56E-8E70B10BC5D3.cs

Online Teaching/obj/Debug/build.force

Online Teaching/obj/Debug/TemporaryGeneratedFile_036C0B5B-1481-4323-8D20-8F5ADCB23D92.cs

Online Teaching/obj/Debug/TemporaryGeneratedFile_5937a670-0e60-4077-877b-f7221da3dda1.cs

Online Teaching/obj/Debug/TemporaryGeneratedFile_E7A71F73-0F8D-4B9B-B56E-8E70B10BC5D3.cs

Online Teaching/obj/Debug/TrackerApi.csproj.CopyComplete

Online Teaching/obj/x86/Debug/TemporaryGeneratedFile_036C0B5B-1481-4323-8D20-8F5ADCB23D92.cs

Online Teaching/obj/x86/Debug/TemporaryGeneratedFile_5937a670-0e60-4077-877b-f7221da3dda1.cs

Online Teaching/obj/x86/Debug/TemporaryGeneratedFile_E7A71F73-0F8D-4B9B-B56E-8E70B10BC5D3.cs

Online Teaching/obj/x86/Debug/TrackerApi.csproj.CopyComplete

Online Teaching/Vive/obj/Debug/TemporaryGeneratedFile_036C0B5B-1481-4323-8D20-8F5ADCB23D92.cs

Online Teaching/Vive/obj/Debug/TemporaryGeneratedFile_5937a670-0e60-4077-877b-f7221da3dda1.cs

Online Teaching/Vive/obj/Debug/TemporaryGeneratedFile_E7A71F73-0F8D-4B9B-B56E-8E70B10BC5D3.cs

Online Teaching/Vive/obj/Debug/Vive.csproj.CopyComplete

Online Teaching/.vs/Online Teaching/v15/.suo

Online Teaching/.vs/Online Teaching/v15/Browse.VC.db

Online Teaching/.vs/Online Teaching/v15/Server/sqlite3/storage.ide

Online Teaching/.vs/Online Teaching/v15/Server/sqlite3/storage.ide-shm

Online Teaching/.vs/Online Teaching/v15/Server/sqlite3/storage.ide-wal

Online Teaching/.vs/Online Teaching/v15/Solution.VC.db

Online Teaching/.vs/Online Teaching/v15/Solution.VC.db-shm

Online Teaching/.vs/Online Teaching/v15/Solution.VC.db-wal

Online Teaching/.vs/Online Teaching/v15/sqlite3/storage.ide

Online Teaching/.vs/Online Teaching/v15/sqlite3/storage.ide-shm

Online Teaching/.vs/Online Teaching/v15/sqlite3/storage.ide-wal

Online Teaching/App.config

Online Teaching/config

Doxyfile 1.8.8

This file describes the settings to be used by the documentation system
doxygen (www.doxygen.org) for a project.
#
All text after a double hash (##) is considered a comment and is placed in
front of the TAG it is preceding.
#
All text after a single hash (#) is considered a comment and will be ignored.
The format is:
TAG = value [value, ...]
For lists, items can also be appended using:
TAG += value [value, ...]
Values that contain spaces should be placed between quotes (\" \").

#---
Project related configuration options
#---

This tag specifies the encoding used for all characters in the config file
that follow. The default is UTF-8 which is also the encoding used for all text
before the first occurrence of this tag. Doxygen uses libiconv (or the iconv
built into libc) for the transcoding. See http://www.gnu.org/software/libiconv
for the list of possible encodings.
The default value is: UTF-8.

DOXYFILE_ENCODING = UTF-8

The PROJECT_NAME tag is a single word (or a sequence of words surrounded by
double-quotes, unless you are using Doxywizard) that should identify the
project for which the documentation is generated. This name is used in the
title of most generated pages and in a few other places.
The default value is: My Project.

PROJECT_NAME = "TrackerAPI"

The PROJECT_NUMBER tag can be used to enter a project or revision number. This
could be handy for archiving the generated documentation or if some version
control system is used.

PROJECT_NUMBER =

Using the PROJECT_BRIEF tag one can provide an optional one line description
for a project that appears at the top of each page and should give viewer a
quick idea about the purpose of the project. Keep the description short.

PROJECT_BRIEF =

With the PROJECT_LOGO tag one can specify an logo or icon that is included in
the documentation. The maximum height of the logo should not exceed 55 pixels
and the maximum width should not exceed 200 pixels. Doxygen will copy the logo
to the output directory.

PROJECT_LOGO =

The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path
into which the generated documentation will be written. If a relative path is
entered, it will be relative to the location where doxygen was started. If
left blank the current directory will be used.

OUTPUT_DIRECTORY =

If the CREATE_SUBDIRS tag is set to YES, then doxygen will create 4096 sub-
directories (in 2 levels) under the output directory of each output format and
will distribute the generated files over these directories. Enabling this
option can be useful when feeding doxygen a huge amount of source files, where
putting all generated files in the same directory would otherwise causes
performance problems for the file system.
The default value is: NO.

CREATE_SUBDIRS = NO

If the ALLOW_UNICODE_NAMES tag is set to YES, doxygen will allow non-ASCII
characters to appear in the names of generated files. If set to NO, non-ASCII
characters will be escaped, for example _xE3_x81_x84 will be used for Unicode
U+3044.
The default value is: NO.

ALLOW_UNICODE_NAMES = NO

The OUTPUT_LANGUAGE tag is used to specify the language in which all
documentation generated by doxygen is written. Doxygen will use this
information to generate all constant output in the proper language.
Possible values are: Afrikaans, Arabic, Armenian, Brazilian, Catalan, Chinese,
Chinese-Traditional, Croatian, Czech, Danish, Dutch, English (United States),
Esperanto, Farsi (Persian), Finnish, French, German, Greek, Hungarian,
Indonesian, Italian, Japanese, Japanese-en (Japanese with English messages),
Korean, Korean-en (Korean with English messages), Latvian, Lithuanian,
Macedonian, Norwegian, Persian (Farsi), Polish, Portuguese, Romanian, Russian,
Serbian, Serbian-Cyrillic, Slovak, Slovene, Spanish, Swedish, Turkish,
Ukrainian and Vietnamese.
The default value is: English.

OUTPUT_LANGUAGE = English

If the BRIEF_MEMBER_DESC tag is set to YES doxygen will include brief member
descriptions after the members that are listed in the file and class
documentation (similar to Javadoc). Set to NO to disable this.
The default value is: YES.

BRIEF_MEMBER_DESC = YES

If the REPEAT_BRIEF tag is set to YES doxygen will prepend the brief
description of a member or function before the detailed description
#
Note: If both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the
brief descriptions will be completely suppressed.
The default value is: YES.

REPEAT_BRIEF = YES

This tag implements a quasi-intelligent brief description abbreviator that is
used to form the text in various listings. Each string in this list, if found
as the leading text of the brief description, will be stripped from the text
and the result, after processing the whole list, is used as the annotated
text. Otherwise, the brief description is used as-is. If left blank, the
following values are used ($name is automatically replaced with the name of
the entity):The $name class, The $name widget, The $name file, is, provides,
specifies, contains, represents, a, an and the.

ABBREVIATE_BRIEF =

If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then
doxygen will generate a detailed section even if there is only a brief
description.
The default value is: NO.

ALWAYS_DETAILED_SEC = NO

If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all
inherited members of a class in the documentation of that class as if those
members were ordinary class members. Constructors, destructors and assignment
operators of the base classes will not be shown.
The default value is: NO.

INLINE_INHERITED_MEMB = NO

If the FULL_PATH_NAMES tag is set to YES doxygen will prepend the full path
before files name in the file list and in the header files. If set to NO the
shortest path that makes the file name unique will be used
The default value is: YES.

FULL_PATH_NAMES = YES

The STRIP_FROM_PATH tag can be used to strip a user-defined part of the path.
Stripping is only done if one of the specified strings matches the left-hand
part of the path. The tag can be used to show relative paths in the file list.
If left blank the directory from which doxygen is run is used as the path to
strip.
#
Note that you can specify absolute paths here, but also relative paths, which
will be relative from the directory where doxygen is started.
This tag requires that the tag FULL_PATH_NAMES is set to YES.

STRIP_FROM_PATH =

The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of the
path mentioned in the documentation of a class, which tells the reader which
header file to include in order to use a class. If left blank only the name of
the header file containing the class definition is used. Otherwise one should
specify the list of include paths that are normally passed to the compiler
using the -I flag.

STRIP_FROM_INC_PATH =

If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter (but
less readable) file names. This can be useful is your file systems doesn't
support long names like on DOS, Mac, or CD-ROM.
The default value is: NO.

SHORT_NAMES = NO

If the JAVADOC_AUTOBRIEF tag is set to YES then doxygen will interpret the
first line (until the first dot) of a Javadoc-style comment as the brief
description. If set to NO, the Javadoc-style will behave just like regular Qt-
style comments (thus requiring an explicit @brief command for a brief
description.)
The default value is: NO.

JAVADOC_AUTOBRIEF = NO

If the QT_AUTOBRIEF tag is set to YES then doxygen will interpret the first
line (until the first dot) of a Qt-style comment as the brief description. If
set to NO, the Qt-style will behave just like regular Qt-style comments (thus
requiring an explicit \brief command for a brief description.)
The default value is: NO.

QT_AUTOBRIEF = NO

The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make doxygen treat a
multi-line C++ special comment block (i.e. a block of //! or /// comments) as
a brief description. This used to be the default behavior. The new default is
to treat a multi-line C++ comment block as a detailed description. Set this
tag to YES if you prefer the old behavior instead.
#
Note that setting this tag to YES also means that rational rose comments are
not recognized any more.
The default value is: NO.

MULTILINE_CPP_IS_BRIEF = NO

If the INHERIT_DOCS tag is set to YES then an undocumented member inherits the
documentation from any documented member that it re-implements.
The default value is: YES.

INHERIT_DOCS = YES

If the SEPARATE_MEMBER_PAGES tag is set to YES, then doxygen will produce a
new page for each member. If set to NO, the documentation of a member will be
part of the file/class/namespace that contains it.
The default value is: NO.

SEPARATE_MEMBER_PAGES = NO

The TAB_SIZE tag can be used to set the number of spaces in a tab. Doxygen
uses this value to replace tabs by spaces in code fragments.
Minimum value: 1, maximum value: 16, default value: 4.

TAB_SIZE = 4

This tag can be used to specify a number of aliases that act as commands in
the documentation. An alias has the form:
name=value
For example adding
"sideeffect=@par Side Effects:\n"
will allow you to put the command \sideeffect (or @sideeffect) in the
documentation, which will result in a user-defined paragraph with heading
"Side Effects:". You can put \n's in the value part of an alias to insert
newlines.

ALIASES =

This tag can be used to specify a number of word-keyword mappings (TCL only).
A mapping has the form "name=value". For example adding "class=itcl::class"
will allow you to use the command class in the itcl::class meaning.

TCL_SUBST =

Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C sources
only. Doxygen will then generate output that is more tailored for C. For
instance, some of the names that are used will be different. The list of all
members will be omitted, etc.
The default value is: NO.

OPTIMIZE_OUTPUT_FOR_C = NO

Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java or
Python sources only. Doxygen will then generate output that is more tailored
for that language. For instance, namespaces will be presented as packages,
qualified scopes will look different, etc.
The default value is: NO.

OPTIMIZE_OUTPUT_JAVA = NO

Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran
sources. Doxygen will then generate output that is tailored for Fortran.
The default value is: NO.

OPTIMIZE_FOR_FORTRAN = NO

Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL
sources. Doxygen will then generate output that is tailored for VHDL.
The default value is: NO.

OPTIMIZE_OUTPUT_VHDL = NO

Doxygen selects the parser to use depending on the extension of the files it
parses. With this tag you can assign which parser to use for a given
extension. Doxygen has a built-in mapping, but you can override or extend it
using this tag. The format is ext=language, where ext is a file extension, and
language is one of the parsers supported by doxygen: IDL, Java, Javascript,
C#, C, C++, D, PHP, Objective-C, Python, Fortran (fixed format Fortran:
FortranFixed, free formatted Fortran: FortranFree, unknown formatted Fortran:
Fortran. In the later case the parser tries to guess whether the code is fixed
or free formatted code, this is the default for Fortran type files), VHDL. For
instance to make doxygen treat .inc files as Fortran files (default is PHP),
and .f files as C (default is Fortran), use: inc=Fortran f=C.
#
Note For files without extension you can use no_extension as a placeholder.
#
Note that for custom extensions you also need to set FILE_PATTERNS otherwise
the files are not read by doxygen.

EXTENSION_MAPPING =

If the MARKDOWN_SUPPORT tag is enabled then doxygen pre-processes all comments
according to the Markdown format, which allows for more readable
documentation. See http://daringfireball.net/projects/markdown/ for details.
The output of markdown processing is further processed by doxygen, so you can
mix doxygen, HTML, and XML commands with Markdown formatting. Disable only in
case of backward compatibilities issues.
The default value is: YES.

MARKDOWN_SUPPORT = YES

When enabled doxygen tries to link words that correspond to documented
classes, or namespaces to their corresponding documentation. Such a link can
be prevented in individual cases by by putting a % sign in front of the word
or globally by setting AUTOLINK_SUPPORT to NO.
The default value is: YES.

AUTOLINK_SUPPORT = YES

If you use STL classes (i.e. std::string, std::vector, etc.) but do not want
to include (a tag file for) the STL sources as input, then you should set this
tag to YES in order to let doxygen match functions declarations and
definitions whose arguments contain STL classes (e.g. func(std::string);
versus func(std::string) {}). This also make the inheritance and collaboration
diagrams that involve STL classes more complete and accurate.
The default value is: NO.

BUILTIN_STL_SUPPORT = NO

If you use Microsoft's C++/CLI language, you should set this option to YES to
enable parsing support.
The default value is: NO.

CPP_CLI_SUPPORT = NO

Set the SIP_SUPPORT tag to YES if your project consists of sip (see:
http://www.riverbankcomputing.co.uk/software/sip/intro) sources only. Doxygen
will parse them like normal C++ but will assume all classes use public instead
of private inheritance when no explicit protection keyword is present.
The default value is: NO.

SIP_SUPPORT = NO

For Microsoft's IDL there are propget and propput attributes to indicate
getter and setter methods for a property. Setting this option to YES will make
doxygen to replace the get and set methods by a property in the documentation.
This will only work if the methods are indeed getting or setting a simple
type. If this is not the case, or you want to show the methods anyway, you
should set this option to NO.
The default value is: YES.

IDL_PROPERTY_SUPPORT = YES

If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC
tag is set to YES, then doxygen will reuse the documentation of the first
member in the group (if any) for the other members of the group. By default
all members of a group must be documented explicitly.
The default value is: NO.

DISTRIBUTE_GROUP_DOC = NO

Set the SUBGROUPING tag to YES to allow class member groups of the same type
(for instance a group of public functions) to be put as a subgroup of that
type (e.g. under the Public Functions section). Set it to NO to prevent
subgrouping. Alternatively, this can be done per class using the
\nosubgrouping command.
The default value is: YES.

SUBGROUPING = YES

When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and unions
are shown inside the group in which they are included (e.g. using \ingroup)
instead of on a separate page (for HTML and Man pages) or section (for LaTeX
and RTF).
#
Note that this feature does not work in combination with
SEPARATE_MEMBER_PAGES.
The default value is: NO.

INLINE_GROUPED_CLASSES = NO

When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and unions
with only public data fields or simple typedef fields will be shown inline in
the documentation of the scope in which they are defined (i.e. file,
namespace, or group documentation), provided this scope is documented. If set
to NO, structs, classes, and unions are shown on a separate page (for HTML and
Man pages) or section (for LaTeX and RTF).
The default value is: NO.

INLINE_SIMPLE_STRUCTS = NO

When TYPEDEF_HIDES_STRUCT tag is enabled, a typedef of a struct, union, or
enum is documented as struct, union, or enum with the name of the typedef. So
typedef struct TypeS {} TypeT, will appear in the documentation as a struct
with name TypeT. When disabled the typedef will appear as a member of a file,
namespace, or class. And the struct will be named TypeS. This can typically be
useful for C code in case the coding convention dictates that all compound
types are typedef'ed and only the typedef is referenced, never the tag name.
The default value is: NO.

TYPEDEF_HIDES_STRUCT = NO

The size of the symbol lookup cache can be set using LOOKUP_CACHE_SIZE. This
cache is used to resolve symbols given their name and scope. Since this can be
an expensive process and often the same symbol appears multiple times in the
code, doxygen keeps a cache of pre-resolved symbols. If the cache is too small
doxygen will become slower. If the cache is too large, memory is wasted. The
cache size is given by this formula: 2^(16+LOOKUP_CACHE_SIZE). The valid range
is 0..9, the default is 0, corresponding to a cache size of 2^16=65536
symbols. At the end of a run doxygen will report the cache usage and suggest
the optimal cache size from a speed point of view.
Minimum value: 0, maximum value: 9, default value: 0.

LOOKUP_CACHE_SIZE = 0

#---
Build related configuration options
#---

If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in
documentation are documented, even if no documentation was available. Private
class members and static file members will be hidden unless the
EXTRACT_PRIVATE respectively EXTRACT_STATIC tags are set to YES.
Note: This will also disable the warnings about undocumented members that are
normally produced when WARNINGS is set to YES.
The default value is: NO.

EXTRACT_ALL = NO

If the EXTRACT_PRIVATE tag is set to YES all private members of a class will
be included in the documentation.
The default value is: NO.

EXTRACT_PRIVATE = NO

If the EXTRACT_PACKAGE tag is set to YES all members with package or internal
scope will be included in the documentation.
The default value is: NO.

EXTRACT_PACKAGE = NO

If the EXTRACT_STATIC tag is set to YES all static members of a file will be
included in the documentation.
The default value is: NO.

EXTRACT_STATIC = NO

If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs) defined
locally in source files will be included in the documentation. If set to NO
only classes defined in header files are included. Does not have any effect
for Java sources.
The default value is: YES.

EXTRACT_LOCAL_CLASSES = YES

This flag is only useful for Objective-C code. When set to YES local methods,
which are defined in the implementation section but not in the interface are
included in the documentation. If set to NO only methods in the interface are
included.
The default value is: NO.

EXTRACT_LOCAL_METHODS = NO

If this flag is set to YES, the members of anonymous namespaces will be
extracted and appear in the documentation as a namespace called
'anonymous_namespace{file}', where file will be replaced with the base name of
the file that contains the anonymous namespace. By default anonymous namespace
are hidden.
The default value is: NO.

EXTRACT_ANON_NSPACES = NO

If the HIDE_UNDOC_MEMBERS tag is set to YES, doxygen will hide all
undocumented members inside documented classes or files. If set to NO these
members will be included in the various overviews, but no documentation
section is generated. This option has no effect if EXTRACT_ALL is enabled.
The default value is: NO.

HIDE_UNDOC_MEMBERS = NO

If the HIDE_UNDOC_CLASSES tag is set to YES, doxygen will hide all
undocumented classes that are normally visible in the class hierarchy. If set
to NO these classes will be included in the various overviews. This option has
no effect if EXTRACT_ALL is enabled.
The default value is: NO.

HIDE_UNDOC_CLASSES = NO

If the HIDE_FRIEND_COMPOUNDS tag is set to YES, doxygen will hide all friend
(class|struct|union) declarations. If set to NO these declarations will be
included in the documentation.
The default value is: NO.

HIDE_FRIEND_COMPOUNDS = NO

If the HIDE_IN_BODY_DOCS tag is set to YES, doxygen will hide any
documentation blocks found inside the body of a function. If set to NO these
blocks will be appended to the function's detailed documentation block.
The default value is: NO.

HIDE_IN_BODY_DOCS = NO

The INTERNAL_DOCS tag determines if documentation that is typed after a
\internal command is included. If the tag is set to NO then the documentation
will be excluded. Set it to YES to include the internal documentation.
The default value is: NO.

INTERNAL_DOCS = NO

If the CASE_SENSE_NAMES tag is set to NO then doxygen will only generate file
names in lower-case letters. If set to YES upper-case letters are also
allowed. This is useful if you have classes or files whose names only differ
in case and if your file system supports case sensitive file names. Windows
and Mac users are advised to set this option to NO.
The default value is: system dependent.

CASE_SENSE_NAMES = NO

If the HIDE_SCOPE_NAMES tag is set to NO then doxygen will show members with
their full class and namespace scopes in the documentation. If set to YES the
scope will be hidden.
The default value is: NO.

HIDE_SCOPE_NAMES = NO

If the SHOW_INCLUDE_FILES tag is set to YES then doxygen will put a list of
the files that are included by a file in the documentation of that file.
The default value is: YES.

SHOW_INCLUDE_FILES = YES

If the SHOW_GROUPED_MEMB_INC tag is set to YES then Doxygen will add for each
grouped member an include statement to the documentation, telling the reader
which file to include in order to use the member.
The default value is: NO.

SHOW_GROUPED_MEMB_INC = NO

If the FORCE_LOCAL_INCLUDES tag is set to YES then doxygen will list include
files with double quotes in the documentation rather than with sharp brackets.
The default value is: NO.

FORCE_LOCAL_INCLUDES = NO

If the INLINE_INFO tag is set to YES then a tag [inline] is inserted in the
documentation for inline members.
The default value is: YES.

INLINE_INFO = YES

If the SORT_MEMBER_DOCS tag is set to YES then doxygen will sort the
(detailed) documentation of file and class members alphabetically by member
name. If set to NO the members will appear in declaration order.
The default value is: YES.

SORT_MEMBER_DOCS = YES

If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the brief
descriptions of file, namespace and class members alphabetically by member
name. If set to NO the members will appear in declaration order. Note that
this will also influence the order of the classes in the class list.
The default value is: NO.

SORT_BRIEF_DOCS = NO

If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen will sort the
(brief and detailed) documentation of class members so that constructors and
destructors are listed first. If set to NO the constructors will appear in the
respective orders defined by SORT_BRIEF_DOCS and SORT_MEMBER_DOCS.
Note: If SORT_BRIEF_DOCS is set to NO this option is ignored for sorting brief
member documentation.
Note: If SORT_MEMBER_DOCS is set to NO this option is ignored for sorting
detailed member documentation.
The default value is: NO.

SORT_MEMBERS_CTORS_1ST = NO

If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the hierarchy
of group names into alphabetical order. If set to NO the group names will
appear in their defined order.
The default value is: NO.

SORT_GROUP_NAMES = NO

If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be sorted by
fully-qualified names, including namespaces. If set to NO, the class list will
be sorted only by class name, not including the namespace part.
Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES.
Note: This option applies only to the class list, not to the alphabetical
list.
The default value is: NO.

SORT_BY_SCOPE_NAME = NO

If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to do proper
type resolution of all parameters of a function it will reject a match between
the prototype and the implementation of a member function even if there is
only one candidate or it is obvious which candidate to choose by doing a
simple string match. By disabling STRICT_PROTO_MATCHING doxygen will still
accept a match between prototype and implementation in such cases.
The default value is: NO.

STRICT_PROTO_MATCHING = NO

The GENERATE_TODOLIST tag can be used to enable (YES) or disable (NO) the
todo list. This list is created by putting \todo commands in the
documentation.
The default value is: YES.

GENERATE_TODOLIST = YES

The GENERATE_TESTLIST tag can be used to enable (YES) or disable (NO) the
test list. This list is created by putting \test commands in the
documentation.
The default value is: YES.

GENERATE_TESTLIST = YES

The GENERATE_BUGLIST tag can be used to enable (YES) or disable (NO) the bug
list. This list is created by putting \bug commands in the documentation.
The default value is: YES.

GENERATE_BUGLIST = YES

The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or disable (NO)
the deprecated list. This list is created by putting \deprecated commands in
the documentation.
The default value is: YES.

GENERATE_DEPRECATEDLIST= YES

The ENABLED_SECTIONS tag can be used to enable conditional documentation
sections, marked by \if <section_label> ... \endif and \cond <section_label>
... \endcond blocks.

ENABLED_SECTIONS =

The MAX_INITIALIZER_LINES tag determines the maximum number of lines that the
initial value of a variable or macro / define can have for it to appear in the
documentation. If the initializer consists of more lines than specified here
it will be hidden. Use a value of 0 to hide initializers completely. The
appearance of the value of individual variables and macros / defines can be
controlled using \showinitializer or \hideinitializer command in the
documentation regardless of this setting.
Minimum value: 0, maximum value: 10000, default value: 30.

MAX_INITIALIZER_LINES = 30

Set the SHOW_USED_FILES tag to NO to disable the list of files generated at
the bottom of the documentation of classes and structs. If set to YES the list
will mention the files that were used to generate the documentation.
The default value is: YES.

SHOW_USED_FILES = YES

Set the SHOW_FILES tag to NO to disable the generation of the Files page. This
will remove the Files entry from the Quick Index and from the Folder Tree View
(if specified).
The default value is: YES.

SHOW_FILES = YES

Set the SHOW_NAMESPACES tag to NO to disable the generation of the Namespaces
page. This will remove the Namespaces entry from the Quick Index and from the
Folder Tree View (if specified).
The default value is: YES.

SHOW_NAMESPACES = YES

The FILE_VERSION_FILTER tag can be used to specify a program or script that
doxygen should invoke to get the current version for each file (typically from
the version control system). Doxygen will invoke the program by executing (via
popen()) the command command input-file, where command is the value of the
FILE_VERSION_FILTER tag, and input-file is the name of an input file provided
by doxygen. Whatever the program writes to standard output is used as the file
version. For an example see the documentation.

FILE_VERSION_FILTER =

The LAYOUT_FILE tag can be used to specify a layout file which will be parsed
by doxygen. The layout file controls the global structure of the generated
output files in an output format independent way. To create the layout file
that represents doxygen's defaults, run doxygen with the -l option. You can
optionally specify a file name after the option, if omitted DoxygenLayout.xml
will be used as the name of the layout file.
#
Note that if you run doxygen from a directory containing a file called
DoxygenLayout.xml, doxygen will parse it automatically even if the LAYOUT_FILE
tag is left empty.

LAYOUT_FILE =

The CITE_BIB_FILES tag can be used to specify one or more bib files containing
the reference definitions. This must be a list of .bib files. The .bib
extension is automatically appended if omitted. This requires the bibtex tool
to be installed. See also http://en.wikipedia.org/wiki/BibTeX for more info.
For LaTeX the style of the bibliography can be controlled using
LATEX_BIB_STYLE. To use this feature you need bibtex and perl available in the
search path. See also \cite for info how to create references.

CITE_BIB_FILES =

#---
Configuration options related to warning and progress messages
#---

The QUIET tag can be used to turn on/off the messages that are generated to
standard output by doxygen. If QUIET is set to YES this implies that the
messages are off.
The default value is: NO.

QUIET = NO

The WARNINGS tag can be used to turn on/off the warning messages that are
generated to standard error (stderr) by doxygen. If WARNINGS is set to YES
this implies that the warnings are on.
#
Tip: Turn warnings on while writing the documentation.
The default value is: YES.

WARNINGS = YES

If the WARN_IF_UNDOCUMENTED tag is set to YES, then doxygen will generate
warnings for undocumented members. If EXTRACT_ALL is set to YES then this flag
will automatically be disabled.
The default value is: YES.

WARN_IF_UNDOCUMENTED = YES

If the WARN_IF_DOC_ERROR tag is set to YES, doxygen will generate warnings for
potential errors in the documentation, such as not documenting some parameters
in a documented function, or documenting parameters that don't exist or using
markup commands wrongly.
The default value is: YES.

WARN_IF_DOC_ERROR = YES

This WARN_NO_PARAMDOC option can be enabled to get warnings for functions that
are documented, but have no documentation for their parameters or return
value. If set to NO doxygen will only warn about wrong or incomplete parameter
documentation, but not about the absence of documentation.
The default value is: NO.

WARN_NO_PARAMDOC = NO

The WARN_FORMAT tag determines the format of the warning messages that doxygen
can produce. The string should contain the $file, $line, and $text tags, which
will be replaced by the file and line number from which the warning originated
and the warning text. Optionally the format may contain $version, which will
be replaced by the version of the file (if it could be obtained via
FILE_VERSION_FILTER)
The default value is: $file:$line: $text.

WARN_FORMAT = "$file:$line: $text"

The WARN_LOGFILE tag can be used to specify a file to which warning and error
messages should be written. If left blank the output is written to standard
error (stderr).

WARN_LOGFILE =

#---
Configuration options related to the input files
#---

The INPUT tag is used to specify the files and/or directories that contain
documented source files. You may enter file names like myfile.cpp or
directories like /usr/src/myproject. Separate the files or directories with
spaces.
Note: If this tag is empty the current directory is searched.

INPUT =

This tag can be used to specify the character encoding of the source files
that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
libiconv (or the iconv built into libc) for the transcoding. See the libiconv
documentation (see: http://www.gnu.org/software/libiconv) for the list of
possible encodings.
The default value is: UTF-8.

INPUT_ENCODING = UTF-8

If the value of the INPUT tag contains directories, you can use the
FILE_PATTERNS tag to specify one or more wildcard patterns (like *.cpp and
*.h) to filter out the source-files in the directories. If left blank the
following patterns are tested:*.c, *.cc, *.cxx, *.cpp, *.c++, *.java, *.ii,
*.ixx, *.ipp, *.i++, *.inl, *.idl, *.ddl, *.odl, *.h, *.hh, *.hxx, *.hpp,
*.h++, *.cs, *.d, *.php, *.php4, *.php5, *.phtml, *.inc, *.m, *.markdown,
*.md, *.mm, *.dox, *.py, *.f90, *.f, *.for, *.tcl, *.vhd, *.vhdl, *.ucf,
*.qsf, *.as and *.js.

FILE_PATTERNS =

The RECURSIVE tag can be used to specify whether or not subdirectories should
be searched for input files as well.
The default value is: NO.

RECURSIVE = NO

The EXCLUDE tag can be used to specify files and/or directories that should be
excluded from the INPUT source files. This way you can easily exclude a
subdirectory from a directory tree whose root is specified with the INPUT tag.
#
Note that relative paths are relative to the directory from which doxygen is
run.

EXCLUDE =classdef

The EXCLUDE_SYMLINKS tag can be used to select whether or not files or
directories that are symbolic links (a Unix file system feature) are excluded
from the input.
The default value is: NO.

EXCLUDE_SYMLINKS = NO

If the value of the INPUT tag contains directories, you can use the
EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude
certain files from those directories.
#
Note that the wildcards are matched against the file with absolute path, so to
exclude all test directories for example use the pattern */test/*

EXCLUDE_PATTERNS =

The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names
(namespaces, classes, functions, etc.) that should be excluded from the
output. The symbol name can be a fully qualified name, a word, or if the
wildcard * is used, a substring. Examples: ANamespace, AClass,
AClass::ANamespace, ANamespace::*Test
#
Note that the wildcards are matched against the file with absolute path, so to
exclude all test directories use the pattern */test/*

EXCLUDE_SYMBOLS =

The EXAMPLE_PATH tag can be used to specify one or more files or directories
that contain example code fragments that are included (see the \include
command).

EXAMPLE_PATH =

If the value of the EXAMPLE_PATH tag contains directories, you can use the
EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp and
*.h) to filter out the source-files in the directories. If left blank all
files are included.

EXAMPLE_PATTERNS =

If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be
searched for input files to be used with the \include or \dontinclude commands
irrespective of the value of the RECURSIVE tag.
The default value is: NO.

EXAMPLE_RECURSIVE = NO

The IMAGE_PATH tag can be used to specify one or more files or directories
that contain images that are to be included in the documentation (see the
\image command).

IMAGE_PATH =

The INPUT_FILTER tag can be used to specify a program that doxygen should
invoke to filter for each input file. Doxygen will invoke the filter program
by executing (via popen()) the command:
#
<filter> <input-file>
#
where <filter> is the value of the INPUT_FILTER tag, and <input-file> is the
name of an input file. Doxygen will then use the output that the filter
program writes to standard output. If FILTER_PATTERNS is specified, this tag
will be ignored.
#
Note that the filter must not add or remove lines; it is applied before the
code is scanned, but not when the output code is generated. If lines are added
or removed, the anchors will not be placed correctly.

INPUT_FILTER =

The FILTER_PATTERNS tag can be used to specify filters on a per file pattern
basis. Doxygen will compare the file name with each pattern and apply the
filter if there is a match. The filters are a list of the form: pattern=filter
(like *.cpp=my_cpp_filter). See INPUT_FILTER for further information on how
filters are used. If the FILTER_PATTERNS tag is empty or if none of the
patterns match the file name, INPUT_FILTER is applied.

FILTER_PATTERNS =

If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using
INPUT_FILTER) will also be used to filter the input files that are used for
producing the source files to browse (i.e. when SOURCE_BROWSER is set to YES).
The default value is: NO.

FILTER_SOURCE_FILES = NO

The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file
pattern. A pattern will override the setting for FILTER_PATTERN (if any) and
it is also possible to disable source filtering for a specific pattern using
*.ext= (so without naming a filter).
This tag requires that the tag FILTER_SOURCE_FILES is set to YES.

FILTER_SOURCE_PATTERNS =

If the USE_MDFILE_AS_MAINPAGE tag refers to the name of a markdown file that
is part of the input, its contents will be placed on the main page
(index.html). This can be useful if you have a project on for instance GitHub
and want to reuse the introduction page also for the doxygen output.

USE_MDFILE_AS_MAINPAGE =

#---
Configuration options related to source browsing
#---

If the SOURCE_BROWSER tag is set to YES then a list of source files will be
generated. Documented entities will be cross-referenced with these sources.
#
Note: To get rid of all source code in the generated output, make sure that
also VERBATIM_HEADERS is set to NO.
The default value is: NO.

SOURCE_BROWSER = NO

Setting the INLINE_SOURCES tag to YES will include the body of functions,
classes and enums directly into the documentation.
The default value is: NO.

INLINE_SOURCES = NO

Setting the STRIP_CODE_COMMENTS tag to YES will instruct doxygen to hide any
special comment blocks from generated source code fragments. Normal C, C++ and
Fortran comments will always remain visible.
The default value is: YES.

STRIP_CODE_COMMENTS = YES

If the REFERENCED_BY_RELATION tag is set to YES then for each documented
function all documented functions referencing it will be listed.
The default value is: NO.

REFERENCED_BY_RELATION = NO

If the REFERENCES_RELATION tag is set to YES then for each documented function
all documented entities called/used by that function will be listed.
The default value is: NO.

REFERENCES_RELATION = NO

If the REFERENCES_LINK_SOURCE tag is set to YES and SOURCE_BROWSER tag is set
to YES, then the hyperlinks from functions in REFERENCES_RELATION and
REFERENCED_BY_RELATION lists will link to the source code. Otherwise they will
link to the documentation.
The default value is: YES.

REFERENCES_LINK_SOURCE = YES

If SOURCE_TOOLTIPS is enabled (the default) then hovering a hyperlink in the
source code will show a tooltip with additional information such as prototype,
brief description and links to the definition and documentation. Since this
will make the HTML file larger and loading of large files a bit slower, you
can opt to disable this feature.
The default value is: YES.
This tag requires that the tag SOURCE_BROWSER is set to YES.

SOURCE_TOOLTIPS = YES

If the USE_HTAGS tag is set to YES then the references to source code will
point to the HTML generated by the htags(1) tool instead of doxygen built-in
source browser. The htags tool is part of GNU's global source tagging system
(see http://www.gnu.org/software/global/global.html). You will need version
4.8.6 or higher.
#
To use it do the following:
- Install the latest version of global
- Enable SOURCE_BROWSER and USE_HTAGS in the config file
- Make sure the INPUT points to the root of the source tree
- Run doxygen as normal
#
Doxygen will invoke htags (and that will in turn invoke gtags), so these
tools must be available from the command line (i.e. in the search path).
#
The result: instead of the source browser generated by doxygen, the links to
source code will now point to the output of htags.
The default value is: NO.
This tag requires that the tag SOURCE_BROWSER is set to YES.

USE_HTAGS = NO

If the VERBATIM_HEADERS tag is set the YES then doxygen will generate a
verbatim copy of the header file for each class for which an include is
specified. Set to NO to disable this.
See also: Section \class.
The default value is: YES.

VERBATIM_HEADERS = YES

#---
Configuration options related to the alphabetical class index
#---

If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index of all
compounds will be generated. Enable this if the project contains a lot of
classes, structs, unions or interfaces.
The default value is: YES.

ALPHABETICAL_INDEX = YES

The COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns in
which the alphabetical index list will be split.
Minimum value: 1, maximum value: 20, default value: 5.
This tag requires that the tag ALPHABETICAL_INDEX is set to YES.

COLS_IN_ALPHA_INDEX = 5

In case all classes in a project start with a common prefix, all classes will
be put under the same header in the alphabetical index. The IGNORE_PREFIX tag
can be used to specify a prefix (or a list of prefixes) that should be ignored
while generating the index headers.
This tag requires that the tag ALPHABETICAL_INDEX is set to YES.

IGNORE_PREFIX =

#---
Configuration options related to the HTML output
#---

If the GENERATE_HTML tag is set to YES doxygen will generate HTML output
The default value is: YES.

GENERATE_HTML = YES

The HTML_OUTPUT tag is used to specify where the HTML docs will be put. If a
relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
it.
The default directory is: html.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_OUTPUT = html

The HTML_FILE_EXTENSION tag can be used to specify the file extension for each
generated HTML page (for example: .htm, .php, .asp).
The default value is: .html.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_FILE_EXTENSION = .html

The HTML_HEADER tag can be used to specify a user-defined HTML header file for
each generated HTML page. If the tag is left blank doxygen will generate a
standard header.
#
To get valid HTML the header file that includes any scripts and style sheets
that doxygen needs, which is dependent on the configuration options used (e.g.
the setting GENERATE_TREEVIEW). It is highly recommended to start with a
default header using
doxygen -w html new_header.html new_footer.html new_stylesheet.css
YourConfigFile
and then modify the file new_header.html. See also section "Doxygen usage"
for information on how to generate the default header that doxygen normally
uses.
Note: The header is subject to change so you typically have to regenerate the
default header when upgrading to a newer version of doxygen. For a description
of the possible markers and block names see the documentation.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_HEADER =

The HTML_FOOTER tag can be used to specify a user-defined HTML footer for each
generated HTML page. If the tag is left blank doxygen will generate a standard
footer. See HTML_HEADER for more information on how to generate a default
footer and what special commands can be used inside the footer. See also
section "Doxygen usage" for information on how to generate the default footer
that doxygen normally uses.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_FOOTER =

The HTML_STYLESHEET tag can be used to specify a user-defined cascading style
sheet that is used by each HTML page. It can be used to fine-tune the look of
the HTML output. If left blank doxygen will generate a default style sheet.
See also section "Doxygen usage" for information on how to generate the style
sheet that doxygen normally uses.
Note: It is recommended to use HTML_EXTRA_STYLESHEET instead of this tag, as
it is more robust and this tag (HTML_STYLESHEET) will in the future become
obsolete.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_STYLESHEET =

The HTML_EXTRA_STYLESHEET tag can be used to specify additional user-defined
cascading style sheets that are included after the standard style sheets
created by doxygen. Using this option one can overrule certain style aspects.
This is preferred over using HTML_STYLESHEET since it does not replace the
standard style sheet and is therefor more robust against future updates.
Doxygen will copy the style sheet files to the output directory.
Note: The order of the extra stylesheet files is of importance (e.g. the last
stylesheet in the list overrules the setting of the previous ones in the
list). For an example see the documentation.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_EXTRA_STYLESHEET =

The HTML_EXTRA_FILES tag can be used to specify one or more extra images or
other source files which should be copied to the HTML output directory. Note
that these files will be copied to the base HTML output directory. Use the
$relpath^ marker in the HTML_HEADER and/or HTML_FOOTER files to load these
files. In the HTML_STYLESHEET file, use the file name only. Also note that the
files will be copied as-is; there are no commands or markers available.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_EXTRA_FILES =

The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. Doxygen
will adjust the colors in the stylesheet and background images according to
this color. Hue is specified as an angle on a colorwheel, see
http://en.wikipedia.org/wiki/Hue for more information. For instance the value
0 represents red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue, 300
purple, and 360 is red again.
Minimum value: 0, maximum value: 359, default value: 220.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_COLORSTYLE_HUE = 220

The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of the colors
in the HTML output. For a value of 0 the output will use grayscales only. A
value of 255 will produce the most vivid colors.
Minimum value: 0, maximum value: 255, default value: 100.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_COLORSTYLE_SAT = 100

The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to the
luminance component of the colors in the HTML output. Values below 100
gradually make the output lighter, whereas values above 100 make the output
darker. The value divided by 100 is the actual gamma applied, so 80 represents
a gamma of 0.8, The value 220 represents a gamma of 2.2, and 100 does not
change the gamma.
Minimum value: 40, maximum value: 240, default value: 80.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_COLORSTYLE_GAMMA = 80

If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML
page will contain the date and time when the page was generated. Setting this
to NO can help when comparing the output of multiple runs.
The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_TIMESTAMP = YES

If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML
documentation will contain sections that can be hidden and shown after the
page has loaded.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_DYNAMIC_SECTIONS = NO

With HTML_INDEX_NUM_ENTRIES one can control the preferred number of entries
shown in the various tree structured indices initially; the user can expand
and collapse entries dynamically later on. Doxygen will expand the tree to
such a level that at most the specified number of entries are visible (unless
a fully collapsed tree already exceeds this amount). So setting the number of
entries 1 will produce a full collapsed tree by default. 0 is a special value
representing an infinite number of entries and will result in a full expanded
tree by default.
Minimum value: 0, maximum value: 9999, default value: 100.
This tag requires that the tag GENERATE_HTML is set to YES.

HTML_INDEX_NUM_ENTRIES = 100

If the GENERATE_DOCSET tag is set to YES, additional index files will be
generated that can be used as input for Apple's Xcode 3 integrated development
environment (see: http://developer.apple.com/tools/xcode/), introduced with
OSX 10.5 (Leopard). To create a documentation set, doxygen will generate a
Makefile in the HTML output directory. Running make will produce the docset in
that directory and running make install will install the docset in
~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find it at
startup. See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html
for more information.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

GENERATE_DOCSET = NO

This tag determines the name of the docset feed. A documentation feed provides
an umbrella under which multiple documentation sets from a single provider
(such as a company or product suite) can be grouped.
The default value is: Doxygen generated docs.
This tag requires that the tag GENERATE_DOCSET is set to YES.

DOCSET_FEEDNAME = "Doxygen generated docs"

This tag specifies a string that should uniquely identify the documentation
set bundle. This should be a reverse domain-name style string, e.g.
com.mycompany.MyDocSet. Doxygen will append .docset to the name.
The default value is: org.doxygen.Project.
This tag requires that the tag GENERATE_DOCSET is set to YES.

DOCSET_BUNDLE_ID = org.doxygen.Project

The DOCSET_PUBLISHER_ID tag specifies a string that should uniquely identify
the documentation publisher. This should be a reverse domain-name style
string, e.g. com.mycompany.MyDocSet.documentation.
The default value is: org.doxygen.Publisher.
This tag requires that the tag GENERATE_DOCSET is set to YES.

DOCSET_PUBLISHER_ID = org.doxygen.Publisher

The DOCSET_PUBLISHER_NAME tag identifies the documentation publisher.
The default value is: Publisher.
This tag requires that the tag GENERATE_DOCSET is set to YES.

DOCSET_PUBLISHER_NAME = Publisher

If the GENERATE_HTMLHELP tag is set to YES then doxygen generates three
additional HTML index files: index.hhp, index.hhc, and index.hhk. The
index.hhp is a project file that can be read by Microsoft's HTML Help Workshop
(see: http://www.microsoft.com/en-us/download/details.aspx?id=21138) on
Windows.
#
The HTML Help Workshop contains a compiler that can convert all HTML output
generated by doxygen into a single compiled HTML file (.chm). Compiled HTML
files are now used as the Windows 98 help format, and will replace the old
Windows help format (.hlp) on all Windows platforms in the future. Compressed
HTML files also contain an index, a table of contents, and you can search for
words in the documentation. The HTML workshop also contains a viewer for
compressed HTML files.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

GENERATE_HTMLHELP = NO

The CHM_FILE tag can be used to specify the file name of the resulting .chm
file. You can add a path in front of the file if the result should not be
written to the html output directory.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

CHM_FILE =

The HHC_LOCATION tag can be used to specify the location (absolute path
including file name) of the HTML help compiler (hhc.exe). If non-empty
doxygen will try to run the HTML help compiler on the generated index.hhp.
The file has to be specified with full path.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

HHC_LOCATION =

The GENERATE_CHI flag controls if a separate .chi index file is generated (
YES) or that it should be included in the master .chm file (NO).
The default value is: NO.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

GENERATE_CHI = NO

The CHM_INDEX_ENCODING is used to encode HtmlHelp index (hhk), content (hhc)
and project file content.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

CHM_INDEX_ENCODING =

The BINARY_TOC flag controls whether a binary table of contents is generated (
YES) or a normal table of contents (NO) in the .chm file. Furthermore it
enables the Previous and Next buttons.
The default value is: NO.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

BINARY_TOC = NO

The TOC_EXPAND flag can be set to YES to add extra items for group members to
the table of contents of the HTML help documentation and to the tree view.
The default value is: NO.
This tag requires that the tag GENERATE_HTMLHELP is set to YES.

TOC_EXPAND = NO

If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and
QHP_VIRTUAL_FOLDER are set, an additional index file will be generated that
can be used as input for Qt's qhelpgenerator to generate a Qt Compressed Help
(.qch) of the generated HTML documentation.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

GENERATE_QHP = NO

If the QHG_LOCATION tag is specified, the QCH_FILE tag can be used to specify
the file name of the resulting .qch file. The path specified is relative to
the HTML output folder.
This tag requires that the tag GENERATE_QHP is set to YES.

QCH_FILE =

The QHP_NAMESPACE tag specifies the namespace to use when generating Qt Help
Project output. For more information please see Qt Help Project / Namespace
(see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#namespace).
The default value is: org.doxygen.Project.
This tag requires that the tag GENERATE_QHP is set to YES.

QHP_NAMESPACE = org.doxygen.Project

The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating Qt
Help Project output. For more information please see Qt Help Project / Virtual
Folders (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#virtual-
folders).
The default value is: doc.
This tag requires that the tag GENERATE_QHP is set to YES.

QHP_VIRTUAL_FOLDER = doc

If the QHP_CUST_FILTER_NAME tag is set, it specifies the name of a custom
filter to add. For more information please see Qt Help Project / Custom
Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-
filters).
This tag requires that the tag GENERATE_QHP is set to YES.

QHP_CUST_FILTER_NAME =

The QHP_CUST_FILTER_ATTRS tag specifies the list of the attributes of the
custom filter to add. For more information please see Qt Help Project / Custom
Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-
filters).
This tag requires that the tag GENERATE_QHP is set to YES.

QHP_CUST_FILTER_ATTRS =

The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this
project's filter section matches. Qt Help Project / Filter Attributes (see:
http://qt-project.org/doc/qt-4.8/qthelpproject.html#filter-attributes).
This tag requires that the tag GENERATE_QHP is set to YES.

QHP_SECT_FILTER_ATTRS =

The QHG_LOCATION tag can be used to specify the location of Qt's
qhelpgenerator. If non-empty doxygen will try to run qhelpgenerator on the
generated .qhp file.
This tag requires that the tag GENERATE_QHP is set to YES.

QHG_LOCATION =

If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files will be
generated, together with the HTML files, they form an Eclipse help plugin. To
install this plugin and make it available under the help contents menu in
Eclipse, the contents of the directory containing the HTML and XML files needs
to be copied into the plugins directory of eclipse. The name of the directory
within the plugins directory should be the same as the ECLIPSE_DOC_ID value.
After copying Eclipse needs to be restarted before the help appears.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

GENERATE_ECLIPSEHELP = NO

A unique identifier for the Eclipse help plugin. When installing the plugin
the directory name containing the HTML and XML files should also have this
name. Each documentation set should have its own identifier.
The default value is: org.doxygen.Project.
This tag requires that the tag GENERATE_ECLIPSEHELP is set to YES.

ECLIPSE_DOC_ID = org.doxygen.Project

If you want full control over the layout of the generated HTML pages it might
be necessary to disable the index and replace it with your own. The
DISABLE_INDEX tag can be used to turn on/off the condensed index (tabs) at top
of each HTML page. A value of NO enables the index and the value YES disables
it. Since the tabs in the index contain the same information as the navigation
tree, you can set this option to YES if you also set GENERATE_TREEVIEW to YES.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

DISABLE_INDEX = NO

The GENERATE_TREEVIEW tag is used to specify whether a tree-like index
structure should be generated to display hierarchical information. If the tag
value is set to YES, a side panel will be generated containing a tree-like
index structure (just like the one that is generated for HTML Help). For this
to work a browser that supports JavaScript, DHTML, CSS and frames is required
(i.e. any modern browser). Windows users are probably better off using the
HTML help feature. Via custom stylesheets (see HTML_EXTRA_STYLESHEET) one can
further fine-tune the look of the index. As an example, the default style
sheet generated by doxygen has an example that shows how to put an image at
the root of the tree instead of the PROJECT_NAME. Since the tree basically has
the same information as the tab index, you could consider setting
DISABLE_INDEX to YES when enabling this option.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

GENERATE_TREEVIEW = NO

The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values that
doxygen will group on one line in the generated HTML documentation.
#
Note that a value of 0 will completely suppress the enum values from appearing
in the overview section.
Minimum value: 0, maximum value: 20, default value: 4.
This tag requires that the tag GENERATE_HTML is set to YES.

ENUM_VALUES_PER_LINE = 4

If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be used
to set the initial width (in pixels) of the frame in which the tree is shown.
Minimum value: 0, maximum value: 1500, default value: 250.
This tag requires that the tag GENERATE_HTML is set to YES.

TREEVIEW_WIDTH = 250

When the EXT_LINKS_IN_WINDOW option is set to YES doxygen will open links to
external symbols imported via tag files in a separate window.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

EXT_LINKS_IN_WINDOW = NO

Use this tag to change the font size of LaTeX formulas included as images in
the HTML documentation. When you change the font size after a successful
doxygen run you need to manually remove any form_*.png images from the HTML
output directory to force them to be regenerated.
Minimum value: 8, maximum value: 50, default value: 10.
This tag requires that the tag GENERATE_HTML is set to YES.

FORMULA_FONTSIZE = 10

Use the FORMULA_TRANPARENT tag to determine whether or not the images
generated for formulas are transparent PNGs. Transparent PNGs are not
supported properly for IE 6.0, but are supported on all modern browsers.
#
Note that when changing this option you need to delete any form_*.png files in
the HTML output directory before the changes have effect.
The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.

FORMULA_TRANSPARENT = YES

Enable the USE_MATHJAX option to render LaTeX formulas using MathJax (see
http://www.mathjax.org) which uses client side Javascript for the rendering
instead of using prerendered bitmaps. Use this if you do not have LaTeX
installed or if you want to formulas look prettier in the HTML output. When
enabled you may also need to install MathJax separately and configure the path
to it using the MATHJAX_RELPATH option.
The default value is: NO.
This tag requires that the tag GENERATE_HTML is set to YES.

USE_MATHJAX = NO

When MathJax is enabled you can set the default output format to be used for
the MathJax output. See the MathJax site (see:
http://docs.mathjax.org/en/latest/output.html) for more details.
Possible values are: HTML-CSS (which is slower, but has the best
compatibility), NativeMML (i.e. MathML) and SVG.
The default value is: HTML-CSS.
This tag requires that the tag USE_MATHJAX is set to YES.

MATHJAX_FORMAT = HTML-CSS

When MathJax is enabled you need to specify the location relative to the HTML
output directory using the MATHJAX_RELPATH option. The destination directory
should contain the MathJax.js script. For instance, if the mathjax directory
is located at the same level as the HTML output directory, then
MATHJAX_RELPATH should be ../mathjax. The default value points to the MathJax
Content Delivery Network so you can quickly see the result without installing
MathJax. However, it is strongly recommended to install a local copy of
MathJax from http://www.mathjax.org before deployment.
The default value is: http://cdn.mathjax.org/mathjax/latest.
This tag requires that the tag USE_MATHJAX is set to YES.

MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest

The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax
extension names that should be enabled during MathJax rendering. For example
MATHJAX_EXTENSIONS = TeX/AMSmath TeX/AMSsymbols
This tag requires that the tag USE_MATHJAX is set to YES.

MATHJAX_EXTENSIONS =

The MATHJAX_CODEFILE tag can be used to specify a file with javascript pieces
of code that will be used on startup of the MathJax code. See the MathJax site
(see: http://docs.mathjax.org/en/latest/output.html) for more details. For an
example see the documentation.
This tag requires that the tag USE_MATHJAX is set to YES.

MATHJAX_CODEFILE =

When the SEARCHENGINE tag is enabled doxygen will generate a search box for
the HTML output. The underlying search engine uses javascript and DHTML and
should work on any modern browser. Note that when using HTML help
(GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets (GENERATE_DOCSET)
there is already a search function so this one should typically be disabled.
For large projects the javascript based search engine can be slow, then
enabling SERVER_BASED_SEARCH may provide a better solution. It is possible to
search using the keyboard; to jump to the search box use <access key> + S
(what the <access key> is depends on the OS and browser, but it is typically
<CTRL>, <ALT>/<option>, or both). Inside the search box use the <cursor down
key> to jump into the search results window, the results can be navigated
using the <cursor keys>. Press <Enter> to select an item or <escape> to cancel
the search. The filter options can be selected when the cursor is inside the
search box by pressing <Shift>+<cursor down>. Also here use the <cursor keys>
to select a filter and <Enter> or <escape> to activate or cancel the filter
option.
The default value is: YES.
This tag requires that the tag GENERATE_HTML is set to YES.

SEARCHENGINE = YES

When the SERVER_BASED_SEARCH tag is enabled the search engine will be
implemented using a web server instead of a web client using Javascript. There
are two flavors of web server based searching depending on the EXTERNAL_SEARCH
setting. When disabled, doxygen will generate a PHP script for searching and
an index file used by the script. When EXTERNAL_SEARCH is enabled the indexing
and searching needs to be provided by external tools. See the section
"External Indexing and Searching" for details.
The default value is: NO.
This tag requires that the tag SEARCHENGINE is set to YES.

SERVER_BASED_SEARCH = NO

When EXTERNAL_SEARCH tag is enabled doxygen will no longer generate the PHP
script for searching. Instead the search results are written to an XML file
which needs to be processed by an external indexer. Doxygen will invoke an
external search engine pointed to by the SEARCHENGINE_URL option to obtain the
search results.
#
Doxygen ships with an example indexer (doxyindexer) and search engine
(doxysearch.cgi) which are based on the open source search engine library
Xapian (see: http://xapian.org/).
#
See the section "External Indexing and Searching" for details.
The default value is: NO.
This tag requires that the tag SEARCHENGINE is set to YES.

EXTERNAL_SEARCH = NO

The SEARCHENGINE_URL should point to a search engine hosted by a web server
which will return the search results when EXTERNAL_SEARCH is enabled.
#
Doxygen ships with an example indexer (doxyindexer) and search engine
(doxysearch.cgi) which are based on the open source search engine library
Xapian (see: http://xapian.org/). See the section "External Indexing and
Searching" for details.
This tag requires that the tag SEARCHENGINE is set to YES.

SEARCHENGINE_URL =

When SERVER_BASED_SEARCH and EXTERNAL_SEARCH are both enabled the unindexed
search data is written to a file for indexing by an external tool. With the
SEARCHDATA_FILE tag the name of this file can be specified.
The default file is: searchdata.xml.
This tag requires that the tag SEARCHENGINE is set to YES.

SEARCHDATA_FILE = searchdata.xml

When SERVER_BASED_SEARCH and EXTERNAL_SEARCH are both enabled the
EXTERNAL_SEARCH_ID tag can be used as an identifier for the project. This is
useful in combination with EXTRA_SEARCH_MAPPINGS to search through multiple
projects and redirect the results back to the right project.
This tag requires that the tag SEARCHENGINE is set to YES.

EXTERNAL_SEARCH_ID =

The EXTRA_SEARCH_MAPPINGS tag can be used to enable searching through doxygen
projects other than the one defined by this configuration file, but that are
all added to the same external search index. Each project needs to have a
unique id set via EXTERNAL_SEARCH_ID. The search mapping then maps the id of
to a relative location where the documentation can be found. The format is:
EXTRA_SEARCH_MAPPINGS = tagname1=loc1 tagname2=loc2 ...
This tag requires that the tag SEARCHENGINE is set to YES.

EXTRA_SEARCH_MAPPINGS =

#---
Configuration options related to the LaTeX output
#---

If the GENERATE_LATEX tag is set to YES doxygen will generate LaTeX output.
The default value is: YES.

GENERATE_LATEX = YES

The LATEX_OUTPUT tag is used to specify where the LaTeX docs will be put. If a
relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
it.
The default directory is: latex.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_OUTPUT = latex

The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be
invoked.
#
Note that when enabling USE_PDFLATEX this option is only used for generating
bitmaps for formulas in the HTML output, but not in the Makefile that is
written to the output directory.
The default file is: latex.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_CMD_NAME = latex

The MAKEINDEX_CMD_NAME tag can be used to specify the command name to generate
index for LaTeX.
The default file is: makeindex.
This tag requires that the tag GENERATE_LATEX is set to YES.

MAKEINDEX_CMD_NAME = makeindex

If the COMPACT_LATEX tag is set to YES doxygen generates more compact LaTeX
documents. This may be useful for small projects and may help to save some
trees in general.
The default value is: NO.
This tag requires that the tag GENERATE_LATEX is set to YES.

COMPACT_LATEX = NO

The PAPER_TYPE tag can be used to set the paper type that is used by the
printer.
Possible values are: a4 (210 x 297 mm), letter (8.5 x 11 inches), legal (8.5 x
14 inches) and executive (7.25 x 10.5 inches).
The default value is: a4.
This tag requires that the tag GENERATE_LATEX is set to YES.

PAPER_TYPE = a4

The EXTRA_PACKAGES tag can be used to specify one or more LaTeX package names
that should be included in the LaTeX output. To get the times font for
instance you can specify
EXTRA_PACKAGES=times
If left blank no extra packages will be included.
This tag requires that the tag GENERATE_LATEX is set to YES.

EXTRA_PACKAGES =

The LATEX_HEADER tag can be used to specify a personal LaTeX header for the
generated LaTeX document. The header should contain everything until the first
chapter. If it is left blank doxygen will generate a standard header. See
section "Doxygen usage" for information on how to let doxygen write the
default header to a separate file.
#
Note: Only use a user-defined header if you know what you are doing! The
following commands have a special meaning inside the header: $title,
$datetime, $date, $doxygenversion, $projectname, $projectnumber,
$projectbrief, $projectlogo. Doxygen will replace $title with the empy string,
for the replacement values of the other commands the user is refered to
HTML_HEADER.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_HEADER =

The LATEX_FOOTER tag can be used to specify a personal LaTeX footer for the
generated LaTeX document. The footer should contain everything after the last
chapter. If it is left blank doxygen will generate a standard footer. See
LATEX_HEADER for more information on how to generate a default footer and what
special commands can be used inside the footer.
#
Note: Only use a user-defined footer if you know what you are doing!
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_FOOTER =

The LATEX_EXTRA_FILES tag can be used to specify one or more extra images or
other source files which should be copied to the LATEX_OUTPUT output
directory. Note that the files will be copied as-is; there are no commands or
markers available.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_EXTRA_FILES =

If the PDF_HYPERLINKS tag is set to YES, the LaTeX that is generated is
prepared for conversion to PDF (using ps2pdf or pdflatex). The PDF file will
contain links (just like the HTML output) instead of page references. This
makes the output suitable for online browsing using a PDF viewer.
The default value is: YES.
This tag requires that the tag GENERATE_LATEX is set to YES.

PDF_HYPERLINKS = YES

If the USE_PDFLATEX tag is set to YES, doxygen will use pdflatex to generate
the PDF file directly from the LaTeX files. Set this option to YES to get a
higher quality PDF documentation.
The default value is: YES.
This tag requires that the tag GENERATE_LATEX is set to YES.

USE_PDFLATEX = YES

If the LATEX_BATCHMODE tag is set to YES, doxygen will add the \batchmode
command to the generated LaTeX files. This will instruct LaTeX to keep running
if errors occur, instead of asking the user for help. This option is also used
when generating formulas in HTML.
The default value is: NO.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_BATCHMODE = NO

If the LATEX_HIDE_INDICES tag is set to YES then doxygen will not include the
index chapters (such as File Index, Compound Index, etc.) in the output.
The default value is: NO.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_HIDE_INDICES = NO

If the LATEX_SOURCE_CODE tag is set to YES then doxygen will include source
code with syntax highlighting in the LaTeX output.
#
Note that which sources are shown also depends on other settings such as
SOURCE_BROWSER.
The default value is: NO.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_SOURCE_CODE = NO

The LATEX_BIB_STYLE tag can be used to specify the style to use for the
bibliography, e.g. plainnat, or ieeetr. See
http://en.wikipedia.org/wiki/BibTeX and \cite for more info.
The default value is: plain.
This tag requires that the tag GENERATE_LATEX is set to YES.

LATEX_BIB_STYLE = plain

#---
Configuration options related to the RTF output
#---

If the GENERATE_RTF tag is set to YES doxygen will generate RTF output. The
RTF output is optimized for Word 97 and may not look too pretty with other RTF
readers/editors.
The default value is: NO.

GENERATE_RTF = NO

The RTF_OUTPUT tag is used to specify where the RTF docs will be put. If a
relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
it.
The default directory is: rtf.
This tag requires that the tag GENERATE_RTF is set to YES.

RTF_OUTPUT = rtf

If the COMPACT_RTF tag is set to YES doxygen generates more compact RTF
documents. This may be useful for small projects and may help to save some
trees in general.
The default value is: NO.
This tag requires that the tag GENERATE_RTF is set to YES.

COMPACT_RTF = NO

If the RTF_HYPERLINKS tag is set to YES, the RTF that is generated will
contain hyperlink fields. The RTF file will contain links (just like the HTML
output) instead of page references. This makes the output suitable for online
browsing using Word or some other Word compatible readers that support those
fields.
#
Note: WordPad (write) and others do not support links.
The default value is: NO.
This tag requires that the tag GENERATE_RTF is set to YES.

RTF_HYPERLINKS = NO

Load stylesheet definitions from file. Syntax is similar to doxygen's config
file, i.e. a series of assignments. You only have to provide replacements,
missing definitions are set to their default value.
#
See also section "Doxygen usage" for information on how to generate the
default style sheet that doxygen normally uses.
This tag requires that the tag GENERATE_RTF is set to YES.

RTF_STYLESHEET_FILE =

Set optional variables used in the generation of an RTF document. Syntax is
similar to doxygen's config file. A template extensions file can be generated
using doxygen -e rtf extensionFile.
This tag requires that the tag GENERATE_RTF is set to YES.

RTF_EXTENSIONS_FILE =

#---
Configuration options related to the man page output
#---

If the GENERATE_MAN tag is set to YES doxygen will generate man pages for
classes and files.
The default value is: NO.

GENERATE_MAN = NO

The MAN_OUTPUT tag is used to specify where the man pages will be put. If a
relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
it. A directory man3 will be created inside the directory specified by
MAN_OUTPUT.
The default directory is: man.
This tag requires that the tag GENERATE_MAN is set to YES.

MAN_OUTPUT = man

The MAN_EXTENSION tag determines the extension that is added to the generated
man pages. In case the manual section does not start with a number, the number
3 is prepended. The dot (.) at the beginning of the MAN_EXTENSION tag is
optional.
The default value is: .3.
This tag requires that the tag GENERATE_MAN is set to YES.

MAN_EXTENSION = .3

The MAN_SUBDIR tag determines the name of the directory created within
MAN_OUTPUT in which the man pages are placed. If defaults to man followed by
MAN_EXTENSION with the initial . removed.
This tag requires that the tag GENERATE_MAN is set to YES.

MAN_SUBDIR =

If the MAN_LINKS tag is set to YES and doxygen generates man output, then it
will generate one additional man file for each entity documented in the real
man page(s). These additional files only source the real man page, but without
them the man command would be unable to find the correct page.
The default value is: NO.
This tag requires that the tag GENERATE_MAN is set to YES.

MAN_LINKS = NO

#---
Configuration options related to the XML output
#---

If the GENERATE_XML tag is set to YES doxygen will generate an XML file that
captures the structure of the code including all documentation.
The default value is: NO.

GENERATE_XML = NO

The XML_OUTPUT tag is used to specify where the XML pages will be put. If a
relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
it.
The default directory is: xml.
This tag requires that the tag GENERATE_XML is set to YES.

XML_OUTPUT = xml

If the XML_PROGRAMLISTING tag is set to YES doxygen will dump the program
listings (including syntax highlighting and cross-referencing information) to
the XML output. Note that enabling this will significantly increase the size
of the XML output.
The default value is: YES.
This tag requires that the tag GENERATE_XML is set to YES.

XML_PROGRAMLISTING = YES

#---
Configuration options related to the DOCBOOK output
#---

If the GENERATE_DOCBOOK tag is set to YES doxygen will generate Docbook files
that can be used to generate PDF.
The default value is: NO.

GENERATE_DOCBOOK = NO

The DOCBOOK_OUTPUT tag is used to specify where the Docbook pages will be put.
If a relative path is entered the value of OUTPUT_DIRECTORY will be put in
front of it.
The default directory is: docbook.
This tag requires that the tag GENERATE_DOCBOOK is set to YES.

DOCBOOK_OUTPUT = docbook

If the DOCBOOK_PROGRAMLISTING tag is set to YES doxygen will include the
program listings (including syntax highlighting and cross-referencing
information) to the DOCBOOK output. Note that enabling this will significantly
increase the size of the DOCBOOK output.
The default value is: NO.
This tag requires that the tag GENERATE_DOCBOOK is set to YES.

DOCBOOK_PROGRAMLISTING = NO

#---
Configuration options for the AutoGen Definitions output
#---

If the GENERATE_AUTOGEN_DEF tag is set to YES doxygen will generate an AutoGen
Definitions (see http://autogen.sf.net) file that captures the structure of
the code including all documentation. Note that this feature is still
experimental and incomplete at the moment.
The default value is: NO.

GENERATE_AUTOGEN_DEF = NO

#---
Configuration options related to the Perl module output
#---

If the GENERATE_PERLMOD tag is set to YES doxygen will generate a Perl module
file that captures the structure of the code including all documentation.
#
Note that this feature is still experimental and incomplete at the moment.
The default value is: NO.

GENERATE_PERLMOD = NO

If the PERLMOD_LATEX tag is set to YES doxygen will generate the necessary
Makefile rules, Perl scripts and LaTeX code to be able to generate PDF and DVI
output from the Perl module output.
The default value is: NO.
This tag requires that the tag GENERATE_PERLMOD is set to YES.

PERLMOD_LATEX = NO

If the PERLMOD_PRETTY tag is set to YES the Perl module output will be nicely
formatted so it can be parsed by a human reader. This is useful if you want to
understand what is going on. On the other hand, if this tag is set to NO the
size of the Perl module output will be much smaller and Perl will parse it
just the same.
The default value is: YES.
This tag requires that the tag GENERATE_PERLMOD is set to YES.

PERLMOD_PRETTY = YES

The names of the make variables in the generated doxyrules.make file are
prefixed with the string contained in PERLMOD_MAKEVAR_PREFIX. This is useful
so different doxyrules.make files included by the same Makefile don't
overwrite each other's variables.
This tag requires that the tag GENERATE_PERLMOD is set to YES.

PERLMOD_MAKEVAR_PREFIX =

#---
Configuration options related to the preprocessor
#---

If the ENABLE_PREPROCESSING tag is set to YES doxygen will evaluate all
C-preprocessor directives found in the sources and include files.
The default value is: YES.

ENABLE_PREPROCESSING = YES

If the MACRO_EXPANSION tag is set to YES doxygen will expand all macro names
in the source code. If set to NO only conditional compilation will be
performed. Macro expansion can be done in a controlled way by setting
EXPAND_ONLY_PREDEF to YES.
The default value is: NO.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

MACRO_EXPANSION = NO

If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES then
the macro expansion is limited to the macros specified with the PREDEFINED and
EXPAND_AS_DEFINED tags.
The default value is: NO.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

EXPAND_ONLY_PREDEF = NO

If the SEARCH_INCLUDES tag is set to YES the includes files in the
INCLUDE_PATH will be searched if a #include is found.
The default value is: YES.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

SEARCH_INCLUDES = YES

The INCLUDE_PATH tag can be used to specify one or more directories that
contain include files that are not input files but should be processed by the
preprocessor.
This tag requires that the tag SEARCH_INCLUDES is set to YES.

INCLUDE_PATH =

You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard
patterns (like *.h and *.hpp) to filter out the header-files in the
directories. If left blank, the patterns specified with FILE_PATTERNS will be
used.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

INCLUDE_FILE_PATTERNS =

The PREDEFINED tag can be used to specify one or more macro names that are
defined before the preprocessor is started (similar to the -D option of e.g.
gcc). The argument of the tag is a list of macros of the form: name or
name=definition (no spaces). If the definition and the "=" are omitted, "=1"
is assumed. To prevent a macro definition from being undefined via #undef or
recursively expanded use the := operator instead of the = operator.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

PREDEFINED =

If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then this
tag can be used to specify a list of macro names that should be expanded. The
macro definition that is found in the sources will be used. Use the PREDEFINED
tag if you want to use a different macro definition that overrules the
definition found in the source code.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

EXPAND_AS_DEFINED =

If the SKIP_FUNCTION_MACROS tag is set to YES then doxygen's preprocessor will
remove all references to function-like macros that are alone on a line, have
an all uppercase name, and do not end with a semicolon. Such function macros
are typically used for boiler-plate code, and will confuse the parser if not
removed.
The default value is: YES.
This tag requires that the tag ENABLE_PREPROCESSING is set to YES.

SKIP_FUNCTION_MACROS = YES

#---
Configuration options related to external references
#---

The TAGFILES tag can be used to specify one or more tag files. For each tag
file the location of the external documentation should be added. The format of
a tag file without this location is as follows:
TAGFILES = file1 file2 ...
Adding location for the tag files is done as follows:
TAGFILES = file1=loc1 "file2 = loc2" ...
where loc1 and loc2 can be relative or absolute paths or URLs. See the
section "Linking to external documentation" for more information about the use
of tag files.
Note: Each tag file must have a unique name (where the name does NOT include
the path). If a tag file is not located in the directory in which doxygen is
run, you must also specify the path to the tagfile here.

TAGFILES =

When a file name is specified after GENERATE_TAGFILE, doxygen will create a
tag file that is based on the input files it reads. See section "Linking to
external documentation" for more information about the usage of tag files.

GENERATE_TAGFILE =

If the ALLEXTERNALS tag is set to YES all external class will be listed in the
class index. If set to NO only the inherited external classes will be listed.
The default value is: NO.

ALLEXTERNALS = NO

If the EXTERNAL_GROUPS tag is set to YES all external groups will be listed in
the modules index. If set to NO, only the current project's groups will be
listed.
The default value is: YES.

EXTERNAL_GROUPS = YES

If the EXTERNAL_PAGES tag is set to YES all external pages will be listed in
the related pages index. If set to NO, only the current project's pages will
be listed.
The default value is: YES.

EXTERNAL_PAGES = YES

The PERL_PATH should be the absolute path and name of the perl script
interpreter (i.e. the result of 'which perl').
The default file (with absolute path) is: /usr/bin/perl.

PERL_PATH = /usr/bin/perl

#---
Configuration options related to the dot tool
#---

If the CLASS_DIAGRAMS tag is set to YES doxygen will generate a class diagram
(in HTML and LaTeX) for classes with base or super classes. Setting the tag to
NO turns the diagrams off. Note that this option also works with HAVE_DOT
disabled, but it is recommended to install and use dot, since it yields more
powerful graphs.
The default value is: YES.

CLASS_DIAGRAMS = YES

You can define message sequence charts within doxygen comments using the \msc
command. Doxygen will then run the mscgen tool (see:
http://www.mcternan.me.uk/mscgen/)) to produce the chart and insert it in the
documentation. The MSCGEN_PATH tag allows you to specify the directory where
the mscgen tool resides. If left empty the tool is assumed to be found in the
default search path.

MSCGEN_PATH =

You can include diagrams made with dia in doxygen documentation. Doxygen will
then run dia to produce the diagram and insert it in the documentation. The
DIA_PATH tag allows you to specify the directory where the dia binary resides.
If left empty dia is assumed to be found in the default search path.

DIA_PATH =

If set to YES, the inheritance and collaboration graphs will hide inheritance
and usage relations if the target is undocumented or is not a class.
The default value is: YES.

HIDE_UNDOC_RELATIONS = YES

If you set the HAVE_DOT tag to YES then doxygen will assume the dot tool is
available from the path. This tool is part of Graphviz (see:
http://www.graphviz.org/), a graph visualization toolkit from AT&T and Lucent
Bell Labs. The other options in this section have no effect if this option is
set to NO
The default value is: NO.

HAVE_DOT = NO

The DOT_NUM_THREADS specifies the number of dot invocations doxygen is allowed
to run in parallel. When set to 0 doxygen will base this on the number of
processors available in the system. You can set it explicitly to a value
larger than 0 to get control over the balance between CPU load and processing
speed.
Minimum value: 0, maximum value: 32, default value: 0.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_NUM_THREADS = 0

When you want a differently looking font in the dot files that doxygen
generates you can specify the font name using DOT_FONTNAME. You need to make
sure dot is able to find the font, which can be done by putting it in a
standard location or by setting the DOTFONTPATH environment variable or by
setting DOT_FONTPATH to the directory containing the font.
The default value is: Helvetica.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_FONTNAME = Helvetica

The DOT_FONTSIZE tag can be used to set the size (in points) of the font of
dot graphs.
Minimum value: 4, maximum value: 24, default value: 10.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_FONTSIZE = 10

By default doxygen will tell dot to use the default font as specified with
DOT_FONTNAME. If you specify a different font using DOT_FONTNAME you can set
the path where dot can find it using this tag.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_FONTPATH =

If the CLASS_GRAPH tag is set to YES then doxygen will generate a graph for
each documented class showing the direct and indirect inheritance relations.
Setting this tag to YES will force the CLASS_DIAGRAMS tag to NO.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

CLASS_GRAPH = YES

If the COLLABORATION_GRAPH tag is set to YES then doxygen will generate a
graph for each documented class showing the direct and indirect implementation
dependencies (inheritance, containment, and class references variables) of the
class with other documented classes.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

COLLABORATION_GRAPH = YES

If the GROUP_GRAPHS tag is set to YES then doxygen will generate a graph for
groups, showing the direct groups dependencies.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

GROUP_GRAPHS = YES

If the UML_LOOK tag is set to YES doxygen will generate inheritance and
collaboration diagrams in a style similar to the OMG's Unified Modeling
Language.
The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

UML_LOOK = NO

If the UML_LOOK tag is enabled, the fields and methods are shown inside the
class node. If there are many fields or methods and many nodes the graph may
become too big to be useful. The UML_LIMIT_NUM_FIELDS threshold limits the
number of items for each type to make the size more manageable. Set this to 0
for no limit. Note that the threshold may be exceeded by 50% before the limit
is enforced. So when you set the threshold to 10, up to 15 fields may appear,
but if the number exceeds 15, the total amount of fields shown is limited to
10.
Minimum value: 0, maximum value: 100, default value: 10.
This tag requires that the tag HAVE_DOT is set to YES.

UML_LIMIT_NUM_FIELDS = 10

If the TEMPLATE_RELATIONS tag is set to YES then the inheritance and
collaboration graphs will show the relations between templates and their
instances.
The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

TEMPLATE_RELATIONS = NO

If the INCLUDE_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are set to
YES then doxygen will generate a graph for each documented file showing the
direct and indirect include dependencies of the file with other documented
files.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

INCLUDE_GRAPH = YES

If the INCLUDED_BY_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are
set to YES then doxygen will generate a graph for each documented file showing
the direct and indirect include dependencies of the file with other documented
files.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

INCLUDED_BY_GRAPH = YES

If the CALL_GRAPH tag is set to YES then doxygen will generate a call
dependency graph for every global function or class method.
#
Note that enabling this option will significantly increase the time of a run.
So in most cases it will be better to enable call graphs for selected
functions only using the \callgraph command.
The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

CALL_GRAPH = NO

If the CALLER_GRAPH tag is set to YES then doxygen will generate a caller
dependency graph for every global function or class method.
#
Note that enabling this option will significantly increase the time of a run.
So in most cases it will be better to enable caller graphs for selected
functions only using the \callergraph command.
The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

CALLER_GRAPH = NO

If the GRAPHICAL_HIERARCHY tag is set to YES then doxygen will graphical
hierarchy of all classes instead of a textual one.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

GRAPHICAL_HIERARCHY = YES

If the DIRECTORY_GRAPH tag is set to YES then doxygen will show the
dependencies a directory has on other directories in a graphical way. The
dependency relations are determined by the #include relations between the
files in the directories.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

DIRECTORY_GRAPH = YES

The DOT_IMAGE_FORMAT tag can be used to set the image format of the images
generated by dot.
Note: If you choose svg you need to set HTML_FILE_EXTENSION to xhtml in order
to make the SVG files visible in IE 9+ (other browsers do not have this
requirement).
Possible values are: png, jpg, gif and svg.
The default value is: png.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_IMAGE_FORMAT = png

If DOT_IMAGE_FORMAT is set to svg, then this option can be set to YES to
enable generation of interactive SVG images that allow zooming and panning.
#
Note that this requires a modern browser other than Internet Explorer. Tested
and working are Firefox, Chrome, Safari, and Opera.
Note: For IE 9+ you need to set HTML_FILE_EXTENSION to xhtml in order to make
the SVG files visible. Older versions of IE do not have SVG support.
The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

INTERACTIVE_SVG = NO

The DOT_PATH tag can be used to specify the path where the dot tool can be
found. If left blank, it is assumed the dot tool can be found in the path.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_PATH =

The DOTFILE_DIRS tag can be used to specify one or more directories that
contain dot files that are included in the documentation (see the \dotfile
command).
This tag requires that the tag HAVE_DOT is set to YES.

DOTFILE_DIRS =

The MSCFILE_DIRS tag can be used to specify one or more directories that
contain msc files that are included in the documentation (see the \mscfile
command).

MSCFILE_DIRS =

The DIAFILE_DIRS tag can be used to specify one or more directories that
contain dia files that are included in the documentation (see the \diafile
command).

DIAFILE_DIRS =

When using plantuml, the PLANTUML_JAR_PATH tag should be used to specify the
path where java can find the plantuml.jar file. If left blank, it is assumed
PlantUML is not used or called during a preprocessing step. Doxygen will
generate a warning when it encounters a \startuml command in this case and
will not generate output for the diagram.
This tag requires that the tag HAVE_DOT is set to YES.

PLANTUML_JAR_PATH =

The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of nodes
that will be shown in the graph. If the number of nodes in a graph becomes
larger than this value, doxygen will truncate the graph, which is visualized
by representing a node as a red box. Note that doxygen if the number of direct
children of the root node in a graph is already larger than
DOT_GRAPH_MAX_NODES then the graph will not be shown at all. Also note that
the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH.
Minimum value: 0, maximum value: 10000, default value: 50.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_GRAPH_MAX_NODES = 50

The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the graphs
generated by dot. A depth value of 3 means that only nodes reachable from the
root by following a path via at most 3 edges will be shown. Nodes that lay
further from the root node will be omitted. Note that setting this option to 1
or 2 may greatly reduce the computation time needed for large code bases. Also
note that the size of a graph can be further restricted by
DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth restriction.
Minimum value: 0, maximum value: 1000, default value: 0.
This tag requires that the tag HAVE_DOT is set to YES.

MAX_DOT_GRAPH_DEPTH = 0

Set the DOT_TRANSPARENT tag to YES to generate images with a transparent
background. This is disabled by default, because dot on Windows does not seem
to support this out of the box.
#
Warning: Depending on the platform used, enabling this option may lead to
badly anti-aliased labels on the edges of a graph (i.e. they become hard to
read).
The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_TRANSPARENT = NO

Set the DOT_MULTI_TARGETS tag to YES allow dot to generate multiple output
files in one run (i.e. multiple -o and -T options on the command line). This
makes dot run faster, but since only newer versions of dot (>1.8.10) support
this, this feature is disabled by default.
The default value is: NO.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_MULTI_TARGETS = NO

If the GENERATE_LEGEND tag is set to YES doxygen will generate a legend page
explaining the meaning of the various boxes and arrows in the dot generated
graphs.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

GENERATE_LEGEND = YES

If the DOT_CLEANUP tag is set to YES doxygen will remove the intermediate dot
files that are used to generate the various graphs.
The default value is: YES.
This tag requires that the tag HAVE_DOT is set to YES.

DOT_CLEANUP = YES

Online Teaching/Debug/ABB.Robotics.Controllers.PC.xml

 ABB.Robotics.Controllers.PC

 Holds name and value for an attribute.

 Initializes a new attribute instance.

 The name.
 The value.

 Gets/Sets the name.

 Gets/Sets the value.

 Checks two attrbute nodes for eqaulity.

 The to compare with.
 True if the nodes are equal.

 Writes the cfg v1 format to a stream.

 Initializes the writer object with a stream.

 The stream.

 Initializes the writer object with a stream and the max number of
 characters for each row.

 The stream.
 Number of characters per row

 Flushes the writer object.

 Writes an attribute.

 The name.
 The value.

 Writes a cfg header.

 Domain.
 Version.
 Controller version high.
 Controller version low.

 Writes Properties.

 The properties/header comments of the file.

 Writes the start of an instance.

 Writes the end of an instance.

 Writes the start of a type.

 The name.
 The alias, optional.

 Writes the end of a the type.

 Disposes the current writer object.

 Base class of all collection nodes.

 Clears all items.

 Inserts an item at the index.

 The index.
 The item.

 Removes an item.

 The index.

 Sets an item.

 The index.
 The item.

 Gets an item from its name.

 The name.
 The item.

 Encapsulates a complete configuration document.

 Gets/Sets the controller version.
 May be an empty string if no version is specified.

 Gets/Sets the controller version.
 May be an empty string if no version is specified.

 Gets/Sets the domain for this object.

 Gets/Sets the version string.

 Gets/Sets the unit property string.

 Checks is two documents are equal.

 The document to compare to.
 True if the documents are equal.

 Use this class to serialize a document object into a file
 format using a supplied writer object.

 Initializes the DocumentSerializer object.

 The Document to serialize.

 Serializes the document to disk.

 The writer to serialize to.

 Holds data for a cfg instance.

 Initializes a unnamed instance node.

 Initializes a named instance node.

 The name of the instance.

 Gets the name of the instance.

 Checks if two instances are equal.

 The instance to compare with.
 True if the nodes are equal.

 Defines the interface of a node object.

 Gets/Sets the text of the node.

 Parses a configuration file into configuration document.

 Initializes a parser object.

 The file to open.

 Initializes a parser object.

 The stream to parse.

 Disposes the current object.

 Parses the data into a Document.

 The document.

 Use this class to scan a stream for configuration tokens.

 Initializes the scanner with a stream object.

 The stream to scan.

 Disposes the current object.

 Gets the next char from the stream.

 The next char from the stream.

 Gets the next token from the stream.

 The token.

 Peeks the next char from the stream.

 Peeks for the next token.

 The token.

 Abstraction of a configuration token.

 Initializes a new token object.

 The token type.
 The token text.

 Initializes a new token object.

 The token type.
 The charachter.

 Gets the char if not a string.

 Gets/sets the column.

 Indicates that the current token is a continue line char.

 Inidicates that the current token is a end of stream token.

 Indicates that the current token is a LineFeed.

 Indicates that the current token is a text token.

 Indicates that the current token is a separator.

 Gets/Sets the row of the token.

 Gets the token text.

 Gets the token type.

 Checks if two tokens are equal.

 The object.
 True if the objects are equal, otherwise false.

 Checks if two tokens are equal.

 The token.
 True if the tokens are equal, otherwise false.

 Gets the hash code for this object.
 This is based on the text property.

 The hash code.

 Gets a string representation of the current token.

 The text.

 All available tokens in a configuration file.

 Unknown token.

 Token is a separator.

 Token is a comment.

 Token is a text.

 End of stream token.

 Token is a line continue char. '\'

 Token is a line feed.

 Special node for a configuration type.

 Initializes a new TypeNode instance.

 Gets/Sets the type alias.

 Gets/Sets the text, this is the type name.

 Checks if this node is equal to the provided node.

 The node to compare with.
 True if the node are equal.

 This defines the main interface for a configuration
 writer object.

 Initializes a new writer object.

 Finalizer for the Writer class.

 Disposes the current writer object.

 Flushes the content into the underlaying stream.

 Writes an attribute.

 The name.

 Writes an attribute.

 The name.
 The value.

 Writes a simple header.

 The domain.
 The configuration format version.

 Writes a versioned header.

 The domain.
 The configuration format version.
 The high controller version.
 The low controller version.

 Writes properties.

 The properties/header comments of the file.

 Starts a new instance.

 Ends the current instance.

 Writes a configuration type.

 The name of the type.

 Writes a configuration type.

 The name of the type.
 The type alias.

 Ends the current type.

 Dispose extension point.

 True if called by dispose, otherwise false.

 Defines a interface for all the objects of a Robot Controller.

 Gets the Name of a data in the Robot controller.
 A text that represents the data's name.

 Describes the current availability of a Controller.

 Unknown.

 Controller is available.

 Controller was removed from network.

 Controller has become unavailable through an external event.

 Current run level of controller.

 Unknown level.

 Boot.

 System running.

 This class contains the "simple" information
 that is available about a controller without
 connecting to it

 Not for public use.

 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.

 Not for public use.

 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.
 Not for public use.

 Gets the Availability of the controller.

 Gets the controller name of the controller.

 Get the RunLevel of the controller.

 Gets the system id of the controller.

 Gets the system name of the controller.

 Gets the mac address of the controller.

 Gets the netscan id of the object. Not for public use.

 Gets the host name of the controller.

 Get the Id of the controller.

 Gets the base directory of the controller for a virtual controller.

 Gets the version of the system on the controller.

 Gets the RobotWare version as a string

 Supported from RW 6.03

 Gets the IP address of the controller.

 Gets a flag to indicate if the controller is virtual or real.

 Returns the TCP port number for a virtual controller when using Robot Web Services.

 Supported from RobotWare 6.03.01.

 Checks if this object system id is equal to the provided Guid.

 Guid to compare two.
 True if this objects SystemId is equal as systemId.

 Checks if this object has same systemId as the provided info object.

 ControllerInfo object to compare two.
 True if the systemId is same on both objects.

 Combines the two other equals operations.

 Object to compare with.
 True if the system ids are equal.

 Compares two ControllerInfo objects for equility.

 Object 1.
 Object 2.
 True if both objects have the same system id.

 Compares two ControllerInfo objects for in equility.

 Object 1.
 Object 2.
 True if both doesn't have the same system id.

 Gets the hash code for this object. Based on the system id.

 A collection of ControllerInfo object.

 Gets/Sets the ControllerInfo object at the specified
 index.

 Adds a ControllerInfo object to the collection.

 Object to add.
 The index of the object.

 Adds a range of ControllerInfo objectst o the collection.

 The objects to add.

 Adds a range of controller info objects to the collection.

 The objects to add.

 Gets the index of the object.

 Object to look for in the collection.
 Index if found, -1 if not available in the collection.

 Insert a object at the specified index.

 Index to insert object at.
 Object to insert.

 Removes a object from the collection.

 Object to remove.

 Checks if a object is available in the collection.

 Object to look for.
 True if the object is found.

 Copies the content of this collection into the array.

 Target array.
 Start index in array.

 Creates an array object that contains all objects from this array.

 A matching array with the same objects.

 Compares two instances of ControllerInfo through
 the IComparer interface. Used for sorting and searching.
 Built for extensibility since the default only compares
 the System Names.

 Used to compare two instances of ControllerInfo, this method
 only compares the SystemNames, override and extend if needed.

 Instance X.
 Instance Y.
 Zero if equal, less then 0 if x is less then y, otherwise more then one.

 This enum controls how a stream to the controller is opened.

 No access.

 Read access to stream.

 Read and write access to stream, same as Read | Write.

 Write access to stream.

 Specifies the operating modes of the controller.

 Automatic mode (production)

 A change to automatic mode has been requested.

 Initialize mode.

 Manual full speed mode.

 A change to manual full speed has been requested.

 Manual reduced speed mode

 Controller operating mode is not applicable in current controller state.

 Specifies the states of the controller.

 Emergency stop state.

 Emergency stop reset state.

 Guard stop state.

 Initialize state.

 Motors off state.

 Motors on state.

 System failure state.

 Unknown state.

 Specifies the enable state of the controller.

 Enable

 Disable

 Specifies how mastership should be handled by a GUI client

 The user must explicitly take mastership before executing an action.
 This is the default for real controllers.

 The client should automatically request mastership before executing
 an action, and release it afterwards.
 This is the default for Station controllers.

 This enumeration specifies predefined event categories available in the event log in an IRC5 Controller.
 RobotWare Add-Ins may define their own categories outside the range of positive integers specified by this enumeration.

 All elog events, but internal.

 Operational events.

 System events.

 Hardware events.

 Program events.

 Motion events.

 Operator events.

 IO events.

 User defined events.

 Optional productos events. These events are obsolete

 Process events.

 Configuration events.

 SpotWeld events.

 Paint events.

 Picker events.

 Provides data for the event.

 Initializes a new instance of the class.
 		

 Gets the event log message that was written to the log.

 An that represents the mesasage that was written to the event log.

 Event handler for a new eventlog message.

 This class represents a EventLog domain in the controller.

 When the last instance of this class, created for a certain controller, is disposed any will update
 its messages.

 Gets the available categories of the .
 An array of the available categories inside the EventLog domain in the controller.		

 Type of the ///
 A object to represents the Event Log's category. If the category does not exist, the return value is null.		

 This overload takes an as parameter. This enumeration can represent the categories predefined by ABB but not categories defined by RobotWare Add-Ins. You can use the overload to pass an integer that can represent predefined categories as well as categories defined by RobotWare Add-Ins./>

 Gets the specified event log category.

 A object to represents the Event Log's category. If the category does not exist, the return value is null.		

 Clears any in any .

 This method clears the eventlogs in the controller.		

 Raised when a new event is written to the log.

 This class represents a catefory of messages of the EventLog.
 	

 Gets the id of the category. The val

 Gets the type of the category.

 One of the values.

 Gets the localized name of the category.

 The text associated to the name of the category.		

 Gets the available messages inside the Event Log Category of the controller.

 An array of the available messages inside the Event Log Category of the controller.		

 Clears all the messages related to this category of the event log.

 Predefined event types available in a ABB Controller.

 An error event.

 A warning event.

 An information event.

 This class represents a message of the .

 Gets the title of the message.
 The text associated to the title of the message.

 Gets the body of the message.

 The text associated to the message..

 Gets the number of the message.

 The integer associated to the number of the message.

 Gets the sequence number for the message

 Gets the time information specific when the event happened.

 A DateTime that represents the time when the event happened.

 Gets the type of the event message.

 A EventType enum value that represents the type of the event message.

 Gets the category to which the event message belongs.

 Gets the category to which the event message belongs.

 A EventCategoryTypeType enum value that represents the category of the event message.

 Defines size and enumerators for a collection of instances.

 Initializes a new instance of the class.

 Retrieves the item at the specified indexed location in the collection.

 The item at the specified location.

 Clears the internal list.

 Gets the internal list, used for updates.

 The internal list.

 Gets the number of items in the collection

 Copy a portion of the to an array.

 The array to copy items to
 The location within the destination array
 to copy the items from the collection to.

 Copy a portion of the to an array.

 The array to copy items to
 The location within the destination array
 to copy the items from the collection to.

 Gets an object that can be used to syncronize access to

 Returns an enumerator that can iterate through a collection.

 An IEnumerator that can be used to iterate through the collection.

 Specifies how a Rapid program should be loaded.

 Do not allow replacement of a allready loaded module

 Allow replacement of a allready loaded module

 Defines the search method for a symbol search.

 None.

 Search current block.

 Search current scope.

 Defines the task types.

 Normal task type.
 Possible to enable/disable in task selection panel.

 Static task type.

 Semi-static task type.

 Symbol types possible to search for.

 No type.

 All atomic types.

 Records.

 Aliases.

 Record components.

 Constants.

 Variables.

 Persistent data.

 Parameters.

 Labels.

 Functions.

 Procedures.

 Traps.

 Modules.

 Tasks.

 Routines, Function | Procedures | Trap.

 Data, Constant | Variable | Persistent

 Type of symbol.

 Url to type declaration

 Data type

 Url to type declaration

 Data type

 Url to type declaration

 Data type

 Properties for persistent data

 Whether locally declared or not, false if global module persistent, else true

 Whether declared as task pers or not

 Url to type declaration

 Data type

 Url to type declaration

 Data type

 Defines task execution level.

 An execution level basically consists of
 the RAPID program stack, callchain and PCP.
 A task has exactly one (or no) current execution level.
 	The three execution levels form a hierarchy, where User is the highest,
 	and Normal is the lowest. That is, if User exists,
 	it is the current level etc.

 The normal execution level must exist for the trap or user level to be able to exist.
 	The user execution level can exist without the trap execution level to exist.

 	When a higher execution level is cleared, the next execution level in the hierarchy is
 	made current, i.e., the PCP is restored etc.

 No execution level active.

 Normal execution level. For normal program execution.

 Trap execution level. Created by RAPID for execution of
 trap-routines when RAPID interrupts occur.

 User execution level. Created by RAB clients, e.g.,
 for execution of service-routines.

 Defines the search properties for a symbol search.

 Creates a symbol search property object.

 Search method.
 Types to search for.
 Recursive search.
 Include local parameters.
 Include global parameters.
 Include only symbols that are in use.

 Creates a symbol search property object.

 Search method.
 Types to search for.

 Creates a symbol search property object.

 Search method.		

 Creates a symbol search property object.

 Include global symbols.

 Include symbols in use.

 Include local symbols.

 Search recursive.

 Search method.

 Types to search for.

 Creates the default search properties

 Default search properties for NO kind of symbol. MUST set Type!!!

 Creates default properties for a data search.

 Default search properties for a data search.

 Creates default properties for a data search.

 Recursive search.
 Default search properties for a data search.

 Creates default properties for a data search.

 Default search properties for a data search.

 Creates default properties for a data search.

 Recursive search.
 Default search properties for a data search.

 Represents the type of execution performed by the program server.

 No execution context, i.e. no ProgramPointer is set

 Normal program exeuction

 A programmatic interrupt

 An external interrupt, via the system input Interrupt.
 Can be executed at any execution level.

 A service routine.

 An event routine, e.g., RESET, START, STOP, POWER_ON etc.
 Can be executed at any execution level.

 Defines a location within a text file. Objects of
 this types are imutable and can't be changed once
 they have been created.

 Creates a new location object with row and column.

 Sets the row of the location.
 Sets the column of the location.

 Gets the column.

 Empty instance for this type.

 Gets the row.

 Checks if obj is equal to this object.

 Object to compare.
 True if equal.

 Checks if obj is equal to this object.

 Object to compare.
 True if equal.

 Gets the hashcode for this object.

 Hash code for this object.

 Execution status structure; AKA execution pointer or program pointer.

 Initializes a new instance of ProgramPointer class.

 Current module.
 Current routine.
 Current range.

 Empty pattern impl.

 Gets the module for this program pointer.

 Gets the current routine.

 Gets the range of the program pointer.

 This event arguments for a ProgramPosition events.

 Initializes a program position Event args object.

 Gets the program position.

 Unpacks Adpater.PCP details to ProgramPosition '_position'.

 TextRange defines a region within a row / column based text file.
 All instances of this class are immutable. Indecies are one-based.

 Creates a new instance of the TextRange class.

 Beginning of range.
 End of range.

 Creates a new instance of the TextRange class.

 Start row.
 Start column.
 End row.
 End column.

 Creates a new instance of the TextRange class for
 a single row.

 Creates a new instance of the TextRange class
 for a number of rows.

 Start row.
 End row.

 Gets the Location for the beginning of the range.

 Empty pattern TextRange object.

 Gets the Location for the end of the range.

 Gets the end of line index.

 Gets the start index.

 Defines the UI- and TP- Instructions available in RAPID. For a short description of each instruction type, see "Members" section.
 For complete description concerning the usage of these RAPID instructions refer to RAPID Technical reference manual.

 The UIAlphaEntry (User Interaction Alpha Entry) is used to let an operator communicate
 with the robot system via RAPID, by enabling him to enter a string from the FlexPendant or from a PC SDK application.
 After the operator has entered the text, it is transferred back to the RAPID program by calling .

 The UIListView (User Interaction List View) is used to let an operator communicate
 with the robot system by letting him select one of the items presented in a list.
 Each list item is defined with a descriptive text and optionally an icon.
 The selection of the operator is transferred back to the RAPID program by calling .

 UIMessageBox (User Interaction Message Box, advanced type) is used to display a message (usually a question)
 to the operator. The answer of the operator, i. e. the selected MessageBox button, is
 transferred back to the RAPID program by calling .

 UIMsgBox (User Interaction Message Box, basic type)is used to display a message (usually a question)
 to the operator. The answer of the operator, i. e. the selected MessageBox button, is
 transferred back to the RAPID program by calling .
 (UIMessageBox and UIMsgBox do not differ much, see details in RAPID Technical reference manual.)

 UINumEntry (User Interaction Number Entry) is used to enable the operator to enter a numeric value
 from the available user device, such as the FlexPendant or a PC SDK application.
 The numeric value specified by the user is transferred back to the RAPID program by calling .

 UINumTune (User Interaction Number Tune) is used to allow the operator to tune a numeric value
 from the FlexPendant or a PC SDK application. The numeric value specified by the operator is transferred
 back to the RAPID program by calling .

 TPErase (Teach Pendant Erase) is used to clear the display from written messages.

 TPReadFK (Teach Pendant Read Function Key) is used to display a question to the operator,
 who responds by selecting one out of 2-5 displayed "function keys".
 The response, i. e. which function key was selected is transferred back to the program
 by calling .

 TPReadNum is used to display a question to the operator via the available user device,
 such as the FlexPendant or a PC SDK application. The user responds by entering a number,
 which is transferred back to the RAPID program by calling .

 TPWrite is used to display written information to the operator.

 Undefined type UI-Instruction

 UI Instruction Icon

 Undefined icon

 No icon

 Information Icon

 Warning icon

 Error Icon

 UI Instruction button

 No button

 OK button

 Abort, Retry and Ignore buttons

 OK and Cancel buttons

 Retry and Cancel buttons

 Yes and No buttons

 Yes, No and Cancel buttons

 TPReadFK, if the function key 1 is pressed then 1 is returned, and so on.

 Function key 1

 Function key 2

 Function key 3

 Function key 4

 Function key 5

 UI Instruction button result

 OK button

 Abort button

 Retry button

 Ignore button

 Cancel button

 Yes button

 No button

 Defines the different UIInstruction event types

 Undefined

 Post event type, eg. TPWrite, TPErase

 Send event type, UI-Instructions of this type can be aborted/closed/confirmed, eg. TPReadNum, UIListView

 UI-Instruction aborted/closed/confirmed by the operator.
 If you receive a new Send event type from the same task,
 the previous dialog should be removed and the new dialog displayed, as a RAPID task can only handle
 one dialog. This may happen if RAPID execution is stopped while a UI-Instruction dialog is being displayed,
 then restarted and executing a new UIInstruction.

 Defines a list item with a text and optionally a
 small icons.

 The path including file name for the icon image to display.

 The text to display for the list item.

 Delegate for UIInstruction event notifications.

 Internal helper class, has all possible UI parameters

 Base class of all UI-instruction event arguments.
 The defined properties are the ones sent with a UI Instruction event.

 Name of the instruction e.g. TPWrite, UIMessageBox

 URL to task or task stack

 RAPID task name

 Task execution level

 Any additional text specified by instruction

 UI-Instructions are either sent with POST or SEND.
 An ABORT event is sent when a SEND instruction is aborted.

 UI instruction type.

 Send answer to Instruction

 Get all arguments of Instruction

 Parse a list item array into a list

 Pars message array string into a list

 Pars button array string into a list

 Convert rapid string to string.
 \"string\" to string and [\"string\"] to string

 Pars all possible UI_instruction parameters

 UIAlphaEntry event argument.

 Header text to be written at the top of the message box.

 Several text lines from an array to be written on the display.
 Only one of parameter Message or MsgArray can be used at the same time.

 One text line to be written on the display.

 Concatenates MsgArray to one string.

 If selected, all the specified strings in the argument MsgArray will be
 concatenated to one string with a single space between each individual string
 and using as few lines as possible.

 Defines the icon to be displayed.

 An initial, default string to be displayed in the alpha textbox.

 Send string to alpha textbox.

 Input string to alpha text box

 UIListView (User Interaction List View) event argument.

 Header text to be written at the top of the message box.

 An array with one or several list items to be displayed.

 Defines the buttons to be displayed.

 User defined buttons stored in an array.
 Only one of parameter \Buttons or \BtnArray can be used at the same time.

 Defines the icon to be displayed.

 The default selection in the list, corresponds to
 the index of the item in the array specified in the parameter ListItems.

 Send selection to ListView.

 user selection in the list menu corresponding to the index in the array specified in the parameter ListItems
 Button result

 UIMessageBox event arguments

 Header text to be written at the top of the message box.

 Several text lines to be written on the display.
 Only one of parameter Message or MsgArray can be used at the same time.

 One text line to be written on the display.

 Concatenates MsgArray to one string.

 If selected, all the specified strings in the argument MsgArray will be
 concatenated to one string with a single space between each individual string
 and using as few lines as possible.

 Defined buttons.

 User defined buttons stored in an array.
 Only one of parameter \Buttons or \BtnArray can be used at the same time.

 Default button value to return

 Defines the icon to be displayed.

 The name of the image to be used.

 Send response to the UI-Instruction

 Get all arguments from the UI-Instruction

 UIMsgBox (User Interaction Message Box).

 Header text to be written at the top of the message box.

 Text line 1 to be written on the display.

 Text line 2 to be written on the display.

 Text line 3 to be written on the display.

 Text line 4 to be written on the display.

 Text line 5 to be written on the display.

 Concatenates MsgArray to one string.

 If selected, all the specified strings in the argument MsgArray will be
 concatenated to one string with a single space between each individual string
 and using as few lines as possible.

 Defined buttons in the MessageBox dialog

 Defines the icon to be displayed.

 The name of the image that should be used.

 Send response to the UI-Instruction

 Get all arguments from the UI-Instruction

 UINumEntry (User Interaction Number Entry).

 Header text to be written at the top of the message box.

 One text line to be written on the display.

 Several text lines from an array to be written on the display.
 Only one of parameter Message or MsgArray can be used at the same time.

 Concatenates MsgArray to one string.

 If selected, all the specified strings in the argument MsgArray will be
 concatenated to one string with a single space between each individual string
 and using as few lines as possible.

 Defines the icon to be displayed.

 Initial numeric value that is displayed in the entry box.

 Initial string value that is displayed in the entry box.

 The maximum value for the return value.

 The minimum value for the return value.

 Eliminates the decimal point from the number pad to ensure
 that the return value is an integer.

 Send response to the UI-Instruction

 Input numeric value

 Get all arguments from the UI-Instruction

 UINumTune (User Interaction Number Tune).

 Header text to be written at the top of the message box.

 One text line to be written on the display.

 Several text lines from an array to be written on the display.
 Only one of parameter Message or MsgArray can be used at the same time.

 Concatenates MsgArray to one string.

 If selected, all the specified strings in the argument MsgArray will be
 concatenated to one string with a single space between each individual string
 and using as few lines as possible.

 Defines the icon to be displayed.

 Initial value that is displayed in the entry box.

 The maximum value for the return value.

 The minimum value for the return value.

 Specifies how much the value should change
 when the plus or minus button is pressed.

 Sends response to the UI-Instruction

 Input numeric value

 Gets all arguments from the UI-Instruction

 TPErase (FlexPendant Erase) is used to clear the display of the FlexPendant.

 TPReadFK (FlexPendant Read Function Key).

 The information text to be written on the display.

 The text to be written on function key 1

 The text to be written on function key 2

 The text to be written function key 3

 The text to be written on function key 4

 The text to be written on function key 5

 Sends response to the UI-Instruction

 Function key selection

 Gets all arguments from the UI-Instruction

 TPReadNum

 The information text to be written on the display.

 Sends response to the UI-Instruction

 Number input

 Get all arguments from the UI-Instruction

 TPWrite (FlexPendant Write)

 Message to display is property EventMessage.

 Provides the public UIInstruction interface, available in RW 5.12 and later.
 There is only one UIInstruction object per
 object, which is accessible through the property.

 Unspecified UI-Instruction event (in RW 5.12 or later).

 Cannot be used with RW releases earlier than RW 5.12!
 To transfer the response of the operator back to the RAPID program you cast the event argument object
 received with the event to an object of the correct type and call its SendAnswer method.

 This example explains how a PC SDK application can use the UIInstructionEvent in order to
 let the operator handle RAPID UI- and TP-instructions from a PC application instead of the FlexPendant.
 First, a subscription to be notified whenever a UIInstruction event occur in the controller is set up.
 The event handler then gives some clues how to handle incoming events, indicating different actions
 depending on the kind of UIInstruction event.

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 ...
 Controller c = new Controller();
 c.Rapid.UIInstruction.UIInstructionEvent += OnUIInstructionEvent;
 ...
 private void OnUIInstructionEvent(object sender, UIInstructionEventArgs e)
 {
 try
 {
 // Show the dialog if SEND event, discard any existing dialog if ABORT event,
 // just write or erase the text message in a "status" bar if POST event.
 if (e.InstructionEventType == UIInstructionEventType.Send)
 {
 //Force execution from background thread to UI thread by invoking a second event handler.
 this.Invoke(this.CreateUIInstructionDialog, e);

 //In the CreateUIInstructionDialog handler (not shown), check InstructionType and cast the event argument
 //to the correct type, eg UITPReadFKEventArgs. Then create the dialog by using the information
 //provided by the properties of the specialised UIInstructionEventArgs object. The same object is used
 //to transfer the response of the end-user to the RAPID program (SendAnswer method).
 }
 else if (e.InstructionEventType == UIInstructionEventType.Abort)
 {
 //invoke and remove the existing dialog
 }
 else if (e.InstructionEventType == UIInstructionEventType.Post)
 {
 // check whether we should ADD new message to the info bar or DELETE an existing message
 if (e.InstructionType == UIInstructionType.TPWrite)
 {
 // before writing the message, force execution to the GUI thread
 this.Invoke(this.WriteTPWriteMessage, e);

 // In the second event handler (not shown) retrieve the string to write
 // by making a cast to UITPWriteEventArgs and calling its EventMessage property.
 }
 else if (e.InstructionType == UIInstructionType.TPErase)
 {
 this.Invoke(this.ClearInfoBar, e);
 // In the ClearInfoBar event handler (not shown), just remove any existing info in the "status bar".
 }

 }
 }
 catch (System.Exception ex)
 {
 // TODO: Add error handling
 }
 }

 Create UIInstruction object.

 Creates IRapidData objects from strings and
 RapidSymbol objects.

 Private ctor to prevent external object creation.

 Creates an RapidData instance from the specifed symbol and
 value string.

 The Symbol to create a value from.		
 The value to create object for.
 The value.

 Createsa RapidData instance from the specified value and value string.

 Symbol of type.
 Preparsed value.
 The matching IRapidData object.

 Creates an array of IRapidData objects for a symbol
 from the specified values.

 Symbol to create data for.
 Values to create data for.
 Array of IRapidData objects.

 Defines the visitor interface. Implement this
 to walk the entire tree.

 Visit method for DataNode objects.

 Visited data node.

 A data node from a RAPID data string in a separated fasion.

 Initializes a new instance of the class.

 The text to parse.

 Initializes a new instance of the class.

 The initial list of children.

 The list of children found in the parsed data at this level.
 This is mutually exclusive with Text.

 The text of the current node.
 This is mutually exclusive with Children.

 Starts a visitor structure walk operation.

 Visitor object.

 Formats ParserTrees to RAPID strings.

 Initializes a new instance of the class.

 The node to format.

 Returns the formatted rapid string.

 Rapid string.

 Parses Rapid data strings into well ordered trees.

 Initializes a new instance of the class.

 The text to parse.

 Parse method for repeated calls.

 Data to parse.
 The tree for the data.

 Parses a data into a tree of Nodes.

 The tree for the data.

 Gets the next charachter or \0 if we are at the end
 of the string.

 The next char or \0.

 Gets the next token.

 The token.

 Loops until the end of the rapid string is encountered
 or throws a format exception if such is missing.

 Abstracts a complete rapid data array object into
 a single interface for utilization of bridge pattern
 to implement customizable data access behaviors.

 Gets/sets data in a one dimension array.

 Gets/Sets data in a two dimension array.

 Gets/Sets data in a three dimension array.

 Gets the length of the array in the first dimension.

 Gets the number of dimensions of the array.

 Gets the length of the array in the specified dimension.

 Dimension to get length for.
 The length of the specified dimension.

 Parses the string into the current array object.

 Value to parse.

 Gets the string representation of the object.

 Get the string for this object.

 This enum controls how an array is connected to the
 array in rapid.

 Default flag mode for initialization.

 Snapshot, all data from the array is transfered from rapid
 to controller prior to access.

 No data is stored locally.

 Represents a RAPID array.

 Gets/Sets the current mode of the array.

 Gets or sets the base index of array.

 Gets/sets data in a one dimension array.

 Gets/Sets data in a two dimension array.

 Gets/Sets data in a three dimension array.

 Gets the number of dimensions of the array.

 Gets the array length in the first dimension.

 Gets a IEnumerator object for the array,

 The enumerator object.

 Gets the length of the specified dimension.
 Zero based index.

 Dimension to get length for.
 The length of the dimension.

 Returns the string representation of the rapid data array.

 The string representation with the value of the rapid data.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the ArrayData data type.

 Fills the RapidData object from the specified parser root.

 Root of data.

 Fills the structure with the new value.

 Value to fill structure with.

 This method is not supported.

 Represents a rapid data of type bool.	

 Initializes a new instance of the class with a specific value.

 Gets an empty Bool object.

 Get/Sets the value of the variable.

 Converts a Bool struct to a bool.

 A Bool struct reference.
 The bool value that is stored in the Bool struct

 Thin wrapper around IConvertible.ToBoolean(IFormatProvider).

 The Bool value for this object.

 Fills the struct with a bool value.

 The new value stored by the struct.

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a Bool object.

 Value to parse into object.
 The Bool object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the bool rapid data.

 The string representation with the value of the bool rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the Bool data type.

 Fills the object from the specified parser root.

 Root of data.
 root does not represent the Bool data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the Bool data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type Byte.	

 Initializes a new instance of the structure with a specific value.

 Gets/Sets the value of the object.

 Gets an empty Byte object.

 Converts a Byte struct to a System.Byte

 A Byte struct reference.
 The byte value that is stored in the Byte struct

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a Byte object.

 Value to parse into object.
 The Byte object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the num rapid data.

 The string representation with the value of the num rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the Byte data type.

 Fills the object from the specified parser root.

 Root of data.
 root does not represent the Byte data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the Byte data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type ConfData.	

 Gets an empty confdata object.

 Gets or sets the value of Cf1.
 A int that represents the Cf1 value.

 Gets or sets the value of Cf4.
 A int that represents the Cf4 value.

 Gets or sets the value of Cf6.
 A int that represents the Cf6 value.

 Gets or sets the value of Cfx.
 A int that represents the Cfx value.		

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a ConfData object.

 Value to parse into object.
 The ConfData object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the confdata rapid data.

 The string representation with the value of rapid data type ConfData.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the ConfData data type.

 Fills the object from the specified parser root.

 Root of data.
 root does not represent the ConfData data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the ConfData data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type ExtJoint.

 Gets or sets the value of Eax_a.
 A float that represents the Eax_a value.		

 Gets or sets the value of Eax_b.
 A float that represents the Eax_b value.		

 Gets or sets the value of Eax_c.
 A float that represents the Eax_c value.		

 Gets or sets the value of Eax_d.
 A float that represents the Eax_d value.		

 Gets or sets the value of Eax_e.
 A float that represents the Eax_e value.		

 Gets or sets the value of Eax_f.
 A float that represents the Eax_f value.		

 Gets an empty ExtJoint object.

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a ExtJoint object.

 Value to parse into object.
 The ExtJoint object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the extjoint rapid data.

 The string representation with the value of the ExtJoint rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the ExtJoint data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the ExtJoint data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the ExtJoint data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type JointTarget.

 Gets or sets the value of RobAx.
 A RobJoint that represents the RobAx value.	

 Gets or sets the value of ExtAx.
 A ExtJoint that represents the RobAx ExtAx.				

 Gets an empty JointTarget object.

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a JointTarget object.

 Value to parse into object.
 The JointTarget object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the jointtarget rapid data.

 The string representation with the value of the jointtarget rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the JointTarget data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the JointTarget data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the JointTarget data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type loaddata.

 Gets an empty LoadData object.

 Gets or sets the value of Mass.
 A float that represents the Mass value.		

 Gets or sets the value of Cog.
 A Pos that represents the Cog value.		

 Gets or sets the value of Aom.
 A Orient that represents the Aom value.		

 Gets or sets the value of Ix.
 A float that represents the Ix value.		

 Gets or sets the value of Iy.
 A float that represents the Iy value.		

 Gets or sets the value of Iz.
 A float that represents the Iz value.		

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a LoadData object.

 Value to parse into object.
 The LoadData object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the loaddata rapid data.

 The string representation with the value of the loaddata rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the LoadData data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the LoadData data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the LoadData data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type num.	

 Initializes a new instance of the class with a specific value.

 Gets an empty instance.

 The empty instance.

 Gets/Sets the value of the object.

 Converts a Num struct to a double.

 A Num struct reference.
 The double value that is stored in the Num struct

 Fills the struct with a double value.

 The new value stored by the struct.

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a Num object.

 Value to parse into object.
 The Num object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the num rapid data.

 The string representation with the value of the num rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the Num data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the Num data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the Num data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type Dnum.	

 Initializes a new instance of the class with a specific value.

 Gets an empty instance.

 The empty instance.

 Gets/Sets the value of the object.

 Converts a Dnum struct to a double.

 A Dnum struct reference.
 The double value that is stored in the Dnum struct

 Fills the struct with a double value.

 The new value stored by the struct.

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a Dnum object.

 Value to parse into object.
 The Dnum object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the Dnum rapid data.

 The string representation with the value of the Dnum rapid data.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the Dnum data type.

 Fills the RapidData object from the specified parser root.

 Root of data.

 Fills the structure with the new value.

 Value to fill structure with.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type orient.

 Gets an empty orient object.

 Gets or sets the value of Q1.
 A double that represents the Q1 value.		

 Gets or sets the value of Q2.
 A double that represents the Q2 value.		

 Gets or sets the value of Q3.
 A double that represents the Q3 value.		

 Gets or sets the value of Q4.
 A double that represents the Q4 value.		

 Fills the struct with the quaternian values calculated from Euler angles.

 X angle.
 Y angle.
 Z angle.
 A rotation defined with z,y,x Euler angles is expressed as quaternion.

 Returns the eular angles of the quaternion stored in the struct.

 The string representation with the value of the loaddata rapid data.		

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a Orient object.

 Value to parse into object.
 The Orient object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Quaternion struct

 Rot_Matrix class, used to calculate Euler angles from quaternion values

 Matrix definitions.

 This constructor is done to avoid warning compile messages

 Converts quaternions to a rotational matrix.

 Quaternion reference.
 The matrix.

 Converts a rotational matrix to a quaternion.

 The matrix.
 Quternion reference.

 Returns the string representation of the orient rapid data.

 The string representation with the value of the orient rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the Orient data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the Orient data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the Orient data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type pos.

 Creates an empty Pos object.

 Gets or sets the value of X.
 A float that represents the X value.		

 Gets or sets the value of Y.
 A float that represents the Y value.		

 Gets or sets the value of Z.
 A float that represents the Z value.		

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a Pos object.

 Value to parse into object.
 The Pos object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the pos rapid data.

 The string representation with the value of the pos rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the Pos data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the Pos data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the Pos data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type pose.

 Gets or sets the value of Trans.
 A Pos that represents the Trans value.		

 Gets or sets the value of Rot.
 A Orient that represents the Rot value.		

 Gets a new Empty object.

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a Pose object.

 Value to parse into object.
 The Pose object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the pose rapid data.

 The string representation with the value of the pose rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the Pose data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the Pose data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the Pose data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type robjoint.
 	

 Gets or sets the value of Rax_1.
 A float that represents the Rax_1 value.		

 Gets or sets the value of Rax_2.
 A float that represents the Rax_2 value.		

 Gets or sets the value of Rax_3.
 A float that represents the Rax_3 value.		

 Gets or sets the value of Rax_4.
 A float that represents the Rax_4 value.		

 Gets or sets the value of Rax_5.
 A float that represents the Rax_5 value.		

 Gets or sets the value of Rax_6.
 A float that represents the Rax_6 value.		

 Gets an empty RobJoint object.

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a RobJoint object.

 Value to parse into object.
 The RobJoint object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the robjoint rapid data.

 The string representation with the value of the robjoint rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the RobJoint data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the RobJoint data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the RobJoint data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type robtarget.

 Gets an empty RobTarget object.

 Gets or sets the value of Trans.
 A Pos that represents the Trans value.		

 Gets or sets the value of Rot.
 A Orient that represents the Rot value.		

 Gets or sets the value of Robconf.
 A ConfData that represents the Robconf value.		

 Gets or sets the value of Extax.
 A ExtJoint that represents the Extax value.		

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a RobTarget object.

 Value to parse into object.
 The RobTarget object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the robtarget rapid data.

 The string representation with the value of the robtarget rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the RobTarget data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the RobTarget data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the RobTarget data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type string.	

 Initializes a new instance of the class with a specific value.

 New string value.

 Gets a new empyty String object.

 Gets/Sets the Value of the String.

 Converts a String struct to a string.

 A String struct reference.
 The string value that is stored in the String struct
 NOTE the returned string does not contain quaternion marks. In order to retrieve the string with the quaternion marks, use the method

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a String object.

 Value to parse into object.
 The String object.

 Removes any " from beginning and end of string.
 " must be both in begining and end to be removed.

 String to trim.
 The clean string.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the string rapid data.

 The string representation with the value of the string rapid data.
 NOTE the returned string does contain quaternion marks.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the string data type.

 Fills the RapidData object from the specified parser root.

 Root of data.

 Fills the structure with the new value.

 Value to fill structure with.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type tooldata.

 Gets an empty ToolData object.

 Gets or sets the value of Robhold.
 A bool that represents the Robhold value.		

 Gets or sets the value of Tframe.
 A Pose that represents the Tframe value.		

 Gets or sets the value of Tload.
 A LoadData that represents the Tload value.		

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a ToolData object.

 Value to parse into object.
 The ToolData object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the tooldata rapid data.

 The string representation with the value of the tooldata rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the ToolData data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the ToolData data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the ToolData data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents an user defined rapid data type.

 Initializes a new user defined struct of a specified rapid data type defined in a specified controller.

 Controller ID where the rapid data type is defined.
 A user defined rapid data type.
 dataType or ArgumentNullException are null or empty.
 dataType does not represent the user defined data type in the specified controller.		

 Initializes a new instance of the class.

 The type.

 Gets or sets the value of of an array of IRapidData.
 An array of IRapidData that represents the rapid data types of the user data type.		
 UserDefinedDataType struct does not have a rapid data type definition.".

 Returns the string representation of the user defined rapid data.

 The string representation with the value of the user defined rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.
 UserDefinedDataType struct does not have a rapid data type definition.".
 In order to fill the struct, users must use the method on each on the the of this struct.

 Fills the object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to string structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the UserDefined data type.		
 In order to fill the struct, users must use the method on each on the the of this struct.

 Fills the object from the specified parser root.

 Root of data.
 root does not represent the UserDefined data type.		

 Fills the structure with the new value.

 Value to string structure with.
 value does not represent the UserDefined data type.		

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 Represents a rapid data of type wobjdata.

 Gets an empty WobjData object.

 Gets or sets the value of Robhold.
 A bool that represents the Robhold value.		

 Gets or sets the value of Ufprog.
 A bool that represents the Ufprog value.		

 Gets or sets the value of Ufmec.
 A string that represents the Ufmec value.		

 Gets or sets the value of Uframe.
 A Pose that represents the Uframe value.		

 Gets or sets the value of Oframe.
 A Pose that represents the Oframe value.		

 Gets the datatype object for this type from the supplied controller.

 Controller containing the datatype.
 A valid datatype object if it exist on the controller.

 Parses the string into a WobjData object.

 Value to parse into object.
 The WobjData object.

 Attempts to parse the string into object.

 Value to parse.
 The result of the parse operation.
 True if parse succeeded.

 Returns the string representation of the wobjdata rapid data.

 The string representation with the value of the wobjdata rapid data.

 Fills the struct with a valid rapid string representation. This is Obsolete, use instead.

 The new value stored by the struct.

 Fills the RapidData object from the specified parser root. This is Obsolete, use instead.

 Root of data.

 Fills the structure with the new value. This is Obsolete, use instead.

 Value to fill structure with.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the WobjData data type.

 Fills the RapidData object from the specified parser root.

 Root of data.
 root does not represent the WobjData data type.

 Fills the structure with the new value.

 Value to fill structure with.
 value does not represent the WobjData data type.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 This class implements the dynamic array behavior that
 allows access of element directly on the controller
 without uploading them to the pc. This has drawbacks
 such as inconsitent data and raceconditions between
 Rapid and pc application code.

 This class is used internally to enumerate a dynamic array object.

 Creates a array enumerator for the specfied DynamicArray object.

 Dynamic array to enumerate.

 Possible execution cycle settings.

 No more execution cycles.

 Execute a single cycle.

 Execute forever.

 Undefined, is returned by the Rapid object when two tasks
 have different remaining cycles.

 Leave execution cycle counter as is.

 The maximum number of cycles, except for Forever.

 Specifies how to execute the program.

 Continuous execution.

 Stepwise execution.

 Step over instruction.
 		

 Step out of routine.

 Backward stepwise execution.

 Same as last time.

 Execute to next motion instruction.

 Undefined.

 This class represents a Module Rapid object.

 Gets the attributes for this module.

 Gets a flag indicating encode state of the module.

 Gets a flag indicating if the module is a NoView module.

 Gets a flag indicating if the module can be stepped into.

 Gets a flag indicating if the module is a view only module.

 Gets a flag indicating if the module is a ReadOnly module.

 Gets a flag indicating if the module is a system module.

 Gets the kind of symbol

 Deletes the module from the memory of the controller.

 Requires mastership of Rapid domain. Requires the
 grant.

 Gets a object that reference a Rapid data
 instance in the robot controller.

 RapidData object.

 Gets the data for specified symbol.

 Symbol to get data for.
 RapidData object.

 Returns all routines in the current Module.

 All routines in the current module.

 Gets a object to a specific routine.

 Name of the routine.
 A object to access the routine. If the routine does not exist, the return value is null.				

 Save Rapid module, which object
 referes, to specified file.

 Path to the file where Rapid module
 should be saved.

 Requires the
 grant.

 Searches the current symbol for other symbols.

 Properties to search for.
 Type to search after.
 Expression used to match search, regular expression.
 All matching symbols.

 Searches the current symbol for other symbols.

 Properties to search for.
 Expression used to match search, regular expression.
 All matching symbols.

 Searches the current symbols of the specified data type.

 Search properties.
 Type of data to search for.
 Expression used to match search, regular expression.
 All matching symbols.

 Searches the current symbols of the specified data type.

 Search properties.
 Type of data to search for.
 All matching symbols.

 Searches the current symbol for symbols.

 Properties for search.
 All matching symbols.

 This enum defines all attributes that may be
 applied to a module.

 No attributes available.

 Module is a system module.

 Module is encoded.

 Don't show this module.

 Don't step into this module.

 Only allow showing of this module.

 Module is readonly.

 Execution status of the controller.

 Status is unknown.

 At least one normal RAPID task is executing or performing regain.

 No normal RAPID task is executing or performing regain.

 Execution status of the Task.

 The task has no PCP or execution context.

 Task is not executing or not performing regain.
 PCP and execution context is defined in task.

 Task is executing or performing regain.

 The program server is not initialized. State only assumed during startup.

 Status is unknown.

 Determines how static and semiStatic RAPID tasks should be affected by start and stop operations.

 Use Task Panel state for all normal tasks. When used with Start(), static/semistatic tasks will always be started, regardless of task panel state.
 When used with Stop(), static/semistatic tasks will never be stopped. This is the default.

 Use Task Panel state for all tasks.

 Reason why an execution event has occurred.

 No extended information exists for the event.

 Execution is started with no previous execution context at current execution level.

 Execution is restarted after a stop.

 Execution of an event routine was started by the system.

 Execution stopped after instruction.

 Execution stopped due to the RAPID instruction EXIT.

 Execution stopped because no more cycles.

 Execution stopped because the end of a user routine was reached (routine called on user demand).

 Execution stopped after a step.

 Execution stopped due to the RAPID instruction BREAK.

 Execution stopped due to ordered stop.

 Execution stopped due to error.

 Execution stopped because cannot execute backward past beginning.

 Execution stopped because cannot execute backward past structure.

 Execution stopped as the end of an event routine was reached (routine called by the system).

 Execution stopped before or after motion instruction.

 Execution stopped because path regain was ready.

 Provides the data of the ValueChanged event of the RapidData class.

 Initializes a new instance of the class.

 The signature of a DataValueChanged event handler.
 All events are based on the EventHandler generic instead.

 Provides the data of the ExecutionStatusChanged event.

 Initializes a new instance of the class.
 		

 Gets the execution status of the controller.

 Unpacks the ExecutionStatus from ROBAPI RobControllerExecutionState.

 Provides the data of the ExecutionChanged event.

 Initializes a new instance of the class.
 		

 Gets info about the execution event that has occurred.

 Unpacks the ExecutionEventInfo, gets the details in ExecutionChangedEventArgs.

 Defines the event for execution status changed.

 The signature of a RapidData resolve event handler.

 This class represents the RAPID domain of a Robot controller.

 Initializes a new instance of the class.

 Get/sets the behavior of the execution cycle. It can
 also be used to set the remaining cycle counter, even though
 it is recommended to control this by using the RemaningCycles property.

 Execution cycle is normally set through the Start(...) method. Setting this property is
 only applicable to running RAPID programs.

 Set Requires Mastership of Rapid domain.
 Set Requires UAS_RAPID_EXECUTE grant.
 Set Requires Auto mode.

 Gets the execution status of the controller.

 Gets the maximum length of an identifier.

 The maximum length of an identifier.

 Gets/Sets the remaining cycle counter.

 This is normally set through the Start(...) method. Setting this property is
 only applicable to running RAPID programs.

 Set Requires Mastership of Rapid domain.
 Set Requires UAS_RAPID_EXECUTE grant.
 Set Requires Auto mode.

 Get UIInstruction object.
 Supported from RW5.12

 Call this method to request the mastership of
 the resource.

 Call this method to ensure the mastership of
 the resource.

 call this method to release the mastership of
 the resource.

 gets the current mastership state.

 Gets a Rapid object that reference a Rapid data instance in the robot controller.

 The path represented as a sets of strings, which locates the
 Rapid data declaration.		

 The RapidData object. If the Rapid data doesn't exists null is returned.

 Gets an instance of the RadidDataType object for the specified data.

 The path represented as a sets of strings, which locates the
 Rapid type declaration.

 The Data type.

 Gets the datatype for a specific symbol. The symbol has to have a
 data type for this to work.

 The rapid symbol.
 The data type.

 Gets all tasks on the controller.		

 The array of task objects.

 Gets the task with the specified name.

 The task name.
 The task object

 Gets if a string is a valid RAPID identifier.

 The string to be checked.
 True if the string is a valid RAPID identifier.

 Starts RAPID program execution.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Starts RAPID program execution.

 True to get exception instead of
 just Error for "unmapped"
 results.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Starts RAPID program execution

 Regain mode.
 Execution mode.
 The number of cycles to execute the
 program.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.
 The number of cycles to execute the
 program.
 Check to perform prior to start.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.
 The number of cycles to execute
 the program.
 Check to perform prior to start.
 True to get exception instead of
 just Error for "unmapped"
 results.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.
 The number of cycles to execute
 the program.
 Check to perform prior to start.
 True to get exception instead of
 just Error for "unmapped"
 results.
 Determines how static/semiStatic tasks should be affected

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Stops RAPID execution when the current cycle has completed.

 Stops RAPID execution according to the mode.

 The stop mode.

 Stops RAPID execution.

 The stop mode.
 Determines how static/semiStatic tasks should be affected

 Raised when the execution cycle is changed.
 Supported from RW5.09.

 Raised when the program execution status of the controller changes. The execution status
 corresponds to the CycleOn system output, i.e. whether any normal task is executing or a regain is under way.
 In other words, if the robot(s) may be moving.

 The event does NOT react to start or stop of RAPID event routines, such as RESET, START, STOP, POWER_ON etc.

 Raised when a program execution event occurs.

 Use this event for more detailed information about program execution events than provided by the event
 . For example, this event reacts to RAPID event routines that are
 started and stopped by the system e.g. RESET, START, STOP, POWER_ON etc.

 This example shows how to delete a program and wait until the StopEventRoutineReady execution event is received
 before loading a new program from the HOME directory of the controller file system.

 Controller _controller = new Controller();
 Tasks[] _tasks = _controller.Rapid.GetTasks();

 private void btnUnloadLoad_Click(object sender, EventArgs e)
 {
 using (Mastership m = Mastership.Request(_controller.Rapid))
 {
 //start listening to ExecutionChanged events
 _controller.Rapid.ExecutionChanged += new EventHandler < ExecutionChangedEventArgs > (Rapid_ExecutionChanged);
 tasks[0].DeleteProgram();
 }
 }

 private void Rapid_ExecutionChanged(object sender, ExecutionChangedEventArgs e)
 {
 if (e.ExecutionEvent == ExecutionEventInfo.StopEventRoutineReady)
 {
 using (Mastership m = Mastership.Request(_controller.Rapid))
 {
 string remoteDir = _controller.FileSystem.RemoteDirectory;

 string modFile = remoteDir + "MainModule.mod";
 bool success = tasks[0].LoadModuleFromFile(modFile, RapidLoadMode.Add);

 string pgfFile = remoteDir + "SamplePrg.pgf";
 success = tasks[0].LoadProgramFromFile(pgfFile, RapidLoadMode.Replace);

 //stop listening to ExecutionChanged events
 _controller.Rapid.ExecutionChanged -= new EventHandler < ExecutionChangedEventArgs > (Rapid_ExecutionChanged);
 }
 }
 }

 This event is raised then the mastership of the resource is changed.

 This event is raised prior when a IRapidData object shall
 be created as the value for a RapidData object. Any listener
 shall, if possible, return a fresh instance of a corresponding
 type that implements IRapidData. This event will be raised
 until a instance is created or all listeners have been called.
 If resolve wasn't possible a UserDefined instance will be
 created for the data.

 This event is raised when the task enabled property changes.

 Base implementation class for IRapidArray interface.

 Gets/sets data in a one dimension array.

 Gets/Sets data in a two dimension array.

 Gets/Sets data in a 3 dimension array.

 Implements default Dispose impl.

 Gets the length of the array.

 Gets the rank of the array.

 Gets the enumerator for the array.

 Enumerator object for array.

 Gets the length in the specified dimension.

 Dimension to query for length.
 Length.

 Parses the string.

 Value to parse.

 Turns the array into a object.

 Gets the rapid data object.

 Gets the current symbol object.

 Gets a ref to the internal rapid object.

 Called when object is disposed.

 True if called during dispose false during finalization.

 This class represents a RAPID data.

 PDD1732 and WI 9170 - RAPID larger array

 Initializes a RapidData instance.

 Controller object.
 Symbol to get data from.

 Gets or sets the base index of array.

 WI 12077 Resolved Rapid Related Unit Test Cases
 Helper function called when to get rapid data of size > 1024 for non array
 Ex: Url for "/RAPID/T_ROB1/Sample/RnGroupTestValue" is made to "/RAPID/T_ROB1/Sample/RnGroupTestValue{1}"
 _col is used to loop count, then string will be appended to get final result.

 WI 12077 Resolved Rapid Related Unit Test Cases
 Helper function called when to get rapid data of size > 1024 for non array
 Ex: Url for // "/RAPID/T_ROB1/Sample/RnGroupTest{1}" ==> "/RAPID/T_ROB1/Sample/RnGroupTest{1,1}"
 _col is used to loop count, then string will be appended to get final result.

 Reads/writes the value of the RAPID data in the form of a string. This property
 can be used instead of and .

 Gets or sets the value of the .
 		

 Consider using the property instead. It will often have better performance.

 Checks whether the RAPID data is an array (of one or several dimensions).
 true if the data is an array; otherwise false.		

 Checks whether the RAPID data is declared PERS or TASKPERS. Only of interest for persistent data.
 true if the RAPID data is declared TASKPERS; otherwise false.		
 Will return false if used with RapidData that is not declared as persistent (but constant for example).

 Checks whether the RAPID data is declared locally.
 true if the RAPID data is not declared in a global module.		
 Will always return false when used with RapidData of Atomic, RecordComponent or Parameter.

 Gets the URL to the type, eg. "RAPID/num".
 Not valid for RapidData of . (Will return empty string)

 Gets the name of the RAPID data type, eg. "num".
 Not valid for RapidData of . (Will return empty string)

 Raised when the value of the data has changed.

 Reads an element of one dimensional RAPID data array.

 Index of the item to read.
 Returns an instance that contains the value of the item.

 Reads an element of a two dimensional RAPID data array.

 Index, in the second dimension, of the item to read.	
 Index, in the first dimension, of the item to read.
 Returns an instance that contains the value of the item.

 PDD1732 and WI 9170 - RAPID larger array

 PDD1732 and WI 9170 - RAPID larger array

 PDD1732 and WI 9170 - RAPID larger array

 Reads an element of a three dimensional RAPID data array.

 Index, in the third dimension, of the item to read.
 Index, in the second dimension, of the item to read.
 Index, in the first dimension, of the item to read.
 Returns a instance that contains the value of the item.

 Reads an element of a RAPID data array (one, two or three dimensions)

 Index of the item to read.
 Returns an instance that contains the value of the item.
 index The index is not valid for the data.
 Rapid data is not an array.		

 Writes to the specified element of a RAPID array.

 An instance that contains the value to write.
 Index of the element.

 Writes to the specified element of a two dimensional RAPID array.

 An instance that contains the value to write.
 Index, in the second dimension, of the item to write.
 Index, in the first dimension, of the item to write.

 PDD1732 and WI 9170 - RAPID larger array
 Helper function called when to set or writeItem rapid data of size > 1024
 data -> To be written, row -> if null for non-array else for array 1d,2d or 3d
 Ex: [0,0,0],[0,0,0] -> [0,0,0] and [0,0,0] array of string for each get
 Each above data will used to Set in loop instead of sending entire bulk data [0,0,0],[0,0,0]

 Writes to the specified element of a three dimensional RAPID array.

 An instance that contains the value to write.
 Index, in the third dimension, of the item to write.
 Index, in the second dimension, of the item to write.
 Index, in the first dimension, of the item to write.

 Writes to the specified element of a RAPID data array of any number of dimensions.

 An instance that contains the value to write.
 Index of the item to write.
 index The index is not valid for the data.
 RAPID data is not an array.
 newValue is null or empty string.		

 Subscribes to changes of persistent RAPID data.

 EventHandler
 EventPriority

 Unsubscribes to changes of persistent RAPID data.

 EventHandler

 Gets the symbol for this data object.

 Gets the data adapter object.

 Gets the data adapter object.

 RAPID data type descriptor.

 Initializes a new instance of RapidDataType.

 A rapid symbol.

 Whether the data type is a composite data type or not.

 Whether the data type is atomic or not.

 Gets the sub components of a composite data type.

 Sub components of the type. Returns an empty array if the type is atomic.
 This example searches all the sub components (down to atomic types) of the robtarget data type
 and writes the names and the data type of each component to the console.
 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 private void btnSearchRobtarget_Click_1(object sender, EventArgs e)
 {
 Controller c = new Controller();
 Task tRob1 = c.Rapid.GetTask("T_ROB1");
 RapidDataType theDataType;

 RapidSymbol[] rsCol;
 // define search properties
 RapidSymbolSearchProperties sProp = RapidSymbolSearchProperties.CreateDefaultForData(true);
 sProp.SearchMethod = SymbolSearchMethod.Block;
 sProp.LocalSymbols = true;

 // get all data of robtarget type
 rsCol = tRob1.SearchRapidSymbol(sProp, "RAPID/robtarget", "");
 // write the name of the first robtarget
 Console.WriteLine("Symbol name = " + rsCol[0].Name);
 // get data type
 theDataType = RapidDataType.GetDataType(rsCol[0]);
 Console.WriteLine("DataType = " + theDataType.Name); //robtarget
 // get sub components of robtarget
 RapidSymbol[] symbols = theDataType.GetComponents();
 SearchRecordComponents(symbols);
 }

 private void SearchRecordComponents(RapidSymbol[] rsCol)
 {
 RapidDataType theDataType;
 foreach (RapidSymbol rs in rsCol)
 {
 Console.WriteLine("Symbol name = " + rs.Name);
 theDataType = RapidDataType.GetDataType(rs);
 Console.WriteLine("DataType = " + theDataType.Name);
 if (theDataType.IsRecord)
 {
 RapidSymbol[] symbols = theDataType.GetComponents();
 //recursive until atomic type is found
 SearchRecordComponents(symbols);
 }
 }
 }

 When the button is clicked the following lines will be written to the console:

 Symbol name = p10
 DataType = robtarget

 Symbol name = trans
 DataType = pos
 Symbol name = x
 DataType = num
 Symbol name = y
 DataType = num
 Symbol name = z
 DataType = num

 Symbol name = rot
 DataType = orient
 Symbol name = q1
 DataType = num
 Symbol name = q2
 DataType = num
 Symbol name = q3
 DataType = num
 Symbol name = q4
 DataType = num

 Symbol name = robconf
 DataType = confdata
 Symbol name = cf1
 DataType = num
 Symbol name = cf4
 DataType = num
 Symbol name = cf6
 DataType = num
 Symbol name = cfx
 DataType = num

 Symbol name = extax
 DataType = extjoint
 Symbol name = eax_a
 DataType = num
 Symbol name = eax_b
 DataType = num
 Symbol name = eax_c
 DataType = num
 Symbol name = eax_d
 DataType = num
 Symbol name = eax_e
 DataType = num
 Symbol name = eax_f
 DataType = num

 Gets the data type of a symbol. Exception if no
 data type is available, eg. for symbols such as Routine or Module.

 Symbol to get datatype of.
 The data type of the symbol.

 Defines the methods to convert strings into a rapid data and viceversa.

 All the rapid data structs must implement this interface.

 Returns the string representation of the rapid data.

 The string representation with the value of the rapid data.

 Fills the struct with a valid rapid string representation.

 The new value stored by the struct.
 newValue does not represent the rapid data type.

 Fills the RapidData object from the specified parser root.

 Root of data.

 Fills the structure with the new value.

 Value to string structure with.

 Converts the datastructure into a DataNode tree.

 The root of the corresponding data tree.

 The exception that is thrown when the string does not represents a RapidDataDefinition.
 	

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 Creates a list of values separated by a coma.

 Array of strings that will be inserted.
 A string with the new list representation.		

 Gets the subvalues from a rapid data definition.

 Source data
 An array of string that contains the subvalues.
 This method works for data with one level of record components.		

 Base exception for Rapid operations.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Thrown when a rapid module is missing.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 Thrown when a routine is missing.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The name.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Gets the name.

 The name.

 Gets data for serialization.

 See MSDN.
 See MSDN.

 Thrown when a rapid symbol is missing.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The name.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Gets the name of the missing symbol.

 See MSDN.

 See MSDN.
 See MSDN.

 Thrown when a task is missing.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The name.
 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Gets the name of rapid task.

 The name of rapid task .

 See MSDN.

 See MSDN.
 See MSDN.

 Exception thrown when read or write to a non active UI Instruction.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 Task name.
 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Gets the name.

 The name.

 See MSDN.

 See MSDN.
 See MSDN.

 This interface specifies a searchable RapidSymbol. Classes that
 are not searchable shall throw NotImplementedException if SearchRapidSymbol
 is called.

 Gets the name of the symbol (RAPID Identifier)

 Gets the underlying type of Symbol

 Searches the current symbol for other symbols.

 Properties to search for.
 Type to search for.
 Expression used to match search, regular expression.

 Represents the rapid symbol for rapid domain of controller.
 	

 Initializes a new instance of the class.

 The symbol.

 Gets the type enum for this symbol.

 Gets the scope of the symbol as a string array [TASK, MODULE, ROUTINE, SYMBOL]

 Checks if a symbol is a RAPID data.

 Symbol to check.
 True if the symbol is data.

 Searches the symbol for other symbols, currently not implemented.

 Not implemented.
 Not implemented.
 Not implemented.
 Not implemented.

 Gets/Sets the internal rapid reference.

 Gets the Type block url for this symbol (only valid for variables.

 Gets the Url of this symbol, eg. {RAPID/T_ROB1/LINKEDM/offset_ratio}.

 The path regain mode for RAPID program execution.

 Brings the mechnical unit back to path only if the
 unit is within the configurable maximum distance from the path.

 Moves the mechanical unit back to path.

 Clears the current path and continues the movement directly to next target.

 This class represents a Routine Rapid object.

 Returns routine.

 Gets a object that reference a Rapid data
 instance in the robot controller.

 Searches the current symbol for other symbols.

 Properties to search for.
 Type to search after.
 Expression used to match search, regular expression.

 Specifies the conditions that should be fulfilled in
 order to start RAPID program execution.

 No check is performed.

 A check is performed that the task entry point
 (main routine) is the call chain root.

 Represents the results of a start RAPID program execution operation.

 Start ok.

 Task not started, regain to path request.

 Task not started, unable to clear path.

 Error.

 Task not started, previous path remains.

 Task not started, unable to find entry point.

 Converts HRESULTS into StartResults.

 Specifies how to stop RAPID program execution.

 Stops RAPID execution when the current cycle is completed.

 Stops RAPID execution when the current instruction is completed.

 Stops RAPID execution immediately.

 This class represents a RAPID Task.

 Get/Sets execution cycle.

 Gets or sets the Enabled state of the Task. 'Enabled' is also referred to as activated/deactivated in the user interface.
 Returns true if the task is activated in the task selection panel and will react to start requests.
 Returns false if the task is deactivated and will not react to start requests.

 The Enabled state can only be changed by a local controller client and is not allowed by remote clients.

 RobotStudio connects to virtual controllers, that belongs to a station, as a local client.
 In all other scenarios, only the FlexPendant is connected as a local client. Other clients are remote.

 The Enabled state can only be changed by a local controller client and is not allowed by remote clients.

 Set requires controller to be in auto mode. Requires Mastership.

 Gets the current execution type.

 Returns true if task is a motion task.

 Gets the current position of the motion pointer.

 Gets the current position of the program pointer.

 Gets/Sets the remaining cycle counter.

 Gets the task type, i.e. Normal, Static or Semi-static.

 Gets the kind of symbol, i.e. Record, Persistent, Constant, Parameter, Trap, Task etc.

 Gets the execution status of the task.

 This event is raised when the motion pointer changes.

 This event is raised when the program pointer changes.

 Deletes the RAPID program of the task from the controller program memory.

 All program modules of the task will be deleted from program memory. If they have been saved they will however remain in the controller file system.
 Requires mastership of RAPID domain.
 Requires the grant.
 Use if you want to load another program directly after the deletion.

 Deletes the RAPID program of the task from the controller program memory.
 Returns as soon as the execution of the RESET event routine is ready.

 Milliseconds used as timeout.
 THIS METHOD ONLY WORKS WITH RW 5.12 AND LATER!
 All program modules of the task will be deleted from program memory. If they have been saved they will however remain in the controller file system.
 Requires mastership of RAPID domain.
 Requires the grant.
 When a RAPID program has been deleted the controller program server executes a RESET event routine a short while.
 This method returns as soon as the program server is ready to load another RAPID program.

 The method did not finish within the specified time limit.

 Returns the requested module.

 Name of module.
 Module.

 Returns the modules defined in the task.

 A Module array.

 Gets a object that references a RAPID data
 instance in the robot controller.

 An array of strings, which specifies where in
 the RAPID domain the RAPID data is declared.
 A object. If the RAPID data doesn't
 exist null is returned.
 If you do not know the name of the module where the data is declared SearchRapidSymbol(...) can be used.

 To access RAPID data in a shared module just send the name of the data as parameter, see the second example below.

 NOTE! RAPID data declared in a - Hidden or -Shared -Hidden module cannot be accessed.

 rapidData is null or length is less then 1
 This example utilizes a function that returns the sum of all reg1
 variables in the system. Variable reg1 is by default declared
 in the RAPID module USER.

 private int SumOfAllReg1(Controller c)
 {
 	int result = 0;
 	try
 	{
 		// Get all tasks
 		Task[] tasks = _controller.Rapid.GetTasks();
 		
 		foreach (Task t in tasks)
 		{
 			RapidData rdReg1 = t.GetRapidData("user", "reg1");
 			
 			result += int.Parse(rdReg1.Value.ToString());
 		}
 	}
 catch (ABB.Robotics.Controllers.RapidDomain.RapidModuleNotFoundException ee)
 {
 // TODO: Add error handling
 }
 catch (ABB.Robotics.Controllers.RapidDomain.RapidSymbolNotFoundException ee)
 {
 // TODO: Add error handling
 }
 	catch (GeneralException ee)
 	{
 		// TODO: Add error handling
 	}
 	catch (System.Exception ee)
 	{
 		// TODO: Add error handling
 	}
 	finally
 	{
 		// Release resources
 	}
 	
 	return result;
 }

 This example gets the shared RAPID data nMessageID seen from task T_ROB1.

 private RapidData GetMessageID()
 {
 RapidData rData = null;
 Task tRob1 = null;
 try
 {
 // Create temporary controller object to get task
 using (Controller c = new Controller())
 {
 tRob1 = c.Rapid.GetTask("T_ROB1");

 if (tRob1 != null)
 {
 rData = tRob1.GetRapidData("nMessageID");
 }
 }
 }
 catch (GeneralException ee)
 {
 // TODO: Add error handling
 }
 catch (System.Exception ee)
 {
 // TODO: Add error handling
 }
 finally
 {
 // Release temporary resources
 if (tRob1 != null)
 {
 tRob1.Dispose();
 tRob1 = null;
 }
 }
 return rData;
 }

 Gets a object from a .

 Symbol to get data for.
 RapidData object.

 Loads a RAPID module to the task in the robot controller.

 Path to the file containing the RAPID
 module. Valid extensions for a RAPID
 module file is .mod and .sys.
 Specifies the
 of the operation.

 Requires mastership of RAPID domain. Requires the
 grant.

 True if loading succeeds without any errors, otherwise false.

 Delete a RAPID module to the task in the robot controller.

 Path to the file containing the RAPID
 module. Valid extensions for a RAPID
 module file is .mod and .sys.

 Requires mastership of RAPID domain.

 True if loading succeeds without any errors, otherwise false.

 Loads a RAPID program to the controller program memory

 Path to the file containing the RAPID
 program. Valid extension for a RAPID
 program file is .pgf.
 Specifies the
 of the operation.

 Requires mastership of RAPID domain.
 Requires the grant.
 Use if you need to make another call to the RAPID program server, eg. , directly after having loaded the program.

 True if loading succeeds without any build errors, otherwise false.

 Loads a RAPID program to the controller program memory. Returns as soon as the execution of the RAPID RESET event routine is ready.

 Path to the file containing the RAPID
 program. Valid extension for a RAPID
 program file is .pgf.
 Specifies the
 of the operation.
 Milliseconds used as timeout.

 True if loading succeeds without any build errors, otherwise false.

 THIS METHOD ONLY WORKS WITH RW 5.12 AND LATER!
 Requires mastership of RAPID domain.
 Requires the grant.
 The program server will be busy executing a RAPID event routine a short while after the program has been loaded.
 This method returns as soon as the controller program server is ready for another call.

 The method did not finish within the specified time limit.

 Saves the current RAPID program at the specified path.

 Controller path to save program at.

 Requires the
 grant.

 General search method. Searches the task for symbols that match the specified criteria.

 Instance of ,which defines the
 search criteria.
 Name of the data type to search for. Use string.Empty
 if not of interest.
 The regular expression to search for. Use string.Empty
 if not of interest.
 An array of matching . If none is found an array of length zero is returned.
 To search data in Shared module, set .SearchMethod to
 .Scope. See the second example below.

 NOTE! RAPID data declared in a - Hidden or -Shared -Hidden module cannot be found.

 This example lists all functions and RAPID data instances of
 type num declared in task T_ROB1. The name of and
 the module where it is declared are added to a listview.

 private void btnSearch_Click(object sender,EventArgs e)
 	{
 		try
 		{
 			Task task = _controller.Rapid.GetTask("T_ROB1"); 			
 				
 RapidSymbolSearchProperties sProp =
 RapidSymbolSearchProperties.CreateDefault();
 sProp.Types = SymbolTypes.Function | SymbolTypes.Data;
 sProp.InUse = false;
 sProp.Recursive = true;
 sProp.SearchMethod = SymbolSearchMethod.Block;

 RapidSymbol[] datas = task.SearchRapidSymbol(sProp, "num", string.Empty);

 			foreach (RapidSymbol rs in datas)
 			{
 				ListViewItem li = new ListViewItem(rs.Name);
 			
 				li.SubItems.Add(rs.Scope[1]);

 				// Add item
 				listView1.Items.Add(li);
 			}
 		}
 		catch (System.Exception ee)
 		{
 			// Handle any error here
 		}
 	}

 This example shows a simple search method that finds declared data of the type defined
 by the parameter sDataType. The parameter bSystem determines the scope to search. The search is made from task T_ROB1.

 private RapidSymbol[] GetSymbols(string stDataType, bool bSystem)
 {
 RapidSymbol[] result = new RapidSymbol[0];
 Task tRob1 = null;
 try
 {
 // Create temporary controller object to get task
 using (Controller c = new Controller())
 {
 tRob1 = c.Rapid.GetTask("T_ROB1");

 if (tRob1 != null)
 {
 RapidSymbolSearchProperties sProps = RapidSymbolSearchProperties.CreateDefault();

 // Setup sProps according to parameter bSystem
 if (bSystem == true)
 {
 // Search data that the task can see in System scope, e.g. Shared data

 sProps.GlobalSymbols = true;
 sProps.InUse = false;
 sProps.LocalSymbols = false;
 sProps.Recursive = false;
 sProps.SearchMethod = SymbolSearchMethod.Scope;
 sProps.Types = SymbolTypes.Data;
 }
 else
 {
 // Search Task scope
 sProps.Types = SymbolTypes.Data;
 sProps.InUse = false;
 sProps.SearchMethod = SymbolSearchMethod.Block;
 }

 // Perform the search
 result = tRob1.SearchRapidSymbol(sProps, stDataType, string.Empty);
 }
 else
 {
 // No task to search from
 }
 }
 }
 catch (GeneralException ee)
 {
 // TODO: Add error handling
 }
 catch (System.Exception ee)
 {
 // TODO: Add error handling
 }
 finally
 {
 // Release temporary resources
 if (tRob1 != null)
 {
 tRob1.Dispose();
 tRob1 = null;
 }
 }
 return result;
 }

 General search method. Searches the task for symbols that match the specified criteria.

 Search properties.
 Expression used to match search, regular expression.
 All matching symbols.

 General search method. Searches the task for symbols that match the specified criteria.

 Search properties.
 The data type to search for.
 Expression used to match search, regular expression.
 All matching symbols.

 Searches the task for of the specified data type.

 Search properties.
 Data type to match.
 All matching symbols.

 General search method. Searches the task for symbols that match the specified criteria.

 Properties for search.
 All matching symbols.

 Starts RAPID program execution. Use to get an exception if the start fails.

 Start result. No exception is thrown if start of execution fails.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.
 This method is no longer supported from RobotWare 5.60.

 Starts RAPID program execution.

 True to get exception instead of
 just Error for "unmapped" start
 results.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.
 This method is no longer supported from RobotWare 5.60.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.
 This method is no longer supported from RobotWare 5.60.

 Starts RAPID program execution

 Regain mode.
 Execution mode.
 The number of cycles to execute the
 program.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.
 This method is no longer supported from RobotWare 5.60.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.
 The number of cycles to execute the
 program.
 Check to perform prior to start.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.
 This method is no longer supported from RobotWare 5.60.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.
 The number of cycles to execute
 the program.
 Check to perform prior to start.
 True to get exception instead of
 just Error for "unmapped" start
 results.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.
 This method is no longer supported from RobotWare 5.60.

 Stops execution after next Cycle.

 Stops execution.

 Stop mode to use.

 Resets the program pointer of this task to the main entry point.

 Requires mastership of RAPID domain. Requires the
 grant. Requires Auto mode.

 Deletes the RAPID program of the task from the controller program memory.

 All program modules of the task will be deleted from program memory. If they have been saved they will however remain in the controller file system.
 Requires auto mode. Requires mastership of RAPID domain.
 Requires the grant.
 If another program is to be loaded after the deletion you may need to use a short delay, as the controller program server must finish a RAPID event routine before it can do anything else.

 Sets program pointer to the first instruction of a routine (global or local).

 The name of the module in which the routine is defined.
 The name of the routine to which program pointer will be set.
 Any previous execution stack will be cleared.
 Requires mastership of Rapid domain.
 Requires automatic mode.

 Program pointer is not set because one or both parameters are wrong.
 Mastership is held by another client.
 This example sets the program pointer to the routine "MyRoutine" in "MyModule".

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 try
 {
 Controller controller = new Controller();
 Task[] tasks = c.Rapid.GetTasks();

 if (controller.OperatingMode == ControllerOperatingMode.Auto)
 {
 using (Mastership rapid = Mastership.Request(controller.Rapid))
 {
 tasks[0].SetProgramPointer("MyModule", "MyRoutine");
 }
 }
 else
 {
 MessageBox.Show("Setting the program pointer is not allowed in manual mode from a remote client.");
 }
 }
 catch (System.InvalidOperationException ex)
 {
 MessageBox.Show("Mastership is held by another client.");
 }
 catch (System.Exception ex)
 {
 //TODO: Add error handling
 }
 }

 Sets program pointer to a position in a RAPID module.

 A program position
 Any previous execution stack will be cleared.
 Requires mastership of Rapid domain.
 Requires automatic mode.

 Program Pointer is not set because parameter may be invalid.
 Mastership is held by another client.
 This example sets the program position to 20th row to the routine "MyRoutine" in the module "MyModule".

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 try
 {
 Controller controller = new Controller();
 Task[] tasks = c.Rapid.GetTasks();

 if (controller.OperatingMode == ControllerOperatingMode.Auto)
 {
 using (Mastership rapid = Mastership.Request(controller.Rapid))
 {
 ProgramPosition pos = new ProgramPosition("MyModule", "MyRoutine", new TextRange(20));
 tasks[0].SetProgramPointer(pos);
 }
 }
 else
 {
 MessageBox.Show("Setting the program pointer is not allowed in manual mode from a remote client.");
 }
 }
 catch (System.InvalidOperationException ex)
 {
 MessageBox.Show("Mastership is held by another client.");
 }
 catch (System.Exception ex)
 {
 //TODO: Add error handling
 }
 }

 Sets program pointer to a specific row in a RAPID module.

 The name of the module where program pointer should be set.
 The row number in this module.
 Set program pointer to another row in the current routine and also to set program pointer to a row in a different routine.
 Any previous execution stack will be cleared.
 Requires mastership of Rapid domain.
 Requires automatic mode.

 program pointer is not set because one or both parameters are wrong.
 Mastership is held by another client.
 This example sets the program pointer to 20th row of the module "MyModule"

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 try
 {
 Controller controller = new Controller();
 Task[] tasks = c.Rapid.GetTasks();

 if (controller.OperatingMode == ControllerOperatingMode.Auto)
 {
 using (Mastership rapid = Mastership.Request(controller.Rapid))
 {
 tasks[0].SetProgramPointer("MyModule",20);
 }
 }
 else
 {
 MessageBox.Show("Setting the program pointer is not allowed in manual mode from a remote client.");
 }
 }
 catch (System.InvalidOperationException ex)
 {
 MessageBox.Show("Mastership is held by another client.");
 }
 catch (System.Exception ex)
 {
 //TODO: Add error handling
 }
 }

 Checks the modules in the task for syntactic and semantic errors

 Gets RobTarget of the task using the specified tool and work object.

 Tool
 Work object
 RobTarget object .

 Gets the current position (as a robtarget using current tool and work object).

 RobTarget object .
 This is how to get the current RobTarget of all tasks.

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 Controller c = new Controller();
 Task[] allTasks = c.Rapid.GetTasks();
 foreach (Task t in allTasks)
 {
 if (t.Name.Contains("T_ROB"))
 {
 RobTarget rt = t.GetRobTarget();
 Console.WriteLine("RobTarget: {0}", rt.ToString());
 }
 }

 Get JointTarget from task.

 JointTarget object .

 Contains the results of a call to Task.CheckProgram()

 Contains a list of all errors returned by a call to Task.CheckProgram(). If the program is correct, the collection will be empty.

 Contains information about a syntactic or semantic error in a RAPID module

 Name of task

 Name of module

 Line number where the error occurred. Numbering starts with 1.

 Column where the error occurred. Numbering starts with 1.

 This event arguments for a TaskEnabledChangedEvent.

 Initializes a Enabled Changed Event args object.

 Gets the Task Name of the Task which generated the event.

 Gets the Enabled property of the Task which generated the event.

 Sets the task name and Enabled property of the Task which generated the event.

 The status of one or more mechanical uint

 Undefined status

 Axis/axes have been initiated.

 Axis/axes are not commutated

 Axis/axes are not calibrated

 Axis/axes are not synchronized

 Axis/axes are synchronized

 ServiceInfo object for a mechanical unit.

 Initializes a new MechanicalUnitServiceInfo object.

 Gets the elapsed calender time since last service.

 Gets the elapsed production time since
 last SIS reset.

 Gets the elapsed production time since last service.

 Gets an empty Mechanical Unit service info object.

 Gets the time of the last start.

 Gets the service interval.

 Gets the warning level.

 Holds information about service intervals
 for a mechanical unit.

 Initializes a new MechanicalUnitServiceInterval object.

 Initializes a new MechanicalUnitServiceInterval object.

 Calender time.
 Production time.

 Gets the service interval in calender time as a TimeSpan object.

 Controller c = new Controller();
 MotionSystem msystem = c.MotionSystem;
 MechanicalUnit munit = msystem.ActiveMechanicalUnit;
 MechanicalUnitServiceInfo info = munit.ServiceInfo;

 // Service interval in years, calender time
 int serviceIntervalCalender = Convert.ToInt32(info.ServiceInterval.CalenderTime.TotalDays / 365);

 Get the service interval in production time as a TimeSpan object.

 Controller c = new Controller();
 MotionSystem msystem = c.MotionSystem;
 MechanicalUnit munit = msystem.ActiveMechanicalUnit;
 MechanicalUnitServiceInfo info = munit.ServiceInfo;

 // Service interval in hours, production time
 int serviceIntervalProduction = Convert.ToInt32(info.ServiceInterval.ProductionTime.TotalHours);

 Contains all warning levels for the mechanical unit.

 Gets the warning level for gearbox, resolution is percent.

 Gets the warning level for calender, resolution is percent.

 Gets the production warning, resolution is percent.

 Event data for the MechUnitModeChanged event.

 Initializes a new MechUnitModeChangedEventArgs object.

 Predefined coordinate systems.

 Base coordinate system.

 A undefined coordinate system.

 Tool coordinate system.

 Workobject coordite system.

 World coordinate system.

 Defines a mechanical unit object.

 Checks if the mech is calibrated.

 Gets the model of the mechanical unit, or string.Empty
 if no model is available.

 Gets the number of axes for the mechanical unit.

 Gets the current position

 Gets the current payload object.

 Gets the serial number from the mech if it
 is a robot, otherwise it will return an empty string.

 Gets service info for this unit.
 This property is not valid for a Virtual Controller.

 Gets the task for this mech unit

 Gets the current tool object.

 Gets the type of mechanical unit.

 Gets the current work object for the mechanical unit.

 Gets the current drive module for the mechanical unit.

 Gets the jointtarget position of the mechanical unit.
 		
 The position of the mechanical unit as a .
 Supports all mechanical unit types, including external axis.

 Gets the robtarget position of the mechanical unit.

 The position of the mechanical unit as a .
 Supports mechanical unit type TCP Robot only.

 Fine calibrate specified TCP mechanical unit and axis.
 The current position of the axis will be the new calibration value.

 Axis to calibrate

 Set revolution counter on a specified TCP mechanical unit and axis.

 Get status of all mechanical unit axis

 Get status for mechanical unit axis

 A collection of mechanical units

 Initializes a new instance of the class.

 Gets or sets the at the specified index.

 The value.

 Adds the specified value.

 The value.
 Index of value in collection.

 Gets the index of the value.

 The value.
 The index of the value.

 Inserts value at the specified index.

 The index.
 The value.

 Removes the specified value.

 The value.

 Determines whether collection contains the specified value.

 The value.

 	 true if collection contains the specified value; otherwise, false.

 Encapsulates a RadidData object. Only for internal use.
 Use Tool and WorkObject instead.

 Initializes a new instance of the class.

 The unit.
 The name.

 Gets the data for the tool.

 Gets the symbol for the tool object.

 Summary description for MechanicalUnitType.

 Type not defined.

 Type is TCP robot.

 Type is multiple axes manipulator.

 Type is a single axis manipulator.

 Main entrypoint for the motion domain.

 Gets the currently active mechnical unit.
 The Mechanical Unit active/deactive state is associated to the 'ActiveMechanicalUnit' property and change in 'ActiveMechanicalUnit' property will trigger 'MechUnitModeChanged' event.

 Gets all mechanical units.

 Gets / Sets the current speed ratio.
 Valid range between 0-100.

 This event is raised when the Mechanical Unit is activated or deactivated.
 The Mechanical Unit active/deactive state is associated to the 'ActiveMechanicalUnit' property and change in 'ActiveMechanicalUnit' property will trigger 'MechUnitModeChanged' event.

 Checks that the public units still are valid.

 True if all units still are valid, otherwise false.

 Defines a PayLoad object.

 Initializes a new instance of the class.

 The unit.
 The name.

 Defines a tool object.

 Initializes a new instance of the class.

 The unit.
 The name.

 Defines a work object.

 Initializes a new instance of the class.

 The unit.
 The name.

 Defines a named object in the api.

 Gets the name of the named object.

 This abstract any class that has a readable name.

 Creates a named object with the supplied name.

 Name of object.

 Creates a named object without a name. Name will be string.Empty.

 Gets the name of the obejct.

 Checks if the name of the object is same as name.

 Name to compare against.
 True if the objects are equal.

 Compares if the name of this object is equal to the name
 of the supplied object.

 Named object to compare with.
 True if the names are equal.

 Merges the functionality of Equals(string) and Equals(NamedObject).

 Object to compare with.
 True if the names are equals.

 Compares this object with a name for sorting.

 Name to compare with.
 See IComparer.

 Compares this object with a name for sorting.

 Name to compare with.
 See IComparer.

 Compares this object with a name for sorting.

 Name to compare with.
 See IComparer.

 Gets the hash code of the object based on the name.

 Hash code for object.

 Compares two named object for equality.

 Named object 1.
 Named object 2.
 True if the object are considered equal.

 Compares two named object for inequality.

 Named object 1.
 Named object 2.
 True if the object are considered inequal.

 Compares two objects.

 Named object 1.
 Named object 2.
 True if no1 less then no2

 Compares two objects.

 Named object 1.
 Named object 2.
 True if no1 more then no2.

 Returns the string representation of this object.
 Shall always return same result as Name property.

 The name of the object.

 An exception of this class is thrown if no specialized
 type is found.

 Creates a ServiceNotSupportedException object.

 Creates a ServiceNotSupportedException object.

 Message for object.

 Creates a ServiceNotSupportedException object.

 Inner exception of object.
 Message for object.

 Creates a ServiceNotSupportedException object.
 Deserialization constructor.

 SEE MSDN.
 SEE MSDN.

 An exception of this class is thrown if no specialized
 type is found.

 Creates a ControllerBufferOverflowException object.

 Creates a ControllerBufferOverflowException object.

 Message for object.

 Creates a ControllerBufferOverflowException object.

 Inner exception of object.
 Message for object.

 Creates a ControllerBufferOverflowException object.
 Deserialization constructor.

 SEE MSDN.
 SEE MSDN.

 An exception of this class is thrown if no specialized type is found.

 Creates a AuthenticationException object.

 Creates a AuthenticationException object.

 Message for object.

 Creates a AuthenticationException object.

 Inner exception of object.
 Message for object.

 Creates a AuthenticationException object.
 Deserialization constructor.

 SEE MSDN.
 SEE MSDN.

 This class is thrown a system directory was corrupt.

 Creates a SystemDirectoryCorruptException.

 Creates a SystemDirectoryCorruptException.

 Message of exception.

 Creates a SystemDirectoryCorruptException.

 Message of exception.
 Inner exception of exception.

 Creates a SystemDirectoryCorruptException.

 See MSDN.
 See MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 checks the provided string argument and throws an exception
 if it is null och empty

 argument to check		

 checks the provided string argument and throws an exception
 if it is null och empty

 argument to check
 name of parameter

 checks the provided string argument and throws an exception
 if it is null och empty

 Argument to check.
 Name of parameter.
 What checks to perform on the string.

 Checks the provided string argument and throws an exception
 if it is null och empty.

 Argument to check.
 Name of parameter.
 Exception message.		

 checks the provided string argument and throws an exception
 if it is null och empty

 argument to check
 name of parameter
 exception message
 Checks to perform on string

 Contains information about a backup on the controller.

 Initiates a new Backup instance.

 Name of backup.
 Reader with information.
 System id of system.

 Gets the system id of the backup.

 Event data from a restore event.

 Creates a backup event args object.
 		

 Gets the event log sequence number.

 Gets a flag that indicates if the backup succeeded or not.

 Unpacks the BackupEventInfo to BackupEventArgs properties.

 This exception is thrown whenever a backup fails.

 Creates a new Backup exception object.

 Creates a new Backup exception object.

 Message for object.

 Creates a new Backup exception object.

 Inner exception.		
 Message for object.

 Deserialization constructor.

 See MSDN.
 See MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 This class handles backup / restore operations.

 Creates a backup manager object for the supplied
 controller instance.

 Controller to create a backup manager for.

 Releases unmanaged resources and performs other cleanup operations before the
 is reclaimed by garbage collection.

 Gets the path to the backup directory of the controller.

 Gets the default extension of a backup file.

 Gets/Sets the ignore flag for restores.

 Controls what data that shall be included during the restore operation.

 Flag that indicates if a backup operation is in progress or not.

 Gets/Sets the local directory where the backup will be downloaded
 or uploaded from. The default value if the current directory. The directory
 must exist.

 Gets/Sets the local name.

 Gets/Sets a value to indicate if the backup directory shall
 be removed from the controller after the operation has completed.

 Gets/Sets a flag to indicate if the backup shall be transfered to/from
 the controller prior/after the restore/backup operation. The file to transfer
 to/from is indicated by the LocalDirectory + LocalName properties.

 Starts a backup operation.

 Starts an async backup operation.

 Callback operation for completion notification
 Operation state for user.
 Async result.

 Completes the backup operation.

 Result from begin backup operation.

 Deletes all backups stored in the /Backup directory of the controller.

 Returns all available backups in the /Backup directory.

 Gets the backup directory from a controller object.

 Controller to get backup directory path from.
 The path to the backup directory for the controller.

 Starts a restore operation.

 Starts a restore operation from the local name.

 LocalName to start restore from.

 Starts a restore operation from the dir and name.

 Directory containing the file.
 Filename to use during restore.

 Starts a restore operation from the dir and name.

 Directory to start from.
 Name of file.

 Starts a restore operation with a the specified file.

 Disposes the specified disposing.

 if set to true [disposing].

 Callback used internally.

 Lists the content of the backup directory
 of the controller.

 All content of the backup directory.

 Enum to control what to include from the backup during a restore operation.

 Nothing, not a valid value but available as named default value.

 Include configuration database.

 Include Rapid modules.

 Include everything.

 ABB internal use only

 ABB internal use only

 Enum to control what kind of mismatch errors that can be ignored during
 a restore operations.

 Don't ignore any errors.

 Ignore system id.

 Ignore template id.

 Ignore all errors.

 Traces an exception to any attached Trace listener through Trace.Write/Trace.WriteLine.
 The maximum depth of InnerExceptions are set to 9.

 Exception to trace.
 Category of trace.

 This class abstracts the configuration into an
 object from the section stored in the config file.
 See ConfigurationHandler for a description of how
 to update this file and ConfigurationHandler when
 a new section is added to the capi section of the
 configuration file.

 The single instance accessor, this is a shortcut to
 the ConfigrationSettings.GetConfig(...) method.

 Controls how a configuration file is loaded into the system.

 Adds all instances to the database. Any name conflicts
 will cause the entire load to fail.

 Adds all instances to the database, if a name conflict is
 encountered the value will be replaced.

 Resets the domain then adds the content of the configuration file.

 Contains description of the Attribute for Configuration Domain.
 This cannot be used to read/write the value of attribute.
 In order to read and write attribute value use the GetAttribute() and SetAttribute() methods of Instance class respectively.

 Gets the initial value of the attribute.

 Use this flag to determine if the attribute is mandatory or not.

 Gets the maximum value of the attribute.

 Gets the minimum value of the attribute.

 Gets the size of the attribute. 1 is a single value, all others are arrays.

 Gets the parent type of this attribute.

 Gets the native type of the attribute.

 Gets the TypeCode of the attribute.

 Gets the unit of the attribute.

 Accepts a visitor object.

 Visitor object.

 Summary description for AttributeCollection.

 Gets or sets the at the specified index.

 Value to set.

 Gets the with the specified name.

 The Value.

 Adds the specified value.

 The value.
 The inserted index.

 Gets the index of the value.

 The value.
 The index, otherwise -1.

 Returns the index of the name.

 The name.
 Index of the name, otherwise -1.

 Inserts a value at the specified index.

 The index.
 The value.

 Removes the specified value.

 The value.

 Determines if the collection contains the specified value.

 The value.

 	 true if collection contains the specified value; otherwise, false.

 Main interface to the configuration domain. Requires special license.

 Gets the type object with the specified name.

 Gets all types in the domain.

 Accepts a visitor object.

 Visitor object.

 Resets the domain to its initial state. This removes
 any externally created instances.

 Saves database configuration domain to a specified file.

 Path of the destination file.

 The method overwrites the specified file if it exists.
 Requires UAS grant UAS_BACKUP.

 A collection of CfgDomain objects.

 Gets the at the specified index.

 The value.

 Gets the with the specified name.

 The value.

 Adds the specified value.

 The value.

 Get the index of the domain.

 The value.
 Index of the domain, otherwise -1.

 Gets the index of the domain with the specified name.

 The name.
 The index of the domain; otherwise -1.

 Inserts the specified index.

 The index.
 The value.

 Removes the specified value.

 The value.

 Determines whether the collection contains the specified value.

 The value.

 	 true if value is contained; otherwise, false.

 An instance of a specific Type. This object is a disconnected set of data from the configuration database.

 Gets/Sets the value of the attribute.

 Gets/Sets the value of the named attribute.

 Gets/Sets a flag to control wheter the limits and readonly flag are controlled
 locally and prior to the SetCall against the controller. Default ít is true.

 Flag that signals that the object is readonly or not.

 Gets the type of the object.

 Deletes the current object from the database.

 Returns the value of the attribute.

 Name of attribute to get value for.
 The value of the attribute.
 This example shows how to get the value of the attribute for an instance.

 Following are the namespaces and initializations to be added:
 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.ConfigurationDomain;

 // Create an instance to connect to your controller.
 Controller _ctrl = new Controller("/10.140.60.29");
 ConfigurationDatabase _database = _ctrl.Configuration;
 Instance objInstance;

 Returns the value of the attribute.

 Name of attribute to fetch.
 Index of attribute, 1-based.
 The value of the attribute.

 Sets the value of the attribute.

 Name of attribute to set.
 New value of attribute.
 This example shows how to set the value of the attribute for an instance.

 Following are the namespaces and initializations to be added:
 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.ConfigurationDomain;

 // Create an instance to connect to your controller.
 Controller _ctrl = new Controller("/10.140.60.29");
 ConfigurationDatabase _database = _ctrl.Configuration;
 Instance objInstance;

 Sets the value of the attribute.

 Name of attribute to set.
 New value of attribute.
 Index of attribute, 1-based.

 Gets the instance id.

 A collection of configuration Instance objects.

 Initiates a new collection of instances.

 Gets or sets the at the specified index.

 The object at the specfied index.

 Adds the specified value.

 The value.
 The index of the Value.

 Gets the index of the value.

 The value.
 The index, otherwise -1;

 Inserts the specified index.

 The index.
 The value.

 Removes the specified value.

 The value.

 Determines whether the collection contains the specified value.

 The value.

 	 true if collection contains the specified value; otherwise, false.

 This class contains abstract for a configuration type.

 Gets a named instance of this type.

 Gets the collection of attributes for this type.

 Gets the parent domain.

 Accepts a visitor object.

 Visitor object.

 Creates an object with the specified name.

 Name of instance.
 The new object.

 Returns an array of all available instances. This is Obsolete, use instead.

 Gets the named instance. This is Obsolete, use instead.

 Name of instance.
 A Cfg object.

 Returns the read only copy of instances.

 Returns the read only copy of named instance.

 Name of instance.
 A Cfg object.

 A collection of configuration Type objects.

 Gets or sets the at the specified index.

 The value.

 Adds the specified value.

 The value.
 The value to add.

 Gets the index of the specifed value.

 The value.
 The index otherwise -1.

 The index of the name.

 The name.
 The index otherwise -1.

 Inserts the value at specified index.

 The index.
 The value.

 Removes the specified value.

 The value.

 Determines whether the collection contains the specified value.

 The value.

 	 true if the collection contains the specified value; otherwise, false.

 Used to compare a cfg attribute value to it's configured limits.

 Compares two objects. This method is special for the internal workings
 of a CfgObject. The x parameter must always be the value and the right
 parameter must always be the limit.
 Instead of this function using CompareObjects.

 Value.
 Limit.
 See comparer in MSDN.

 Compares two objects. Used specifically for attribute object. The x parameter must always be the value and the right
 parameter must always be the limit.

 Attribute to compare.
 Value of attribute to be set.
 Min/Max value to compare.
 Less than zero - This instance is less than obj. Zero - This instance is equal to obj. Greater than zero - This instance is greater than obj.

 Main class for configuration management.

 Call this method to request the mastership of
 the resource.

 Call this method to ensure the mastership of
 the resource.

 Call this method to release the mastership of the resource.

 Get the current mastership state.

 This event is raised when mastership is changed.

 Gets the external IO configuration domain.

 Gets MotionController configuration domain.

 Gets Man Machine Communication domain.

 Gets the process configuration domain.

 Gets the Serial IO configuration domain.

 Gets the system configuration domain.

 Gets all domains as a collection.

 Accepts a visitor object.

 Visitor object.

 Loads a configuration file into the database.
 Uses LoadMode.Add.

 The path. (On the controller).

 Loads a configuration file into the database.

 The path. (On the controller).
 The load mode.

 Reads the value localized by the path.

 The path.
 The value as a string.
 The first example reads the unitmap value for signal TestDI.
 The variables in the path are the same as the ones in the
 configuration files (in this case eio.cfg).
 The second example reads the value of cal_offset for rob1_1 (moc.cfg).

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.ConfigurationDomain;
 ...
 Controller controller = new Controller();
 ConfigurationDatabase cfg = controller.Configuration;

 string[] path = { "EIO", "EIO_SIGNAL", "TestDI", "UnitMap" };
 string data = cfg.Read(path);

 string[] path = { "MOC", "MOTOR_CALIB", "rob1_1", "cal_offset" };
 string data = cfg.Read(path);

 Writes a value to the path.

 The value.
 The path.
 This example sets the unitmap of signal "TestDI" to 17.

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.ConfigurationDomain;
 ...
 try
 {
 Controller controller = new Controller();
 Mastership master;
 ConfigurationDatabase cfg = controller.Configuration;

 using (master = Mastership.Request(controller.Configuration))
 {
 string[] path = { "EIO", "EIO_SIGNAL", "TestDI", "UnitMap" };
 cfg.Write("17", path);
 }
 }
 catch (System.InvalidOperationException ex)
 {
 MessageBox.Show("Mastership is held by another client.");
 }
 catch (System.Exception ex)
 {
 // TODO: Add error handling
 }
 finally
 {
 //must release mastership in case an error occurred when Write was executed
 if (master != null)
 {
 master.Dispose();
 master = null;
 }
 }
 }

 Defines the visitor interface for the Cfg database
 of a controller.

 Called during a Configuration visit.

 Configuration object.

 Called during a domain visit.

 Configuration domain object.

 Called during a CfgType visit.

 Configuration type object.

 Called during a Cfg attribute visit.

 Configuration type object.

 this class handles the internal configuration
 of the controller api. This class must be public
 with a default ctor to enable reflection creation
 from the runtime when the configuration is requested.

 Todo when adding a new section:
 	- Create a new parser method with signature void Method();
 	- Implement the parser with a simple check for the section
 		and a trace if the section is missing.
 	- Add trace statements to TraceConfiguration().
 	- Create default values on the CapiConfig class to keep
 		the api less sensitive to bad config files.
 	- Register the parser _sectionParsers array to enable execution.
 	

 Initializes a new instance of the class.

 creates the configuration object

 parent object
 context of current configuration
 section in config file
 the configuration object

 This class is the event argument from a controller connection
 changed event.

 Initializes a new instance of the class.
 		

 Flag to signal if the controller is connected or not.

 The main entry point for any operation against the controller.

 Creates a controller from the defaultController id in the capi section of the App.config file.

 Creates a controller instance from a system id.

 System id.

 Creates a controller from a controller info object.

 Info object from NetworkScanner.

 Not for public use.

 Not for public use.

 Gets the user authentication subsystem.

 Gets a reference to the class of the controller.
 A reference that can be used to access the Ipc functionality of the controller.	

 Gets a flag that indicates if a backup is in progress or not.

 Gets the controller configuration.

 Indicates whether the controller is connected or not.

 Gets the current context.

 The current context.

 Gets the currently logged on user.

 Gets/Sets the time of the controller.

 Grant: UAS_CONTROLLER_PROPERTIES_WRITE, not supported by boot server or Virtual Controller.

 The System.DateTimeKind used by this property is System.DateTimeKind.Utc (Coordinated Universal Time). To set current datetime use DateTime.UtcNow.

 Gets or sets the NTP time server of the controller.

 Value may be IP, DNS name or null/empty.

 Gets or sets the time zone of the controller.

 Value may be a time zone as specified in the time zone database (also known as Olson database) or null/empty. For example: Europe/Stockholm.

 Gets the configured default system id.

 Gets the event log of the controller.

 Gets the controller file system.

 Gets the IOSystem of the controller.

 Gets the IPAddress of the controller.

 For a virtual controller the value is the loopback address i.e. 127.0.0.1.

 Gets a flag that indicates if the controller is
 virtual or not.

 Gets the MAC address of the controller.

 Gets service information for the main computer.
 This property is not valid for Virtual Controllers.

 Gets the motions system domain of the controller.

 Gets the name of the controller.

 Gets the network settings of the controller.

 Not supported by Virtual Controller.

 Sets the controller LAN adaptor settings.

 True when using DHCP, false for fixed IP. When using DHCP the remaining parameters will have no effect.
 IP to use when is configured.
 Subnet mask to use when is configured.
 Default gateway to use when is configured. May be left empty.

 Gets the current operating mode of the controller.

 Gets the Rapid Domain of the controller.

 Gets information about the current system and options.

 Gets the version of the robotware the current system uses.

 Gets the current run level of the controller.

 Gets/Sets the current state of the controller.

 Set requires Auto mode. Can only be used to change between
 MotorsOn and MotorsOff respectively. You can not change from
 MotorsOn to MotorsOff while a RAPID program is executing.

 Gets the id of the current system of the controller.

 Gets the name of the current system of the controller.

 Gets the UI Culture.

 Initiates a new backup operation. This operation stores
 the backup in the specified directory.

 This method is asynchronous, wait for the BackupCompleted event.
 Output path for backup operation.

 Requires UAS_BACKUP grant. Only one single backup may be in
 progress at a time.

 Checks for possible mismatches and other problems with a backup.

 Path of directory.
 True if restore will complete successfully.

 Checks for possible mismatches and other problems with a backup.

 Path of directory.
 What to include from backup.
 True if restore will complete successfully.

 Checks for possible mismatches and other problems with a backup.

 Path of directory.
 What to include from backup.
 What errors to ignore.
 True if restore will complete successfully.

 ABB internal use only.

 Gets the value of an environment variable.

 The name.
 The value.

 Logon as the specified user.

 The user.

 RobotStudio addins may not manually log on or off. RobotStudio will handle the same.
 See .

 Logs off the current user.

 RobotStudio addins may not manually log on or off. RobotStudio will handle the same.
 See also .

 Releases unmanaged resources, thus preventing memory leaks.
 If the PC SDK application is running in a Single Threaded Apartment (STA), the Dispose call will dispose of managed objects,
 but native objects created internally by the PC SDK will remain. To release these unmanaged resources, this method should be called periodically.

 For an application running in a Multi Threaded Apartment (MTA) the Dispose call will remove both managed and native objects.

 Performs a warm restart of the controller.

 On a Virtual Controller the content of the temporary folder (TEMP)$ will be deleted.

 Restarts the controller.

 The startup mode.
 On a Virtual Controller the content of the temporary folder (TEMP)$ will be deleted.

 Performs a Restore operation of a controller system.

 Path to the backup.

 Requires mastership of Rapid and Configuration domains.
 Requires UAS_RESTORE grant.
 Requires Auto mode.

 Performs a Restore operation of a controller system.

 Path to the backup.
 Defines what to restore from the backup.

 Requires mastership of Rapid and Configuration domains.
 Requires UAS_RESTORE grant.
 Requires Auto mode.

 Performs a Restore operation of a controller system.

 Path to the backup.
 Defines what to restore from the backup.
 Defines what mismatches between current system and backup to ignore.

 Requires mastership of Rapid and Configuration domains.
 Requires UAS_RESTORE grant.
 Requires Auto mode.

 Performs a Restore operation of a controller system.

 Path to the backup.
 Defines what to restore from the backup.
 Defines what mismatches between current system and backup to ignore.
 Flag to indicate if the backup folder shall be removed.

 Requires mastership of Rapid and Configuration domains.
 Requires UAS_RESTORE grant.
 Requires Auto mode.

 On a Virtual Controller the restore operation will delete the content of the temporary folder (TEMP)$.

 ABB internal use only

 Checks Availability preconditions for performing an action on the controller.

 Required UAS grants (can be null)
 Required mastership resources (can be null)

 Reason why the action is not permitted, or DisableReason.None if all conditions are met.

 Mastership is only checked for a connection with MastershipPolicy.Manual.

 This event is raised when a controller is moved from manual
 to auto, all the raised conditions needs to be acknowledged.

 This event is raised when a backup operation completes,
 the event arguments hold information about the success of
 the backup operation.

 This event is raised when the connection status
 to the controller has changed.

 OnConnectionChanged event handler to unpack connection changed details and call external eventhandler.

 This event is raised when the operation mode of the
 controller has changed.

 This event is raised when the current state
 of the controller has changed.

 gets a reference to the internal controller instance

 Gets the url for the controller.

 Disposes the current controller object.

 Flag that indicates the orgin of the call,
 true indicates a dispose false indicates a finalizer.

 Call this method to request the mastership of all(Rapid,Configuration) resources.

 Call this method to Ensure the mastership of all(Rapid,Configuration) resources.

 Call this method to release the mastership of all(Rapid,Configuration) resources.

 Gets the current mastership state.

 Specifies how mastership should be handled by a GUI client

 This event is not supported.

 Defines the signature of a BackupCompleted event handler.

 Defines the signature of a ConnectionChanged event handler.

 Defines the signature of a OperatingModeChanged event handler.

 Defines the signature of a StateChanged event handler.

 Gets the current context for this thread.

 Thrown when factory failed to create instance.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Enumerator to control what property the factory uses to create Controller
 instance.

 The System ID of the system is used to create the controller.

 The IP Address of the controller is used to create Controller instance.

 utility class that creates controller instances from a
 ControllerInfo instance

 private ctor to avoid object creation

 creates a controller instance

 controller info object
 the controller instance

 creates a controller info from the specified information

 information object about the controller
 property on the info object to use for creation
 a controller instance if possible to create

 formats a controllerId from the specified guid

 id to format
 the controller id

 formats a controllerId from the IPAddress

 address to format
 the controller id

 Formats a controller id from a controller info string.

 ControllerInfo object for controller.
 A correctly formatted string.

 Defines all user properties in the internal impl.	
 	

 Hides the current password for external acess.

 Gets the hidden password.

 Hidden password.

 Defines the interface of a device node.

 Gets all nodes from a device.

 The device nodes.

 Defines the interface of a property node.
 A property node doesn't have any children and
 therefore always return an empty enumerator.

 Gets the unit of the node.
 If no unit is defined for the node a space is returned.

 Gets the value of the node.
 Will throw an exception if the value cannot be retrieved.
 Some values cannot be retrieved from a Virtual Controller.

 Defines the interface of the device manager.

 Manages the devices in the system.

 Initializes a new DeviceManager object.

 The controller.

 Gets the children of the root device node.

 The children.

 Disposes this object.

 This stream encapsulates the interface between a user mode application
 and a device driver on the controller.

 Opens the stream with Read access.

 Name of device.
 Controller that hosts the stream.

 Opens a stream with the specified name and access.

 Name of stream to open.
 Access of stream.
 Controller that hosts the stream.	

 Opens a stream with the specified name and access.

 Name of stream to open.
 Access of stream.
 Controller that hosts the stream.	
 Device specific flags.

 Check if the stream can be read.

 Checks if the stream can be seeked.

 Checks if the stream can be written.

 Not possible to read length from a device stream.

 It is not possible the seek on a device stream.

 Closes the stream object.

 Flush data to stream, currently not implemented, all writes are
 imediate against the controller.

 Reads a sequence of bytes from the stream.

 Buffer for read data.
 Offset in buffer.
 Maximum number of bytes to read.
 Acutal number of bytes read.

 Not supported.

 Not supported.
 Not supported.
 Not supported.

 Not supported.

 Not supported.

 Writes a sequence of bytes to the stream.

 Buffer for write data.
 Offset in buffer to write.
 Maximum number of bytes to write.		

 This enum describes the reason for the event.

 Connection.

 IPAddress.

 Lan.

 New controller.

 Updated.

 Power.

 Restart.

 System id.

 Lost from netscan.

 Collision with other system.

 This exception is thrown if NetworkScanner fails
 to find a controller.

 Creates a ControllerNotFoundException object.

 Creates a ControllerNotFoundException object.

 Message of object.

 Creates a ControllerNotFoundException object.

 Message of object.
 Inner exception of object.

 Creates a ControllerNotFoundException object.

 See MSDN.
 See MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 Filters an enumerable to only show local VCs.

 Search criterias for scanner.

 No search criteria is specified.

 Search only for Real controllers.

 Search only for virtual controllers.

 This class is used to scan the network for
 controllers and changes in the infrastructure.

 get the collection of found controllers

 Creates a new network scanner instance.

 Adds a controller to netscan that isn't avaiable on the local subnet.
 Adding the same controller multiple times has no effect.

 Adds a controller to netscan that isn't avaiable on the local subnet.
 Adding the same controller multiple times has no effect.
 		

 Finds a specified controller on the network.

 The system to locate.		
 System to locate.

 Finds a specified controller on the network.

 The system to locate.
 Number of times to retry the find operation on failure.
 The ammount of time in milliseconds to wait between two tries.
 System to locate.

 Finds a specified controller on the network.

 The system to locate.
 Number of times to retry the find operation on failure.
 The ammount of time in milliseconds to wait between two tries.
 System to locate, or null if the controller is

 returns all controllers as an array

 the located controllers

 returns the
 		
 search criterias
 the matching controllers

 starts a single scan to load all controllers into memory.

 Finds a specified controller on the network.

 The system to locate.
 ControllerInfo if found.
 True if the system was found.

 Finds a specified controller on the network.

 The system to locate.
 Number of times to retry the find operation on failure.
 The ammount of time in milliseconds to wait between two tries.
 ControllerInfo if found.
 True if the system was found.

 Finds a specified controller on the network.

 The system to locate.
 Number of times to retry the find operation on failure.
 The ammount of time in milliseconds to wait between two tries.
 ControllerInfo if found.
 True if the system was found.

 This delegate defines the eventhandler for Controller Found events.

 This class monitors the network for controller activites.

 Creates a NetworkWatcher with disabled events.

 Creates a NetworkWatcher with disabled events but initiated to controllers.

 the already known controllers

 Creates a NetworkWatcher initiated to controllers.

 the already known controllers
 enables/disables events

 Creates a NetworkWatcher with disabled events but initiated to controllers.

 the already known controllers

 Creates a NetworkWatcher initiated to controllers.

 the already known controllers
 enables/disables events

 Creates a NetworkWatcher.

 Controller if events are raisable from creation.

 Creates a NetworkWatcher initiated to controllers.

 the already known controllers
 enables/disables events

 Enables / Disables events from the Watcher object.

 Disposes this object.

 This event is raised when a new controller is found.

 This event is raised when a controller is lost from the network.

 This class carries the event information from a Controller Found event.

 Initializes a new instance of the class.
 		

 Gets the found controller.

 Gets the reason.

 The reason.

 Unpack event args to NetworkWatcherEventArgs.

 This waithandle waits for a single system to
 become available from the network scanner. It uses
 a ManualResetEvent internally.

 Creates a SystemWaitHandle object.

 Watcher that provides the events.
 System to wait for.

 Gets the Native handle of the object.

 Waits forever for the specified system.

 True if the controller is available otherwise false.

 Waits for the specified system to become available.

 Timeout for wait operation.
 See MSDN.
 True if the controller is available otherwise false.

 Waits for the specified system to become available.

 Timeout for wait operation.
 See MSDN.
 True if the controller is available otherwise false.

 When overridden in a derived class, releases the unmanaged resources used by the , and
 optionally releases the managed resources.

 to release both managed and unmanaged resources; to release only unmanaged resources.

 Predefined priority levels for events.

 The priority is normal.

 The priority is high.

 Use this class to create scope for the filesystem.
 Sets RemoteDirectory and LocalDirectory properties
 and resets the to their original values at the end
 of the scope.

 Initializes a new instance of the class.
 To leave a property as is, set the matching parameter to null.

 The file system.
 The remote directory.
 The local directory.

 Performs application-defined tasks associated with freeing,
 releasing, or resetting unmanaged resources.

 Main interface of the file system.

 Gets/Sets the local directory.

 Gets/Sets the remote directory.

 Gets a file from the Robot Controller and store it on the
 local system. Stores file locally with same name as on the
 controller.

 Name of a file to retrieve from the
 Robot Controller.

 Requires the
 grant.

 Contains information about a storage device.

 Initializes a StorageDeviceInfo object.

 Gets/Sets the DriveType of the drive.

 Gets/Sets the enabled flag of the drive.

 Gets/Sets the name of the drive.

 Get/Sets the readonly flag for the drive.

 This class represents the FileSystem domain of a Robot
 controller.

 Prefix for controller paths.

 Initializes a new instance of the class.
 		

 Gets or set the directory on the Robot Controller.

 The text associated to the remote directory.

 Gets or set the directory on the local system.

 The text associated to the local directory.

 Starts an async directory copy operation on the controller.

 Source directory.
 Destination directory.
 Callback method.
 User defined state object.
 Result object.

 Starts an async directory copy operation on the controller.

 Source directory.
 Destination directory.
 True to overwrite any existing directory.
 Callback method.
 User defined state object.
 Result object.

 Starts a new async file copy operation.

 Source file.
 Destination file.
 Callback.
 User defined state object.
 Result object.

 Starts a new async file copy operation.

 Source file.
 Destination file.
 Callback.
 User defined state object.
 True to overwrite any existing file.
 Result object.

 Starts a CreateDirectory operation on the controller.

 Name of directory.
 Completion callback.
 User state object.

 \Result object.

 Requires the UAS_WRITE_FTP .

 Starts a directory exists operation.

 Path of directory.
 Callback.
 State.

 \Result object.

 Requires the
 grant.

 Starts a list directory operation.

 Filter expression.
 Callback method.
 State object.

 \ \

 Requires the
 grant.

 Starts a begin file operation.

 Path to file.
 Callback.
 State.

 \ \

 Requires the
 grant.

 Starts a get operation for a complete directory.

 Name of remote directory.
 Name of local directory.
 true to overwrite local if
 exists.
 Callback.
 State.

 \ \

 Requires the
 grant.

 Starts a get file operation.

 \Result object.

 Remote file.
 Local file.
 Callback method.
 Flag indicating if to overwrite
 any existing file.
 State object.

 Requires the
 grant.

 Starts a put directory operation.

 Local directory.
 Remote directory.
 true to overwrite remote
 directory if already present.
 Callback.
 State.

 Requires the UAS_WRITE_FTP .

 Starts a put file operation.

 Local file.
 Remote file.
 True to overwrite if already
 present.
 Callback method.
 State.

 \Result object.

 Requires the UAS_WRITE_FTP .

 Starts an remove directory operation.

 Path of directory.
 Callback.
 State.
 True, to remove directory
 recursively.

 \Result object.

 Requires the UAS_WRITE_FTP .

 Starts a remove file operation.

 \File to remove.
 Callback.
 State.

 \Result object.

 Requires the UAS_WRITE_FTP .

 Starts a new rename operation.

 Path to file or directory to
 rename.
 New name.
 Callback.
 State object.

 AsyncResult object.

 Requires the
 and the
 grants.

 Copies a directory locally on the controller.

 Source directory.
 Destination directory.

 Requires the
 and the
 grants.

 Copies a directory locally on the controller.

 Source directory.
 Destination directory.
 True replace any exists directory.

 Requires the
 and the
 grants.

 Copies a file locally on the controller, from the source to
 the destination.

 Source to copy.
 Destination.

 Requires the
 and the
 grants.

 Copies a file locally on the controller, from the source to
 the destination.

 Source to copy.
 Destination.
 True to overwrite any existing
 \file.

 Requires the
 and the
 grants.

 Creates a directory on the Robot Controller.

 Name of the directory to create.

 The directory is created under the directorys specified by
 the property

 Requires the UAS_WRITE_FTP .

 Verifies that a directory exists.

 Path to directory.

 True if the directory exist.

 Requires the
 grant.

 Ends an async directory copy operation.

 Result object from BeginCopyFile operation.

 Ends an async file copy operation.

 Result object from BeginCopyFile operation.

 End an async directory creation operation.

 AsyncResult from start operation.
 Info object for directory.

 Ends the directory exists operation.

 Result from BeginDirectoryExists.
 True if the file exists, otherwise false.

 Ends a FileExists operation.

 AsyncResult.
 true if file exists.

 Ends a get file operation.

 Async result.
 Path to local file.

 Ends a GetDirectory operation.

 Async resul.t
 Path to local directory.

 Ends a list directory operation.

 Async result.
 The matching file entries.

 Ends a put directory operation.

 Async result.
 Path to remote directory.

 Ends an PutFile operation.

 Async result.
 Destination path.

 Ends an RemoveDirectory operation.

 Result.

 Ends an RemoveFile operation.

 Result.

 Ends the rename operation.

 AsyncResult.
 New path.

 Checks if the file exists.

 Name of file.

 true if file exists, otherwise false.

 Requires the
 grant.

 Gets a complete directory recursively.

 Name of remote directory.
 Name of local directory.
 true to overwrite any existing
 local directories.

 Requires the
 grant.

 Gets a complete directory recursively.

 Name of remote directory.
 Name of local directory.

 Requires the
 grant.

 Get a remote directory, creates a local directory with the
 same name as the remote.

 Remote directory.
 true to overwrite any existing
 local directory.

 Requires the
 grant.

 Get a remote directory, creates a local directory with the
 same name as the remote.

 Remote directory.

 Requires the
 grant.

 Gets all available drives.

 Array of available drives.

 Gets a file from the Robot Controller and stores it on the
 local system.

 Name of a file to retrieve from the
 Robot Controller.
 Name of the file to create on the
 local system.
 true, to overwrite local file.

 Requires the
 grant.

 The file to overwrite is Read-only.

 Gets a file from the Robot Controller and stores it on the
 local system.

 Name of a file to retrieve from the Robot Controller.
 Name of the file to create in the local file system.

 Requires the
 grant.

 Gets a file from the Robot Controller and stores it on the
 local system. Stores file locally with same name as on the
 controller.

 Name of a file to retrieve from the
 Robot Controller.
 true, to overwrite local file.

 Requires the
 grant.

 The file to overwrite is Read-only.

 Gets a file from the Robot Controller and stores it on the
 local system. Stores file locally with same name as on the
 controller.

 Name of a file to retrieve from the
 Robot Controller.

 Requires the
 grant.

 Gets the file attributes for a remote file.

 Name of remote file.

 FileAttributes for file.

 Requires the
 grant.

 Gets the attributes for a directory.

 Name of directory.

 Attribute of directory.

 Requires the
 grant.

 Get the time of creation for a file.

 Name of remote file.

 Time of creation.

 Requires the
 grant.

 Gets the creation time for a directory.

 Name of directory.

 Time of creation.

 Requires the
 grant.

 Gets the last access time for a file.

 Name of remote file.

 DateTime for last access.

 Requires the
 grant.

 Gets the accesstime for a directory.

 Directory to get access time for.

 DateTime for last access.

 Requires the
 grant.

 Gets the last write time for the remote file.

 Name of remote file.

 Last write time.

 Requires the
 grant.

 Gets the last write time for a directory.

 Name of directory.

 Last write time.

 Requires the
 grant.

 Gets the combined path from name and LocalDirectory.

 Filename.
 Complete local path.

 Gets the combined path from name and RemoteDirectory.

 Name of file or directory.
 Combined path.

 Gets the size of a file.

 Name of file.

 The size of the file in bytes.

 Requires the
 grant.

 Puts a directory from the local computer to the filesytem of
 the controller.

 Name of local directory.
 Name of remote directory.
 true to overwrite remote
 directory if already present.

 Requires the UAS_WRITE_FTP .

 Puts a directory from the local computer to the filesytem of
 the controller.

 Name of local directory.
 Name of remote directory.

 Requires the UAS_WRITE_FTP .

 Puts a directory from the local computer to the filesytem of
 the controller.

 Name of local directory.
 true to overwrite remote
 directory if already present.

 Requires the UAS_WRITE_FTP .

 Puts a directory from the local computer to the filesytem of
 the controller.

 Name of local directory.

 Requires the UAS_WRITE_FTP .

 Stores a file from the local system to the Robot Controller.

 Name of a file to send from the
 local system.
 Name of the file to create on the
 Robot Controller.
 true, to overwrite existing file.

 Requires the UAS_WRITE_FTP .

 Stores a file from the local system to the Robot Controller.

 Name of a file to send from the
 local system.
 Name of the file to create on the
 Robot Controller.

 Requires the UAS_WRITE_FTP .

 Stores a file from the local system to the Robot Controller.

 Name of a file to send from the
 local system.
 true, to overwrite existing file.

 Requires the UAS_WRITE_FTP .

 Stores a file from the local system to the Robot Controller.

 Name of a file to send from the
 local system.

 Requires the UAS_WRITE_FTP .

 Removes the specified directory from Robot Controller.

 Path of the directory to be removed.
 True to remove all directories
 recursively.

 Requires the UAS_WRITE_FTP .

 Removes the specified directory from Robot Controller.

 Path of the directory to be removed.

 Requires the UAS_WRITE_FTP .

 Deletes the specified file from the Robot Controller.

 Name of the file to remove.

 Requires the UAS_WRITE_FTP .

 Renames the specified directory on the Robot Controller.

 Name of the directory to be
 renamed.
 New name of the directory.

 Requires the
 and the
 grants.

 Renames the specified file on the Robot Controller.

 Name of the file to be renamed.
 New name of the file.

 Requires the
 and the
 grants.

 Returns the info objects of files and directories on the
 controller file system that matches the specified search pattern.
 To get the list of files and directories use the search pattern "*".

 The search string to match
 against the names of files in
 path.

 An array of objects
 matching the search criteria.

 Requires the
 grant.

 See Also information

 Objects of this class is thrown whenever an exception occurs
 during some FileOperation, it always contains the local and remote
 paths involved in the call.

 Initializes a new FileSystemException object.

 Message.
 InnerException.
 LocalPath.
 RemotePath.

 Initializes a new FileSystemException object. Only used for
 deserialization, see MSDN.

 See MSDN.
 See MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 Utility class for file system path operations.

 Prefix for controller paths.

 Separator char.

 Backslash.

 Extension separator.

 Separator string.

 Prefixed separator.

 Combines two paths into a new path.

 First part of path.
 Second part of path.
 New path.

 Returns the path to the parent direcotory

 Path to get parent directory from.
 The path to the directory.

 Appends the ctrl: prefix to the string if the
 path currently isn't correctly formatted for the controller.

 Path to correct.
 A correct path string.

 Gets the extension of a file, returns an empty
 string if the file doesn't have an extension

 path to get extension from
 the extension of the file

 Returns the name of a file system entry, ie.
 For a path to a file, it returns the filename and
 for a path to a directoru it returns the directory name

 path to extract name from
 the name of the entry

 Predefined file types in the Robot Controller.

 Directory.

 File.

 Unknown.

 Creates an info object from the supplied entry.

 Filesystem object.		
 Entry to create info object from.
 The info object.

 Creates an array of info objects from the supplied entries.

 Filesystem object.
 Entres to create from.
 New info objects.

 Represents a file system entry in the Robot Controller

 Gets the creation time of the current object.
 The creation date and time of the current object.

 Gets a value indicating whether the file or directory exists..
 true if the file or directory exists; otherwise, false.		

 Gets the string representing the extension part of the file.
 A string containing the extension.

 Gets the full path of the directory or file.
 A string containing the full path.

 Gets the time the current file or directory was last accessed.
 The time that the current file or directory was last accessed.

 Gets the time when the current file or directory was last written to.
 The time the current file was last written.

 For files, gets the name of the file. For directories, gets the name of the directory.

 A string containing the name of the directory or the file, including the file name extension.

 Represents a file in the Robot Controller

 Represents a directory in the Robot Controller

 Abstracts a controller grant.

 Creates a Grant object.

 name of grant
 value of grant

 Creates a Grant object.

 name of grant

 Gets the name of the Grant.

 Gets the value of the Grant.

 Equalses the specified g.

 The g.

 Determines whether the specified is equal to the current .

 The to compare with the current .

 	 if the specified is equal to the
 current ; otherwise, .

 Serves as a hash function for a particular type, suitable
 for use in hashing algorithms and data structures like a hash table.

 A hash code for the current .

 Operator ==s the specified g1.

 The g1.
 The g2.

 Operator !=s the specified g1.

 The g1.
 The g2.

 Gives access to perform the following: Install new system,
 P-start, I-start, X-start, C-start, Select System, Install
 system from device. This grant gives full FTP access, that
 is, the grant gives the same rights as
 access to controller disks and
 access to controller disks.

 Gives access to read and write the UAS configuration, that is to read, add,
 remove and modify UAS users and groups.

 Gives access to perform a backup and to save modules, programs and configuration files.

 Gives access to perform the following: Fine calibrate mechanical unit,
 Calibrate base frame, Update/clear SMB data. Note! Frame calibration (tool, wobj)
 requires the grant RAPID code. Manual offset of mechanical unit calibration
 data and loading new calibration data from file require grant Modify configuration.

 Gives access to delete messages in the controller Event Log.

 Gives access to perform the following: Move PP to routine, Move PP to cursor,
 HoldToRun, Activate/deactivate RAPID tasks, Request write access from the FlexPendant,
 Acknowledge Auto mode without restoring simulated I/O signals or deactivated tasks,
 Enable/disable non-motion execution

 Gives acces to decrease speed from 100% in Auto mode.
 This grant is not required if speed already is below 100%, or controller is in Manual mode.

 Gives access to perform the following: Modify code in existing RAPID modules, Frame
 calibration (tool, workobj), Commit ModPos/HotEdit positions to current values, Rename program.

 Gives access to perform the following: Start/step program (stop is always allowed),
 Move PP to Main, Execute service routines.

 This grant includes all controller grants, also new grants added in future
 RobotWare versions. The grant does not include any application grants, nor
 the "Safety Controller configuration" grant.

 Hot Edit

 Gives access to perform the following: Modify or teach positions in RAPID code (ModPos),
 During execution modify positions in RAPID code single points or as a path (HotEdit),
 Restore ModPos/HotEdit positions to original, Modify current value of any RAPID variable.

 Gives access to modify current value of any RAPID variable. The grant is a subset
 of grant "Perform ModPos and HotEdit".

 Supported from RW 5.07.03

 Modify Rapid program

 Gives access to perform the following: Set I/O signal value, Set signal as simulated
 and remove simulation, Set I/O unit and bus as enabled/disabled

 Gives external read access to controller disks. This grant is
 \only valid for explicit disk access, for example with an FTP
 client or the File Manager of RoboStudio Online.

 It is possible, for example, to load a program from /hd0a
 without this grant. To this effect the following grants also
 allow file system browsing; ,
 ,

 and .

 Gives access to perform warm start and shutdown (S-start) from a remote location.
 No grant is required to perform warm start via a local device, as for example the FlexPendant.

 Gives access to restore backup and perform B-start.

 Gives access to modify the configuration database, that is load configuration files,
 change system parameter values and add/delete instances.

 Gives access to set controller name, controller ID and system clock.

 Gives external write access to controller disks.
 This grant is only valid for explicit disk access, for example with an
 FTP	client or the File Manager of RoboStudio Online. It is possible,
 for example, to save a program to the controller disk or perform a
 backup without this grant.

 Gives access to load/delete modules and program.

 Gives access to perform a configuration of the Safety Controller.
 Only valid for the PSC-option. This grant is not included in the "Full access" grant.

 Supported from RW 5.07

 An instance of this class is thrown when a DemandGrant operations fails.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Compares string array against single strings used to sort grant
 arrays and also to determine if a user has a grant.

 An element in a linked list that contains all controllers
 that are refered be the host.

 Initializes a controller link object. Next has to be
 set through the Next property.

 SystemId.
 Controller.

 Gets the external controller object.

 Gets/Sets the host to controller link.

 Gets the system id.

 This class is the main entrypoint for a host into
 the CAPI internal functions. It can be used to extend
 and alter the inner workings of the API.

 Private ctor to avoid external creation

 Gets the service provider impl.

 Register the host.

 Host object.
 The service provider for the api.

 Demands that no host is registered.

 Verifies that the host parameter is valid and ok
 for further use.

 Host to check.

 Gets the host object if registered.

 Gets the HostingService instance.

 The singletonn instance.

 Verifies that the controller is present in the
 list of external controllers. If it isn't this
 method throws an InvalidOperationException.

 System id to check for.
 The internal controller for the refered controller.

 Handles a operation completed-"event".

 Operation.
 Success flag.
 Controller object.

 Handles the started-"event".

 Operation.
 Controller.
 True to continue operation.

 Handles any logoff operation.

 Operation object.
 Operation success.
 Controller object.

 Handles the completion of a logon operation.

 LogonOperation object.
 Success flag.
 Controller.

 Handles the mastership release operation completed.

 The mastership release operation.
 if set to true [success].
 The controller.

 Handles the completion of a host mastership operation.

 The mastership operation.
 if set to true [success].
 The controller.

 Register a host for the api, must be called prior to
 ANY other calls within the api impl.

 Host object.

 Links the Controller object specified by the id to the host.

 Controller to refer to avoid collection.
 The internal controller object.

 Checks if service is supported by this object. We only search
 the implemented interfaces of this object.

 Service to return interface for.
 True if the service is supported.

 Traces information about the current host.

 Service provider implementation. This only supports
 services implemented as interfaces.

 Service interface to request.
 Service object.

 Handles all operation started notifications, default
 all operations are allowed to continue.

 Operation.
 True to continue, otherwise false.

 Handles all operation completed operations.

 Operation that has completed.
 True if the operation succeeded, otherwise false.

 This is the main interface of a host object.

 Gets the name of the host.

 Gets the version of the host.

 This is a mirrored interface. It is implemented both by the host and api.
 It contains method for notifications and service requests.

 This method is called when a operation is started
 the client may select to refuse it by neglecting
 the call using false as return value.

 Operation object.
 True to allow operation, otherwise false.

 The operation has completed, note must be the SAME object
 as in OperationStarted(...)

 Operation.
 True if successful, otherwise false.

 A logoff operation with the host.

 Initializes a new LogoffOperation.

 User to logon.
 System id.
 Destination object.

 A logon operation with the host.

 Initializes a new LogonOperation.

 User to logon.
 System id.
 Destination object.

 Gets the userId.

 Overrides the default complete, this is not a valid operation
 for Logon operations since it requires a user id for completion.

 Completes the logon operation with the userid
 for the logged on user.

 User id.

 A mastership release operation.

 Initializes a new instance of the class.

 The resources.
 The id.
 The destination.

 Gets the the resources.

 The resources.

 A mastership operation with the host.

 Initializes a new instance of the class.

 The id.
 The destination.
 The masterships resources that are requested.

 Gets the resources.

 The resources.

 Flags for all available mastership resources.

 Rapid resource.

 Configuration resource.

 Motion resource.

 InfoStream resource.

 All available resources.

 class for all notification types.

 Initializes a NotifyOperation object.

 System id.
 Notification object.

 Gets the OpName for an operation.

 Gets the system id.

 Sets the complete flag to indicate success.

 Completes the operation.

 Checks that the id is a valid Guid and that
 the notify reference refers to a valid object.

 Guid to check.

 Base class for Uas operation.

 Initializes a new Uas operation.

 UserInfo.
 System Id.
 Destination object.

 Gets the user.

 Main interface of a controller.

 Gets the CultureInfo for the TP.

 Gets a reference to the filesystem.

 Gets the system id.

 Gets the value of an environment variable.

 The name.
 The value.

 Gets the RobotWare version.

 This class encapsulates the transformatation from a EventLog title
 or text containing format information.

 Private constructor to avoid external creation.

 Parses the current element into a composite string. The
 name of the element is ignored.

 Reader to parse.
 The composite string object.

 Get the string representation of this object.

 The args.
 The string.

 Demands that the current node type is element.

 The reader.

 Dispatches the current reader object to the correct handler.

 The StringBuilder instance.
 The XmlReader object.

 Parses the arg element.

 The reader.
 The builder.

 Starts the recursive parsing.

 The Reader object.
 The StringBuilder.

 Defines the interface of a controller bound object.

 This class is the base class of all objects that are
 bound to and internal controller instance.

 Copies a directory locally on the controller.

 Initiates a CopyDirectoryCmd object.

 Source path.
 Destination path.
 True to overwrite existing destination directory.

 Executes the command.

 File system object.

 Copies a file locally on the controller without any interaction
 with the local computer; thereby removing the need for double-
 buffering and get/put operation pair.

 Initializes a new CopyFileCmd object.

 Source file.
 Destination file.
 True to overwrite any existing file.

 Copies the file on the controller.

 Target filesystem.

 Creates a directory on the filesystem of the controller.

 Initializes a CreateDirectoryCmd.

 Root of new directory.

 Gets the directory entry for the created dir,
 null if execute failed.

 Creates the directory.

 FileSystem object.

 Base class for devices domain data access objects.

 Creates an url from the controller url and the parts
 provided as seconds parameter.

 Url of controller.
 Array of ids.
 Set to true for mech unit domain
 New url object or controller if ids.Length == 0.

 Data access object for bus.

 Gets the type of the bus.

 Bus instance.
 The type of the bus.

 Gets the state of the bus.

 Bus instance.
 The state of the bus.

 Data access object for unit.

 Gets the type of the unit.

 Unit instance.
 The type of the unit.

 Gets the bus of the unit.

 Unit instance.
 The type of the unit.

 Gets the address of the unit.

 Unit instance.
 The type of the unit.

 Data access layer for IOUnits

 Gets all IO units.

 Array of units.

 Data access layer for IOUnits

 Gets all IO units.

 Array of units.

 Data access object for most common IO.

 Gets all most common signals.

 The most common signals.

 Data access object for signal.

 Holds the bounds for a unit mapping

 Gets the maximum value for a signal.

 Signal instance.
 The max value of the signal.

 Gets the maximum value for a signal.

 Signal instance.
 The max value of the signal.

 Gets the unit map for the signal.

 Signal id.
 mapName.
 Unit map for signal.

 Gets the unit for a signal.

 Signal instance.
 The unit of the signal.

 Data access layer for IOSignals

 Gets all IO signals.

 Array of signals.

 Data access class for the main computer device.

 Initializes a MainComputer device object.

 Gets the temperature of the main processor.

 Temp of the main cpu.

 Gets the type of board.

 Type of board as string.

 Information about the Cpu.

 Cpu info.

 Size of ram.

 Size of ram.

 Data access class for the MechanicalUnit device object.

 Initializes a mechanical unit data access object.

 Controller with unit.
 From RW5.10, Name if mechanical unit, from devices.xml.

 Gets the interval between services.

 The service interval in years.

 Gets the warninglevel for service.

 The warning level in percent.

 Gets the warninglevel for the gearbox.

 Warninglevel for gearbox.

 Gets the calender time elapsed since last service.

 Hours since last service.

 Gets the elapsed production time since last sis reset.

 Hours since last SIS reset.

 Gets the elapsed production time since last service.

 Hours since last service.

 Gets the last start of the controller.

 Gets the interval between services.

 The service interval in hours.

 Gets the warning level for production.

 The warning level in percent.

 Base class for all data access objects.

 Gets the url for this object.

 Data access object for Rapid.

 Data access object for RapidTask.

 Data access object for ROBOT type.

 Gets the value of the use_robot_type attribute.

 Name of instance.
 The ROBOT_TYPE name for this robot.

 Provides access to the robot serial number

 Provides data access to the ROBOT_TYPE in Cfg.

 Checks if a specified directory exists or not.

 Gets flag indicating existance

 Implements the command.

 Target file system.

 Downloads a directory from the controller to
 the local computer.

 Executes the command.

 Target file system.

 Verifies that the destination folder doesn't exists,
 and removes it if the overwrite flag is true.

 Verifies that the source is valid.

 FileBrowser object.

 Downloads a file from the controller
 to the local filesystem.

 Gets the destination file.

 copies the file from the controller to the local computer

 Target filesystem.

 Adds the capability to return a typed enumerator to CollectionBase. CollectionBase was used as the base class for many publicly available collections
 where we wanted to add basic Linq support so that customers can use .Where() etc.

 Checks if a file exists on the controller.

 "SmartPointer" for FileInfo objects, using this will
 guarantuee that the file will be deleted when dispose is called.

 Gets a ref to the FileInfo object.

 This class is the base class of all commands
 that can be executed against the remote filesystem.

 Gets/Sets the callback for this command.

 Gets the exception object if the
 operation has failed.

 Gets/Sets the state for this command.

 Implementers must override this method to enable excution

 FileSystem.

 Raises the _callback.

 Exception object if operation failed, otherwise null.

 Very lightweight waithandle that uses
 object and Monitor to implement waithandle behavior.

 Used to create a scope for the worker thread, where it can
 act as within the context of the caller.

 Gets a ControllerFileEntry object for a file entry.

 Gets the entry.

 Executes the command.

 Target filesystem.

 An internal IOBus object

 Gets the Url of the bus.

 Gets the Type of the bus.

 Gets the Physical state for this bus.

 Gets the Logical state for this bus.

 Gets the current unit adapter object.

 Adapter.

 a collection of IOUnit objects

 finds a string by name

 name of bus to locate
 the bus if exist, otherwise null

 An internal IOUnit object

 Gets the Url of the unit.

 Gets the Type of the unit.

 Gets the Bus for this unit.

 Gets the Address for this unit.

 Gets the Physical state for this unit.

 Gets the Logical state for this unit.

 Gets the current unit adapter object.

 Adapter.

 Subscribe to an event handler based upon the EventID.

 Unpacks the UnitStateChanged, gets the details in UnitStateChangedEventArgs.

 Unpacks the UnitSignalChanged, gets the details in UnitSignalChangedEventArgs.

 Unsubscribe the event handler for the specified cookie ID.

 A collection of IOUnit objects

 Finds a string by name

 name of unit to locate
 the unit if exist, otherwise null

 Performs a ls command on the controller.

 Gets the matching entries.

 Executes a list command on the controller.

 Target filesystem.

 Removes a directory from the controller.

 Removes the directory if present, otherwise throw
 an DirectoryNotFoundException.

 Target filesysten.

 Removes a file from the controller.

 Removes the file from the controller.

 Target filesystem.

 Renames a file or directory on the controller.

 Renames a file or directory on the controller.

 Target file system.

 Utility class for type access.

 Executes an is operation based on type objects.

 Type to check.
 The type to compare to.

 Checks if a type inherits another type.

 The type to check.
 The base type to check for.
 True if check inherits type.

 Checks if a type inherits another type.

 Type to check.
 Type to check for inheritence.
 True if T1 inherits T2.

 Checks if check implements the @interface.

 Type to check.
 The inteface to implement.
 True if check implements @interface.

 Checks if T1 implements the T2 interface.

 The type to check.
 The interface to check for.
 The type.

 Initializes a new instance of the class.

 Provides the internal UIInstruction interface.

 Create UIInstruction object.

 Uploads a directory from the local computer to the controller filesystem.

 Gets the destination of the command.

 Executes the command.

 Target file system.

 Verifies that the destination folder is in a valid state.

 Browser for filesystem.

 Verifies that the source folder exists.

 Uploads file from local computer to controller.

 Gets the destination file.

 Copies the file.

 Target filesystem.

 Defines the interface of the adapter cache.

 Gets the controller adapter.

 This class acts as a weak reference cache against all adapters that
 can be reused within the controller object
 	

 Gets the Type pool object.

 Gets the DataPool object.

 Gets the current Controller adapter.

 Gets the pool of Module objects.

 Gets the pool of object browser objects.

 Gets the pool of IOSignal objects.

 Gets the pool of IOUnit objects.

 Gets the pool of IOBus objects.

 Gets the adapter for the IOSystem.

 Gets the Rapid adapter.

 Property used to get the UasAdapter, impled as lazy

 Creates a new controller adapter.

 A new controller adapter object.

 Uses the devices.xml file to get the device id from
 a localized name, this is normally only used for non
 translated nodes, BUT it can be used for these as well.
 (if you know the name)

 Name of node.
 Indicates that we are searching for a property.
 Id of node.

 Loads a cfg file into the database.

 Cfg file path.
 The load mode.

 If config(.cfg) file is a ctrl: path, MgROBAPI will not load it to controller and loads only local file.
 Hence, create a temp file to load it to controller and delete it.

 Resets a domain to its initial state. All externally created
 instances are removed.

 The name of the domain.

 Saves database domain to a specified file.

 The name of the domain.
 Path of the destination file.

 The method overwrites the specified file if it exists.
 Requires UAS grant UAS_BACKUP.

 Searches the reader for the first occurance for a
 element with a matching name.

 Name of element.
 Reader to search.

 Gets the devices.xml file from the cache
 or the controller, either way we return a reference
 to a FileInfo object stored in %temp%.

 FileInfo object pointing to devices.xml

 Tries to find a the id of a device.

 Reader to search.
 Device to find.
 Id or null if not present.

 Tries to find a the id of a property.

 Reader to search.
 Property to find.
 Id or null if not present.

 Attempts to find an id of an element within devices.xml.

 Name.
 Element to search.
 Element scope.
 Reader to search.
 The id or null if not present.

 The controller is the main entrypoint into the object
 model for the api.

 True when executing as an addin within RobotStudio.

 Specifies how mastership should be handled by a GUI client

 Checks Availability preconditions for performing an action on the controller.

 Required UAS grants (can be null)
 Required mastership resources (can be null)

 Reason why the action is not permitted, or DisableReason.None if all conditions are met.

 Mastership is only checked for a connection with MastershipPolicy.Manual.

 Gets the current culture.

 The culture for the event log.

 Gets the current language of the controller from
 the LANGUAGE environment variable, if this isn't present
 then the default language is used (english).

 The culture for the language.

 Gets the value of an environment variable.

 The name of the variable.
 The value or null.

 Gets the value of an environment variable.

 The name of the variable.
 Throw the exception if an error occured,
 otherwise return null.
 The value or null.

 Gets service information for the main computer.

 ServiceInfo object.

 Gets the public network settings.

 Settings object.

 Sets the controller LAN adaptor settings.

 Fixed IP or DHCP.
 IP to use when is configured.
 Subnet mask to use when is configured.
 Default gateway to use when is configured. May be left empty.

 Restarts the controller.

 The start mode.

 OnConnectionChanged event handler to unpack connection changed details and call external eventhandler.

 OnRapidMasterChange event handler to unpack connection changed details and call external eventhandler.

 Subscribe to an event handler based upon the EventID.

 Unpacks the ConnectionChanged, gets the details in ConnectionChangedEventArgs.

 Unpacks the OperatingMode, gets the current mode for OperatingModeChangeEventArgs.

 Unpacks the BackupCompleted, gets the BackupEventInfo for BackupEventArgs.

 Unpacks the AutoConditionsChanged, gets the AutoCondList in AutoConditionsChangedEventArgs.

 Unpacks the State, gets the current mode for OperatingModeChangeEventArgs.

 Unsubscribe the ConnectionStateChanged event handler.

 Unsubscribe the event handler for the specified cookie ID.

 Acts as the link between external and internal Controller objects.

 Adds a ref to the external object that uses
 the internal object.

 External object.
 The internal controller object.

 Disposes the current object.

 Checks if the controller for this link is in use.

 True if the link is in use, otherwise false.

 This singleton class manages the connection between internal and
 public controller object.

 Singleton constructor.

 Gets the singele controller manager instance.

 Gets a flag to indicate if the runtime is unloading or not.

 Gets the matching internal controller.

 External controller object.
 The external controller object.

 Configures the Adapter layer

 Disposes all controller links.

 True to only dispose unused links.

 Implements the GetController function.

 External controller object
 The internal controller object for specified url.

 Called during the cleanup cycle.

 Currently not in use.

 Shuts down the manager and therefore the runtime.

 Starts the cleanup cycle.

 Stops the cleanup cycle.

 Manages all devices of the controller

 Gets the (BACKUP)$ variable.

 Gets the (HOME)$ variable.

 Gets the (INTERNAL)$ variable.

 Gets the path to the language folder.

 Gets the (RELEASE)$ variable.

 Gets the (SYSPAR)$ variable.

 Gets the (SYSTEM)$ variable.

 Gets the (TEMP)$ variable.

 Gets the value of a variable by name.

 Name of variable, without ()$
 The value if available.

 Expands environment variables within a string.

 Text with variables to expand.
 The expanded string.

 Handles connection changed events from the controller.

 True if connected.

 Removes the domain messages.

 The domain id.

 Removes the range of messages.

 The messages.

 Trims all excessive messages from the queue.

 The subset.

 Clears all logs.

 Clear all messages from the domain.

 Domain id.

 Gets all available eventlog categories.

 Available categories.

 Gets all descriptions for the domain + message combination.

 Domain id.
 Message number.

 Some late initialization.

 Gets all messages for a single category.

 Category id.
 List to update.
 The list of new messages.

 Compiles a XPathExpression for Categories namespace.

 Expression to parse.
 Navigator object used to compile.
 The expression.

 Clears all cached data from this instance.

 Creates an XPath from the stream.

 Stream containing a xml document.
 The XPath navigator.

 Creates the domain objects.

 Downloads a file from the controller to the local
 system, uses the cached version if available.

 Path to file.
 Local file copy.

 Enqueues the list of messages into the interan queue.

 Messages to enqueue.
 Domain to update.

 Iterates through the internal queue and for each iteration
 it searches the message collection. If the message from the queue
 isn't found in the message list, the message is removed.

 Queue to update.
 List of messages.

 Enqueues all messages from the start index to end of list.

 The messages.
 The domain.
 New messages are pushed here, can be null.

 Relinks the internal queue.

 The messages.
 Domain to update.
 The index in the list where the last message was found.

 Finds all messages in the domain that isn't found in
 the list.

 The domain to search.
 The list to match against.
 All new messages.

 Gets the Eventlog adapter.

 The domainId.
 Adapter object.

 Gets the Domain object.

 Domain id.
 The domain.
 If domain isn't found.

 Gets the path of the elog_domain.xml file on the controller.

 The controller path.

 Gets the path of the _elogtext_registry file on the controller.

 The path.

 Gets the registry instance.

 The registry instance.

 Copies .xml file containing all domains from the controller to
 the local file system, caches it and then load the content into memory.

 Merges the two lists into a single.

 The statis list.
 The dynamic list.
 The combined list, stored in the static object.

 Gets all dynamic registries from the eventlog registry file.

 The event log registry.
 The list of dynamic registries.

 Gets all static categories from the elog domains xml file.

 Checks if the message exists within the queue.

 The queue to check.
 The message to find.
 True if the message existed.

 Checks if the message exists in the external list.

 List to check.
 Message to find.
 True if the message is found.

 Downloads and opens a file from the controller.
 This method must be called within the context of a lock.
 The stream is only opened for reading.

 Path to file.
 The local stream.

 Parses the specified path.

 The path.
 The domain id.
 The message number.
 The message descriptor object.

 Parses the xml stream into a list of category objects.

 Stream to parse.
 The parsed categories.

 Removes all old messages from the linked list.

 Domain with current messsages.
 The list to remove messages from.

 Attempts to delete the file refered to by the FileInfo object.

 FileInfo instance.
 True on success.

 Tries to find the title.

 The domain id.
 The message number.
 The stream.
 The title.
 True if the title was found.

 Updates the internal log cache.

 The domainId.

 Updates the list to match the internal state for the
 supplied domain id.

 Domain id.
 List to update.
 The list of new objects.

 Subscribe to an event handler based upon the EventID.

 Unsubscribes the event for the specified cookie.

 The id of this EventLogCategory.

 Returns the log to which this category belongs

 Gets the localized name of the category.

 Clears all the messages in the log.

 Gets the messages for this category.

 Linkedlist of messages to update.
 A list of new messages.

 This class extends the eventlog message class to fit the
 normal structure of api programming.
 	

 Gets the action string.

 Gets the causes text.

 Gets the consequences text.

 Gets the message description.

 Gets the if of the domain.

 Gets/Sets the next event log message in the queue.

 Gets the number of the message.

 Gets/Sets the previous message.

 Gets the sequence number of the message.

 Gets the timestamp of the message.

 Gets the title of the message.

 Gets the type of the message.

 Gets the action description text.

 The text.

 Gets the argument list for this message.

 The argument list.

 Gets the body of the event log.

 Body as Xml.

 Gets the causes description text.

 The text.

 Gets the consequences description.

 The text.

 Gets the description text.

 The text.

 Gets the title of message.

 The text.

 Maps the internal int to a public type.

 Type.
 Public type.

 Updates all description fields if needed, otherwise this
 method does nothing and returns as fast as possible.

 Updates the internal description fields from the dictionary content.

 Message descriptor object.

 Returns the path to the file if domain + number
 matches the current object.

 Domain.

 The path if match, otherwise null.

 Gets the path to file containing the message text.

 Domain id.
 Event log number.
 The path to the file.

 Returns a list containing the paths to all titles.

 All titles.

 Gets all domain sources.

 All domain sources.

 Parses a registry instance from the stream.

 Registry stream.
 Controller culture.
 An registry instance.

 Adds a registered domain sources in the registry.

 Current controller culture.
 Current element.

 Adds all domains from the navigator object.

 Culture.
 XPath navigator.

 Adds all title files to the registry.

 Navigator object.
 Culture of controller; used to create the fullpath.

 Combines the arguments into a complete path.

 Pre part.
 Culture separator.
 Post part.
 The path.

 Creates the domain object.

 The culture.
 The navigator object.
 A domain instance.

 Gets the combined path for any prepath + postpath formatted
 localization path.

 Navigator object.
 Culture.
 The combined path.

 Maps the attribute to value.

 The nav.
 The min.
 The max.
 The domain.
 The prepath.
 The postpath.

 Executes a XPath expression and invokes the callback once
 for every match.

 The expression to execute.
 The navigator.
 Current controller culture.
 The callback.

 Parses the specified stream.

 The stream.
 The domain.
 The number.
 The descriptor.

 Reads the domain element.

 The reader.
 The desc.
 The number of the event.

 Reads to message is found.

 The reader.
 The number.
 True if found, otherwise false.

 Stores downloaded files %temp% to avoid multiple downloads
 of immutable files from a controller. The files are stored / System Id.

 Initializes the FileCache object.

 The controller.

 Adds a file to the cache.

 Key for file.
 FileInfo object

 Adds a stream to the cache.

 Key for file.
 FileStream to add.

 Gets a readonly stread to one of the cached files
 identified by the key.

 Key for file.
 A readonly stream.

 Gets a File from cache but creates a copy in temp for exclusive access.

 File key.
 Info object for file.

 Invalidates the content of the cache.

 Copies the content of source to a temp file within the %temp% folder.

 Source stream.
 File info for target.

 Copies content of source into destionation.
 Rewinds the source prior to copy.

 Source stream.
 Destination stream.

 Decorator object used to implement readonly streams
 for "normal" streams.

 very simple specialization that always opens a stream
 within %temp% with a temporary name, read write access
 and no sharing at all.

 This exception is thrown whenever a FileCache failes. The message
 contains the reason in clear text.

 Creates a FileCacheException object.

 Creates a FileCacheException object.

 Message for exception.

 Creates a FileCacheException object.

 Message for exception.
 Inner exception.

 Deserailzation constructor.

 See MSDN.
 See MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 Gets the filebrowser object, this shall only be used
 from any executing command object.

 Starts an async directory copy operation.

 Directory source.
 Directory destination.
 True, to overwrite any existing directory.
 Callback method.
 State object.
 Async result object.

 Starts an async file copy operation.

 Source file.
 Destination file.
 Callback.
 User defined state.
 True to overwrite any existing file.
 Async result object.

 Starts a new CreateDirectory operation against the contorller.

 Path to new directory.
 Callback.
 Caller supplied state.
 IAsyncResult object.

 Starts a new DirectoryExists operation.

 Path of directory to check.
 Callback.
 State.
 Result object.

 Starts a recursive download of a directory from the controller.

 Source directory on controller.
 Destination directory on local computer.
 Overwrite flag.
 Callback.
 State.

 Starts a download operation from the controller.

 Callback.
 Destination file.
 Flag to indicate overwrites of destination file.
 File to download.
 State.
 Result object.

 Starts a file exists operation.

 Path to file.
 Callback.
 State.
 Result object.

 Starts a get entry operation.

 Path to file.
 Directory flag.
 Callback.
 State.
 Async result.

 Starts a list operation.

 Filter.
 Callback.
 State.
 Result object.

 Starts an Remove directory operation.

 Path to directory.
 Recursion flag.
 Callback.
 State.
 Result.

 Starts a remove file operation.

 Path to file.
 Callback.
 State.
 Result object.

 Starts a rename operation.

 To to file or directory to rename.
 New name.
 Callback.
 state.
 AsyncResult object.

 Starts the upload of a complete directory.

 Source directory.
 Destination directory.
 true to overwrite destination.
 Callback.
 State.

 Starts a upload operation.

 Source file.
 Destination file.
 true, to overwrite controller file.
 Callback.
 State object.

 Downloads a file from the controller.

 Source file on controller.
 Destination file on computer.

 Downloads a file from the controller.

 Source file on controller.
 Destination file on computer.
 True to overwrite the local file.

 Downloads a file from the controller to a temp file.

 Source file on controller.
 Temp file.

 Disposes current object.

 Ends a pending directory copy operation.

 Result object.

 Ends a pending Copy file operation.

 Result object.

 Ends a pending create directory operation.

 Result object.
 FileEntry for directory.

 Ends the async directory exists operation.

 Async result.
 True if the file exists, otherwise false.

 Ends a directory download operation.

 Async result.
 Path to downloaded directory.

 Ends a download operation.

 Result.
 Local path to downloaded file.

 Ends a file exists operation.

 Async result.
 True if the file exists.

 Ends a get entry command.

 Async result.
 Entry.

 Ends a list directory operation.

 AsycnResult.
 List of entries.

 Ends a RemoveDirectory operation.

 Result.

 Ends a remove file operation.

 Async result.

 Ends an async rename operation.

 AsyncResult.
 New path.

 Ends a upload operation.

 Async result.
 Path of uploaded file.

 Ends a Upload directory operation.

 Async result.
 Path to remote directory.

 Expands a path for all environment variables.

 Path to expand.
 The expanded path.

 Checks if the file exists.

 Path to check.
 True if the file exists.

 Gets an array of available drives.

 Array of available drives.

 Removes a directory fromt the controller.

 Path to directory on controller.

 Removes a directory fromt the controller.

 Path to directory on controller.
 true to remove all directory recursively.

 Removes a file from controller.

 Path to file on controller.

 Uploads a file from the local machine to the controller.

 Source.
 Destination.
 true to overwrite existing.

 Blocks until the command has completed.

 Command to wait for.

 Creates objects and a new array around the storage device info list.

 list of devices.
 Array of public device objects.

 Rethrows any exceptions from the Execute call.

 Disposes the FileBrowser object.

 Browser object.

 Deques a command if available.

 Number of commands in queue.
 Command or null.

 Enques a command to the command queue.

 Command to enqueue.

 Executes the command.

 Command to execute.

 Processes the command to force a nice end...

 Command to process.

 Sets up the command.

 Command.
 Callback.
 State.

 Updates the current browser object to reflect
 the current user of the controller.

 Blocks current thread for a short period
 using Monitor to enable resume if a new message arrives.

 Timeout for block.

 This method is executed by a thread from the threadpool, and it shall
 therefore never be called directly from within the code.

 Object state.

 An internal IOSignal object

 Gets the Max value of the signal.

 Gets the Min value of the signal.

 Gets the type of signal.

 Gets the url of the signal.

 Gets the Unit of the signal.

 Compares two signals by name.

 Signal to compare with.
 True if names are equal.

 Gets the current signal adapter object.

 Adapter.

 Subscribe to an event handler based upon the EventID.

 Unsubscribes the event for the specified cookie.

 a collection of IOSignal objects

 finds a string by name

 name of signal to locate
 the signal if exist, otherwise null

 Delegates movement calls to implementing class.

 Start index for search. The next call will be supplied index + 1 as start index.
 Collection of signals to "search".
 The matching signal, if found.

 Checks if the signal matches the "search" criteria for the enumerator.

 The internal IOSystem class

 Handles disconnection from the controller.

 Connection status.

 This class handles all mastership requests / releases in the system.

 Initializes a new instance of the class.

 The controller.

 Checks if current user is master for the mastership resource.

 Resource to check.
 True if current user is master for the resource.

 Handles the host mastership request.

 True if the host succeeded to get mastership.
 Operation object.

 Handles the host release.

 True if the host succeeded to release the mastership.
 Release operation object.

 Releases mastership for the specified resource.

 The resource.

 Release RMMP

 Requests mastership for the specified resource.

 The resource.

 Subscribe to an event handler based upon the EventID.

 Unpacks the MastershipInfo and MastershipResource, gets the details in MastershipChangedEventArgs.

 Unsubscribes the event for the specified cookie.

 Initializes a new instance of the class.

 The manager.
 The resource.

 Host mastership request succeeded.

 Host release succeeded.

 Gets a value indicating whether this instance is master.

 true if this instance is master; otherwise, false.

 Gets a flag indicating if the TPU is master or not.

 Request mastership.

 The current mode.

 Releases mastership for this domain.

 Ensure mastership.

 Demands that the mode is valid for a request.

 The mode.

 Gets the controller mode.

 Gets the domain.

 The resource.
 Matching domain object.

 Gets the host resource fromt the internal type

 The resource.

 Gets all internal resources from the external flags.

 External flags resources.
 Internal.

 Gets the controller adapter.

 Gets the RMMP retry count.

 Checks if the current user has RMMP.

 Check if the mode requires rmmp.

 The mode.
 true if the mode requires rmmp.

 Releases the RMMP.

 Requests the RMMP from the controller.

 We may have lost rmmp due to a revoke on the controller,
 is isn't manifested in the HasRmmp() call so therefore we
 must verify the mastership status. If the FP has mastership
 then our rmmp isn't valid and we have to release and re-request it.

 Tries the release RMMP.

 True on success otherwise false.

 A mechanical unit

 True if the current object is the active unit.

 Gets the model of the mechincal unit, if not
 available an empty string is returned.

 Gets the serial number from a robot, or string.Empty
 if the mech isn't a robot.

 Gets the current target without external axes

 Gets the service info object for this mechanical unit.

 ServiceInfo object.

 Service information for an external axis is not available.

 Creates a time object.

 DeviceDAL object.
 DateTime with last start.

 Creates a service interval object from the mech unit DAL object.
 Uses current UI culture and No Era to calculate the number of
 days / year.

 DAL object.
 Service interval

 Creates a warning level object.

 DAL object.
 Warning Level

 The internal motion system object model.

 Gets the active mech unit.

 Gets the mechanical units.

 Gets / Sets the current speed ratio.
 Valid range between 0-100.

 Gets the url for the motion system.

 Cleanup code.

 Sets the active mech unit

 Unit to activate.

 Connection changed.

 Status of connection.

 Subscribe to an event handler based upon the EventID.

 Unsubscribe the event handler for the specified cookie ID.

 Handles all network scans in the system. Uses a weakreferenced
 instance that is created at startup

 This class is used when browsing for objects on
 the controller. The browser itself acts as the
 root node of browser.

 this is the a node in the browser tree.

 Clears the internal cache.

 Preloads the url.

 Gets the Childnodes.

 Childnodes.

 Traces the current node and down.

 Gets any cached childnodes.

 Array of cached nodes.

 This interface defines a api for internal
 access of a Controller object. Through this interface
 you can access data that are needed for interop with
 our internal api, RobAPI.
 This interface is not intended for external use.

 Gets the current client id if any client is
 logged on to the controller, otherwise -1.

 Used as second step initialization.

 Gets the execution status of controller.

 Gets the datafactory object.

 Gets the Rapid adapter object.

 Gets the UIInstruction object.

 Gets / Sets the remaining execution cycles.

 Gets the url of Rapid.

 Fetches the specified data. The path is as follows:
 0 = Task, 1 = Module, 2 = Symbol

 Path to symbol.
 Types flag.
 The value of the symbol.

 Fetches the specified data. The path is as follows:
 0 = Task, 1 = Module, 2 = Symbol

 Path to symbol.
 The value of the symbol.

 Gets motion task.

 Gets task selection state of tskname.

 Sets task selection state of tskname.

 Gets the TaskPanelItem/Task details which has triggered(among all the tasks) the TaskEnabledChanged event.
 Compares the initial and current Enabled changed property of all tasks to find out the TaskEnabledChanged event triggered task.

 TaskPanelItem which triggered TaskEnabledChanged event.

 Returns all matching symbols from the provided source.

 Symbol source.
 SearchProperties.
 DataType to search for.
 Expression to search for.
 All matching symbols.

 Handles any connection change events from
 the controller.

 Connection status.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.
 The number of cycles to execute the program.
 Check to perform prior to start.
 True to indicate that an exception shall

 be thrown instead of StartResult.Error result.
 Start result.		

 Stops the execution.

 Stop mode.

 Subscribe to an event handler based upon the EventID.

 Unpacks the ExecutionStatus, gets the details in ExecutionStatusChangedEventArgs.

 Unpacks the Task Selection State, gets the details in TaskEnabledChangedEventArgs.

 Unpacks the ExecutionEventInfo, gets the details in ExecutionChangedEventArgs.

 Unsubscribe the ConnectionStateChanged event handler.

 This event is raised when the task enabled property changes.

 This class is used as a utility class to split array
 strings into their parts

 Splits a array string into the specified length.

 String to split.
 Length of string.
 The subcomponents of the array.

 Gets the attributes of the module.

 WI 11962 PCSDK 5.60: Module.SaveToFile() give .mod file extension for SYSTEM module

 if system file ext will be .sys else .mod

 Gets the parent module object.

 This class defines the search algorithm.

 Searches for the specied expression using the supplied symbol search
 properties.

 This class searches for symbols in any symbol provider.

 Implement this interface on any class that can be
 searched for rapid symbols, such as Task and Module.

 Gets the internal controller object.

 Gets the execution status of the task.

 Gets / Sets the remaining execution cycles.

 Gets the name of the task.

 Gets the Task adapter object.

 Gets the symbol source object.

 Gets the block url for this task.

 Loads a module.

 The module path.
 The load mode.

 True if the load succeeded without any errors, otherwise false.

 Loads the rapid program.

 The path of the .pgf file.
 The load mode.

 True if the load succeeded without any build errors, otherwise false.

 Starts RAPID program execution.

 Regain mode.
 Execution mode.
 The number of cycles to execute the program.
 Check to perform prior to start.
 True to indicate that an exception shall
 be thrown instead of StartResult.Error result.
 Start result.		

 Stops the execution.

 Stop mode.

 WI 11962 PCSDK 5.60: Module.SaveToFile() give .mod file extension for SYSTEM module

 if system file ext will be .sys else .mod

 Set the position of the program pointer

 Set the position of the program pointer. PDD1184 WI 7802.

 The name of the task.
 The name of the module in which the routine is defined.
 A program position.

 Sets program pointer to a specific row in a RAPID module. PDD1184 WI 7802.

 The name of the task.
 The name of the module in which the routine is defined.
 The row number in this module.

 Set User PP to selected routine

 Name of the selected routine

 Clears and removes the current execution level and the next execution level in the hierarchy is restored

 Subscribe to an event handler based upon the EventID.

 Unpacks the PCP, gets the details in ProgramPositionEventArgs.

 Unsubscribes the event for the specified cookie.

 Gets the current ware object.

 Gets the name of the current system.

 Name of current system.

 Gets all installed systems.

 All installed systems.

 Handles connection changes.

 Connection status.

 User Authentication System
 	

 Used as second step initialization.

 Handles connection changed events for this subsystem.

 True if connected, otherwise false.

 Logs of the current user, if no user is logged
 on it ignores this call.

 Only for host logon operations, where the host
 already has performed the logon and registration
 and therefore has all the needed information.

 User.
 Id of registered user.

 logs off the current user

 attempts to logon a user to the system

 User to logon.		

 Logs of the current controller.

 Core impl of the logoff operation.

 Core impl of logon method.

 User to logon.

 Core impl of logon method.

 User to logon.
 Id of user.

 Represents the current physical state of a .

 Gets the physical state of the bus.

 Represents the current state of a .

 Gets the logical state of the bus.

 Unit data.
 	

 Initializes a new instance of the class.

 The controller.
 The name.

 Gets the type of the bus

 Gets the Physical state for this bus.

 Gets the Logical state for this bus.

 A collection of signal objects.

 Initializes a new instance of the class.

 Adds the specified value.

 The value.
 Index of value.

 Gets the index of the bus.

 The value.
 Index of bus if exists; otherwise -1.

 Inserts the bus at specified index.

 The index.
 The bus.

 Determines whether the collection contains the specified value.

 The value.

 	 true if the collection contains value; otherwise, false.

 this is a utility class that create instances of Units
 depending on the supplied IOBusType enum

 Creates a unit object depending on the supplied type.

 Internal bus object.
 Name of bus.
 the bus object

 Creates a IOBusCollection from an internal array of buses.

 Array of buses to create an array for.
 The buses collection.

 Represents the method that will handle the event of a .
 	

 Represents the method that will handle the event of a .
 	

 Represents the current state of a (physical and logical).

 Gets the physical state of the unit.

 Gets the logical state of the unit

 Represents the current physical state of a .

 Gets the physical state of the unit.

 Represents the current logical state of a .

 Gets the logical state of the unit

 Represents the current physical bit information on a .

 Gets the state of the unit (physical and logical).

 Gets the physical bit information for the output data on the unit.

 Gets the physical bit information for the input data on the unit.

 Provides data for the event.

 Initializes a new instance of the UnitStateChangedEventArgs class.
 		

 Gets the new state of the signal.
 		

 Unpacks to UnitState from Adapters IOUnitStateInfo.

 Provides data for the event.

 Initializes a new instance of the UnitSignalChangedEventArgs class.
 		

 Gets the state of the unit.

 Gets the out bits of the unit.

 Gets the in bits of the unit.

 Unit data.
 	

 Initializes a new instance of the class.

 The controller.
 The name.

 gets the type of the unit

 Gets the bus for this unit.

 Gets the Address for this unit.

 Gets the physical state for this unit.

 Gets the logical state for this unit.

 Subscribes to unit state changes.

 EventHandler
 EventPriority

 Unsubsribe to unit state changes.

 EventHandler

 Subscribes to signal changes on an unit.

 EventHandler
 EventPriority

 Unsubsribe to signal changes on an unit.

 EventHandler

 Occurs when the physical or logical state of the unit has changed, or if a bit (a signal) has changed on the unit.

 Occurs when a signal is changed on the unit.

 IOUnitBits data.
 	

 Gets the physical bit information on a unit. The bits represents the unit map
 configuration for the signal. If for example the signal on unit map 7 is set, this
 will be shown in data[0] = [1 0 0 0 0 0 0 0].

 Gets the mask information on a unit. It contains what bits in the "data area" that
 are valid. (There are units that has a size which is not a multiple of 8 bits).
 If a bit is "1" in the "mask area" the corresponding bit in the "data area" is valid.

 A collection of unit objects.

 Initializes a new instance of the class.

 Gets the at the specified index.

 Unit object.

 Adds the specified value.

 The value.
 Index of value.

 Gets the index of the unit.

 The value.
 Index of unit if exists; otherwise -1.

 Inserts the unit at specified index.

 The index.
 The unit.

 Determines whether the collection contains the specified value.

 The value.

 	 true if the collection contains value; otherwise, false.

 this is a utility class that create instances of Units
 depending on the supplied IOUnitType enum

 Creates a unit object depending on the supplied type.

 Internal unit object.
 Name of unit.
 the unit object

 Creates a IOUnitCollection from an internal array of units.

 Array of units to create an array for.
 The units collection.

 This class represent a analog signal.

 Initializes a new instance of the class.

 The controller.
 The name.

 Writes the porcentual value of the analog signal.

 A float value from 0 to 1 that represents the new procentual value.
 newPorcentualValue The procentual value is not between 0 and 1.		

 Reads the porcentual value of the analog signal.

 A float value from 0 to 1 that represents the actual procentual value.		

 This class represent a digital signal.

 Initializes a new instance of the class.

 The controller.
 The name.

 Gets a boolean expression to test if the signal is set
 or not. Uses Value > 0 to test.

 Gets the Max value for the signal.

 Gets the min value for the signal.

 The Min value.

 Generates a pulse on the digital signal.
 		

 Generates a pulse on a digital signal for a specific period of time.

 Time of pulse in milliseconds.

 Inverts the value of the digital signal.
 		

 Sets the value of the digital signal to 1.
 		

 Sets the value of the digital signal to 0.
 		

 Gets the digital value of the .

 This class represent a group signal.

 Initializes a new instance of the class.

 The controller.
 The name.

 Gets the Max value of the signal.
 Obsolete: Use GroupMaxValue instead

 Gets the maximum value of the group signal.
 An int value that represents the maximum value of the group signal

 Gets the Min value for the signal, always 0
 for a group signal.
 Obsolete: Use GroupMinValue instead

 Gets the Min value for the signal, always 0
 for a group signal.

 Gets / Sets the value of the signal.
 Obsolete: Use GroupValue instead

 Gets or sets the value of the group signal

 Writes a value of the group signal.

 New value of the signal.		

 Writes a value of the group signal.

 New value of the signal.

 Predefined filters used in search for IO signals.

 If two or more filters are combined, the result must meet all the criteria.

 Include all signals included except for safety signals.

 Include only System signals.

 Include only Digital signals.

 Include only Analog signals

 Include only Group signals.

 Include only Input signals.

 Include only Output signals.

 Include only Signals that belong to a certain unit.

 Include only Common signals. If this flag is set, all others are ignored.

 This class represents the IOSystem domain of a robot controller.

 Returns a signal object.

 The name of the signal.
 A object.

 Gets signals that match a defined filter from the robot controller.

 Defines the kind of signals to retrieve.
 A collection of objects.
 If no signal is retrieved the method still returns a object,
 but its Count is 0.

 GetSignals accepts a combination of several flags as input parameter.
 The retrieved signals meet all of the criteria.

 Gets signals that match a defined filter from the robot controller.

 Defines the kind of signals to retrieve.
 Defines the Unit to retrieve.
 A collection of objects.
 If no signal is retrieved the method still returns a object,
 but its Count is 0.

 GetSignals accepts a combination of several flags as input parameter.
 The retrieved signals meet all of the criteria.

 Returns an IO bus object.

 Name of the bus.

 A object.
 This example gets the bus named "Virtual1" from the robot controller.

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 Controller c = new Controller();
 Bus virtualBus = c.IOSystem.GetBus("Virtual1");
 IOBusPhysicalState physState = virtualBus.PhysicalState;
 IOBusLogicalState logState = virtualBus.LogicalState;

 Gets buses from the robot controller.

 A collection of objects.
 If no bus is retrieved the method still returns a object,
 but its Count is 0.
 This example gets all buses of the controller.

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 Controller c = new Controller();
 BusCollection buses = c.IOSystem.GetBuses();
 IOBusPhysicalState physState = buses[0].PhysicalState;
 IOBusLogicalState logState = buses[0].LogicalState;

 Returns an IO unit object.

 Name of the unit.

 A object.
 This example gets the unit named "PANEL".

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 Controller c = new Controller();
 Unit panelUnit = c.IOSystem.GetUnit("PANEL");
 string address = panelUnit.Address;
 string bus = panelUnit.Bus;
 IOUnitLogicalState logState = panelUnit.LogicalState;
 IOUnitPhysicalState physState = panelUnit.PhysicalState;
 string type = panelUnit.Type;

 Gets all IO units from the robot controller.

 A collection of objects.
 If no unit is retrieved the method still returns a object,
 but its Count is 0.
 This example gets the unit named "PANEL".

 using ABB.Robotics;
 using ABB.Robotics.Controllers;
 using ABB.Robotics.Controllers.RapidDomain;
 ...
 Controller c = new Controller();
 UnitCollection units = _controller.IOSystem.GetUnits();
 string address = units[0].Address;
 string bus = units[0].Bus;
 IOUnitLogicalState ulogState = units[0].LogicalState;
 IOUnitPhysicalState uphysState = units[0].PhysicalState;
 string type = units[0].Type;

 Predefined types of IO signals

 Analog and input

 Analog and output

 Digital and input

 Digital and output

 Group and input

 Group and output

 Unknown type

 This class represents an IO signal.

 Initializes a new instance of the class.

 The controller.
 The name.
 Flag to indicate a digital signal.

 Initializes a new instance of the class.

 The controller.
 The name.

 Gets or sets the value of the signal.

 Define if simulate setting of physical input-signals shall be used for the virtual controller.
 If InputAsPhysical is true is the signal's configured access level not checked.
 Supported from RW5.13

 sets the internal signal object

 Gets the of the signal.

 Gets the maximum value of the signal.

 Gets the minimum value of the signal.

 Gets the name of the unit the signal is mapped to.

 Gets the of the signal.

 Subscribes to signal changes.

 EventHandler
 EventPriority

 Unsubscribes to signal changes.

 EventHandler

 Occurs when the value or the state of the signal has changed.

 A collection of signal objects.

 Initializes a new instance of the class.

 Gets or sets the at the specified index.

 Signal object.

 Adds the specified value.

 The value.
 Index of value.

 Gets the index of the signal.

 The value.
 Index of signal if exists; otherwise -1.

 Inserts the signal at specified index.

 The index.
 The signal.

 Removes the specified value.

 The value.

 Determines whether the collection contains the spcefied value.

 The value.

 	 true if the collection contains value; otherwise, false.

 this is a utility class that create instances of Signals
 depending on the supplied IOSignalType enum

 Creates a signal object depending on the supplied type.

 Type of signal to create.		
 Internal signal object.
 Name of signal.
 the signal object

 Creates a IOSignalCollection from an internal array of signals.

 Array of signals to create an array for.
 The signals collection.

 Predefined quality status of a .

 The quality of the signal value is unknown.

 The quality of the value is good.

 The signal value is not useful.

 Represents the method that will handle the event of a .
 	

 Represents the current state of a .

 Gets the value of the signal
 A value that represents the logical value of the signal.		

 Gets the simulated status of the signal
 true the signal is simulated; false the signal is not simulated.		

 Gets the valid status of the signal
 One of the values.

 Equalses the specified state.

 The state.

 Determines whether the specified is equal to the current .

 The to compare with the current .

 	 if the specified is equal to the
 current ; otherwise, .

 Serves as a hash function for a particular type, suitable
 for use in hashing algorithms and data structures like a hash table.

 A hash code for the current .

 Operator ==s the specified s1.

 The s1.
 The s2.

 Operator !=s the specified s1.

 The s1.
 The s2.

 Provides data for the event.

 Initializes a new instance of the SignalChangedEventArgs class.
 		

 Gets the new state of the signal.
 		

 Defines the type of an Ipc message.

 Message

 Package

 Defines common results of calls to Ipc methods.

 Timeout

 OK

 This class is the entry point to the IPC functionality of the robot controller.
 IPC can be used with RW 5.10 and later.

 Maximum IPC message size (not including header)

 Represents an invalid number

 AdaptController

 Initializes a new instance of the class.

 The maximum size of an Ipc message.

 Returns the available Ipc queues of the controller.
 Can be used with RW 5.10 and later.

 Returns the maximum size of an Ipc package.

 Creates an Ipc queue.

 Name of the queue.
 The capacity (max number of messages) of the queue.
 Maximum size per message.
 The created queue.

 Controller c = new Controller();

 IpcQueue queue = c.Ipc.CreateQueue("RABQueue", 5, Ipc.MaxMessageSize);

 Deletes an Ipc queue.

 Queue ID

 Controller c = new Controller()

 int queueId = c.Ipc.GetQueueId("RABQueue");

 if (c.Ipc.Exists(queueId))
 c.Ipc.DeleteQueue(queueId)

 Checks if a named Ipc queue exists.

 The name of the queue.
 True if the named queue exists, otherwise false.

 Returns the ID of the specified queue name.

 The name of the Ipc queue.
 The id of the queue.

 Returns the queue name from a specified queue ID.

 The ID.
 The name or null if ID is missing.

 Gets an existing queue.

 Name of the queue.
 The queue.

 Returns an existing queue.

 Queue ID.
 The queue.

 Gets a ref to the ipc adapter.

 Gets a ref to the ipc adapter.

 Gets a list of IPCSlots

 Represents a IPC slot

 Gets the name of the slot

 Gets the slot identifier.

 Gets the size of slot queue

 Returns the maximum message size accepted by the receiver

 Indicates if the slot is accessible

 Represents an IPC slot

 Name of the slot.
 Slot identifier
 Size of the queue
 Max message size
 Remote accessible

 Represents an Ipc message.

 Sender

 Command

 User defined value.
 Type short is only supported by the controller.

 User information

 Status

 The size of the message data

 The message type

 The destination queue

 Data buffer

 Creates an Ipc message.

 The capacity of the message data

 Default constructor - creates a message with maximum capacity.

 Sets the data of the message.

 The data to set

 Copies the data of the message to a byte array

 The destination array

 Returns a copy of the data of the message.

 The data as a byte array

 Returns the total data capacity of the message.

 Returns a reference to the data of the message

 This type represents an Ipc queue, which can be used to send data between the controller and its clients.
 IPC can be used with RW 5.10 and later.
 Messages can be sent to the queue from other clients who knows the queue id. Only the creator of the queue can recieve messages from the queue.

 Messages must be sent and recieved from a MTA thread. This means that you shall not send and recieve messages from the UI thread. See for more information.

 Returns the name of the Ipc queue.

 Returns the ID of the Ipc queue.

 Returns the capacity (max number of elements) of the queue.

 Returns the size limitation for a message.

 Specifies whether the queue is remotely accessible or not.

 Constructor

 This method sends a message to a RAPID queue.

 The message to send.
 IPC can only be used with RW 5.10 and later.
 There must be code to receive the message in the RAPID program.
 No mastership is required to send a message.
 This method must be called from a MTA thread. Create a separate sender thread and use the method Thread.SetApartmentState() to set the apartment state to MTA before starting it.

 In this example a message (string;"test") is sent to a RAPID queue.

 private void SendData()
 {
 Controller c = new Controller();
 IpcQueue rapidQueue = c.Ipc.GetQueue("RMQ_T_ROB1");
 IpcMessage message = new IpcMessage();
 Byte[] data = new UTF8Encoding().GetBytes("string;\"test\"");
 message.SetData(data);
 rapidQueue.Send(message);
 }

 This method sends a message to the queue.

 This method must be called from a MTA thread. Create a separate sender thread and use the method Thread.SetApartmentState() to set the apartment state to MTA before starting it.

 The sender of the message
 The type of command
 A user defined value
 User information
 The data that will be sent
 if Data is invalid.

 Controller c = new Controller();

 IpcQueue rapidQueue = c.Ipc.GetQueue("RMQ_T_ROB1");

 Byte[] data = new UTF8Encoding().GetBytes("string;\"test\"");

 rapidQueue.Send(0, 0, 0, 0, data);

 This method sends a message to the queue.

 This method must be called from a MTA thread. Create a separate sender thread and use the method Thread.SetApartmentState() to set the apartment state to MTA before starting it.

 The sender of the message
 The type of command
 A user defined value
 User information
 The data that will be sent
 Length of the data that will be sent
 if Data is invalid.

 Controller c = new Controller();

 IpcQueue rapidQueue = c.Ipc.GetQueue("RMQ_T_ROB1");

 Byte[] data = new UTF8Encoding().GetBytes("string;\"test\"");
 Send string including null character
 rapidQueue.Send(0, 0, 0, 0, data, data.Length+1);

 This method receives a message from the queue.

 A timeout value in milliseconds.
 The received message (if any).
 The result of the call.
 IPC can only be used with RW 5.10 and later.
 This method must be called from a MTA thread. Create a separate reciever thread and use the method Thread.SetApartmentState() to set the apartment state to MTA before starting it.
 Calls to this method are blocking.

 QueueId is invalid.

 This example creates a queue and then tries to read a message from it.

 Controller c = new Controller();

 IpcQueue rabQueue = c.Ipc.CreateQueue("RABQueue", 5, Ipc.MaxMessageSize);
 IpcMessage message = new IpcMessage(Ipc.MaxMessageSize);

 rabQueue.Receive(1000, message);

 // Expecting IPC message data of type string. Convert it for later use.
 string messageData = new UTF8Encoding().GetString(message.Data);

 Creates an index accessor for a linked lists.

 ValueType of the linked list.

 Initializes a new LinkedListIndex.

 The list to index.

 Gets the value at the specified index.

 The index to access.
 The value.

 Utility class used to get the value from a linked list
 at the specified value.

 Gets the value at index.

 Type of list.
 List to access.
 The index to access.
 The value.

 Used to create a scope where all operations are executed in the
 context of a "LocalUser"

 Contains service information about the main computer of Controller.
 Not used for Virtual Controller.

 Initializes a new computer service info object.

 Gets/Sets the board type.

 Gets/Sets the Cpu info.

 Gets the single empty instance.

 Gets/Sets the size of RAM in Mega Bytes.

 Gets/Sets the temperature.

 Contains information about the settings on a network adapter.

 Default .ctor for external creation.

 Initializes a new NetworkSettingsInfo object.

 Address.
 Subnet mask.
 True if the settings are configured by dhcp.
 Gateway.
 Mac address.

 Creates a settings object from a list of strings.
 0: IP address
 1: Subnet mask
 2: Gatway
 3: Mac address

 True if dhcp is enabled.
 Settings.

 Gets the IP address.

 Set is only available if the instance is not set to read only. Otherwise an is thrown.

 Gets the single empty instance.

 Gets the gateway settings.

 Set is only available if the instance is not set to read only. Otherwise an is thrown.

 Flag indicating that Dhcp is used to configure the
 network of the controller.

 Set is only available if the instance is not set to read only. Otherwise an is thrown.

 Gets the Mac address. Note: You can't change the MAC
 address of a NIC.

 Set is only available if the instance is not set to read only. Otherwise an is thrown.

 Gets the subnet mask.

 Set is only available if the instance is not set to read only. Otherwise an is thrown.

 Checks if the objects are considered equal.

 Object to compare to.
 True if the object are equal, otherwise false.

 Checks if the objects are considered equal.

 Object to compare to.
 True if the object are equal, otherwise false.

 Serves as a hash function for a particular type.
 is suitable
 for use in hashing algorithms and data structures like a
 hash table.

 A hash code for the current .

 This generic enables enumeration of LinkedListNodes
 from a linked list.

 Type to enumerate.

 Event args for OperatingModeChanged event.

 Creates a OperationModeChanged event args object.
 		

 The new mode of the controller when operation mode is Changed

 A strongly-typed resource class, for looking up localized strings, etc.

 Returns the cached ResourceManager instance used by this class.

 Overrides the current thread's CurrentUICulture property for all
 resource lookups using this strongly typed resource class.

 Looks up a localized string similar to Attribute not available on type..

 Looks up a localized string similar to Operation not possible during a backup..

 Looks up a localized string similar to Backup directory already exists: {0}..

 Looks up a localized string similar to Cant compare with type..

 Looks up a localized string similar to Bad directory name..

 Looks up a localized string similar to EventHandler must not be null..

 Looks up a localized string similar to Bad remote file..

 Looks up a localized string similar to Must be a subclass of NotifyOperation..

 Looks up a localized string similar to Bad path..

 Looks up a localized string similar to Parameter is not valid..

 Looks up a localized string similar to String: {0} is not correctly formatted..

 Looks up a localized string similar to Procentual value '{0}' is not between 0 and 1..

 Looks up a localized string similar to Bad remote file..

 Looks up a localized string similar to Bad path for module..

 Looks up a localized string similar to Bad signal name..

 Looks up a localized string similar to Task name is bad..

 Looks up a localized string similar to The call was blocked by the current host..

 Looks up a localized string similar to Supplied buffer to small..

 Looks up a localized string similar to Can only get data for an instance of a type..

 Looks up a localized string similar to Host already registered..

 Looks up a localized string similar to Can't get RapidDataType for a type, only possible for data..

 Looks up a localized string similar to Type not supported for serialization as CfgAttribute..

 Looks up a localized string similar to Every cfg type can only have a single managed type. Cfg type: {0}..

 Looks up a localized string similar to CfgType with specified name not found..

 Looks up a localized string similar to Failed to create controller object..

 Looks up a localized string similar to Can't use a disconnected controller object..

 Looks up a localized string similar to The requested grant demand was rejected by the controller..

 Looks up a localized string similar to Remote directory already exists..

 Looks up a localized string similar to EventLog message not found..

 Looks up a localized string similar to Failed to create event strategy object..

 Looks up a localized string similar to Fill / FillFromString must be called..

 Looks up a localized string similar to A host is already registered..

 Looks up a localized string similar to Host Version may not be null..

 Looks up a localized string similar to Instance is write protected..

 Looks up a localized string similar to Argument must be larger then: {0}..

 Looks up a localized string similar to Name of host must be; non-null and Length > 0..

 Looks up a localized string similar to IAsyncResult not valid..

 Looks up a localized string similar to Provided url is malformed or null..

 Looks up a localized string similar to Mastership already held..

 Looks up a localized string similar to The {0} reference counter is < 0; this indicates that Release({0}) was called to many times..

 Looks up a localized string similar to More Release calls then Request calls..

 Looks up a localized string similar to Mastership not held..

 Looks up a localized string similar to Mastership resource is not supported: {0}..

 Looks up a localized string similar to Method not implemented on controller..

 Looks up a localized string similar to Name or password missing..

 Looks up a localized string similar to Current entry not available on enumerator..

 Looks up a localized string similar to Supplied argument not a COM error code..

 Looks up a localized string similar to Object already disposed..

 Looks up a localized string similar to Can't modify a readonly object..

 Looks up a localized string similar to Parameter value conversion is missing..

 Looks up a localized string similar to Regular expression can't be empty..

 Looks up a localized string similar to Not a valid ignore flag..

 Looks up a localized string similar to Not a valid value for a restore operation..

 Looks up a localized string similar to Operation not valid during a restore operation..

 Looks up a localized string similar to RMMP Release cant be called prior to RMMP request..

 Looks up a localized string similar to The RMMP request was not granted within the timeout limit..

 Looks up a localized string similar to Can't create signal for type: {0}..

 Looks up a localized string similar to Start index must be less then Stop index..

 Looks up a localized string similar to String argument must not be null or empty..

 Looks up a localized string similar to Unable to find specified system path: {0}..

 Looks up a localized string similar to Type: {0} or inherited class isn't [Serializable]..

 Looks up a localized string similar to Supplied Rapid data type was to complex to parse. Type: {0}..

 Looks up a localized string similar to Unable to create backing store for file cache..

 Looks up a localized string similar to Unable to find a controller with system id: {0}..

 Looks up a localized string similar to Unknown Category..

 Looks up a localized string similar to Unknown search criteria..

 Looks up a localized string similar to The controller has no authenticated user, call Logon() to authenticate a user..

 Looks up a localized string similar to Failed to start controller within specified time..

 Looks up a localized string similar to Controller must be in manual mode prior to this state..

 Looks up a localized string similar to Can only attach virtual controllers..

 Looks up a localized string similar to The controller isn't in a valid mode for a mastership request, mode must be: Auto, Manual or ManualFullSpeed..

 Base class for all info objects.

 Initializes a new InfoObject instance.

 ReadOnlyObject is a special object that may be
 Readonly to enable immutable objects even though
 properties have set operations.
 Will throw an InvalidOperationException if write
 is attempted when object is in ReadOnly mode.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 if set to true [is readonly].

 Gets a value indicating whether this instance is read only.

 	 true if this instance is read only; otherwise, false.

 Sets the Readonly flag.

 Demands write access to object.

 Callback during serialization when entire graph
 is deserialized, now we are allowed to lock the
 object IF it was locked during serialization.

 Send of callback.

 This class defines the interface of a resource that
 is controlled through the concept of Mastership.

 Call this method to request the mastership of
 the resource.

 Call this method to ensure the mastership of
 the resource.

 call this method to release the mastership of
 the resource.

 gets the current mastership state.

 This event is raised when mastership is changed.

 The data from a MastershipChanged event.

 Initializes a new instance of the class.

 Gets or sets the resource.

 The resource.

 Gets the current status of the mastership in the controller.

 Flag to signal if the current user is master or not.

 Unpack MastershipInfo to MastershipChangedEventArgs to return.

 Defines the delegate for the Mastership changed event.

 Defines mastership status of a robot controller resource.

 Requests mastership of a specified controller resource

 Resource to request mastership for.
 An object holding mastership of a specific resource.
 Mastership is held by another client.

 Ensure method helps for temporarily obtaining mastership for a Controller
 with MastershipPolicy set to Automatic (typically a VC).

 Resource to ensure mastership for.
 An object holding mastership of a specific resource.

 The operating mode is automatically set to Automatic for a VC connection if needed.
 Resources that were already held are not released when the returned token is disposed.
 If the Controller has MastershipPolicy set to Manual,
 or if the requested resources are already held, this method does nothing.

 private ctor to avoid object creation

 resource to control

 Releases the mastership as the object goes through the GC.

 True if the object is holding mastership, false if not.

 Gets or sets a flag to indicate if the object shall release its mastership
 during Dispose or not, this shall ONLY be changed if a operation forces the
 controller to a restart; otherwise leave this as is.

 Disposes this object.

 Releases any held mastership.

 Requests new mastership.

 Ensures new mastership.

 This event is raised when mastership is changed.

 Base exception for Rapid operations.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Thrown when a rapid module is missing.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 Thrown when a routine is missing.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The name.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Gets the name.

 The name.

 Gets data for serialization.

 See MSDN.
 See MSDN.

 Thrown when a rapid symbol is missing.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The name.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Gets the name of the missing symbol.

 See MSDN.

 See MSDN.
 See MSDN.

 Thrown when a task is missing.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The name.
 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 Gets the name.

 The name.

 See MSDN.

 See MSDN.
 See MSDN.

 This abstracts a ABB Regular exprssion. Use this instead of strings
 to avoid formatting errors.

 Creates the regular expression on the supplied string. The string
 MUST be the expression from the beginning.

 The expression.

 Compares two objects and returns true if the
 objects are considered equal.

 The object to compare with.
 True if the objects are considered equal.

 Compares two objects and returns true if the
 objects are considered equal.

 The object to compare with.
 True if the objects are considered equal.

 Gets the hashcode of the regular expression.

 The hash code.

 Matches all symbols

 New regular expression.

 Creates a regular expression that matches any char in the supplied set.

 Text to match.		
 New regular exrepsssion.

 Creates a regular expression that matches any char in the supplied set.

 Text to match.
 True to match any charachter in the text.
 New regular exrepsssion.

 Creates a regular expression that starts with the supplied text.

 Text to match.		
 New regular exrepsssion.

 Creates a regular expression that matches the supplied string exact.

 Text to match.
 New regular exrepsssion.

 "Casts" the expression object to a string object.

 The expression to cast.
 The string representation of the expression.

 Compares two expressions for equlity.

 expression 1
 expression 2
 true if the expressions are equal

 Compares two expressions for un-equlity.

 expression 1
 expression 2
 true if the expressions are unequal

 Adds two regular expressions into a third expression.

 Expression 1.
 Expression 2.
 The sum of the two expressions.

 Returns the string representation of the regular expression.

 The regular expression.

 Describes a RobotWare version. Two instances are considered equal
 if they have the same version and the same option objects. The
 name isn't regarded.

 Initializes a new instance of the class.

 The name.

 Gets the options.

 The options.

 Gets the version.

 The version.

 Equalses the specified obj.

 The obj.

 Merges the functionality of Equals(string) and Equals(NamedObject).

 Object to compare with.
 True if the names are equals.

 Gets the hash code of the object based on the name.

 Hash code for object.

 An option of the controller software.

 Initializes a new instance of the class.

 The description.

 Initializes a new instance of the class.

 The parent.
 The description.

 Gets the description.

 The description.

 Gets a value indicating whether this instance is sub option.

 	 true if this instance is sub option; otherwise, false.

 Gets the parent.

 The parent.

 Gets the sub options.

 The sub options.

 Equalses the specified info.

 The info.

 Determines whether the specified is equal to the current .

 The to compare with the current .

 	 if the specified is equal to the
 current ; otherwise, .

 Serves as a hash function for a particular type, suitable
 for use in hashing algorithms and data structures like a hash table.

 A hash code for the current .

 Returns a that represents the current .

 A that represents the current .

 A collection of robot ware info objects.

 Initializes a new instance of the class.

 Gets a static option collection normally used to avoid null references.

 Gets the option object at the specified index.

 Determines whether collection contains the specified value.

 The value.

 	 true if collection contains the specified value; otherwise, false.

 Copies to an array.

 The array.
 The start index.

 Gets the index of the value in the collection.

 The value.
 The index of the value if exist; otherwise -1.

 Holds a collection of RobotWareInfo objects.

 Initializes a new instance of the class.

 Gets the at the specified index.

 The value.

 Determines whether collection contains the specified value.

 The value.

 	 true if collection contains the specified value; otherwise, false.

 Get the index of the value in the collection.

 The value.
 The index of the value, if it exist; otherwise -1.

 Copies to an array.

 The array.
 The start index.

 Describes the currently running RobotWare.

 Initializes a new instance of the class.

 The info.
 The installed systems.

 Gets the currently installed systems of the controller.

 This is the base class of all public classes in the api.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The name.

 Performs application-defined tasks associated with freeing, releasing, or
 resetting unmanaged resources.

 Disposes the specified disposing.

 if set to true [disposing].

 Base class for public classes in the api that
 needs a connection to the contorller. Not for
 public use.

 Internal, not for public use.
 	

 Initializes a new instance of the class.

 The controller.
 The name.

 Initializes a new instance of the class.

 The controller.

 Context of internal controller.

 Accessor for controller object.

 Gets the url of the controller.

 Stream object against a controller.

 Controller.

 Initializes a new instance of the class.

 The controller.

 Context of internal controller.

 Accessor for controller object.

 Gets the url of the controller.

 Event args for StateChanged.

 Initializes a new instance of the class.
 		

 New state of controller.

 Unpacks the ControllerState from ROBAPI RobControllerState.

 Base class of all event args from the controller since
 they always contain a timestamp of the event.

 Initializes a new instance of the class.

 Gets the time when event occurs

 Timestamp

 Summary description for UasCollectionBase.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 if set to true [is readonly].

 When implemented by a class, gets a value indicating whether the is read-only.

 A collection of application grant objects.

 Initializes a new instance of the class.

 Gets or sets the at the specified index.

 The value at specified index.

 Set readonly for the collection and its objects.

 Adds an applicationgrant to the collection.

 Retrieves the index of a specific applicationgrant.
 Returns -1 if the applicationgrant can't be found.

 Inserts an application grant into the collection.

 Removes an applicationgrant from the collection.

 Removes an applicationgrant at a specific index.

 Clears the collection.

 Checks (by name) if the the collection contains a specific applicationgrant.

 A collection of grant objects.

 Initializes a new instance of the class.

 Gets or sets the at the specified index.

 The value.

 Set readonly for the collection and its objects.

 Adds a grant to the collection.

 Retrieves the index of a specific grant.
 Returns -1 if the grant can't be found.

 Inserts a grant into the collection.

 Removes a grant from the collection.

 Removes a grant at a specific index.

 Clears the collection.

 Checks (by name) if the the collection contains a specific grant.

 Grant configuration object.

 Initializes a new instance of the class.

 Gets or sets the grants.

 The grants.

 Gets or sets the application grants.

 The application grants.

 Information about an application grant.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The key.
 Type of the value.
 The start version.
 The end version.
 The list value.

 Initializes a new instance of the class.

 The key.
 The valuetype.
 The start version.
 The end version.

 Gets or sets the key.

 The key.

 Gets or sets the type of the value.

 The type of the value.

 Gets or sets the value.

 The value.

 Gets or sets the min value.

 The min value.

 Gets or sets the max value.

 The max value.

 Gets or sets the start version.

 The start version.

 Gets or sets the end version.

 The end version.

 Gets or sets the list value.

 The list value.

 Gets or sets the resource ID.

 The resource ID.

 Gets or sets the help ID.

 The help ID.

 Gets or sets the unit.

 The max value.

 Information about a grant object.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The name.
 The startversion.
 The endversion.

 Gets or sets the name.

 The name.

 Gets or sets the start version.

 The start version.

 Gets or sets the end version.

 The end version.

 Gets or sets the resource ID.

 The resource ID.

 Gets or sets the help ID.

 The help ID.

 A special list of objects.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The value.

 Adds a string to the collection.

 Retrieves the index of a specific string.
 Returns -1 if the string cannot be found.

 Inserts a string into the collection.

 Removes a string from the collection.

 Removes a string at a specific index.

 Clears the collection.

 Checks (by name) if the the collection contains a specific string.

 Set readonly for the collection and its objects.

 Special version for Uas.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The major.
 The minor.
 The revision.

 Gets or sets the major.

 The major.

 Gets or sets the minor.

 The minor.

 Gets or sets the revision.

 The revision.

 Summary description for UasStringCollection.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 if set to true [is readonly].

 Gets a value indicating whether the is read-only.

 This class abstracts the UAS system of the controller
 into the CAPI programming model.

 Checks if the current user has the supplied grant.

 Grant to check for.
 True if grant is held by the user.

 Checks if the current user has the required grant.

 grant to check for.
 Value of grant.
 true if the user has the grant.

 Checks if the current user has the required grant.

 grant to check for.
 true if the user has the grant.

 Checks if the current user has the required grant.

 grant to check for.
 The value of the grant.
 true if the user has the grant.

 Demands the Grant. Throws a GrantDemandRejectedException on rejections.

 Grant to demand.

 Checks if the current user has the required grant.

 grant to check for.		
 The value of the grant.

 Checks if the current user has the required grant.

 grant to check for.		

 Checks if the current user has the required grant.

 grant to check for.		
 Value of the grant.

 Get the grants of the current user.

 Get resource definitions for all available grants.

 abstracts a user in the system

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The name.

 Initializes a new instance of the class.

 The name.
 The password.

 Initializes a new instance of the class.

 The name.
 The password.
 The application.

 gets / sets the password of the user

 gets / sets the application

 Gets a flag indicating that the object is
 readonly.

 returns the default user for this application

 Demands write access to the object, throws an
 invalid operation exception if write access isn't
 granted.

 Unpacks the AutoConditionsChanged, gets the AutoCondList in AutoConditionsChangedEventArgs.

 Delegate for async controller starts.

 Gets the state of the virtual controller.

 No controller is attached to the object.
 Either it isn't started, is stopped or detached.

 The controller is starting.

 The controller is started.

 The Started has been stopped.

 Administration class for virtual controller objects.

 Creates a virtual controller object.

 Path to system directory.

 Creates a virtual controller object. This is private and
 for internal use only.

 Gets the ControllerInfo object for this virtual controller.

 Gets a virtual panel for this virtual controller.

 Path to the system directory.

 Gets the current state of the Virtual Controller object.

 Attaches a virtual controller object to an existing virtual controller.

 Controller to attach.
 The attached controller.

 Attaches a virtual controller object.

 System id for controller to attach.
 The attached controller.

 Begins a async start controller operation. The state will
 contain the VirtualController object.

 System path.
 Start behavior of controller.
 Callback to call when operation completes.		
 The async result for this operation.

 Begins a async start controller operation.

 Start behavior of controller.
 Callback to call when operation completes.		
 The async result for this operation.
 State for this operation. If this is null then the current object will be stored in state.
 The async result for this operation.

 Detaches the current controller from this object. This operation
 can not be undone without creating a new object.

 Disposes the current VC object, if connect it will disconnect.

 Ends the async start operation.

 Result from BeginStart operation.

 Gets the System id from the path.

 Virtual controller directory.
 The system id of the system.

 Gets the System id from the path.

 Virtual controller directory.
 The system id of the system.		

 Starts a new VirtualController.

 System path.		
 The virtual controller object.	

 Starts a new VirtualController.

 System path.
 Controlls the start behavior of the controller.
 The virtual controller object.		

 Stops the virtual controller. The controller must be started
 before this method can succeed.

 Defines the start mode of a Controller.

 Restart with current system and current settings.

 Delete current system and start boot server.

 Restart and delete programs and modules.

 Restart with current system and default settings..

 Restart and select another system.

 Shut down

 Restart from previously stored system.

 handles all specific functions that are specific to
 the virtual controller. Through this interface we can
 change most "settings" on the panel of the controller.

 private ctor to avoid object creation

 Makes sure to disconnect any existing subscriptions.

 Gets / sets the acknowledge behavior of mode changes.

 attaches a panel object to a controller

 controller to attach, must be virtual
 the panel object

 Starts an asynchronous operating-mode change operation.

 New mode of controller.
 Callback of completion routine.
 User defined state object.
 Async result.

 Starts an asynchronous state change operation of controller.

 New state of controller.
 Callback of completion routine.
 Async result.

 New controller operating mode, no Change modes are valid.

 New controller operating mode.	

 Starts a change operating mode and waits for specifed time
 for the operation to complete. Throws a timeout exception if
 the new mode isn't reached in the specified time.

 New mode of the Controller.
 Max time to reach new mode.

 Starts a change operating mode and waits for specifed time
 for the operation to complete. Throws a timeout exception if
 the new mode isn't reached in the specified time.

 New mode of the Controller.
 Max time to reach new mode.

 This completes the change operating mode async operation.

 Enable or disable the device.

 New enable state of the device.

 Performs application-defined tasks associated with freeing, releasing, or
 resetting unmanaged resources.

 Pre acknowledges any mode changes.

 Ack type

 Changes the current ACK mode.

 True to start auto ack from this object.

 Clean up of current object.

 True if called in dispose context.

 Gets the acknowledge needed for this mode.

 Mode to ack.
 Ack.

 Callback for autochange events.

 Data object.
 Timestamp of event.

 this exception is thrown if an Attach operation failes.
 NOTE: You cannot attach anything but virtual controllers.

 Initializes a new instance of the class.

 Initializes a new instance of the class.

 The message.

 Initializes a new instance of the class.

 The message.
 The inner exception.

 Initializes a new instance of the class.

 SEE MSDN.
 SEE MSDN.

 See MSDN.

 See MSDN.
 See MSDN.

 Specialization of the Url class to represent a block url.

 Only for internal use.

 Private constructor to avoid external creation.

 Creates a new BlockUrl object from a string.

 String to create BlockUrl object from.
 A new BlockUrl object.

 Creates a new Url object from a complete url and a block url. Use the
 intersection index to determine where the intersection will be.

 Url to append with block.
 Block url to append.
 Index within block where the intersection will be.
 The new complete url.

 Creates a new Url object from a complete url and a block url. Use the
 intersection index to determine where the intersection will be.

 Url to append with block.
 Block url to append.
 The new complete url.

 The BaseException class is the base class for all exceptions
 within the PC SDK.

 Overloaded constructor.
 	

 Overloaded constructor.

 The message of the exception.

 Overloaded constructor.

 The message of the exception.
 Inner exception.

 Deserialization constructor.

 See MSDN.
 See MSDN.

 Gets/Sets the extended error information.

 Obsolete.

 Implements ISerializable interface.

 See MSDN.
 See MSDN.

 This exception is thrown whenever a timeout is reached.

 Creates a timeout exception object.

 Creates a timeout exception object.

 The message.

 Creates a timeout exception object.

 The inner exception.
 The message.

 Deserialization constructor.

 See MSDN.
 See MSDN.

 This class handles the conversion between RobApi HRESULTS and
 .NET PC SDK exceptions. It is a utility class and can not be
 instantiated.

 Only for internal use.

 Generates a public exception that corresponds to the provided error code.

 The hresult to create an exception for.

 Generates a public exception that corresponds to the provided error code and internal exception.

 The hresult to create an exception for.
 The original exception

 If exception is an , the innermost exception
 and its hresult is used as basis for the created exception.

 Generates a public exception that corresponds to the provided error code.

 The hresult to create an exception for.

 Generates a public exception that corresponds to the provided internal exception.

 If exception is an , the innermost exception
 is used as basis for the created exception.

 Generates a public exception that corresponds to the provided error code and internal exception.

 The hresult to create an exception for.
 The original exception

 If exception is an , the innermost exception
 and its hresult is used as basis for the created exception.

 Creates a new W32 exception with GetLastError() as inparameter
 for the constructor.

 W32Exception object.

 True if the hresult is an failure code.

 The hresult to verify.

 True if the code is an error code.

 True if the hresult is an failure code.

 The hresult to verify.

 True if the code is an error code.

 \Returns true if the hresult is a success code.

 The hresult to verify.

 True if the code is a success code.

 \Returns true if the hresult is a success code.

 The hresult to verify.

 True if the code is a success code.

 Holds information for a backup event.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.
 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Defines the controller adapter interface.

 Defines the interface of a data adapter.

 Gets the value.

 The value as string.

 Sets the value.

 The value as string.

 Subscribe to an event handler based upon the EventID. In this case only one SubscribeOnValueChange eventhandler.

 Defines the interface of a Ipc adapter.

 Get the max package size that can be used from controller

 Get max standard message size from controller.

 Gets the name for a queue from the id.

 The id.
 The name or null.

 Gets the id for a queue from the name.

 The name.
 The id or -1.

 Creates a queue on the controller.

 The name.
 The size of the queue.
 The size of the message.
 The queue id.

 Deletes the queue by it's id.

 The queue id.

 Receives a byte array from the ipc queue.

 The timeout.
 The id.
 The buffer.
 The Size of buffer.
 The sender id.
 The command.
 The message type.
 The user defined value.
 The user defined data.

 Sends a buffer to the ipc queue.

 The id.
 The destination id.
 The buffer.
 The command.
 The Type of message.
 The user defined value.
 The user defined data.

 Sends a buffer to the ipc queue.

 The id.
 The destination id.
 The buffer.
 Length of the buffer.
 The command.
 The Type of message.
 The user defined value.
 The user defined data.

 Defines the interface of an object browser instance.

 Gets all the children from the current node.

 The children.

 Defines the physical state for a bus.

 Unknown.

 Halted

 Running

 Error.

 Startup.

 Init

 Defines the logical state for a bus.

 Unknown.

 Halted

 Running

 A IOBus data object. Contains data for a bus.

 Name of bus.

 Type of bus.

 State of bus.

 Defines the physical state for a bus.

 Unknown.

 Deactivated

 Running

 Error.

 Unconnected.

 Unconfigured

 Startup

 Init

 Defines the physical state for a bus.

 Unknown.

 Disabled.

 Enabled.

 A IOUnitData data object. Contains data for a unit.

 Mask of unit.

 data of unit.

 Internal.

 Undefined

 Rapid resource

 Configuration resource

 Motion system resource

 Information stream resource

 All

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 Internal.

 A Rapid Symbol data object. Contains data for a
 Rapid symbol. The content varies heavily on the
 Type variable. See SymbolFactory.h for populating code.

 Name of symbol.

 Type of symbol.

 BlockUrl of type, only valid for data (var, pers, const).

 Url of current symbol.

 Dimensions for data.

 The underlying type of a alias.

 Properties of symbol.

 Task state in selection panel

 Commment

 Commment

 Commment

 Comment

 Commment

 Commment

 Commment

 Pool factory delegate.

 The object type.
 The bind target arg.
 The target object.
 The created object.

 Marks a class for recyling within an object pool.

 Recycles the object.

 Object to recycle.

 Defines the interface for an object pool.

 Gets an object from the pool and binds it to the target.

 The bind target.
 An object from the pool.

 Registers a factory object.

 The factory.

 Implements this interface on a class to mark it as poolable. (Required)

 Binds this object to a pool.

 The pool.

 Binds the object.

 Target data.

 Unbinds the object.

 Releases the object from the pool.

 This exception is thrown if an operation fails when
 the caller doesn't have the required mastership privilege.

 Initializes a new MasterReject instance.

 Initializes a new MasterReject instance.

 The message.

 Initializes a new MasterReject instance.

 The message.
 The inner exception.

 Initializes a new MasterReject instance.

 See MSDN.
 See MSDN.

 Implements ISerializable.

 See MSDN.
 See MSDN.

 This exception is throw in a operation fails due to the
 current mode of the controller, ie a user tried to perform
 a operation that isn't supported in current mode.

 Initializes a new ModeRejectException instance.

 Initializes a new ModeRejectException instance.

 The Message.

 Initializes a new ModeRejectException instance.

 The Message.
 The inner exception.

 Initializes a new ModeRejectException instance.

 See MSDN.
 See MSDN.

 Implements ISerializable.

 See MSDN.
 See MSDN.

 Base exception type for all exceptions that are raised by the
 ;
 and that supports lazy loading of the message.

 Mostly for internal use, external usage should be limited to
 try/catch(...) statements.

 Initializes a general exception object.

 Creates a general exception object.

 The message.

 Creates a general exception object.

 The inner exception.
 The Message.

 Deserialization constructor.

 See MSDN.
 See MSDN.

 Get the message.

 \Exceptions of this type is thrown by the
 if no specialized type is registered for a HRESULT.

 Only for internal use.

 Creates a GenericController Exception object.

 Creates a GenericController Exception object.

 The Message.

 Creates a GenericController Exception object.

 The Message.
 The inner exception.

 Creates a GenericController Exception object. Deserialization
 constructor.

 See MSDN.
 See MSDN.

 Fixed size object pool.

 The pooled type.
 The type of the bind argument.

 Initializes a new instance of ObjectPool class.

 The max ammount of pooled objects.
 Object factory.

 Initializes a new instance of ObjectPool class.

 The max ammount of pooled objects.

 Disposes the object pool and all pooled objects.

 Gets an object from the object pool.

 The bind argument.
 The object.

 Recycles an pooled object.

 The pooled object.

 Registers a factory object.

 Holds two performance counters, one process instance
 and one global instance.

 Creates a new performance counter object.

 The counter name.

 Increments both counters.

 Increments both the process and global counters.

 Gets the process value.
 (For test)

 Gets the global value.
 (For test)

 This operator shall not be used to any calculations
 since it will always return 0.

 The counter to increment.
 This object.

 Decrements the counter by one.

 The counter to increment.
 This object.

 An url is the internal type used to address any resource on
 the controller.

 Only for internal use.

 The separator used within a url.

 Only for internal use.

 The separator as string.

 Only for internal use.

 The default resize value.

 Only for internal use.

 The default padding size.

 Only for internal use.

 Internal.

 Internal.

 Internal.

 Private constructor to avoid external object construction.

 Flag to determine if incomplete
 urls are allowed.
 The padding of url object.
 The url to create object for.

 Private constructor to avoid external object construction.

 The url.
 The padding.

 Private constructor used to create a clone.

 The object to clone.

 Private constructor used to create a copy of the supplied
 url.

 The object to clone.
 The padding.

 gets the LastPart of the url

 Returns the last part of the Url as a name, ie without the preceding /

 the length of the url

 Appends the content to the url, all items will get an appended slash.

 Root url.
 Parameter list.
 The complete url.

 Appends a single string to current url.

 Root url.
 New part to add, must be prefixed with /		
 The new url.

 Appends a single string to current url.

 Root url.
 New part to add, must be prefixed with /
 True to append slash.
 The new url.

 Appends a single string to current url.

 Root url.
 New part to add, must be prefixed with /
 New part to add, must be prefixed with /
 True to append slash.
 The new url.

 Appends a single string to current url.

 Root url.
 New part to add, must be prefixed with /
 New part to add, must be prefixed with /
 New part to add, must be prefixed with /
 True to append slash.
 The new url.

 Appends a single string to current url.

 Root url.
 New part to add, must be prefixed with /
 New part to add, must be prefixed with /
 New part to add, must be prefixed with /
 New part to add, must be prefixed with /
 True to append slash.
 The new url.

 Appends two strings into a correct url object.

 String one.
 String two.

 The url from the combined strings.

 Creates a new url from a string.

 The string.

 The url object.

 Creates a new empty url object.

 The empty url object.

 This method extracts the formatted controller Url from any
 url string.

 Url to extract controller Url from\-

 The url of the controller.

 Creates a "child" url object.

 The parent url object.

 The new Url object.

 Gets the parent url at specified level.

 Level or parent, 1 is immediate parent.

 The parent url.

 Gets the parent url.

 The parent url.

 appends a single url part to the current url

 url to append

 Appends the content of the parts to the root url.

 Root of new url.
 Part to append or null.
 Part to append or null.
 Part to append or null.
 Part to append or null.
 Part to append or null.
 True to append /.
 New Url object.

 Appends parts to current url.

 The part to append or null.
 The part to append or null.
 The part to append or null.
 The part to append or null.
 Number of parts.
 True to append a / infront of all parts.

 Gets the last part of the url as string.

 The last part of the url.

 gets the parent url

 Parent level, 1 is immediate.
 the parent url

 builds a part of the url depending on the stop
 and start indicies

 index to start at
 index to stop at
 the partial url built

 builds an url to the _url field
 		

 checks if the current state of the object is
 big enough to allow adding of a part

 true if possible

 splits the string into parts but leaves the separator
 in each subpart

 string to split
 signals that the method is used to split a string to append
 this is the number of elements that are normally padded to
 every url to avoid reallocation when the url is grown
 all sub parts or the same string if none is found

 this method remove any trailing Separatores that
 the user might pass, it asserts on any such
 occurences to notify the developer of the trailing
 Separator charachter

 string array to check				
 the array without trailing Separatores if such is found

 this method remove any trailing Separatores that
 the user might pass, it asserts on any such
 occurences to notify the developer of the trailing
 Separator charachter

 string array to check
 this indicates the last part in the
 array, this is used if the array contains less elements
 then its capacity
 the array without trailing Separatores if such is found

 removes any trailing slahes from the supplied url string

 url to trim
 the string without any trailing Separatores

 appends any preceding separators if such is missing

 url to verify
 a correctly formated url

 Grows the specified array with the term.

 The array to grow.
 The factor used to grow the array
 with.

 The new array.

 grows the specified array with the term?

 array to grow
 factor used to grow the array with
 the new array		

 this is the internal implementation that returns
 the build url of this instance. This method shall
 always ne used internally to get the _url

 compares two instances of the url class

 instance one
 instance two
 true if both objects are considered equal

 compares the url object with an string that
 holds another url

 instance one
 instance two
 true if equal

 calling this method invalidates the current
 _url and forces a rebuild of the url at next
 access

 Add operator between a url and a string.

 The url object.
 The string.

 The new url with the string appended.

 implicit conversions from url to string handled by this
 method

 url to convert into a string
 the corresponding string

 indexer for url to get the corresponding level
 in the url

 Equality operator between two urls.

 The url object.
 The string object.

 True if the string and url are considered equal.

 Inequality operator between a url and a string.

 The url object.
 The string object.

 True if the string and the url isn't considered equal.

 Equality operator between two urls.

 The url object.
 The string object.

 True if the string and url are considered equal.

 Inequality operator between a url and a string.

 The url object.
 The string object.

 True if the string and the url isn't considered equal.

 Equality operator between two urls.

 The left hand statement.
 The right hand statement.

 True if the urls are considered equal.

 Inequality operator between two urls.

 The left hand statement.
 The right hand statement.

 True if objects are not equal.

 Checks if this instance is equal to the supplied object
 instance that is passed to this method.

 The object to compare this instance with.

 True if the objects are considered equal.

 Gets the hash code of the url, this is the same as the hash
 code for a string with the same content, ie we use the
 GetHashCode() method on the build _url field to get this
 value.

 The hash code for the url.

 \Returns the Url in string form.

 The url as string.

 \Returns the Url in string form.

 The index to start extraction from.
 The index to stop extraction from.

 The url as string.

 \Returns the Url in string form.

 The index to start at.

 The url as string.

 Internal.

 Internal.

 Creates a new empty url object.

 The padding.

 Gets the internal parts of the url as a string array.

 The internal parts.

 IEnumerable implementation for Url.

 The enumerator object.

 This attribute is used to mark a type for a required licensed
 function.

 Only for internal use.

 Compares two instances of SplFunctionAttribute, they are
 considered equal if name and version are identical.

 Initializes a new instance of the class.

 The function.
 The version.

 Gets/Sets a flag to indicate if the internal function shall be checked
 as "part" of this function.

 Gets the comparer object for SplFunctions.

 Gets/Sets a flag to indicate if the function shall be checked during runtime
 or designtime. Any designtime licenses are also checked at runtime to verify
 that they where available on the computer during the build.

 Gets the name of the function.

 Gets the version of the function.

 Creates RobControllerConnection one object for each controller and returns the object if already exists.

 Unsubscribes the event for the specified cookie.

 Add TaskPanelItem to the list

 Set default search props as a starting point.

 Set default search props as a starting point. And assign the specified properties.

 Add UIParam to the UIParamsFactory list.

 Unpacks eventInfoExecutionChanged to an integer.

 Gets the remaining execution cycles.

 Gets the execution status of the RAPID.

 Sets the cycleId as execution cycles.

 Gets the Record Components of the UserDefined record as mentioned in the url.

 Get symbool data for the specified url.

 Starts RAPID program execution.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Stops RAPID execution according to the specified mode.

 Task activated/deactivated
 Get the task selection panel and its items with state.

 Set cannot be done from remote clients and is allowed from local clients only.

 Set cannot be done from remote clients and is allowed from local clients only.
 Set requires controller to be in manual mode.

 Writes UIInstruction for the specified stackUrl and data in the List.

 Reads UIInstruction arguments based upon UIInstruction and stackUrl + argument names of instruction.

 Subscribe to an event handler based upon the EventID. UIIn

 Defines the different UIInstruction event types.
 It is similar to UIInstructionEventType of ABB.Robotics.Controllers.RapidDomain, created in Adapters to avoid cyclic reference.

 Undefined

 Post event type, eg. TPWrite, TPErase

 Send event type, UI-Instructions of this type can be aborted/closed/confirmed, eg. TPReadNum, UIListView

 UI-Instruction aborted/closed/confirmed by the operator.
 If you receive a new Send event type from the same task,
 the previous dialog should be removed and the new dialog displayed, as a RAPID task can only handle
 one dialog. This may happen if RAPID execution is stopped while a UI-Instruction dialog is being displayed,
 then restarted and executing a new UIInstruction.

 Unpacks _UIInstructionEventData string from the event 'UIInstructionChanged' to 'UIInstructionEventData'.

 Unpacks the ExecutionState returned from the event handler.

 Add InstanceItem to the list

 Constructor for Configuration

 Loads a configuration file into the database.

 The path. (On the controller).
 The load mode code.

 Loads a configuration file into the database.

 The path. (On the controller).
 The load mode in RobCfgLoadMode format.

 Remove all external instances in a domain.

 Remove and free all unprotected instances of the specified domain.
 Requires UAS grant UAS_CFG_WRITE.

 Saves database domain to a specified file.

 Path of the destination file.

 The method overwrites the specified file if it exists.
 Requires UAS grant UAS_BACKUP.

 Gets the TypeCode of the attribute.

 Flag that signals that the object is readonly or not.

 object Id
 boolean value

 Creates an object with the specified name.

 Name of instance.
 The new object.

 Deletes the given object from the database.

 Id of the instance

 Sets the value of the attribute.

 Id of attribute to set.
 Name of attribute to set.
 Index of attribute,1-based.
 New Value of attribute.

 Returns the value of the attribute.

 Id of attribute to fetch.
 Name of attribute to fetch.
 Index of attribute, 1-based.
 The value of the attribute.

 Gets the CfgInstance Id for the specified name.

 Gets all instances for the specified CfgDomainType.

 Gets attributes list for the specified CfgDomainType.

 Gets the Attribute info for the specified attribute name.

 Specifies how mastership should be handled by a GUI client

 Acknowledge the controller.

 Cancel held privileges or pending request.

 This method compresses the given directory and return the path of compressed file.

 path of directory to compress
 target path of compressed file
 target path of compressed file

 This method compresses the given directory and return the path of compressed file.

 path of directory to compress
 target path of compressed file (Temporary location)

 To check if the given option is present.

 Check if Mastership is already held.

 Check if Mastership is already held Local (TPU).

 Checks if the current user has RMMP.

 Checks for possible mismatches and other problems with a backup.

 Path of directory.
 What to include from backup.
 What errors to ignore.
 Internal use only
 Internal use only
 True if restore will complete successfully.

 Creates a queue on the controller.

 The name.
 The size of the queue.
 The size of the message.
 The queue id.

 Deletes the queue by it's id.

 The queue id.

 Gets the Backup version info for the specified Controller path.

 Gets the current RobIPMethod is DHCP status.

 Gets all installed systems from the controller.

 Gets the controller LAN adaptor settings.

 Sets the controller LAN adaptor settings.

 Fixed IP or DHCP.
 IP to use when is configured.
 Subnet mask to use when is configured.
 Default gateway to use when is configured. May be left empty.

 Get max standard message size from controller.

 Get the max package size that can be used from controller

 Gets the id for a queue from the name.

 The name.
 The id or -1.

 Gets the name for a queue from the id.

 The id.
 The name or null.

 Gets the SystemName of the Controller.

 Get controller environment variable value.

 string name
 string

 Gets the name of the controller.

 Gets a list of IPCSlots.

 Restart the controller with given Restart Mode

 Restart Mode

 Receives a byte array from the ipc queue.

 The timeout.
 The id.
 The buffer.
 The Size of buffer.
 The sender id.
 The command.
 The message type.
 The user defined value.
 The user defined data.

 Receives a byte array from the ipc queue.

 The timeout.
 The id.
 The buffer.
 The length of buffer.
 The sender id.
 The command.
 The message type.
 The user defined value.
 The user defined data.

 Sends a buffer to the ipc queue.

 The id.
 The destination id.
 The buffer.
 The command.
 The Type of message.
 The user defined value.
 The user defined data.

 Sends a buffer to the ipc queue.

 The id.
 The destination id.
 The buffer.
 Length of the buffer.
 The command.
 The Type of message.
 The user defined value.
 The user defined data.

 Sends a buffer to the ipc queue.

 The id.
 The destination id.
 The buffer.
 Length of the buffer.
 The command.
 The Type of message.
 The user defined value.
 The user defined data.

 Release Mastership for the specified resource.

 Request Mastership for the specified resource.

 Ensure Mastership for the specified resource.

 Restart the controller with given Restart Mode

 Restart Mode

 Performs a Restore operation of a controller system.

 Path to the backup.
 Defines what to restore from the backup.
 Defines what mismatches between current system and backup to ignore.
 Flag to indicate if the backup folder shall be removed.
 Internal use only
 Internal use only

 Requires mastership of Rapid and Configuration domains.
 Requires UAS_RESTORE grant.
 Requires Auto mode.

 Checks Availability preconditions for performing an action on the controller.

 Required UAS grants (can be null)
 Required mastership resources (can be null)

 Reason why the action is not permitted, or DisableReason.None if all conditions are met.

 Mastership is only checked for a connection with MastershipPolicy.Manual.

 Gets the current state of the controller.

 ControllerState

 Sets the ControllerState of the Controller.

 This method returns System Time

 Returning System Time

 Gets the current time server in use by the controller.

 IP, DNS name or null/empty.

 Sets the NTP time server to be used by the controller.

 IP or DNS name. Null or empty to clear the current setting.
 May only be used on a Real Controller.

 Gets the current time zone in use by the controller.

 Time zone as specified in the time zone database (also known as Olson database) or null/empty.

 Sets the time zone to be used by the controller.

 Time zone as specified in the time zone database (also known as Olson database). For example: Europe/Stockholm.
 May only be used on a Real Controller.

 Set the system time

 Time to Set

 Gets the Controller Operating Mode.

 Request Manual Mode Previliges to modify.

 Check if Backup process in progress

 boolean value

 Refresh a request made by RequestManualModePrivileges.

 Initiate the Backup process

 location of to take backup

 Unpacks RobAutoCondition array from the event handler to ControllerAutoCondition list.

 Unpack the details from the event to MastershipInfo to return.

 Unpacks Backup event properties Finished and SequenceNo to BackupEventInfo.

 Adds IpcSlotInfo to SlotInfoFactory by unpacking RobIPCSlot.

 Gets storage devices for the controller.

 Subscribe to an event handler based upon the EventID.

 Return isConnected from eventhandler.

 Unpacks the RobControllerState into a ControllerState.

 Unsubscribe the ConnectionStateChanged event handler.

 Adds RobAutoCondition to the ControllerAutoConditionFactory.

 Gets the value of the RapidData for the specified url.

 Sets the given value of the RapidData for the specified url.

 Subscribe to an event handler based upon the EventID. In this case only one SubscribeOnValueChange eventhandler.

 Opens a stream with the specified name and access.

 Closes the stream object.

 Reads a sequence of bytes from the stream.

 Writes a sequence of bytes to the stream.

 Subscribe to an event handler based upon the EventID.

 Add RobFileInfo to the list.

 Creates a directory on the Robot Controller.

 Copy Local Directory to Remote Controller

 Copies a file locally on the controller, from the source to the destination

 Gets a file from the Robot Controller and stores it on the local system.

 Verify that directory exists in the robot controller.

 Verify that file exists in the robot controller.

 Lists all the files and directories in the specified path of the robot controller.

 Renames a file or directory on the controller.

 Removes the directory from robot controller with specified path.

 Stores a file from the local system to the Robot Controller.

 Gets the ControllerFileEntry for the specified path.

 Gets the IOBusStateInfo for a specified bus.

 Get RobIOBusProperties for a specified IOBus.

 Translate state from RobIOBusLogicalState and RobIOBusPhysicalState to IOBusLogState and IOBusPhysState respectively.

 Gets the IOSignalTypes for the specified signal.

 Gets the value of the signal.

 Gets the value of the group signal

 Sets the value of the digital signal to 0.

 Value of the digital signal
 Flag if signal is Digital
 Flag if physical input-signals shall be used for the virtual controller.

 Sets the value of the group signal

 value of the group signal
 Flag if physical input-signals shall be used for the virtual controller.

 Gets the state info for the Signal.

 Generates a pulse on the digital signal.

 Duration of pulse
 Flag if physical input-signals shall be used for the virtual controller.

 Inverts the value of the digital signal.

 Flag if physical input-signals shall be used for the virtual controller.

 Intializes the search properties RobIOSignalSearchProperties for SearchIOSignals.

 Gets the properties from MgROBAPI and assigns it to the function paramters.

 Subscribe to an event handler based upon the EventID.

 Adds itemRobIOSignalObject Name to IOSignalNameFactory.

 Gets all Signals by Category.

 Write IO Input Data to the controller.

 Gets IOUnitStateInfo for the specified bus and Unit.

 Gets RobIOUnitProperties for the specified bus and Unit.

 Unpacks to IOUnitStateInfo properties from IOUnitLogState and IOUnitPhysState.

 Reads OutputData for the specified bus and unit.

 Reads InputData for the specified bus and unit.

 Subscribe to an event handler based upon the EventID.

 Calculate cartesian position for the mechunit.

 The tool. The current tool is used if empty string (or null)
 The workobject. Used if coord is RobCoordSystem.Wobj, ignored for other values of coord.
 The current workobject is used if empty string (or null).

 Get the current position for the given tool (TCP) in the given workobject expressed in the given coordinate system.
 Only IRB mechunits can return a cartesian position.

 Calculate cartesian position for the mechunit.

 The tool. The current tool is used if empty string (or null).
 The workobject. Used if coord is RobCoordSystem.Wobj, ignored for other values of coord.
 The current workobject is used if empty string (or null).
 Coordinate system

 Get the current position for the given tool (TCP) in the given workobject expressed in the given coordinate system.
 Only IRB mechunits can return a cartesian position.

 Fine calibrate specified TCP mechanical unit and axis.
 The current position of the axis will be the new calibration value.

 Axis to calibrate

 Set revolution counter on a specified TCP mechanical unit and axis.

 Gets MechanicalUnitStatus for the specified MechanicalUnit.

 Gets SingleAxis MechanicalUnitStatus for the specified MechanicalUnit.

 Gets the mapping the MechanicalUnitStatus for RobMechUnitStatus.

 Gets attributes of the module.

 Gets MechUnits for older version below RW 5.10.

 Subscribe to an event handler based upon the EventID.

 Adds RobMechUnitNameAndMode to MechUnitFactory.

 Gets ControllerInfo for the specified NetScan ID.

 Get ControllerInfo for specified NetScan ID and return Level.

 Gets ControllerType for the specified NetScan ID.

 Gets NetScan ID for the specified url.

 To scan the controllers available in the network.

 The list of ControllerInfo object

 Unpack event args into NetscanChangedInfo.

 Subscribe to an event handler based upon the EventID.

 Subscribe to an event handler based upon the EventID for the specified priority.

 Unsubscribe event handler for the specified token.

 Get the Children of the current object (as per the path in url)

 Add RobObjectInfo to the list

 Adds the RobStorageDevice as StorageDeviceInfo item to the StorageDeviceInfo factory list.

 Add RapidSymbolData to the list.

 Create RapidSymbolData object from RobSymbol.

 Create RapidSymbolData from MgROBAPI RobSymbol object.

 Deletes the specified module from the controller.

 Gets the execution cycle of a task.

 Returns Execution Type as an integer for the specified task.

 Gets the current position of the motion pointer.

 Program Counter Position object

 Gets the current position of the program pointer.

 Program Counter Position object

 Calls RobLoadModule with equivalent RobRapidLoadMode for the specified TaskLoadModes.

 Calls RobLoadProgram with equivalent RobRapidLoadMode for the specified TaskLoadModes.

 Resets the program pointer of this task to the main entry point.

 Requires mastership of RAPID domain. Requires the "ExecuteRapid"
 grant. Requires Auto mode.

 Save a module loaded in the task to file.

 Saves the current RAPID program.

 Sets the cycleId as execution cycles.

 Set the position of the program pointer

 String Routine URL

 Common funtion

 Set the position of the program pointer PDD1184 WI 7802.

 The name of the task.
 The name of the module in which the routine is defined.
 A program position.
 First set PP to the routine.

 Sets program pointer to a specific row in a RAPID module. PDD1184 WI 7802.

 The name of the task.
 The name of the module in which the routine is defined.
 The row number in this module.

 Set User PP to selected routine

 Name of the selected routine

 Clears and removes the current execution level and the next execution level in the hierarchy is restored

 Starts RAPID program execution.

 Regain mode.
 Execution mode.
 The number of cycles to execute the program.
 Check to perform prior to start.

 Start result.

 Requires mastership of Rapid domain. Requires
 grant. Requires Auto mode.

 Stops Task execution according to the specified mode.

 Search symbols for the specified details and RapidSymbolSearchProperties.

 Search symbols for the specified details.

 Deletes the RAPID program of the task from the controller program memory.

 Fills Adpater.PCP with ROBPCP details for ProgramPositionEventArgs.

 Gets the Execution Type for the specified task.

 Loads a RAPID module to the task in the robot controller.

 Loads a RAPID program to the controller program memory.

 Gets the JointTarget for the specified task as in url.

 Gets RobTarget for the specified task, for the tool and workobject.

 Gets the execution status of the specified task.

 Subscribe to an event handler based upon the EventID.

 Get the grants of the current user.

 XmlTextReader formatted list of grants

 This method will return XmlTextReader formatted list of Grants

 String array of Grants
 XmlTextReader list of Grants

 Get resource definitions for all available grants.

 In XmlTextReader format returns the UAS config details

 Logoff current user logged in from the controller.

 Logon to the controller.

 Logon to the controller with the specified userName and password.

 Register is not required in MgROBAPI. Hence, returning default 0.

 Register/Unregister is not required in MgROBAPI.

 static method to Initiate set_TlsIndex method

 Register/Unregister is not required in MgROBAPI.

 Register/Unregister is not required in MgROBAPI. Hence, returning default 0.

 Dispose is not required. As no unmanaged resources to release but, for the backward compatibility it cannot be removed.

 Starts a new Virtual Controller of the specified path and for the specified startMode.

 Stops the Virtual Controller for the specified Guid.

 ReleaseOwnership for the Virtual Controller for the specified Guid.

 RequestOwnership for the Virtual Controller for the specified Guid.

Online Teaching/Debug/ABB.Robotics.Math.xml

 ABB.Robotics.Math

 Axis-aligned bounding box

 min/max corners of the box.

 min/max corners of the box.

 Empty bounding box

 Creates a bounding box from min and max

 Equality operator

 Inequality operator

 Addition operator

 A bounding box that contains both operands

 Addition operator

 A bounding box that contains both operands

 Checks if this is a valid bounding box.

 Checks if box is contained by this box

 Checks if a point is inside this box

 Returns the distance between min and max corners

 Returns the volume of this

 Returns the center point of this

 Returns the eight corners of this.

 Returns a BoundingBox expanded by an amount in all directions.

 Returns a bounding box that is the result of an affine transformation

 Returns true if two bounding boxes intersect

 Returns true if two bounding boxes intersect.

 Returns true if a ray intersects the bounding box.

 Returns the distance between two bounding boxes.

 Returns the distance between this BoundingBox and a point.

 Returns 0 if the point is inside the box.

 Returns the interection of this and a second

 Determines whether this instance and the specified object are equal

 Returns the hash code for this object.

 Returns a string representation of this instance

 ABB Internal use only.

 Solve a linear equation system using Gaussian elimination.

 Matrix containing coeffiecients for linear eq. system.
 Right hand side.
 Solution on success, null on failure.

 Uses partial pivoting so should be numerically stable. Not terribly optimized,
 100 by 100 matrices is quick (a few ms) but 1000 by 1000 takes some time (a few s).

 Parses and evaluates a logic (boolean) expression

 Creates an expression without variables, if 'literal' is true.
 Any non-operators are evaluated by string comparison.

 Creates an expression.

 Returns True if the expression is valid and can be evaluated

 Gets or sets the source expression string

 Returns the names of variables used in the expression

 Returns the allowed operators

 Sets the value of a variable, which will be used the next time the expression
 is evaluated.

 Name of the variable to set
 New value of the variable

 Sets the value of a variable, which will be used the next time the expression
 is evaluated.

 Name of the variable to set
 New value of the variable

 True if the variable could be set (i.e. if it exists), false otherwise

 Evaluates the expression

 The evaluated value of the expression

 Builds an expression in Reverse Polish Notation format

 True if the RPN expression was successfully generated, False otherwise

 Contains static constants and utility methods.

 Constant used to compensate for rounding errors.

 Always take this into account when comparing a calculated value with a constant (e.g. 1 or -1).

 Epsilon for comparing single precision values.

 See http://en.wikipedia.org/wiki/Machine_epsilon

 Use when comparing a calculated value with -1

 Use when comparing a calculated value with 1

 Checks if the difference between two numbers is smaller than EPS.

 Checks if the difference between two numbers is smaller than a specified precision.

 The number of decimals to check (max 12)

 Converts degrees to radians.

 Converts radians to degrees.

 Clamps a value to -1=d=1.

 Axis enumeration

 Undefined axis

 X axis

 Y axis

 Z axis

 Directed axis enumeration

 Undefined axis

 Positive X axis

 Positive Y axis

 Positive Z axis

 Negative X axis

 Negative Y axis

 Negative Z axis

 Simple math expression parser and evaluator

 Literal values should be using '.' as a decimal separator.

 Creates a new MathExpression class from a mathematical expression

 Creates a simple MathExpression from the given value

 Value to build expression for

 Calling Evaluate() will return the given value

 Creates a simple MathExpression from the given value with the specified number of decimals

 Value to build expression for
 Maximum number of decimals to use

 Calling Evaluate() will return the given value (rounded to the given number of decimals).

 This constructor is obsolete.

 Returns True if the expression is valid and can be evaluated

 If the expression is invalid (IsValid returns false), this property may return
 more information why.

 Returns True if the expression consists of a single value

 Gets or sets the source expression string

 Returns the names of variables used in the expression

 Returns the allowed operators

 Sets the value of a variable, which will be used the next time the expression
 is evaluated.

 Name of the variable to set
 New value of the variable

 Sets the value of a variable, which will be used the next time the expression
 is evaluated.

 Name of the variable to set
 New value of the variable

 True if the variable could be set (i.e. if it exists), false otherwise

 This method is obsolete. Use SetVariableValue() instead.

 Evaluates the expression

 The evaluated value of the expression

 Builds an expression in Reverse Polish Notation format

 True if the RPN expression was successfully generated, False otherwise

 Returns the linear coefficients, if this expression is linear in the set of given variables. Otherwise it returns null.

 Contains miscellaneous math functions

 Calculates a circle from three points

 First point
 Second point
 Third point
 Radius of the circle
 Center point of the circle
 Normal of the circle
 True is the circle could be calculated, false otherwise
 (e.g. the three points are on a straight line)

 Arbitrary-sized matrix

 Creates a new Matrix with the given number of rows and columns

 ABB Internal use only

 Creates a new Matrix that is a copy of the given Matrix

 Returns the number of columns in the matrix

 Checks that a matrices only differs by an epsilon-sized amount.

 The matrix to compare to.
 true if almost equals, false otherwise.

 Returns the number of rows in the matrix

 Element access

 Matrix-Matrix multiplication operator.

 Matrix-Matrix multiplication method.

 Element-wise addition operator.

 Element-wise subtraction operator.

 Returns a string that represents this Matrix

 3x3 matrix, typically used to describe a rotation.

 Column vector.

 Column vector.

 Column vector.

 Identity matrix.

 Creates a matrix from three column vectors.

 Creates a matrix from elements row by row.

 Creates a 3x3 matrix from the upper-left part of a 4x4 matrix.
 Corresponds to extracting the rotation part of a transformation matrix.

 Column vector access.

 Returns an array of all elements in column-first order.

 Matrix-Matrix multiplication operator.

 Matrix-Matrix multiplication method.

 Matrix-Vector3 multiplication operator.

 Matrix-Vector3 multiplication method.

 Multiples each element with the supplied value and returns the resulting Matrix3

 Adds each element of the two Matrix3 values and returns the resulting Matrix3

 Returns the determinant.

 Inverts the matrix, using Cramer's rule.

 Returns the inverse.

 Inverted matrix

 Transposes the matrix.

 Zeroes any values smaller than Globals.EPS.

 Comparison method for matrices with tolerance

 Matrix to compare with
 true if equals within tolerance

 Returns a string in the format
 [[x.x x.y x.z] [y.x y.y y.z] [z.x z.y z.z]]

 4x4 matrix, typically used to describe a transformation
 (rotation and translation).

 Column vector.

 Column vector.

 Column vector.

 Column vector.

 Identity matrix.

 Creates a matrix from four column vectors.

 First column
 Second column
 Third column
 Fourth column

 Creates an affine matrix from four vectors

 X axis
 Y axis
 Z axis
 Translation

 Creates a matrix with unit rotation and a specified translation.

 Translation vector

 Creates a matrix from a translation vector and
 Euler angles (zyx).

 Translation vector
 Euler angles (zyx order)

 Creates a matrix from a translation vector and a quaternion.

 Translation vector
 Quaternion

 Creates a matrix from a rotation axis and angle,
 with unit translation.

 Rotation axis
 Rotation angle
 Invalid rotation axis

 Creates a matrix from an array of 16 values.

 Constructs a matrix from a 3x3 orientation matrix and a translation.

 Column vector access.

 Returns an array of all elements in column-first order.

 Gets/sets the translation vector.

 Gets/sets the rotation as a quaternion.

 Gets/sets the rotation as Euler angles (xyz order).

 Gets/sets the rotation as Euler angles (zyx order).
 Note: the vector contains the angles as [rx,ry,rz].

 Gets/sets the rotation as axis/angle
 (represented by a 4-vector [axis,angle]).

 Invalid rotation axis

 Gets/sets the rotation as a 3x3 matrix.

 Returns a value indicating whether any elements evaluates to a value that is not a number (NaN).

 Matrix-Matrix multiplication operator.

 Matrix-Matrix multiplication method.

 Matrix-Vector4 multiplication operator.

 Matrix-Vector4 multiplication method.

 Creates a matrix from three points.

 First point on x axis
 Second point on x axis
 Point on y axis

 Creates a matrix from a translation and two points

 Translation
 Point on x axis
 Point in x-y plane

 Creates a matrix from a translation and two points

 Translation
 Point on x axis
 Point in x-z plane

 Creates a matrix from a translation and two axis vectors

 Translation
 First axis

 Second axis

 Matrix-Vector3 (interpreted as a point) multiplication.

 Matrix-Vector3 (interpreted as a direction) multiplication.

 Comparison method for matrices with default tolerance

 Matrix to compare with
 true if equals within tolerance

 Comparison method for matrices with tolerance

 Matrix to compare with
 tolerance
 true if equals within tolerance

 Returns true if this matrix is rigid (orthogonal),
 e.g. it represents a pure rotation and translation.

 Throws an exception if this matrix is not rigid.

 Inverts a rigid (pure translation+rotation) matrix.

 Returns a an inverted copy of the matrix. If the matrix is non-rigid the result is undefined.

 The inverse of the matrix.

 Returns true if the matrix is affine.

 Returns true if the matrix is identity.

 Inverts an affine matrix.

 Inverts a general matrix, using Cramer's rule.

 Returns the inverse of a general matrix.

 Inverted matrix

 Rotates the matrix around an axis through the origin.

 Invalid rotation axis

 Rotates the matrix around an axis through a point.

 Invalid rotation axis

 Translates the matrix by a vector.

 Translates the matrix by x,y,z.

 Translates the matrix by a vector in its own coordinate system.

 Translates the matrix by x,y,z in its own coordinate system.

 Scale uniformly about origin.

 Scale by vector about origin.

 Scale by vector about a point.

 Returns the determinant.

 Transposes the matrix.

 Zeroes any values smaller than Globals.EPS.

 Ensures this is a valid rigid matrix

 Gets the axis vector from the specified axis

 the axis whose vector to get
 the axis vector

 Returns a matrix representing the relative transform, between the two specified matrices.

 Returns a string in the format
 [[x.x x.y x.z x.w] [y.x y.y y.z y.w] [z.x z.y z.z z.w] [t.x t.y t.z t.w]]

 Converts the string representation to its Matrix4 equivalent.

 A value indicating whether the conversion succeeded

 Plane, represented by the plane equation n·p+d=0,
 where n is the normal [x,y,z] and p is any point on the plane.

 Plane normal

 Plane normal

 Plane normal

 Distance from origin.
 Negative if the normal points away from the origin,
 positive if the normal points toward the origin.

 Creates a plane from four doubles.

 Creates a plane from a normal and a distance.

 Creates a plane from a normal and a point on the plane.

 Creates a plane from three points.
 The points are in counterclockwise order seen from in front of the plane.

 Creates a plane from a matrix

 the matrix to create the plane from
 Which axis will be the normal of the plane

 Gets/sets the normal of the plane.

 Equality operator

 Inequality operator

 Returns the distance between the plane and a point.

 Positive if the point is in front of the plane,
 negative if it is behind the plane

 Projects a point onto the plane.

 Projected point

 Projects a vector into the plane.

 Vector to project
 Projected vector

 Mirrors a point in the plane.

 Mirrored point

 Mirrors a vector (direction) in the plane.

 Mirrored vector

 Mirrors a coordinate system (represented by a matrix) in the plane
 and optionally switches two axes to keep the handedness.
 The matrix is assumed to be affine.

 Undefined - Mirror all axes, the handedness of the system will be changed
 X - Keep x, switch y and z axes to keep handedness
 Y - Keep y, switch x and z axes to keep handedness
 Z - Keep z, Switch y and z axes to keep handedness
 Mirrored matrix

 Mirrors a coordinate system (represented by a matrix) in the plane
 and optionally inverts one axis to keep the handedness.
 The matrix is assumed to be affine.

 the matrix to be mirrored
 Undefined - Mirror all axes, the handedness of the system will be changed
 X - Invert x axis to keep handedness
 Y - Invert y axis to keep handedness
 Z - Invert z axis to keep handedness
 Mirrored matrix

 Calculates if and where a straight line between two
 points intersects the plane.

 Intersection point
 True if the line intersects the plane between point1 and point2.

 Calculates if and where a straight line between two
 points intersects the plane.

 Intersection point
 Returns the parameter value of the intersection point, or NaN if the line is parallel to the plane.
 True if the line intersects the plane between point1 and point2

 Computes the angle between the projection of two vectors onto the plane.

 Returns a string in the format
 [x y z d]

 Quaternion, used to describe a rotation.

 Scalar part.

 Vector part.

 Vector part.

 Vector part.

 Identity quaternion [1,0,0,0]

 Creates a quaternion from four doubles.

 Creates a quaternion from scalar and vector.

 Scalar part
 Vector part

 Creates a quaternion from rotation axis and angle.

 Normalized rotation axis
 Rotation angle (radians)
 Invalid rotation axis

 Creates a quaternion from Euler angles (zyx order).

 Rotation around the x axis (radians)
 Rotation around the y axis (radians)
 Rotation around the z axis (radians)

 Creates a quaternion from the rotation part of a 4x4 matrix.

 Matrix (assumed to be pure rotation/translation)

 Obsolete constructor

 Matrix (assumed to be pure rotation/translation)

 Array access.

 Gets/sets the scalar part.

 Gets/sets the vector part.

 Gets/sets the rotation as Euler angles (xyz order).
 Equivalent to RPY (?).

 Gets/sets the rotation as Euler angles (zyx order).
 Note: the vector contains the angles as [rx,ry,rz]

 Gets/sets the rotation as normalized rotation axis and angle
 (represesented by a Vector4 [axis, angle]).

 Invalid rotation axis

 Gets/sets the rotation as a 3x3 matrix

 Equality operator

 Inequality operator

 Element-wise addition operator.

 Element-wise addition method.

 Element-wise subtraction operator.

 Element-wise subtraction method.

 Quaternion-Quaternion multiplication operator.

 Quaternion-Quaternion multiplication method.

 Quaternion-scalar multiplication operator.

 Quaternion-scalar multiplication method.

 Scalar-Quaternion multiplication operator.

 Quaternion-scalar division operator.

 Quaternion-scalar division method.

 Unary negation operator.

 Returns the norm of the quaternion.

 Returns the magnitude of the quaternion.

 Normalizes the quaternion.

 Inverts the quaternion.

 Returns the inverse (conjugate*1/norm) of the quaternion.

 Returns the conjugate [q1,-q2,-q3,-q4] of the quaternion.

 Quaternion dot product.

 Spherical linear interpolation.

 Second quaternion
 Interpolation parameter
 Interpolated quaternion

 Comparison method for quaternions with tolerance ()

 Returns a string in the format
 [q1 q2 q3 q4]

 Represents a 3D ray with an origin and a direction.

 The start point of the ray.

 The direction vector of the ray.

 Creates a ray from an origin and a direction

 Calculates the distance between two rays and the closest points on each ray.

 First ray
 Second ray
 Closest point on first ray
 Closest point on second ray
 Distance between p0 and p1

 Three element vector, typically used to describe
 a position, normal or euler rotation.

 x,y,z values.

 x,y,z values.

 x,y,z values.

 Unit vector in the x direction.

 Unit vector in the y direction.

 Unit vector in the z direction.

 Zero-length vector.

 Creates a vector from three doubles.

 Creates a vector from an array of doubles.

 Creates a vector from a homogenous 4-vector.

 Rescale from homegenous coordinates

 Creates a vector from a 4-vector, truncating the last element.

 Creates a unit vector from an axis

 axis
 Invalid axis

 Array access.

 Array to vector conversion.

 Equality operator

 Inequality operator

 Element-wise addition operator.

 Element-wise addition method.

 Element-wise subtraction operator.

 Element-wise subtraction method.

 Unary negation operator.

 Vector-scalar multiplication operator.

 Vector-scalar multiplication method.

 Scalar-Vector multiplication operator.

 Vector-scalar division operator.

 Vector scalar division method.

 Returns the length of this.

 Returns the squared length of this.

 Returns the distance between this and a vector.

 Returns the squared distance between this and a vector.

 Ensures that the length of this is 1.

 Returns a vector with the same direction as this, but with length 1

 Angle between this and a vector.

 radians

 Dot product.

 Cross product.

 Comparison method for vectors with tolerance ()

 Vector to compare with
 true if equals within tolerance

 Comparison method for vectors with tolerance

 Vector to compare with
 Tolerance to use in the comparison
 true if equals within tolerance

 Linear interpolation between this and a vector.

 Second vector
 Interpolation parameter
 Interpolated vector
 Use for position vectors

 Spherical interpolation between this and a vector.

 Second vector
 Interpolation parameter
 Interpolated vector
 Use for direction vectors

 Transforms a point between coordinate systems.

 Point in the "to" system

 Transforms a vector between coordinate systems.

 Vector in the "to" system

 Returns a unit vector normal to this

 Returns a vector that is this vector rotated around an axis.

 Rotation axis
 Rotation angle
 Rotated vector

 Returns the elements (x,y,z) as an array

 Returns a string in the format
 [x y z]

 Converts the string representation to its Vector3 equivalent.

 A value indicating whether the conversion succeeded

 Converts the string representation to its Vector3 equivalent.

 Two element vector

 u,v values.

 u,v values.

 Creates a vector from two doubles.

 Returns a string in the format
 [u v]

 Equality operator

 Inequality operator

 Four element vector, typically used to describe
 a homogenous translation

 x,y,z,w values.

 x,y,z,w values.

 x,y,z,w values.

 x,y,z,w values.

 Creates a vector from four doubles.

 Creates a vector from three doubles and sets w=1.

 Creates a vector from an array.
 Sets w=1 if the array has less than four elements.

 Creates a vector from a 3-vector and a scalar.

 Array access.

 Returns a value indicating whether any elements evaluates to a value that is not a number (NaN).

 Equality operator

 Inequality operator

 Array to vector conversion.

 Element-wise addition operator.

 Element-wise addition.

 Element-wise subtraction operator.

 Element-wise subtraction.

 Unary negation operator.

 Vector-scalar multiplication operator.

 Vector-scalar multiplication.

 Scalar-Vector multiplication operator.

 Vector-scalar division operator.

 Vector-scalar division method.

 Dot product.

 Returns the magnitude of this.

 Ensures that the magnitude of this is 1.

 Comparison method for vectors with default tolerance

 Vector to compare with
 true if equals within default tolerance

 Comparison method for vectors with tolerance

 Vector to compare with
 tolerance
 true if equals within tolerance

 Returns the elements (x,y,z,w) as an array

 Returns a string in the format
 [x y z w]

 Internal math helpers

 Returns precalculated cosinus and sinus for a full revolution (with wrap-around)

Online Teaching/Debug/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/Debug/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/Debug/GUI.exe.config

Online Teaching/Debug/GUI.pdb

Online Teaching/Debug/Testing.exe.config

Online Teaching/Debug/Testing.pdb

Online Teaching/Debug/TrackerAPI.dll.config

Online Teaching/Debug/TrackerAPI.pdb

Online Teaching/Debug/Vive.pdb

Online Teaching/Debug/ViveTracker.dll.metagen

ImageRuntimeVersion: v4.0.30319
Assembly ViveTracker, Version=0.0.*, Culture=Invariant Language (Invariant Country):
	hash=SHA1, flags=PublicKey
Assembly mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089:
	hash=None, flags=None
Assembly System.Data, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089:
	hash=None, flags=None
Assembly System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089:
	hash=None, flags=None
Assembly System.Xml, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089:
	hash=None, flags=None
Class openVrTracker.Device: AutoLayout, AnsiClass, Class, Public, BeforeFieldInit
 Void .ctor(): PrivateScope, Public, HideBySig, SpecialName, RTSpecialName
 Fields:
 Double[] DeviceData : Public
 Boolean[] ButtonState : Public
 System.ValueType Activity Int32 IsBoxed : Public
Class openVrTracker.ViveTracker: AutoLayout, AnsiClass, Class, Public, BeforeFieldInit
 Void .ctor(TrackingMetod): PrivateScope, Public, HideBySig, SpecialName, RTSpecialName
 Void .ctor(): PrivateScope, Public, HideBySig, SpecialName, RTSpecialName
 Methods:
 UpdateData(): PrivateScope, Public, HideBySig
 GetDevice(DeviceName): PrivateScope, Public, HideBySig
 SetTrackingMethod(TrackingMetod): PrivateScope, Public, HideBySig
 TriggerHaptic(DeviceName): PrivateScope, Public, HideBySig
Struct openVrTracker.ViveTracker+DeviceName: AutoLayout, AnsiClass, Class, NestedPublic, Sealed, BeforeFieldInit
 :System.Enum
 Fields:
 Int32 value__ : Public, SpecialName, RTSpecialName
 DeviceName HMD = 0 : Public, Static, Literal, HasDefault
 DeviceName Controller_1 = 1 : Public, Static, Literal, HasDefault
 DeviceName Controller_2 = 2 : Public, Static, Literal, HasDefault
 DeviceName Tracker_1 = 3 : Public, Static, Literal, HasDefault
 DeviceName Undefined = 4 : Public, Static, Literal, HasDefault
Struct openVrTracker.ViveTracker+TrackingMetod: AutoLayout, AnsiClass, Class, NestedPublic, Sealed, BeforeFieldInit
 :System.Enum
 Fields:
 Int32 value__ : Public, SpecialName, RTSpecialName
 TrackingMetod OnUpdate = 0 : Public, Static, Literal, HasDefault
 TrackingMetod Predicted = 1 : Public, Static, Literal, HasDefault

Online Teaching/Debug/ViveTracker.pdb

Online Teaching/Debug/WPFCustomMessageBox.xml

 WPFCustomMessageBox

 Interaction logic for ModalDialog.xaml

 InitializeComponent

 Displays a message box.

 Displays a message box that has a message and returns a result.

 A System.String that specifies the text to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message and a title bar caption; and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box in front of the specified window. The message box displays a message and returns a result.

 A System.Windows.Window that represents the owner window of the message box.
 A System.String that specifies the text to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box in front of the specified window. The message box displays a message and title bar caption; and it returns a result.

 A System.Windows.Window that represents the owner window of the message box.
 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, title bar caption, and button; and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.Windows.MessageBoxButton value that specifies which button or buttons to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, title bar caption, button, and icon; and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.Windows.MessageBoxButton value that specifies which button or buttons to display.
 A System.Windows.MessageBoxImage value that specifies the icon to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, title bar caption, and OK button with a custom System.String value for the button's text; and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.String that specifies the text to display within the OK button.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, title bar caption, OK button with a custom System.String value for the button's text, and icon; and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.String that specifies the text to display within the OK button.
 A System.Windows.MessageBoxImage value that specifies the icon to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, caption, and OK/Cancel buttons with custom System.String values for the buttons' text;
 and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.String that specifies the text to display within the OK button.
 A System.String that specifies the text to display within the Cancel button.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, caption, OK/Cancel buttons with custom System.String values for the buttons' text, and icon;
 and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.String that specifies the text to display within the OK button.
 A System.String that specifies the text to display within the Cancel button.
 A System.Windows.MessageBoxImage value that specifies the icon to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, caption, and Yes/No buttons with custom System.String values for the buttons' text;
 and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.String that specifies the text to display within the Yes button.
 A System.String that specifies the text to display within the No button.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, caption, Yes/No buttons with custom System.String values for the buttons' text, and icon;
 and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.String that specifies the text to display within the Yes button.
 A System.String that specifies the text to display within the No button.
 A System.Windows.MessageBoxImage value that specifies the icon to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, caption, and Yes/No/Cancel buttons with custom System.String values for the buttons' text;
 and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.String that specifies the text to display within the Yes button.
 A System.String that specifies the text to display within the No button.
 A System.String that specifies the text to display within the Cancel button.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 Displays a message box that has a message, caption, Yes/No/Cancel buttons with custom System.String values for the buttons' text, and icon;
 and that returns a result.

 A System.String that specifies the text to display.
 A System.String that specifies the title bar caption to display.
 A System.String that specifies the text to display within the Yes button.
 A System.String that specifies the text to display within the No button.
 A System.String that specifies the text to display within the Cancel button.
 A System.Windows.MessageBoxImage value that specifies the icon to display.
 A System.Windows.MessageBoxResult value that specifies which message box button is clicked by the user.

 TODO: Update summary.

 Keyboard Accellerators are used in Windows to allow easy shortcuts to controls like Buttons and
 MenuItems. These allow users to press the Alt key, and a shortcut key will be highlighted on the
 control. If the user presses that key, that control will be activated.
 This method checks a string if it contains a keyboard accellerator. If it doesn't, it adds one to the
 beginning of the string. If there are two strings with the same accellerator, Windows handles it.
 The keyboard accellerator character for WPF is underscore (_). It will not be visible.

 A strongly-typed resource class, for looking up localized strings, etc.

 Returns the cached ResourceManager instance used by this class.

 Overrides the current thread's CurrentUICulture property for all
 resource lookups using this strongly typed resource class.

Online Teaching/Egm-sensor.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;
using System.Threading.Tasks;
using abb.egm;

//
// Sample program using protobuf-csharp-port
// (http://code.google.com/p/protobuf-csharp-port/wiki/GettingStarted)
//
// 1) Download protobuf-csharp binaries from https://code.google.com/p/protobuf-csharp-port/
// 2) Unpack the zip file
// 3) Copy the egm.proto file to a sub catalogue where protobuf-csharp was un-zipped, e.g. ~\protobuf-csharp\tools\egm
// 4) Generate an egm C# file from the egm.proto file by typing in a windows console: protogen .\egm\egm.proto --proto_path=.\egm
// 5) Create a C# console application in Visual Studio
// 6) Install Nuget, in Visual Studio, click Tools and then Extension Manager. Goto to Online, find the NuGet Package Manager extension and click Download.
// 7) Install protobuf-csharp via NuGet, select in Visual Studio, Tools Nuget Package Manager and then Package Manager Console and type PM>Install-Package Google.ProtocolBuffers
// 8) Add the generated file egm.cs to the Visual Studio project (add existing item)
// 9) Copy the code below and then compile, link and run.
//
// Copyright (c) 2014, ABB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with
// or without modification, are permitted provided that
// the following conditions are met:
//
// * Redistributions of source code must retain the
// above copyright notice, this list of conditions
// and the following disclaimer.
// * Redistributions in binary form must reproduce the
// above copyright notice, this list of conditions
// and the following disclaimer in the documentation
// and/or other materials provided with the
// distribution.
// * Neither the name of ABB nor the names of its
// contributors may be used to endorse or promote
// products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
namespace egmtest
{
 class Program
 {
 // listen on this port for inbound messages
 public static int _ipPortNumber = 6510;
 static void Main(string[] args)
 {
 Sensor s = new Sensor();
 s.Start();

 Console.WriteLine("Press any key to Exit");
 Console.ReadLine();
 }
 }

 class Sensor
 {
 private Thread _sensorThread = null;
 private UdpClient _udpServer = null;
 private bool _exitThread = false;
 private uint _seqNumber = 0;

 public void SensorThread()
 {
 // create an udp client and listen on any address and the port _ipPortNumber
 _udpServer = new UdpClient(Program._ipPortNumber);
 var remoteEP = new IPEndPoint(IPAddress.Any, Program._ipPortNumber);

 while (_exitThread == false)
 {
 // get the message from robot
 var data = _udpServer.Receive(ref remoteEP);
 if (data != null)
 {
 // de-serialize inbound message from robot
 EgmRobot robot = EgmRobot.CreateBuilder().MergeFrom(data).Build();

 // display inbound message
 DisplayInboundMessage(robot);

 // create a new outbound sensor message
 EgmSensor.Builder sensor = EgmSensor.CreateBuilder();
 CreateSensorMessage(sensor);

 using (MemoryStream memoryStream = new MemoryStream())
 {
 EgmSensor sensorMessage = sensor.Build();
 sensorMessage.WriteTo(memoryStream);

 // send the udp message to the robot
 int bytesSent = _udpServer.Send(memoryStream.ToArray(),
 (int)memoryStream.Length, remoteEP);
 if (bytesSent < 0)
 {
 Console.WriteLine("Error send to robot");
 }
 }
 }
 }
 }

 // Display message from robot
 void DisplayInboundMessage(EgmRobot robot)
 {
 if (robot.HasHeader && robot.Header.HasSeqno && robot.Header.HasTm)
 {
 Console.WriteLine("Seq={0} tm={1}",
 robot.Header.Seqno.ToString(), robot.Header.Tm.ToString());
 }
 else
 {
 Console.WriteLine("No header in robot message");
 }
 }

 //
 // Create a sensor message to send to the robot
 void CreateSensorMessage(EgmSensor.Builder sensor)
 {
 // create a header
 EgmHeader.Builder hdr = new EgmHeader.Builder();
 hdr.SetSeqno(_seqNumber++)
 .SetTm((uint)DateTime.Now.Ticks)
 .SetMtype(EgmHeader.Types.MessageType.MSGTYPE_CORRECTION);

 sensor.SetHeader(hdr);

 // create some sensor data
 EgmPlanned.Builder planned = new EgmPlanned.Builder();
 EgmPose.Builder pos = new EgmPose.Builder();
 EgmQuaternion.Builder pq = new EgmQuaternion.Builder();
 EgmCartesian.Builder pc = new EgmCartesian.Builder();

 pc.SetX(10.1)
 .SetY(11.1)
 .SetZ(12.2);

 pq.SetU0(1.0)
 .SetU1(0.0)
 .SetU2(0.0)
 .SetU3(0.0);

 pos.SetPos(pc)
 .SetOrient(pq);

 planned.SetCartesian(pos); // bind pos object to planned
 sensor.SetPlanned(planned); // bind planned to sensor object

 return;
 }

 // Start a thread to listen on inbound messages
 public void Start()
 {
 _sensorThread = new Thread(new ThreadStart(SensorThread));
 _sensorThread.Start();
 }

 // Stop and exit thread
 public void Stop()
 {
 _exitThread = true;
 _sensorThread.Abort();
 }
 }
}

Online Teaching/Egm.cs

// Generated by ProtoGen, Version=2.4.1.555, Culture=neutral, PublicKeyToken=55f7125234beb589. DO NOT EDIT!
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using pb = global::Google.ProtocolBuffers;
using pbc = global::Google.ProtocolBuffers.Collections;
using pbd = global::Google.ProtocolBuffers.Descriptors;
using scg = global::System.Collections.Generic;
namespace abb.egm {

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Egm {

 #region Extension registration
 public static void RegisterAllExtensions(pb::ExtensionRegistry registry) {
 }
 #endregion
 #region Static variables
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmHeader__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmHeader, global::abb.egm.EgmHeader.Builder> internal__static_abb_egm_EgmHeader__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmCartesian__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmCartesian, global::abb.egm.EgmCartesian.Builder> internal__static_abb_egm_EgmCartesian__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmQuaternion__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmQuaternion, global::abb.egm.EgmQuaternion.Builder> internal__static_abb_egm_EgmQuaternion__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmPose__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmPose, global::abb.egm.EgmPose.Builder> internal__static_abb_egm_EgmPose__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmCartesianSpeed__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmCartesianSpeed, global::abb.egm.EgmCartesianSpeed.Builder> internal__static_abb_egm_EgmCartesianSpeed__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmJoints__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmJoints, global::abb.egm.EgmJoints.Builder> internal__static_abb_egm_EgmJoints__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmExternalJoints__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmExternalJoints, global::abb.egm.EgmExternalJoints.Builder> internal__static_abb_egm_EgmExternalJoints__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmPlanned__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmPlanned, global::abb.egm.EgmPlanned.Builder> internal__static_abb_egm_EgmPlanned__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmSpeedRef__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmSpeedRef, global::abb.egm.EgmSpeedRef.Builder> internal__static_abb_egm_EgmSpeedRef__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmFeedBack__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmFeedBack, global::abb.egm.EgmFeedBack.Builder> internal__static_abb_egm_EgmFeedBack__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmMotorState__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmMotorState, global::abb.egm.EgmMotorState.Builder> internal__static_abb_egm_EgmMotorState__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmMCIState__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmMCIState, global::abb.egm.EgmMCIState.Builder> internal__static_abb_egm_EgmMCIState__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmRapidCtrlExecState__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmRapidCtrlExecState, global::abb.egm.EgmRapidCtrlExecState.Builder> internal__static_abb_egm_EgmRapidCtrlExecState__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmTestSignals__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmTestSignals, global::abb.egm.EgmTestSignals.Builder> internal__static_abb_egm_EgmTestSignals__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmRobot__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmRobot, global::abb.egm.EgmRobot.Builder> internal__static_abb_egm_EgmRobot__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmSensor__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmSensor, global::abb.egm.EgmSensor.Builder> internal__static_abb_egm_EgmSensor__FieldAccessorTable;
 #endregion
 #region Descriptor
 public static pbd::FileDescriptor Descriptor {
 get { return descriptor; }
 }
 private static pbd::FileDescriptor descriptor;

 static Egm() {
 byte[] descriptorData = global::System.Convert.FromBase64String(
 string.Concat(
 "CgllZ20ucHJvdG8SB2FiYi5lZ20izQEKCUVnbUhlYWRlchINCgVzZXFubxgB",
 "IAEoDRIKCgJ0bRgCIAEoDRJACgVtdHlwZRgDIAEoDjIeLmFiYi5lZ20uRWdt",
 "SGVhZGVyLk1lc3NhZ2VUeXBlOhFNU0dUWVBFX1VOREVGSU5FRCJjCgtNZXNz",
 "YWdlVHlwZRIVChFNU0dUWVBFX1VOREVGSU5FRBAAEhMKD01TR1RZUEVfQ09N",
 "TUFORBABEhAKDE1TR1RZUEVfREFUQRACEhYKEk1TR1RZUEVfQ09SUkVDVElP",
 "ThADIi8KDEVnbUNhcnRlc2lhbhIJCgF4GAEgAigBEgkKAXkYAiACKAESCQoB",
 "ehgDIAIoASI/Cg1FZ21RdWF0ZXJuaW9uEgoKAnUwGAEgAigBEgoKAnUxGAIg",
 "AigBEgoKAnUyGAMgAigBEgoKAnUzGAQgAigBIlUKB0VnbVBvc2USIgoDcG9z",
 "GAEgASgLMhUuYWJiLmVnbS5FZ21DYXJ0ZXNpYW4SJgoGb3JpZW50GAIgASgL",
 "MhYuYWJiLmVnbS5FZ21RdWF0ZXJuaW9uIiIKEUVnbUNhcnRlc2lhblNwZWVk",
 "Eg0KBXZhbHVlGAEgAygBIhsKCUVnbUpvaW50cxIOCgZqb2ludHMYASADKAEi",
 "IwoRRWdtRXh0ZXJuYWxKb2ludHMSDgoGam9pbnRzGAEgAygBIoEBCgpFZ21Q",
 "bGFubmVkEiIKBmpvaW50cxgBIAEoCzISLmFiYi5lZ20uRWdtSm9pbnRzEiMK",
 "CWNhcnRlc2lhbhgCIAEoCzIQLmFiYi5lZ20uRWdtUG9zZRIqCg5leHRlcm5h",
 "bEpvaW50cxgDIAEoCzISLmFiYi5lZ20uRWdtSm9pbnRzIo0BCgtFZ21TcGVl",
 "ZFJlZhIiCgZqb2ludHMYASABKAsyEi5hYmIuZWdtLkVnbUpvaW50cxIuCgpj",
 "YXJ0ZXNpYW5zGAIgASgLMhouYWJiLmVnbS5FZ21DYXJ0ZXNpYW5TcGVlZBIq",
 "Cg5leHRlcm5hbEpvaW50cxgDIAEoCzISLmFiYi5lZ20uRWdtSm9pbnRzIoIB",
 "CgtFZ21GZWVkQmFjaxIiCgZqb2ludHMYASABKAsyEi5hYmIuZWdtLkVnbUpv",
 "aW50cxIjCgljYXJ0ZXNpYW4YAiABKAsyEC5hYmIuZWdtLkVnbVBvc2USKgoO",
 "ZXh0ZXJuYWxKb2ludHMYAyABKAsyEi5hYmIuZWdtLkVnbUpvaW50cyKMAQoN",
 "RWdtTW90b3JTdGF0ZRI0CgVzdGF0ZRgBIAIoDjIlLmFiYi5lZ20uRWdtTW90",
 "b3JTdGF0ZS5Nb3RvclN0YXRlVHlwZSJFCg5Nb3RvclN0YXRlVHlwZRIUChBN",
 "T1RPUlNfVU5ERUZJTkVEEAASDQoJTU9UT1JTX09OEAESDgoKTU9UT1JTX09G",
 "RhACIqIBCgtFZ21NQ0lTdGF0ZRI/CgVzdGF0ZRgBIAIoDjIhLmFiYi5lZ20u",
 "RWdtTUNJU3RhdGUuTUNJU3RhdGVUeXBlOg1NQ0lfVU5ERUZJTkVEIlIKDE1D",
 "SVN0YXRlVHlwZRIRCg1NQ0lfVU5ERUZJTkVEEAASDQoJTUNJX0VSUk9SEAES",
 "DwoLTUNJX1NUT1BQRUQQAhIPCgtNQ0lfUlVOTklORxADIsMBChVFZ21SYXBp",
 "ZEN0cmxFeGVjU3RhdGUSVQoFc3RhdGUYASACKA4yNS5hYmIuZWdtLkVnbVJh",
 "cGlkQ3RybEV4ZWNTdGF0ZS5SYXBpZEN0cmxFeGVjU3RhdGVUeXBlOg9SQVBJ",
 "RF9VTkRFRklORUQiUwoWUmFwaWRDdHJsRXhlY1N0YXRlVHlwZRITCg9SQVBJ",
 "RF9VTkRFRklORUQQABIRCg1SQVBJRF9TVE9QUEVEEAESEQoNUkFQSURfUlVO",
 "TklORxACIiEKDkVnbVRlc3RTaWduYWxzEg8KB3NpZ25hbHMYASADKAEi0QIK",
 "CEVnbVJvYm90EiIKBmhlYWRlchgBIAEoCzISLmFiYi5lZ20uRWdtSGVhZGVy",
 "EiYKCGZlZWRCYWNrGAIgASgLMhQuYWJiLmVnbS5FZ21GZWVkQmFjaxIkCgdw",
 "bGFubmVkGAMgASgLMhMuYWJiLmVnbS5FZ21QbGFubmVkEioKCm1vdG9yU3Rh",
 "dGUYBCABKAsyFi5hYmIuZWdtLkVnbU1vdG9yU3RhdGUSJgoIbWNpU3RhdGUY",
 "BSABKAsyFC5hYmIuZWdtLkVnbU1DSVN0YXRlEhkKEW1jaUNvbnZlcmdlbmNl",
 "TWV0GAYgASgIEiwKC3Rlc3RTaWduYWxzGAcgASgLMhcuYWJiLmVnbS5FZ21U",
 "ZXN0U2lnbmFscxI2Cg5yYXBpZEV4ZWNTdGF0ZRgIIAEoCzIeLmFiYi5lZ20u",
 "RWdtUmFwaWRDdHJsRXhlY1N0YXRlIn0KCUVnbVNlbnNvchIiCgZoZWFkZXIY",
 "ASABKAsyEi5hYmIuZWdtLkVnbUhlYWRlchIkCgdwbGFubmVkGAIgASgLMhMu",
 "YWJiLmVnbS5FZ21QbGFubmVkEiYKCHNwZWVkUmVmGAMgASgLMhQuYWJiLmVn",
 "bS5FZ21TcGVlZFJlZg=="));
 pbd::FileDescriptor.InternalDescriptorAssigner assigner = delegate(pbd::FileDescriptor root) {
 descriptor = root;
 internal__static_abb_egm_EgmHeader__Descriptor = Descriptor.MessageTypes[0];
 internal__static_abb_egm_EgmHeader__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmHeader, global::abb.egm.EgmHeader.Builder>(internal__static_abb_egm_EgmHeader__Descriptor,
 new string[] { "Seqno", "Tm", "Mtype", });
 internal__static_abb_egm_EgmCartesian__Descriptor = Descriptor.MessageTypes[1];
 internal__static_abb_egm_EgmCartesian__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmCartesian, global::abb.egm.EgmCartesian.Builder>(internal__static_abb_egm_EgmCartesian__Descriptor,
 new string[] { "X", "Y", "Z", });
 internal__static_abb_egm_EgmQuaternion__Descriptor = Descriptor.MessageTypes[2];
 internal__static_abb_egm_EgmQuaternion__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmQuaternion, global::abb.egm.EgmQuaternion.Builder>(internal__static_abb_egm_EgmQuaternion__Descriptor,
 new string[] { "U0", "U1", "U2", "U3", });
 internal__static_abb_egm_EgmPose__Descriptor = Descriptor.MessageTypes[3];
 internal__static_abb_egm_EgmPose__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmPose, global::abb.egm.EgmPose.Builder>(internal__static_abb_egm_EgmPose__Descriptor,
 new string[] { "Pos", "Orient", });
 internal__static_abb_egm_EgmCartesianSpeed__Descriptor = Descriptor.MessageTypes[4];
 internal__static_abb_egm_EgmCartesianSpeed__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmCartesianSpeed, global::abb.egm.EgmCartesianSpeed.Builder>(internal__static_abb_egm_EgmCartesianSpeed__Descriptor,
 new string[] { "Value", });
 internal__static_abb_egm_EgmJoints__Descriptor = Descriptor.MessageTypes[5];
 internal__static_abb_egm_EgmJoints__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmJoints, global::abb.egm.EgmJoints.Builder>(internal__static_abb_egm_EgmJoints__Descriptor,
 new string[] { "Joints", });
 internal__static_abb_egm_EgmExternalJoints__Descriptor = Descriptor.MessageTypes[6];
 internal__static_abb_egm_EgmExternalJoints__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmExternalJoints, global::abb.egm.EgmExternalJoints.Builder>(internal__static_abb_egm_EgmExternalJoints__Descriptor,
 new string[] { "Joints", });
 internal__static_abb_egm_EgmPlanned__Descriptor = Descriptor.MessageTypes[7];
 internal__static_abb_egm_EgmPlanned__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmPlanned, global::abb.egm.EgmPlanned.Builder>(internal__static_abb_egm_EgmPlanned__Descriptor,
 new string[] { "Joints", "Cartesian", "ExternalJoints", });
 internal__static_abb_egm_EgmSpeedRef__Descriptor = Descriptor.MessageTypes[8];
 internal__static_abb_egm_EgmSpeedRef__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmSpeedRef, global::abb.egm.EgmSpeedRef.Builder>(internal__static_abb_egm_EgmSpeedRef__Descriptor,
 new string[] { "Joints", "Cartesians", "ExternalJoints", });
 internal__static_abb_egm_EgmFeedBack__Descriptor = Descriptor.MessageTypes[9];
 internal__static_abb_egm_EgmFeedBack__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmFeedBack, global::abb.egm.EgmFeedBack.Builder>(internal__static_abb_egm_EgmFeedBack__Descriptor,
 new string[] { "Joints", "Cartesian", "ExternalJoints", });
 internal__static_abb_egm_EgmMotorState__Descriptor = Descriptor.MessageTypes[10];
 internal__static_abb_egm_EgmMotorState__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmMotorState, global::abb.egm.EgmMotorState.Builder>(internal__static_abb_egm_EgmMotorState__Descriptor,
 new string[] { "State", });
 internal__static_abb_egm_EgmMCIState__Descriptor = Descriptor.MessageTypes[11];
 internal__static_abb_egm_EgmMCIState__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmMCIState, global::abb.egm.EgmMCIState.Builder>(internal__static_abb_egm_EgmMCIState__Descriptor,
 new string[] { "State", });
 internal__static_abb_egm_EgmRapidCtrlExecState__Descriptor = Descriptor.MessageTypes[12];
 internal__static_abb_egm_EgmRapidCtrlExecState__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmRapidCtrlExecState, global::abb.egm.EgmRapidCtrlExecState.Builder>(internal__static_abb_egm_EgmRapidCtrlExecState__Descriptor,
 new string[] { "State", });
 internal__static_abb_egm_EgmTestSignals__Descriptor = Descriptor.MessageTypes[13];
 internal__static_abb_egm_EgmTestSignals__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmTestSignals, global::abb.egm.EgmTestSignals.Builder>(internal__static_abb_egm_EgmTestSignals__Descriptor,
 new string[] { "Signals", });
 internal__static_abb_egm_EgmRobot__Descriptor = Descriptor.MessageTypes[14];
 internal__static_abb_egm_EgmRobot__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmRobot, global::abb.egm.EgmRobot.Builder>(internal__static_abb_egm_EgmRobot__Descriptor,
 new string[] { "Header", "FeedBack", "Planned", "MotorState", "MciState", "MciConvergenceMet", "TestSignals", "RapidExecState", });
 internal__static_abb_egm_EgmSensor__Descriptor = Descriptor.MessageTypes[15];
 internal__static_abb_egm_EgmSensor__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmSensor, global::abb.egm.EgmSensor.Builder>(internal__static_abb_egm_EgmSensor__Descriptor,
 new string[] { "Header", "Planned", "SpeedRef", });
 return null;
 };
 pbd::FileDescriptor.InternalBuildGeneratedFileFrom(descriptorData,
 new pbd::FileDescriptor[] {
 }, assigner);
 }
 #endregion

 }
 #region Messages
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmHeader : pb::GeneratedMessage<EgmHeader, EgmHeader.Builder> {
 private EgmHeader() { }
 private static readonly EgmHeader defaultInstance = new EgmHeader().MakeReadOnly();
 private static readonly string[] _egmHeaderFieldNames = new string[] { "mtype", "seqno", "tm" };
 private static readonly uint[] _egmHeaderFieldTags = new uint[] { 24, 8, 16 };
 public static EgmHeader DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmHeader DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmHeader ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmHeader__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmHeader, EgmHeader.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmHeader__FieldAccessorTable; }
 }

 #region Nested types
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Types {
 public enum MessageType {
 MSGTYPE_UNDEFINED = 0,
 MSGTYPE_COMMAND = 1,
 MSGTYPE_DATA = 2,
 MSGTYPE_CORRECTION = 3,
 }

 }
 #endregion

 public const int SeqnoFieldNumber = 1;
 private bool hasSeqno;
 private uint seqno_;
 public bool HasSeqno {
 get { return hasSeqno; }
 }
 [global::System.CLSCompliant(false)]
 public uint Seqno {
 get { return seqno_; }
 }

 public const int TmFieldNumber = 2;
 private bool hasTm;
 private uint tm_;
 public bool HasTm {
 get { return hasTm; }
 }
 [global::System.CLSCompliant(false)]
 public uint Tm {
 get { return tm_; }
 }

 public const int MtypeFieldNumber = 3;
 private bool hasMtype;
 private global::abb.egm.EgmHeader.Types.MessageType mtype_ = global::abb.egm.EgmHeader.Types.MessageType.MSGTYPE_UNDEFINED;
 public bool HasMtype {
 get { return hasMtype; }
 }
 public global::abb.egm.EgmHeader.Types.MessageType Mtype {
 get { return mtype_; }
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmHeaderFieldNames;
 if (hasSeqno) {
 output.WriteUInt32(1, field_names[1], Seqno);
 }
 if (hasTm) {
 output.WriteUInt32(2, field_names[2], Tm);
 }
 if (hasMtype) {
 output.WriteEnum(3, field_names[0], (int) Mtype, Mtype);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasSeqno) {
 size += pb::CodedOutputStream.ComputeUInt32Size(1, Seqno);
 }
 if (hasTm) {
 size += pb::CodedOutputStream.ComputeUInt32Size(2, Tm);
 }
 if (hasMtype) {
 size += pb::CodedOutputStream.ComputeEnumSize(3, (int) Mtype);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmHeader ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmHeader ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmHeader ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmHeader ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmHeader ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmHeader ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmHeader ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmHeader ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmHeader ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmHeader ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmHeader MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmHeader prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmHeader, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmHeader cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmHeader result;

 private EgmHeader PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmHeader original = result;
 result = new EgmHeader();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmHeader MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmHeader.Descriptor; }
 }

 public override EgmHeader DefaultInstanceForType {
 get { return global::abb.egm.EgmHeader.DefaultInstance; }
 }

 public override EgmHeader BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmHeader) {
 return MergeFrom((EgmHeader) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmHeader other) {
 if (other == global::abb.egm.EgmHeader.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasSeqno) {
 Seqno = other.Seqno;
 }
 if (other.HasTm) {
 Tm = other.Tm;
 }
 if (other.HasMtype) {
 Mtype = other.Mtype;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmHeaderFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmHeaderFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 8: {
 result.hasSeqno = input.ReadUInt32(ref result.seqno_);
 break;
 }
 case 16: {
 result.hasTm = input.ReadUInt32(ref result.tm_);
 break;
 }
 case 24: {
 object unknown;
 if(input.ReadEnum(ref result.mtype_, out unknown)) {
 result.hasMtype = true;
 } else if(unknown is int) {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 unknownFields.MergeVarintField(3, (ulong)(int)unknown);
 }
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasSeqno {
 get { return result.hasSeqno; }
 }
 [global::System.CLSCompliant(false)]
 public uint Seqno {
 get { return result.Seqno; }
 set { SetSeqno(value); }
 }
 [global::System.CLSCompliant(false)]
 public Builder SetSeqno(uint value) {
 PrepareBuilder();
 result.hasSeqno = true;
 result.seqno_ = value;
 return this;
 }
 public Builder ClearSeqno() {
 PrepareBuilder();
 result.hasSeqno = false;
 result.seqno_ = 0;
 return this;
 }

 public bool HasTm {
 get { return result.hasTm; }
 }
 [global::System.CLSCompliant(false)]
 public uint Tm {
 get { return result.Tm; }
 set { SetTm(value); }
 }
 [global::System.CLSCompliant(false)]
 public Builder SetTm(uint value) {
 PrepareBuilder();
 result.hasTm = true;
 result.tm_ = value;
 return this;
 }
 public Builder ClearTm() {
 PrepareBuilder();
 result.hasTm = false;
 result.tm_ = 0;
 return this;
 }

 public bool HasMtype {
 get { return result.hasMtype; }
 }
 public global::abb.egm.EgmHeader.Types.MessageType Mtype {
 get { return result.Mtype; }
 set { SetMtype(value); }
 }
 public Builder SetMtype(global::abb.egm.EgmHeader.Types.MessageType value) {
 PrepareBuilder();
 result.hasMtype = true;
 result.mtype_ = value;
 return this;
 }
 public Builder ClearMtype() {
 PrepareBuilder();
 result.hasMtype = false;
 result.mtype_ = global::abb.egm.EgmHeader.Types.MessageType.MSGTYPE_UNDEFINED;
 return this;
 }
 }
 static EgmHeader() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmCartesian : pb::GeneratedMessage<EgmCartesian, EgmCartesian.Builder> {
 private EgmCartesian() { }
 private static readonly EgmCartesian defaultInstance = new EgmCartesian().MakeReadOnly();
 private static readonly string[] _egmCartesianFieldNames = new string[] { "x", "y", "z" };
 private static readonly uint[] _egmCartesianFieldTags = new uint[] { 9, 17, 25 };
 public static EgmCartesian DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmCartesian DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmCartesian ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmCartesian__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmCartesian, EgmCartesian.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmCartesian__FieldAccessorTable; }
 }

 public const int XFieldNumber = 1;
 private bool hasX;
 private double x_;
 public bool HasX {
 get { return hasX; }
 }
 public double X {
 get { return x_; }
 }

 public const int YFieldNumber = 2;
 private bool hasY;
 private double y_;
 public bool HasY {
 get { return hasY; }
 }
 public double Y {
 get { return y_; }
 }

 public const int ZFieldNumber = 3;
 private bool hasZ;
 private double z_;
 public bool HasZ {
 get { return hasZ; }
 }
 public double Z {
 get { return z_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasX) return false;
 if (!hasY) return false;
 if (!hasZ) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmCartesianFieldNames;
 if (hasX) {
 output.WriteDouble(1, field_names[0], X);
 }
 if (hasY) {
 output.WriteDouble(2, field_names[1], Y);
 }
 if (hasZ) {
 output.WriteDouble(3, field_names[2], Z);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasX) {
 size += pb::CodedOutputStream.ComputeDoubleSize(1, X);
 }
 if (hasY) {
 size += pb::CodedOutputStream.ComputeDoubleSize(2, Y);
 }
 if (hasZ) {
 size += pb::CodedOutputStream.ComputeDoubleSize(3, Z);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmCartesian ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesian ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmCartesian ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmCartesian ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmCartesian MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmCartesian prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmCartesian, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmCartesian cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmCartesian result;

 private EgmCartesian PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmCartesian original = result;
 result = new EgmCartesian();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmCartesian MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmCartesian.Descriptor; }
 }

 public override EgmCartesian DefaultInstanceForType {
 get { return global::abb.egm.EgmCartesian.DefaultInstance; }
 }

 public override EgmCartesian BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmCartesian) {
 return MergeFrom((EgmCartesian) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmCartesian other) {
 if (other == global::abb.egm.EgmCartesian.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasX) {
 X = other.X;
 }
 if (other.HasY) {
 Y = other.Y;
 }
 if (other.HasZ) {
 Z = other.Z;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmCartesianFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmCartesianFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 9: {
 result.hasX = input.ReadDouble(ref result.x_);
 break;
 }
 case 17: {
 result.hasY = input.ReadDouble(ref result.y_);
 break;
 }
 case 25: {
 result.hasZ = input.ReadDouble(ref result.z_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasX {
 get { return result.hasX; }
 }
 public double X {
 get { return result.X; }
 set { SetX(value); }
 }
 public Builder SetX(double value) {
 PrepareBuilder();
 result.hasX = true;
 result.x_ = value;
 return this;
 }
 public Builder ClearX() {
 PrepareBuilder();
 result.hasX = false;
 result.x_ = 0D;
 return this;
 }

 public bool HasY {
 get { return result.hasY; }
 }
 public double Y {
 get { return result.Y; }
 set { SetY(value); }
 }
 public Builder SetY(double value) {
 PrepareBuilder();
 result.hasY = true;
 result.y_ = value;
 return this;
 }
 public Builder ClearY() {
 PrepareBuilder();
 result.hasY = false;
 result.y_ = 0D;
 return this;
 }

 public bool HasZ {
 get { return result.hasZ; }
 }
 public double Z {
 get { return result.Z; }
 set { SetZ(value); }
 }
 public Builder SetZ(double value) {
 PrepareBuilder();
 result.hasZ = true;
 result.z_ = value;
 return this;
 }
 public Builder ClearZ() {
 PrepareBuilder();
 result.hasZ = false;
 result.z_ = 0D;
 return this;
 }
 }
 static EgmCartesian() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmQuaternion : pb::GeneratedMessage<EgmQuaternion, EgmQuaternion.Builder> {
 private EgmQuaternion() { }
 private static readonly EgmQuaternion defaultInstance = new EgmQuaternion().MakeReadOnly();
 private static readonly string[] _egmQuaternionFieldNames = new string[] { "u0", "u1", "u2", "u3" };
 private static readonly uint[] _egmQuaternionFieldTags = new uint[] { 9, 17, 25, 33 };
 public static EgmQuaternion DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmQuaternion DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmQuaternion ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmQuaternion__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmQuaternion, EgmQuaternion.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmQuaternion__FieldAccessorTable; }
 }

 public const int U0FieldNumber = 1;
 private bool hasU0;
 private double u0_;
 public bool HasU0 {
 get { return hasU0; }
 }
 public double U0 {
 get { return u0_; }
 }

 public const int U1FieldNumber = 2;
 private bool hasU1;
 private double u1_;
 public bool HasU1 {
 get { return hasU1; }
 }
 public double U1 {
 get { return u1_; }
 }

 public const int U2FieldNumber = 3;
 private bool hasU2;
 private double u2_;
 public bool HasU2 {
 get { return hasU2; }
 }
 public double U2 {
 get { return u2_; }
 }

 public const int U3FieldNumber = 4;
 private bool hasU3;
 private double u3_;
 public bool HasU3 {
 get { return hasU3; }
 }
 public double U3 {
 get { return u3_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasU0) return false;
 if (!hasU1) return false;
 if (!hasU2) return false;
 if (!hasU3) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmQuaternionFieldNames;
 if (hasU0) {
 output.WriteDouble(1, field_names[0], U0);
 }
 if (hasU1) {
 output.WriteDouble(2, field_names[1], U1);
 }
 if (hasU2) {
 output.WriteDouble(3, field_names[2], U2);
 }
 if (hasU3) {
 output.WriteDouble(4, field_names[3], U3);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasU0) {
 size += pb::CodedOutputStream.ComputeDoubleSize(1, U0);
 }
 if (hasU1) {
 size += pb::CodedOutputStream.ComputeDoubleSize(2, U1);
 }
 if (hasU2) {
 size += pb::CodedOutputStream.ComputeDoubleSize(3, U2);
 }
 if (hasU3) {
 size += pb::CodedOutputStream.ComputeDoubleSize(4, U3);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmQuaternion ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmQuaternion ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmQuaternion ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmQuaternion MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmQuaternion prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmQuaternion, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmQuaternion cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmQuaternion result;

 private EgmQuaternion PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmQuaternion original = result;
 result = new EgmQuaternion();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmQuaternion MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmQuaternion.Descriptor; }
 }

 public override EgmQuaternion DefaultInstanceForType {
 get { return global::abb.egm.EgmQuaternion.DefaultInstance; }
 }

 public override EgmQuaternion BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmQuaternion) {
 return MergeFrom((EgmQuaternion) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmQuaternion other) {
 if (other == global::abb.egm.EgmQuaternion.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasU0) {
 U0 = other.U0;
 }
 if (other.HasU1) {
 U1 = other.U1;
 }
 if (other.HasU2) {
 U2 = other.U2;
 }
 if (other.HasU3) {
 U3 = other.U3;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmQuaternionFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmQuaternionFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 9: {
 result.hasU0 = input.ReadDouble(ref result.u0_);
 break;
 }
 case 17: {
 result.hasU1 = input.ReadDouble(ref result.u1_);
 break;
 }
 case 25: {
 result.hasU2 = input.ReadDouble(ref result.u2_);
 break;
 }
 case 33: {
 result.hasU3 = input.ReadDouble(ref result.u3_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasU0 {
 get { return result.hasU0; }
 }
 public double U0 {
 get { return result.U0; }
 set { SetU0(value); }
 }
 public Builder SetU0(double value) {
 PrepareBuilder();
 result.hasU0 = true;
 result.u0_ = value;
 return this;
 }
 public Builder ClearU0() {
 PrepareBuilder();
 result.hasU0 = false;
 result.u0_ = 0D;
 return this;
 }

 public bool HasU1 {
 get { return result.hasU1; }
 }
 public double U1 {
 get { return result.U1; }
 set { SetU1(value); }
 }
 public Builder SetU1(double value) {
 PrepareBuilder();
 result.hasU1 = true;
 result.u1_ = value;
 return this;
 }
 public Builder ClearU1() {
 PrepareBuilder();
 result.hasU1 = false;
 result.u1_ = 0D;
 return this;
 }

 public bool HasU2 {
 get { return result.hasU2; }
 }
 public double U2 {
 get { return result.U2; }
 set { SetU2(value); }
 }
 public Builder SetU2(double value) {
 PrepareBuilder();
 result.hasU2 = true;
 result.u2_ = value;
 return this;
 }
 public Builder ClearU2() {
 PrepareBuilder();
 result.hasU2 = false;
 result.u2_ = 0D;
 return this;
 }

 public bool HasU3 {
 get { return result.hasU3; }
 }
 public double U3 {
 get { return result.U3; }
 set { SetU3(value); }
 }
 public Builder SetU3(double value) {
 PrepareBuilder();
 result.hasU3 = true;
 result.u3_ = value;
 return this;
 }
 public Builder ClearU3() {
 PrepareBuilder();
 result.hasU3 = false;
 result.u3_ = 0D;
 return this;
 }
 }
 static EgmQuaternion() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmPose : pb::GeneratedMessage<EgmPose, EgmPose.Builder> {
 private EgmPose() { }
 private static readonly EgmPose defaultInstance = new EgmPose().MakeReadOnly();
 private static readonly string[] _egmPoseFieldNames = new string[] { "orient", "pos" };
 private static readonly uint[] _egmPoseFieldTags = new uint[] { 18, 10 };
 public static EgmPose DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmPose DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmPose ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmPose__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmPose, EgmPose.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmPose__FieldAccessorTable; }
 }

 public const int PosFieldNumber = 1;
 private bool hasPos;
 private global::abb.egm.EgmCartesian pos_;
 public bool HasPos {
 get { return hasPos; }
 }
 public global::abb.egm.EgmCartesian Pos {
 get { return pos_ ?? global::abb.egm.EgmCartesian.DefaultInstance; }
 }

 public const int OrientFieldNumber = 2;
 private bool hasOrient;
 private global::abb.egm.EgmQuaternion orient_;
 public bool HasOrient {
 get { return hasOrient; }
 }
 public global::abb.egm.EgmQuaternion Orient {
 get { return orient_ ?? global::abb.egm.EgmQuaternion.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasPos) {
 if (!Pos.IsInitialized) return false;
 }
 if (HasOrient) {
 if (!Orient.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmPoseFieldNames;
 if (hasPos) {
 output.WriteMessage(1, field_names[1], Pos);
 }
 if (hasOrient) {
 output.WriteMessage(2, field_names[0], Orient);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasPos) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Pos);
 }
 if (hasOrient) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Orient);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmPose ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmPose ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmPose ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmPose ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmPose ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmPose ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmPose ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmPose ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmPose ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmPose ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmPose MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmPose prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmPose, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmPose cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmPose result;

 private EgmPose PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmPose original = result;
 result = new EgmPose();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmPose MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmPose.Descriptor; }
 }

 public override EgmPose DefaultInstanceForType {
 get { return global::abb.egm.EgmPose.DefaultInstance; }
 }

 public override EgmPose BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmPose) {
 return MergeFrom((EgmPose) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmPose other) {
 if (other == global::abb.egm.EgmPose.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasPos) {
 MergePos(other.Pos);
 }
 if (other.HasOrient) {
 MergeOrient(other.Orient);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmPoseFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmPoseFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmCartesian.Builder subBuilder = global::abb.egm.EgmCartesian.CreateBuilder();
 if (result.hasPos) {
 subBuilder.MergeFrom(Pos);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Pos = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmQuaternion.Builder subBuilder = global::abb.egm.EgmQuaternion.CreateBuilder();
 if (result.hasOrient) {
 subBuilder.MergeFrom(Orient);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Orient = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasPos {
 get { return result.hasPos; }
 }
 public global::abb.egm.EgmCartesian Pos {
 get { return result.Pos; }
 set { SetPos(value); }
 }
 public Builder SetPos(global::abb.egm.EgmCartesian value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasPos = true;
 result.pos_ = value;
 return this;
 }
 public Builder SetPos(global::abb.egm.EgmCartesian.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasPos = true;
 result.pos_ = builderForValue.Build();
 return this;
 }
 public Builder MergePos(global::abb.egm.EgmCartesian value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasPos &&
 result.pos_ != global::abb.egm.EgmCartesian.DefaultInstance) {
 result.pos_ = global::abb.egm.EgmCartesian.CreateBuilder(result.pos_).MergeFrom(value).BuildPartial();
 } else {
 result.pos_ = value;
 }
 result.hasPos = true;
 return this;
 }
 public Builder ClearPos() {
 PrepareBuilder();
 result.hasPos = false;
 result.pos_ = null;
 return this;
 }

 public bool HasOrient {
 get { return result.hasOrient; }
 }
 public global::abb.egm.EgmQuaternion Orient {
 get { return result.Orient; }
 set { SetOrient(value); }
 }
 public Builder SetOrient(global::abb.egm.EgmQuaternion value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasOrient = true;
 result.orient_ = value;
 return this;
 }
 public Builder SetOrient(global::abb.egm.EgmQuaternion.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasOrient = true;
 result.orient_ = builderForValue.Build();
 return this;
 }
 public Builder MergeOrient(global::abb.egm.EgmQuaternion value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasOrient &&
 result.orient_ != global::abb.egm.EgmQuaternion.DefaultInstance) {
 result.orient_ = global::abb.egm.EgmQuaternion.CreateBuilder(result.orient_).MergeFrom(value).BuildPartial();
 } else {
 result.orient_ = value;
 }
 result.hasOrient = true;
 return this;
 }
 public Builder ClearOrient() {
 PrepareBuilder();
 result.hasOrient = false;
 result.orient_ = null;
 return this;
 }
 }
 static EgmPose() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmCartesianSpeed : pb::GeneratedMessage<EgmCartesianSpeed, EgmCartesianSpeed.Builder> {
 private EgmCartesianSpeed() { }
 private static readonly EgmCartesianSpeed defaultInstance = new EgmCartesianSpeed().MakeReadOnly();
 private static readonly string[] _egmCartesianSpeedFieldNames = new string[] { "value" };
 private static readonly uint[] _egmCartesianSpeedFieldTags = new uint[] { 9 };
 public static EgmCartesianSpeed DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmCartesianSpeed DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmCartesianSpeed ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmCartesianSpeed__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmCartesianSpeed, EgmCartesianSpeed.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmCartesianSpeed__FieldAccessorTable; }
 }

 public const int ValueFieldNumber = 1;
 private pbc::PopsicleList<double> value_ = new pbc::PopsicleList<double>();
 public scg::IList<double> ValueList {
 get { return pbc::Lists.AsReadOnly(value_); }
 }
 public int ValueCount {
 get { return value_.Count; }
 }
 public double GetValue(int index) {
 return value_[index];
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmCartesianSpeedFieldNames;
 if (value_.Count > 0) {
 output.WriteDoubleArray(1, field_names[0], value_);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 {
 int dataSize = 0;
 dataSize = 8 * value_.Count;
 size += dataSize;
 size += 1 * value_.Count;
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmCartesianSpeed ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmCartesianSpeed ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmCartesianSpeed MakeReadOnly() {
 value_.MakeReadOnly();
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmCartesianSpeed prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmCartesianSpeed, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmCartesianSpeed cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmCartesianSpeed result;

 private EgmCartesianSpeed PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmCartesianSpeed original = result;
 result = new EgmCartesianSpeed();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmCartesianSpeed MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmCartesianSpeed.Descriptor; }
 }

 public override EgmCartesianSpeed DefaultInstanceForType {
 get { return global::abb.egm.EgmCartesianSpeed.DefaultInstance; }
 }

 public override EgmCartesianSpeed BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmCartesianSpeed) {
 return MergeFrom((EgmCartesianSpeed) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmCartesianSpeed other) {
 if (other == global::abb.egm.EgmCartesianSpeed.DefaultInstance) return this;
 PrepareBuilder();
 if (other.value_.Count != 0) {
 result.value_.Add(other.value_);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmCartesianSpeedFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmCartesianSpeedFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10:
 case 9: {
 input.ReadDoubleArray(tag, field_name, result.value_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public pbc::IPopsicleList<double> ValueList {
 get { return PrepareBuilder().value_; }
 }
 public int ValueCount {
 get { return result.ValueCount; }
 }
 public double GetValue(int index) {
 return result.GetValue(index);
 }
 public Builder SetValue(int index, double value) {
 PrepareBuilder();
 result.value_[index] = value;
 return this;
 }
 public Builder AddValue(double value) {
 PrepareBuilder();
 result.value_.Add(value);
 return this;
 }
 public Builder AddRangeValue(scg::IEnumerable<double> values) {
 PrepareBuilder();
 result.value_.Add(values);
 return this;
 }
 public Builder ClearValue() {
 PrepareBuilder();
 result.value_.Clear();
 return this;
 }
 }
 static EgmCartesianSpeed() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmJoints : pb::GeneratedMessage<EgmJoints, EgmJoints.Builder> {
 private EgmJoints() { }
 private static readonly EgmJoints defaultInstance = new EgmJoints().MakeReadOnly();
 private static readonly string[] _egmJointsFieldNames = new string[] { "joints" };
 private static readonly uint[] _egmJointsFieldTags = new uint[] { 9 };
 public static EgmJoints DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmJoints DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmJoints ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmJoints__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmJoints, EgmJoints.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmJoints__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private pbc::PopsicleList<double> joints_ = new pbc::PopsicleList<double>();
 public scg::IList<double> JointsList {
 get { return pbc::Lists.AsReadOnly(joints_); }
 }
 public int JointsCount {
 get { return joints_.Count; }
 }
 public double GetJoints(int index) {
 return joints_[index];
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmJointsFieldNames;
 if (joints_.Count > 0) {
 output.WriteDoubleArray(1, field_names[0], joints_);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 {
 int dataSize = 0;
 dataSize = 8 * joints_.Count;
 size += dataSize;
 size += 1 * joints_.Count;
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmJoints ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmJoints ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmJoints ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmJoints ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmJoints ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmJoints ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmJoints ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmJoints ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmJoints ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmJoints ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmJoints MakeReadOnly() {
 joints_.MakeReadOnly();
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmJoints prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmJoints, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmJoints cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmJoints result;

 private EgmJoints PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmJoints original = result;
 result = new EgmJoints();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmJoints MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmJoints.Descriptor; }
 }

 public override EgmJoints DefaultInstanceForType {
 get { return global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public override EgmJoints BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmJoints) {
 return MergeFrom((EgmJoints) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmJoints other) {
 if (other == global::abb.egm.EgmJoints.DefaultInstance) return this;
 PrepareBuilder();
 if (other.joints_.Count != 0) {
 result.joints_.Add(other.joints_);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmJointsFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmJointsFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10:
 case 9: {
 input.ReadDoubleArray(tag, field_name, result.joints_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public pbc::IPopsicleList<double> JointsList {
 get { return PrepareBuilder().joints_; }
 }
 public int JointsCount {
 get { return result.JointsCount; }
 }
 public double GetJoints(int index) {
 return result.GetJoints(index);
 }
 public Builder SetJoints(int index, double value) {
 PrepareBuilder();
 result.joints_[index] = value;
 return this;
 }
 public Builder AddJoints(double value) {
 PrepareBuilder();
 result.joints_.Add(value);
 return this;
 }
 public Builder AddRangeJoints(scg::IEnumerable<double> values) {
 PrepareBuilder();
 result.joints_.Add(values);
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.joints_.Clear();
 return this;
 }
 }
 static EgmJoints() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmExternalJoints : pb::GeneratedMessage<EgmExternalJoints, EgmExternalJoints.Builder> {
 private EgmExternalJoints() { }
 private static readonly EgmExternalJoints defaultInstance = new EgmExternalJoints().MakeReadOnly();
 private static readonly string[] _egmExternalJointsFieldNames = new string[] { "joints" };
 private static readonly uint[] _egmExternalJointsFieldTags = new uint[] { 9 };
 public static EgmExternalJoints DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmExternalJoints DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmExternalJoints ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmExternalJoints__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmExternalJoints, EgmExternalJoints.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmExternalJoints__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private pbc::PopsicleList<double> joints_ = new pbc::PopsicleList<double>();
 public scg::IList<double> JointsList {
 get { return pbc::Lists.AsReadOnly(joints_); }
 }
 public int JointsCount {
 get { return joints_.Count; }
 }
 public double GetJoints(int index) {
 return joints_[index];
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmExternalJointsFieldNames;
 if (joints_.Count > 0) {
 output.WriteDoubleArray(1, field_names[0], joints_);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 {
 int dataSize = 0;
 dataSize = 8 * joints_.Count;
 size += dataSize;
 size += 1 * joints_.Count;
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmExternalJoints ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmExternalJoints ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmExternalJoints ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmExternalJoints MakeReadOnly() {
 joints_.MakeReadOnly();
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmExternalJoints prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmExternalJoints, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmExternalJoints cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmExternalJoints result;

 private EgmExternalJoints PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmExternalJoints original = result;
 result = new EgmExternalJoints();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmExternalJoints MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmExternalJoints.Descriptor; }
 }

 public override EgmExternalJoints DefaultInstanceForType {
 get { return global::abb.egm.EgmExternalJoints.DefaultInstance; }
 }

 public override EgmExternalJoints BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmExternalJoints) {
 return MergeFrom((EgmExternalJoints) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmExternalJoints other) {
 if (other == global::abb.egm.EgmExternalJoints.DefaultInstance) return this;
 PrepareBuilder();
 if (other.joints_.Count != 0) {
 result.joints_.Add(other.joints_);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmExternalJointsFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmExternalJointsFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10:
 case 9: {
 input.ReadDoubleArray(tag, field_name, result.joints_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public pbc::IPopsicleList<double> JointsList {
 get { return PrepareBuilder().joints_; }
 }
 public int JointsCount {
 get { return result.JointsCount; }
 }
 public double GetJoints(int index) {
 return result.GetJoints(index);
 }
 public Builder SetJoints(int index, double value) {
 PrepareBuilder();
 result.joints_[index] = value;
 return this;
 }
 public Builder AddJoints(double value) {
 PrepareBuilder();
 result.joints_.Add(value);
 return this;
 }
 public Builder AddRangeJoints(scg::IEnumerable<double> values) {
 PrepareBuilder();
 result.joints_.Add(values);
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.joints_.Clear();
 return this;
 }
 }
 static EgmExternalJoints() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmPlanned : pb::GeneratedMessage<EgmPlanned, EgmPlanned.Builder> {
 private EgmPlanned() { }
 private static readonly EgmPlanned defaultInstance = new EgmPlanned().MakeReadOnly();
 private static readonly string[] _egmPlannedFieldNames = new string[] { "cartesian", "externalJoints", "joints" };
 private static readonly uint[] _egmPlannedFieldTags = new uint[] { 18, 26, 10 };
 public static EgmPlanned DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmPlanned DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmPlanned ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmPlanned__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmPlanned, EgmPlanned.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmPlanned__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private bool hasJoints;
 private global::abb.egm.EgmJoints joints_;
 public bool HasJoints {
 get { return hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return joints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public const int CartesianFieldNumber = 2;
 private bool hasCartesian;
 private global::abb.egm.EgmPose cartesian_;
 public bool HasCartesian {
 get { return hasCartesian; }
 }
 public global::abb.egm.EgmPose Cartesian {
 get { return cartesian_ ?? global::abb.egm.EgmPose.DefaultInstance; }
 }

 public const int ExternalJointsFieldNumber = 3;
 private bool hasExternalJoints;
 private global::abb.egm.EgmJoints externalJoints_;
 public bool HasExternalJoints {
 get { return hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return externalJoints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasCartesian) {
 if (!Cartesian.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmPlannedFieldNames;
 if (hasJoints) {
 output.WriteMessage(1, field_names[2], Joints);
 }
 if (hasCartesian) {
 output.WriteMessage(2, field_names[0], Cartesian);
 }
 if (hasExternalJoints) {
 output.WriteMessage(3, field_names[1], ExternalJoints);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Joints);
 }
 if (hasCartesian) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Cartesian);
 }
 if (hasExternalJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, ExternalJoints);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmPlanned ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmPlanned ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmPlanned ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmPlanned ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmPlanned MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmPlanned prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmPlanned, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmPlanned cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmPlanned result;

 private EgmPlanned PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmPlanned original = result;
 result = new EgmPlanned();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmPlanned MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmPlanned.Descriptor; }
 }

 public override EgmPlanned DefaultInstanceForType {
 get { return global::abb.egm.EgmPlanned.DefaultInstance; }
 }

 public override EgmPlanned BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmPlanned) {
 return MergeFrom((EgmPlanned) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmPlanned other) {
 if (other == global::abb.egm.EgmPlanned.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasJoints) {
 MergeJoints(other.Joints);
 }
 if (other.HasCartesian) {
 MergeCartesian(other.Cartesian);
 }
 if (other.HasExternalJoints) {
 MergeExternalJoints(other.ExternalJoints);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmPlannedFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmPlannedFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasJoints) {
 subBuilder.MergeFrom(Joints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Joints = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmPose.Builder subBuilder = global::abb.egm.EgmPose.CreateBuilder();
 if (result.hasCartesian) {
 subBuilder.MergeFrom(Cartesian);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Cartesian = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasExternalJoints) {
 subBuilder.MergeFrom(ExternalJoints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 ExternalJoints = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasJoints {
 get { return result.hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return result.Joints; }
 set { SetJoints(value); }
 }
 public Builder SetJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = value;
 return this;
 }
 public Builder SetJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasJoints &&
 result.joints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.joints_ = global::abb.egm.EgmJoints.CreateBuilder(result.joints_).MergeFrom(value).BuildPartial();
 } else {
 result.joints_ = value;
 }
 result.hasJoints = true;
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.hasJoints = false;
 result.joints_ = null;
 return this;
 }

 public bool HasCartesian {
 get { return result.hasCartesian; }
 }
 public global::abb.egm.EgmPose Cartesian {
 get { return result.Cartesian; }
 set { SetCartesian(value); }
 }
 public Builder SetCartesian(global::abb.egm.EgmPose value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasCartesian = true;
 result.cartesian_ = value;
 return this;
 }
 public Builder SetCartesian(global::abb.egm.EgmPose.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasCartesian = true;
 result.cartesian_ = builderForValue.Build();
 return this;
 }
 public Builder MergeCartesian(global::abb.egm.EgmPose value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasCartesian &&
 result.cartesian_ != global::abb.egm.EgmPose.DefaultInstance) {
 result.cartesian_ = global::abb.egm.EgmPose.CreateBuilder(result.cartesian_).MergeFrom(value).BuildPartial();
 } else {
 result.cartesian_ = value;
 }
 result.hasCartesian = true;
 return this;
 }
 public Builder ClearCartesian() {
 PrepareBuilder();
 result.hasCartesian = false;
 result.cartesian_ = null;
 return this;
 }

 public bool HasExternalJoints {
 get { return result.hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return result.ExternalJoints; }
 set { SetExternalJoints(value); }
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = value;
 return this;
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasExternalJoints &&
 result.externalJoints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.externalJoints_ = global::abb.egm.EgmJoints.CreateBuilder(result.externalJoints_).MergeFrom(value).BuildPartial();
 } else {
 result.externalJoints_ = value;
 }
 result.hasExternalJoints = true;
 return this;
 }
 public Builder ClearExternalJoints() {
 PrepareBuilder();
 result.hasExternalJoints = false;
 result.externalJoints_ = null;
 return this;
 }
 }
 static EgmPlanned() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmSpeedRef : pb::GeneratedMessage<EgmSpeedRef, EgmSpeedRef.Builder> {
 private EgmSpeedRef() { }
 private static readonly EgmSpeedRef defaultInstance = new EgmSpeedRef().MakeReadOnly();
 private static readonly string[] _egmSpeedRefFieldNames = new string[] { "cartesians", "externalJoints", "joints" };
 private static readonly uint[] _egmSpeedRefFieldTags = new uint[] { 18, 26, 10 };
 public static EgmSpeedRef DefaultInstance {
 get { return defaultInstance; }
 }
 public override EgmSpeedRef DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmSpeedRef ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmSpeedRef__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmSpeedRef, EgmSpeedRef.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmSpeedRef__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private bool hasJoints;
 private global::abb.egm.EgmJoints joints_;
 public bool HasJoints {
 get { return hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return joints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public const int CartesiansFieldNumber = 2;
 private bool hasCartesians;
 private global::abb.egm.EgmCartesianSpeed cartesians_;
 public bool HasCartesians {
 get { return hasCartesians; }
 }
 public global::abb.egm.EgmCartesianSpeed Cartesians {
 get { return cartesians_ ?? global::abb.egm.EgmCartesianSpeed.DefaultInstance; }
 }

 public const int ExternalJointsFieldNumber = 3;
 private bool hasExternalJoints;
 private global::abb.egm.EgmJoints externalJoints_;
 public bool HasExternalJoints {
 get { return hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return externalJoints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmSpeedRefFieldNames;
 if (hasJoints) {
 output.WriteMessage(1, field_names[2], Joints);
 }
 if (hasCartesians) {
 output.WriteMessage(2, field_names[0], Cartesians);
 }
 if (hasExternalJoints) {
 output.WriteMessage(3, field_names[1], ExternalJoints);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Joints);
 }
 if (hasCartesians) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Cartesians);
 }
 if (hasExternalJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, ExternalJoints);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmSpeedRef ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmSpeedRef ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmSpeedRef ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmSpeedRef MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmSpeedRef prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmSpeedRef, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmSpeedRef cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmSpeedRef result;

 private EgmSpeedRef PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmSpeedRef original = result;
 result = new EgmSpeedRef();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmSpeedRef MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmSpeedRef.Descriptor; }
 }

 public override EgmSpeedRef DefaultInstanceForType {
 get { return global::abb.egm.EgmSpeedRef.DefaultInstance; }
 }

 public override EgmSpeedRef BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmSpeedRef) {
 return MergeFrom((EgmSpeedRef) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmSpeedRef other) {
 if (other == global::abb.egm.EgmSpeedRef.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasJoints) {
 MergeJoints(other.Joints);
 }
 if (other.HasCartesians) {
 MergeCartesians(other.Cartesians);
 }
 if (other.HasExternalJoints) {
 MergeExternalJoints(other.ExternalJoints);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmSpeedRefFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmSpeedRefFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasJoints) {
 subBuilder.MergeFrom(Joints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Joints = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmCartesianSpeed.Builder subBuilder = global::abb.egm.EgmCartesianSpeed.CreateBuilder();
 if (result.hasCartesians) {
 subBuilder.MergeFrom(Cartesians);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Cartesians = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasExternalJoints) {
 subBuilder.MergeFrom(ExternalJoints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 ExternalJoints = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasJoints {
 get { return result.hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return result.Joints; }
 set { SetJoints(value); }
 }
 public Builder SetJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = value;
 return this;
 }
 public Builder SetJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasJoints &&
 result.joints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.joints_ = global::abb.egm.EgmJoints.CreateBuilder(result.joints_).MergeFrom(value).BuildPartial();
 } else {
 result.joints_ = value;
 }
 result.hasJoints = true;
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.hasJoints = false;
 result.joints_ = null;
 return this;
 }

 public bool HasCartesians {
 get { return result.hasCartesians; }
 }
 public global::abb.egm.EgmCartesianSpeed Cartesians {
 get { return result.Cartesians; }
 set { SetCartesians(value); }
 }
 public Builder SetCartesians(global::abb.egm.EgmCartesianSpeed value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasCartesians = true;
 result.cartesians_ = value;
 return this;
 }
 public Builder SetCartesians(global::abb.egm.EgmCartesianSpeed.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasCartesians = true;
 result.cartesians_ = builderForValue.Build();
 return this;
 }
 public Builder MergeCartesians(global::abb.egm.EgmCartesianSpeed value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasCartesians &&
 result.cartesians_ != global::abb.egm.EgmCartesianSpeed.DefaultInstance) {
 result.cartesians_ = global::abb.egm.EgmCartesianSpeed.CreateBuilder(result.cartesians_).MergeFrom(value).BuildPartial();
 } else {
 result.cartesians_ = value;
 }
 result.hasCartesians = true;
 return this;
 }
 public Builder ClearCartesians() {
 PrepareBuilder();
 result.hasCartesians = false;
 result.cartesians_ = null;
 return this;
 }

 public bool HasExternalJoints {
 get { return result.hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return result.ExternalJoints; }
 set { SetExternalJoints(value); }
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = value;
 return this;
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasExternalJoints &&
 result.externalJoints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.externalJoints_ = global::abb.egm.EgmJoints.CreateBuilder(result.externalJoints_).MergeFrom(value).BuildPartial();
 } else {
 result.externalJoints_ = value;
 }
 result.hasExternalJoints = true;
 return this;
 }
 public Builder ClearExternalJoints() {
 PrepareBuilder();
 result.hasExternalJoints = false;
 result.externalJoints_ = null;
 return this;
 }
 }
 static EgmSpeedRef() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmFeedBack : pb::GeneratedMessage<EgmFeedBack, EgmFeedBack.Builder> {
 private EgmFeedBack() { }
 private static readonly EgmFeedBack defaultInstance = new EgmFeedBack().MakeReadOnly();
 private static readonly string[] _egmFeedBackFieldNames = new string[] { "cartesian", "externalJoints", "joints" };
 private static readonly uint[] _egmFeedBackFieldTags = new uint[] { 18, 26, 10 };
 public static EgmFeedBack DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmFeedBack DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmFeedBack ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmFeedBack__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmFeedBack, EgmFeedBack.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmFeedBack__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private bool hasJoints;
 private global::abb.egm.EgmJoints joints_;
 public bool HasJoints {
 get { return hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return joints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public const int CartesianFieldNumber = 2;
 private bool hasCartesian;
 private global::abb.egm.EgmPose cartesian_;
 public bool HasCartesian {
 get { return hasCartesian; }
 }
 public global::abb.egm.EgmPose Cartesian {
 get { return cartesian_ ?? global::abb.egm.EgmPose.DefaultInstance; }
 }

 public const int ExternalJointsFieldNumber = 3;
 private bool hasExternalJoints;
 private global::abb.egm.EgmJoints externalJoints_;
 public bool HasExternalJoints {
 get { return hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return externalJoints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasCartesian) {
 if (!Cartesian.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmFeedBackFieldNames;
 if (hasJoints) {
 output.WriteMessage(1, field_names[2], Joints);
 }
 if (hasCartesian) {
 output.WriteMessage(2, field_names[0], Cartesian);
 }
 if (hasExternalJoints) {
 output.WriteMessage(3, field_names[1], ExternalJoints);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Joints);
 }
 if (hasCartesian) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Cartesian);
 }
 if (hasExternalJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, ExternalJoints);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmFeedBack ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmFeedBack ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmFeedBack ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmFeedBack MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmFeedBack prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmFeedBack, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmFeedBack cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmFeedBack result;

 private EgmFeedBack PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmFeedBack original = result;
 result = new EgmFeedBack();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmFeedBack MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmFeedBack.Descriptor; }
 }

 public override EgmFeedBack DefaultInstanceForType {
 get { return global::abb.egm.EgmFeedBack.DefaultInstance; }
 }

 public override EgmFeedBack BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmFeedBack) {
 return MergeFrom((EgmFeedBack) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmFeedBack other) {
 if (other == global::abb.egm.EgmFeedBack.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasJoints) {
 MergeJoints(other.Joints);
 }
 if (other.HasCartesian) {
 MergeCartesian(other.Cartesian);
 }
 if (other.HasExternalJoints) {
 MergeExternalJoints(other.ExternalJoints);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmFeedBackFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmFeedBackFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasJoints) {
 subBuilder.MergeFrom(Joints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Joints = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmPose.Builder subBuilder = global::abb.egm.EgmPose.CreateBuilder();
 if (result.hasCartesian) {
 subBuilder.MergeFrom(Cartesian);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Cartesian = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasExternalJoints) {
 subBuilder.MergeFrom(ExternalJoints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 ExternalJoints = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasJoints {
 get { return result.hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return result.Joints; }
 set { SetJoints(value); }
 }
 public Builder SetJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = value;
 return this;
 }
 public Builder SetJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasJoints &&
 result.joints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.joints_ = global::abb.egm.EgmJoints.CreateBuilder(result.joints_).MergeFrom(value).BuildPartial();
 } else {
 result.joints_ = value;
 }
 result.hasJoints = true;
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.hasJoints = false;
 result.joints_ = null;
 return this;
 }

 public bool HasCartesian {
 get { return result.hasCartesian; }
 }
 public global::abb.egm.EgmPose Cartesian {
 get { return result.Cartesian; }
 set { SetCartesian(value); }
 }
 public Builder SetCartesian(global::abb.egm.EgmPose value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasCartesian = true;
 result.cartesian_ = value;
 return this;
 }
 public Builder SetCartesian(global::abb.egm.EgmPose.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasCartesian = true;
 result.cartesian_ = builderForValue.Build();
 return this;
 }
 public Builder MergeCartesian(global::abb.egm.EgmPose value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasCartesian &&
 result.cartesian_ != global::abb.egm.EgmPose.DefaultInstance) {
 result.cartesian_ = global::abb.egm.EgmPose.CreateBuilder(result.cartesian_).MergeFrom(value).BuildPartial();
 } else {
 result.cartesian_ = value;
 }
 result.hasCartesian = true;
 return this;
 }
 public Builder ClearCartesian() {
 PrepareBuilder();
 result.hasCartesian = false;
 result.cartesian_ = null;
 return this;
 }

 public bool HasExternalJoints {
 get { return result.hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return result.ExternalJoints; }
 set { SetExternalJoints(value); }
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = value;
 return this;
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasExternalJoints &&
 result.externalJoints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.externalJoints_ = global::abb.egm.EgmJoints.CreateBuilder(result.externalJoints_).MergeFrom(value).BuildPartial();
 } else {
 result.externalJoints_ = value;
 }
 result.hasExternalJoints = true;
 return this;
 }
 public Builder ClearExternalJoints() {
 PrepareBuilder();
 result.hasExternalJoints = false;
 result.externalJoints_ = null;
 return this;
 }
 }
 static EgmFeedBack() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmMotorState : pb::GeneratedMessage<EgmMotorState, EgmMotorState.Builder> {
 private EgmMotorState() { }
 private static readonly EgmMotorState defaultInstance = new EgmMotorState().MakeReadOnly();
 private static readonly string[] _egmMotorStateFieldNames = new string[] { "state" };
 private static readonly uint[] _egmMotorStateFieldTags = new uint[] { 8 };
 public static EgmMotorState DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmMotorState DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmMotorState ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmMotorState__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmMotorState, EgmMotorState.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmMotorState__FieldAccessorTable; }
 }

 #region Nested types
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Types {
 public enum MotorStateType {
 MOTORS_UNDEFINED = 0,
 MOTORS_ON = 1,
 MOTORS_OFF = 2,
 }

 }
 #endregion

 public const int StateFieldNumber = 1;
 private bool hasState;
 private global::abb.egm.EgmMotorState.Types.MotorStateType state_ = global::abb.egm.EgmMotorState.Types.MotorStateType.MOTORS_UNDEFINED;
 public bool HasState {
 get { return hasState; }
 }
 public global::abb.egm.EgmMotorState.Types.MotorStateType State {
 get { return state_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasState) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmMotorStateFieldNames;
 if (hasState) {
 output.WriteEnum(1, field_names[0], (int) State, State);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasState) {
 size += pb::CodedOutputStream.ComputeEnumSize(1, (int) State);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmMotorState ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmMotorState ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmMotorState ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmMotorState ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmMotorState MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmMotorState prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmMotorState, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmMotorState cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmMotorState result;

 private EgmMotorState PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmMotorState original = result;
 result = new EgmMotorState();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmMotorState MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmMotorState.Descriptor; }
 }

 public override EgmMotorState DefaultInstanceForType {
 get { return global::abb.egm.EgmMotorState.DefaultInstance; }
 }

 public override EgmMotorState BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmMotorState) {
 return MergeFrom((EgmMotorState) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmMotorState other) {
 if (other == global::abb.egm.EgmMotorState.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasState) {
 State = other.State;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmMotorStateFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmMotorStateFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 8: {
 object unknown;
 if(input.ReadEnum(ref result.state_, out unknown)) {
 result.hasState = true;
 } else if(unknown is int) {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 unknownFields.MergeVarintField(1, (ulong)(int)unknown);
 }
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasState {
 get { return result.hasState; }
 }
 public global::abb.egm.EgmMotorState.Types.MotorStateType State {
 get { return result.State; }
 set { SetState(value); }
 }
 public Builder SetState(global::abb.egm.EgmMotorState.Types.MotorStateType value) {
 PrepareBuilder();
 result.hasState = true;
 result.state_ = value;
 return this;
 }
 public Builder ClearState() {
 PrepareBuilder();
 result.hasState = false;
 result.state_ = global::abb.egm.EgmMotorState.Types.MotorStateType.MOTORS_UNDEFINED;
 return this;
 }
 }
 static EgmMotorState() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmMCIState : pb::GeneratedMessage<EgmMCIState, EgmMCIState.Builder> {
 private EgmMCIState() { }
 private static readonly EgmMCIState defaultInstance = new EgmMCIState().MakeReadOnly();
 private static readonly string[] _egmMCIStateFieldNames = new string[] { "state" };
 private static readonly uint[] _egmMCIStateFieldTags = new uint[] { 8 };
 public static EgmMCIState DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmMCIState DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmMCIState ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmMCIState__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmMCIState, EgmMCIState.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmMCIState__FieldAccessorTable; }
 }

 #region Nested types
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Types {
 public enum MCIStateType {
 MCI_UNDEFINED = 0,
 MCI_ERROR = 1,
 MCI_STOPPED = 2,
 MCI_RUNNING = 3,
 }

 }
 #endregion

 public const int StateFieldNumber = 1;
 private bool hasState;
 private global::abb.egm.EgmMCIState.Types.MCIStateType state_ = global::abb.egm.EgmMCIState.Types.MCIStateType.MCI_UNDEFINED;
 public bool HasState {
 get { return hasState; }
 }
 public global::abb.egm.EgmMCIState.Types.MCIStateType State {
 get { return state_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasState) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmMCIStateFieldNames;
 if (hasState) {
 output.WriteEnum(1, field_names[0], (int) State, State);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasState) {
 size += pb::CodedOutputStream.ComputeEnumSize(1, (int) State);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmMCIState ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmMCIState ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmMCIState ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmMCIState ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmMCIState MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmMCIState prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmMCIState, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmMCIState cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmMCIState result;

 private EgmMCIState PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmMCIState original = result;
 result = new EgmMCIState();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmMCIState MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmMCIState.Descriptor; }
 }

 public override EgmMCIState DefaultInstanceForType {
 get { return global::abb.egm.EgmMCIState.DefaultInstance; }
 }

 public override EgmMCIState BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmMCIState) {
 return MergeFrom((EgmMCIState) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmMCIState other) {
 if (other == global::abb.egm.EgmMCIState.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasState) {
 State = other.State;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmMCIStateFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmMCIStateFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 8: {
 object unknown;
 if(input.ReadEnum(ref result.state_, out unknown)) {
 result.hasState = true;
 } else if(unknown is int) {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 unknownFields.MergeVarintField(1, (ulong)(int)unknown);
 }
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasState {
 get { return result.hasState; }
 }
 public global::abb.egm.EgmMCIState.Types.MCIStateType State {
 get { return result.State; }
 set { SetState(value); }
 }
 public Builder SetState(global::abb.egm.EgmMCIState.Types.MCIStateType value) {
 PrepareBuilder();
 result.hasState = true;
 result.state_ = value;
 return this;
 }
 public Builder ClearState() {
 PrepareBuilder();
 result.hasState = false;
 result.state_ = global::abb.egm.EgmMCIState.Types.MCIStateType.MCI_UNDEFINED;
 return this;
 }
 }
 static EgmMCIState() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmRapidCtrlExecState : pb::GeneratedMessage<EgmRapidCtrlExecState, EgmRapidCtrlExecState.Builder> {
 private EgmRapidCtrlExecState() { }
 private static readonly EgmRapidCtrlExecState defaultInstance = new EgmRapidCtrlExecState().MakeReadOnly();
 private static readonly string[] _egmRapidCtrlExecStateFieldNames = new string[] { "state" };
 private static readonly uint[] _egmRapidCtrlExecStateFieldTags = new uint[] { 8 };
 public static EgmRapidCtrlExecState DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmRapidCtrlExecState DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmRapidCtrlExecState ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmRapidCtrlExecState__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmRapidCtrlExecState, EgmRapidCtrlExecState.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmRapidCtrlExecState__FieldAccessorTable; }
 }

 #region Nested types
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Types {
 public enum RapidCtrlExecStateType {
 RAPID_UNDEFINED = 0,
 RAPID_STOPPED = 1,
 RAPID_RUNNING = 2,
 }

 }
 #endregion

 public const int StateFieldNumber = 1;
 private bool hasState;
 private global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType state_ = global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType.RAPID_UNDEFINED;
 public bool HasState {
 get { return hasState; }
 }
 public global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType State {
 get { return state_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasState) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmRapidCtrlExecStateFieldNames;
 if (hasState) {
 output.WriteEnum(1, field_names[0], (int) State, State);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasState) {
 size += pb::CodedOutputStream.ComputeEnumSize(1, (int) State);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmRapidCtrlExecState ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmRapidCtrlExecState MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmRapidCtrlExecState prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmRapidCtrlExecState, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmRapidCtrlExecState cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmRapidCtrlExecState result;

 private EgmRapidCtrlExecState PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmRapidCtrlExecState original = result;
 result = new EgmRapidCtrlExecState();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmRapidCtrlExecState MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmRapidCtrlExecState.Descriptor; }
 }

 public override EgmRapidCtrlExecState DefaultInstanceForType {
 get { return global::abb.egm.EgmRapidCtrlExecState.DefaultInstance; }
 }

 public override EgmRapidCtrlExecState BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmRapidCtrlExecState) {
 return MergeFrom((EgmRapidCtrlExecState) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmRapidCtrlExecState other) {
 if (other == global::abb.egm.EgmRapidCtrlExecState.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasState) {
 State = other.State;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmRapidCtrlExecStateFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmRapidCtrlExecStateFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 8: {
 object unknown;
 if(input.ReadEnum(ref result.state_, out unknown)) {
 result.hasState = true;
 } else if(unknown is int) {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 unknownFields.MergeVarintField(1, (ulong)(int)unknown);
 }
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasState {
 get { return result.hasState; }
 }
 public global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType State {
 get { return result.State; }
 set { SetState(value); }
 }
 public Builder SetState(global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType value) {
 PrepareBuilder();
 result.hasState = true;
 result.state_ = value;
 return this;
 }
 public Builder ClearState() {
 PrepareBuilder();
 result.hasState = false;
 result.state_ = global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType.RAPID_UNDEFINED;
 return this;
 }
 }
 static EgmRapidCtrlExecState() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmTestSignals : pb::GeneratedMessage<EgmTestSignals, EgmTestSignals.Builder> {
 private EgmTestSignals() { }
 private static readonly EgmTestSignals defaultInstance = new EgmTestSignals().MakeReadOnly();
 private static readonly string[] _egmTestSignalsFieldNames = new string[] { "signals" };
 private static readonly uint[] _egmTestSignalsFieldTags = new uint[] { 9 };
 public static EgmTestSignals DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmTestSignals DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmTestSignals ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmTestSignals__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmTestSignals, EgmTestSignals.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmTestSignals__FieldAccessorTable; }
 }

 public const int SignalsFieldNumber = 1;
 private pbc::PopsicleList<double> signals_ = new pbc::PopsicleList<double>();
 public scg::IList<double> SignalsList {
 get { return pbc::Lists.AsReadOnly(signals_); }
 }
 public int SignalsCount {
 get { return signals_.Count; }
 }
 public double GetSignals(int index) {
 return signals_[index];
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmTestSignalsFieldNames;
 if (signals_.Count > 0) {
 output.WriteDoubleArray(1, field_names[0], signals_);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 {
 int dataSize = 0;
 dataSize = 8 * signals_.Count;
 size += dataSize;
 size += 1 * signals_.Count;
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmTestSignals ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmTestSignals ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmTestSignals ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmTestSignals MakeReadOnly() {
 signals_.MakeReadOnly();
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmTestSignals prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmTestSignals, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmTestSignals cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmTestSignals result;

 private EgmTestSignals PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmTestSignals original = result;
 result = new EgmTestSignals();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmTestSignals MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmTestSignals.Descriptor; }
 }

 public override EgmTestSignals DefaultInstanceForType {
 get { return global::abb.egm.EgmTestSignals.DefaultInstance; }
 }

 public override EgmTestSignals BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmTestSignals) {
 return MergeFrom((EgmTestSignals) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmTestSignals other) {
 if (other == global::abb.egm.EgmTestSignals.DefaultInstance) return this;
 PrepareBuilder();
 if (other.signals_.Count != 0) {
 result.signals_.Add(other.signals_);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmTestSignalsFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmTestSignalsFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10:
 case 9: {
 input.ReadDoubleArray(tag, field_name, result.signals_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public pbc::IPopsicleList<double> SignalsList {
 get { return PrepareBuilder().signals_; }
 }
 public int SignalsCount {
 get { return result.SignalsCount; }
 }
 public double GetSignals(int index) {
 return result.GetSignals(index);
 }
 public Builder SetSignals(int index, double value) {
 PrepareBuilder();
 result.signals_[index] = value;
 return this;
 }
 public Builder AddSignals(double value) {
 PrepareBuilder();
 result.signals_.Add(value);
 return this;
 }
 public Builder AddRangeSignals(scg::IEnumerable<double> values) {
 PrepareBuilder();
 result.signals_.Add(values);
 return this;
 }
 public Builder ClearSignals() {
 PrepareBuilder();
 result.signals_.Clear();
 return this;
 }
 }
 static EgmTestSignals() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmRobot : pb::GeneratedMessage<EgmRobot, EgmRobot.Builder> {
 private EgmRobot() { }
 private static readonly EgmRobot defaultInstance = new EgmRobot().MakeReadOnly();
 private static readonly string[] _egmRobotFieldNames = new string[] { "feedBack", "header", "mciConvergenceMet", "mciState", "motorState", "planned", "rapidExecState", "testSignals" };
 private static readonly uint[] _egmRobotFieldTags = new uint[] { 18, 10, 48, 42, 34, 26, 66, 58 };
 public static EgmRobot DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmRobot DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmRobot ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmRobot__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmRobot, EgmRobot.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmRobot__FieldAccessorTable; }
 }

 public const int HeaderFieldNumber = 1;
 private bool hasHeader;
 private global::abb.egm.EgmHeader header_;
 public bool HasHeader {
 get { return hasHeader; }
 }
 public global::abb.egm.EgmHeader Header {
 get { return header_ ?? global::abb.egm.EgmHeader.DefaultInstance; }
 }

 public const int FeedBackFieldNumber = 2;
 private bool hasFeedBack;
 private global::abb.egm.EgmFeedBack feedBack_;
 public bool HasFeedBack {
 get { return hasFeedBack; }
 }
 public global::abb.egm.EgmFeedBack FeedBack {
 get { return feedBack_ ?? global::abb.egm.EgmFeedBack.DefaultInstance; }
 }

 public const int PlannedFieldNumber = 3;
 private bool hasPlanned;
 private global::abb.egm.EgmPlanned planned_;
 public bool HasPlanned {
 get { return hasPlanned; }
 }
 public global::abb.egm.EgmPlanned Planned {
 get { return planned_ ?? global::abb.egm.EgmPlanned.DefaultInstance; }
 }

 public const int MotorStateFieldNumber = 4;
 private bool hasMotorState;
 private global::abb.egm.EgmMotorState motorState_;
 public bool HasMotorState {
 get { return hasMotorState; }
 }
 public global::abb.egm.EgmMotorState MotorState {
 get { return motorState_ ?? global::abb.egm.EgmMotorState.DefaultInstance; }
 }

 public const int MciStateFieldNumber = 5;
 private bool hasMciState;
 private global::abb.egm.EgmMCIState mciState_;
 public bool HasMciState {
 get { return hasMciState; }
 }
 public global::abb.egm.EgmMCIState MciState {
 get { return mciState_ ?? global::abb.egm.EgmMCIState.DefaultInstance; }
 }

 public const int MciConvergenceMetFieldNumber = 6;
 private bool hasMciConvergenceMet;
 private bool mciConvergenceMet_;
 public bool HasMciConvergenceMet {
 get { return hasMciConvergenceMet; }
 }
 public bool MciConvergenceMet {
 get { return mciConvergenceMet_; }
 }

 public const int TestSignalsFieldNumber = 7;
 private bool hasTestSignals;
 private global::abb.egm.EgmTestSignals testSignals_;
 public bool HasTestSignals {
 get { return hasTestSignals; }
 }
 public global::abb.egm.EgmTestSignals TestSignals {
 get { return testSignals_ ?? global::abb.egm.EgmTestSignals.DefaultInstance; }
 }

 public const int RapidExecStateFieldNumber = 8;
 private bool hasRapidExecState;
 private global::abb.egm.EgmRapidCtrlExecState rapidExecState_;
 public bool HasRapidExecState {
 get { return hasRapidExecState; }
 }
 public global::abb.egm.EgmRapidCtrlExecState RapidExecState {
 get { return rapidExecState_ ?? global::abb.egm.EgmRapidCtrlExecState.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasFeedBack) {
 if (!FeedBack.IsInitialized) return false;
 }
 if (HasPlanned) {
 if (!Planned.IsInitialized) return false;
 }
 if (HasMotorState) {
 if (!MotorState.IsInitialized) return false;
 }
 if (HasMciState) {
 if (!MciState.IsInitialized) return false;
 }
 if (HasRapidExecState) {
 if (!RapidExecState.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmRobotFieldNames;
 if (hasHeader) {
 output.WriteMessage(1, field_names[1], Header);
 }
 if (hasFeedBack) {
 output.WriteMessage(2, field_names[0], FeedBack);
 }
 if (hasPlanned) {
 output.WriteMessage(3, field_names[5], Planned);
 }
 if (hasMotorState) {
 output.WriteMessage(4, field_names[4], MotorState);
 }
 if (hasMciState) {
 output.WriteMessage(5, field_names[3], MciState);
 }
 if (hasMciConvergenceMet) {
 output.WriteBool(6, field_names[2], MciConvergenceMet);
 }
 if (hasTestSignals) {
 output.WriteMessage(7, field_names[7], TestSignals);
 }
 if (hasRapidExecState) {
 output.WriteMessage(8, field_names[6], RapidExecState);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasHeader) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Header);
 }
 if (hasFeedBack) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, FeedBack);
 }
 if (hasPlanned) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, Planned);
 }
 if (hasMotorState) {
 size += pb::CodedOutputStream.ComputeMessageSize(4, MotorState);
 }
 if (hasMciState) {
 size += pb::CodedOutputStream.ComputeMessageSize(5, MciState);
 }
 if (hasMciConvergenceMet) {
 size += pb::CodedOutputStream.ComputeBoolSize(6, MciConvergenceMet);
 }
 if (hasTestSignals) {
 size += pb::CodedOutputStream.ComputeMessageSize(7, TestSignals);
 }
 if (hasRapidExecState) {
 size += pb::CodedOutputStream.ComputeMessageSize(8, RapidExecState);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmRobot ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmRobot ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmRobot ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmRobot ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmRobot ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmRobot ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmRobot ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmRobot ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmRobot ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmRobot ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmRobot MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmRobot prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmRobot, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmRobot cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmRobot result;

 private EgmRobot PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmRobot original = result;
 result = new EgmRobot();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmRobot MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmRobot.Descriptor; }
 }

 public override EgmRobot DefaultInstanceForType {
 get { return global::abb.egm.EgmRobot.DefaultInstance; }
 }

 public override EgmRobot BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmRobot) {
 return MergeFrom((EgmRobot) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmRobot other) {
 if (other == global::abb.egm.EgmRobot.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasHeader) {
 MergeHeader(other.Header);
 }
 if (other.HasFeedBack) {
 MergeFeedBack(other.FeedBack);
 }
 if (other.HasPlanned) {
 MergePlanned(other.Planned);
 }
 if (other.HasMotorState) {
 MergeMotorState(other.MotorState);
 }
 if (other.HasMciState) {
 MergeMciState(other.MciState);
 }
 if (other.HasMciConvergenceMet) {
 MciConvergenceMet = other.MciConvergenceMet;
 }
 if (other.HasTestSignals) {
 MergeTestSignals(other.TestSignals);
 }
 if (other.HasRapidExecState) {
 MergeRapidExecState(other.RapidExecState);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmRobotFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmRobotFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmHeader.Builder subBuilder = global::abb.egm.EgmHeader.CreateBuilder();
 if (result.hasHeader) {
 subBuilder.MergeFrom(Header);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Header = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmFeedBack.Builder subBuilder = global::abb.egm.EgmFeedBack.CreateBuilder();
 if (result.hasFeedBack) {
 subBuilder.MergeFrom(FeedBack);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 FeedBack = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmPlanned.Builder subBuilder = global::abb.egm.EgmPlanned.CreateBuilder();
 if (result.hasPlanned) {
 subBuilder.MergeFrom(Planned);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Planned = subBuilder.BuildPartial();
 break;
 }
 case 34: {
 global::abb.egm.EgmMotorState.Builder subBuilder = global::abb.egm.EgmMotorState.CreateBuilder();
 if (result.hasMotorState) {
 subBuilder.MergeFrom(MotorState);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 MotorState = subBuilder.BuildPartial();
 break;
 }
 case 42: {
 global::abb.egm.EgmMCIState.Builder subBuilder = global::abb.egm.EgmMCIState.CreateBuilder();
 if (result.hasMciState) {
 subBuilder.MergeFrom(MciState);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 MciState = subBuilder.BuildPartial();
 break;
 }
 case 48: {
 result.hasMciConvergenceMet = input.ReadBool(ref result.mciConvergenceMet_);
 break;
 }
 case 58: {
 global::abb.egm.EgmTestSignals.Builder subBuilder = global::abb.egm.EgmTestSignals.CreateBuilder();
 if (result.hasTestSignals) {
 subBuilder.MergeFrom(TestSignals);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 TestSignals = subBuilder.BuildPartial();
 break;
 }
 case 66: {
 global::abb.egm.EgmRapidCtrlExecState.Builder subBuilder = global::abb.egm.EgmRapidCtrlExecState.CreateBuilder();
 if (result.hasRapidExecState) {
 subBuilder.MergeFrom(RapidExecState);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 RapidExecState = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasHeader {
 get { return result.hasHeader; }
 }
 public global::abb.egm.EgmHeader Header {
 get { return result.Header; }
 set { SetHeader(value); }
 }
 public Builder SetHeader(global::abb.egm.EgmHeader value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasHeader = true;
 result.header_ = value;
 return this;
 }
 public Builder SetHeader(global::abb.egm.EgmHeader.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasHeader = true;
 result.header_ = builderForValue.Build();
 return this;
 }
 public Builder MergeHeader(global::abb.egm.EgmHeader value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasHeader &&
 result.header_ != global::abb.egm.EgmHeader.DefaultInstance) {
 result.header_ = global::abb.egm.EgmHeader.CreateBuilder(result.header_).MergeFrom(value).BuildPartial();
 } else {
 result.header_ = value;
 }
 result.hasHeader = true;
 return this;
 }
 public Builder ClearHeader() {
 PrepareBuilder();
 result.hasHeader = false;
 result.header_ = null;
 return this;
 }

 public bool HasFeedBack {
 get { return result.hasFeedBack; }
 }
 public global::abb.egm.EgmFeedBack FeedBack {
 get { return result.FeedBack; }
 set { SetFeedBack(value); }
 }
 public Builder SetFeedBack(global::abb.egm.EgmFeedBack value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasFeedBack = true;
 result.feedBack_ = value;
 return this;
 }
 public Builder SetFeedBack(global::abb.egm.EgmFeedBack.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasFeedBack = true;
 result.feedBack_ = builderForValue.Build();
 return this;
 }
 public Builder MergeFeedBack(global::abb.egm.EgmFeedBack value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasFeedBack &&
 result.feedBack_ != global::abb.egm.EgmFeedBack.DefaultInstance) {
 result.feedBack_ = global::abb.egm.EgmFeedBack.CreateBuilder(result.feedBack_).MergeFrom(value).BuildPartial();
 } else {
 result.feedBack_ = value;
 }
 result.hasFeedBack = true;
 return this;
 }
 public Builder ClearFeedBack() {
 PrepareBuilder();
 result.hasFeedBack = false;
 result.feedBack_ = null;
 return this;
 }

 public bool HasPlanned {
 get { return result.hasPlanned; }
 }
 public global::abb.egm.EgmPlanned Planned {
 get { return result.Planned; }
 set { SetPlanned(value); }
 }
 public Builder SetPlanned(global::abb.egm.EgmPlanned value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasPlanned = true;
 result.planned_ = value;
 return this;
 }
 public Builder SetPlanned(global::abb.egm.EgmPlanned.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasPlanned = true;
 result.planned_ = builderForValue.Build();
 return this;
 }
 public Builder MergePlanned(global::abb.egm.EgmPlanned value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasPlanned &&
 result.planned_ != global::abb.egm.EgmPlanned.DefaultInstance) {
 result.planned_ = global::abb.egm.EgmPlanned.CreateBuilder(result.planned_).MergeFrom(value).BuildPartial();
 } else {
 result.planned_ = value;
 }
 result.hasPlanned = true;
 return this;
 }
 public Builder ClearPlanned() {
 PrepareBuilder();
 result.hasPlanned = false;
 result.planned_ = null;
 return this;
 }

 public bool HasMotorState {
 get { return result.hasMotorState; }
 }
 public global::abb.egm.EgmMotorState MotorState {
 get { return result.MotorState; }
 set { SetMotorState(value); }
 }
 public Builder SetMotorState(global::abb.egm.EgmMotorState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasMotorState = true;
 result.motorState_ = value;
 return this;
 }
 public Builder SetMotorState(global::abb.egm.EgmMotorState.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasMotorState = true;
 result.motorState_ = builderForValue.Build();
 return this;
 }
 public Builder MergeMotorState(global::abb.egm.EgmMotorState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasMotorState &&
 result.motorState_ != global::abb.egm.EgmMotorState.DefaultInstance) {
 result.motorState_ = global::abb.egm.EgmMotorState.CreateBuilder(result.motorState_).MergeFrom(value).BuildPartial();
 } else {
 result.motorState_ = value;
 }
 result.hasMotorState = true;
 return this;
 }
 public Builder ClearMotorState() {
 PrepareBuilder();
 result.hasMotorState = false;
 result.motorState_ = null;
 return this;
 }

 public bool HasMciState {
 get { return result.hasMciState; }
 }
 public global::abb.egm.EgmMCIState MciState {
 get { return result.MciState; }
 set { SetMciState(value); }
 }
 public Builder SetMciState(global::abb.egm.EgmMCIState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasMciState = true;
 result.mciState_ = value;
 return this;
 }
 public Builder SetMciState(global::abb.egm.EgmMCIState.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasMciState = true;
 result.mciState_ = builderForValue.Build();
 return this;
 }
 public Builder MergeMciState(global::abb.egm.EgmMCIState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasMciState &&
 result.mciState_ != global::abb.egm.EgmMCIState.DefaultInstance) {
 result.mciState_ = global::abb.egm.EgmMCIState.CreateBuilder(result.mciState_).MergeFrom(value).BuildPartial();
 } else {
 result.mciState_ = value;
 }
 result.hasMciState = true;
 return this;
 }
 public Builder ClearMciState() {
 PrepareBuilder();
 result.hasMciState = false;
 result.mciState_ = null;
 return this;
 }

 public bool HasMciConvergenceMet {
 get { return result.hasMciConvergenceMet; }
 }
 public bool MciConvergenceMet {
 get { return result.MciConvergenceMet; }
 set { SetMciConvergenceMet(value); }
 }
 public Builder SetMciConvergenceMet(bool value) {
 PrepareBuilder();
 result.hasMciConvergenceMet = true;
 result.mciConvergenceMet_ = value;
 return this;
 }
 public Builder ClearMciConvergenceMet() {
 PrepareBuilder();
 result.hasMciConvergenceMet = false;
 result.mciConvergenceMet_ = false;
 return this;
 }

 public bool HasTestSignals {
 get { return result.hasTestSignals; }
 }
 public global::abb.egm.EgmTestSignals TestSignals {
 get { return result.TestSignals; }
 set { SetTestSignals(value); }
 }
 public Builder SetTestSignals(global::abb.egm.EgmTestSignals value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasTestSignals = true;
 result.testSignals_ = value;
 return this;
 }
 public Builder SetTestSignals(global::abb.egm.EgmTestSignals.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasTestSignals = true;
 result.testSignals_ = builderForValue.Build();
 return this;
 }
 public Builder MergeTestSignals(global::abb.egm.EgmTestSignals value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasTestSignals &&
 result.testSignals_ != global::abb.egm.EgmTestSignals.DefaultInstance) {
 result.testSignals_ = global::abb.egm.EgmTestSignals.CreateBuilder(result.testSignals_).MergeFrom(value).BuildPartial();
 } else {
 result.testSignals_ = value;
 }
 result.hasTestSignals = true;
 return this;
 }
 public Builder ClearTestSignals() {
 PrepareBuilder();
 result.hasTestSignals = false;
 result.testSignals_ = null;
 return this;
 }

 public bool HasRapidExecState {
 get { return result.hasRapidExecState; }
 }
 public global::abb.egm.EgmRapidCtrlExecState RapidExecState {
 get { return result.RapidExecState; }
 set { SetRapidExecState(value); }
 }
 public Builder SetRapidExecState(global::abb.egm.EgmRapidCtrlExecState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasRapidExecState = true;
 result.rapidExecState_ = value;
 return this;
 }
 public Builder SetRapidExecState(global::abb.egm.EgmRapidCtrlExecState.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasRapidExecState = true;
 result.rapidExecState_ = builderForValue.Build();
 return this;
 }
 public Builder MergeRapidExecState(global::abb.egm.EgmRapidCtrlExecState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasRapidExecState &&
 result.rapidExecState_ != global::abb.egm.EgmRapidCtrlExecState.DefaultInstance) {
 result.rapidExecState_ = global::abb.egm.EgmRapidCtrlExecState.CreateBuilder(result.rapidExecState_).MergeFrom(value).BuildPartial();
 } else {
 result.rapidExecState_ = value;
 }
 result.hasRapidExecState = true;
 return this;
 }
 public Builder ClearRapidExecState() {
 PrepareBuilder();
 result.hasRapidExecState = false;
 result.rapidExecState_ = null;
 return this;
 }
 }
 static EgmRobot() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmSensor : pb::GeneratedMessage<EgmSensor, EgmSensor.Builder> {
 private EgmSensor() { }
 private static readonly EgmSensor defaultInstance = new EgmSensor().MakeReadOnly();
 private static readonly string[] _egmSensorFieldNames = new string[] { "header", "planned", "speedRef" };
 private static readonly uint[] _egmSensorFieldTags = new uint[] { 10, 18, 26 };
 public static EgmSensor DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmSensor DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmSensor ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmSensor__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmSensor, EgmSensor.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmSensor__FieldAccessorTable; }
 }

 public const int HeaderFieldNumber = 1;
 private bool hasHeader;
 private global::abb.egm.EgmHeader header_;
 public bool HasHeader {
 get { return hasHeader; }
 }
 public global::abb.egm.EgmHeader Header {
 get { return header_ ?? global::abb.egm.EgmHeader.DefaultInstance; }
 }

 public const int PlannedFieldNumber = 2;
 private bool hasPlanned;
 private global::abb.egm.EgmPlanned planned_;
 public bool HasPlanned {
 get { return hasPlanned; }
 }
 public global::abb.egm.EgmPlanned Planned {
 get { return planned_ ?? global::abb.egm.EgmPlanned.DefaultInstance; }
 }

 public const int SpeedRefFieldNumber = 3;
 private bool hasSpeedRef;
 private global::abb.egm.EgmSpeedRef speedRef_;
 public bool HasSpeedRef {
 get { return hasSpeedRef; }
 }
 public global::abb.egm.EgmSpeedRef SpeedRef {
 get { return speedRef_ ?? global::abb.egm.EgmSpeedRef.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasPlanned) {
 if (!Planned.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmSensorFieldNames;
 if (hasHeader) {
 output.WriteMessage(1, field_names[0], Header);
 }
 if (hasPlanned) {
 output.WriteMessage(2, field_names[1], Planned);
 }
 if (hasSpeedRef) {
 output.WriteMessage(3, field_names[2], SpeedRef);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasHeader) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Header);
 }
 if (hasPlanned) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Planned);
 }
 if (hasSpeedRef) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, SpeedRef);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmSensor ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmSensor ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmSensor ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmSensor ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmSensor ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmSensor ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmSensor ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmSensor ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmSensor ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmSensor ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmSensor MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmSensor prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmSensor, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmSensor cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmSensor result;

 private EgmSensor PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmSensor original = result;
 result = new EgmSensor();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmSensor MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmSensor.Descriptor; }
 }

 public override EgmSensor DefaultInstanceForType {
 get { return global::abb.egm.EgmSensor.DefaultInstance; }
 }

 public override EgmSensor BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmSensor) {
 return MergeFrom((EgmSensor) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmSensor other) {
 if (other == global::abb.egm.EgmSensor.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasHeader) {
 MergeHeader(other.Header);
 }
 if (other.HasPlanned) {
 MergePlanned(other.Planned);
 }
 if (other.HasSpeedRef) {
 MergeSpeedRef(other.SpeedRef);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmSensorFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmSensorFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmHeader.Builder subBuilder = global::abb.egm.EgmHeader.CreateBuilder();
 if (result.hasHeader) {
 subBuilder.MergeFrom(Header);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Header = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmPlanned.Builder subBuilder = global::abb.egm.EgmPlanned.CreateBuilder();
 if (result.hasPlanned) {
 subBuilder.MergeFrom(Planned);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Planned = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmSpeedRef.Builder subBuilder = global::abb.egm.EgmSpeedRef.CreateBuilder();
 if (result.hasSpeedRef) {
 subBuilder.MergeFrom(SpeedRef);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 SpeedRef = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasHeader {
 get { return result.hasHeader; }
 }
 public global::abb.egm.EgmHeader Header {
 get { return result.Header; }
 set { SetHeader(value); }
 }
 public Builder SetHeader(global::abb.egm.EgmHeader value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasHeader = true;
 result.header_ = value;
 return this;
 }
 public Builder SetHeader(global::abb.egm.EgmHeader.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasHeader = true;
 result.header_ = builderForValue.Build();
 return this;
 }
 public Builder MergeHeader(global::abb.egm.EgmHeader value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasHeader &&
 result.header_ != global::abb.egm.EgmHeader.DefaultInstance) {
 result.header_ = global::abb.egm.EgmHeader.CreateBuilder(result.header_).MergeFrom(value).BuildPartial();
 } else {
 result.header_ = value;
 }
 result.hasHeader = true;
 return this;
 }
 public Builder ClearHeader() {
 PrepareBuilder();
 result.hasHeader = false;
 result.header_ = null;
 return this;
 }

 public bool HasPlanned {
 get { return result.hasPlanned; }
 }
 public global::abb.egm.EgmPlanned Planned {
 get { return result.Planned; }
 set { SetPlanned(value); }
 }
 public Builder SetPlanned(global::abb.egm.EgmPlanned value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasPlanned = true;
 result.planned_ = value;
 return this;
 }
 public Builder SetPlanned(global::abb.egm.EgmPlanned.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasPlanned = true;
 result.planned_ = builderForValue.Build();
 return this;
 }
 public Builder MergePlanned(global::abb.egm.EgmPlanned value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasPlanned &&
 result.planned_ != global::abb.egm.EgmPlanned.DefaultInstance) {
 result.planned_ = global::abb.egm.EgmPlanned.CreateBuilder(result.planned_).MergeFrom(value).BuildPartial();
 } else {
 result.planned_ = value;
 }
 result.hasPlanned = true;
 return this;
 }
 public Builder ClearPlanned() {
 PrepareBuilder();
 result.hasPlanned = false;
 result.planned_ = null;
 return this;
 }

 public bool HasSpeedRef {
 get { return result.hasSpeedRef; }
 }
 public global::abb.egm.EgmSpeedRef SpeedRef {
 get { return result.SpeedRef; }
 set { SetSpeedRef(value); }
 }
 public Builder SetSpeedRef(global::abb.egm.EgmSpeedRef value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasSpeedRef = true;
 result.speedRef_ = value;
 return this;
 }
 public Builder SetSpeedRef(global::abb.egm.EgmSpeedRef.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasSpeedRef = true;
 result.speedRef_ = builderForValue.Build();
 return this;
 }
 public Builder MergeSpeedRef(global::abb.egm.EgmSpeedRef value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasSpeedRef &&
 result.speedRef_ != global::abb.egm.EgmSpeedRef.DefaultInstance) {
 result.speedRef_ = global::abb.egm.EgmSpeedRef.CreateBuilder(result.speedRef_).MergeFrom(value).BuildPartial();
 } else {
 result.speedRef_ = value;
 }
 result.hasSpeedRef = true;
 return this;
 }
 public Builder ClearSpeedRef() {
 PrepareBuilder();
 result.hasSpeedRef = false;
 result.speedRef_ = null;
 return this;
 }
 }
 static EgmSensor() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 #endregion

}

#endregion Designer generated code

Online Teaching/egm.proto

// Definition of ABB sensor interface V1.0
//
// messages of type EgmRobot are sent out from the robot controller
// messages of type EgmSensor are sent to the robot controller
//
package abb.egm;

message EgmHeader
{
 optional uint32 seqno = 1; // sequence number (to be able to find lost messages)
 optional uint32 tm = 2; // time stamp in ms

 enum MessageType {
 MSGTYPE_UNDEFINED = 0;
 MSGTYPE_COMMAND = 1;			// for future use
 MSGTYPE_DATA = 2;				// sent by robot controller
 MSGTYPE_CORRECTION = 3;			// sent by sensor
 MSGTYPE_PATH_CORRECTION = 4;	// sent by sensor
 }

 optional MessageType mtype = 3 [default = MSGTYPE_UNDEFINED];
}

message EgmCartesian			// Cartesian position in mm, interpreted relative to the sensor frame defined by EGMActPose
{
 required double x = 1;
 required double y = 2;
 required double z = 3;
}

// If you have pose input, i.e. not joint input, you can choose to send orientation data as quaternion or as Euler angles.
// If both are sent, Euler angles have higher priority.

message EgmQuaternion			// Quaternion orientation interpreted relative to the sensor frame defined by EGMActPose
{
 required double u0 = 1;
 required double u1 = 2;
 required double u2 = 3;
 required double u3 = 4;
}

message EgmEuler				// Euler angle orientation in degrees, interpreted relative to the sensor frame defined by EGMActPose
{
 required double x = 1;
 required double y = 2;
 required double z = 3;
}

message EgmPose					// Pose (i.e. cartesian position and Quaternion orientation) interpreted relative to the sensor frame defined by EGMActPose
{
 optional EgmCartesian	pos = 1;
 optional EgmQuaternion	orient = 2;
	optional EgmEuler		euler = 3;
}

message EgmCartesianSpeed 		// Array of 6 speed reference values in mm/s or degrees/s
{
 repeated double value = 1;
}

message EgmJoints 				// Array of 6 joint values for TCP robot in degrees
{
 repeated double joints = 1;
}

message EgmExternalJoints 		// Array of 6 joint values for additional axis in degrees
{
 repeated double joints = 1;
}

message EgmPlanned				// Planned position for robot (joints or cartesian) and additional axis (array of 6 values)
{
 optional EgmJoints joints = 1;
 optional EgmPose cartesian = 2;
 optional EgmJoints externalJoints = 3;
}

message EgmSpeedRef				// Speed reference values for robot (joint or cartesian) and additional axis (array of 6 values)
{
 optional EgmJoints			joints = 1;
 optional EgmCartesianSpeed	cartesians = 2;
 optional EgmJoints			externalJoints = 3;
}

message EgmPathCorr				// Cartesian path correction and measurment age
{
 required EgmCartesian pos = 1;	// Sensor measurement (x, y, z)
	required uint32			age = 2;	// Sensor measurement age in ms
}

message EgmFeedBack				// Feed back position, i.e. actual measured position for robot (joints or cartesian) and additional axis (array of 6 values)
{
 optional EgmJoints joints = 1;
 optional EgmPose cartesian = 2;
 optional EgmJoints externalJoints = 3;
}

message EgmMotorState			// Motor state
{
 enum MotorStateType {
 MOTORS_UNDEFINED = 0;
 MOTORS_ON = 1;
 MOTORS_OFF = 2;
 }

 required MotorStateType state = 1;
}

message EgmMCIState				// EGM state
{
 enum MCIStateType {
 MCI_UNDEFINED = 0;
 MCI_ERROR = 1;
 MCI_STOPPED = 2;
 MCI_RUNNING = 3;
 }

 required MCIStateType state = 1 [default = MCI_UNDEFINED];
}

message EgmRapidCtrlExecState	// RAPID execution state
{
 enum RapidCtrlExecStateType {
 RAPID_UNDEFINED = 0;
 RAPID_STOPPED = 1;
 RAPID_RUNNING = 2;
 };

 required RapidCtrlExecStateType state = 1 [default = RAPID_UNDEFINED];
}

message EgmTestSignals			// Test signals
{
 repeated double signals = 1;
}

// Robot controller outbound message
message EgmRobot
{
 optional EgmHeader				header = 1;
 optional EgmFeedBack			feedBack = 2;
 optional EgmPlanned				planned = 3;

 optional EgmMotorState			motorState = 4;
 optional EgmMCIState			mciState = 5;
 optional bool					mciConvergenceMet = 6;
 optional EgmTestSignals			testSignals = 7;
 optional EgmRapidCtrlExecState	rapidExecState = 8;
}

// Robot controller inbound message, sent from sensor
message EgmSensor
{
 optional EgmHeader		header = 1;
 optional EgmPlanned		planned = 2;
 optional EgmSpeedRef	speedRef = 3;
}

// Robot controller inbound message, sent from sensor
message EgmSensorPathCorr
{
 optional EgmHeader		header = 1;
 optional EgmPathCorr	pathCorr = 2;
}

Online Teaching/GUI/App.config

Online Teaching/GUI/bin/Debug/GUI.exe.config

Online Teaching/GUI/bin/Debug/GUI.pdb

Online Teaching/GUI/ClassDiagram1.cd

Online Teaching/GUI/Continuous.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Diagnostics;
using System.Windows.Forms;
using ABB.Robotics.Controllers;
using ABB.Robotics.Controllers.Discovery;
using ABB.Robotics.Controllers.RapidDomain;
using ABB.Robotics.Controllers.IOSystemDomain;
using ABB.Robotics.Math;
using MicroLibrary;
using System.IO;
using Vive;
namespace GUI
{
 public partial class Continuous : Form
 {
 public ViveTracker tracker;
 public Sensor sensor;
 public Controller controller = null;
 public Matrix3 wobj;
 public DigitalSignal TriggerButton;
 public DigitalSignal GripButton;
 public DigitalSignal MenuButton;
 //public DigitalSignal DpadUpButton;
 //public DigitalSignal DpadDownButton;
 //public DigitalSignal DpadRightButton;
 //public DigitalSignal DpadLeftButton;
 public bool EGMactive = false;
 public bool isRecording = false;
 public bool hasRecording = false;
 public Vector3 CalibVive = new Vector3();
 public Vector3 OffsetRobot = new Vector3();
 public Quaternion transformViveRobot;
 public MicroTimer EGMtimer;
 public delegate void GetInfoVive();
 public GetInfoVive GetInfoViveDelegate;
 public Stopwatch recordingTimer;
 public RobTarget currentPos;
 public List<RobTarget> recordingPos = new List<RobTarget>();
 public List<double> recordingTime = new List<double>();
 public List<uint> recordingTool = new List<uint>();
 public uint index = 0;
 public uint Brush = 1;

 /// <summary>
 /// Initilizes the form, starts the sensorthread, logs onto the controller and sets up the digital input signals, starts EGMtimer
 /// </summary>
 public Continuous(Controller _controller, Matrix3 workobject)
 {
 InitializeComponent();

 sensor = new Sensor();
 sensor.Start();

 tracker = new ViveTracker(1);
 tracker.Initialize();

 controller = _controller;
 wobj = workobject;

 if (controller != null)
 {

 controller.Logon(UserInfo.DefaultUser);

 TriggerButton = (DigitalSignal)controller.IOSystem.GetSignal("TriggerButton");
 GripButton = (DigitalSignal)controller.IOSystem.GetSignal("GripButton");
 MenuButton = (DigitalSignal)controller.IOSystem.GetSignal("MenuButton");
 //DpadUpButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadUpButton");
 //DpadDownButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadDownButton");
 //DpadRightButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadRightButton");
 //DpadLeftButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadLeftButton");

 StartRapidExecution();
 }

 GetInfoViveDelegate = new GetInfoVive(GetInfoViveMethod);
 EGMtimer = new MicroTimer(4000);
 EGMtimer.MicroTimerElapsed += new MicroLibrary.MicroTimer.MicroTimerElapsedEventHandler(EGMTimedEvent);
 EGMtimer.Start();

 GUITimer.Start();
 }

 private void GUITimer_Tick(object sender, EventArgs e)
 {
 UpdateGUI();
 }

 /// <summary>
 /// Updates GUI objects of the form
 /// </summary>
 public void UpdateGUI()
 {
 switch (tracker.Data.ActivityState)
 {
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Unknown:
 SensorStatusBox.BackColor = Color.Black;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Idle:
 SensorStatusBox.BackColor = Color.Red;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Standby:
 SensorStatusBox.BackColor = Color.Yellow;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_UserInteraction_Timeout:
 SensorStatusBox.BackColor = Color.Yellow;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_UserInteraction:
 SensorStatusBox.BackColor = Color.Green;
 break;
 }
 switch (controller.Rapid.ExecutionStatus)
 {
 case ExecutionStatus.Unknown:
 RapidStatusBox.BackColor = Color.Black;
 break;
 case ExecutionStatus.Stopped:
 RapidStatusBox.BackColor = Color.Red;
 break;
 case ExecutionStatus.Running:
 RapidStatusBox.BackColor = Color.Green;
 break;
 }
 if (hasRecording == false)
 {
 if (isRecording == false)
 {
 RecordingStatusBox.BackColor = Color.Red;
 RecordingTextBox.Text = "No recording";
 TooltipBox.Text = "Press menu button to start recording";
 }
 else
 {
 RecordingStatusBox.BackColor = Color.Green;
 RecordingTextBox.Text = "Recording in progress";
 TooltipBox.Text = "Press menu button to stop recording";
 }
 }
 else
 {
 if (isRecording == false)
 {
 RecordingStatusBox.BackColor = Color.Yellow;
 RecordingTextBox.Text = "Recording paused";
 TooltipBox.Text = "Press menu button to continiue recording or choose what to do with recording";
 }
 else
 {
 RecordingStatusBox.BackColor = Color.Green;
 RecordingTextBox.Text = "Recording in progress";
 TooltipBox.Text = "Press menu button to stop recording";
 }
 }
 }

 private void EGMTimedEvent(object sender,
 MicroLibrary.MicroTimerEventArgs timerEventArgs)
 {
 this.Invoke(GetInfoViveDelegate);
 }

 /// <summary>
 /// Gets info from Vive-controller and updates info to send to robot
 /// </summary>
 private void GetInfoViveMethod()
 {
 bool trigger = tracker.Data.ButtonPressed._trigger;
 bool grip = tracker.Data.ButtonPressed._grip;
 bool menu = tracker.Data.ButtonPressed._menu;
 //bool dpad_up = tracker.Data.ButtonPressed.dPad_Up;
 //bool dpad_down = tracker.Data.ButtonPressed.dPad_Down;
 //bool dpad_right = tracker.Data.ButtonPressed.dPad_Right;
 //bool dpad_left = tracker.Data.ButtonPressed.dPad_Left;

 tracker.UpdateData();

 if (trigger != tracker.Data.ButtonPressed._trigger)
 {
 SetSignal(TriggerButton, tracker.Data.ButtonPressed._trigger);
 }
 if (grip != tracker.Data.ButtonPressed._grip)
 {
 if (tracker.Data.ButtonPressed._grip == true)
 {
 if (EGMactive == false)
 {
 EGMactive = true;
 // Position calibration
 CalibVive = tracker.Data.Position;
 currentPos = controller.MotionSystem.ActiveMechanicalUnit.GetPosition
 (ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.WorkObject);
 OffsetRobot.x = currentPos.Trans.X;
 OffsetRobot.y = currentPos.Trans.Y;
 OffsetRobot.z = currentPos.Trans.Z;

 // Orientation calibration
 Quaternion Robot = new Quaternion(currentPos.Rot.Q1, currentPos.Rot.Q2, currentPos.Rot.Q3, currentPos.Rot.Q4);
 Quaternion Vive = tracker.Data.Orientation.Inverse();
 transformViveRobot = Vive * Robot;
 }
 else if (EGMactive == true)
 {
 EGMactive = false;

 }
 }

 SetSignal(GripButton, tracker.Data.ButtonPressed._grip);

 }
 if (menu != tracker.Data.ButtonPressed._menu)
 {
 if (tracker.Data.ButtonPressed._menu == true)
 {
 if (isRecording == false)
 {
 isRecording = true;
 tracker.HapticPulse(50);
 recordingTimer = new Stopwatch();
 recordingTimer.Start();
 }
 else if (isRecording == true)
 {
 isRecording = false;
 tracker.HapticPulse(50);
 recordingTimer.Stop();
 if (hasRecording == false)
 {
 hasRecording = true;
 SaveRecordingButton.Enabled = true;
 PreviewRecordingButton.Enabled = true;
 ResetRecordingButton.Enabled = true;
 }
 }
 }

 SetSignal(MenuButton, tracker.Data.ButtonPressed._menu);
 }

 //if (dpad_up != tracker.Data.ButtonPressed.dPad_Up)
 //{
 // SetSignal(DpadUpButton, tracker.Data.ButtonPressed.dPad_Up);
 //}
 //if (dpad_down != tracker.Data.ButtonPressed.dPad_Down)
 //{
 // SetSignal(DpadDownButton, tracker.Data.ButtonPressed.dPad_Down);

 //}
 //if (dpad_right != tracker.Data.ButtonPressed.dPad_Right)
 //{
 // SetSignal(DpadRightButton, tracker.Data.ButtonPressed.dPad_Right);
 //}
 //if (dpad_left != tracker.Data.ButtonPressed.dPad_Left)
 //{

 // SetSignal(DpadLeftButton, tracker.Data.ButtonPressed.dPad_Left);
 //}

 // Position data sent to robot
 sensor.PlannedPos = wobj * ((tracker.Data.Position - CalibVive) + OffsetRobot);
 sensor.PlannedOrient = tracker.Data.Orientation * transformViveRobot;

 if (isRecording)
 {
 if (index >= 20)
 {

 recordingTime.Add(Convert.ToDouble(recordingTimer.ElapsedMilliseconds) / 1000);
 if (tracker.Data.ButtonPressed._trigger) recordingTool.Add(Brush);
 else recordingTool.Add(0);
 RobTarget pos = currentPos;
 pos.Trans.X = (float)sensor.FeedbackPos.x;
 pos.Trans.Y = (float)sensor.FeedbackPos.y;
 pos.Trans.Z = (float)sensor.FeedbackPos.z;
 pos.Rot.Q1 = sensor.FeedbackOrient.q1;
 pos.Rot.Q2 = sensor.FeedbackOrient.q2;
 pos.Rot.Q3 = sensor.FeedbackOrient.q3;
 pos.Rot.Q4 = sensor.FeedbackOrient.q4;
 recordingPos.Add(pos);
 index = 0;
 }
 index = index + 1;

 }
 }

 /// <summary>
 /// Sets program pointer to main and starts rapid execution.
 /// </summary>
 private void StartRapidExecution()
 {
 ABB.Robotics.Controllers.RapidDomain.Task[] tasks = controller.Rapid.GetTasks();

 try
 {
 if (controller.OperatingMode == ControllerOperatingMode.Auto)
 {

 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 tasks[0].SetProgramPointer("EGM", "EGMmain");
 ABB.Robotics.Controllers.RapidDomain.String mode;
 mode.Value = "continuous";
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "mode");
 rd.Value = mode;
 controller.Rapid.Start();
 }
 }
 else
 {
 MessageBox.Show("Automatic mode is required to start execution from a remote client.");
 }
 }
 catch (System.InvalidOperationException ex)
 {
 MessageBox.Show("Mastership is held by another client." +
 ex.Message);
 }
 catch (System.Exception ex)
 {
 MessageBox.Show("Unexpected error occurred: " + ex.Message);
 }
 }

 private void StopRapidExecution()
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 controller.Rapid.Stop(ABB.Robotics.Controllers.RapidDomain.StopMode.Instruction);
 }
 }

 /// <summary>
 /// Sets the the input signal to the given input state
 /// </summary>
 private void SetSignal(DigitalSignal signal, bool state)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 if (state == true)
 {
 signal.Set();
 }
 else
 {
 signal.Reset();
 }
 }
 }

 protected override void OnFormClosing(FormClosingEventArgs e)
 {
 EGMtimer.Abort();
 GUITimer.Stop();
 GUITimer.Dispose();
 if (controller != null)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 controller.Rapid.Stop(ABB.Robotics.Controllers.RapidDomain.StopMode.Instruction);
 }
 TriggerButton.Dispose();
 GripButton.Dispose();
 MenuButton.Dispose();
 //DpadUpButton.Dispose();
 //DpadDownButton.Dispose();
 //DpadRightButton.Dispose();
 //DpadLeftButton.Dispose();
 controller.Logoff();
 controller = null;
 }
 sensor.Stop();
 base.OnFormClosing(e);

 }

 private void SaveRecordingButton_Click(object sender, EventArgs e)
 {
 using (SaveFileDialog saveFileDialog = new SaveFileDialog())
 {
 Stream file;
 saveFileDialog.Filter = "txt files (*.txt)|*.txt|All files (*.*)|*.*";
 saveFileDialog.RestoreDirectory = true;

 if (saveFileDialog.ShowDialog() == DialogResult.OK)
 {
 if ((file = saveFileDialog.OpenFile()) != null)
 {
 SaveRecording(file);
 file.Close();
 }
 }

 }

 }

 private void PreviewRecordingButton_Click(object sender, EventArgs e)
 {

 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 Bool PlayRecording = new Bool(); PlayRecording.Value = true;
 Num index = new Num(); index.Value = 1;
 Num max_index = new Num(); max_index.Value = recordingPos.Count-1;
 Num brush = new Num();
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "index");
 rd.Value = index;
 rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "max_index");
 rd.Value = max_index;
 RapidData rdposition = controller.Rapid.GetRapidData("T_ROB1", "EGM", "stored_path");
 RapidData rdbrush = controller.Rapid.GetRapidData("T_ROB1", "EGM", "brushnumber");
 for (int i = 0; i != max_index.Value; i++)
 {
 rdposition.WriteItem(recordingPos[i], i);
 brush.Value = (recordingTool[i]);
 rdbrush.WriteItem(brush, i);
 }
 rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "PlayRecording");
 rd.Value = PlayRecording;
 }
 }

 private void ResetRecordingButton_Click(object sender, EventArgs e)
 {
 hasRecording = false;
 SaveRecordingButton.Enabled = false;
 PreviewRecordingButton.Enabled = false;
 ResetRecordingButton.Enabled = false;
 recordingTime.Clear();
 recordingPos.Clear();
 recordingTool.Clear();
 }

 public void SaveRecording(Stream file)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "EGMwobj");
 WobjData wobj = (WobjData)rd.Value;

 using (StreamWriter writer = new StreamWriter(file))
 {
 System.Globalization.NumberFormatInfo nfi = new System.Globalization.NumberFormatInfo();
 nfi.NumberDecimalSeparator = ".";
 // write wobj first
 writer.Write("-1," + wobj.Uframe.Trans.X.ToString(nfi) + "," + wobj.Uframe.Trans.Y.ToString(nfi) + "," + wobj.Uframe.Trans.Z.ToString(nfi) + ","); // position
 writer.WriteLine(wobj.Uframe.Rot.Q1.ToString(nfi) + "," + wobj.Uframe.Rot.Q2.ToString(nfi) + "," + wobj.Uframe.Rot.Q3.ToString(nfi) + "," + wobj.Uframe.Rot.Q4.ToString(nfi) + ",0");
 for (int i = 0; i < recordingPos.Count() - 1; i++)
 {
 writer.Write(recordingTime[i].ToString(nfi) + "," + recordingPos[i].Trans.X.ToString(nfi) + "," + recordingPos[i].Trans.Y.ToString(nfi) + "," + recordingPos[i].Trans.Z.ToString(nfi) + ",");
 writer.WriteLine(recordingPos[i].Rot.Q1.ToString(nfi) + "," + recordingPos[i].Rot.Q2.ToString(nfi) + "," + recordingPos[i].Rot.Q3.ToString(nfi) + "," + recordingPos[i].Rot.Q4.ToString(nfi) + "," + recordingTool[i].ToString(nfi));
 }
 }
 }

 }

 private void brushUpDown_ValueChanged(object sender, EventArgs e)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 Num brush = new Num(); brush.Value = (double)brushUpDown.Value;
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "brush");
 rd.Value = brush;
 }
 Brush = (uint)brushUpDown.Value;
 }
 }
}

Online Teaching/GUI/Continuous.Designer.cs

namespace GUI
{
 partial class Continuous
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container();
 this.SaveRecordingButton = new System.Windows.Forms.Button();
 this.SensorStatusBox = new System.Windows.Forms.TextBox();
 this.label1 = new System.Windows.Forms.Label();
 this.label2 = new System.Windows.Forms.Label();
 this.RapidStatusBox = new System.Windows.Forms.TextBox();
 this.GUITimer = new System.Windows.Forms.Timer(this.components);
 this.panel1 = new System.Windows.Forms.Panel();
 this.TooltipBox = new System.Windows.Forms.TextBox();
 this.RecordingTextBox = new System.Windows.Forms.TextBox();
 this.RecordingStatusBox = new System.Windows.Forms.TextBox();
 this.PreviewRecordingButton = new System.Windows.Forms.Button();
 this.ResetRecordingButton = new System.Windows.Forms.Button();
 this.textBox2 = new System.Windows.Forms.TextBox();
 this.brushUpDown = new System.Windows.Forms.NumericUpDown();
 this.label3 = new System.Windows.Forms.Label();
 this.panel1.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.brushUpDown)).BeginInit();
 this.SuspendLayout();
 //
 // SaveRecordingButton
 //
 this.SaveRecordingButton.Enabled = false;
 this.SaveRecordingButton.Location = new System.Drawing.Point(-3, 69);
 this.SaveRecordingButton.Name = "SaveRecordingButton";
 this.SaveRecordingButton.Size = new System.Drawing.Size(88, 23);
 this.SaveRecordingButton.TabIndex = 0;
 this.SaveRecordingButton.Text = "Save recording";
 this.SaveRecordingButton.UseVisualStyleBackColor = true;
 this.SaveRecordingButton.Click += new System.EventHandler(this.SaveRecordingButton_Click);
 //
 // SensorStatusBox
 //
 this.SensorStatusBox.BackColor = System.Drawing.Color.Red;
 this.SensorStatusBox.Enabled = false;
 this.SensorStatusBox.Location = new System.Drawing.Point(18, 25);
 this.SensorStatusBox.Name = "SensorStatusBox";
 this.SensorStatusBox.Size = new System.Drawing.Size(68, 20);
 this.SensorStatusBox.TabIndex = 1;
 //
 // label1
 //
 this.label1.AutoSize = true;
 this.label1.Location = new System.Drawing.Point(12, 9);
 this.label1.Name = "label1";
 this.label1.Size = new System.Drawing.Size(71, 13);
 this.label1.TabIndex = 2;
 this.label1.Text = "Sensor status";
 //
 // label2
 //
 this.label2.AutoSize = true;
 this.label2.Location = new System.Drawing.Point(100, 9);
 this.label2.Name = "label2";
 this.label2.Size = new System.Drawing.Size(67, 13);
 this.label2.TabIndex = 3;
 this.label2.Text = "Robot status";
 //
 // RapidStatusBox
 //
 this.RapidStatusBox.BackColor = System.Drawing.Color.Red;
 this.RapidStatusBox.Enabled = false;
 this.RapidStatusBox.Location = new System.Drawing.Point(103, 25);
 this.RapidStatusBox.Name = "RapidStatusBox";
 this.RapidStatusBox.Size = new System.Drawing.Size(68, 20);
 this.RapidStatusBox.TabIndex = 5;
 //
 // GUITimer
 //
 this.GUITimer.Tick += new System.EventHandler(this.GUITimer_Tick);
 //
 // panel1
 //
 this.panel1.Controls.Add(this.TooltipBox);
 this.panel1.Controls.Add(this.RecordingTextBox);
 this.panel1.Controls.Add(this.RecordingStatusBox);
 this.panel1.Controls.Add(this.PreviewRecordingButton);
 this.panel1.Controls.Add(this.ResetRecordingButton);
 this.panel1.Controls.Add(this.SaveRecordingButton);
 this.panel1.Location = new System.Drawing.Point(15, 77);
 this.panel1.Name = "panel1";
 this.panel1.Size = new System.Drawing.Size(304, 106);
 this.panel1.TabIndex = 6;
 //
 // TooltipBox
 //
 this.TooltipBox.Location = new System.Drawing.Point(3, 29);
 this.TooltipBox.Multiline = true;
 this.TooltipBox.Name = "TooltipBox";
 this.TooltipBox.ReadOnly = true;
 this.TooltipBox.Size = new System.Drawing.Size(298, 34);
 this.TooltipBox.TabIndex = 6;
 this.TooltipBox.Text = "Press menu button to start recording";
 //
 // RecordingTextBox
 //
 this.RecordingTextBox.Location = new System.Drawing.Point(88, 4);
 this.RecordingTextBox.Name = "RecordingTextBox";
 this.RecordingTextBox.ReadOnly = true;
 this.RecordingTextBox.Size = new System.Drawing.Size(215, 20);
 this.RecordingTextBox.TabIndex = 5;
 this.RecordingTextBox.Text = "No recording";
 //
 // RecordingStatusBox
 //
 this.RecordingStatusBox.BackColor = System.Drawing.Color.Red;
 this.RecordingStatusBox.Enabled = false;
 this.RecordingStatusBox.Location = new System.Drawing.Point(3, 3);
 this.RecordingStatusBox.Name = "RecordingStatusBox";
 this.RecordingStatusBox.Size = new System.Drawing.Size(68, 20);
 this.RecordingStatusBox.TabIndex = 4;
 //
 // PreviewRecordingButton
 //
 this.PreviewRecordingButton.Enabled = false;
 this.PreviewRecordingButton.Location = new System.Drawing.Point(95, 69);
 this.PreviewRecordingButton.Name = "PreviewRecordingButton";
 this.PreviewRecordingButton.Size = new System.Drawing.Size(100, 23);
 this.PreviewRecordingButton.TabIndex = 3;
 this.PreviewRecordingButton.Text = "Preview recording";
 this.PreviewRecordingButton.UseVisualStyleBackColor = true;
 this.PreviewRecordingButton.Click += new System.EventHandler(this.PreviewRecordingButton_Click);
 //
 // ResetRecordingButton
 //
 this.ResetRecordingButton.Enabled = false;
 this.ResetRecordingButton.Location = new System.Drawing.Point(201, 69);
 this.ResetRecordingButton.Name = "ResetRecordingButton";
 this.ResetRecordingButton.Size = new System.Drawing.Size(103, 23);
 this.ResetRecordingButton.TabIndex = 2;
 this.ResetRecordingButton.Text = "Reset recording";
 this.ResetRecordingButton.UseVisualStyleBackColor = true;
 this.ResetRecordingButton.Click += new System.EventHandler(this.ResetRecordingButton_Click);
 //
 // textBox2
 //
 this.textBox2.Location = new System.Drawing.Point(18, 51);
 this.textBox2.Name = "textBox2";
 this.textBox2.ReadOnly = true;
 this.textBox2.Size = new System.Drawing.Size(222, 20);
 this.textBox2.TabIndex = 7;
 this.textBox2.Text = "Take control of robot by pressing grip button";
 //
 // brushUpDown
 //
 this.brushUpDown.Location = new System.Drawing.Point(278, 25);
 this.brushUpDown.Maximum = new decimal(new int[] {
 10,
 0,
 0,
 0});
 this.brushUpDown.Minimum = new decimal(new int[] {
 1,
 0,
 0,
 0});
 this.brushUpDown.Name = "brushUpDown";
 this.brushUpDown.Size = new System.Drawing.Size(31, 20);
 this.brushUpDown.TabIndex = 8;
 this.brushUpDown.Value = new decimal(new int[] {
 1,
 0,
 0,
 0});
 this.brushUpDown.ValueChanged += new System.EventHandler(this.brushUpDown_ValueChanged);
 //
 // label3
 //
 this.label3.AutoSize = true;
 this.label3.Location = new System.Drawing.Point(275, 9);
 this.label3.Name = "label3";
 this.label3.Size = new System.Drawing.Size(34, 13);
 this.label3.TabIndex = 9;
 this.label3.Text = "Brush";
 //
 // Continuous
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(326, 189);
 this.Controls.Add(this.label3);
 this.Controls.Add(this.brushUpDown);
 this.Controls.Add(this.textBox2);
 this.Controls.Add(this.panel1);
 this.Controls.Add(this.RapidStatusBox);
 this.Controls.Add(this.label2);
 this.Controls.Add(this.label1);
 this.Controls.Add(this.SensorStatusBox);
 this.Name = "Continuous";
 this.Text = "Continuous recording mode";
 this.panel1.ResumeLayout(false);
 this.panel1.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.brushUpDown)).EndInit();
 this.ResumeLayout(false);
 this.PerformLayout();

 }

 #endregion

 private System.Windows.Forms.Button SaveRecordingButton;
 private System.Windows.Forms.TextBox SensorStatusBox;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.TextBox RapidStatusBox;
 private System.Windows.Forms.Timer GUITimer;
 private System.Windows.Forms.Panel panel1;
 private System.Windows.Forms.Button PreviewRecordingButton;
 private System.Windows.Forms.Button ResetRecordingButton;
 private System.Windows.Forms.TextBox TooltipBox;
 private System.Windows.Forms.TextBox RecordingTextBox;
 private System.Windows.Forms.TextBox RecordingStatusBox;
 private System.Windows.Forms.TextBox textBox2;
 private System.Windows.Forms.NumericUpDown brushUpDown;
 private System.Windows.Forms.Label label3;
 }
}

Online Teaching/GUI/Continuous.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 17, 17

Online Teaching/GUI/Egm-sensor.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;
using System.Threading.Tasks;
using abb.egm;
using WPFCustomMessageBox;
using ABB.Robotics.Controllers;
using ABB.Robotics.Math;

//
// Sample program using protobuf-csharp-port
// (http://code.google.com/p/protobuf-csharp-port/wiki/GettingStarted)
//
// 1) Download protobuf-csharp binaries from https://code.google.com/p/protobuf-csharp-port/
// 2) Unpack the zip file
// 3) Copy the egm.proto file to a sub catalogue where protobuf-csharp was un-zipped, e.g. ~\protobuf-csharp\tools\egm
// 4) Generate an egm C# file from the egm.proto file by typing in a windows console: protogen .\egm\egm.proto --proto_path=.\egm
// 5) Create a C# console application in Visual Studio
// 6) Install Nuget, in Visual Studio, click Tools and then Extension Manager. Goto to Online, find the NuGet Package Manager extension and click Download.
// 7) Install protobuf-csharp via NuGet, select in Visual Studio, Tools Nuget Package Manager and then Package Manager Console and type PM>Install-Package Google.ProtocolBuffers
// 8) Add the generated file egm.cs to the Visual Studio project (add existing item)
// 9) Copy the code below and then compile, link and run.
//
// Copyright (c) 2014, ABB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with
// or without modification, are permitted provided that
// the following conditions are met:
//
// * Redistributions of source code must retain the
// above copyright notice, this list of conditions
// and the following disclaimer.
// * Redistributions in binary form must reproduce the
// above copyright notice, this list of conditions
// and the following disclaimer in the documentation
// and/or other materials provided with the
// distribution.
// * Neither the name of ABB nor the names of its
// contributors may be used to endorse or promote
// products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
namespace GUI
{
 class Program
 {
 // listen on this port for inbound messages
 public static int _ipPortNumber = 6510;

 [STAThread]
 static void Main(string[] args)
 {

 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Mainform());

 }

 }

 public class Sensor
 {
 private Thread _sensorThread = null;
 private UdpClient _udpServer = null;
 private bool _exitThread = false;
 private uint _seqNumber = 0;
 public Vector3 FeedbackPos = new Vector3();
 public Quaternion FeedbackOrient = new Quaternion();
 public Vector3 PlannedPos = new Vector3();
 public Quaternion PlannedOrient = new Quaternion();

 public void SensorThread()
 {
 // create an udp client and listen on any address and the port _ipPortNumber
 _udpServer = new UdpClient(Program._ipPortNumber);
 var remoteEP = new IPEndPoint(IPAddress.Any, Program._ipPortNumber);

 while (_exitThread == false)
 {
 // get the message from robot
 var data = _udpServer.Receive(ref remoteEP);

 if (data != null)
 {

 // de-serialize inbound message from robot
 EgmRobot robot = EgmRobot.CreateBuilder().MergeFrom(data).Build();

 // display inbound message
 DisplayInboundMessage(robot);

 // create a new outbound sensor message
 EgmSensor.Builder sensor = EgmSensor.CreateBuilder();
 CreateSensorMessage(sensor);

 using (MemoryStream memoryStream = new MemoryStream())
 {
 EgmSensor sensorMessage = sensor.Build();
 sensorMessage.WriteTo(memoryStream);

 // send the udp message to the robot
 int bytesSent = _udpServer.Send(memoryStream.ToArray(),
 (int)memoryStream.Length, remoteEP);
 if (bytesSent < 0)
 {
 Console.WriteLine("Error send to robot");
 }
 }
 }

 }
 }

 // Display message from robot
 void DisplayInboundMessage(EgmRobot robot)
 {
 if (robot.HasHeader && robot.Header.HasSeqno && robot.Header.HasTm)
 {

 //Console.WriteLine("Seq={0} tm={1}",
 //robot.Header.Seqno.ToString(), robot.Header.Tm.ToString());
 FeedbackPos.x = robot.FeedBack.Cartesian.Pos.X;
 FeedbackPos.y = robot.FeedBack.Cartesian.Pos.Y;
 FeedbackPos.z = robot.FeedBack.Cartesian.Pos.Z;

 //Quaternion quat = new Quaternion(robot.FeedBack.Cartesian.Orient.U0, robot.FeedBack.Cartesian.Orient.U1, robot.FeedBack.Cartesian.Orient.U2, robot.FeedBack.Cartesian.Orient.U3);
 FeedbackOrient.q1 = robot.FeedBack.Cartesian.Orient.U0;
 FeedbackOrient.q2 = robot.FeedBack.Cartesian.Orient.U1;
 FeedbackOrient.q3 = robot.FeedBack.Cartesian.Orient.U2;
 FeedbackOrient.q4 = robot.FeedBack.Cartesian.Orient.U3;
 }

 else
 {
 Console.WriteLine("No header in robot message");
 }
 }

 //
 // Create a sensor message to send to the robot
 void CreateSensorMessage(EgmSensor.Builder sensor)
 {
 // create a header
 EgmHeader.Builder hdr = new EgmHeader.Builder();
 hdr.SetSeqno(_seqNumber++)
 .SetTm((uint)DateTime.Now.Ticks)
 .SetMtype(EgmHeader.Types.MessageType.MSGTYPE_CORRECTION);

 sensor.SetHeader(hdr);

 // create some sensor data
 EgmPlanned.Builder planned = new EgmPlanned.Builder();
 EgmPose.Builder pos = new EgmPose.Builder();
 EgmQuaternion.Builder pq = new EgmQuaternion.Builder();
 EgmCartesian.Builder pc = new EgmCartesian.Builder();

 pc.SetX(PlannedPos.x)
 .SetY(PlannedPos.y)
 .SetZ(PlannedPos.z);

 pq.SetU0(PlannedOrient.q1)
 .SetU1(PlannedOrient.q2)
 .SetU2(PlannedOrient.q3)
 .SetU3(PlannedOrient.q4);

 pos.SetPos(pc)
 .SetOrient(pq);

 planned.SetCartesian(pos); // bind pos object to planned
 sensor.SetPlanned(planned); // bind planned to sensor object

 return;
 }

 // Start a thread to listen on inbound messages
 public void Start()
 {
 _sensorThread = new Thread(new ThreadStart(SensorThread));
 _sensorThread.Start();
 }

 // Stop and exit thread
 public void Stop()
 {
 _exitThread = true;
 _udpServer.Dispose();
 _sensorThread.Abort();
 }
 }
}

Online Teaching/GUI/Egm.cs

// Generated by ProtoGen, Version=2.4.1.555, Culture=neutral, PublicKeyToken=55f7125234beb589. DO NOT EDIT!
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using pb = global::Google.ProtocolBuffers;
using pbc = global::Google.ProtocolBuffers.Collections;
using pbd = global::Google.ProtocolBuffers.Descriptors;
using scg = global::System.Collections.Generic;
namespace abb.egm {

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Egm {

 #region Extension registration
 public static void RegisterAllExtensions(pb::ExtensionRegistry registry) {
 }
 #endregion
 #region Static variables
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmHeader__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmHeader, global::abb.egm.EgmHeader.Builder> internal__static_abb_egm_EgmHeader__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmCartesian__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmCartesian, global::abb.egm.EgmCartesian.Builder> internal__static_abb_egm_EgmCartesian__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmQuaternion__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmQuaternion, global::abb.egm.EgmQuaternion.Builder> internal__static_abb_egm_EgmQuaternion__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmPose__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmPose, global::abb.egm.EgmPose.Builder> internal__static_abb_egm_EgmPose__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmCartesianSpeed__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmCartesianSpeed, global::abb.egm.EgmCartesianSpeed.Builder> internal__static_abb_egm_EgmCartesianSpeed__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmJoints__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmJoints, global::abb.egm.EgmJoints.Builder> internal__static_abb_egm_EgmJoints__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmExternalJoints__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmExternalJoints, global::abb.egm.EgmExternalJoints.Builder> internal__static_abb_egm_EgmExternalJoints__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmPlanned__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmPlanned, global::abb.egm.EgmPlanned.Builder> internal__static_abb_egm_EgmPlanned__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmSpeedRef__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmSpeedRef, global::abb.egm.EgmSpeedRef.Builder> internal__static_abb_egm_EgmSpeedRef__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmFeedBack__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmFeedBack, global::abb.egm.EgmFeedBack.Builder> internal__static_abb_egm_EgmFeedBack__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmMotorState__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmMotorState, global::abb.egm.EgmMotorState.Builder> internal__static_abb_egm_EgmMotorState__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmMCIState__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmMCIState, global::abb.egm.EgmMCIState.Builder> internal__static_abb_egm_EgmMCIState__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmRapidCtrlExecState__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmRapidCtrlExecState, global::abb.egm.EgmRapidCtrlExecState.Builder> internal__static_abb_egm_EgmRapidCtrlExecState__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmTestSignals__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmTestSignals, global::abb.egm.EgmTestSignals.Builder> internal__static_abb_egm_EgmTestSignals__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmRobot__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmRobot, global::abb.egm.EgmRobot.Builder> internal__static_abb_egm_EgmRobot__FieldAccessorTable;
 internal static pbd::MessageDescriptor internal__static_abb_egm_EgmSensor__Descriptor;
 internal static pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmSensor, global::abb.egm.EgmSensor.Builder> internal__static_abb_egm_EgmSensor__FieldAccessorTable;
 #endregion
 #region Descriptor
 public static pbd::FileDescriptor Descriptor {
 get { return descriptor; }
 }
 private static pbd::FileDescriptor descriptor;

 static Egm() {
 byte[] descriptorData = global::System.Convert.FromBase64String(
 string.Concat(
 "CgllZ20ucHJvdG8SB2FiYi5lZ20izQEKCUVnbUhlYWRlchINCgVzZXFubxgB",
 "IAEoDRIKCgJ0bRgCIAEoDRJACgVtdHlwZRgDIAEoDjIeLmFiYi5lZ20uRWdt",
 "SGVhZGVyLk1lc3NhZ2VUeXBlOhFNU0dUWVBFX1VOREVGSU5FRCJjCgtNZXNz",
 "YWdlVHlwZRIVChFNU0dUWVBFX1VOREVGSU5FRBAAEhMKD01TR1RZUEVfQ09N",
 "TUFORBABEhAKDE1TR1RZUEVfREFUQRACEhYKEk1TR1RZUEVfQ09SUkVDVElP",
 "ThADIi8KDEVnbUNhcnRlc2lhbhIJCgF4GAEgAigBEgkKAXkYAiACKAESCQoB",
 "ehgDIAIoASI/Cg1FZ21RdWF0ZXJuaW9uEgoKAnUwGAEgAigBEgoKAnUxGAIg",
 "AigBEgoKAnUyGAMgAigBEgoKAnUzGAQgAigBIlUKB0VnbVBvc2USIgoDcG9z",
 "GAEgASgLMhUuYWJiLmVnbS5FZ21DYXJ0ZXNpYW4SJgoGb3JpZW50GAIgASgL",
 "MhYuYWJiLmVnbS5FZ21RdWF0ZXJuaW9uIiIKEUVnbUNhcnRlc2lhblNwZWVk",
 "Eg0KBXZhbHVlGAEgAygBIhsKCUVnbUpvaW50cxIOCgZqb2ludHMYASADKAEi",
 "IwoRRWdtRXh0ZXJuYWxKb2ludHMSDgoGam9pbnRzGAEgAygBIoEBCgpFZ21Q",
 "bGFubmVkEiIKBmpvaW50cxgBIAEoCzISLmFiYi5lZ20uRWdtSm9pbnRzEiMK",
 "CWNhcnRlc2lhbhgCIAEoCzIQLmFiYi5lZ20uRWdtUG9zZRIqCg5leHRlcm5h",
 "bEpvaW50cxgDIAEoCzISLmFiYi5lZ20uRWdtSm9pbnRzIo0BCgtFZ21TcGVl",
 "ZFJlZhIiCgZqb2ludHMYASABKAsyEi5hYmIuZWdtLkVnbUpvaW50cxIuCgpj",
 "YXJ0ZXNpYW5zGAIgASgLMhouYWJiLmVnbS5FZ21DYXJ0ZXNpYW5TcGVlZBIq",
 "Cg5leHRlcm5hbEpvaW50cxgDIAEoCzISLmFiYi5lZ20uRWdtSm9pbnRzIoIB",
 "CgtFZ21GZWVkQmFjaxIiCgZqb2ludHMYASABKAsyEi5hYmIuZWdtLkVnbUpv",
 "aW50cxIjCgljYXJ0ZXNpYW4YAiABKAsyEC5hYmIuZWdtLkVnbVBvc2USKgoO",
 "ZXh0ZXJuYWxKb2ludHMYAyABKAsyEi5hYmIuZWdtLkVnbUpvaW50cyKMAQoN",
 "RWdtTW90b3JTdGF0ZRI0CgVzdGF0ZRgBIAIoDjIlLmFiYi5lZ20uRWdtTW90",
 "b3JTdGF0ZS5Nb3RvclN0YXRlVHlwZSJFCg5Nb3RvclN0YXRlVHlwZRIUChBN",
 "T1RPUlNfVU5ERUZJTkVEEAASDQoJTU9UT1JTX09OEAESDgoKTU9UT1JTX09G",
 "RhACIqIBCgtFZ21NQ0lTdGF0ZRI/CgVzdGF0ZRgBIAIoDjIhLmFiYi5lZ20u",
 "RWdtTUNJU3RhdGUuTUNJU3RhdGVUeXBlOg1NQ0lfVU5ERUZJTkVEIlIKDE1D",
 "SVN0YXRlVHlwZRIRCg1NQ0lfVU5ERUZJTkVEEAASDQoJTUNJX0VSUk9SEAES",
 "DwoLTUNJX1NUT1BQRUQQAhIPCgtNQ0lfUlVOTklORxADIsMBChVFZ21SYXBp",
 "ZEN0cmxFeGVjU3RhdGUSVQoFc3RhdGUYASACKA4yNS5hYmIuZWdtLkVnbVJh",
 "cGlkQ3RybEV4ZWNTdGF0ZS5SYXBpZEN0cmxFeGVjU3RhdGVUeXBlOg9SQVBJ",
 "RF9VTkRFRklORUQiUwoWUmFwaWRDdHJsRXhlY1N0YXRlVHlwZRITCg9SQVBJ",
 "RF9VTkRFRklORUQQABIRCg1SQVBJRF9TVE9QUEVEEAESEQoNUkFQSURfUlVO",
 "TklORxACIiEKDkVnbVRlc3RTaWduYWxzEg8KB3NpZ25hbHMYASADKAEi0QIK",
 "CEVnbVJvYm90EiIKBmhlYWRlchgBIAEoCzISLmFiYi5lZ20uRWdtSGVhZGVy",
 "EiYKCGZlZWRCYWNrGAIgASgLMhQuYWJiLmVnbS5FZ21GZWVkQmFjaxIkCgdw",
 "bGFubmVkGAMgASgLMhMuYWJiLmVnbS5FZ21QbGFubmVkEioKCm1vdG9yU3Rh",
 "dGUYBCABKAsyFi5hYmIuZWdtLkVnbU1vdG9yU3RhdGUSJgoIbWNpU3RhdGUY",
 "BSABKAsyFC5hYmIuZWdtLkVnbU1DSVN0YXRlEhkKEW1jaUNvbnZlcmdlbmNl",
 "TWV0GAYgASgIEiwKC3Rlc3RTaWduYWxzGAcgASgLMhcuYWJiLmVnbS5FZ21U",
 "ZXN0U2lnbmFscxI2Cg5yYXBpZEV4ZWNTdGF0ZRgIIAEoCzIeLmFiYi5lZ20u",
 "RWdtUmFwaWRDdHJsRXhlY1N0YXRlIn0KCUVnbVNlbnNvchIiCgZoZWFkZXIY",
 "ASABKAsyEi5hYmIuZWdtLkVnbUhlYWRlchIkCgdwbGFubmVkGAIgASgLMhMu",
 "YWJiLmVnbS5FZ21QbGFubmVkEiYKCHNwZWVkUmVmGAMgASgLMhQuYWJiLmVn",
 "bS5FZ21TcGVlZFJlZg=="));
 pbd::FileDescriptor.InternalDescriptorAssigner assigner = delegate(pbd::FileDescriptor root) {
 descriptor = root;
 internal__static_abb_egm_EgmHeader__Descriptor = Descriptor.MessageTypes[0];
 internal__static_abb_egm_EgmHeader__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmHeader, global::abb.egm.EgmHeader.Builder>(internal__static_abb_egm_EgmHeader__Descriptor,
 new string[] { "Seqno", "Tm", "Mtype", });
 internal__static_abb_egm_EgmCartesian__Descriptor = Descriptor.MessageTypes[1];
 internal__static_abb_egm_EgmCartesian__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmCartesian, global::abb.egm.EgmCartesian.Builder>(internal__static_abb_egm_EgmCartesian__Descriptor,
 new string[] { "X", "Y", "Z", });
 internal__static_abb_egm_EgmQuaternion__Descriptor = Descriptor.MessageTypes[2];
 internal__static_abb_egm_EgmQuaternion__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmQuaternion, global::abb.egm.EgmQuaternion.Builder>(internal__static_abb_egm_EgmQuaternion__Descriptor,
 new string[] { "U0", "U1", "U2", "U3", });
 internal__static_abb_egm_EgmPose__Descriptor = Descriptor.MessageTypes[3];
 internal__static_abb_egm_EgmPose__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmPose, global::abb.egm.EgmPose.Builder>(internal__static_abb_egm_EgmPose__Descriptor,
 new string[] { "Pos", "Orient", });
 internal__static_abb_egm_EgmCartesianSpeed__Descriptor = Descriptor.MessageTypes[4];
 internal__static_abb_egm_EgmCartesianSpeed__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmCartesianSpeed, global::abb.egm.EgmCartesianSpeed.Builder>(internal__static_abb_egm_EgmCartesianSpeed__Descriptor,
 new string[] { "Value", });
 internal__static_abb_egm_EgmJoints__Descriptor = Descriptor.MessageTypes[5];
 internal__static_abb_egm_EgmJoints__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmJoints, global::abb.egm.EgmJoints.Builder>(internal__static_abb_egm_EgmJoints__Descriptor,
 new string[] { "Joints", });
 internal__static_abb_egm_EgmExternalJoints__Descriptor = Descriptor.MessageTypes[6];
 internal__static_abb_egm_EgmExternalJoints__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmExternalJoints, global::abb.egm.EgmExternalJoints.Builder>(internal__static_abb_egm_EgmExternalJoints__Descriptor,
 new string[] { "Joints", });
 internal__static_abb_egm_EgmPlanned__Descriptor = Descriptor.MessageTypes[7];
 internal__static_abb_egm_EgmPlanned__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmPlanned, global::abb.egm.EgmPlanned.Builder>(internal__static_abb_egm_EgmPlanned__Descriptor,
 new string[] { "Joints", "Cartesian", "ExternalJoints", });
 internal__static_abb_egm_EgmSpeedRef__Descriptor = Descriptor.MessageTypes[8];
 internal__static_abb_egm_EgmSpeedRef__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmSpeedRef, global::abb.egm.EgmSpeedRef.Builder>(internal__static_abb_egm_EgmSpeedRef__Descriptor,
 new string[] { "Joints", "Cartesians", "ExternalJoints", });
 internal__static_abb_egm_EgmFeedBack__Descriptor = Descriptor.MessageTypes[9];
 internal__static_abb_egm_EgmFeedBack__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmFeedBack, global::abb.egm.EgmFeedBack.Builder>(internal__static_abb_egm_EgmFeedBack__Descriptor,
 new string[] { "Joints", "Cartesian", "ExternalJoints", });
 internal__static_abb_egm_EgmMotorState__Descriptor = Descriptor.MessageTypes[10];
 internal__static_abb_egm_EgmMotorState__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmMotorState, global::abb.egm.EgmMotorState.Builder>(internal__static_abb_egm_EgmMotorState__Descriptor,
 new string[] { "State", });
 internal__static_abb_egm_EgmMCIState__Descriptor = Descriptor.MessageTypes[11];
 internal__static_abb_egm_EgmMCIState__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmMCIState, global::abb.egm.EgmMCIState.Builder>(internal__static_abb_egm_EgmMCIState__Descriptor,
 new string[] { "State", });
 internal__static_abb_egm_EgmRapidCtrlExecState__Descriptor = Descriptor.MessageTypes[12];
 internal__static_abb_egm_EgmRapidCtrlExecState__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmRapidCtrlExecState, global::abb.egm.EgmRapidCtrlExecState.Builder>(internal__static_abb_egm_EgmRapidCtrlExecState__Descriptor,
 new string[] { "State", });
 internal__static_abb_egm_EgmTestSignals__Descriptor = Descriptor.MessageTypes[13];
 internal__static_abb_egm_EgmTestSignals__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmTestSignals, global::abb.egm.EgmTestSignals.Builder>(internal__static_abb_egm_EgmTestSignals__Descriptor,
 new string[] { "Signals", });
 internal__static_abb_egm_EgmRobot__Descriptor = Descriptor.MessageTypes[14];
 internal__static_abb_egm_EgmRobot__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmRobot, global::abb.egm.EgmRobot.Builder>(internal__static_abb_egm_EgmRobot__Descriptor,
 new string[] { "Header", "FeedBack", "Planned", "MotorState", "MciState", "MciConvergenceMet", "TestSignals", "RapidExecState", });
 internal__static_abb_egm_EgmSensor__Descriptor = Descriptor.MessageTypes[15];
 internal__static_abb_egm_EgmSensor__FieldAccessorTable =
 new pb::FieldAccess.FieldAccessorTable<global::abb.egm.EgmSensor, global::abb.egm.EgmSensor.Builder>(internal__static_abb_egm_EgmSensor__Descriptor,
 new string[] { "Header", "Planned", "SpeedRef", });
 return null;
 };
 pbd::FileDescriptor.InternalBuildGeneratedFileFrom(descriptorData,
 new pbd::FileDescriptor[] {
 }, assigner);
 }
 #endregion

 }
 #region Messages
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmHeader : pb::GeneratedMessage<EgmHeader, EgmHeader.Builder> {
 private EgmHeader() { }
 private static readonly EgmHeader defaultInstance = new EgmHeader().MakeReadOnly();
 private static readonly string[] _egmHeaderFieldNames = new string[] { "mtype", "seqno", "tm" };
 private static readonly uint[] _egmHeaderFieldTags = new uint[] { 24, 8, 16 };
 public static EgmHeader DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmHeader DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmHeader ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmHeader__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmHeader, EgmHeader.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmHeader__FieldAccessorTable; }
 }

 #region Nested types
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Types {
 public enum MessageType {
 MSGTYPE_UNDEFINED = 0,
 MSGTYPE_COMMAND = 1,
 MSGTYPE_DATA = 2,
 MSGTYPE_CORRECTION = 3,
 }

 }
 #endregion

 public const int SeqnoFieldNumber = 1;
 private bool hasSeqno;
 private uint seqno_;
 public bool HasSeqno {
 get { return hasSeqno; }
 }
 [global::System.CLSCompliant(false)]
 public uint Seqno {
 get { return seqno_; }
 }

 public const int TmFieldNumber = 2;
 private bool hasTm;
 private uint tm_;
 public bool HasTm {
 get { return hasTm; }
 }
 [global::System.CLSCompliant(false)]
 public uint Tm {
 get { return tm_; }
 }

 public const int MtypeFieldNumber = 3;
 private bool hasMtype;
 private global::abb.egm.EgmHeader.Types.MessageType mtype_ = global::abb.egm.EgmHeader.Types.MessageType.MSGTYPE_UNDEFINED;
 public bool HasMtype {
 get { return hasMtype; }
 }
 public global::abb.egm.EgmHeader.Types.MessageType Mtype {
 get { return mtype_; }
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmHeaderFieldNames;
 if (hasSeqno) {
 output.WriteUInt32(1, field_names[1], Seqno);
 }
 if (hasTm) {
 output.WriteUInt32(2, field_names[2], Tm);
 }
 if (hasMtype) {
 output.WriteEnum(3, field_names[0], (int) Mtype, Mtype);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasSeqno) {
 size += pb::CodedOutputStream.ComputeUInt32Size(1, Seqno);
 }
 if (hasTm) {
 size += pb::CodedOutputStream.ComputeUInt32Size(2, Tm);
 }
 if (hasMtype) {
 size += pb::CodedOutputStream.ComputeEnumSize(3, (int) Mtype);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmHeader ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmHeader ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmHeader ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmHeader ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmHeader ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmHeader ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmHeader ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmHeader ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmHeader ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmHeader ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmHeader MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmHeader prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmHeader, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmHeader cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmHeader result;

 private EgmHeader PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmHeader original = result;
 result = new EgmHeader();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmHeader MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmHeader.Descriptor; }
 }

 public override EgmHeader DefaultInstanceForType {
 get { return global::abb.egm.EgmHeader.DefaultInstance; }
 }

 public override EgmHeader BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmHeader) {
 return MergeFrom((EgmHeader) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmHeader other) {
 if (other == global::abb.egm.EgmHeader.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasSeqno) {
 Seqno = other.Seqno;
 }
 if (other.HasTm) {
 Tm = other.Tm;
 }
 if (other.HasMtype) {
 Mtype = other.Mtype;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmHeaderFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmHeaderFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 8: {
 result.hasSeqno = input.ReadUInt32(ref result.seqno_);
 break;
 }
 case 16: {
 result.hasTm = input.ReadUInt32(ref result.tm_);
 break;
 }
 case 24: {
 object unknown;
 if(input.ReadEnum(ref result.mtype_, out unknown)) {
 result.hasMtype = true;
 } else if(unknown is int) {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 unknownFields.MergeVarintField(3, (ulong)(int)unknown);
 }
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasSeqno {
 get { return result.hasSeqno; }
 }
 [global::System.CLSCompliant(false)]
 public uint Seqno {
 get { return result.Seqno; }
 set { SetSeqno(value); }
 }
 [global::System.CLSCompliant(false)]
 public Builder SetSeqno(uint value) {
 PrepareBuilder();
 result.hasSeqno = true;
 result.seqno_ = value;
 return this;
 }
 public Builder ClearSeqno() {
 PrepareBuilder();
 result.hasSeqno = false;
 result.seqno_ = 0;
 return this;
 }

 public bool HasTm {
 get { return result.hasTm; }
 }
 [global::System.CLSCompliant(false)]
 public uint Tm {
 get { return result.Tm; }
 set { SetTm(value); }
 }
 [global::System.CLSCompliant(false)]
 public Builder SetTm(uint value) {
 PrepareBuilder();
 result.hasTm = true;
 result.tm_ = value;
 return this;
 }
 public Builder ClearTm() {
 PrepareBuilder();
 result.hasTm = false;
 result.tm_ = 0;
 return this;
 }

 public bool HasMtype {
 get { return result.hasMtype; }
 }
 public global::abb.egm.EgmHeader.Types.MessageType Mtype {
 get { return result.Mtype; }
 set { SetMtype(value); }
 }
 public Builder SetMtype(global::abb.egm.EgmHeader.Types.MessageType value) {
 PrepareBuilder();
 result.hasMtype = true;
 result.mtype_ = value;
 return this;
 }
 public Builder ClearMtype() {
 PrepareBuilder();
 result.hasMtype = false;
 result.mtype_ = global::abb.egm.EgmHeader.Types.MessageType.MSGTYPE_UNDEFINED;
 return this;
 }
 }
 static EgmHeader() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmCartesian : pb::GeneratedMessage<EgmCartesian, EgmCartesian.Builder> {
 private EgmCartesian() { }
 private static readonly EgmCartesian defaultInstance = new EgmCartesian().MakeReadOnly();
 private static readonly string[] _egmCartesianFieldNames = new string[] { "x", "y", "z" };
 private static readonly uint[] _egmCartesianFieldTags = new uint[] { 9, 17, 25 };
 public static EgmCartesian DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmCartesian DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmCartesian ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmCartesian__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmCartesian, EgmCartesian.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmCartesian__FieldAccessorTable; }
 }

 public const int XFieldNumber = 1;
 private bool hasX;
 private double x_;
 public bool HasX {
 get { return hasX; }
 }
 public double X {
 get { return x_; }
 }

 public const int YFieldNumber = 2;
 private bool hasY;
 private double y_;
 public bool HasY {
 get { return hasY; }
 }
 public double Y {
 get { return y_; }
 }

 public const int ZFieldNumber = 3;
 private bool hasZ;
 private double z_;
 public bool HasZ {
 get { return hasZ; }
 }
 public double Z {
 get { return z_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasX) return false;
 if (!hasY) return false;
 if (!hasZ) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmCartesianFieldNames;
 if (hasX) {
 output.WriteDouble(1, field_names[0], X);
 }
 if (hasY) {
 output.WriteDouble(2, field_names[1], Y);
 }
 if (hasZ) {
 output.WriteDouble(3, field_names[2], Z);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasX) {
 size += pb::CodedOutputStream.ComputeDoubleSize(1, X);
 }
 if (hasY) {
 size += pb::CodedOutputStream.ComputeDoubleSize(2, Y);
 }
 if (hasZ) {
 size += pb::CodedOutputStream.ComputeDoubleSize(3, Z);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmCartesian ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesian ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmCartesian ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmCartesian ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmCartesian ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmCartesian MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmCartesian prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmCartesian, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmCartesian cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmCartesian result;

 private EgmCartesian PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmCartesian original = result;
 result = new EgmCartesian();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmCartesian MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmCartesian.Descriptor; }
 }

 public override EgmCartesian DefaultInstanceForType {
 get { return global::abb.egm.EgmCartesian.DefaultInstance; }
 }

 public override EgmCartesian BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmCartesian) {
 return MergeFrom((EgmCartesian) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmCartesian other) {
 if (other == global::abb.egm.EgmCartesian.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasX) {
 X = other.X;
 }
 if (other.HasY) {
 Y = other.Y;
 }
 if (other.HasZ) {
 Z = other.Z;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmCartesianFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmCartesianFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 9: {
 result.hasX = input.ReadDouble(ref result.x_);
 break;
 }
 case 17: {
 result.hasY = input.ReadDouble(ref result.y_);
 break;
 }
 case 25: {
 result.hasZ = input.ReadDouble(ref result.z_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasX {
 get { return result.hasX; }
 }
 public double X {
 get { return result.X; }
 set { SetX(value); }
 }
 public Builder SetX(double value) {
 PrepareBuilder();
 result.hasX = true;
 result.x_ = value;
 return this;
 }
 public Builder ClearX() {
 PrepareBuilder();
 result.hasX = false;
 result.x_ = 0D;
 return this;
 }

 public bool HasY {
 get { return result.hasY; }
 }
 public double Y {
 get { return result.Y; }
 set { SetY(value); }
 }
 public Builder SetY(double value) {
 PrepareBuilder();
 result.hasY = true;
 result.y_ = value;
 return this;
 }
 public Builder ClearY() {
 PrepareBuilder();
 result.hasY = false;
 result.y_ = 0D;
 return this;
 }

 public bool HasZ {
 get { return result.hasZ; }
 }
 public double Z {
 get { return result.Z; }
 set { SetZ(value); }
 }
 public Builder SetZ(double value) {
 PrepareBuilder();
 result.hasZ = true;
 result.z_ = value;
 return this;
 }
 public Builder ClearZ() {
 PrepareBuilder();
 result.hasZ = false;
 result.z_ = 0D;
 return this;
 }
 }
 static EgmCartesian() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmQuaternion : pb::GeneratedMessage<EgmQuaternion, EgmQuaternion.Builder> {
 private EgmQuaternion() { }
 private static readonly EgmQuaternion defaultInstance = new EgmQuaternion().MakeReadOnly();
 private static readonly string[] _egmQuaternionFieldNames = new string[] { "u0", "u1", "u2", "u3" };
 private static readonly uint[] _egmQuaternionFieldTags = new uint[] { 9, 17, 25, 33 };
 public static EgmQuaternion DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmQuaternion DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmQuaternion ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmQuaternion__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmQuaternion, EgmQuaternion.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmQuaternion__FieldAccessorTable; }
 }

 public const int U0FieldNumber = 1;
 private bool hasU0;
 private double u0_;
 public bool HasU0 {
 get { return hasU0; }
 }
 public double U0 {
 get { return u0_; }
 }

 public const int U1FieldNumber = 2;
 private bool hasU1;
 private double u1_;
 public bool HasU1 {
 get { return hasU1; }
 }
 public double U1 {
 get { return u1_; }
 }

 public const int U2FieldNumber = 3;
 private bool hasU2;
 private double u2_;
 public bool HasU2 {
 get { return hasU2; }
 }
 public double U2 {
 get { return u2_; }
 }

 public const int U3FieldNumber = 4;
 private bool hasU3;
 private double u3_;
 public bool HasU3 {
 get { return hasU3; }
 }
 public double U3 {
 get { return u3_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasU0) return false;
 if (!hasU1) return false;
 if (!hasU2) return false;
 if (!hasU3) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmQuaternionFieldNames;
 if (hasU0) {
 output.WriteDouble(1, field_names[0], U0);
 }
 if (hasU1) {
 output.WriteDouble(2, field_names[1], U1);
 }
 if (hasU2) {
 output.WriteDouble(3, field_names[2], U2);
 }
 if (hasU3) {
 output.WriteDouble(4, field_names[3], U3);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasU0) {
 size += pb::CodedOutputStream.ComputeDoubleSize(1, U0);
 }
 if (hasU1) {
 size += pb::CodedOutputStream.ComputeDoubleSize(2, U1);
 }
 if (hasU2) {
 size += pb::CodedOutputStream.ComputeDoubleSize(3, U2);
 }
 if (hasU3) {
 size += pb::CodedOutputStream.ComputeDoubleSize(4, U3);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmQuaternion ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmQuaternion ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmQuaternion ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmQuaternion ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmQuaternion MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmQuaternion prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmQuaternion, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmQuaternion cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmQuaternion result;

 private EgmQuaternion PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmQuaternion original = result;
 result = new EgmQuaternion();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmQuaternion MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmQuaternion.Descriptor; }
 }

 public override EgmQuaternion DefaultInstanceForType {
 get { return global::abb.egm.EgmQuaternion.DefaultInstance; }
 }

 public override EgmQuaternion BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmQuaternion) {
 return MergeFrom((EgmQuaternion) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmQuaternion other) {
 if (other == global::abb.egm.EgmQuaternion.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasU0) {
 U0 = other.U0;
 }
 if (other.HasU1) {
 U1 = other.U1;
 }
 if (other.HasU2) {
 U2 = other.U2;
 }
 if (other.HasU3) {
 U3 = other.U3;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmQuaternionFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmQuaternionFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 9: {
 result.hasU0 = input.ReadDouble(ref result.u0_);
 break;
 }
 case 17: {
 result.hasU1 = input.ReadDouble(ref result.u1_);
 break;
 }
 case 25: {
 result.hasU2 = input.ReadDouble(ref result.u2_);
 break;
 }
 case 33: {
 result.hasU3 = input.ReadDouble(ref result.u3_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasU0 {
 get { return result.hasU0; }
 }
 public double U0 {
 get { return result.U0; }
 set { SetU0(value); }
 }
 public Builder SetU0(double value) {
 PrepareBuilder();
 result.hasU0 = true;
 result.u0_ = value;
 return this;
 }
 public Builder ClearU0() {
 PrepareBuilder();
 result.hasU0 = false;
 result.u0_ = 0D;
 return this;
 }

 public bool HasU1 {
 get { return result.hasU1; }
 }
 public double U1 {
 get { return result.U1; }
 set { SetU1(value); }
 }
 public Builder SetU1(double value) {
 PrepareBuilder();
 result.hasU1 = true;
 result.u1_ = value;
 return this;
 }
 public Builder ClearU1() {
 PrepareBuilder();
 result.hasU1 = false;
 result.u1_ = 0D;
 return this;
 }

 public bool HasU2 {
 get { return result.hasU2; }
 }
 public double U2 {
 get { return result.U2; }
 set { SetU2(value); }
 }
 public Builder SetU2(double value) {
 PrepareBuilder();
 result.hasU2 = true;
 result.u2_ = value;
 return this;
 }
 public Builder ClearU2() {
 PrepareBuilder();
 result.hasU2 = false;
 result.u2_ = 0D;
 return this;
 }

 public bool HasU3 {
 get { return result.hasU3; }
 }
 public double U3 {
 get { return result.U3; }
 set { SetU3(value); }
 }
 public Builder SetU3(double value) {
 PrepareBuilder();
 result.hasU3 = true;
 result.u3_ = value;
 return this;
 }
 public Builder ClearU3() {
 PrepareBuilder();
 result.hasU3 = false;
 result.u3_ = 0D;
 return this;
 }
 }
 static EgmQuaternion() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmPose : pb::GeneratedMessage<EgmPose, EgmPose.Builder> {
 private EgmPose() { }
 private static readonly EgmPose defaultInstance = new EgmPose().MakeReadOnly();
 private static readonly string[] _egmPoseFieldNames = new string[] { "orient", "pos" };
 private static readonly uint[] _egmPoseFieldTags = new uint[] { 18, 10 };
 public static EgmPose DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmPose DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmPose ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmPose__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmPose, EgmPose.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmPose__FieldAccessorTable; }
 }

 public const int PosFieldNumber = 1;
 private bool hasPos;
 private global::abb.egm.EgmCartesian pos_;
 public bool HasPos {
 get { return hasPos; }
 }
 public global::abb.egm.EgmCartesian Pos {
 get { return pos_ ?? global::abb.egm.EgmCartesian.DefaultInstance; }
 }

 public const int OrientFieldNumber = 2;
 private bool hasOrient;
 private global::abb.egm.EgmQuaternion orient_;
 public bool HasOrient {
 get { return hasOrient; }
 }
 public global::abb.egm.EgmQuaternion Orient {
 get { return orient_ ?? global::abb.egm.EgmQuaternion.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasPos) {
 if (!Pos.IsInitialized) return false;
 }
 if (HasOrient) {
 if (!Orient.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmPoseFieldNames;
 if (hasPos) {
 output.WriteMessage(1, field_names[1], Pos);
 }
 if (hasOrient) {
 output.WriteMessage(2, field_names[0], Orient);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasPos) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Pos);
 }
 if (hasOrient) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Orient);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmPose ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmPose ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmPose ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmPose ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmPose ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmPose ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmPose ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmPose ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmPose ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmPose ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmPose MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmPose prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmPose, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmPose cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmPose result;

 private EgmPose PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmPose original = result;
 result = new EgmPose();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmPose MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmPose.Descriptor; }
 }

 public override EgmPose DefaultInstanceForType {
 get { return global::abb.egm.EgmPose.DefaultInstance; }
 }

 public override EgmPose BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmPose) {
 return MergeFrom((EgmPose) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmPose other) {
 if (other == global::abb.egm.EgmPose.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasPos) {
 MergePos(other.Pos);
 }
 if (other.HasOrient) {
 MergeOrient(other.Orient);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmPoseFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmPoseFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmCartesian.Builder subBuilder = global::abb.egm.EgmCartesian.CreateBuilder();
 if (result.hasPos) {
 subBuilder.MergeFrom(Pos);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Pos = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmQuaternion.Builder subBuilder = global::abb.egm.EgmQuaternion.CreateBuilder();
 if (result.hasOrient) {
 subBuilder.MergeFrom(Orient);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Orient = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasPos {
 get { return result.hasPos; }
 }
 public global::abb.egm.EgmCartesian Pos {
 get { return result.Pos; }
 set { SetPos(value); }
 }
 public Builder SetPos(global::abb.egm.EgmCartesian value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasPos = true;
 result.pos_ = value;
 return this;
 }
 public Builder SetPos(global::abb.egm.EgmCartesian.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasPos = true;
 result.pos_ = builderForValue.Build();
 return this;
 }
 public Builder MergePos(global::abb.egm.EgmCartesian value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasPos &&
 result.pos_ != global::abb.egm.EgmCartesian.DefaultInstance) {
 result.pos_ = global::abb.egm.EgmCartesian.CreateBuilder(result.pos_).MergeFrom(value).BuildPartial();
 } else {
 result.pos_ = value;
 }
 result.hasPos = true;
 return this;
 }
 public Builder ClearPos() {
 PrepareBuilder();
 result.hasPos = false;
 result.pos_ = null;
 return this;
 }

 public bool HasOrient {
 get { return result.hasOrient; }
 }
 public global::abb.egm.EgmQuaternion Orient {
 get { return result.Orient; }
 set { SetOrient(value); }
 }
 public Builder SetOrient(global::abb.egm.EgmQuaternion value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasOrient = true;
 result.orient_ = value;
 return this;
 }
 public Builder SetOrient(global::abb.egm.EgmQuaternion.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasOrient = true;
 result.orient_ = builderForValue.Build();
 return this;
 }
 public Builder MergeOrient(global::abb.egm.EgmQuaternion value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasOrient &&
 result.orient_ != global::abb.egm.EgmQuaternion.DefaultInstance) {
 result.orient_ = global::abb.egm.EgmQuaternion.CreateBuilder(result.orient_).MergeFrom(value).BuildPartial();
 } else {
 result.orient_ = value;
 }
 result.hasOrient = true;
 return this;
 }
 public Builder ClearOrient() {
 PrepareBuilder();
 result.hasOrient = false;
 result.orient_ = null;
 return this;
 }
 }
 static EgmPose() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmCartesianSpeed : pb::GeneratedMessage<EgmCartesianSpeed, EgmCartesianSpeed.Builder> {
 private EgmCartesianSpeed() { }
 private static readonly EgmCartesianSpeed defaultInstance = new EgmCartesianSpeed().MakeReadOnly();
 private static readonly string[] _egmCartesianSpeedFieldNames = new string[] { "value" };
 private static readonly uint[] _egmCartesianSpeedFieldTags = new uint[] { 9 };
 public static EgmCartesianSpeed DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmCartesianSpeed DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmCartesianSpeed ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmCartesianSpeed__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmCartesianSpeed, EgmCartesianSpeed.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmCartesianSpeed__FieldAccessorTable; }
 }

 public const int ValueFieldNumber = 1;
 private pbc::PopsicleList<double> value_ = new pbc::PopsicleList<double>();
 public scg::IList<double> ValueList {
 get { return pbc::Lists.AsReadOnly(value_); }
 }
 public int ValueCount {
 get { return value_.Count; }
 }
 public double GetValue(int index) {
 return value_[index];
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmCartesianSpeedFieldNames;
 if (value_.Count > 0) {
 output.WriteDoubleArray(1, field_names[0], value_);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 {
 int dataSize = 0;
 dataSize = 8 * value_.Count;
 size += dataSize;
 size += 1 * value_.Count;
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmCartesianSpeed ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmCartesianSpeed ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmCartesianSpeed ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmCartesianSpeed MakeReadOnly() {
 value_.MakeReadOnly();
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmCartesianSpeed prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmCartesianSpeed, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmCartesianSpeed cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmCartesianSpeed result;

 private EgmCartesianSpeed PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmCartesianSpeed original = result;
 result = new EgmCartesianSpeed();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmCartesianSpeed MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmCartesianSpeed.Descriptor; }
 }

 public override EgmCartesianSpeed DefaultInstanceForType {
 get { return global::abb.egm.EgmCartesianSpeed.DefaultInstance; }
 }

 public override EgmCartesianSpeed BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmCartesianSpeed) {
 return MergeFrom((EgmCartesianSpeed) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmCartesianSpeed other) {
 if (other == global::abb.egm.EgmCartesianSpeed.DefaultInstance) return this;
 PrepareBuilder();
 if (other.value_.Count != 0) {
 result.value_.Add(other.value_);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmCartesianSpeedFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmCartesianSpeedFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10:
 case 9: {
 input.ReadDoubleArray(tag, field_name, result.value_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public pbc::IPopsicleList<double> ValueList {
 get { return PrepareBuilder().value_; }
 }
 public int ValueCount {
 get { return result.ValueCount; }
 }
 public double GetValue(int index) {
 return result.GetValue(index);
 }
 public Builder SetValue(int index, double value) {
 PrepareBuilder();
 result.value_[index] = value;
 return this;
 }
 public Builder AddValue(double value) {
 PrepareBuilder();
 result.value_.Add(value);
 return this;
 }
 public Builder AddRangeValue(scg::IEnumerable<double> values) {
 PrepareBuilder();
 result.value_.Add(values);
 return this;
 }
 public Builder ClearValue() {
 PrepareBuilder();
 result.value_.Clear();
 return this;
 }
 }
 static EgmCartesianSpeed() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmJoints : pb::GeneratedMessage<EgmJoints, EgmJoints.Builder> {
 private EgmJoints() { }
 private static readonly EgmJoints defaultInstance = new EgmJoints().MakeReadOnly();
 private static readonly string[] _egmJointsFieldNames = new string[] { "joints" };
 private static readonly uint[] _egmJointsFieldTags = new uint[] { 9 };
 public static EgmJoints DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmJoints DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmJoints ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmJoints__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmJoints, EgmJoints.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmJoints__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private pbc::PopsicleList<double> joints_ = new pbc::PopsicleList<double>();
 public scg::IList<double> JointsList {
 get { return pbc::Lists.AsReadOnly(joints_); }
 }
 public int JointsCount {
 get { return joints_.Count; }
 }
 public double GetJoints(int index) {
 return joints_[index];
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmJointsFieldNames;
 if (joints_.Count > 0) {
 output.WriteDoubleArray(1, field_names[0], joints_);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 {
 int dataSize = 0;
 dataSize = 8 * joints_.Count;
 size += dataSize;
 size += 1 * joints_.Count;
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmJoints ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmJoints ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmJoints ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmJoints ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmJoints ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmJoints ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmJoints ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmJoints ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmJoints ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmJoints ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmJoints MakeReadOnly() {
 joints_.MakeReadOnly();
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmJoints prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmJoints, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmJoints cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmJoints result;

 private EgmJoints PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmJoints original = result;
 result = new EgmJoints();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmJoints MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmJoints.Descriptor; }
 }

 public override EgmJoints DefaultInstanceForType {
 get { return global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public override EgmJoints BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmJoints) {
 return MergeFrom((EgmJoints) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmJoints other) {
 if (other == global::abb.egm.EgmJoints.DefaultInstance) return this;
 PrepareBuilder();
 if (other.joints_.Count != 0) {
 result.joints_.Add(other.joints_);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmJointsFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmJointsFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10:
 case 9: {
 input.ReadDoubleArray(tag, field_name, result.joints_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public pbc::IPopsicleList<double> JointsList {
 get { return PrepareBuilder().joints_; }
 }
 public int JointsCount {
 get { return result.JointsCount; }
 }
 public double GetJoints(int index) {
 return result.GetJoints(index);
 }
 public Builder SetJoints(int index, double value) {
 PrepareBuilder();
 result.joints_[index] = value;
 return this;
 }
 public Builder AddJoints(double value) {
 PrepareBuilder();
 result.joints_.Add(value);
 return this;
 }
 public Builder AddRangeJoints(scg::IEnumerable<double> values) {
 PrepareBuilder();
 result.joints_.Add(values);
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.joints_.Clear();
 return this;
 }
 }
 static EgmJoints() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmExternalJoints : pb::GeneratedMessage<EgmExternalJoints, EgmExternalJoints.Builder> {
 private EgmExternalJoints() { }
 private static readonly EgmExternalJoints defaultInstance = new EgmExternalJoints().MakeReadOnly();
 private static readonly string[] _egmExternalJointsFieldNames = new string[] { "joints" };
 private static readonly uint[] _egmExternalJointsFieldTags = new uint[] { 9 };
 public static EgmExternalJoints DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmExternalJoints DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmExternalJoints ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmExternalJoints__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmExternalJoints, EgmExternalJoints.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmExternalJoints__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private pbc::PopsicleList<double> joints_ = new pbc::PopsicleList<double>();
 public scg::IList<double> JointsList {
 get { return pbc::Lists.AsReadOnly(joints_); }
 }
 public int JointsCount {
 get { return joints_.Count; }
 }
 public double GetJoints(int index) {
 return joints_[index];
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmExternalJointsFieldNames;
 if (joints_.Count > 0) {
 output.WriteDoubleArray(1, field_names[0], joints_);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 {
 int dataSize = 0;
 dataSize = 8 * joints_.Count;
 size += dataSize;
 size += 1 * joints_.Count;
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmExternalJoints ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmExternalJoints ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmExternalJoints ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmExternalJoints ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmExternalJoints MakeReadOnly() {
 joints_.MakeReadOnly();
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmExternalJoints prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmExternalJoints, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmExternalJoints cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmExternalJoints result;

 private EgmExternalJoints PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmExternalJoints original = result;
 result = new EgmExternalJoints();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmExternalJoints MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmExternalJoints.Descriptor; }
 }

 public override EgmExternalJoints DefaultInstanceForType {
 get { return global::abb.egm.EgmExternalJoints.DefaultInstance; }
 }

 public override EgmExternalJoints BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmExternalJoints) {
 return MergeFrom((EgmExternalJoints) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmExternalJoints other) {
 if (other == global::abb.egm.EgmExternalJoints.DefaultInstance) return this;
 PrepareBuilder();
 if (other.joints_.Count != 0) {
 result.joints_.Add(other.joints_);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmExternalJointsFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmExternalJointsFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10:
 case 9: {
 input.ReadDoubleArray(tag, field_name, result.joints_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public pbc::IPopsicleList<double> JointsList {
 get { return PrepareBuilder().joints_; }
 }
 public int JointsCount {
 get { return result.JointsCount; }
 }
 public double GetJoints(int index) {
 return result.GetJoints(index);
 }
 public Builder SetJoints(int index, double value) {
 PrepareBuilder();
 result.joints_[index] = value;
 return this;
 }
 public Builder AddJoints(double value) {
 PrepareBuilder();
 result.joints_.Add(value);
 return this;
 }
 public Builder AddRangeJoints(scg::IEnumerable<double> values) {
 PrepareBuilder();
 result.joints_.Add(values);
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.joints_.Clear();
 return this;
 }
 }
 static EgmExternalJoints() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmPlanned : pb::GeneratedMessage<EgmPlanned, EgmPlanned.Builder> {
 private EgmPlanned() { }
 private static readonly EgmPlanned defaultInstance = new EgmPlanned().MakeReadOnly();
 private static readonly string[] _egmPlannedFieldNames = new string[] { "cartesian", "externalJoints", "joints" };
 private static readonly uint[] _egmPlannedFieldTags = new uint[] { 18, 26, 10 };
 public static EgmPlanned DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmPlanned DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmPlanned ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmPlanned__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmPlanned, EgmPlanned.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmPlanned__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private bool hasJoints;
 private global::abb.egm.EgmJoints joints_;
 public bool HasJoints {
 get { return hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return joints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public const int CartesianFieldNumber = 2;
 private bool hasCartesian;
 private global::abb.egm.EgmPose cartesian_;
 public bool HasCartesian {
 get { return hasCartesian; }
 }
 public global::abb.egm.EgmPose Cartesian {
 get { return cartesian_ ?? global::abb.egm.EgmPose.DefaultInstance; }
 }

 public const int ExternalJointsFieldNumber = 3;
 private bool hasExternalJoints;
 private global::abb.egm.EgmJoints externalJoints_;
 public bool HasExternalJoints {
 get { return hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return externalJoints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasCartesian) {
 if (!Cartesian.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmPlannedFieldNames;
 if (hasJoints) {
 output.WriteMessage(1, field_names[2], Joints);
 }
 if (hasCartesian) {
 output.WriteMessage(2, field_names[0], Cartesian);
 }
 if (hasExternalJoints) {
 output.WriteMessage(3, field_names[1], ExternalJoints);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Joints);
 }
 if (hasCartesian) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Cartesian);
 }
 if (hasExternalJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, ExternalJoints);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmPlanned ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmPlanned ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmPlanned ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmPlanned ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmPlanned ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmPlanned MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmPlanned prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmPlanned, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmPlanned cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmPlanned result;

 private EgmPlanned PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmPlanned original = result;
 result = new EgmPlanned();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmPlanned MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmPlanned.Descriptor; }
 }

 public override EgmPlanned DefaultInstanceForType {
 get { return global::abb.egm.EgmPlanned.DefaultInstance; }
 }

 public override EgmPlanned BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmPlanned) {
 return MergeFrom((EgmPlanned) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmPlanned other) {
 if (other == global::abb.egm.EgmPlanned.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasJoints) {
 MergeJoints(other.Joints);
 }
 if (other.HasCartesian) {
 MergeCartesian(other.Cartesian);
 }
 if (other.HasExternalJoints) {
 MergeExternalJoints(other.ExternalJoints);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmPlannedFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmPlannedFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasJoints) {
 subBuilder.MergeFrom(Joints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Joints = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmPose.Builder subBuilder = global::abb.egm.EgmPose.CreateBuilder();
 if (result.hasCartesian) {
 subBuilder.MergeFrom(Cartesian);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Cartesian = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasExternalJoints) {
 subBuilder.MergeFrom(ExternalJoints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 ExternalJoints = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasJoints {
 get { return result.hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return result.Joints; }
 set { SetJoints(value); }
 }
 public Builder SetJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = value;
 return this;
 }
 public Builder SetJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasJoints &&
 result.joints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.joints_ = global::abb.egm.EgmJoints.CreateBuilder(result.joints_).MergeFrom(value).BuildPartial();
 } else {
 result.joints_ = value;
 }
 result.hasJoints = true;
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.hasJoints = false;
 result.joints_ = null;
 return this;
 }

 public bool HasCartesian {
 get { return result.hasCartesian; }
 }
 public global::abb.egm.EgmPose Cartesian {
 get { return result.Cartesian; }
 set { SetCartesian(value); }
 }
 public Builder SetCartesian(global::abb.egm.EgmPose value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasCartesian = true;
 result.cartesian_ = value;
 return this;
 }
 public Builder SetCartesian(global::abb.egm.EgmPose.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasCartesian = true;
 result.cartesian_ = builderForValue.Build();
 return this;
 }
 public Builder MergeCartesian(global::abb.egm.EgmPose value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasCartesian &&
 result.cartesian_ != global::abb.egm.EgmPose.DefaultInstance) {
 result.cartesian_ = global::abb.egm.EgmPose.CreateBuilder(result.cartesian_).MergeFrom(value).BuildPartial();
 } else {
 result.cartesian_ = value;
 }
 result.hasCartesian = true;
 return this;
 }
 public Builder ClearCartesian() {
 PrepareBuilder();
 result.hasCartesian = false;
 result.cartesian_ = null;
 return this;
 }

 public bool HasExternalJoints {
 get { return result.hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return result.ExternalJoints; }
 set { SetExternalJoints(value); }
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = value;
 return this;
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasExternalJoints &&
 result.externalJoints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.externalJoints_ = global::abb.egm.EgmJoints.CreateBuilder(result.externalJoints_).MergeFrom(value).BuildPartial();
 } else {
 result.externalJoints_ = value;
 }
 result.hasExternalJoints = true;
 return this;
 }
 public Builder ClearExternalJoints() {
 PrepareBuilder();
 result.hasExternalJoints = false;
 result.externalJoints_ = null;
 return this;
 }
 }
 static EgmPlanned() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmSpeedRef : pb::GeneratedMessage<EgmSpeedRef, EgmSpeedRef.Builder> {
 private EgmSpeedRef() { }
 private static readonly EgmSpeedRef defaultInstance = new EgmSpeedRef().MakeReadOnly();
 private static readonly string[] _egmSpeedRefFieldNames = new string[] { "cartesians", "externalJoints", "joints" };
 private static readonly uint[] _egmSpeedRefFieldTags = new uint[] { 18, 26, 10 };
 public static EgmSpeedRef DefaultInstance {
 get { return defaultInstance; }
 }
 public override EgmSpeedRef DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmSpeedRef ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmSpeedRef__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmSpeedRef, EgmSpeedRef.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmSpeedRef__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private bool hasJoints;
 private global::abb.egm.EgmJoints joints_;
 public bool HasJoints {
 get { return hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return joints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public const int CartesiansFieldNumber = 2;
 private bool hasCartesians;
 private global::abb.egm.EgmCartesianSpeed cartesians_;
 public bool HasCartesians {
 get { return hasCartesians; }
 }
 public global::abb.egm.EgmCartesianSpeed Cartesians {
 get { return cartesians_ ?? global::abb.egm.EgmCartesianSpeed.DefaultInstance; }
 }

 public const int ExternalJointsFieldNumber = 3;
 private bool hasExternalJoints;
 private global::abb.egm.EgmJoints externalJoints_;
 public bool HasExternalJoints {
 get { return hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return externalJoints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmSpeedRefFieldNames;
 if (hasJoints) {
 output.WriteMessage(1, field_names[2], Joints);
 }
 if (hasCartesians) {
 output.WriteMessage(2, field_names[0], Cartesians);
 }
 if (hasExternalJoints) {
 output.WriteMessage(3, field_names[1], ExternalJoints);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Joints);
 }
 if (hasCartesians) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Cartesians);
 }
 if (hasExternalJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, ExternalJoints);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmSpeedRef ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmSpeedRef ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmSpeedRef ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmSpeedRef ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmSpeedRef MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmSpeedRef prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmSpeedRef, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmSpeedRef cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmSpeedRef result;

 private EgmSpeedRef PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmSpeedRef original = result;
 result = new EgmSpeedRef();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmSpeedRef MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmSpeedRef.Descriptor; }
 }

 public override EgmSpeedRef DefaultInstanceForType {
 get { return global::abb.egm.EgmSpeedRef.DefaultInstance; }
 }

 public override EgmSpeedRef BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmSpeedRef) {
 return MergeFrom((EgmSpeedRef) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmSpeedRef other) {
 if (other == global::abb.egm.EgmSpeedRef.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasJoints) {
 MergeJoints(other.Joints);
 }
 if (other.HasCartesians) {
 MergeCartesians(other.Cartesians);
 }
 if (other.HasExternalJoints) {
 MergeExternalJoints(other.ExternalJoints);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmSpeedRefFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmSpeedRefFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasJoints) {
 subBuilder.MergeFrom(Joints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Joints = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmCartesianSpeed.Builder subBuilder = global::abb.egm.EgmCartesianSpeed.CreateBuilder();
 if (result.hasCartesians) {
 subBuilder.MergeFrom(Cartesians);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Cartesians = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasExternalJoints) {
 subBuilder.MergeFrom(ExternalJoints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 ExternalJoints = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasJoints {
 get { return result.hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return result.Joints; }
 set { SetJoints(value); }
 }
 public Builder SetJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = value;
 return this;
 }
 public Builder SetJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasJoints &&
 result.joints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.joints_ = global::abb.egm.EgmJoints.CreateBuilder(result.joints_).MergeFrom(value).BuildPartial();
 } else {
 result.joints_ = value;
 }
 result.hasJoints = true;
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.hasJoints = false;
 result.joints_ = null;
 return this;
 }

 public bool HasCartesians {
 get { return result.hasCartesians; }
 }
 public global::abb.egm.EgmCartesianSpeed Cartesians {
 get { return result.Cartesians; }
 set { SetCartesians(value); }
 }
 public Builder SetCartesians(global::abb.egm.EgmCartesianSpeed value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasCartesians = true;
 result.cartesians_ = value;
 return this;
 }
 public Builder SetCartesians(global::abb.egm.EgmCartesianSpeed.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasCartesians = true;
 result.cartesians_ = builderForValue.Build();
 return this;
 }
 public Builder MergeCartesians(global::abb.egm.EgmCartesianSpeed value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasCartesians &&
 result.cartesians_ != global::abb.egm.EgmCartesianSpeed.DefaultInstance) {
 result.cartesians_ = global::abb.egm.EgmCartesianSpeed.CreateBuilder(result.cartesians_).MergeFrom(value).BuildPartial();
 } else {
 result.cartesians_ = value;
 }
 result.hasCartesians = true;
 return this;
 }
 public Builder ClearCartesians() {
 PrepareBuilder();
 result.hasCartesians = false;
 result.cartesians_ = null;
 return this;
 }

 public bool HasExternalJoints {
 get { return result.hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return result.ExternalJoints; }
 set { SetExternalJoints(value); }
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = value;
 return this;
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasExternalJoints &&
 result.externalJoints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.externalJoints_ = global::abb.egm.EgmJoints.CreateBuilder(result.externalJoints_).MergeFrom(value).BuildPartial();
 } else {
 result.externalJoints_ = value;
 }
 result.hasExternalJoints = true;
 return this;
 }
 public Builder ClearExternalJoints() {
 PrepareBuilder();
 result.hasExternalJoints = false;
 result.externalJoints_ = null;
 return this;
 }
 }
 static EgmSpeedRef() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmFeedBack : pb::GeneratedMessage<EgmFeedBack, EgmFeedBack.Builder> {
 private EgmFeedBack() { }
 private static readonly EgmFeedBack defaultInstance = new EgmFeedBack().MakeReadOnly();
 private static readonly string[] _egmFeedBackFieldNames = new string[] { "cartesian", "externalJoints", "joints" };
 private static readonly uint[] _egmFeedBackFieldTags = new uint[] { 18, 26, 10 };
 public static EgmFeedBack DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmFeedBack DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmFeedBack ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmFeedBack__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmFeedBack, EgmFeedBack.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmFeedBack__FieldAccessorTable; }
 }

 public const int JointsFieldNumber = 1;
 private bool hasJoints;
 private global::abb.egm.EgmJoints joints_;
 public bool HasJoints {
 get { return hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return joints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public const int CartesianFieldNumber = 2;
 private bool hasCartesian;
 private global::abb.egm.EgmPose cartesian_;
 public bool HasCartesian {
 get { return hasCartesian; }
 }
 public global::abb.egm.EgmPose Cartesian {
 get { return cartesian_ ?? global::abb.egm.EgmPose.DefaultInstance; }
 }

 public const int ExternalJointsFieldNumber = 3;
 private bool hasExternalJoints;
 private global::abb.egm.EgmJoints externalJoints_;
 public bool HasExternalJoints {
 get { return hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return externalJoints_ ?? global::abb.egm.EgmJoints.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasCartesian) {
 if (!Cartesian.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmFeedBackFieldNames;
 if (hasJoints) {
 output.WriteMessage(1, field_names[2], Joints);
 }
 if (hasCartesian) {
 output.WriteMessage(2, field_names[0], Cartesian);
 }
 if (hasExternalJoints) {
 output.WriteMessage(3, field_names[1], ExternalJoints);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Joints);
 }
 if (hasCartesian) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Cartesian);
 }
 if (hasExternalJoints) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, ExternalJoints);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmFeedBack ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmFeedBack ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmFeedBack ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmFeedBack ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmFeedBack MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmFeedBack prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmFeedBack, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmFeedBack cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmFeedBack result;

 private EgmFeedBack PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmFeedBack original = result;
 result = new EgmFeedBack();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmFeedBack MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmFeedBack.Descriptor; }
 }

 public override EgmFeedBack DefaultInstanceForType {
 get { return global::abb.egm.EgmFeedBack.DefaultInstance; }
 }

 public override EgmFeedBack BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmFeedBack) {
 return MergeFrom((EgmFeedBack) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmFeedBack other) {
 if (other == global::abb.egm.EgmFeedBack.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasJoints) {
 MergeJoints(other.Joints);
 }
 if (other.HasCartesian) {
 MergeCartesian(other.Cartesian);
 }
 if (other.HasExternalJoints) {
 MergeExternalJoints(other.ExternalJoints);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmFeedBackFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmFeedBackFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasJoints) {
 subBuilder.MergeFrom(Joints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Joints = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmPose.Builder subBuilder = global::abb.egm.EgmPose.CreateBuilder();
 if (result.hasCartesian) {
 subBuilder.MergeFrom(Cartesian);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Cartesian = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmJoints.Builder subBuilder = global::abb.egm.EgmJoints.CreateBuilder();
 if (result.hasExternalJoints) {
 subBuilder.MergeFrom(ExternalJoints);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 ExternalJoints = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasJoints {
 get { return result.hasJoints; }
 }
 public global::abb.egm.EgmJoints Joints {
 get { return result.Joints; }
 set { SetJoints(value); }
 }
 public Builder SetJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = value;
 return this;
 }
 public Builder SetJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasJoints = true;
 result.joints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasJoints &&
 result.joints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.joints_ = global::abb.egm.EgmJoints.CreateBuilder(result.joints_).MergeFrom(value).BuildPartial();
 } else {
 result.joints_ = value;
 }
 result.hasJoints = true;
 return this;
 }
 public Builder ClearJoints() {
 PrepareBuilder();
 result.hasJoints = false;
 result.joints_ = null;
 return this;
 }

 public bool HasCartesian {
 get { return result.hasCartesian; }
 }
 public global::abb.egm.EgmPose Cartesian {
 get { return result.Cartesian; }
 set { SetCartesian(value); }
 }
 public Builder SetCartesian(global::abb.egm.EgmPose value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasCartesian = true;
 result.cartesian_ = value;
 return this;
 }
 public Builder SetCartesian(global::abb.egm.EgmPose.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasCartesian = true;
 result.cartesian_ = builderForValue.Build();
 return this;
 }
 public Builder MergeCartesian(global::abb.egm.EgmPose value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasCartesian &&
 result.cartesian_ != global::abb.egm.EgmPose.DefaultInstance) {
 result.cartesian_ = global::abb.egm.EgmPose.CreateBuilder(result.cartesian_).MergeFrom(value).BuildPartial();
 } else {
 result.cartesian_ = value;
 }
 result.hasCartesian = true;
 return this;
 }
 public Builder ClearCartesian() {
 PrepareBuilder();
 result.hasCartesian = false;
 result.cartesian_ = null;
 return this;
 }

 public bool HasExternalJoints {
 get { return result.hasExternalJoints; }
 }
 public global::abb.egm.EgmJoints ExternalJoints {
 get { return result.ExternalJoints; }
 set { SetExternalJoints(value); }
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = value;
 return this;
 }
 public Builder SetExternalJoints(global::abb.egm.EgmJoints.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasExternalJoints = true;
 result.externalJoints_ = builderForValue.Build();
 return this;
 }
 public Builder MergeExternalJoints(global::abb.egm.EgmJoints value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasExternalJoints &&
 result.externalJoints_ != global::abb.egm.EgmJoints.DefaultInstance) {
 result.externalJoints_ = global::abb.egm.EgmJoints.CreateBuilder(result.externalJoints_).MergeFrom(value).BuildPartial();
 } else {
 result.externalJoints_ = value;
 }
 result.hasExternalJoints = true;
 return this;
 }
 public Builder ClearExternalJoints() {
 PrepareBuilder();
 result.hasExternalJoints = false;
 result.externalJoints_ = null;
 return this;
 }
 }
 static EgmFeedBack() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmMotorState : pb::GeneratedMessage<EgmMotorState, EgmMotorState.Builder> {
 private EgmMotorState() { }
 private static readonly EgmMotorState defaultInstance = new EgmMotorState().MakeReadOnly();
 private static readonly string[] _egmMotorStateFieldNames = new string[] { "state" };
 private static readonly uint[] _egmMotorStateFieldTags = new uint[] { 8 };
 public static EgmMotorState DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmMotorState DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmMotorState ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmMotorState__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmMotorState, EgmMotorState.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmMotorState__FieldAccessorTable; }
 }

 #region Nested types
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Types {
 public enum MotorStateType {
 MOTORS_UNDEFINED = 0,
 MOTORS_ON = 1,
 MOTORS_OFF = 2,
 }

 }
 #endregion

 public const int StateFieldNumber = 1;
 private bool hasState;
 private global::abb.egm.EgmMotorState.Types.MotorStateType state_ = global::abb.egm.EgmMotorState.Types.MotorStateType.MOTORS_UNDEFINED;
 public bool HasState {
 get { return hasState; }
 }
 public global::abb.egm.EgmMotorState.Types.MotorStateType State {
 get { return state_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasState) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmMotorStateFieldNames;
 if (hasState) {
 output.WriteEnum(1, field_names[0], (int) State, State);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasState) {
 size += pb::CodedOutputStream.ComputeEnumSize(1, (int) State);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmMotorState ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmMotorState ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmMotorState ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmMotorState ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmMotorState ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmMotorState MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmMotorState prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmMotorState, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmMotorState cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmMotorState result;

 private EgmMotorState PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmMotorState original = result;
 result = new EgmMotorState();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmMotorState MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmMotorState.Descriptor; }
 }

 public override EgmMotorState DefaultInstanceForType {
 get { return global::abb.egm.EgmMotorState.DefaultInstance; }
 }

 public override EgmMotorState BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmMotorState) {
 return MergeFrom((EgmMotorState) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmMotorState other) {
 if (other == global::abb.egm.EgmMotorState.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasState) {
 State = other.State;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmMotorStateFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmMotorStateFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 8: {
 object unknown;
 if(input.ReadEnum(ref result.state_, out unknown)) {
 result.hasState = true;
 } else if(unknown is int) {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 unknownFields.MergeVarintField(1, (ulong)(int)unknown);
 }
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasState {
 get { return result.hasState; }
 }
 public global::abb.egm.EgmMotorState.Types.MotorStateType State {
 get { return result.State; }
 set { SetState(value); }
 }
 public Builder SetState(global::abb.egm.EgmMotorState.Types.MotorStateType value) {
 PrepareBuilder();
 result.hasState = true;
 result.state_ = value;
 return this;
 }
 public Builder ClearState() {
 PrepareBuilder();
 result.hasState = false;
 result.state_ = global::abb.egm.EgmMotorState.Types.MotorStateType.MOTORS_UNDEFINED;
 return this;
 }
 }
 static EgmMotorState() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmMCIState : pb::GeneratedMessage<EgmMCIState, EgmMCIState.Builder> {
 private EgmMCIState() { }
 private static readonly EgmMCIState defaultInstance = new EgmMCIState().MakeReadOnly();
 private static readonly string[] _egmMCIStateFieldNames = new string[] { "state" };
 private static readonly uint[] _egmMCIStateFieldTags = new uint[] { 8 };
 public static EgmMCIState DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmMCIState DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmMCIState ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmMCIState__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmMCIState, EgmMCIState.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmMCIState__FieldAccessorTable; }
 }

 #region Nested types
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Types {
 public enum MCIStateType {
 MCI_UNDEFINED = 0,
 MCI_ERROR = 1,
 MCI_STOPPED = 2,
 MCI_RUNNING = 3,
 }

 }
 #endregion

 public const int StateFieldNumber = 1;
 private bool hasState;
 private global::abb.egm.EgmMCIState.Types.MCIStateType state_ = global::abb.egm.EgmMCIState.Types.MCIStateType.MCI_UNDEFINED;
 public bool HasState {
 get { return hasState; }
 }
 public global::abb.egm.EgmMCIState.Types.MCIStateType State {
 get { return state_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasState) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmMCIStateFieldNames;
 if (hasState) {
 output.WriteEnum(1, field_names[0], (int) State, State);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasState) {
 size += pb::CodedOutputStream.ComputeEnumSize(1, (int) State);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmMCIState ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmMCIState ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmMCIState ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmMCIState ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmMCIState ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmMCIState MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmMCIState prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmMCIState, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmMCIState cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmMCIState result;

 private EgmMCIState PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmMCIState original = result;
 result = new EgmMCIState();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmMCIState MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmMCIState.Descriptor; }
 }

 public override EgmMCIState DefaultInstanceForType {
 get { return global::abb.egm.EgmMCIState.DefaultInstance; }
 }

 public override EgmMCIState BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmMCIState) {
 return MergeFrom((EgmMCIState) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmMCIState other) {
 if (other == global::abb.egm.EgmMCIState.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasState) {
 State = other.State;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmMCIStateFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmMCIStateFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 8: {
 object unknown;
 if(input.ReadEnum(ref result.state_, out unknown)) {
 result.hasState = true;
 } else if(unknown is int) {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 unknownFields.MergeVarintField(1, (ulong)(int)unknown);
 }
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasState {
 get { return result.hasState; }
 }
 public global::abb.egm.EgmMCIState.Types.MCIStateType State {
 get { return result.State; }
 set { SetState(value); }
 }
 public Builder SetState(global::abb.egm.EgmMCIState.Types.MCIStateType value) {
 PrepareBuilder();
 result.hasState = true;
 result.state_ = value;
 return this;
 }
 public Builder ClearState() {
 PrepareBuilder();
 result.hasState = false;
 result.state_ = global::abb.egm.EgmMCIState.Types.MCIStateType.MCI_UNDEFINED;
 return this;
 }
 }
 static EgmMCIState() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmRapidCtrlExecState : pb::GeneratedMessage<EgmRapidCtrlExecState, EgmRapidCtrlExecState.Builder> {
 private EgmRapidCtrlExecState() { }
 private static readonly EgmRapidCtrlExecState defaultInstance = new EgmRapidCtrlExecState().MakeReadOnly();
 private static readonly string[] _egmRapidCtrlExecStateFieldNames = new string[] { "state" };
 private static readonly uint[] _egmRapidCtrlExecStateFieldTags = new uint[] { 8 };
 public static EgmRapidCtrlExecState DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmRapidCtrlExecState DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmRapidCtrlExecState ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmRapidCtrlExecState__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmRapidCtrlExecState, EgmRapidCtrlExecState.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmRapidCtrlExecState__FieldAccessorTable; }
 }

 #region Nested types
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public static partial class Types {
 public enum RapidCtrlExecStateType {
 RAPID_UNDEFINED = 0,
 RAPID_STOPPED = 1,
 RAPID_RUNNING = 2,
 }

 }
 #endregion

 public const int StateFieldNumber = 1;
 private bool hasState;
 private global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType state_ = global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType.RAPID_UNDEFINED;
 public bool HasState {
 get { return hasState; }
 }
 public global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType State {
 get { return state_; }
 }

 public override bool IsInitialized {
 get {
 if (!hasState) return false;
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmRapidCtrlExecStateFieldNames;
 if (hasState) {
 output.WriteEnum(1, field_names[0], (int) State, State);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasState) {
 size += pb::CodedOutputStream.ComputeEnumSize(1, (int) State);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmRapidCtrlExecState ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmRapidCtrlExecState ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmRapidCtrlExecState MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmRapidCtrlExecState prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmRapidCtrlExecState, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmRapidCtrlExecState cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmRapidCtrlExecState result;

 private EgmRapidCtrlExecState PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmRapidCtrlExecState original = result;
 result = new EgmRapidCtrlExecState();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmRapidCtrlExecState MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmRapidCtrlExecState.Descriptor; }
 }

 public override EgmRapidCtrlExecState DefaultInstanceForType {
 get { return global::abb.egm.EgmRapidCtrlExecState.DefaultInstance; }
 }

 public override EgmRapidCtrlExecState BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmRapidCtrlExecState) {
 return MergeFrom((EgmRapidCtrlExecState) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmRapidCtrlExecState other) {
 if (other == global::abb.egm.EgmRapidCtrlExecState.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasState) {
 State = other.State;
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmRapidCtrlExecStateFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmRapidCtrlExecStateFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 8: {
 object unknown;
 if(input.ReadEnum(ref result.state_, out unknown)) {
 result.hasState = true;
 } else if(unknown is int) {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 unknownFields.MergeVarintField(1, (ulong)(int)unknown);
 }
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasState {
 get { return result.hasState; }
 }
 public global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType State {
 get { return result.State; }
 set { SetState(value); }
 }
 public Builder SetState(global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType value) {
 PrepareBuilder();
 result.hasState = true;
 result.state_ = value;
 return this;
 }
 public Builder ClearState() {
 PrepareBuilder();
 result.hasState = false;
 result.state_ = global::abb.egm.EgmRapidCtrlExecState.Types.RapidCtrlExecStateType.RAPID_UNDEFINED;
 return this;
 }
 }
 static EgmRapidCtrlExecState() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmTestSignals : pb::GeneratedMessage<EgmTestSignals, EgmTestSignals.Builder> {
 private EgmTestSignals() { }
 private static readonly EgmTestSignals defaultInstance = new EgmTestSignals().MakeReadOnly();
 private static readonly string[] _egmTestSignalsFieldNames = new string[] { "signals" };
 private static readonly uint[] _egmTestSignalsFieldTags = new uint[] { 9 };
 public static EgmTestSignals DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmTestSignals DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmTestSignals ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmTestSignals__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmTestSignals, EgmTestSignals.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmTestSignals__FieldAccessorTable; }
 }

 public const int SignalsFieldNumber = 1;
 private pbc::PopsicleList<double> signals_ = new pbc::PopsicleList<double>();
 public scg::IList<double> SignalsList {
 get { return pbc::Lists.AsReadOnly(signals_); }
 }
 public int SignalsCount {
 get { return signals_.Count; }
 }
 public double GetSignals(int index) {
 return signals_[index];
 }

 public override bool IsInitialized {
 get {
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmTestSignalsFieldNames;
 if (signals_.Count > 0) {
 output.WriteDoubleArray(1, field_names[0], signals_);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 {
 int dataSize = 0;
 dataSize = 8 * signals_.Count;
 size += dataSize;
 size += 1 * signals_.Count;
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmTestSignals ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmTestSignals ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmTestSignals ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmTestSignals ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmTestSignals MakeReadOnly() {
 signals_.MakeReadOnly();
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmTestSignals prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmTestSignals, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmTestSignals cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmTestSignals result;

 private EgmTestSignals PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmTestSignals original = result;
 result = new EgmTestSignals();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmTestSignals MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmTestSignals.Descriptor; }
 }

 public override EgmTestSignals DefaultInstanceForType {
 get { return global::abb.egm.EgmTestSignals.DefaultInstance; }
 }

 public override EgmTestSignals BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmTestSignals) {
 return MergeFrom((EgmTestSignals) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmTestSignals other) {
 if (other == global::abb.egm.EgmTestSignals.DefaultInstance) return this;
 PrepareBuilder();
 if (other.signals_.Count != 0) {
 result.signals_.Add(other.signals_);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmTestSignalsFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmTestSignalsFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10:
 case 9: {
 input.ReadDoubleArray(tag, field_name, result.signals_);
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public pbc::IPopsicleList<double> SignalsList {
 get { return PrepareBuilder().signals_; }
 }
 public int SignalsCount {
 get { return result.SignalsCount; }
 }
 public double GetSignals(int index) {
 return result.GetSignals(index);
 }
 public Builder SetSignals(int index, double value) {
 PrepareBuilder();
 result.signals_[index] = value;
 return this;
 }
 public Builder AddSignals(double value) {
 PrepareBuilder();
 result.signals_.Add(value);
 return this;
 }
 public Builder AddRangeSignals(scg::IEnumerable<double> values) {
 PrepareBuilder();
 result.signals_.Add(values);
 return this;
 }
 public Builder ClearSignals() {
 PrepareBuilder();
 result.signals_.Clear();
 return this;
 }
 }
 static EgmTestSignals() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmRobot : pb::GeneratedMessage<EgmRobot, EgmRobot.Builder> {
 private EgmRobot() { }
 private static readonly EgmRobot defaultInstance = new EgmRobot().MakeReadOnly();
 private static readonly string[] _egmRobotFieldNames = new string[] { "feedBack", "header", "mciConvergenceMet", "mciState", "motorState", "planned", "rapidExecState", "testSignals" };
 private static readonly uint[] _egmRobotFieldTags = new uint[] { 18, 10, 48, 42, 34, 26, 66, 58 };
 public static EgmRobot DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmRobot DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmRobot ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmRobot__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmRobot, EgmRobot.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmRobot__FieldAccessorTable; }
 }

 public const int HeaderFieldNumber = 1;
 private bool hasHeader;
 private global::abb.egm.EgmHeader header_;
 public bool HasHeader {
 get { return hasHeader; }
 }
 public global::abb.egm.EgmHeader Header {
 get { return header_ ?? global::abb.egm.EgmHeader.DefaultInstance; }
 }

 public const int FeedBackFieldNumber = 2;
 private bool hasFeedBack;
 private global::abb.egm.EgmFeedBack feedBack_;
 public bool HasFeedBack {
 get { return hasFeedBack; }
 }
 public global::abb.egm.EgmFeedBack FeedBack {
 get { return feedBack_ ?? global::abb.egm.EgmFeedBack.DefaultInstance; }
 }

 public const int PlannedFieldNumber = 3;
 private bool hasPlanned;
 private global::abb.egm.EgmPlanned planned_;
 public bool HasPlanned {
 get { return hasPlanned; }
 }
 public global::abb.egm.EgmPlanned Planned {
 get { return planned_ ?? global::abb.egm.EgmPlanned.DefaultInstance; }
 }

 public const int MotorStateFieldNumber = 4;
 private bool hasMotorState;
 private global::abb.egm.EgmMotorState motorState_;
 public bool HasMotorState {
 get { return hasMotorState; }
 }
 public global::abb.egm.EgmMotorState MotorState {
 get { return motorState_ ?? global::abb.egm.EgmMotorState.DefaultInstance; }
 }

 public const int MciStateFieldNumber = 5;
 private bool hasMciState;
 private global::abb.egm.EgmMCIState mciState_;
 public bool HasMciState {
 get { return hasMciState; }
 }
 public global::abb.egm.EgmMCIState MciState {
 get { return mciState_ ?? global::abb.egm.EgmMCIState.DefaultInstance; }
 }

 public const int MciConvergenceMetFieldNumber = 6;
 private bool hasMciConvergenceMet;
 private bool mciConvergenceMet_;
 public bool HasMciConvergenceMet {
 get { return hasMciConvergenceMet; }
 }
 public bool MciConvergenceMet {
 get { return mciConvergenceMet_; }
 }

 public const int TestSignalsFieldNumber = 7;
 private bool hasTestSignals;
 private global::abb.egm.EgmTestSignals testSignals_;
 public bool HasTestSignals {
 get { return hasTestSignals; }
 }
 public global::abb.egm.EgmTestSignals TestSignals {
 get { return testSignals_ ?? global::abb.egm.EgmTestSignals.DefaultInstance; }
 }

 public const int RapidExecStateFieldNumber = 8;
 private bool hasRapidExecState;
 private global::abb.egm.EgmRapidCtrlExecState rapidExecState_;
 public bool HasRapidExecState {
 get { return hasRapidExecState; }
 }
 public global::abb.egm.EgmRapidCtrlExecState RapidExecState {
 get { return rapidExecState_ ?? global::abb.egm.EgmRapidCtrlExecState.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasFeedBack) {
 if (!FeedBack.IsInitialized) return false;
 }
 if (HasPlanned) {
 if (!Planned.IsInitialized) return false;
 }
 if (HasMotorState) {
 if (!MotorState.IsInitialized) return false;
 }
 if (HasMciState) {
 if (!MciState.IsInitialized) return false;
 }
 if (HasRapidExecState) {
 if (!RapidExecState.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmRobotFieldNames;
 if (hasHeader) {
 output.WriteMessage(1, field_names[1], Header);
 }
 if (hasFeedBack) {
 output.WriteMessage(2, field_names[0], FeedBack);
 }
 if (hasPlanned) {
 output.WriteMessage(3, field_names[5], Planned);
 }
 if (hasMotorState) {
 output.WriteMessage(4, field_names[4], MotorState);
 }
 if (hasMciState) {
 output.WriteMessage(5, field_names[3], MciState);
 }
 if (hasMciConvergenceMet) {
 output.WriteBool(6, field_names[2], MciConvergenceMet);
 }
 if (hasTestSignals) {
 output.WriteMessage(7, field_names[7], TestSignals);
 }
 if (hasRapidExecState) {
 output.WriteMessage(8, field_names[6], RapidExecState);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasHeader) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Header);
 }
 if (hasFeedBack) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, FeedBack);
 }
 if (hasPlanned) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, Planned);
 }
 if (hasMotorState) {
 size += pb::CodedOutputStream.ComputeMessageSize(4, MotorState);
 }
 if (hasMciState) {
 size += pb::CodedOutputStream.ComputeMessageSize(5, MciState);
 }
 if (hasMciConvergenceMet) {
 size += pb::CodedOutputStream.ComputeBoolSize(6, MciConvergenceMet);
 }
 if (hasTestSignals) {
 size += pb::CodedOutputStream.ComputeMessageSize(7, TestSignals);
 }
 if (hasRapidExecState) {
 size += pb::CodedOutputStream.ComputeMessageSize(8, RapidExecState);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmRobot ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmRobot ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmRobot ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmRobot ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmRobot ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmRobot ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmRobot ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmRobot ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmRobot ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmRobot ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmRobot MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmRobot prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmRobot, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmRobot cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmRobot result;

 private EgmRobot PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmRobot original = result;
 result = new EgmRobot();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmRobot MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmRobot.Descriptor; }
 }

 public override EgmRobot DefaultInstanceForType {
 get { return global::abb.egm.EgmRobot.DefaultInstance; }
 }

 public override EgmRobot BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmRobot) {
 return MergeFrom((EgmRobot) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmRobot other) {
 if (other == global::abb.egm.EgmRobot.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasHeader) {
 MergeHeader(other.Header);
 }
 if (other.HasFeedBack) {
 MergeFeedBack(other.FeedBack);
 }
 if (other.HasPlanned) {
 MergePlanned(other.Planned);
 }
 if (other.HasMotorState) {
 MergeMotorState(other.MotorState);
 }
 if (other.HasMciState) {
 MergeMciState(other.MciState);
 }
 if (other.HasMciConvergenceMet) {
 MciConvergenceMet = other.MciConvergenceMet;
 }
 if (other.HasTestSignals) {
 MergeTestSignals(other.TestSignals);
 }
 if (other.HasRapidExecState) {
 MergeRapidExecState(other.RapidExecState);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmRobotFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmRobotFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmHeader.Builder subBuilder = global::abb.egm.EgmHeader.CreateBuilder();
 if (result.hasHeader) {
 subBuilder.MergeFrom(Header);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Header = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmFeedBack.Builder subBuilder = global::abb.egm.EgmFeedBack.CreateBuilder();
 if (result.hasFeedBack) {
 subBuilder.MergeFrom(FeedBack);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 FeedBack = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmPlanned.Builder subBuilder = global::abb.egm.EgmPlanned.CreateBuilder();
 if (result.hasPlanned) {
 subBuilder.MergeFrom(Planned);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Planned = subBuilder.BuildPartial();
 break;
 }
 case 34: {
 global::abb.egm.EgmMotorState.Builder subBuilder = global::abb.egm.EgmMotorState.CreateBuilder();
 if (result.hasMotorState) {
 subBuilder.MergeFrom(MotorState);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 MotorState = subBuilder.BuildPartial();
 break;
 }
 case 42: {
 global::abb.egm.EgmMCIState.Builder subBuilder = global::abb.egm.EgmMCIState.CreateBuilder();
 if (result.hasMciState) {
 subBuilder.MergeFrom(MciState);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 MciState = subBuilder.BuildPartial();
 break;
 }
 case 48: {
 result.hasMciConvergenceMet = input.ReadBool(ref result.mciConvergenceMet_);
 break;
 }
 case 58: {
 global::abb.egm.EgmTestSignals.Builder subBuilder = global::abb.egm.EgmTestSignals.CreateBuilder();
 if (result.hasTestSignals) {
 subBuilder.MergeFrom(TestSignals);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 TestSignals = subBuilder.BuildPartial();
 break;
 }
 case 66: {
 global::abb.egm.EgmRapidCtrlExecState.Builder subBuilder = global::abb.egm.EgmRapidCtrlExecState.CreateBuilder();
 if (result.hasRapidExecState) {
 subBuilder.MergeFrom(RapidExecState);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 RapidExecState = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasHeader {
 get { return result.hasHeader; }
 }
 public global::abb.egm.EgmHeader Header {
 get { return result.Header; }
 set { SetHeader(value); }
 }
 public Builder SetHeader(global::abb.egm.EgmHeader value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasHeader = true;
 result.header_ = value;
 return this;
 }
 public Builder SetHeader(global::abb.egm.EgmHeader.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasHeader = true;
 result.header_ = builderForValue.Build();
 return this;
 }
 public Builder MergeHeader(global::abb.egm.EgmHeader value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasHeader &&
 result.header_ != global::abb.egm.EgmHeader.DefaultInstance) {
 result.header_ = global::abb.egm.EgmHeader.CreateBuilder(result.header_).MergeFrom(value).BuildPartial();
 } else {
 result.header_ = value;
 }
 result.hasHeader = true;
 return this;
 }
 public Builder ClearHeader() {
 PrepareBuilder();
 result.hasHeader = false;
 result.header_ = null;
 return this;
 }

 public bool HasFeedBack {
 get { return result.hasFeedBack; }
 }
 public global::abb.egm.EgmFeedBack FeedBack {
 get { return result.FeedBack; }
 set { SetFeedBack(value); }
 }
 public Builder SetFeedBack(global::abb.egm.EgmFeedBack value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasFeedBack = true;
 result.feedBack_ = value;
 return this;
 }
 public Builder SetFeedBack(global::abb.egm.EgmFeedBack.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasFeedBack = true;
 result.feedBack_ = builderForValue.Build();
 return this;
 }
 public Builder MergeFeedBack(global::abb.egm.EgmFeedBack value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasFeedBack &&
 result.feedBack_ != global::abb.egm.EgmFeedBack.DefaultInstance) {
 result.feedBack_ = global::abb.egm.EgmFeedBack.CreateBuilder(result.feedBack_).MergeFrom(value).BuildPartial();
 } else {
 result.feedBack_ = value;
 }
 result.hasFeedBack = true;
 return this;
 }
 public Builder ClearFeedBack() {
 PrepareBuilder();
 result.hasFeedBack = false;
 result.feedBack_ = null;
 return this;
 }

 public bool HasPlanned {
 get { return result.hasPlanned; }
 }
 public global::abb.egm.EgmPlanned Planned {
 get { return result.Planned; }
 set { SetPlanned(value); }
 }
 public Builder SetPlanned(global::abb.egm.EgmPlanned value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasPlanned = true;
 result.planned_ = value;
 return this;
 }
 public Builder SetPlanned(global::abb.egm.EgmPlanned.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasPlanned = true;
 result.planned_ = builderForValue.Build();
 return this;
 }
 public Builder MergePlanned(global::abb.egm.EgmPlanned value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasPlanned &&
 result.planned_ != global::abb.egm.EgmPlanned.DefaultInstance) {
 result.planned_ = global::abb.egm.EgmPlanned.CreateBuilder(result.planned_).MergeFrom(value).BuildPartial();
 } else {
 result.planned_ = value;
 }
 result.hasPlanned = true;
 return this;
 }
 public Builder ClearPlanned() {
 PrepareBuilder();
 result.hasPlanned = false;
 result.planned_ = null;
 return this;
 }

 public bool HasMotorState {
 get { return result.hasMotorState; }
 }
 public global::abb.egm.EgmMotorState MotorState {
 get { return result.MotorState; }
 set { SetMotorState(value); }
 }
 public Builder SetMotorState(global::abb.egm.EgmMotorState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasMotorState = true;
 result.motorState_ = value;
 return this;
 }
 public Builder SetMotorState(global::abb.egm.EgmMotorState.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasMotorState = true;
 result.motorState_ = builderForValue.Build();
 return this;
 }
 public Builder MergeMotorState(global::abb.egm.EgmMotorState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasMotorState &&
 result.motorState_ != global::abb.egm.EgmMotorState.DefaultInstance) {
 result.motorState_ = global::abb.egm.EgmMotorState.CreateBuilder(result.motorState_).MergeFrom(value).BuildPartial();
 } else {
 result.motorState_ = value;
 }
 result.hasMotorState = true;
 return this;
 }
 public Builder ClearMotorState() {
 PrepareBuilder();
 result.hasMotorState = false;
 result.motorState_ = null;
 return this;
 }

 public bool HasMciState {
 get { return result.hasMciState; }
 }
 public global::abb.egm.EgmMCIState MciState {
 get { return result.MciState; }
 set { SetMciState(value); }
 }
 public Builder SetMciState(global::abb.egm.EgmMCIState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasMciState = true;
 result.mciState_ = value;
 return this;
 }
 public Builder SetMciState(global::abb.egm.EgmMCIState.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasMciState = true;
 result.mciState_ = builderForValue.Build();
 return this;
 }
 public Builder MergeMciState(global::abb.egm.EgmMCIState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasMciState &&
 result.mciState_ != global::abb.egm.EgmMCIState.DefaultInstance) {
 result.mciState_ = global::abb.egm.EgmMCIState.CreateBuilder(result.mciState_).MergeFrom(value).BuildPartial();
 } else {
 result.mciState_ = value;
 }
 result.hasMciState = true;
 return this;
 }
 public Builder ClearMciState() {
 PrepareBuilder();
 result.hasMciState = false;
 result.mciState_ = null;
 return this;
 }

 public bool HasMciConvergenceMet {
 get { return result.hasMciConvergenceMet; }
 }
 public bool MciConvergenceMet {
 get { return result.MciConvergenceMet; }
 set { SetMciConvergenceMet(value); }
 }
 public Builder SetMciConvergenceMet(bool value) {
 PrepareBuilder();
 result.hasMciConvergenceMet = true;
 result.mciConvergenceMet_ = value;
 return this;
 }
 public Builder ClearMciConvergenceMet() {
 PrepareBuilder();
 result.hasMciConvergenceMet = false;
 result.mciConvergenceMet_ = false;
 return this;
 }

 public bool HasTestSignals {
 get { return result.hasTestSignals; }
 }
 public global::abb.egm.EgmTestSignals TestSignals {
 get { return result.TestSignals; }
 set { SetTestSignals(value); }
 }
 public Builder SetTestSignals(global::abb.egm.EgmTestSignals value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasTestSignals = true;
 result.testSignals_ = value;
 return this;
 }
 public Builder SetTestSignals(global::abb.egm.EgmTestSignals.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasTestSignals = true;
 result.testSignals_ = builderForValue.Build();
 return this;
 }
 public Builder MergeTestSignals(global::abb.egm.EgmTestSignals value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasTestSignals &&
 result.testSignals_ != global::abb.egm.EgmTestSignals.DefaultInstance) {
 result.testSignals_ = global::abb.egm.EgmTestSignals.CreateBuilder(result.testSignals_).MergeFrom(value).BuildPartial();
 } else {
 result.testSignals_ = value;
 }
 result.hasTestSignals = true;
 return this;
 }
 public Builder ClearTestSignals() {
 PrepareBuilder();
 result.hasTestSignals = false;
 result.testSignals_ = null;
 return this;
 }

 public bool HasRapidExecState {
 get { return result.hasRapidExecState; }
 }
 public global::abb.egm.EgmRapidCtrlExecState RapidExecState {
 get { return result.RapidExecState; }
 set { SetRapidExecState(value); }
 }
 public Builder SetRapidExecState(global::abb.egm.EgmRapidCtrlExecState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasRapidExecState = true;
 result.rapidExecState_ = value;
 return this;
 }
 public Builder SetRapidExecState(global::abb.egm.EgmRapidCtrlExecState.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasRapidExecState = true;
 result.rapidExecState_ = builderForValue.Build();
 return this;
 }
 public Builder MergeRapidExecState(global::abb.egm.EgmRapidCtrlExecState value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasRapidExecState &&
 result.rapidExecState_ != global::abb.egm.EgmRapidCtrlExecState.DefaultInstance) {
 result.rapidExecState_ = global::abb.egm.EgmRapidCtrlExecState.CreateBuilder(result.rapidExecState_).MergeFrom(value).BuildPartial();
 } else {
 result.rapidExecState_ = value;
 }
 result.hasRapidExecState = true;
 return this;
 }
 public Builder ClearRapidExecState() {
 PrepareBuilder();
 result.hasRapidExecState = false;
 result.rapidExecState_ = null;
 return this;
 }
 }
 static EgmRobot() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class EgmSensor : pb::GeneratedMessage<EgmSensor, EgmSensor.Builder> {
 private EgmSensor() { }
 private static readonly EgmSensor defaultInstance = new EgmSensor().MakeReadOnly();
 private static readonly string[] _egmSensorFieldNames = new string[] { "header", "planned", "speedRef" };
 private static readonly uint[] _egmSensorFieldTags = new uint[] { 10, 18, 26 };
 public static EgmSensor DefaultInstance {
 get { return defaultInstance; }
 }

 public override EgmSensor DefaultInstanceForType {
 get { return DefaultInstance; }
 }

 protected override EgmSensor ThisMessage {
 get { return this; }
 }

 public static pbd::MessageDescriptor Descriptor {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmSensor__Descriptor; }
 }

 protected override pb::FieldAccess.FieldAccessorTable<EgmSensor, EgmSensor.Builder> InternalFieldAccessors {
 get { return global::abb.egm.Egm.internal__static_abb_egm_EgmSensor__FieldAccessorTable; }
 }

 public const int HeaderFieldNumber = 1;
 private bool hasHeader;
 private global::abb.egm.EgmHeader header_;
 public bool HasHeader {
 get { return hasHeader; }
 }
 public global::abb.egm.EgmHeader Header {
 get { return header_ ?? global::abb.egm.EgmHeader.DefaultInstance; }
 }

 public const int PlannedFieldNumber = 2;
 private bool hasPlanned;
 private global::abb.egm.EgmPlanned planned_;
 public bool HasPlanned {
 get { return hasPlanned; }
 }
 public global::abb.egm.EgmPlanned Planned {
 get { return planned_ ?? global::abb.egm.EgmPlanned.DefaultInstance; }
 }

 public const int SpeedRefFieldNumber = 3;
 private bool hasSpeedRef;
 private global::abb.egm.EgmSpeedRef speedRef_;
 public bool HasSpeedRef {
 get { return hasSpeedRef; }
 }
 public global::abb.egm.EgmSpeedRef SpeedRef {
 get { return speedRef_ ?? global::abb.egm.EgmSpeedRef.DefaultInstance; }
 }

 public override bool IsInitialized {
 get {
 if (HasPlanned) {
 if (!Planned.IsInitialized) return false;
 }
 return true;
 }
 }

 public override void WriteTo(pb::ICodedOutputStream output) {
 CalcSerializedSize();
 string[] field_names = _egmSensorFieldNames;
 if (hasHeader) {
 output.WriteMessage(1, field_names[0], Header);
 }
 if (hasPlanned) {
 output.WriteMessage(2, field_names[1], Planned);
 }
 if (hasSpeedRef) {
 output.WriteMessage(3, field_names[2], SpeedRef);
 }
 UnknownFields.WriteTo(output);
 }

 private int memoizedSerializedSize = -1;
 public override int SerializedSize {
 get {
 int size = memoizedSerializedSize;
 if (size != -1) return size;
 return CalcSerializedSize();
 }
 }

 private int CalcSerializedSize() {
 int size = memoizedSerializedSize;
 if (size != -1) return size;

 size = 0;
 if (hasHeader) {
 size += pb::CodedOutputStream.ComputeMessageSize(1, Header);
 }
 if (hasPlanned) {
 size += pb::CodedOutputStream.ComputeMessageSize(2, Planned);
 }
 if (hasSpeedRef) {
 size += pb::CodedOutputStream.ComputeMessageSize(3, SpeedRef);
 }
 size += UnknownFields.SerializedSize;
 memoizedSerializedSize = size;
 return size;
 }
 public static EgmSensor ParseFrom(pb::ByteString data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmSensor ParseFrom(pb::ByteString data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmSensor ParseFrom(byte[] data) {
 return ((Builder) CreateBuilder().MergeFrom(data)).BuildParsed();
 }
 public static EgmSensor ParseFrom(byte[] data, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(data, extensionRegistry)).BuildParsed();
 }
 public static EgmSensor ParseFrom(global::System.IO.Stream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmSensor ParseFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 public static EgmSensor ParseDelimitedFrom(global::System.IO.Stream input) {
 return CreateBuilder().MergeDelimitedFrom(input).BuildParsed();
 }
 public static EgmSensor ParseDelimitedFrom(global::System.IO.Stream input, pb::ExtensionRegistry extensionRegistry) {
 return CreateBuilder().MergeDelimitedFrom(input, extensionRegistry).BuildParsed();
 }
 public static EgmSensor ParseFrom(pb::ICodedInputStream input) {
 return ((Builder) CreateBuilder().MergeFrom(input)).BuildParsed();
 }
 public static EgmSensor ParseFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 return ((Builder) CreateBuilder().MergeFrom(input, extensionRegistry)).BuildParsed();
 }
 private EgmSensor MakeReadOnly() {
 return this;
 }

 public static Builder CreateBuilder() { return new Builder(); }
 public override Builder ToBuilder() { return CreateBuilder(this); }
 public override Builder CreateBuilderForType() { return new Builder(); }
 public static Builder CreateBuilder(EgmSensor prototype) {
 return new Builder(prototype);
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public sealed partial class Builder : pb::GeneratedBuilder<EgmSensor, Builder> {
 protected override Builder ThisBuilder {
 get { return this; }
 }
 public Builder() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 }
 internal Builder(EgmSensor cloneFrom) {
 result = cloneFrom;
 resultIsReadOnly = true;
 }

 private bool resultIsReadOnly;
 private EgmSensor result;

 private EgmSensor PrepareBuilder() {
 if (resultIsReadOnly) {
 EgmSensor original = result;
 result = new EgmSensor();
 resultIsReadOnly = false;
 MergeFrom(original);
 }
 return result;
 }

 public override bool IsInitialized {
 get { return result.IsInitialized; }
 }

 protected override EgmSensor MessageBeingBuilt {
 get { return PrepareBuilder(); }
 }

 public override Builder Clear() {
 result = DefaultInstance;
 resultIsReadOnly = true;
 return this;
 }

 public override Builder Clone() {
 if (resultIsReadOnly) {
 return new Builder(result);
 } else {
 return new Builder().MergeFrom(result);
 }
 }

 public override pbd::MessageDescriptor DescriptorForType {
 get { return global::abb.egm.EgmSensor.Descriptor; }
 }

 public override EgmSensor DefaultInstanceForType {
 get { return global::abb.egm.EgmSensor.DefaultInstance; }
 }

 public override EgmSensor BuildPartial() {
 if (resultIsReadOnly) {
 return result;
 }
 resultIsReadOnly = true;
 return result.MakeReadOnly();
 }

 public override Builder MergeFrom(pb::IMessage other) {
 if (other is EgmSensor) {
 return MergeFrom((EgmSensor) other);
 } else {
 base.MergeFrom(other);
 return this;
 }
 }

 public override Builder MergeFrom(EgmSensor other) {
 if (other == global::abb.egm.EgmSensor.DefaultInstance) return this;
 PrepareBuilder();
 if (other.HasHeader) {
 MergeHeader(other.Header);
 }
 if (other.HasPlanned) {
 MergePlanned(other.Planned);
 }
 if (other.HasSpeedRef) {
 MergeSpeedRef(other.SpeedRef);
 }
 this.MergeUnknownFields(other.UnknownFields);
 return this;
 }

 public override Builder MergeFrom(pb::ICodedInputStream input) {
 return MergeFrom(input, pb::ExtensionRegistry.Empty);
 }

 public override Builder MergeFrom(pb::ICodedInputStream input, pb::ExtensionRegistry extensionRegistry) {
 PrepareBuilder();
 pb::UnknownFieldSet.Builder unknownFields = null;
 uint tag;
 string field_name;
 while (input.ReadTag(out tag, out field_name)) {
 if(tag == 0 && field_name != null) {
 int field_ordinal = global::System.Array.BinarySearch(_egmSensorFieldNames, field_name, global::System.StringComparer.Ordinal);
 if(field_ordinal >= 0)
 tag = _egmSensorFieldTags[field_ordinal];
 else {
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 continue;
 }
 }
 switch (tag) {
 case 0: {
 throw pb::InvalidProtocolBufferException.InvalidTag();
 }
 default: {
 if (pb::WireFormat.IsEndGroupTag(tag)) {
 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }
 if (unknownFields == null) {
 unknownFields = pb::UnknownFieldSet.CreateBuilder(this.UnknownFields);
 }
 ParseUnknownField(input, unknownFields, extensionRegistry, tag, field_name);
 break;
 }
 case 10: {
 global::abb.egm.EgmHeader.Builder subBuilder = global::abb.egm.EgmHeader.CreateBuilder();
 if (result.hasHeader) {
 subBuilder.MergeFrom(Header);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Header = subBuilder.BuildPartial();
 break;
 }
 case 18: {
 global::abb.egm.EgmPlanned.Builder subBuilder = global::abb.egm.EgmPlanned.CreateBuilder();
 if (result.hasPlanned) {
 subBuilder.MergeFrom(Planned);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 Planned = subBuilder.BuildPartial();
 break;
 }
 case 26: {
 global::abb.egm.EgmSpeedRef.Builder subBuilder = global::abb.egm.EgmSpeedRef.CreateBuilder();
 if (result.hasSpeedRef) {
 subBuilder.MergeFrom(SpeedRef);
 }
 input.ReadMessage(subBuilder, extensionRegistry);
 SpeedRef = subBuilder.BuildPartial();
 break;
 }
 }
 }

 if (unknownFields != null) {
 this.UnknownFields = unknownFields.Build();
 }
 return this;
 }

 public bool HasHeader {
 get { return result.hasHeader; }
 }
 public global::abb.egm.EgmHeader Header {
 get { return result.Header; }
 set { SetHeader(value); }
 }
 public Builder SetHeader(global::abb.egm.EgmHeader value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasHeader = true;
 result.header_ = value;
 return this;
 }
 public Builder SetHeader(global::abb.egm.EgmHeader.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasHeader = true;
 result.header_ = builderForValue.Build();
 return this;
 }
 public Builder MergeHeader(global::abb.egm.EgmHeader value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasHeader &&
 result.header_ != global::abb.egm.EgmHeader.DefaultInstance) {
 result.header_ = global::abb.egm.EgmHeader.CreateBuilder(result.header_).MergeFrom(value).BuildPartial();
 } else {
 result.header_ = value;
 }
 result.hasHeader = true;
 return this;
 }
 public Builder ClearHeader() {
 PrepareBuilder();
 result.hasHeader = false;
 result.header_ = null;
 return this;
 }

 public bool HasPlanned {
 get { return result.hasPlanned; }
 }
 public global::abb.egm.EgmPlanned Planned {
 get { return result.Planned; }
 set { SetPlanned(value); }
 }
 public Builder SetPlanned(global::abb.egm.EgmPlanned value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasPlanned = true;
 result.planned_ = value;
 return this;
 }
 public Builder SetPlanned(global::abb.egm.EgmPlanned.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasPlanned = true;
 result.planned_ = builderForValue.Build();
 return this;
 }
 public Builder MergePlanned(global::abb.egm.EgmPlanned value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasPlanned &&
 result.planned_ != global::abb.egm.EgmPlanned.DefaultInstance) {
 result.planned_ = global::abb.egm.EgmPlanned.CreateBuilder(result.planned_).MergeFrom(value).BuildPartial();
 } else {
 result.planned_ = value;
 }
 result.hasPlanned = true;
 return this;
 }
 public Builder ClearPlanned() {
 PrepareBuilder();
 result.hasPlanned = false;
 result.planned_ = null;
 return this;
 }

 public bool HasSpeedRef {
 get { return result.hasSpeedRef; }
 }
 public global::abb.egm.EgmSpeedRef SpeedRef {
 get { return result.SpeedRef; }
 set { SetSpeedRef(value); }
 }
 public Builder SetSpeedRef(global::abb.egm.EgmSpeedRef value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 result.hasSpeedRef = true;
 result.speedRef_ = value;
 return this;
 }
 public Builder SetSpeedRef(global::abb.egm.EgmSpeedRef.Builder builderForValue) {
 pb::ThrowHelper.ThrowIfNull(builderForValue, "builderForValue");
 PrepareBuilder();
 result.hasSpeedRef = true;
 result.speedRef_ = builderForValue.Build();
 return this;
 }
 public Builder MergeSpeedRef(global::abb.egm.EgmSpeedRef value) {
 pb::ThrowHelper.ThrowIfNull(value, "value");
 PrepareBuilder();
 if (result.hasSpeedRef &&
 result.speedRef_ != global::abb.egm.EgmSpeedRef.DefaultInstance) {
 result.speedRef_ = global::abb.egm.EgmSpeedRef.CreateBuilder(result.speedRef_).MergeFrom(value).BuildPartial();
 } else {
 result.speedRef_ = value;
 }
 result.hasSpeedRef = true;
 return this;
 }
 public Builder ClearSpeedRef() {
 PrepareBuilder();
 result.hasSpeedRef = false;
 result.speedRef_ = null;
 return this;
 }
 }
 static EgmSensor() {
 object.ReferenceEquals(global::abb.egm.Egm.Descriptor, null);
 }
 }

 #endregion

}

#endregion Designer generated code

Online Teaching/GUI/GUI.csproj

 Debug
 AnyCPU
 {EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}
 WinExe
 GUI
 GUI
 v4.6.1
 512
 true

 AnyCPU
 true
 full
 false
 ..\Debug\
 DEBUG;TRACE
 prompt
 4

 AnyCPU
 pdbonly
 true
 bin\Release\
 TRACE
 prompt
 4

 ..\..\..\Program Files (x86)\ABB Industrial IT\Robotics IT\SDK\PCSDK 6.05\ABB.Robotics.Controllers.PC.dll

 ..\..\..\Program Files (x86)\ABB Industrial IT\Robotics IT\SDK\RobotStudio SDK 6.05\ABB.Robotics.Math.dll

 ..\packages\Google.ProtocolBuffers.2.4.1.555\lib\net40\Google.ProtocolBuffers.dll

 ..\packages\Google.ProtocolBuffers.2.4.1.555\lib\net40\Google.ProtocolBuffers.Serialization.dll

 ..\packages\WPFCustomMessageBox.1.0.7\lib\WPFCustomMessageBox.dll

 Form

 Continuous.cs

 Form

 Mainform.cs

 Form

 NetScan.cs

 Form

 PointToPoint.cs

 Form

 TestingVive.cs

 Form

 Workobject.cs

 Continuous.cs

 Mainform.cs

 NetScan.cs

 PointToPoint.cs

 TestingVive.cs

 ResXFileCodeGenerator
 Resources.Designer.cs
 Designer

 True
 Resources.resx

 Workobject.cs

 SettingsSingleFileGenerator
 Settings.Designer.cs

 True
 Settings.settings
 True

 {6b5e0d93-4b40-4a38-b9bd-27db47985eb2}
 Vive

Online Teaching/GUI/Mainform.cs

using System;
using System.Net.Sockets;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using ABB.Robotics.Controllers;
using ABB.Robotics.Controllers.FileSystemDomain;
using ABB.Robotics.Math;
using ABB.Robotics.Controllers.ConfigurationDomain;
using System.Net;

namespace GUI
{
 public partial class Mainform : Form
 {
 public static Controller staticController = null;
 public static Matrix4 staticMatrix4 = Matrix4.Identity;
 public static Matrix3 staticMatrix3 = Matrix3.Identity;

 public Mainform()
 {
 InitializeComponent();
 }

 private void TestingViveButton_Click(object sender, EventArgs e)
 {
 TestingVive testingform = new TestingVive(staticController, staticMatrix3);
 testingform.ShowDialog();
 }

 private void ContinuousButton_Click(object sender, EventArgs e)
 {
 Continuous continuousform = new Continuous(staticController, staticMatrix3);
 continuousform.ShowDialog();
 }

 private void PointToPointButton_Click(object sender, EventArgs e)
 {
 PointToPoint P2Pform = new PointToPoint(staticController, staticMatrix3);
 P2Pform.ShowDialog();
 }

 private void NetscanButton_Click(object sender, EventArgs e)
 {
 NetScan scanform = new NetScan();
 scanform.ShowDialog();
 if (staticController != null)
 {
 ConfigurationSetupButton.Enabled = true;
 LoadOntoRobotButton.Enabled = true;
 PointToPointButton.Enabled = true;
 ContinuousButton.Enabled = true;
 }
 }

 private void WobjButton_Click(object sender, EventArgs e)
 {
 Workobject wobjform = new Workobject();
 wobjform.ShowDialog();
 }

 private void ConfigurationSetupButton_Click(object sender, EventArgs e)
 {
 string IP = GetLocalIP();
 staticController.Logon(UserInfo.DefaultUser);
 using (Mastership m = Mastership.Request(staticController.Configuration))
 {
 ConfigurationDatabase configuration = staticController.Configuration;

 // Setting up UDP communication protocol for EGM
 Domain Communication = configuration.SerialIO;
 TypeCollection types = Communication.Types;
 ABB.Robotics.Controllers.ConfigurationDomain.Type type = types[Communication.Types.IndexOf("COM_TRP")];
 Instance[] instances = type.GetInstances();
 bool EGMsensor = false;
 foreach (Instance instance in instances)
 {
 if (instance.ToString() == "EGMsensor") EGMsensor = true;
 }
 if (!EGMsensor) type.Create("EGMsensor");

 string[] path = { "SIO", "COM_TRP", "EGMsensor", "Type" };
 configuration.Write("UDPUC", path);
 path[3] = "RemoteAdress";
 configuration.Write(IP, path);
 path[3] = "RemotePortNumber";
 configuration.Write("6510", path);

 // Setting up simulated digital signals for communication
 Domain Signals = configuration.ExternalIO;
 types = Signals.Types;
 type = types[Signals.Types.IndexOf("EIO_SIGNAL")];
 instances = type.GetInstances();
 bool Trigger = false;
 bool Grip = false;
 bool Menu = false;
 bool Dpad = false;
 foreach (Instance instance in instances)
 {
 switch (instance.ToString())
 {
 case "TriggerButton":
 Trigger = true;
 break;
 case "GripButton":
 Grip = true;
 break;
 case "MenuButton":
 Menu = true;
 break;
 case "DpadButton":
 Dpad = true;
 break;
 }
 }
 if (!Trigger) type.Create("TriggerButton");
 if (!Grip) type.Create("GripButton");
 if (!Menu) type.Create("MenuButton");
 if (!Dpad) type.Create("DpadButton");
 configuration.Write("DI", "EIO","EIO_SIGNAL","TriggerButton","SignalType");
 configuration.Write("DI", "EIO", "EIO_SIGNAL", "GripButton", "SignalType");
 configuration.Write("DI", "EIO", "EIO_SIGNAL", "MenuButton", "SignalType");
 configuration.Write("DI", "EIO", "EIO_SIGNAL", "DpadButton", "SignalType");
 configuration.Write("All", "EIO", "EIO_SIGNAL", "TriggerButton", "Access");
 configuration.Write("All", "EIO", "EIO_SIGNAL", "GripButton", "Access");
 configuration.Write("All", "EIO", "EIO_SIGNAL", "MenuButton", "Access");
 configuration.Write("All", "EIO", "EIO_SIGNAL", "DpadButton", "Access");
 configuration.Write("Online teaching", "EIO", "EIO_SIGNAL", "TriggerButton", "Category");
 configuration.Write("Online teaching", "EIO", "EIO_SIGNAL", "GripButton", "Category");
 configuration.Write("Online teaching", "EIO", "EIO_SIGNAL", "MenuButton", "Category");
 configuration.Write("Online teaching", "EIO", "EIO_SIGNAL", "DpadButton", "Category");
 }
 staticController.Logoff();
 }

 private string GetLocalIP()
 {
 string localIP;
 using (Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, 0))
 {
 socket.Connect("8.8.8.8", 65530);
 IPEndPoint endPoint = socket.LocalEndPoint as IPEndPoint;
 localIP = endPoint.Address.ToString();
 }
 return localIP;
 }

 private void LoadOntoRobotButton_Click(object sender, EventArgs e)
 {
 FileSystem fileSystem = staticController.FileSystem;
 //fileSystem.PutDirectory(@"E:/EGM",fileSystem.RemoteDirectory,false);
 staticController.Logon(UserInfo.DefaultUser);
 using (Mastership m = Mastership.Request(staticController.Rapid))
 {

 ABB.Robotics.Controllers.RapidDomain.Task[] tasks = staticController.Rapid.GetTasks();
 tasks[0].LoadModuleFromFile(fileSystem.RemoteDirectory + @"/programs/EGM/EGM.mod", ABB.Robotics.Controllers.RapidDomain.RapidLoadMode.Replace);
 tasks[0].LoadModuleFromFile(fileSystem.RemoteDirectory + @"/programs/EGM/Continuous.mod", ABB.Robotics.Controllers.RapidDomain.RapidLoadMode.Replace);
 tasks[0].LoadModuleFromFile(fileSystem.RemoteDirectory + @"/programs/EGM/PointToPoint.mod", ABB.Robotics.Controllers.RapidDomain.RapidLoadMode.Replace);
 tasks[0].LoadModuleFromFile(fileSystem.RemoteDirectory + @"/programs/EGM/Testing.mod", ABB.Robotics.Controllers.RapidDomain.RapidLoadMode.Replace);
 //tasks[0].LoadProgramFromFile(staticController.FileSystem.RemoteDirectory + @"/EGM/EGM.pgf", ABB.Robotics.Controllers.RapidDomain.RapidLoadMode.Replace);
 }
 staticController.Logoff();
 }

 }
}

Online Teaching/GUI/Mainform.Designer.cs

namespace GUI
{
 partial class Mainform
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.TestingViveButton = new System.Windows.Forms.Button();
 this.ContinuousButton = new System.Windows.Forms.Button();
 this.PointToPointButton = new System.Windows.Forms.Button();
 this.NetscanButton = new System.Windows.Forms.Button();
 this.WobjButton = new System.Windows.Forms.Button();
 this.ConfigurationSetupButton = new System.Windows.Forms.Button();
 this.LoadOntoRobotButton = new System.Windows.Forms.Button();
 this.groupBox1 = new System.Windows.Forms.GroupBox();
 this.groupBox2 = new System.Windows.Forms.GroupBox();
 this.groupBox1.SuspendLayout();
 this.groupBox2.SuspendLayout();
 this.SuspendLayout();
 //
 // TestingViveButton
 //
 this.TestingViveButton.Location = new System.Drawing.Point(6, 19);
 this.TestingViveButton.Name = "TestingViveButton";
 this.TestingViveButton.Size = new System.Drawing.Size(84, 23);
 this.TestingViveButton.TabIndex = 0;
 this.TestingViveButton.Text = "Testing";
 this.TestingViveButton.UseVisualStyleBackColor = true;
 this.TestingViveButton.Click += new System.EventHandler(this.TestingViveButton_Click);
 //
 // ContinuousButton
 //
 this.ContinuousButton.Enabled = false;
 this.ContinuousButton.Location = new System.Drawing.Point(6, 48);
 this.ContinuousButton.Name = "ContinuousButton";
 this.ContinuousButton.Size = new System.Drawing.Size(84, 23);
 this.ContinuousButton.TabIndex = 1;
 this.ContinuousButton.Text = "Continuous";
 this.ContinuousButton.UseVisualStyleBackColor = true;
 this.ContinuousButton.Click += new System.EventHandler(this.ContinuousButton_Click);
 //
 // PointToPointButton
 //
 this.PointToPointButton.Enabled = false;
 this.PointToPointButton.Location = new System.Drawing.Point(6, 77);
 this.PointToPointButton.Name = "PointToPointButton";
 this.PointToPointButton.Size = new System.Drawing.Size(84, 23);
 this.PointToPointButton.TabIndex = 2;
 this.PointToPointButton.Text = "Point to point";
 this.PointToPointButton.UseVisualStyleBackColor = true;
 this.PointToPointButton.Click += new System.EventHandler(this.PointToPointButton_Click);
 //
 // NetscanButton
 //
 this.NetscanButton.Location = new System.Drawing.Point(6, 19);
 this.NetscanButton.Name = "NetscanButton";
 this.NetscanButton.Size = new System.Drawing.Size(124, 23);
 this.NetscanButton.TabIndex = 3;
 this.NetscanButton.Text = "Connect to robot";
 this.NetscanButton.UseVisualStyleBackColor = true;
 this.NetscanButton.Click += new System.EventHandler(this.NetscanButton_Click);
 //
 // WobjButton
 //
 this.WobjButton.Location = new System.Drawing.Point(6, 106);
 this.WobjButton.Name = "WobjButton";
 this.WobjButton.Size = new System.Drawing.Size(124, 23);
 this.WobjButton.TabIndex = 4;
 this.WobjButton.Text = "Set workobject";
 this.WobjButton.UseVisualStyleBackColor = true;
 this.WobjButton.Click += new System.EventHandler(this.WobjButton_Click);
 //
 // ConfigurationSetupButton
 //
 this.ConfigurationSetupButton.Enabled = false;
 this.ConfigurationSetupButton.Location = new System.Drawing.Point(6, 48);
 this.ConfigurationSetupButton.Name = "ConfigurationSetupButton";
 this.ConfigurationSetupButton.Size = new System.Drawing.Size(124, 23);
 this.ConfigurationSetupButton.TabIndex = 5;
 this.ConfigurationSetupButton.Text = "EGM configurations";
 this.ConfigurationSetupButton.UseVisualStyleBackColor = true;
 this.ConfigurationSetupButton.Click += new System.EventHandler(this.ConfigurationSetupButton_Click);
 //
 // LoadOntoRobotButton
 //
 this.LoadOntoRobotButton.Enabled = false;
 this.LoadOntoRobotButton.Location = new System.Drawing.Point(6, 77);
 this.LoadOntoRobotButton.Name = "LoadOntoRobotButton";
 this.LoadOntoRobotButton.Size = new System.Drawing.Size(124, 23);
 this.LoadOntoRobotButton.TabIndex = 6;
 this.LoadOntoRobotButton.Text = "Load program to robot";
 this.LoadOntoRobotButton.UseVisualStyleBackColor = true;
 this.LoadOntoRobotButton.Click += new System.EventHandler(this.LoadOntoRobotButton_Click);
 //
 // groupBox1
 //
 this.groupBox1.Controls.Add(this.TestingViveButton);
 this.groupBox1.Controls.Add(this.ContinuousButton);
 this.groupBox1.Controls.Add(this.PointToPointButton);
 this.groupBox1.Location = new System.Drawing.Point(12, 12);
 this.groupBox1.Name = "groupBox1";
 this.groupBox1.Size = new System.Drawing.Size(98, 107);
 this.groupBox1.TabIndex = 7;
 this.groupBox1.TabStop = false;
 this.groupBox1.Text = "Program modes";
 //
 // groupBox2
 //
 this.groupBox2.Controls.Add(this.NetscanButton);
 this.groupBox2.Controls.Add(this.ConfigurationSetupButton);
 this.groupBox2.Controls.Add(this.LoadOntoRobotButton);
 this.groupBox2.Controls.Add(this.WobjButton);
 this.groupBox2.Location = new System.Drawing.Point(116, 12);
 this.groupBox2.Name = "groupBox2";
 this.groupBox2.Size = new System.Drawing.Size(141, 138);
 this.groupBox2.TabIndex = 8;
 this.groupBox2.TabStop = false;
 this.groupBox2.Text = "Support functions";
 //
 // Mainform
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(262, 155);
 this.Controls.Add(this.groupBox2);
 this.Controls.Add(this.groupBox1);
 this.Name = "Mainform";
 this.Text = "Menu";
 this.groupBox1.ResumeLayout(false);
 this.groupBox2.ResumeLayout(false);
 this.ResumeLayout(false);

 }

 #endregion

 private System.Windows.Forms.Button TestingViveButton;
 private System.Windows.Forms.Button ContinuousButton;
 private System.Windows.Forms.Button PointToPointButton;
 private System.Windows.Forms.Button NetscanButton;
 private System.Windows.Forms.Button WobjButton;
 private System.Windows.Forms.Button ConfigurationSetupButton;
 private System.Windows.Forms.Button LoadOntoRobotButton;
 private System.Windows.Forms.GroupBox groupBox1;
 private System.Windows.Forms.GroupBox groupBox2;
 }
}

Online Teaching/GUI/Mainform.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Online Teaching/GUI/MicroLibrary.cs

using System;

namespace MicroLibrary
{
 /// <summary>
 /// MicroStopwatch class
 /// </summary>
 public class MicroStopwatch : System.Diagnostics.Stopwatch
 {
 readonly double _microSecPerTick =
 1000000D / System.Diagnostics.Stopwatch.Frequency;

 public MicroStopwatch()
 {
 if (!System.Diagnostics.Stopwatch.IsHighResolution)
 {
 throw new Exception("On this system the high-resolution " +
 "performance counter is not available");
 }
 }

 public long ElapsedMicroseconds
 {
 get
 {
 return (long)(ElapsedTicks * _microSecPerTick);
 }
 }
 }

 /// <summary>
 /// MicroTimer class
 /// </summary>
 public class MicroTimer
 {
 public delegate void MicroTimerElapsedEventHandler(
 object sender,
 MicroTimerEventArgs timerEventArgs);
 public event MicroTimerElapsedEventHandler MicroTimerElapsed;

 System.Threading.Thread _threadTimer = null;
 long _ignoreEventIfLateBy = long.MaxValue;
 long _timerIntervalInMicroSec = 0;
 bool _stopTimer = true;

 public MicroTimer()
 {
 }

 public MicroTimer(long timerIntervalInMicroseconds)
 {
 Interval = timerIntervalInMicroseconds;
 }

 public long Interval
 {
 get
 {
 return System.Threading.Interlocked.Read(
 ref _timerIntervalInMicroSec);
 }
 set
 {
 System.Threading.Interlocked.Exchange(
 ref _timerIntervalInMicroSec, value);
 }
 }

 public long IgnoreEventIfLateBy
 {
 get
 {
 return System.Threading.Interlocked.Read(
 ref _ignoreEventIfLateBy);
 }
 set
 {
 System.Threading.Interlocked.Exchange(
 ref _ignoreEventIfLateBy, value <= 0 ? long.MaxValue : value);
 }
 }

 public bool Enabled
 {
 set
 {
 if (value)
 {
 Start();
 }
 else
 {
 Stop();
 }
 }
 get
 {
 return (_threadTimer != null && _threadTimer.IsAlive);
 }
 }

 public void Start()
 {
 if (Enabled || Interval <= 0)
 {
 return;
 }

 _stopTimer = false;

 System.Threading.ThreadStart threadStart = delegate ()
 {
 NotificationTimer(ref _timerIntervalInMicroSec,
 ref _ignoreEventIfLateBy,
 ref _stopTimer);
 };

 _threadTimer = new System.Threading.Thread(threadStart);
 _threadTimer.Priority = System.Threading.ThreadPriority.Highest;
 _threadTimer.Start();
 }

 public void Stop()
 {
 _stopTimer = true;
 }

 public void StopAndWait()
 {
 StopAndWait(System.Threading.Timeout.Infinite);
 }

 public bool StopAndWait(int timeoutInMilliSec)
 {
 _stopTimer = true;

 if (!Enabled || _threadTimer.ManagedThreadId ==
 System.Threading.Thread.CurrentThread.ManagedThreadId)
 {
 return true;
 }

 return _threadTimer.Join(timeoutInMilliSec);
 }

 public void Abort()
 {
 _stopTimer = true;

 if (Enabled)
 {
 _threadTimer.Abort();
 }
 }

 void NotificationTimer(ref long timerIntervalInMicroSec,
 ref long ignoreEventIfLateBy,
 ref bool stopTimer)
 {
 int timerCount = 0;
 long nextNotification = 0;

 MicroStopwatch microStopwatch = new MicroStopwatch();
 microStopwatch.Start();

 while (!stopTimer)
 {
 long callbackFunctionExecutionTime =
 microStopwatch.ElapsedMicroseconds - nextNotification;

 long timerIntervalInMicroSecCurrent =
 System.Threading.Interlocked.Read(ref timerIntervalInMicroSec);
 long ignoreEventIfLateByCurrent =
 System.Threading.Interlocked.Read(ref ignoreEventIfLateBy);

 nextNotification += timerIntervalInMicroSecCurrent;
 timerCount++;
 long elapsedMicroseconds = 0;

 while ((elapsedMicroseconds = microStopwatch.ElapsedMicroseconds)
 < nextNotification)
 {
 System.Threading.Thread.SpinWait(10);
 }

 long timerLateBy = elapsedMicroseconds - nextNotification;

 if (timerLateBy >= ignoreEventIfLateByCurrent)
 {
 continue;
 }

 MicroTimerEventArgs microTimerEventArgs =
 new MicroTimerEventArgs(timerCount,
 elapsedMicroseconds,
 timerLateBy,
 callbackFunctionExecutionTime);
 MicroTimerElapsed(this, microTimerEventArgs);
 }

 microStopwatch.Stop();
 }
 }

 /// <summary>
 /// MicroTimer Event Argument class
 /// </summary>
 public class MicroTimerEventArgs : EventArgs
 {
 // Simple counter, number times timed event (callback function) executed
 public int TimerCount { get; private set; }

 // Time when timed event was called since timer started
 public long ElapsedMicroseconds { get; private set; }

 // How late the timer was compared to when it should have been called
 public long TimerLateBy { get; private set; }

 // Time it took to execute previous call to callback function (OnTimedEvent)
 public long CallbackFunctionExecutionTime { get; private set; }

 public MicroTimerEventArgs(int timerCount,
 long elapsedMicroseconds,
 long timerLateBy,
 long callbackFunctionExecutionTime)
 {
 TimerCount = timerCount;
 ElapsedMicroseconds = elapsedMicroseconds;
 TimerLateBy = timerLateBy;
 CallbackFunctionExecutionTime = callbackFunctionExecutionTime;
 }

 }
}

Online Teaching/GUI/NetScan.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using ABB.Robotics.Controllers;
using ABB.Robotics.Controllers.Discovery;
using ABB.Robotics.Controllers.RapidDomain;

namespace GUI
{
 public partial class NetScan : Form
 {
 private NetworkScanner scanner = null;
 public NetScan()
 {

 InitializeComponent();
 scanner = new NetworkScanner();
 scanner.Scan();
 ControllerInfoCollection controllers = scanner.Controllers;
 ListViewItem item = null;
 foreach (ControllerInfo controllerInfo in controllers)
 {
 item = new ListViewItem(controllerInfo.IPAddress.ToString());
 item.SubItems.Add(controllerInfo.Id);
 item.SubItems.Add(controllerInfo.Availability.ToString());
 item.SubItems.Add(controllerInfo.IsVirtual.ToString());
 item.SubItems.Add(controllerInfo.SystemName);
 item.SubItems.Add(controllerInfo.Version.ToString());
 item.SubItems.Add(controllerInfo.ControllerName);
 listView1.Items.Add(item);
 item.Tag = controllerInfo;
 listView1.Items[0].Selected = true;
 }
 listView1.Select();
 }

 private void ConnectButton_Click(object sender, EventArgs e)
 {
 if (this.listView1.SelectedItems.Count == 0) return;
 ListViewItem item = this.listView1.SelectedItems[0];
 if (item.Tag != null)
 {
 ControllerInfo controllerInfo = (ControllerInfo)item.Tag;
 if (controllerInfo.Availability == Availability.Available)
 {
 if (Mainform.staticController != null)
 {
 Mainform.staticController.Logoff();
 Mainform.staticController.Dispose();
 Mainform.staticController = null;
 }
 Mainform.staticController = ControllerFactory.CreateFrom(controllerInfo);
 }
 else
 {
 MessageBox.Show("Selected controller not available.");
 }
 }
 Close();
 }

 private void RefreshButton_Click(object sender, EventArgs e)
 {
 listView1.Items.Clear();
 scanner.Scan();
 ControllerInfoCollection controllers = scanner.Controllers;
 ListViewItem item = null;
 foreach (ControllerInfo controllerInfo in controllers)
 {
 item = new ListViewItem(controllerInfo.IPAddress.ToString());
 item.SubItems.Add(controllerInfo.Id);
 item.SubItems.Add(controllerInfo.Availability.ToString());
 item.SubItems.Add(controllerInfo.IsVirtual.ToString());
 item.SubItems.Add(controllerInfo.SystemName);
 item.SubItems.Add(controllerInfo.Version.ToString());
 item.SubItems.Add(controllerInfo.ControllerName);
 listView1.Items.Add(item);
 item.Tag = controllerInfo;
 listView1.Items[0].Selected = true;
 }
 listView1.Select();
 }

 private void CancelLogonButton_Click(object sender, EventArgs e)
 {
 Close();
 }

 private void listView1_DoubleClick(object sender, EventArgs e)
 {
 if (this.listView1.SelectedItems.Count == 0) return;
 ListViewItem item = this.listView1.SelectedItems[0];
 if (item.Tag != null)
 {
 ControllerInfo controllerInfo = (ControllerInfo)item.Tag;
 if (controllerInfo.Availability == Availability.Available)
 {
 if (Mainform.staticController != null)
 {
 Mainform.staticController.Logoff();
 Mainform.staticController.Dispose();
 Mainform.staticController = null;
 }
 Mainform.staticController = ControllerFactory.CreateFrom(controllerInfo);
 }
 else
 {
 MessageBox.Show("Selected controller not available.");
 }
 }
 Close();
 }

 }
}

Online Teaching/GUI/NetScan.Designer.cs

namespace GUI
{
 partial class NetScan
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.listView1 = new System.Windows.Forms.ListView();
 this.columnHeader1 = ((System.Windows.Forms.ColumnHeader)(new System.Windows.Forms.ColumnHeader()));
 this.columnHeader2 = ((System.Windows.Forms.ColumnHeader)(new System.Windows.Forms.ColumnHeader()));
 this.columnHeader3 = ((System.Windows.Forms.ColumnHeader)(new System.Windows.Forms.ColumnHeader()));
 this.columnHeader4 = ((System.Windows.Forms.ColumnHeader)(new System.Windows.Forms.ColumnHeader()));
 this.columnHeader5 = ((System.Windows.Forms.ColumnHeader)(new System.Windows.Forms.ColumnHeader()));
 this.columnHeader6 = ((System.Windows.Forms.ColumnHeader)(new System.Windows.Forms.ColumnHeader()));
 this.columnHeader7 = ((System.Windows.Forms.ColumnHeader)(new System.Windows.Forms.ColumnHeader()));
 this.panel1 = new System.Windows.Forms.Panel();
 this.CancelLogonButton = new System.Windows.Forms.Button();
 this.RefreshButton = new System.Windows.Forms.Button();
 this.ConnectButton = new System.Windows.Forms.Button();
 this.panel1.SuspendLayout();
 this.SuspendLayout();
 //
 // listView1
 //
 this.listView1.Columns.AddRange(new System.Windows.Forms.ColumnHeader[] {
 this.columnHeader1,
 this.columnHeader2,
 this.columnHeader3,
 this.columnHeader4,
 this.columnHeader5,
 this.columnHeader6,
 this.columnHeader7});
 this.listView1.FullRowSelect = true;
 this.listView1.GridLines = true;
 this.listView1.Location = new System.Drawing.Point(12, 12);
 this.listView1.Name = "listView1";
 this.listView1.Size = new System.Drawing.Size(810, 314);
 this.listView1.TabIndex = 0;
 this.listView1.UseCompatibleStateImageBehavior = false;
 this.listView1.View = System.Windows.Forms.View.Details;
 this.listView1.DoubleClick += new System.EventHandler(this.listView1_DoubleClick);
 //
 // columnHeader1
 //
 this.columnHeader1.Text = "IP Address";
 this.columnHeader1.Width = 108;
 //
 // columnHeader2
 //
 this.columnHeader2.Text = "ID";
 this.columnHeader2.Width = 94;
 //
 // columnHeader3
 //
 this.columnHeader3.Text = "Availability";
 this.columnHeader3.Width = 78;
 //
 // columnHeader4
 //
 this.columnHeader4.Text = "Virtual";
 //
 // columnHeader5
 //
 this.columnHeader5.Text = "System name";
 this.columnHeader5.Width = 119;
 //
 // columnHeader6
 //
 this.columnHeader6.Text = "RW Version";
 this.columnHeader6.Width = 77;
 //
 // columnHeader7
 //
 this.columnHeader7.Text = "Controller name";
 this.columnHeader7.Width = 158;
 //
 // panel1
 //
 this.panel1.Controls.Add(this.CancelLogonButton);
 this.panel1.Controls.Add(this.RefreshButton);
 this.panel1.Controls.Add(this.ConnectButton);
 this.panel1.Location = new System.Drawing.Point(12, 332);
 this.panel1.Name = "panel1";
 this.panel1.Size = new System.Drawing.Size(261, 32);
 this.panel1.TabIndex = 1;
 //
 // CancelLogonButton
 //
 this.CancelLogonButton.Location = new System.Drawing.Point(165, 3);
 this.CancelLogonButton.Name = "CancelLogonButton";
 this.CancelLogonButton.Size = new System.Drawing.Size(75, 23);
 this.CancelLogonButton.TabIndex = 2;
 this.CancelLogonButton.Text = "Cancel";
 this.CancelLogonButton.UseVisualStyleBackColor = true;
 this.CancelLogonButton.Click += new System.EventHandler(this.CancelLogonButton_Click);
 //
 // RefreshButton
 //
 this.RefreshButton.Location = new System.Drawing.Point(84, 3);
 this.RefreshButton.Name = "RefreshButton";
 this.RefreshButton.Size = new System.Drawing.Size(75, 23);
 this.RefreshButton.TabIndex = 1;
 this.RefreshButton.Text = "Refresh";
 this.RefreshButton.UseVisualStyleBackColor = true;
 this.RefreshButton.Click += new System.EventHandler(this.RefreshButton_Click);
 //
 // ConnectButton
 //
 this.ConnectButton.Location = new System.Drawing.Point(3, 3);
 this.ConnectButton.Name = "ConnectButton";
 this.ConnectButton.Size = new System.Drawing.Size(75, 23);
 this.ConnectButton.TabIndex = 0;
 this.ConnectButton.Text = "Connect";
 this.ConnectButton.UseVisualStyleBackColor = true;
 this.ConnectButton.Click += new System.EventHandler(this.ConnectButton_Click);
 //
 // NetScan
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(828, 375);
 this.Controls.Add(this.panel1);
 this.Controls.Add(this.listView1);
 this.Name = "NetScan";
 this.Text = "Network scanning window";
 this.panel1.ResumeLayout(false);
 this.ResumeLayout(false);

 }

 #endregion

 private System.Windows.Forms.ListView listView1;
 private System.Windows.Forms.ColumnHeader columnHeader1;
 private System.Windows.Forms.ColumnHeader columnHeader2;
 private System.Windows.Forms.ColumnHeader columnHeader3;
 private System.Windows.Forms.ColumnHeader columnHeader4;
 private System.Windows.Forms.ColumnHeader columnHeader5;
 private System.Windows.Forms.ColumnHeader columnHeader6;
 private System.Windows.Forms.ColumnHeader columnHeader7;
 private System.Windows.Forms.Panel panel1;
 private System.Windows.Forms.Button CancelLogonButton;
 private System.Windows.Forms.Button RefreshButton;
 private System.Windows.Forms.Button ConnectButton;
 }
}

Online Teaching/GUI/NetScan.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Online Teaching/GUI/obj/Debug/DesignTimeResolveAssemblyReferences.cache

Online Teaching/GUI/obj/Debug/DesignTimeResolveAssemblyReferencesInput.cache

Online Teaching/GUI/obj/Debug/GUI.Continuous.resources

Online Teaching/GUI/obj/Debug/GUI.csproj.CoreCompileInputs.cache

a40efe5d70136d0c95a0e16ca719dda17d73b255

Online Teaching/GUI/obj/Debug/GUI.csproj.FileListAbsolute.txt

C:\ELE630\AutoTest2\GUI\bin\Debug\GUI.exe.config
C:\ELE630\AutoTest2\GUI\bin\Debug\GUI.exe
C:\ELE630\AutoTest2\GUI\bin\Debug\GUI.pdb
C:\ELE630\AutoTest2\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\ELE630\AutoTest2\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\ELE630\AutoTest2\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\ELE630\AutoTest2\GUI\obj\Debug\GUI.exe
C:\ELE630\AutoTest2\GUI\obj\Debug\GUI.pdb
C:\ELE630\AutoTest2\Debug\GUI.exe.config
C:\ELE630\AutoTest2\Debug\GUI.exe
C:\ELE630\AutoTest2\Debug\GUI.pdb
C:\ELE630\AutoTest2\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\ELE630\AutoTest2\GUI\obj\Debug\GUI.Form1.resources
C:\ELE630\3D_Pantograf\Debug\GUI.exe.config
C:\ELE630\3D_Pantograf\Debug\GUI.exe
C:\ELE630\3D_Pantograf\Debug\GUI.pdb
C:\ELE630\3D_Pantograf\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\ELE630\3D_Pantograf\GUI\obj\Debug\GUI.Form1.resources
C:\ELE630\3D_Pantograf\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\ELE630\3D_Pantograf\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\ELE630\3D_Pantograf\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\ELE630\3D_Pantograf\GUI\obj\Debug\GUI.exe
C:\ELE630\3D_Pantograf\GUI\obj\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\GUI\obj\Debug\GUI.Form1.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\GUI\obj\Debug\GUI.exe
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\GUI\obj\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\Debug\GUI.exe.config
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\Debug\GUI.exe
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\GUI\obj\Debug\GUI.Simuler.resources
C:\ELE630\3D_Pantograf\GUI\obj\Debug\GUI.Simuler.resources
C:\ELE630\3D_pantograf v1.00\Debug\GUI.exe.config
C:\ELE630\3D_pantograf v1.00\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.00\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.00\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.00\GUI\obj\Debug\GUI.Form1.resources
C:\ELE630\3D_pantograf v1.00\GUI\obj\Debug\GUI.Simuler.resources
C:\ELE630\3D_pantograf v1.00\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.00\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.00\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.00\GUI\obj\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.00\GUI\obj\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\Debug\GUI.exe.config
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\Debug\GUI.exe
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\GUI\obj\Debug\GUI.Vive.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\GUI\obj\Debug\GUI.Simuler.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\GUI\obj\Debug\GUI.exe
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\GUI\obj\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.03\Debug\GUI.exe.config
C:\ELE630\3D_pantograf v1.03\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.03\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.03\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.03\GUI\obj\Debug\GUI.Vive.resources
C:\ELE630\3D_pantograf v1.03\GUI\obj\Debug\GUI.Simuler.resources
C:\ELE630\3D_pantograf v1.03\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.03\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.03\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.03\GUI\obj\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.03\GUI\obj\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\Debug\GUI.exe.config
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\Debug\GUI.exe
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\GUI\obj\Debug\GUI.Vive.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\GUI\obj\Debug\GUI.Simuler.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\GUI\obj\Debug\GUI.exe
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\GUI\obj\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.04\Debug\GUI.exe.config
C:\ELE630\3D_pantograf v1.04\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.04\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.04\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.04\GUI\obj\Debug\GUI.Vive.resources
C:\ELE630\3D_pantograf v1.04\GUI\obj\Debug\GUI.Simuler.resources
C:\ELE630\3D_pantograf v1.04\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.04\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.04\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.04\GUI\obj\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.04\GUI\obj\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\Debug\GUI.exe.config
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\Debug\GUI.exe
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\Debug\GUI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\GUI\obj\Debug\GUI.Vive.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\GUI\obj\Debug\GUI.Simuler.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\GUI\obj\Debug\GUI.exe
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\GUI\obj\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.06\Debug\GUI.exe.config
C:\ELE630\3D_pantograf v1.06\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.06\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.06\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.06\GUI\obj\Debug\GUI.Vive.resources
C:\ELE630\3D_pantograf v1.06\GUI\obj\Debug\GUI.Simuler.resources
C:\ELE630\3D_pantograf v1.06\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.06\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.06\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.06\GUI\obj\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.06\GUI\obj\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.07 endelig\Debug\GUI.exe.config
C:\ELE630\3D_pantograf v1.07 endelig\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.07 endelig\Debug\GUI.pdb
C:\ELE630\3D_pantograf v1.07 endelig\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.07 endelig\GUI\obj\Debug\GUI.Vive.resources
C:\ELE630\3D_pantograf v1.07 endelig\GUI\obj\Debug\GUI.Simuler.resources
C:\ELE630\3D_pantograf v1.07 endelig\GUI\obj\Debug\GUI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.07 endelig\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.07 endelig\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.07 endelig\GUI\obj\Debug\GUI.exe
C:\ELE630\3D_pantograf v1.07 endelig\GUI\obj\Debug\GUI.pdb
D:\Online Teaching\Debug\GUI.exe.config
D:\Online Teaching\Debug\GUI.exe
D:\Online Teaching\Debug\GUI.pdb
D:\Online Teaching\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
D:\Online Teaching\GUI\obj\Debug\GUI.Properties.Resources.resources
D:\Online Teaching\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
D:\Online Teaching\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
D:\Online Teaching\GUI\obj\Debug\GUI.exe
D:\Online Teaching\GUI\obj\Debug\GUI.pdb
E:\Online Teaching\Debug\GUI.exe.config
E:\Online Teaching\Debug\GUI.exe
E:\Online Teaching\Debug\GUI.pdb
E:\Online Teaching\GUI\obj\Debug\GUI.csprojResolveAssemblyReference.cache
E:\Online Teaching\GUI\obj\Debug\GUI.Continuous.resources
E:\Online Teaching\GUI\obj\Debug\GUI.NetScan.resources
E:\Online Teaching\GUI\obj\Debug\GUI.TestingVive.resources
E:\Online Teaching\GUI\obj\Debug\GUI.Properties.Resources.resources
E:\Online Teaching\GUI\obj\Debug\GUI.csproj.GenerateResource.Cache
E:\Online Teaching\GUI\obj\Debug\GUI.csproj.CoreCompileInputs.cache
E:\Online Teaching\GUI\obj\Debug\GUI.exe
E:\Online Teaching\GUI\obj\Debug\GUI.pdb
E:\Online Teaching\GUI\obj\Debug\GUI.PointToPoint.resources
D:\Online Teaching\GUI\obj\Debug\GUI.Continuous.resources
D:\Online Teaching\GUI\obj\Debug\GUI.NetScan.resources
D:\Online Teaching\GUI\obj\Debug\GUI.PointToPoint.resources
D:\Online Teaching\GUI\obj\Debug\GUI.TestingVive.resources
E:\Online Teaching\GUI\obj\Debug\GUI.Mainform.resources
E:\Online Teaching\GUI\obj\Debug\GUI.Workobject.resources
D:\Online Teaching\GUI\obj\Debug\GUI.Mainform.resources
D:\Online Teaching\GUI\obj\Debug\GUI.Workobject.resources
D:\Online Teaching\GUI\obj\Debug\GUI.csproj.CopyComplete

Online Teaching/GUI/obj/Debug/GUI.csproj.GenerateResource.Cache

Online Teaching/GUI/obj/Debug/GUI.csprojResolveAssemblyReference.cache

Online Teaching/GUI/obj/Debug/GUI.Form1.resources

Online Teaching/GUI/obj/Debug/GUI.Mainform.resources

Online Teaching/GUI/obj/Debug/GUI.NetScan.resources

Online Teaching/GUI/obj/Debug/GUI.pdb

Online Teaching/GUI/obj/Debug/GUI.PointToPoint.resources

Online Teaching/GUI/obj/Debug/GUI.Properties.Resources.resources

Online Teaching/GUI/obj/Debug/GUI.TestingVive.resources

Online Teaching/GUI/obj/Debug/GUI.Workobject.resources

Online Teaching/GUI/packages.config

Online Teaching/GUI/PointToPoint.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Diagnostics;
using ABB.Robotics.Controllers;
using ABB.Robotics.Controllers.Discovery;
using ABB.Robotics.Controllers.RapidDomain;
using ABB.Robotics.Controllers.IOSystemDomain;
using ABB.Robotics.Math;
using MicroLibrary;
using System.IO;
using Vive;

namespace GUI
{
 public partial class PointToPoint : Form
 {
 public ViveTracker tracker;
 public Sensor sensor;
 public Controller controller = null;
 public Matrix3 wobj;
 public DigitalSignal TriggerButton;
 public DigitalSignal GripButton;
 public DigitalSignal MenuButton;
 public DigitalSignal DpadButton;
 //public DigitalSignal DpadUpButton;
 //public DigitalSignal DpadDownButton;
 //public DigitalSignal DpadRightButton;
 //public DigitalSignal DpadLeftButton;
 public bool EGMactive = false;
 public bool isRecording = false;
 public bool hasRecording = false;
 public Vector3 CalibVive = new Vector3();
 public Vector3 OffsetRobot = new Vector3();
 public Quaternion transformViveRobot;
 public MicroTimer EGMtimer;
 public delegate void GetInfoVive();
 public GetInfoVive GetInfoViveDelegate;
 public RobTarget recordingEntry = new RobTarget();
 public List<RobTarget> recordingPos = new List<RobTarget>();
 public List<double> recordingTime = new List<double>();
 public List<uint> recordingTool = new List<uint>();
 public Stopwatch recordingTimer;
 public int index = 0;
 public RapidData P2Ppos;
 public uint Brush = 1;

 public PointToPoint(Controller _controller, Matrix3 workobject)
 {
 InitializeComponent();

 sensor = new Sensor();
 sensor.Start();

 tracker = new ViveTracker(1);
 tracker.Initialize();

 controller = _controller;
 wobj = workobject;
 if (controller != null)
 {

 controller.Logon(UserInfo.DefaultUser);

 TriggerButton = (DigitalSignal)controller.IOSystem.GetSignal("TriggerButton");
 GripButton = (DigitalSignal)controller.IOSystem.GetSignal("GripButton");
 MenuButton = (DigitalSignal)controller.IOSystem.GetSignal("MenuButton");
 DpadButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadButton");
 //DpadUpButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadUpButton");
 //DpadDownButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadDownButton");
 //DpadRightButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadRightButton");
 //DpadLeftButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadLeftButton");
 P2Ppos = controller.Rapid.GetRapidData("T_ROB1", "EGM", "P2Ppos");
 StartRapidExecution();
 }

 GetInfoViveDelegate = new GetInfoVive(GetInfoViveMethod);
 EGMtimer = new MicroTimer(5000);
 EGMtimer.MicroTimerElapsed += new MicroLibrary.MicroTimer.MicroTimerElapsedEventHandler(EGMTimedEvent);
 EGMtimer.Start();

 GUITimer.Start();
 }

 private void GUITimer_Tick(object sender, EventArgs e)
 {
 UpdateGUI();
 }
 /// <summary>
 /// Updates GUI objects of the form
 /// </summary>
 public void UpdateGUI()
 {
 switch (tracker.Data.ActivityState)
 {
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Unknown:
 SensorStatusBox.BackColor = Color.Black;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Idle:
 SensorStatusBox.BackColor = Color.Red;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Standby:
 SensorStatusBox.BackColor = Color.Yellow;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_UserInteraction_Timeout:
 SensorStatusBox.BackColor = Color.Yellow;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_UserInteraction:
 SensorStatusBox.BackColor = Color.Green;
 break;
 }
 switch (controller.Rapid.ExecutionStatus)
 {
 case ExecutionStatus.Unknown:
 RapidStatusBox.BackColor = Color.Black;
 break;
 case ExecutionStatus.Stopped:
 RapidStatusBox.BackColor = Color.Red;
 break;
 case ExecutionStatus.Running:
 RapidStatusBox.BackColor = Color.Green;
 break;
 }
 if (hasRecording == false)
 {
 if (isRecording == false)
 {
 RecordingStatusBox.BackColor = Color.Red;
 RecordingTextBox.Text = "No recording";
 TooltipBox.Text = "Press menu button to start recording";
 }
 else
 {
 RecordingStatusBox.BackColor = Color.Green;
 RecordingTextBox.Text = "Recording in progress";
 TooltipBox.Text = "Dpad up to add point to path, Dpad down to delete. Dpad left/right to move between points. Press menu button to stop recording";
 }
 }
 else
 {
 if (isRecording == false)
 {
 RecordingStatusBox.BackColor = Color.Yellow;
 RecordingTextBox.Text = "Recording paused";
 TooltipBox.Text = "Press menu button to continiue recording or choose what to do with recording";
 }
 else
 {
 RecordingStatusBox.BackColor = Color.Green;
 RecordingTextBox.Text = "Recording in progress";
 TooltipBox.Text = "Dpad up to add point to path, Dpad down to delete. Dpad left/right to move between points. Press menu button to stop recording";
 }
 }
 }

 private void EGMTimedEvent(object sender,MicroLibrary.MicroTimerEventArgs timerEventArgs)
 {
 this.Invoke(GetInfoViveDelegate);
 }

 /// <summary>
 /// Gets info from Vive-controller and updates info to send to robot
 /// </summary>
 private void GetInfoViveMethod()
 {
 bool trigger = tracker.Data.ButtonPressed._trigger;
 bool grip = tracker.Data.ButtonPressed._grip;
 bool menu = tracker.Data.ButtonPressed._menu;
 bool dpad_up = tracker.Data.ButtonPressed.dPad_Up;
 bool dpad_down = tracker.Data.ButtonPressed.dPad_Down;
 bool dpad_right = tracker.Data.ButtonPressed.dPad_Right;
 bool dpad_left = tracker.Data.ButtonPressed.dPad_Left;

 tracker.UpdateData();

 if (trigger != tracker.Data.ButtonPressed._trigger)
 {
 SetSignal(TriggerButton, tracker.Data.ButtonPressed._trigger);
 }
 if (grip != tracker.Data.ButtonPressed._grip)
 {
 if (tracker.Data.ButtonPressed._grip == true)
 {
 if (EGMactive == false)
 {
 EGMactive = true;
 CalibVive = tracker.Data.Position;
 RobTarget currentPos = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.WorkObject);
 OffsetRobot.x = currentPos.Trans.X;
 OffsetRobot.y = currentPos.Trans.Y;
 OffsetRobot.z = currentPos.Trans.Z;

 Quaternion Robot = new Quaternion(currentPos.Rot.Q1, currentPos.Rot.Q2, currentPos.Rot.Q3, currentPos.Rot.Q4);

 Quaternion Vive = tracker.Data.Orientation.Inverse();
 transformViveRobot = Vive * Robot;
 }
 else if (EGMactive == true)
 {
 EGMactive = false;

 }
 }

 SetSignal(GripButton, tracker.Data.ButtonPressed._grip);

 }
 if (menu != tracker.Data.ButtonPressed._menu)
 {
 if (tracker.Data.ButtonPressed._menu == true)
 {
 if (isRecording == false)
 {
 isRecording = true;
 tracker.HapticPulse(50);
 recordingTimer = new Stopwatch();
 recordingTimer.Start();
 }
 else if (isRecording == true)
 {
 isRecording = false;
 tracker.HapticPulse(50);
 recordingTimer.Stop();

 if (hasRecording == false)
 {
 hasRecording = true;
 SaveRecordingButton.Enabled = true;
 PreviewRecordingButton.Enabled = true;
 ResetRecordingButton.Enabled = true;
 }
 }
 }

 SetSignal(MenuButton, tracker.Data.ButtonPressed._menu);
 }

 if (dpad_up != tracker.Data.ButtonPressed.dPad_Up)
 {
 if(tracker.Data.ButtonPressed.dPad_Up == true & isRecording == true)
 {
 recordingTime.Insert(index, Convert.ToDouble(recordingTimer.ElapsedMilliseconds) / 1000);
 if (tracker.Data.ButtonPressed._trigger) recordingTool.Add(Brush);
 else recordingTool.Add(0);
 recordingPos.Insert(index, controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.WorkObject));
 index = index + 1;
 }

 //SetSignal(DpadUpButton, tracker.Data.ButtonPressed.dPad_Up);
 }
 if (dpad_down != tracker.Data.ButtonPressed.dPad_Down)
 {
 if(tracker.Data.ButtonPressed.dPad_Down == true)
 {
 if (recordingPos.Count > 0)
 {
 recordingTime.RemoveAt(index);
 recordingPos.RemoveAt(index);
 recordingTool.RemoveAt(index);

 index = index - 1;
 if (index < 0)
 index = 0;
 else
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 P2Ppos.Value = recordingPos[index];
 }
 }

 }
 }
 SetSignal(DpadButton, tracker.Data.ButtonPressed.dPad_Down);

 }
 if (dpad_right != tracker.Data.ButtonPressed.dPad_Right)
 {
 if(tracker.Data.ButtonPressed.dPad_Right == true)
 {
 index = index + 1;
 if (index > recordingPos.Count - 1) index = recordingPos.Count - 1;
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 P2Ppos.Value = recordingPos[index];
 }

 }
 SetSignal(DpadButton, tracker.Data.ButtonPressed.dPad_Right);

 }
 if (dpad_left != tracker.Data.ButtonPressed.dPad_Left)
 {
 if (tracker.Data.ButtonPressed.dPad_Left == true)
 {
 index = index - 1;
 if (index < 0) index = 0;
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 P2Ppos.Value = recordingPos[index];
 }

 }
 SetSignal(DpadButton, tracker.Data.ButtonPressed.dPad_Left);
 }

 sensor.PlannedPos = wobj * ((tracker.Data.Position - CalibVive) + OffsetRobot);
 sensor.PlannedOrient = tracker.Data.Orientation * transformViveRobot;

 }

 /// <summary>
 /// Sets program pointer to main and starts rapid execution.
 /// </summary>
 private void StartRapidExecution()
 {
 ABB.Robotics.Controllers.RapidDomain.Task[] tasks = controller.Rapid.GetTasks();

 try
 {
 if (controller.OperatingMode == ControllerOperatingMode.Auto)
 {

 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 tasks[0].SetProgramPointer("EGM", "EGMmain");
 ABB.Robotics.Controllers.RapidDomain.String mode;
 mode.Value = "P2P";
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "mode");
 rd.Value = mode;
 controller.Rapid.Start();
 }
 }
 else
 {
 MessageBox.Show("Automatic mode is required to start execution from a remote client.");
 }
 }
 catch (System.InvalidOperationException ex)
 {
 MessageBox.Show("Mastership is held by another client." +
 ex.Message);
 }
 catch (System.Exception ex)
 {
 MessageBox.Show("Unexpected error occurred: " + ex.Message);
 }
 }

 private void StopRapidExecution()
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 controller.Rapid.Stop(ABB.Robotics.Controllers.RapidDomain.StopMode.Instruction);
 }
 }

 /// <summary>
 /// Sets the the input signal to the given input state
 /// </summary>
 private void SetSignal(DigitalSignal signal, bool state)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 if (state == true)
 {
 signal.Set();
 }
 else
 {
 signal.Reset();
 }
 }
 }

 protected override void OnFormClosing(FormClosingEventArgs e)
 {
 EGMtimer.Abort();
 GUITimer.Stop();
 GUITimer.Dispose();
 if (controller != null)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 controller.Rapid.Stop(ABB.Robotics.Controllers.RapidDomain.StopMode.Instruction);
 }
 TriggerButton.Dispose();
 GripButton.Dispose();
 MenuButton.Dispose();
 DpadButton.Dispose();
 //DpadUpButton.Dispose();
 //DpadDownButton.Dispose();
 //DpadRightButton.Dispose();
 //DpadLeftButton.Dispose();
 controller.Logoff();
 controller = null;
 }
 sensor.Stop();
 base.OnFormClosing(e);

 }

 private void SaveRecordingButton_Click(object sender, EventArgs e)
 {
 using (SaveFileDialog saveFileDialog = new SaveFileDialog())
 {
 Stream file;
 saveFileDialog.Filter = "txt files (*.txt)|*.txt|All files (*.*)|*.*";
 saveFileDialog.RestoreDirectory = true;

 if (saveFileDialog.ShowDialog() == DialogResult.OK)
 {
 if ((file = saveFileDialog.OpenFile()) != null)
 {
 SaveRecording(file);
 file.Close();
 }
 }

 }
 }

 public void SaveRecording(Stream file)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "EGMwobj");
 WobjData wobj = (WobjData)rd.Value;

 using (StreamWriter writer = new StreamWriter(file))
 {
 System.Globalization.NumberFormatInfo nfi = new System.Globalization.NumberFormatInfo();
 nfi.NumberDecimalSeparator = ".";
 // write wobj first
 writer.Write("-1," + wobj.Uframe.Trans.X.ToString(nfi) + "," + wobj.Uframe.Trans.Y.ToString(nfi) + "," + wobj.Uframe.Trans.Z.ToString(nfi) + ","); // position
 writer.WriteLine(wobj.Uframe.Rot.Q1.ToString(nfi) + "," + wobj.Uframe.Rot.Q2.ToString(nfi) + "," + wobj.Uframe.Rot.Q3.ToString(nfi) + "," + wobj.Uframe.Rot.Q4.ToString(nfi) + ",0");
 for (int i = 0; i < recordingPos.Count() - 1; i++)
 {
 writer.Write(recordingTime[i].ToString(nfi) + "," + recordingPos[i].Trans.X.ToString(nfi) + "," + recordingPos[i].Trans.Y.ToString(nfi) + "," + recordingPos[i].Trans.Z.ToString(nfi) + ",");
 writer.WriteLine(recordingPos[i].Rot.Q1.ToString(nfi) + "," + recordingPos[i].Rot.Q2.ToString(nfi) + "," + recordingPos[i].Rot.Q3.ToString(nfi) + "," + recordingPos[i].Rot.Q4.ToString(nfi) + "," + recordingTool[i].ToString(nfi));
 }
 }
 }

 }

 private void PreviewRecordingButton_Click(object sender, EventArgs e)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 Bool PlayRecording = new Bool(); PlayRecording.Value = true;
 Num index = new Num(); index.Value = 1;
 Num max_index = new Num(); max_index.Value = recordingPos.Count - 1;
 Num brush = new Num();
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "index");
 rd.Value = index;
 rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "max_index");
 rd.Value = max_index;
 RapidData rdposition = controller.Rapid.GetRapidData("T_ROB1", "EGM", "stored_path");
 RapidData rdbrush = controller.Rapid.GetRapidData("T_ROB1", "EGM", "brushnumber");
 for (int i = 0; i != max_index.Value; i++)
 {
 rdposition.WriteItem(recordingPos[i], i);
 brush.Value = (recordingTool[i]);
 rdbrush.WriteItem(brush, i);
 }
 rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "PlayRecording");
 rd.Value = PlayRecording;
 }
 }

 private void ResetRecordingButton_Click(object sender, EventArgs e)
 {
 hasRecording = false;
 SaveRecordingButton.Enabled = false;
 PreviewRecordingButton.Enabled = false;
 ResetRecordingButton.Enabled = false;

 }

 private void brushUpDown_ValueChanged(object sender, EventArgs e)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 Num brush = new Num(); brush.Value = (double)brushUpDown.Value;
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "brush");
 rd.Value = brush;
 }
 Brush = (uint)brushUpDown.Value;
 }
 }
}

Online Teaching/GUI/PointToPoint.Designer.cs

namespace GUI
{
 partial class PointToPoint
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container();
 this.SaveRecordingButton = new System.Windows.Forms.Button();
 this.textBox2 = new System.Windows.Forms.TextBox();
 this.panel1 = new System.Windows.Forms.Panel();
 this.TooltipBox = new System.Windows.Forms.TextBox();
 this.RecordingTextBox = new System.Windows.Forms.TextBox();
 this.RecordingStatusBox = new System.Windows.Forms.TextBox();
 this.PreviewRecordingButton = new System.Windows.Forms.Button();
 this.ResetRecordingButton = new System.Windows.Forms.Button();
 this.RapidStatusBox = new System.Windows.Forms.TextBox();
 this.label2 = new System.Windows.Forms.Label();
 this.label1 = new System.Windows.Forms.Label();
 this.SensorStatusBox = new System.Windows.Forms.TextBox();
 this.GUITimer = new System.Windows.Forms.Timer(this.components);
 this.label3 = new System.Windows.Forms.Label();
 this.brushUpDown = new System.Windows.Forms.NumericUpDown();
 this.panel1.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.brushUpDown)).BeginInit();
 this.SuspendLayout();
 //
 // SaveRecordingButton
 //
 this.SaveRecordingButton.Enabled = false;
 this.SaveRecordingButton.Location = new System.Drawing.Point(3, 74);
 this.SaveRecordingButton.Name = "SaveRecordingButton";
 this.SaveRecordingButton.Size = new System.Drawing.Size(89, 23);
 this.SaveRecordingButton.TabIndex = 0;
 this.SaveRecordingButton.Text = "Save recording";
 this.SaveRecordingButton.UseVisualStyleBackColor = true;
 this.SaveRecordingButton.Click += new System.EventHandler(this.SaveRecordingButton_Click);
 //
 // textBox2
 //
 this.textBox2.Location = new System.Drawing.Point(18, 51);
 this.textBox2.Name = "textBox2";
 this.textBox2.ReadOnly = true;
 this.textBox2.Size = new System.Drawing.Size(222, 20);
 this.textBox2.TabIndex = 13;
 this.textBox2.Text = "Take control of robot by pressing grip button";
 //
 // panel1
 //
 this.panel1.Controls.Add(this.TooltipBox);
 this.panel1.Controls.Add(this.RecordingTextBox);
 this.panel1.Controls.Add(this.RecordingStatusBox);
 this.panel1.Controls.Add(this.PreviewRecordingButton);
 this.panel1.Controls.Add(this.ResetRecordingButton);
 this.panel1.Controls.Add(this.SaveRecordingButton);
 this.panel1.Location = new System.Drawing.Point(15, 77);
 this.panel1.Name = "panel1";
 this.panel1.Size = new System.Drawing.Size(307, 101);
 this.panel1.TabIndex = 12;
 //
 // TooltipBox
 //
 this.TooltipBox.Location = new System.Drawing.Point(3, 30);
 this.TooltipBox.Multiline = true;
 this.TooltipBox.Name = "TooltipBox";
 this.TooltipBox.ReadOnly = true;
 this.TooltipBox.Size = new System.Drawing.Size(300, 38);
 this.TooltipBox.TabIndex = 6;
 this.TooltipBox.Text = "Press menu button to start recording";
 //
 // RecordingTextBox
 //
 this.RecordingTextBox.Location = new System.Drawing.Point(88, 4);
 this.RecordingTextBox.Name = "RecordingTextBox";
 this.RecordingTextBox.ReadOnly = true;
 this.RecordingTextBox.Size = new System.Drawing.Size(215, 20);
 this.RecordingTextBox.TabIndex = 5;
 this.RecordingTextBox.Text = "No recording";
 //
 // RecordingStatusBox
 //
 this.RecordingStatusBox.BackColor = System.Drawing.Color.Red;
 this.RecordingStatusBox.Enabled = false;
 this.RecordingStatusBox.Location = new System.Drawing.Point(3, 3);
 this.RecordingStatusBox.Name = "RecordingStatusBox";
 this.RecordingStatusBox.Size = new System.Drawing.Size(68, 20);
 this.RecordingStatusBox.TabIndex = 4;
 //
 // PreviewRecordingButton
 //
 this.PreviewRecordingButton.Enabled = false;
 this.PreviewRecordingButton.Location = new System.Drawing.Point(94, 74);
 this.PreviewRecordingButton.Name = "PreviewRecordingButton";
 this.PreviewRecordingButton.Size = new System.Drawing.Size(100, 23);
 this.PreviewRecordingButton.TabIndex = 3;
 this.PreviewRecordingButton.Text = "Preview recording";
 this.PreviewRecordingButton.UseVisualStyleBackColor = true;
 this.PreviewRecordingButton.Click += new System.EventHandler(this.PreviewRecordingButton_Click);
 //
 // ResetRecordingButton
 //
 this.ResetRecordingButton.Enabled = false;
 this.ResetRecordingButton.Location = new System.Drawing.Point(200, 74);
 this.ResetRecordingButton.Name = "ResetRecordingButton";
 this.ResetRecordingButton.Size = new System.Drawing.Size(103, 23);
 this.ResetRecordingButton.TabIndex = 2;
 this.ResetRecordingButton.Text = "Reset recording";
 this.ResetRecordingButton.UseVisualStyleBackColor = true;
 this.ResetRecordingButton.Click += new System.EventHandler(this.ResetRecordingButton_Click);
 //
 // RapidStatusBox
 //
 this.RapidStatusBox.BackColor = System.Drawing.Color.Red;
 this.RapidStatusBox.Enabled = false;
 this.RapidStatusBox.Location = new System.Drawing.Point(103, 25);
 this.RapidStatusBox.Name = "RapidStatusBox";
 this.RapidStatusBox.Size = new System.Drawing.Size(68, 20);
 this.RapidStatusBox.TabIndex = 11;
 //
 // label2
 //
 this.label2.AutoSize = true;
 this.label2.Location = new System.Drawing.Point(100, 9);
 this.label2.Name = "label2";
 this.label2.Size = new System.Drawing.Size(66, 13);
 this.label2.TabIndex = 10;
 this.label2.Text = "Rapid status";
 //
 // label1
 //
 this.label1.AutoSize = true;
 this.label1.Location = new System.Drawing.Point(12, 9);
 this.label1.Name = "label1";
 this.label1.Size = new System.Drawing.Size(71, 13);
 this.label1.TabIndex = 9;
 this.label1.Text = "Sensor status";
 //
 // SensorStatusBox
 //
 this.SensorStatusBox.BackColor = System.Drawing.Color.Red;
 this.SensorStatusBox.Enabled = false;
 this.SensorStatusBox.Location = new System.Drawing.Point(18, 25);
 this.SensorStatusBox.Name = "SensorStatusBox";
 this.SensorStatusBox.Size = new System.Drawing.Size(68, 20);
 this.SensorStatusBox.TabIndex = 8;
 //
 // GUITimer
 //
 this.GUITimer.Tick += new System.EventHandler(this.GUITimer_Tick);
 //
 // label3
 //
 this.label3.AutoSize = true;
 this.label3.Location = new System.Drawing.Point(240, 9);
 this.label3.Name = "label3";
 this.label3.Size = new System.Drawing.Size(34, 13);
 this.label3.TabIndex = 15;
 this.label3.Text = "Brush";
 //
 // brushUpDown
 //
 this.brushUpDown.Location = new System.Drawing.Point(243, 25);
 this.brushUpDown.Maximum = new decimal(new int[] {
 10,
 0,
 0,
 0});
 this.brushUpDown.Minimum = new decimal(new int[] {
 1,
 0,
 0,
 0});
 this.brushUpDown.Name = "brushUpDown";
 this.brushUpDown.Size = new System.Drawing.Size(31, 20);
 this.brushUpDown.TabIndex = 14;
 this.brushUpDown.Value = new decimal(new int[] {
 1,
 0,
 0,
 0});
 this.brushUpDown.ValueChanged += new System.EventHandler(this.brushUpDown_ValueChanged);
 //
 // PointToPoint
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(327, 184);
 this.Controls.Add(this.label3);
 this.Controls.Add(this.brushUpDown);
 this.Controls.Add(this.textBox2);
 this.Controls.Add(this.panel1);
 this.Controls.Add(this.RapidStatusBox);
 this.Controls.Add(this.label2);
 this.Controls.Add(this.label1);
 this.Controls.Add(this.SensorStatusBox);
 this.Name = "PointToPoint";
 this.Text = "Point to Point recording mode";
 this.panel1.ResumeLayout(false);
 this.panel1.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.brushUpDown)).EndInit();
 this.ResumeLayout(false);
 this.PerformLayout();

 }

 #endregion

 private System.Windows.Forms.Button SaveRecordingButton;
 private System.Windows.Forms.TextBox textBox2;
 private System.Windows.Forms.Panel panel1;
 private System.Windows.Forms.TextBox TooltipBox;
 private System.Windows.Forms.TextBox RecordingTextBox;
 private System.Windows.Forms.TextBox RecordingStatusBox;
 private System.Windows.Forms.Button PreviewRecordingButton;
 private System.Windows.Forms.Button ResetRecordingButton;
 private System.Windows.Forms.TextBox RapidStatusBox;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.TextBox SensorStatusBox;
 private System.Windows.Forms.Timer GUITimer;
 private System.Windows.Forms.Label label3;
 private System.Windows.Forms.NumericUpDown brushUpDown;
 }
}

Online Teaching/GUI/PointToPoint.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 17, 17

Online Teaching/GUI/Properties/AssemblyInfo.cs

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("GUI")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("GUI")]
[assembly: AssemblyCopyright("Copyright © 2017")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("eb4d0bdc-75fc-4c76-83b0-56c1de1df3bc")]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

Online Teaching/GUI/Properties/Resources.Designer.cs

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.42000
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace GUI.Properties
{

 /// <summary>
 /// A strongly-typed resource class, for looking up localized strings, etc.
 /// </summary>
 // This class was auto-generated by the StronglyTypedResourceBuilder
 // class via a tool like ResGen or Visual Studio.
 // To add or remove a member, edit your .ResX file then rerun ResGen
 // with the /str option, or rebuild your VS project.
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyTypedResourceBuilder", "4.0.0.0")]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 internal class Resources
 {

 private static global::System.Resources.ResourceManager resourceMan;

 private static global::System.Globalization.CultureInfo resourceCulture;

 [global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode")]
 internal Resources()
 {
 }

 /// <summary>
 /// Returns the cached ResourceManager instance used by this class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Resources.ResourceManager ResourceManager
 {
 get
 {
 if ((resourceMan == null))
 {
 global::System.Resources.ResourceManager temp = new global::System.Resources.ResourceManager("GUI.Properties.Resources", typeof(Resources).Assembly);
 resourceMan = temp;
 }
 return resourceMan;
 }
 }

 /// <summary>
 /// Overrides the current thread's CurrentUICulture property for all
 /// resource lookups using this strongly typed resource class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Globalization.CultureInfo Culture
 {
 get
 {
 return resourceCulture;
 }
 set
 {
 resourceCulture = value;
 }
 }
 }
}

Online Teaching/GUI/Properties/Resources.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Online Teaching/GUI/Properties/Settings.Designer.cs

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.42000
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace GUI.Properties
{

 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute("Microsoft.VisualStudio.Editors.SettingsDesigner.SettingsSingleFileGenerator", "11.0.0.0")]
 internal sealed partial class Settings : global::System.Configuration.ApplicationSettingsBase
 {

 private static Settings defaultInstance = ((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new Settings())));

 public static Settings Default
 {
 get
 {
 return defaultInstance;
 }
 }
 }
}

Online Teaching/GUI/Properties/Settings.settings

Online Teaching/GUI/Resources.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Threading.Tasks;
using ABB.Robotics.Controllers;
using ABB.Robotics.Controllers.Discovery;
using ABB.Robotics.Controllers.RapidDomain;
using ABB.Robotics.Controllers.IOSystemDomain;
using ABB.Robotics.Math;

namespace GUI
{
 class Resources
 {

 public static void SaveRecording(Stream file, Controller controller)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "index");
 var index = (Num)rd.Value;
 rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "EGMwobj");
 WobjData wobj = (WobjData)rd.Value;
 RapidData robTargetArray = controller.Rapid.GetRapidData("T_ROB1", "EGM", "stored_path");
 RapidData timeArray = controller.Rapid.GetRapidData("T_ROB1", "EGM", "time");
 RapidData toolOnArray = controller.Rapid.GetRapidData("T_ROB1", "EGM", "triggered");
 RobTarget target;
 Num time;
 Num toolOn;
 using (StreamWriter writer = new StreamWriter(file))
 {
 System.Globalization.NumberFormatInfo nfi = new System.Globalization.NumberFormatInfo();
 nfi.NumberDecimalSeparator = ".";
 // write wobj first
 writer.Write("-1," + wobj.Uframe.Trans.X.ToString(nfi) + "," + wobj.Uframe.Trans.Y.ToString(nfi) + "," + wobj.Uframe.Trans.Z.ToString(nfi) + ","); // position
 writer.WriteLine(wobj.Uframe.Rot.Q1.ToString(nfi) + "," + wobj.Uframe.Rot.Q2.ToString(nfi) + "," + wobj.Uframe.Rot.Q3.ToString(nfi) + "," + wobj.Uframe.Rot.Q4.ToString(nfi) + ",0");
 for (int i = 0; i < index; i++)
 {

 target = (RobTarget)robTargetArray.ReadItem(i);
 time = (Num)timeArray.ReadItem(i);
 toolOn = (Num)toolOnArray.ReadItem(i);
 writer.Write(time.Value.ToString(nfi) + "," + target.Trans.X.ToString(nfi) + "," + target.Trans.Y.ToString(nfi) + "," + target.Trans.Z.ToString(nfi) + ",");
 writer.WriteLine(target.Rot.Q1.ToString(nfi) + "," + target.Rot.Q2.ToString(nfi) + "," + target.Rot.Q3.ToString(nfi) + "," + target.Rot.Q4.ToString(nfi) + "," + toolOn.Value.ToString(nfi));
 }
 }

 }
 }
 }
}

Online Teaching/GUI/SaveRecording.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Online Teaching/GUI/TestingSimulated.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Diagnostics;
using System.IO;
using ABB.Robotics.Controllers;
using ABB.Robotics.Controllers.Discovery;
using ABB.Robotics.Controllers.RapidDomain;using ABB.Robotics.Controllers.IOSystemDomain;
using System.Windows.Media.Media3D;
using MicroLibrary;

namespace GUI
{
 /// <summary>
	/// A form to simulate sensor for EGM
	/// </summary>
 public partial class TestingSimulated : Form
 {
 public Sensor sensor;
 public Controller controller = null;
 public DigitalSignal TriggerButton;
 public DigitalSignal GripButton;
 public DigitalSignal MenuButton;
 public DigitalSignal DpadButton;
 public Boolean Rapid_running = false;
 public double timeX = 0;
 public double timeY = 0;
 public double timeZ = 0;
 public Quaternion RotRobVive = new Quaternion(0.612, 0.354, 0.354, 0.612);
 public Quaternion transformPCRobot;
 public Quaternion utgangspunkt = new Quaternion(0, 0, 0, 1);
 public int i_x = 0;
 public int i_y = 0;
 public int i_x_max;
 public int i_y_max;
 public MicroTimer loggeTimer;
 public MicroTimer EGMtimer;
 public delegate void UpdatePoint();
 public UpdatePoint UpdatePointDelegate;
 public int log_index;
 public int max_index;
 public List<double> log_time;
 public List<double> plannedPath;
 public List<double> feedbackPath;

 /// <summary>
 /// Initializes the form, creates and starts the sensorthread, logs onto the robot controller and sets up the digital input signals,
 /// starts the EGMtimer
 /// </summary>
 public TestingSimulated()
 {
 InitializeComponent();

 sensor = new Sensor();
 sensor.Start();

 punkt = new TrackerApi.Point();
 buttons = new TrackerApi.Button();
 punkt.Orientation = new Quaternion(0, 0, 0, 1);

 controller = new Controller(new Guid("{5054be37-228f-4193-8b41-2b91bc84d65a}"));
 controller.Logon(UserInfo.DefaultUser);

 TriggerButton = (DigitalSignal)controller.IOSystem.GetSignal("TriggerButton");
 GripButton = (DigitalSignal)controller.IOSystem.GetSignal("GripButton");
 MenuButton = (DigitalSignal)controller.IOSystem.GetSignal("MenuButton");
 DpadButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadButton");

 SetStartOrient();
 Quaternion PC_sensor = sensor.FeedbackOrient * RotRobVive;
 PC_sensor.Invert();
 punkt.Orientation.Invert();
 transformPCRobot = punkt.Orientation * PC_sensor;
 sensor.PlannedOrient = punkt.Orientation * transformPCRobot;

 UpdatePointDelegate = new UpdatePoint(UpdatePointMethod);

 EGMtimer = new MicroTimer(4000);
 EGMtimer.MicroTimerElapsed += new MicroLibrary.MicroTimer.MicroTimerElapsedEventHandler(EGMTimedEvent);
 EGMtimer.Start();

 }

 /// <summary>
 /// Updates the GUI objects of the form
 /// </summary>
 private void timerGUI_Tick(object sender, EventArgs e)
 {
 // Oppdaterer GUI

 // Trackbar for å endre posisjon
 textPositionX.Text = trackPosX.Value.ToString("F1");
 textPositionY.Text = trackPosY.Value.ToString("F1");
 textPositionZ.Text = trackPosZ.Value.ToString("F1");

 // Trackbar for å endre orientering
 textBoxOriX.Text = trackBarOriX.Value.ToString("F1");
 textBoxOriY.Text = trackBarOriY.Value.ToString("F1");
 textBoxOriZ.Text = trackBarOriZ.Value.ToString("F1");

 // Sendt til robot
 textBoxSendtPosX.Text = punkt.Position.X.ToString("F1");
 textBoxSendtPosY.Text = punkt.Position.Y.ToString("F1");
 textBoxSendtPosZ.Text = punkt.Position.Z.ToString("F1");

 trackBarSendtPosX.Value = Convert.ToInt16(punkt.Position.X);
 trackBarSendtPosY.Value = Convert.ToInt16(punkt.Position.Y);
 trackBarSendtPosZ.Value = Convert.ToInt16(punkt.Position.Z);

 textBoxSendtOriW.Text = punkt.Orientation.W.ToString("F3");
 textBoxSendtOriX.Text = punkt.Orientation.X.ToString("F3");
 textBoxSendtOriY.Text = punkt.Orientation.Y.ToString("F3");
 textBoxSendtOriZ.Text = punkt.Orientation.Z.ToString("F3");

 trackBarSendtOriW.Value = Convert.ToInt16(punkt.Orientation.W * 1000);
 trackBarSendtOriX.Value = Convert.ToInt16(punkt.Orientation.X * 1000);
 trackBarSendtOriY.Value = Convert.ToInt16(punkt.Orientation.Y * 1000);
 trackBarSendtOriZ.Value = Convert.ToInt16(punkt.Orientation.Z * 1000);

 // Feedback fra robot
 textBoxFeedbackPosX.Text = sensor.FeedbackPos.X.ToString("F1");
 textBoxFeedbackPosY.Text = sensor.FeedbackPos.Y.ToString("F1");
 textBoxFeedbackPosZ.Text = sensor.FeedbackPos.Z.ToString("F1");

 textBoxFeedbackOriU0.Text = sensor.FeedbackOrient.W.ToString("F3");
 textBoxFeedbackOriU1.Text = sensor.FeedbackOrient.X.ToString("F3");
 textBoxFeedbackOriU2.Text = sensor.FeedbackOrient.Y.ToString("F3");
 textBoxFeedbackOriU3.Text = sensor.FeedbackOrient.Z.ToString("F3");

 trackBarFeedbackOriU0.Value = Convert.ToInt16(sensor.FeedbackOrient.W * 1000);
 trackBarFeedbackOriU1.Value = Convert.ToInt16(sensor.FeedbackOrient.X * 1000);
 trackBarFeedbackOriU2.Value = Convert.ToInt16(sensor.FeedbackOrient.Y * 1000);
 trackBarFeedbackOriU3.Value = Convert.ToInt16(sensor.FeedbackOrient.Z * 1000);
 }

 /// <summary>
 /// Updates the position and orientation info to be sent to the robot
 /// </summary>
 private void EGMTimedEvent(object sender,
 MicroLibrary.MicroTimerEventArgs timerEventArgs)
 {
 this.Invoke(this.UpdatePointDelegate);
 sensor.PlannedPos.X = punkt.Position.X;
 sensor.PlannedPos.Y = punkt.Position.Z;
 sensor.PlannedPos.Z = punkt.Position.Y;

 sensor.PlannedOrient = punkt.Orientation * transformPCRobot;
 }

 public void UpdatePointMethod()
 {

 // Posisjon
 punkt.Position.X = trackPosX.Value;
 punkt.Position.Y = trackPosY.Value;
 punkt.Position.Z = trackPosZ.Value;

 if (checkBoxSinusX.Checked == true)
 {
 timeX += 0.004;
 punkt.Position.X += Convert.ToDouble(textBoxAmplitudeX.Text) * Math.Sin(Convert.ToDouble(textBoxFrekvensX.Text) *Math.PI * 2 * timeX);
 }
 if (checkBoxSinusY.Checked == true)
 {
 timeY += 0.004;
 punkt.Position.Y += Convert.ToDouble(textBoxAmplitudeY.Text) * Math.Sin(Convert.ToDouble(textBoxFrekvensY.Text) * Math.PI * 2 * timeY);
 }
 if (checkBoxSinusZ.Checked == true)
 {
 timeZ += 0.004;
 punkt.Position.Z += Convert.ToDouble(textBoxAmplitudeZ.Text) * Math.Sin(Convert.ToDouble(textBoxFrekvensZ.Text) * Math.PI * 2 * timeZ);
 }

 if (checkBoxFirkant.Checked == true)
 {

 if (i_x < i_x_max && i_y == 0)
 {
 i_x++;
 }

 if (i_x == i_x_max && i_y < i_y_max)
 {
 i_y++;
 }
 if (i_x > 0 && i_y == i_y_max)
 {
 i_x--;
 }

 if (i_x == 0 && i_y > 0)
 {
 i_y--;
 }
 punkt.Position.X += Convert.ToDouble(textBoxFirkantStorrelse.Text) / 2 - Convert.ToDouble(textBoxFirkantFart.Text) / 250 * i_x;
 punkt.Position.Y += Convert.ToDouble(textBoxFirkantStorrelse.Text) / 2 - Convert.ToDouble(textBoxFirkantFart.Text) / 250 * i_y;
 }

 // Orientering

 ABB.Robotics.Math.Quaternion fraEuler = new ABB.Robotics.Math.Quaternion(Convert.ToDouble(trackBarOriX.Value)*Math.PI/180, Convert.ToDouble(trackBarOriZ.Value) * Math.PI / 180, Convert.ToDouble(trackBarOriY.Value) * Math.PI / 180);
 Quaternion transform = new Quaternion(fraEuler.q2, fraEuler.q3, fraEuler.q4, fraEuler.q1);
 punkt.Orientation = utgangspunkt * transform;

 }

 /// <summary>
 /// Gets the orientation of the robot and sets startPos in form
 /// </summary>
 private void SetStartOrient()
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 Orient startPos;
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "orientering");
 startPos = (Orient)rd.Value;
 sensor.FeedbackOrient.W = startPos.Q1;
 sensor.FeedbackOrient.X = startPos.Q2;
 sensor.FeedbackOrient.Y = startPos.Q3;
 sensor.FeedbackOrient.Z = startPos.Q4;
 }
 }

 private void checkBoxTrigger_CheckedChanged(object sender, EventArgs e)
 {
 SetSignal(TriggerButton, checkBoxTrigger.Checked);
 }

 private void checkBoxGrip_CheckedChanged(object sender, EventArgs e)
 {
 SetSignal(GripButton, checkBoxGrip.Checked);
 }

 private void checkBoxMenu_CheckedChanged(object sender, EventArgs e)
 {
 SetSignal(MenuButton, checkBoxMenu.Checked);
 }

 private void checkBoxDpad_CheckedChanged(object sender, EventArgs e)
 {
 SetSignal(DpadButton, checkBoxDpad.Checked);
 }

 /// <summary>
 /// Sets the the input signal to the given input state
 /// </summary>
 private void SetSignal(DigitalSignal signal, bool state)
 {
 if (Rapid_running == true)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {

 if (state == true)
 {
 signal.Set();
 }
 else
 {
 signal.Reset();
 }
 }
 }
 }

 private void checkBoxSinusX_CheckedChanged(object sender, EventArgs e)
 {
 if (checkBoxSinusX.Checked == false) timeX = 0;
 }

 private void checkBoxSinusY_CheckedChanged(object sender, EventArgs e)
 {
 if (checkBoxSinusY.Checked == false) timeY = 0;
 }

 private void checkBoxSinusZ_CheckedChanged(object sender, EventArgs e)
 {
 if (checkBoxSinusZ.Checked == false) timeZ = 0;
 }

 private void checkBoxFirkant_CheckedChanged(object sender, EventArgs e)
 {
 if (checkBoxFirkant.Checked == true)
 {
 i_x_max = Convert.ToInt16(Convert.ToDouble(textBoxFirkantStorrelse.Text) / Convert.ToDouble(textBoxFirkantFart.Text) * 250);
 i_y_max = Convert.ToInt16(Convert.ToDouble(textBoxFirkantStorrelse.Text) / Convert.ToDouble(textBoxFirkantFart.Text) * 250);
 }
 else
 {
 i_x = 0;
 i_y = 0;
 }

 }

 /// <summary>
 /// Sets program pointer to main and starts rapid program
 /// </summary>
 private void StartRapidButton_Click(object sender, EventArgs e)
 {
 Rapid_running = true;

 ABB.Robotics.Controllers.RapidDomain.Task[] tasks = controller.Rapid.GetTasks();

 try
 {
 if (controller.OperatingMode == ControllerOperatingMode.Auto)
 {

 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 tasks[0].SetProgramPointer("EGM", "main");
 controller.Rapid.Start();
 }
 }
 else
 {
 MessageBox.Show("Automatic mode is required to start execution from a remote client.");
 }
 }
 catch (System.InvalidOperationException ex)
 {
 MessageBox.Show("Mastership is held by another client." +
 ex.Message);
 }
 catch (System.Exception ex)
 {
 MessageBox.Show("Unexpected error occurred: " + ex.Message);
 }
 }

 /// <summary>
 /// Stops rapid program
 /// </summary>
 private void StopRapidButton_Click(object sender, EventArgs e)
 {
 Rapid_running = false;
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 controller.Rapid.Stop(ABB.Robotics.Controllers.RapidDomain.StopMode.Instruction);
 }
 }

 /// <summary>
 /// Runs the stored path recorded by the user
 /// </summary>
 private void KjorBaneButton_Click(object sender, EventArgs e)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 Bool RunBane;
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "RunBane");
 RunBane = (Bool)rd.Value;
 RunBane.Value = true;
 rd.Value = RunBane;
 }
 }

 /// <summary>
 /// Starts the timer for logging to test a stepresponse
 /// </summary>
 private void testStegButton_Click(object sender, EventArgs e)
 {
 log_index = 0;
 log_time = new List<double>();
 plannedPath = new List<double>();
 feedbackPath = new List<double>();
 sensor.PlannedPos.Y = 0;
 loggeTimer = new MicroTimer(1000);
 loggeTimer.MicroTimerElapsed += new MicroLibrary.MicroTimer.MicroTimerElapsedEventHandler(LoggeTimedEvent);
 loggeTimer.Start();
 }

 /// <summary>
 /// Starts the timer for logging a sine over two periods
 /// </summary>
 private void logSinusButton_Click(object sender, EventArgs e)
 {

 log_index = 0;
 log_time = new List<double>();
 plannedPath = new List<double>();
 feedbackPath = new List<double>();
 max_index = Convert.ToInt16((1 / Convert.ToDouble(textBoxFrekvensZ.Text)) * 2 * 1000);
 loggeTimer = new MicroTimer(1000);
 loggeTimer.MicroTimerElapsed += new MicroLibrary.MicroTimer.MicroTimerElapsedEventHandler(LoggeTimedEvent);
 loggeTimer.Start();
 }

 /// <summary>
 /// Logs the position of the Z-axis sent to the robot and feedback from the robot every 1 ms
 /// </summary>
 private void LoggeTimedEvent(object sender,
 MicroLibrary.MicroTimerEventArgs timerEventArgs)
 {
 log_time.Add(log_index);
 plannedPath.Add(sensor.PlannedPos.Y);
 feedbackPath.Add(sensor.FeedbackPos.Z);

 //Frekvensrespons
 if (log_index == max_index)
 {
 using (StreamWriter logger = new StreamWriter(@"C:\ELE630\3D_pantograf v1.04\log_sinus_f" + textBoxFrekvensZ.Text + ".txt"))
 {
 System.Globalization.NumberFormatInfo nfi = new System.Globalization.NumberFormatInfo();
 nfi.NumberDecimalSeparator = ".";

 foreach (var number in log_time)
 {
 logger.Write(number.ToString(nfi));
 logger.Write(",");
 }
 logger.WriteLine();
 foreach (var number in plannedPath)
 {
 logger.Write(number.ToString(nfi));
 logger.Write(",");
 }
 logger.WriteLine();
 foreach (var number in feedbackPath)
 {
 logger.Write(number.ToString(nfi));
 logger.Write(",");
 }
 }
 loggeTimer.Stop();
 }

 ////Stegrespons
 //if (log_index == 1000)
 //{
 // sensor.PlannedPos.Y = 10;
 //}
 //if (log_index == 3000)
 //{
 // sensor.PlannedPos.Y = 0;
 //}
 //if (log_index == 5000)
 //{
 // using (StreamWriter logger = new StreamWriter(@"C:\ELE630\3D_pantograf v1.06\log.txt"))

 // {
 // System.Globalization.NumberFormatInfo nfi = new System.Globalization.NumberFormatInfo();
 // nfi.NumberDecimalSeparator = ".";

 // foreach (var number in log_time)
 // {
 // logger.Write(number.ToString(nfi));
 // logger.Write(",");
 // }
 // logger.WriteLine();
 // foreach (var number in plannedPath)
 // {
 // logger.Write(number.ToString(nfi));
 // logger.Write(",");
 // }
 // logger.WriteLine();
 // foreach (var number in feedbackPath)
 // {
 // logger.Write(number.ToString(nfi));
 // logger.Write(",");
 // }
 // }
 // loggeTimer.Stop();
 //}

 log_index++;
 }

 protected override void OnFormClosing(FormClosingEventArgs e)
 {
 EGMtimer.Abort();
 if (controller != null)
 {
 SetSignal(TriggerButton, false);
 System.Threading.Thread.Sleep(2000);
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 controller.Rapid.Stop(ABB.Robotics.Controllers.RapidDomain.StopMode.Instruction);
 }
 TriggerButton.Dispose();
 GripButton.Dispose();
 MenuButton.Dispose();
 DpadButton.Dispose();
 controller.Logoff();
 controller = null;
 }
 base.OnFormClosing(e);
 sensor.Stop();

 }

 }
}

Online Teaching/GUI/TestingSimulated.Designer.cs

namespace GUI
{
 partial class TestingSimulated
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container();
 this.tableLayoutPanel1 = new System.Windows.Forms.TableLayoutPanel();
 this.tableLayoutPanel6 = new System.Windows.Forms.TableLayoutPanel();
 this.textBox14 = new System.Windows.Forms.TextBox();
 this.textBox15 = new System.Windows.Forms.TextBox();
 this.textBox16 = new System.Windows.Forms.TextBox();
 this.textBox18 = new System.Windows.Forms.TextBox();
 this.textBoxFeedbackPosX = new System.Windows.Forms.TextBox();
 this.textBoxFeedbackPosY = new System.Windows.Forms.TextBox();
 this.textBoxFeedbackPosZ = new System.Windows.Forms.TextBox();
 this.textBox22 = new System.Windows.Forms.TextBox();
 this.textBox23 = new System.Windows.Forms.TextBox();
 this.textBox24 = new System.Windows.Forms.TextBox();
 this.textBox25 = new System.Windows.Forms.TextBox();
 this.textBoxFeedbackOriU0 = new System.Windows.Forms.TextBox();
 this.textBoxFeedbackOriU1 = new System.Windows.Forms.TextBox();
 this.textBoxFeedbackOriU2 = new System.Windows.Forms.TextBox();
 this.textBoxFeedbackOriU3 = new System.Windows.Forms.TextBox();
 this.trackBarFeedbackOriU0 = new System.Windows.Forms.TrackBar();
 this.trackBarFeedbackOriU1 = new System.Windows.Forms.TrackBar();
 this.trackBarFeedbackOriU2 = new System.Windows.Forms.TrackBar();
 this.trackBarFeedbackOriU3 = new System.Windows.Forms.TrackBar();
 this.textBox39 = new System.Windows.Forms.TextBox();
 this.textBox41 = new System.Windows.Forms.TextBox();
 this.tableLayoutPanel8 = new System.Windows.Forms.TableLayoutPanel();
 this.textBox26 = new System.Windows.Forms.TextBox();
 this.textBox28 = new System.Windows.Forms.TextBox();
 this.textBox29 = new System.Windows.Forms.TextBox();
 this.textBox30 = new System.Windows.Forms.TextBox();
 this.textBoxSendtPosX = new System.Windows.Forms.TextBox();
 this.textBoxSendtPosY = new System.Windows.Forms.TextBox();
 this.textBoxSendtPosZ = new System.Windows.Forms.TextBox();
 this.textBox34 = new System.Windows.Forms.TextBox();
 this.textBox35 = new System.Windows.Forms.TextBox();
 this.textBox36 = new System.Windows.Forms.TextBox();
 this.textBox37 = new System.Windows.Forms.TextBox();
 this.textBoxSendtOriW = new System.Windows.Forms.TextBox();
 this.textBoxSendtOriX = new System.Windows.Forms.TextBox();
 this.textBoxSendtOriY = new System.Windows.Forms.TextBox();
 this.textBoxSendtOriZ = new System.Windows.Forms.TextBox();
 this.trackBarSendtOriW = new System.Windows.Forms.TrackBar();
 this.trackBarSendtOriX = new System.Windows.Forms.TrackBar();
 this.trackBarSendtOriY = new System.Windows.Forms.TrackBar();
 this.trackBarSendtOriZ = new System.Windows.Forms.TrackBar();
 this.trackBarSendtPosX = new System.Windows.Forms.TrackBar();
 this.trackBarSendtPosY = new System.Windows.Forms.TrackBar();
 this.trackBarSendtPosZ = new System.Windows.Forms.TrackBar();
 this.textBox27 = new System.Windows.Forms.TextBox();
 this.textBox40 = new System.Windows.Forms.TextBox();
 this.tableLayoutPanel9 = new System.Windows.Forms.TableLayoutPanel();
 this.tableLayoutPanel2 = new System.Windows.Forms.TableLayoutPanel();
 this.textBox1 = new System.Windows.Forms.TextBox();
 this.textBox3 = new System.Windows.Forms.TextBox();
 this.textBox4 = new System.Windows.Forms.TextBox();
 this.textBox5 = new System.Windows.Forms.TextBox();
 this.trackPosX = new System.Windows.Forms.TrackBar();
 this.trackPosY = new System.Windows.Forms.TrackBar();
 this.trackPosZ = new System.Windows.Forms.TrackBar();
 this.textPositionX = new System.Windows.Forms.TextBox();
 this.textPositionY = new System.Windows.Forms.TextBox();
 this.textPositionZ = new System.Windows.Forms.TextBox();
 this.tableLayoutPanel7 = new System.Windows.Forms.TableLayoutPanel();
 this.textBox19 = new System.Windows.Forms.TextBox();
 this.textBox20 = new System.Windows.Forms.TextBox();
 this.textBox21 = new System.Windows.Forms.TextBox();
 this.textBox31 = new System.Windows.Forms.TextBox();
 this.trackBarOriX = new System.Windows.Forms.TrackBar();
 this.trackBarOriY = new System.Windows.Forms.TrackBar();
 this.trackBarOriZ = new System.Windows.Forms.TrackBar();
 this.textBoxOriX = new System.Windows.Forms.TextBox();
 this.textBoxOriY = new System.Windows.Forms.TextBox();
 this.textBoxOriZ = new System.Windows.Forms.TextBox();
 this.tableLayoutPanel10 = new System.Windows.Forms.TableLayoutPanel();
 this.flowLayoutPanel1 = new System.Windows.Forms.FlowLayoutPanel();
 this.tableLayoutPanel3 = new System.Windows.Forms.TableLayoutPanel();
 this.checkBoxTrigger = new System.Windows.Forms.CheckBox();
 this.checkBoxDpad = new System.Windows.Forms.CheckBox();
 this.checkBoxMenu = new System.Windows.Forms.CheckBox();
 this.checkBoxGrip = new System.Windows.Forms.CheckBox();
 this.KjorBaneButton = new System.Windows.Forms.Button();
 this.StartRapidButton = new System.Windows.Forms.Button();
 this.StopRapidButton = new System.Windows.Forms.Button();
 this.logSinusButton = new System.Windows.Forms.Button();
 this.testStegButton = new System.Windows.Forms.Button();
 this.tableLayoutPanel4 = new System.Windows.Forms.TableLayoutPanel();
 this.textBox7 = new System.Windows.Forms.TextBox();
 this.textBox6 = new System.Windows.Forms.TextBox();
 this.textBox2 = new System.Windows.Forms.TextBox();
 this.textBox9 = new System.Windows.Forms.TextBox();
 this.textBox10 = new System.Windows.Forms.TextBox();
 this.checkBoxSinusX = new System.Windows.Forms.CheckBox();
 this.checkBoxSinusY = new System.Windows.Forms.CheckBox();
 this.checkBoxSinusZ = new System.Windows.Forms.CheckBox();
 this.textBoxAmplitudeZ = new System.Windows.Forms.TextBox();
 this.textBoxFrekvensX = new System.Windows.Forms.TextBox();
 this.textBoxFrekvensY = new System.Windows.Forms.TextBox();
 this.textBoxFrekvensZ = new System.Windows.Forms.TextBox();
 this.textBoxAmplitudeX = new System.Windows.Forms.TextBox();
 this.textBoxAmplitudeY = new System.Windows.Forms.TextBox();
 this.textBox17 = new System.Windows.Forms.TextBox();
 this.flowLayoutPanel2 = new System.Windows.Forms.FlowLayoutPanel();
 this.tableLayoutPanel5 = new System.Windows.Forms.TableLayoutPanel();
 this.checkBoxFirkant = new System.Windows.Forms.CheckBox();
 this.textBoxFirkantStorrelse = new System.Windows.Forms.TextBox();
 this.textBoxFirkantFart = new System.Windows.Forms.TextBox();
 this.textBox12 = new System.Windows.Forms.TextBox();
 this.textBox13 = new System.Windows.Forms.TextBox();
 this.timerGUI = new System.Windows.Forms.Timer(this.components);
 this.tableLayoutPanel1.SuspendLayout();
 this.tableLayoutPanel6.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarFeedbackOriU0)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarFeedbackOriU1)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarFeedbackOriU2)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarFeedbackOriU3)).BeginInit();
 this.tableLayoutPanel8.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtOriW)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtOriX)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtOriY)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtOriZ)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtPosX)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtPosY)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtPosZ)).BeginInit();
 this.tableLayoutPanel9.SuspendLayout();
 this.tableLayoutPanel2.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.trackPosX)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackPosY)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackPosZ)).BeginInit();
 this.tableLayoutPanel7.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarOriX)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarOriY)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarOriZ)).BeginInit();
 this.tableLayoutPanel10.SuspendLayout();
 this.flowLayoutPanel1.SuspendLayout();
 this.tableLayoutPanel3.SuspendLayout();
 this.tableLayoutPanel4.SuspendLayout();
 this.tableLayoutPanel5.SuspendLayout();
 this.SuspendLayout();
 //
 // tableLayoutPanel1
 //
 this.tableLayoutPanel1.ColumnCount = 2;
 this.tableLayoutPanel1.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel1.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel1.Controls.Add(this.tableLayoutPanel6, 1, 0);
 this.tableLayoutPanel1.Controls.Add(this.tableLayoutPanel8, 0, 0);
 this.tableLayoutPanel1.Controls.Add(this.tableLayoutPanel9, 0, 1);
 this.tableLayoutPanel1.Controls.Add(this.tableLayoutPanel10, 1, 1);
 this.tableLayoutPanel1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel1.Location = new System.Drawing.Point(0, 0);
 this.tableLayoutPanel1.Name = "tableLayoutPanel1";
 this.tableLayoutPanel1.RowCount = 2;
 this.tableLayoutPanel1.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 48.31014F));
 this.tableLayoutPanel1.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 51.68986F));
 this.tableLayoutPanel1.Size = new System.Drawing.Size(600, 561);
 this.tableLayoutPanel1.TabIndex = 1;
 //
 // tableLayoutPanel6
 //
 this.tableLayoutPanel6.ColumnCount = 3;
 this.tableLayoutPanel6.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel6.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 15F));
 this.tableLayoutPanel6.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 75F));
 this.tableLayoutPanel6.Controls.Add(this.textBox14, 0, 9);
 this.tableLayoutPanel6.Controls.Add(this.textBox15, 0, 2);
 this.tableLayoutPanel6.Controls.Add(this.textBox16, 0, 3);
 this.tableLayoutPanel6.Controls.Add(this.textBox18, 0, 4);
 this.tableLayoutPanel6.Controls.Add(this.textBoxFeedbackPosX, 1, 2);
 this.tableLayoutPanel6.Controls.Add(this.textBoxFeedbackPosY, 1, 3);
 this.tableLayoutPanel6.Controls.Add(this.textBoxFeedbackPosZ, 1, 4);
 this.tableLayoutPanel6.Controls.Add(this.textBox22, 0, 5);
 this.tableLayoutPanel6.Controls.Add(this.textBox23, 0, 6);
 this.tableLayoutPanel6.Controls.Add(this.textBox24, 0, 7);
 this.tableLayoutPanel6.Controls.Add(this.textBox25, 0, 8);
 this.tableLayoutPanel6.Controls.Add(this.textBoxFeedbackOriU0, 1, 6);
 this.tableLayoutPanel6.Controls.Add(this.textBoxFeedbackOriU1, 1, 7);
 this.tableLayoutPanel6.Controls.Add(this.textBoxFeedbackOriU2, 1, 8);
 this.tableLayoutPanel6.Controls.Add(this.textBoxFeedbackOriU3, 1, 9);
 this.tableLayoutPanel6.Controls.Add(this.trackBarFeedbackOriU0, 2, 6);
 this.tableLayoutPanel6.Controls.Add(this.trackBarFeedbackOriU1, 2, 7);
 this.tableLayoutPanel6.Controls.Add(this.trackBarFeedbackOriU2, 2, 8);
 this.tableLayoutPanel6.Controls.Add(this.trackBarFeedbackOriU3, 2, 9);
 this.tableLayoutPanel6.Controls.Add(this.textBox39, 0, 1);
 this.tableLayoutPanel6.Controls.Add(this.textBox41, 0, 0);
 this.tableLayoutPanel6.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel6.Location = new System.Drawing.Point(303, 3);
 this.tableLayoutPanel6.Name = "tableLayoutPanel6";
 this.tableLayoutPanel6.RowCount = 10;
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel6.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel6.Size = new System.Drawing.Size(294, 265);
 this.tableLayoutPanel6.TabIndex = 24;
 //
 // textBox14
 //
 this.textBox14.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox14.Location = new System.Drawing.Point(3, 231);
 this.textBox14.Name = "textBox14";
 this.textBox14.ReadOnly = true;
 this.textBox14.Size = new System.Drawing.Size(23, 20);
 this.textBox14.TabIndex = 11;
 this.textBox14.Text = "U3";
 this.textBox14.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox15
 //
 this.textBox15.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox15.Location = new System.Drawing.Point(3, 49);
 this.textBox15.Name = "textBox15";
 this.textBox15.ReadOnly = true;
 this.textBox15.Size = new System.Drawing.Size(23, 20);
 this.textBox15.TabIndex = 1;
 this.textBox15.Text = "X";
 this.textBox15.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox16
 //
 this.textBox16.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox16.Location = new System.Drawing.Point(3, 72);
 this.textBox16.Name = "textBox16";
 this.textBox16.ReadOnly = true;
 this.textBox16.Size = new System.Drawing.Size(23, 20);
 this.textBox16.TabIndex = 2;
 this.textBox16.Text = "Y";
 this.textBox16.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox18
 //
 this.textBox18.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox18.Location = new System.Drawing.Point(3, 95);
 this.textBox18.Name = "textBox18";
 this.textBox18.ReadOnly = true;
 this.textBox18.Size = new System.Drawing.Size(23, 20);
 this.textBox18.TabIndex = 3;
 this.textBox18.Text = "Z";
 this.textBox18.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxFeedbackPosX
 //
 this.textBoxFeedbackPosX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFeedbackPosX.Location = new System.Drawing.Point(32, 49);
 this.textBoxFeedbackPosX.Name = "textBoxFeedbackPosX";
 this.textBoxFeedbackPosX.ReadOnly = true;
 this.textBoxFeedbackPosX.Size = new System.Drawing.Size(38, 20);
 this.textBoxFeedbackPosX.TabIndex = 4;
 this.textBoxFeedbackPosX.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxFeedbackPosY
 //
 this.textBoxFeedbackPosY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFeedbackPosY.Location = new System.Drawing.Point(32, 72);
 this.textBoxFeedbackPosY.Name = "textBoxFeedbackPosY";
 this.textBoxFeedbackPosY.ReadOnly = true;
 this.textBoxFeedbackPosY.Size = new System.Drawing.Size(38, 20);
 this.textBoxFeedbackPosY.TabIndex = 5;
 this.textBoxFeedbackPosY.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxFeedbackPosZ
 //
 this.textBoxFeedbackPosZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFeedbackPosZ.Location = new System.Drawing.Point(32, 95);
 this.textBoxFeedbackPosZ.Name = "textBoxFeedbackPosZ";
 this.textBoxFeedbackPosZ.ReadOnly = true;
 this.textBoxFeedbackPosZ.Size = new System.Drawing.Size(38, 20);
 this.textBoxFeedbackPosZ.TabIndex = 6;
 this.textBoxFeedbackPosZ.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox22
 //
 this.tableLayoutPanel6.SetColumnSpan(this.textBox22, 3);
 this.textBox22.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox22.Location = new System.Drawing.Point(3, 118);
 this.textBox22.Name = "textBox22";
 this.textBox22.ReadOnly = true;
 this.textBox22.Size = new System.Drawing.Size(288, 20);
 this.textBox22.TabIndex = 7;
 this.textBox22.Text = "Orientering";
 this.textBox22.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox23
 //
 this.textBox23.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox23.Location = new System.Drawing.Point(3, 141);
 this.textBox23.Name = "textBox23";
 this.textBox23.ReadOnly = true;
 this.textBox23.Size = new System.Drawing.Size(23, 20);
 this.textBox23.TabIndex = 8;
 this.textBox23.Text = "U0";
 this.textBox23.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox24
 //
 this.textBox24.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox24.Location = new System.Drawing.Point(3, 171);
 this.textBox24.Name = "textBox24";
 this.textBox24.ReadOnly = true;
 this.textBox24.Size = new System.Drawing.Size(23, 20);
 this.textBox24.TabIndex = 10;
 this.textBox24.Text = "U1";
 this.textBox24.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox25
 //
 this.textBox25.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox25.Location = new System.Drawing.Point(3, 201);
 this.textBox25.Name = "textBox25";
 this.textBox25.ReadOnly = true;
 this.textBox25.Size = new System.Drawing.Size(23, 20);
 this.textBox25.TabIndex = 9;
 this.textBox25.Text = "U2";
 this.textBox25.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxFeedbackOriU0
 //
 this.textBoxFeedbackOriU0.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFeedbackOriU0.Location = new System.Drawing.Point(32, 141);
 this.textBoxFeedbackOriU0.Name = "textBoxFeedbackOriU0";
 this.textBoxFeedbackOriU0.ReadOnly = true;
 this.textBoxFeedbackOriU0.Size = new System.Drawing.Size(38, 20);
 this.textBoxFeedbackOriU0.TabIndex = 12;
 this.textBoxFeedbackOriU0.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxFeedbackOriU1
 //
 this.textBoxFeedbackOriU1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFeedbackOriU1.Location = new System.Drawing.Point(32, 171);
 this.textBoxFeedbackOriU1.Name = "textBoxFeedbackOriU1";
 this.textBoxFeedbackOriU1.ReadOnly = true;
 this.textBoxFeedbackOriU1.Size = new System.Drawing.Size(38, 20);
 this.textBoxFeedbackOriU1.TabIndex = 13;
 this.textBoxFeedbackOriU1.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxFeedbackOriU2
 //
 this.textBoxFeedbackOriU2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFeedbackOriU2.Location = new System.Drawing.Point(32, 201);
 this.textBoxFeedbackOriU2.Name = "textBoxFeedbackOriU2";
 this.textBoxFeedbackOriU2.ReadOnly = true;
 this.textBoxFeedbackOriU2.Size = new System.Drawing.Size(38, 20);
 this.textBoxFeedbackOriU2.TabIndex = 14;
 this.textBoxFeedbackOriU2.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxFeedbackOriU3
 //
 this.textBoxFeedbackOriU3.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFeedbackOriU3.Location = new System.Drawing.Point(32, 231);
 this.textBoxFeedbackOriU3.Name = "textBoxFeedbackOriU3";
 this.textBoxFeedbackOriU3.ReadOnly = true;
 this.textBoxFeedbackOriU3.Size = new System.Drawing.Size(38, 20);
 this.textBoxFeedbackOriU3.TabIndex = 15;
 this.textBoxFeedbackOriU3.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // trackBarFeedbackOriU0
 //
 this.trackBarFeedbackOriU0.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarFeedbackOriU0.Enabled = false;
 this.trackBarFeedbackOriU0.Location = new System.Drawing.Point(76, 141);
 this.trackBarFeedbackOriU0.Maximum = 1000;
 this.trackBarFeedbackOriU0.Minimum = -1000;
 this.trackBarFeedbackOriU0.Name = "trackBarFeedbackOriU0";
 this.trackBarFeedbackOriU0.Size = new System.Drawing.Size(215, 24);
 this.trackBarFeedbackOriU0.TabIndex = 17;
 this.trackBarFeedbackOriU0.TickFrequency = 100;
 //
 // trackBarFeedbackOriU1
 //
 this.trackBarFeedbackOriU1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarFeedbackOriU1.Enabled = false;
 this.trackBarFeedbackOriU1.Location = new System.Drawing.Point(76, 171);
 this.trackBarFeedbackOriU1.Maximum = 1000;
 this.trackBarFeedbackOriU1.Minimum = -1000;
 this.trackBarFeedbackOriU1.Name = "trackBarFeedbackOriU1";
 this.trackBarFeedbackOriU1.Size = new System.Drawing.Size(215, 24);
 this.trackBarFeedbackOriU1.TabIndex = 18;
 this.trackBarFeedbackOriU1.TickFrequency = 100;
 //
 // trackBarFeedbackOriU2
 //
 this.trackBarFeedbackOriU2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarFeedbackOriU2.Enabled = false;
 this.trackBarFeedbackOriU2.Location = new System.Drawing.Point(76, 201);
 this.trackBarFeedbackOriU2.Maximum = 1000;
 this.trackBarFeedbackOriU2.Minimum = -1000;
 this.trackBarFeedbackOriU2.Name = "trackBarFeedbackOriU2";
 this.trackBarFeedbackOriU2.Size = new System.Drawing.Size(215, 24);
 this.trackBarFeedbackOriU2.TabIndex = 19;
 this.trackBarFeedbackOriU2.TickFrequency = 100;
 //
 // trackBarFeedbackOriU3
 //
 this.trackBarFeedbackOriU3.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarFeedbackOriU3.Enabled = false;
 this.trackBarFeedbackOriU3.Location = new System.Drawing.Point(76, 231);
 this.trackBarFeedbackOriU3.Maximum = 1000;
 this.trackBarFeedbackOriU3.Minimum = -1000;
 this.trackBarFeedbackOriU3.Name = "trackBarFeedbackOriU3";
 this.trackBarFeedbackOriU3.Size = new System.Drawing.Size(215, 31);
 this.trackBarFeedbackOriU3.TabIndex = 20;
 this.trackBarFeedbackOriU3.TickFrequency = 100;
 //
 // textBox39
 //
 this.tableLayoutPanel6.SetColumnSpan(this.textBox39, 3);
 this.textBox39.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox39.Location = new System.Drawing.Point(3, 26);
 this.textBox39.Name = "textBox39";
 this.textBox39.ReadOnly = true;
 this.textBox39.Size = new System.Drawing.Size(288, 20);
 this.textBox39.TabIndex = 0;
 this.textBox39.Text = "Posisjon";
 this.textBox39.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox41
 //
 this.tableLayoutPanel6.SetColumnSpan(this.textBox41, 3);
 this.textBox41.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox41.Location = new System.Drawing.Point(3, 3);
 this.textBox41.Name = "textBox41";
 this.textBox41.ReadOnly = true;
 this.textBox41.Size = new System.Drawing.Size(288, 20);
 this.textBox41.TabIndex = 24;
 this.textBox41.Text = "Feedback fra robot";
 //
 // tableLayoutPanel8
 //
 this.tableLayoutPanel8.ColumnCount = 3;
 this.tableLayoutPanel8.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel8.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 15F));
 this.tableLayoutPanel8.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 75F));
 this.tableLayoutPanel8.Controls.Add(this.textBox26, 0, 9);
 this.tableLayoutPanel8.Controls.Add(this.textBox28, 0, 2);
 this.tableLayoutPanel8.Controls.Add(this.textBox29, 0, 3);
 this.tableLayoutPanel8.Controls.Add(this.textBox30, 0, 4);
 this.tableLayoutPanel8.Controls.Add(this.textBoxSendtPosX, 1, 2);
 this.tableLayoutPanel8.Controls.Add(this.textBoxSendtPosY, 1, 3);
 this.tableLayoutPanel8.Controls.Add(this.textBoxSendtPosZ, 1, 4);
 this.tableLayoutPanel8.Controls.Add(this.textBox34, 0, 5);
 this.tableLayoutPanel8.Controls.Add(this.textBox35, 0, 6);
 this.tableLayoutPanel8.Controls.Add(this.textBox36, 0, 7);
 this.tableLayoutPanel8.Controls.Add(this.textBox37, 0, 8);
 this.tableLayoutPanel8.Controls.Add(this.textBoxSendtOriW, 1, 6);
 this.tableLayoutPanel8.Controls.Add(this.textBoxSendtOriX, 1, 7);
 this.tableLayoutPanel8.Controls.Add(this.textBoxSendtOriY, 1, 8);
 this.tableLayoutPanel8.Controls.Add(this.textBoxSendtOriZ, 1, 9);
 this.tableLayoutPanel8.Controls.Add(this.trackBarSendtOriW, 2, 6);
 this.tableLayoutPanel8.Controls.Add(this.trackBarSendtOriX, 2, 7);
 this.tableLayoutPanel8.Controls.Add(this.trackBarSendtOriY, 2, 8);
 this.tableLayoutPanel8.Controls.Add(this.trackBarSendtOriZ, 2, 9);
 this.tableLayoutPanel8.Controls.Add(this.trackBarSendtPosX, 2, 2);
 this.tableLayoutPanel8.Controls.Add(this.trackBarSendtPosY, 2, 3);
 this.tableLayoutPanel8.Controls.Add(this.trackBarSendtPosZ, 2, 4);
 this.tableLayoutPanel8.Controls.Add(this.textBox27, 0, 1);
 this.tableLayoutPanel8.Controls.Add(this.textBox40, 0, 0);
 this.tableLayoutPanel8.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel8.Location = new System.Drawing.Point(3, 3);
 this.tableLayoutPanel8.Name = "tableLayoutPanel8";
 this.tableLayoutPanel8.RowCount = 10;
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel8.Size = new System.Drawing.Size(294, 265);
 this.tableLayoutPanel8.TabIndex = 16;
 //
 // textBox26
 //
 this.textBox26.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox26.Location = new System.Drawing.Point(3, 231);
 this.textBox26.Name = "textBox26";
 this.textBox26.ReadOnly = true;
 this.textBox26.Size = new System.Drawing.Size(23, 20);
 this.textBox26.TabIndex = 11;
 this.textBox26.Text = "Z";
 this.textBox26.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox28
 //
 this.textBox28.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox28.Location = new System.Drawing.Point(3, 49);
 this.textBox28.Name = "textBox28";
 this.textBox28.ReadOnly = true;
 this.textBox28.Size = new System.Drawing.Size(23, 20);
 this.textBox28.TabIndex = 1;
 this.textBox28.Text = "X";
 this.textBox28.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox29
 //
 this.textBox29.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox29.Location = new System.Drawing.Point(3, 72);
 this.textBox29.Name = "textBox29";
 this.textBox29.ReadOnly = true;
 this.textBox29.Size = new System.Drawing.Size(23, 20);
 this.textBox29.TabIndex = 2;
 this.textBox29.Text = "Y";
 this.textBox29.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox30
 //
 this.textBox30.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox30.Location = new System.Drawing.Point(3, 95);
 this.textBox30.Name = "textBox30";
 this.textBox30.ReadOnly = true;
 this.textBox30.Size = new System.Drawing.Size(23, 20);
 this.textBox30.TabIndex = 3;
 this.textBox30.Text = "Z";
 this.textBox30.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxSendtPosX
 //
 this.textBoxSendtPosX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxSendtPosX.Location = new System.Drawing.Point(32, 49);
 this.textBoxSendtPosX.Name = "textBoxSendtPosX";
 this.textBoxSendtPosX.ReadOnly = true;
 this.textBoxSendtPosX.Size = new System.Drawing.Size(38, 20);
 this.textBoxSendtPosX.TabIndex = 4;
 this.textBoxSendtPosX.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxSendtPosY
 //
 this.textBoxSendtPosY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxSendtPosY.Location = new System.Drawing.Point(32, 72);
 this.textBoxSendtPosY.Name = "textBoxSendtPosY";
 this.textBoxSendtPosY.ReadOnly = true;
 this.textBoxSendtPosY.Size = new System.Drawing.Size(38, 20);
 this.textBoxSendtPosY.TabIndex = 5;
 this.textBoxSendtPosY.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxSendtPosZ
 //
 this.textBoxSendtPosZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxSendtPosZ.Location = new System.Drawing.Point(32, 95);
 this.textBoxSendtPosZ.Name = "textBoxSendtPosZ";
 this.textBoxSendtPosZ.ReadOnly = true;
 this.textBoxSendtPosZ.Size = new System.Drawing.Size(38, 20);
 this.textBoxSendtPosZ.TabIndex = 6;
 this.textBoxSendtPosZ.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox34
 //
 this.tableLayoutPanel8.SetColumnSpan(this.textBox34, 3);
 this.textBox34.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox34.Location = new System.Drawing.Point(3, 118);
 this.textBox34.Name = "textBox34";
 this.textBox34.ReadOnly = true;
 this.textBox34.Size = new System.Drawing.Size(288, 20);
 this.textBox34.TabIndex = 7;
 this.textBox34.Text = "Orientering";
 this.textBox34.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox35
 //
 this.textBox35.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox35.Location = new System.Drawing.Point(3, 141);
 this.textBox35.Name = "textBox35";
 this.textBox35.ReadOnly = true;
 this.textBox35.Size = new System.Drawing.Size(23, 20);
 this.textBox35.TabIndex = 8;
 this.textBox35.Text = "W";
 this.textBox35.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox36
 //
 this.textBox36.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox36.Location = new System.Drawing.Point(3, 171);
 this.textBox36.Name = "textBox36";
 this.textBox36.ReadOnly = true;
 this.textBox36.Size = new System.Drawing.Size(23, 20);
 this.textBox36.TabIndex = 10;
 this.textBox36.Text = "X";
 this.textBox36.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox37
 //
 this.textBox37.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox37.Location = new System.Drawing.Point(3, 201);
 this.textBox37.Name = "textBox37";
 this.textBox37.ReadOnly = true;
 this.textBox37.Size = new System.Drawing.Size(23, 20);
 this.textBox37.TabIndex = 9;
 this.textBox37.Text = "Y";
 this.textBox37.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxSendtOriW
 //
 this.textBoxSendtOriW.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxSendtOriW.Location = new System.Drawing.Point(32, 141);
 this.textBoxSendtOriW.Name = "textBoxSendtOriW";
 this.textBoxSendtOriW.ReadOnly = true;
 this.textBoxSendtOriW.Size = new System.Drawing.Size(38, 20);
 this.textBoxSendtOriW.TabIndex = 12;
 this.textBoxSendtOriW.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxSendtOriX
 //
 this.textBoxSendtOriX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxSendtOriX.Location = new System.Drawing.Point(32, 171);
 this.textBoxSendtOriX.Name = "textBoxSendtOriX";
 this.textBoxSendtOriX.ReadOnly = true;
 this.textBoxSendtOriX.Size = new System.Drawing.Size(38, 20);
 this.textBoxSendtOriX.TabIndex = 13;
 this.textBoxSendtOriX.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxSendtOriY
 //
 this.textBoxSendtOriY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxSendtOriY.Location = new System.Drawing.Point(32, 201);
 this.textBoxSendtOriY.Name = "textBoxSendtOriY";
 this.textBoxSendtOriY.ReadOnly = true;
 this.textBoxSendtOriY.Size = new System.Drawing.Size(38, 20);
 this.textBoxSendtOriY.TabIndex = 14;
 this.textBoxSendtOriY.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBoxSendtOriZ
 //
 this.textBoxSendtOriZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxSendtOriZ.Location = new System.Drawing.Point(32, 231);
 this.textBoxSendtOriZ.Name = "textBoxSendtOriZ";
 this.textBoxSendtOriZ.ReadOnly = true;
 this.textBoxSendtOriZ.Size = new System.Drawing.Size(38, 20);
 this.textBoxSendtOriZ.TabIndex = 15;
 this.textBoxSendtOriZ.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // trackBarSendtOriW
 //
 this.trackBarSendtOriW.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarSendtOriW.Enabled = false;
 this.trackBarSendtOriW.Location = new System.Drawing.Point(76, 141);
 this.trackBarSendtOriW.Maximum = 1000;
 this.trackBarSendtOriW.Minimum = -1000;
 this.trackBarSendtOriW.Name = "trackBarSendtOriW";
 this.trackBarSendtOriW.Size = new System.Drawing.Size(215, 24);
 this.trackBarSendtOriW.TabIndex = 17;
 this.trackBarSendtOriW.TickFrequency = 100;
 //
 // trackBarSendtOriX
 //
 this.trackBarSendtOriX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarSendtOriX.Enabled = false;
 this.trackBarSendtOriX.Location = new System.Drawing.Point(76, 171);
 this.trackBarSendtOriX.Maximum = 1000;
 this.trackBarSendtOriX.Minimum = -1000;
 this.trackBarSendtOriX.Name = "trackBarSendtOriX";
 this.trackBarSendtOriX.Size = new System.Drawing.Size(215, 24);
 this.trackBarSendtOriX.TabIndex = 18;
 this.trackBarSendtOriX.TickFrequency = 100;
 //
 // trackBarSendtOriY
 //
 this.trackBarSendtOriY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarSendtOriY.Enabled = false;
 this.trackBarSendtOriY.Location = new System.Drawing.Point(76, 201);
 this.trackBarSendtOriY.Maximum = 1000;
 this.trackBarSendtOriY.Minimum = -1000;
 this.trackBarSendtOriY.Name = "trackBarSendtOriY";
 this.trackBarSendtOriY.Size = new System.Drawing.Size(215, 24);
 this.trackBarSendtOriY.TabIndex = 19;
 this.trackBarSendtOriY.TickFrequency = 100;
 //
 // trackBarSendtOriZ
 //
 this.trackBarSendtOriZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarSendtOriZ.Enabled = false;
 this.trackBarSendtOriZ.Location = new System.Drawing.Point(76, 231);
 this.trackBarSendtOriZ.Maximum = 1000;
 this.trackBarSendtOriZ.Minimum = -1000;
 this.trackBarSendtOriZ.Name = "trackBarSendtOriZ";
 this.trackBarSendtOriZ.Size = new System.Drawing.Size(215, 31);
 this.trackBarSendtOriZ.TabIndex = 20;
 this.trackBarSendtOriZ.TickFrequency = 100;
 //
 // trackBarSendtPosX
 //
 this.trackBarSendtPosX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarSendtPosX.Enabled = false;
 this.trackBarSendtPosX.Location = new System.Drawing.Point(76, 49);
 this.trackBarSendtPosX.Maximum = 1000;
 this.trackBarSendtPosX.Minimum = -1000;
 this.trackBarSendtPosX.Name = "trackBarSendtPosX";
 this.trackBarSendtPosX.Size = new System.Drawing.Size(215, 17);
 this.trackBarSendtPosX.TabIndex = 21;
 this.trackBarSendtPosX.TickFrequency = 100;
 //
 // trackBarSendtPosY
 //
 this.trackBarSendtPosY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarSendtPosY.Enabled = false;
 this.trackBarSendtPosY.Location = new System.Drawing.Point(76, 72);
 this.trackBarSendtPosY.Maximum = 1000;
 this.trackBarSendtPosY.Minimum = -1000;
 this.trackBarSendtPosY.Name = "trackBarSendtPosY";
 this.trackBarSendtPosY.Size = new System.Drawing.Size(215, 17);
 this.trackBarSendtPosY.TabIndex = 22;
 this.trackBarSendtPosY.TickFrequency = 100;
 //
 // trackBarSendtPosZ
 //
 this.trackBarSendtPosZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarSendtPosZ.Enabled = false;
 this.trackBarSendtPosZ.Location = new System.Drawing.Point(76, 95);
 this.trackBarSendtPosZ.Maximum = 1000;
 this.trackBarSendtPosZ.Minimum = -1000;
 this.trackBarSendtPosZ.Name = "trackBarSendtPosZ";
 this.trackBarSendtPosZ.Size = new System.Drawing.Size(215, 17);
 this.trackBarSendtPosZ.TabIndex = 23;
 this.trackBarSendtPosZ.TickFrequency = 100;
 //
 // textBox27
 //
 this.tableLayoutPanel8.SetColumnSpan(this.textBox27, 3);
 this.textBox27.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox27.Location = new System.Drawing.Point(3, 26);
 this.textBox27.Name = "textBox27";
 this.textBox27.ReadOnly = true;
 this.textBox27.Size = new System.Drawing.Size(288, 20);
 this.textBox27.TabIndex = 0;
 this.textBox27.Text = "Posisjon";
 this.textBox27.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox40
 //
 this.tableLayoutPanel8.SetColumnSpan(this.textBox40, 3);
 this.textBox40.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox40.Location = new System.Drawing.Point(3, 3);
 this.textBox40.Name = "textBox40";
 this.textBox40.ReadOnly = true;
 this.textBox40.Size = new System.Drawing.Size(288, 20);
 this.textBox40.TabIndex = 24;
 this.textBox40.Text = "Sendt til robot";
 //
 // tableLayoutPanel9
 //
 this.tableLayoutPanel9.ColumnCount = 1;
 this.tableLayoutPanel9.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel9.Controls.Add(this.tableLayoutPanel2, 0, 0);
 this.tableLayoutPanel9.Controls.Add(this.tableLayoutPanel7, 0, 1);
 this.tableLayoutPanel9.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel9.Location = new System.Drawing.Point(3, 274);
 this.tableLayoutPanel9.Name = "tableLayoutPanel9";
 this.tableLayoutPanel9.RowCount = 2;
 this.tableLayoutPanel9.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel9.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel9.Size = new System.Drawing.Size(294, 284);
 this.tableLayoutPanel9.TabIndex = 25;
 //
 // tableLayoutPanel2
 //
 this.tableLayoutPanel2.ColumnCount = 3;
 this.tableLayoutPanel2.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel2.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 15F));
 this.tableLayoutPanel2.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 75F));
 this.tableLayoutPanel2.Controls.Add(this.textBox1, 2, 0);
 this.tableLayoutPanel2.Controls.Add(this.textBox3, 0, 1);
 this.tableLayoutPanel2.Controls.Add(this.textBox4, 0, 2);
 this.tableLayoutPanel2.Controls.Add(this.textBox5, 0, 3);
 this.tableLayoutPanel2.Controls.Add(this.trackPosX, 2, 1);
 this.tableLayoutPanel2.Controls.Add(this.trackPosY, 2, 2);
 this.tableLayoutPanel2.Controls.Add(this.trackPosZ, 2, 3);
 this.tableLayoutPanel2.Controls.Add(this.textPositionX, 1, 1);
 this.tableLayoutPanel2.Controls.Add(this.textPositionY, 1, 2);
 this.tableLayoutPanel2.Controls.Add(this.textPositionZ, 1, 3);
 this.tableLayoutPanel2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel2.Location = new System.Drawing.Point(3, 3);
 this.tableLayoutPanel2.Name = "tableLayoutPanel2";
 this.tableLayoutPanel2.RowCount = 4;
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel2.Size = new System.Drawing.Size(288, 136);
 this.tableLayoutPanel2.TabIndex = 0;
 //
 // textBox1
 //
 this.textBox1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox1.Location = new System.Drawing.Point(74, 3);
 this.textBox1.Name = "textBox1";
 this.textBox1.ReadOnly = true;
 this.textBox1.Size = new System.Drawing.Size(211, 20);
 this.textBox1.TabIndex = 0;
 this.textBox1.Text = "Posisjon";
 //
 // textBox3
 //
 this.textBox3.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox3.Location = new System.Drawing.Point(3, 37);
 this.textBox3.Name = "textBox3";
 this.textBox3.ReadOnly = true;
 this.textBox3.Size = new System.Drawing.Size(22, 20);
 this.textBox3.TabIndex = 2;
 this.textBox3.Text = "X";
 //
 // textBox4
 //
 this.textBox4.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox4.Location = new System.Drawing.Point(3, 71);
 this.textBox4.Name = "textBox4";
 this.textBox4.ReadOnly = true;
 this.textBox4.Size = new System.Drawing.Size(22, 20);
 this.textBox4.TabIndex = 3;
 this.textBox4.Text = "Y";
 //
 // textBox5
 //
 this.textBox5.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox5.Location = new System.Drawing.Point(3, 105);
 this.textBox5.Name = "textBox5";
 this.textBox5.ReadOnly = true;
 this.textBox5.Size = new System.Drawing.Size(22, 20);
 this.textBox5.TabIndex = 4;
 this.textBox5.Text = "Z";
 //
 // trackPosX
 //
 this.trackPosX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackPosX.LargeChange = 10;
 this.trackPosX.Location = new System.Drawing.Point(74, 37);
 this.trackPosX.Maximum = 500;
 this.trackPosX.Minimum = -500;
 this.trackPosX.Name = "trackPosX";
 this.trackPosX.Size = new System.Drawing.Size(211, 28);
 this.trackPosX.TabIndex = 9;
 this.trackPosX.TickFrequency = 100;
 //
 // trackPosY
 //
 this.trackPosY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackPosY.LargeChange = 10;
 this.trackPosY.Location = new System.Drawing.Point(74, 71);
 this.trackPosY.Maximum = 500;
 this.trackPosY.Minimum = -500;
 this.trackPosY.Name = "trackPosY";
 this.trackPosY.Size = new System.Drawing.Size(211, 28);
 this.trackPosY.TabIndex = 10;
 this.trackPosY.TickFrequency = 100;
 //
 // trackPosZ
 //
 this.trackPosZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackPosZ.LargeChange = 10;
 this.trackPosZ.Location = new System.Drawing.Point(74, 105);
 this.trackPosZ.Maximum = 500;
 this.trackPosZ.Minimum = -500;
 this.trackPosZ.Name = "trackPosZ";
 this.trackPosZ.Size = new System.Drawing.Size(211, 28);
 this.trackPosZ.TabIndex = 11;
 this.trackPosZ.TickFrequency = 100;
 //
 // textPositionX
 //
 this.textPositionX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textPositionX.Location = new System.Drawing.Point(31, 37);
 this.textPositionX.Name = "textPositionX";
 this.textPositionX.ReadOnly = true;
 this.textPositionX.Size = new System.Drawing.Size(37, 20);
 this.textPositionX.TabIndex = 12;
 this.textPositionX.Text = "0";
 //
 // textPositionY
 //
 this.textPositionY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textPositionY.Location = new System.Drawing.Point(31, 71);
 this.textPositionY.Name = "textPositionY";
 this.textPositionY.ReadOnly = true;
 this.textPositionY.Size = new System.Drawing.Size(37, 20);
 this.textPositionY.TabIndex = 13;
 this.textPositionY.Text = "0";
 //
 // textPositionZ
 //
 this.textPositionZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textPositionZ.Location = new System.Drawing.Point(31, 105);
 this.textPositionZ.Name = "textPositionZ";
 this.textPositionZ.ReadOnly = true;
 this.textPositionZ.Size = new System.Drawing.Size(37, 20);
 this.textPositionZ.TabIndex = 14;
 this.textPositionZ.Text = "0";
 //
 // tableLayoutPanel7
 //
 this.tableLayoutPanel7.ColumnCount = 3;
 this.tableLayoutPanel7.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel7.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 15F));
 this.tableLayoutPanel7.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 75F));
 this.tableLayoutPanel7.Controls.Add(this.textBox19, 2, 0);
 this.tableLayoutPanel7.Controls.Add(this.textBox20, 0, 1);
 this.tableLayoutPanel7.Controls.Add(this.textBox21, 0, 2);
 this.tableLayoutPanel7.Controls.Add(this.textBox31, 0, 3);
 this.tableLayoutPanel7.Controls.Add(this.trackBarOriX, 2, 1);
 this.tableLayoutPanel7.Controls.Add(this.trackBarOriY, 2, 2);
 this.tableLayoutPanel7.Controls.Add(this.trackBarOriZ, 2, 3);
 this.tableLayoutPanel7.Controls.Add(this.textBoxOriX, 1, 1);
 this.tableLayoutPanel7.Controls.Add(this.textBoxOriY, 1, 2);
 this.tableLayoutPanel7.Controls.Add(this.textBoxOriZ, 1, 3);
 this.tableLayoutPanel7.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel7.Location = new System.Drawing.Point(3, 145);
 this.tableLayoutPanel7.Name = "tableLayoutPanel7";
 this.tableLayoutPanel7.RowCount = 4;
 this.tableLayoutPanel7.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel7.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel7.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel7.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel7.Size = new System.Drawing.Size(288, 136);
 this.tableLayoutPanel7.TabIndex = 11;
 //
 // textBox19
 //
 this.textBox19.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox19.Location = new System.Drawing.Point(74, 3);
 this.textBox19.Name = "textBox19";
 this.textBox19.ReadOnly = true;
 this.textBox19.Size = new System.Drawing.Size(211, 20);
 this.textBox19.TabIndex = 0;
 this.textBox19.Text = "Orientering";
 //
 // textBox20
 //
 this.textBox20.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox20.Location = new System.Drawing.Point(3, 37);
 this.textBox20.Name = "textBox20";
 this.textBox20.ReadOnly = true;
 this.textBox20.Size = new System.Drawing.Size(22, 20);
 this.textBox20.TabIndex = 2;
 this.textBox20.Text = "X";
 //
 // textBox21
 //
 this.textBox21.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox21.Location = new System.Drawing.Point(3, 71);
 this.textBox21.Name = "textBox21";
 this.textBox21.ReadOnly = true;
 this.textBox21.Size = new System.Drawing.Size(22, 20);
 this.textBox21.TabIndex = 3;
 this.textBox21.Text = "Y";
 //
 // textBox31
 //
 this.textBox31.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox31.Location = new System.Drawing.Point(3, 105);
 this.textBox31.Name = "textBox31";
 this.textBox31.ReadOnly = true;
 this.textBox31.Size = new System.Drawing.Size(22, 20);
 this.textBox31.TabIndex = 4;
 this.textBox31.Text = "Z";
 //
 // trackBarOriX
 //
 this.trackBarOriX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarOriX.LargeChange = 10;
 this.trackBarOriX.Location = new System.Drawing.Point(74, 37);
 this.trackBarOriX.Maximum = 90;
 this.trackBarOriX.Minimum = -90;
 this.trackBarOriX.Name = "trackBarOriX";
 this.trackBarOriX.Size = new System.Drawing.Size(211, 28);
 this.trackBarOriX.TabIndex = 9;
 this.trackBarOriX.TickFrequency = 10;
 //
 // trackBarOriY
 //
 this.trackBarOriY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarOriY.LargeChange = 10;
 this.trackBarOriY.Location = new System.Drawing.Point(74, 71);
 this.trackBarOriY.Maximum = 90;
 this.trackBarOriY.Minimum = -90;
 this.trackBarOriY.Name = "trackBarOriY";
 this.trackBarOriY.Size = new System.Drawing.Size(211, 28);
 this.trackBarOriY.TabIndex = 10;
 this.trackBarOriY.TickFrequency = 10;
 //
 // trackBarOriZ
 //
 this.trackBarOriZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.trackBarOriZ.LargeChange = 10;
 this.trackBarOriZ.Location = new System.Drawing.Point(74, 105);
 this.trackBarOriZ.Maximum = 90;
 this.trackBarOriZ.Minimum = -90;
 this.trackBarOriZ.Name = "trackBarOriZ";
 this.trackBarOriZ.Size = new System.Drawing.Size(211, 28);
 this.trackBarOriZ.TabIndex = 11;
 this.trackBarOriZ.TickFrequency = 10;
 //
 // textBoxOriX
 //
 this.textBoxOriX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxOriX.Location = new System.Drawing.Point(31, 37);
 this.textBoxOriX.Name = "textBoxOriX";
 this.textBoxOriX.ReadOnly = true;
 this.textBoxOriX.Size = new System.Drawing.Size(37, 20);
 this.textBoxOriX.TabIndex = 12;
 this.textBoxOriX.Text = "0";
 //
 // textBoxOriY
 //
 this.textBoxOriY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxOriY.Location = new System.Drawing.Point(31, 71);
 this.textBoxOriY.Name = "textBoxOriY";
 this.textBoxOriY.ReadOnly = true;
 this.textBoxOriY.Size = new System.Drawing.Size(37, 20);
 this.textBoxOriY.TabIndex = 13;
 this.textBoxOriY.Text = "0";
 //
 // textBoxOriZ
 //
 this.textBoxOriZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxOriZ.Location = new System.Drawing.Point(31, 105);
 this.textBoxOriZ.Name = "textBoxOriZ";
 this.textBoxOriZ.ReadOnly = true;
 this.textBoxOriZ.Size = new System.Drawing.Size(37, 20);
 this.textBoxOriZ.TabIndex = 14;
 this.textBoxOriZ.Text = "0";
 //
 // tableLayoutPanel10
 //
 this.tableLayoutPanel10.ColumnCount = 2;
 this.tableLayoutPanel10.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 65.64626F));
 this.tableLayoutPanel10.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 34.35374F));
 this.tableLayoutPanel10.Controls.Add(this.flowLayoutPanel1, 1, 0);
 this.tableLayoutPanel10.Controls.Add(this.tableLayoutPanel4, 0, 0);
 this.tableLayoutPanel10.Controls.Add(this.tableLayoutPanel5, 0, 1);
 this.tableLayoutPanel10.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel10.Location = new System.Drawing.Point(303, 274);
 this.tableLayoutPanel10.Name = "tableLayoutPanel10";
 this.tableLayoutPanel10.RowCount = 2;
 this.tableLayoutPanel10.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 65.03497F));
 this.tableLayoutPanel10.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 34.96503F));
 this.tableLayoutPanel10.Size = new System.Drawing.Size(294, 284);
 this.tableLayoutPanel10.TabIndex = 26;
 //
 // flowLayoutPanel1
 //
 this.flowLayoutPanel1.Controls.Add(this.tableLayoutPanel3);
 this.flowLayoutPanel1.Controls.Add(this.KjorBaneButton);
 this.flowLayoutPanel1.Controls.Add(this.StartRapidButton);
 this.flowLayoutPanel1.Controls.Add(this.StopRapidButton);
 this.flowLayoutPanel1.Controls.Add(this.logSinusButton);
 this.flowLayoutPanel1.Controls.Add(this.testStegButton);
 this.flowLayoutPanel1.Location = new System.Drawing.Point(196, 3);
 this.flowLayoutPanel1.Name = "flowLayoutPanel1";
 this.tableLayoutPanel10.SetRowSpan(this.flowLayoutPanel1, 2);
 this.flowLayoutPanel1.Size = new System.Drawing.Size(95, 278);
 this.flowLayoutPanel1.TabIndex = 17;
 //
 // tableLayoutPanel3
 //
 this.tableLayoutPanel3.ColumnCount = 1;
 this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 100F));
 this.tableLayoutPanel3.Controls.Add(this.checkBoxTrigger, 0, 0);
 this.tableLayoutPanel3.Controls.Add(this.checkBoxDpad, 0, 3);
 this.tableLayoutPanel3.Controls.Add(this.checkBoxMenu, 0, 2);
 this.tableLayoutPanel3.Controls.Add(this.checkBoxGrip, 0, 1);
 this.tableLayoutPanel3.Location = new System.Drawing.Point(3, 3);
 this.tableLayoutPanel3.Name = "tableLayoutPanel3";
 this.tableLayoutPanel3.RowCount = 4;
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 25F));
 this.tableLayoutPanel3.Size = new System.Drawing.Size(89, 119);
 this.tableLayoutPanel3.TabIndex = 1;
 //
 // checkBoxTrigger
 //
 this.checkBoxTrigger.AutoSize = true;
 this.checkBoxTrigger.Dock = System.Windows.Forms.DockStyle.Fill;
 this.checkBoxTrigger.Location = new System.Drawing.Point(3, 3);
 this.checkBoxTrigger.Name = "checkBoxTrigger";
 this.checkBoxTrigger.Size = new System.Drawing.Size(83, 23);
 this.checkBoxTrigger.TabIndex = 0;
 this.checkBoxTrigger.Text = "Trigger";
 this.checkBoxTrigger.UseVisualStyleBackColor = true;
 this.checkBoxTrigger.CheckedChanged += new System.EventHandler(this.checkBoxTrigger_CheckedChanged);
 //
 // checkBoxDpad
 //
 this.checkBoxDpad.AutoSize = true;
 this.checkBoxDpad.Dock = System.Windows.Forms.DockStyle.Fill;
 this.checkBoxDpad.Location = new System.Drawing.Point(3, 90);
 this.checkBoxDpad.Name = "checkBoxDpad";
 this.checkBoxDpad.Size = new System.Drawing.Size(83, 26);
 this.checkBoxDpad.TabIndex = 3;
 this.checkBoxDpad.Text = "Dpad";
 this.checkBoxDpad.UseVisualStyleBackColor = true;
 this.checkBoxDpad.CheckedChanged += new System.EventHandler(this.checkBoxDpad_CheckedChanged);
 //
 // checkBoxMenu
 //
 this.checkBoxMenu.AutoSize = true;
 this.checkBoxMenu.Dock = System.Windows.Forms.DockStyle.Fill;
 this.checkBoxMenu.Location = new System.Drawing.Point(3, 61);
 this.checkBoxMenu.Name = "checkBoxMenu";
 this.checkBoxMenu.Size = new System.Drawing.Size(83, 23);
 this.checkBoxMenu.TabIndex = 2;
 this.checkBoxMenu.Text = "Menu";
 this.checkBoxMenu.UseVisualStyleBackColor = true;
 this.checkBoxMenu.CheckedChanged += new System.EventHandler(this.checkBoxMenu_CheckedChanged);
 //
 // checkBoxGrip
 //
 this.checkBoxGrip.AutoSize = true;
 this.checkBoxGrip.Dock = System.Windows.Forms.DockStyle.Fill;
 this.checkBoxGrip.Location = new System.Drawing.Point(3, 32);
 this.checkBoxGrip.Name = "checkBoxGrip";
 this.checkBoxGrip.Size = new System.Drawing.Size(83, 23);
 this.checkBoxGrip.TabIndex = 1;
 this.checkBoxGrip.Text = "Grip";
 this.checkBoxGrip.UseVisualStyleBackColor = true;
 this.checkBoxGrip.CheckedChanged += new System.EventHandler(this.checkBoxGrip_CheckedChanged);
 //
 // KjorBaneButton
 //
 this.KjorBaneButton.Location = new System.Drawing.Point(3, 128);
 this.KjorBaneButton.Name = "KjorBaneButton";
 this.KjorBaneButton.Size = new System.Drawing.Size(89, 23);
 this.KjorBaneButton.TabIndex = 9;
 this.KjorBaneButton.Text = "Kjør lagret bane";
 this.KjorBaneButton.UseVisualStyleBackColor = true;
 this.KjorBaneButton.Click += new System.EventHandler(this.KjorBaneButton_Click);
 //
 // StartRapidButton
 //
 this.StartRapidButton.Location = new System.Drawing.Point(3, 157);
 this.StartRapidButton.Name = "StartRapidButton";
 this.StartRapidButton.Size = new System.Drawing.Size(89, 23);
 this.StartRapidButton.TabIndex = 7;
 this.StartRapidButton.Text = "Start Rapid";
 this.StartRapidButton.UseVisualStyleBackColor = true;
 this.StartRapidButton.Click += new System.EventHandler(this.StartRapidButton_Click);
 //
 // StopRapidButton
 //
 this.StopRapidButton.Location = new System.Drawing.Point(3, 186);
 this.StopRapidButton.Name = "StopRapidButton";
 this.StopRapidButton.Size = new System.Drawing.Size(89, 23);
 this.StopRapidButton.TabIndex = 8;
 this.StopRapidButton.Text = "Stopp Rapid";
 this.StopRapidButton.UseVisualStyleBackColor = true;
 this.StopRapidButton.Click += new System.EventHandler(this.StopRapidButton_Click);
 //
 // logSinusButton
 //
 this.logSinusButton.Location = new System.Drawing.Point(3, 215);
 this.logSinusButton.Name = "logSinusButton";
 this.logSinusButton.Size = new System.Drawing.Size(89, 23);
 this.logSinusButton.TabIndex = 17;
 this.logSinusButton.Text = "Logge sinus";
 this.logSinusButton.UseVisualStyleBackColor = true;
 this.logSinusButton.Click += new System.EventHandler(this.logSinusButton_Click);
 //
 // testStegButton
 //
 this.testStegButton.Location = new System.Drawing.Point(3, 244);
 this.testStegButton.Name = "testStegButton";
 this.testStegButton.Size = new System.Drawing.Size(89, 23);
 this.testStegButton.TabIndex = 16;
 this.testStegButton.Text = "Test steg";
 this.testStegButton.UseVisualStyleBackColor = true;
 this.testStegButton.Click += new System.EventHandler(this.testStegButton_Click);
 //
 // tableLayoutPanel4
 //
 this.tableLayoutPanel4.ColumnCount = 4;
 this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 11.66667F));
 this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 19.89247F));
 this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 34.4086F));
 this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 33.87097F));
 this.tableLayoutPanel4.Controls.Add(this.textBox7, 0, 4);
 this.tableLayoutPanel4.Controls.Add(this.textBox6, 0, 3);
 this.tableLayoutPanel4.Controls.Add(this.textBox2, 0, 2);
 this.tableLayoutPanel4.Controls.Add(this.textBox9, 2, 1);
 this.tableLayoutPanel4.Controls.Add(this.textBox10, 3, 1);
 this.tableLayoutPanel4.Controls.Add(this.checkBoxSinusX, 1, 2);
 this.tableLayoutPanel4.Controls.Add(this.checkBoxSinusY, 1, 3);
 this.tableLayoutPanel4.Controls.Add(this.checkBoxSinusZ, 1, 4);
 this.tableLayoutPanel4.Controls.Add(this.textBoxAmplitudeZ, 2, 4);
 this.tableLayoutPanel4.Controls.Add(this.textBoxFrekvensX, 3, 2);
 this.tableLayoutPanel4.Controls.Add(this.textBoxFrekvensY, 3, 3);
 this.tableLayoutPanel4.Controls.Add(this.textBoxFrekvensZ, 3, 4);
 this.tableLayoutPanel4.Controls.Add(this.textBoxAmplitudeX, 2, 2);
 this.tableLayoutPanel4.Controls.Add(this.textBoxAmplitudeY, 2, 3);
 this.tableLayoutPanel4.Controls.Add(this.textBox17, 2, 0);
 this.tableLayoutPanel4.Controls.Add(this.flowLayoutPanel2, 3, 0);
 this.tableLayoutPanel4.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel4.Location = new System.Drawing.Point(3, 3);
 this.tableLayoutPanel4.Name = "tableLayoutPanel4";
 this.tableLayoutPanel4.RowCount = 5;
 this.tableLayoutPanel4.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel4.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel4.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel4.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel4.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel4.Size = new System.Drawing.Size(187, 178);
 this.tableLayoutPanel4.TabIndex = 15;
 //
 // textBox7
 //
 this.textBox7.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox7.Location = new System.Drawing.Point(3, 143);
 this.textBox7.Name = "textBox7";
 this.textBox7.ReadOnly = true;
 this.textBox7.Size = new System.Drawing.Size(15, 20);
 this.textBox7.TabIndex = 15;
 this.textBox7.Text = "Z";
 //
 // textBox6
 //
 this.textBox6.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox6.Location = new System.Drawing.Point(3, 108);
 this.textBox6.Name = "textBox6";
 this.textBox6.ReadOnly = true;
 this.textBox6.Size = new System.Drawing.Size(15, 20);
 this.textBox6.TabIndex = 15;
 this.textBox6.Text = "Y";
 //
 // textBox2
 //
 this.textBox2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox2.Location = new System.Drawing.Point(3, 73);
 this.textBox2.Name = "textBox2";
 this.textBox2.ReadOnly = true;
 this.textBox2.Size = new System.Drawing.Size(15, 20);
 this.textBox2.TabIndex = 3;
 this.textBox2.Text = "X";
 //
 // textBox9
 //
 this.textBox9.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox9.Location = new System.Drawing.Point(61, 38);
 this.textBox9.Name = "textBox9";
 this.textBox9.ReadOnly = true;
 this.textBox9.Size = new System.Drawing.Size(58, 20);
 this.textBox9.TabIndex = 17;
 this.textBox9.Text = "Amplitude";
 //
 // textBox10
 //
 this.textBox10.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox10.Location = new System.Drawing.Point(125, 38);
 this.textBox10.Name = "textBox10";
 this.textBox10.ReadOnly = true;
 this.textBox10.Size = new System.Drawing.Size(59, 20);
 this.textBox10.TabIndex = 18;
 this.textBox10.Text = "Frekvens";
 //
 // checkBoxSinusX
 //
 this.checkBoxSinusX.AutoSize = true;
 this.checkBoxSinusX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.checkBoxSinusX.Location = new System.Drawing.Point(24, 73);
 this.checkBoxSinusX.Name = "checkBoxSinusX";
 this.checkBoxSinusX.Size = new System.Drawing.Size(31, 29);
 this.checkBoxSinusX.TabIndex = 19;
 this.checkBoxSinusX.UseVisualStyleBackColor = true;
 this.checkBoxSinusX.CheckedChanged += new System.EventHandler(this.checkBoxSinusX_CheckedChanged);
 //
 // checkBoxSinusY
 //
 this.checkBoxSinusY.AutoSize = true;
 this.checkBoxSinusY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.checkBoxSinusY.Location = new System.Drawing.Point(24, 108);
 this.checkBoxSinusY.Name = "checkBoxSinusY";
 this.checkBoxSinusY.Size = new System.Drawing.Size(31, 29);
 this.checkBoxSinusY.TabIndex = 20;
 this.checkBoxSinusY.UseVisualStyleBackColor = true;
 this.checkBoxSinusY.CheckedChanged += new System.EventHandler(this.checkBoxSinusY_CheckedChanged);
 //
 // checkBoxSinusZ
 //
 this.checkBoxSinusZ.AutoSize = true;
 this.checkBoxSinusZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.checkBoxSinusZ.Location = new System.Drawing.Point(24, 143);
 this.checkBoxSinusZ.Name = "checkBoxSinusZ";
 this.checkBoxSinusZ.Size = new System.Drawing.Size(31, 32);
 this.checkBoxSinusZ.TabIndex = 21;
 this.checkBoxSinusZ.UseVisualStyleBackColor = true;
 this.checkBoxSinusZ.CheckedChanged += new System.EventHandler(this.checkBoxSinusZ_CheckedChanged);
 //
 // textBoxAmplitudeZ
 //
 this.textBoxAmplitudeZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxAmplitudeZ.Location = new System.Drawing.Point(61, 143);
 this.textBoxAmplitudeZ.Name = "textBoxAmplitudeZ";
 this.textBoxAmplitudeZ.Size = new System.Drawing.Size(58, 20);
 this.textBoxAmplitudeZ.TabIndex = 23;
 this.textBoxAmplitudeZ.Text = "50";
 //
 // textBoxFrekvensX
 //
 this.textBoxFrekvensX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFrekvensX.Location = new System.Drawing.Point(125, 73);
 this.textBoxFrekvensX.Name = "textBoxFrekvensX";
 this.textBoxFrekvensX.Size = new System.Drawing.Size(59, 20);
 this.textBoxFrekvensX.TabIndex = 25;
 this.textBoxFrekvensX.Text = "1";
 //
 // textBoxFrekvensY
 //
 this.textBoxFrekvensY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFrekvensY.Location = new System.Drawing.Point(125, 108);
 this.textBoxFrekvensY.Name = "textBoxFrekvensY";
 this.textBoxFrekvensY.Size = new System.Drawing.Size(59, 20);
 this.textBoxFrekvensY.TabIndex = 22;
 this.textBoxFrekvensY.Text = "1";
 //
 // textBoxFrekvensZ
 //
 this.textBoxFrekvensZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFrekvensZ.Location = new System.Drawing.Point(125, 143);
 this.textBoxFrekvensZ.Name = "textBoxFrekvensZ";
 this.textBoxFrekvensZ.Size = new System.Drawing.Size(59, 20);
 this.textBoxFrekvensZ.TabIndex = 24;
 this.textBoxFrekvensZ.Text = "1";
 //
 // textBoxAmplitudeX
 //
 this.textBoxAmplitudeX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxAmplitudeX.Location = new System.Drawing.Point(61, 73);
 this.textBoxAmplitudeX.Name = "textBoxAmplitudeX";
 this.textBoxAmplitudeX.Size = new System.Drawing.Size(58, 20);
 this.textBoxAmplitudeX.TabIndex = 26;
 this.textBoxAmplitudeX.Text = "50";
 //
 // textBoxAmplitudeY
 //
 this.textBoxAmplitudeY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxAmplitudeY.Location = new System.Drawing.Point(61, 108);
 this.textBoxAmplitudeY.Name = "textBoxAmplitudeY";
 this.textBoxAmplitudeY.Size = new System.Drawing.Size(58, 20);
 this.textBoxAmplitudeY.TabIndex = 27;
 this.textBoxAmplitudeY.Text = "50";
 //
 // textBox17
 //
 this.textBox17.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox17.Location = new System.Drawing.Point(61, 3);
 this.textBox17.Name = "textBox17";
 this.textBox17.ReadOnly = true;
 this.textBox17.Size = new System.Drawing.Size(58, 20);
 this.textBox17.TabIndex = 28;
 this.textBox17.Text = "Sinuser";
 //
 // flowLayoutPanel2
 //
 this.flowLayoutPanel2.Location = new System.Drawing.Point(125, 3);
 this.flowLayoutPanel2.Name = "flowLayoutPanel2";
 this.flowLayoutPanel2.Size = new System.Drawing.Size(58, 29);
 this.flowLayoutPanel2.TabIndex = 29;
 //
 // tableLayoutPanel5
 //
 this.tableLayoutPanel5.ColumnCount = 2;
 this.tableLayoutPanel5.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel5.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel5.Controls.Add(this.checkBoxFirkant, 0, 0);
 this.tableLayoutPanel5.Controls.Add(this.textBoxFirkantStorrelse, 0, 2);
 this.tableLayoutPanel5.Controls.Add(this.textBoxFirkantFart, 1, 2);
 this.tableLayoutPanel5.Controls.Add(this.textBox12, 0, 1);
 this.tableLayoutPanel5.Controls.Add(this.textBox13, 1, 1);
 this.tableLayoutPanel5.Location = new System.Drawing.Point(3, 187);
 this.tableLayoutPanel5.Name = "tableLayoutPanel5";
 this.tableLayoutPanel5.RowCount = 3;
 this.tableLayoutPanel5.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 33.33333F));
 this.tableLayoutPanel5.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 33.33333F));
 this.tableLayoutPanel5.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 33.33333F));
 this.tableLayoutPanel5.Size = new System.Drawing.Size(186, 91);
 this.tableLayoutPanel5.TabIndex = 10;
 //
 // checkBoxFirkant
 //
 this.checkBoxFirkant.AutoSize = true;
 this.tableLayoutPanel5.SetColumnSpan(this.checkBoxFirkant, 2);
 this.checkBoxFirkant.Dock = System.Windows.Forms.DockStyle.Fill;
 this.checkBoxFirkant.Location = new System.Drawing.Point(3, 3);
 this.checkBoxFirkant.Name = "checkBoxFirkant";
 this.checkBoxFirkant.Size = new System.Drawing.Size(180, 24);
 this.checkBoxFirkant.TabIndex = 30;
 this.checkBoxFirkant.Text = "Firkant i XY-planet";
 this.checkBoxFirkant.UseVisualStyleBackColor = true;
 this.checkBoxFirkant.CheckedChanged += new System.EventHandler(this.checkBoxFirkant_CheckedChanged);
 //
 // textBoxFirkantStorrelse
 //
 this.textBoxFirkantStorrelse.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFirkantStorrelse.Location = new System.Drawing.Point(3, 63);
 this.textBoxFirkantStorrelse.Name = "textBoxFirkantStorrelse";
 this.textBoxFirkantStorrelse.Size = new System.Drawing.Size(87, 20);
 this.textBoxFirkantStorrelse.TabIndex = 32;
 this.textBoxFirkantStorrelse.Text = "200";
 //
 // textBoxFirkantFart
 //
 this.textBoxFirkantFart.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxFirkantFart.Location = new System.Drawing.Point(96, 63);
 this.textBoxFirkantFart.Name = "textBoxFirkantFart";
 this.textBoxFirkantFart.Size = new System.Drawing.Size(87, 20);
 this.textBoxFirkantFart.TabIndex = 34;
 this.textBoxFirkantFart.Text = "100";
 //
 // textBox12
 //
 this.textBox12.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox12.Location = new System.Drawing.Point(3, 33);
 this.textBox12.Name = "textBox12";
 this.textBox12.ReadOnly = true;
 this.textBox12.Size = new System.Drawing.Size(87, 20);
 this.textBox12.TabIndex = 31;
 this.textBox12.Text = "Størrelse";
 //
 // textBox13
 //
 this.textBox13.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox13.Location = new System.Drawing.Point(96, 33);
 this.textBox13.Name = "textBox13";
 this.textBox13.ReadOnly = true;
 this.textBox13.Size = new System.Drawing.Size(87, 20);
 this.textBox13.TabIndex = 33;
 this.textBox13.Text = "Fart (mm/s)";
 //
 // timerGUI
 //
 this.timerGUI.Enabled = true;
 this.timerGUI.Interval = 50;
 this.timerGUI.Tick += new System.EventHandler(this.timerGUI_Tick);
 //
 // TestingSimulated
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(600, 561);
 this.Controls.Add(this.tableLayoutPanel1);
 this.Name = "TestingSimulated";
 this.Text = "Form2";
 this.tableLayoutPanel1.ResumeLayout(false);
 this.tableLayoutPanel6.ResumeLayout(false);
 this.tableLayoutPanel6.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarFeedbackOriU0)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarFeedbackOriU1)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarFeedbackOriU2)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarFeedbackOriU3)).EndInit();
 this.tableLayoutPanel8.ResumeLayout(false);
 this.tableLayoutPanel8.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtOriW)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtOriX)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtOriY)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtOriZ)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtPosX)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtPosY)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarSendtPosZ)).EndInit();
 this.tableLayoutPanel9.ResumeLayout(false);
 this.tableLayoutPanel2.ResumeLayout(false);
 this.tableLayoutPanel2.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.trackPosX)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackPosY)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackPosZ)).EndInit();
 this.tableLayoutPanel7.ResumeLayout(false);
 this.tableLayoutPanel7.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarOriX)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarOriY)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.trackBarOriZ)).EndInit();
 this.tableLayoutPanel10.ResumeLayout(false);
 this.flowLayoutPanel1.ResumeLayout(false);
 this.tableLayoutPanel3.ResumeLayout(false);
 this.tableLayoutPanel3.PerformLayout();
 this.tableLayoutPanel4.ResumeLayout(false);
 this.tableLayoutPanel4.PerformLayout();
 this.tableLayoutPanel5.ResumeLayout(false);
 this.tableLayoutPanel5.PerformLayout();
 this.ResumeLayout(false);

 }

 #endregion

 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel1;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel2;
 private System.Windows.Forms.TextBox textBox1;
 private System.Windows.Forms.TextBox textBox3;
 private System.Windows.Forms.TextBox textBox4;
 private System.Windows.Forms.TextBox textBox5;
 private System.Windows.Forms.TrackBar trackPosX;
 private System.Windows.Forms.TrackBar trackPosY;
 private System.Windows.Forms.TrackBar trackPosZ;
 private System.Windows.Forms.TextBox textPositionX;
 private System.Windows.Forms.TextBox textPositionY;
 private System.Windows.Forms.TextBox textPositionZ;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel3;
 private System.Windows.Forms.CheckBox checkBoxDpad;
 private System.Windows.Forms.CheckBox checkBoxMenu;
 private System.Windows.Forms.CheckBox checkBoxGrip;
 private System.Windows.Forms.CheckBox checkBoxTrigger;
 private System.Windows.Forms.Timer timerGUI;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel4;
 private System.Windows.Forms.TextBox textBox7;
 private System.Windows.Forms.TextBox textBox6;
 private System.Windows.Forms.TextBox textBox2;
 private System.Windows.Forms.TextBox textBox9;
 private System.Windows.Forms.TextBox textBox10;
 private System.Windows.Forms.CheckBox checkBoxSinusX;
 private System.Windows.Forms.CheckBox checkBoxSinusY;
 private System.Windows.Forms.CheckBox checkBoxSinusZ;
 private System.Windows.Forms.TextBox textBoxAmplitudeZ;
 private System.Windows.Forms.TextBox textBoxFrekvensX;
 private System.Windows.Forms.TextBox textBoxFrekvensY;
 private System.Windows.Forms.TextBox textBoxFrekvensZ;
 private System.Windows.Forms.TextBox textBoxAmplitudeX;
 private System.Windows.Forms.TextBox textBoxAmplitudeY;
 private System.Windows.Forms.TextBox textBox17;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel8;
 private System.Windows.Forms.TextBox textBox26;
 private System.Windows.Forms.TextBox textBox27;
 private System.Windows.Forms.TextBox textBox28;
 private System.Windows.Forms.TextBox textBox29;
 private System.Windows.Forms.TextBox textBox30;
 private System.Windows.Forms.TextBox textBoxSendtPosX;
 private System.Windows.Forms.TextBox textBoxSendtPosY;
 private System.Windows.Forms.TextBox textBoxSendtPosZ;
 private System.Windows.Forms.TextBox textBox34;
 private System.Windows.Forms.TextBox textBox35;
 private System.Windows.Forms.TextBox textBox36;
 private System.Windows.Forms.TextBox textBox37;
 private System.Windows.Forms.TextBox textBoxSendtOriW;
 private System.Windows.Forms.TextBox textBoxSendtOriX;
 private System.Windows.Forms.TextBox textBoxSendtOriY;
 private System.Windows.Forms.TextBox textBoxSendtOriZ;
 private System.Windows.Forms.TrackBar trackBarSendtOriW;
 private System.Windows.Forms.TrackBar trackBarSendtOriX;
 private System.Windows.Forms.TrackBar trackBarSendtOriY;
 private System.Windows.Forms.TrackBar trackBarSendtOriZ;
 private System.Windows.Forms.TrackBar trackBarSendtPosX;
 private System.Windows.Forms.TrackBar trackBarSendtPosY;
 private System.Windows.Forms.TrackBar trackBarSendtPosZ;
 private System.Windows.Forms.FlowLayoutPanel flowLayoutPanel1;
 private System.Windows.Forms.Button StartRapidButton;
 private System.Windows.Forms.Button StopRapidButton;
 private System.Windows.Forms.Button KjorBaneButton;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel5;
 private System.Windows.Forms.TextBox textBoxFirkantStorrelse;
 private System.Windows.Forms.TextBox textBox12;
 private System.Windows.Forms.CheckBox checkBoxFirkant;
 private System.Windows.Forms.TextBox textBox13;
 private System.Windows.Forms.TextBox textBoxFirkantFart;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel6;
 private System.Windows.Forms.TextBox textBox14;
 private System.Windows.Forms.TextBox textBox15;
 private System.Windows.Forms.TextBox textBox16;
 private System.Windows.Forms.TextBox textBox18;
 private System.Windows.Forms.TextBox textBoxFeedbackPosX;
 private System.Windows.Forms.TextBox textBoxFeedbackPosY;
 private System.Windows.Forms.TextBox textBoxFeedbackPosZ;
 private System.Windows.Forms.TextBox textBox22;
 private System.Windows.Forms.TextBox textBox23;
 private System.Windows.Forms.TextBox textBox24;
 private System.Windows.Forms.TextBox textBox25;
 private System.Windows.Forms.TextBox textBoxFeedbackOriU0;
 private System.Windows.Forms.TextBox textBoxFeedbackOriU1;
 private System.Windows.Forms.TextBox textBoxFeedbackOriU2;
 private System.Windows.Forms.TextBox textBoxFeedbackOriU3;
 private System.Windows.Forms.TrackBar trackBarFeedbackOriU0;
 private System.Windows.Forms.TrackBar trackBarFeedbackOriU1;
 private System.Windows.Forms.TrackBar trackBarFeedbackOriU2;
 private System.Windows.Forms.TrackBar trackBarFeedbackOriU3;
 private System.Windows.Forms.TextBox textBox39;
 private System.Windows.Forms.TextBox textBox41;
 private System.Windows.Forms.TextBox textBox40;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel7;
 private System.Windows.Forms.TextBox textBox19;
 private System.Windows.Forms.TextBox textBox20;
 private System.Windows.Forms.TextBox textBox21;
 private System.Windows.Forms.TextBox textBox31;
 private System.Windows.Forms.TrackBar trackBarOriX;
 private System.Windows.Forms.TrackBar trackBarOriY;
 private System.Windows.Forms.TrackBar trackBarOriZ;
 private System.Windows.Forms.TextBox textBoxOriX;
 private System.Windows.Forms.TextBox textBoxOriY;
 private System.Windows.Forms.TextBox textBoxOriZ;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel9;
 private System.Windows.Forms.Button testStegButton;
 private System.Windows.Forms.Button logSinusButton;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel10;
 private System.Windows.Forms.FlowLayoutPanel flowLayoutPanel2;
 }
}

Online Teaching/GUI/TestingSimulated.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 17, 17

Online Teaching/GUI/TestingVive.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.IO;
using System.Threading.Tasks;
using System.Windows.Forms;
using ABB.Robotics.Controllers;
using ABB.Robotics.Controllers.Discovery;
using ABB.Robotics.Controllers.RapidDomain;
using ABB.Robotics.Controllers.IOSystemDomain;
using ABB.Robotics.Math;
using MicroLibrary;
using Vive;

namespace GUI
{
 /// <summary>
 /// Form sets up communication between HTC Vive controller and robot
 /// </summary>
 public partial class TestingVive : Form
 {
 public ViveTracker tracker;
 public Boolean Vive_running = false;
 public Boolean Rapid_running = false;
 public Sensor sensor;
 public Controller controller = null;
 public Matrix3 wobj;
 public DigitalSignal TriggerButton;
 public DigitalSignal GripButton;
 public DigitalSignal MenuButton;
 public DigitalSignal DpadButton;
 public int skalering = 1;
 public Vector3 CalibVive = new Vector3();
 public Vector3 OffsetRobot = new Vector3();
 public Quaternion RotRobVive = new Quaternion(0, 0, 0.707, 0.707); //new Quaternion(0.612, 0.354, 0.354, 0.612);
 public Quaternion transformViveRobot;
 public MicroTimer EGMtimer;
 public delegate void GetInfoVive();
 public GetInfoVive GetInfoViveDelegate;
 public MicroTimer loggeTimer;
 public int log_index;
 public int max_index;
 public List<double> log_time;
 public List<double> plannedPath;
 public List<double> feedbackPath;
 public Vector3 p1;
 public Vector3 p2;
 public Vector3 p3;
 public RobTarget pR1;
 public RobTarget pR2;
 public RobTarget pR3;
 public ToolData tooldata;
 public int i = 0;
 public Matrix3 transform;
 public Matrix3 inverseTransform;
 public List<Vector3> points = new List<Vector3>();
 public List<Quaternion> oris = new List<Quaternion>();
 public int j = 0;
 public RobTarget currentPos;
 public bool print = false;
 public bool print2 = false;
 public int k = 0;

 /// <summary>
 /// Initilizes the form, starts the sensorthread, logs onto the controller and sets up the digital input signals, starts EGMtimer
 /// </summary>
 public TestingVive(Controller _controller, Matrix3 workobject)
 {
 InitializeComponent();

 sensor = new Sensor();
 sensor.Start();

 tracker = new ViveTracker(1, new Matrix4(new Vector3(0, 0, 0), new Quaternion(0.819, 0.574, 0, 0))); //, new Matrix4(new Vector3(0,0,0), new Quaternion(0.819,0.574,0,0)));
 wobj = workobject;
 controller = _controller;
 if (controller != null)
 {
 controller.Logon(UserInfo.DefaultUser);

 TriggerButton = (DigitalSignal)controller.IOSystem.GetSignal("TriggerButton");
 GripButton = (DigitalSignal)controller.IOSystem.GetSignal("GripButton");
 MenuButton = (DigitalSignal)controller.IOSystem.GetSignal("MenuButton");
 DpadButton = (DigitalSignal)controller.IOSystem.GetSignal("DpadButton");
 tooldata = (ToolData)controller.MotionSystem.ActiveMechanicalUnit.Tool.Data;

 }
 GetInfoViveDelegate = new GetInfoVive(GetInfoViveMethod);

 EGMtimer = new MicroTimer(10000);
 EGMtimer.MicroTimerElapsed += new MicroLibrary.MicroTimer.MicroTimerElapsedEventHandler(EGMTimedEvent);
 EGMtimer.Start();

 }

 private void timerUpdateGUI_Tick(object sender, EventArgs e)
 {
 UpdateGUI();
 }

 /// <summary>
 /// Updates GUI objects of the form
 /// </summary>
 public void UpdateGUI()
 {
 //Verdier fra Vive
 textPositionX.Text = tracker.Data.Position.x.ToString("F1");
 textPositionY.Text = tracker.Data.Position.y.ToString("F1");
 textPositionZ.Text = tracker.Data.Position.z.ToString("F1");

 textOrientationW.Text = tracker.Data.Orientation.q1.ToString("F3");
 textOrientationX.Text = tracker.Data.Orientation.q2.ToString("F3");
 textOrientationY.Text = tracker.Data.Orientation.q3.ToString("F3");
 textOrientationZ.Text = tracker.Data.Orientation.q4.ToString("F3");

 Vector3 angles = tracker.Data.Orientation.EulerXYZ;
 angles = angles * (180 / Math.PI);
 textAngleX.Text = angles.x.ToString("F1");
 textAngleY.Text = angles.y.ToString("F1");
 textAngleZ.Text = angles.z.ToString("F1");

 OrientViveTrackW.Value = Convert.ToInt16(tracker.Data.Orientation.q1 * 1000);
 OrientViveTrackX.Value = Convert.ToInt16(tracker.Data.Orientation.q2 * 1000);
 OrientViveTrackY.Value = Convert.ToInt16(tracker.Data.Orientation.q3 * 1000);
 OrientViveTrackZ.Value = Convert.ToInt16(tracker.Data.Orientation.q4 * 1000);

 // Feedback-verdier fra robot
 textRobPosX.Text = sensor.FeedbackPos.x.ToString("F1");
 textRobPosY.Text = sensor.FeedbackPos.y.ToString("F1");
 textRobPosZ.Text = sensor.FeedbackPos.z.ToString("F1");

 textRobOriU0.Text = sensor.FeedbackOrient.q1.ToString("F3");
 textRobOriU1.Text = sensor.FeedbackOrient.q2.ToString("F3");
 textRobOriU2.Text = sensor.FeedbackOrient.q3.ToString("F3");
 textRobOriU3.Text = sensor.FeedbackOrient.q4.ToString("F3");

 OrientRobTrackU0.Value = Convert.ToInt16(sensor.FeedbackOrient.q1 * 1000);
 OrientRobTrackU1.Value = Convert.ToInt16(sensor.FeedbackOrient.q2 * 1000);
 OrientRobTrackU2.Value = Convert.ToInt16(sensor.FeedbackOrient.q3 * 1000);
 OrientRobTrackU3.Value = Convert.ToInt16(sensor.FeedbackOrient.q4 * 1000);

 switch (tracker.Data.ActivityState)
 {
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Unknown:
 ActivityPanel.BackColor = Color.Black;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Idle:
 ActivityPanel.BackColor = Color.Red;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_UserInteraction:
 ActivityPanel.BackColor = Color.Green;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_UserInteraction_Timeout:
 ActivityPanel.BackColor = Color.LightGreen;
 break;
 case Valve.VR.EDeviceActivityLevel.k_EDeviceActivityLevel_Standby:
 ActivityPanel.BackColor = Color.Yellow;
 break;
 }

 }

 public void SetColor(TextBox box,bool state)
 {
 if (state == true)
 {
 box.BackColor = Color.Green;
 }
 else
 {
 box.BackColor = Color.Red;
 }
 }

 private void EGMTimedEvent(object sender,
 MicroLibrary.MicroTimerEventArgs timerEventArgs)
 {
 this.Invoke(GetInfoViveDelegate);
 }

 /// <summary>
 /// Gets info from Vive-controller and updates info to send to robot
 /// </summary>
 private void GetInfoViveMethod()
 {
 if (Vive_running == true)
 {

 bool trigger = tracker.Data.ButtonPressed._trigger;
 bool grip = tracker.Data.ButtonPressed._grip;
 bool menu = tracker.Data.ButtonPressed._menu;
 bool dpad_up = tracker.Data.ButtonPressed.dPad_Up;
 bool dpad_down = tracker.Data.ButtonPressed.dPad_Down;
 bool dpad_right = tracker.Data.ButtonPressed.dPad_Right;
 bool dpad_left = tracker.Data.ButtonPressed.dPad_Left;
 tracker.UpdateData();

 if (trigger != tracker.Data.ButtonPressed._trigger)
 {

 if (tracker.Data.ButtonPressed._trigger == true)
 {
 print = true;
 print2 = true;
 CalibVive = tracker.Data.Position;
 currentPos = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.WorkObject);
 OffsetRobot.x = currentPos.Trans.X;
 OffsetRobot.y = currentPos.Trans.Y;
 OffsetRobot.z = currentPos.Trans.Z;
 //Quaternion Robot = new Quaternion(toolRot.Rot.Q1, toolRot.Rot.Q2, toolRot.Rot.Q3, toolRot.Rot.Q4);
 tooldata = (ToolData)controller.MotionSystem.ActiveMechanicalUnit.Tool.Data;
 Quaternion Robot = new Quaternion(currentPos.Rot.Q1, currentPos.Rot.Q2, currentPos.Rot.Q3, currentPos.Rot.Q4);
 //new Quaternion(tooldata.Tframe.Rot.Q1, tooldata.Tframe.Rot.Q2, tooldata.Tframe.Rot.Q3, tooldata.Tframe.Rot.Q4)

 Quaternion vive = tracker.Data.Orientation.Inverse();
 transformViveRobot = vive * Robot;

 points.Clear();
 oris.Clear();
 j = 1;
 }
 else
 {
 print2 = false;
 }
 if (Rapid_running == true)
 {
 SetSignal(TriggerButton, tracker.Data.ButtonPressed._trigger);
 }

 textTriggerButton.Text = tracker.Data.ButtonPressed._trigger.ToString();
 SetColor(textTriggerButton, tracker.Data.ButtonPressed._trigger);
 }
 if (grip != tracker.Data.ButtonPressed._grip)
 {
 if (Rapid_running == true)
 {
 i = i + 1;
 switch (i)
 {
 case 1:
 p1 = tracker.Data.Position;
 pR1 = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.WorkObject);
 break;
 case 2:
 p2 = tracker.Data.Position;
 pR2 = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.WorkObject);
 break;
 case 3:
 p3 = tracker.Data.Position;
 pR3 = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.WorkObject);
 break;
 default:
 break;

 }
 SetSignal(GripButton, tracker.Data.ButtonPressed._grip);
 }
 textGripButton.Text = tracker.Data.ButtonPressed._grip.ToString();
 SetColor(textGripButton, tracker.Data.ButtonPressed._grip);
 }
 if (menu != tracker.Data.ButtonPressed._menu)
 {
 if (Rapid_running == true)
 {
 SetSignal(MenuButton, tracker.Data.ButtonPressed._menu);
 }
 textMenuButton.Text = tracker.Data.ButtonPressed._menu.ToString();
 SetColor(textMenuButton, tracker.Data.ButtonPressed._menu);
 }
 if (dpad_up != tracker.Data.ButtonPressed.dPad_Up)
 {

 if (Rapid_running == true)
 {

 SetSignal(DpadButton, tracker.Data.ButtonPressed.dPad_Up);
 }

 textDpadUpButton.Text = tracker.Data.ButtonPressed.dPad_Up.ToString();
 SetColor(textDpadUpButton, tracker.Data.ButtonPressed.dPad_Up);
 }
 if (dpad_down != tracker.Data.ButtonPressed.dPad_Down)
 {

 if (Rapid_running == true)
 {
 SetSignal(DpadButton, tracker.Data.ButtonPressed.dPad_Down);
 }

 textDpadDownButton.Text = tracker.Data.ButtonPressed.dPad_Down.ToString();
 SetColor(textDpadDownButton, tracker.Data.ButtonPressed.dPad_Down);
 }
 if (dpad_right != tracker.Data.ButtonPressed.dPad_Right)
 {

 if (Rapid_running == true)
 {
 SetSignal(DpadButton, tracker.Data.ButtonPressed.dPad_Right);
 }

 textDpadRightButton.Text = tracker.Data.ButtonPressed.dPad_Right.ToString();
 SetColor(textDpadRightButton, tracker.Data.ButtonPressed.dPad_Right);
 }
 if (dpad_left != tracker.Data.ButtonPressed.dPad_Left)
 {

 if (Rapid_running == true)
 {
 SetSignal(DpadButton, tracker.Data.ButtonPressed.dPad_Left);
 }

 textDpadLeftButton.Text = tracker.Data.ButtonPressed.dPad_Left.ToString();
 SetColor(textDpadLeftButton, tracker.Data.ButtonPressed.dPad_Left);
 }
 sensor.PlannedPos = wobj * ((tracker.Data.Position - CalibVive) / skalering + OffsetRobot);
 //sensor.PlannedPos = inverseTransform * ((tracker.Data.Position - CalibVive) / skalering + OffsetRobot);
 sensor.PlannedOrient = tracker.Data.Orientation * transformViveRobot;

 k++;
 if (k == 100)
 {
 k = 0;
 print = true;
 }

 if (print & print2)
 {
 Console.WriteLine("Robotpos: " + sensor.FeedbackPos + sensor.FeedbackOrient);
 Console.WriteLine("Plannedpos: " + sensor.PlannedPos + sensor.PlannedOrient);
 print = false;
 }
 if (j > 0 && j <500)
 {
 points.Add(sensor.PlannedPos);
 oris.Add(sensor.PlannedOrient);
 j = j + 1;
 }

 }
 }

 /// <summary>
 /// Sets the the input signal to the given input state
 /// </summary>
 private void SetSignal(DigitalSignal signal,bool state)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 if (Vive_running == true)
 {
 if (state == true)
 {
 signal.Set();
 }
 else
 {
 signal.Reset();
 }
 }
 }
 }

 /// <summary>
 /// Connects to Vive-controller
 /// </summary>
 private void Koble_til_button_Click(object sender, EventArgs e)
 {
 Vive_running = true;
 tracker.Initialize();
 }

 /// <summary>
 /// Stops Vive-updates and resets robot offset and orientation
 /// </summary>
 private void koble_fra_button_Click(object sender, EventArgs e)
 {
 Vive_running = false;
 }

 private void RadioButtonKontroll1_CheckedChanged(object sender, EventArgs e)
 {
 // kontroll = RobTracker.DeviceName.Controller_1;
 }

 private void radioButtonKontroll2_CheckedChanged(object sender, EventArgs e)
 {
 // kontroll = RobTracker.DeviceName.Controller_2;
 }

 /// <summary>
 /// Sets program pointer to main and starts rapid program
 /// </summary>
 private void StartRapidButton_Click(object sender, EventArgs e)
 {
 Rapid_running = true;

 ABB.Robotics.Controllers.RapidDomain.Task[] tasks = controller.Rapid.GetTasks();

 try
 {
 if (controller.OperatingMode == ControllerOperatingMode.Auto)
 {

 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 tasks[0].SetProgramPointer("EGM", "EGMmain");
 ABB.Robotics.Controllers.RapidDomain.String mode;
 mode.Value = "testing";
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "mode");
 rd.Value = mode;
 controller.Rapid.Start();
 }
 }
 else
 {
 MessageBox.Show("Automatic mode is required to start execution from a remote client.");
 }
 }
 catch (System.InvalidOperationException ex)
 {
 MessageBox.Show("Mastership is held by another client." +
 ex.Message);
 }
 catch (System.Exception ex)
 {
 MessageBox.Show("Unexpected error occurred: " + ex.Message);
 }
 }

 /// <summary>
 /// Stops rapid program
 /// </summary>
 private void StopRapidButton_Click(object sender, EventArgs e)
 {
 Rapid_running = false;
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 controller.Rapid.Stop(ABB.Robotics.Controllers.RapidDomain.StopMode.Instruction);
 }
 }

 /// <summary>
 /// Runs the stored path recorded by the user
 /// </summary>
 private void KjorBaneButton_Click(object sender, EventArgs e)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 Bool RunBane;
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "RunBane");
 RunBane = (Bool)rd.Value;
 RunBane.Value = true;
 rd.Value = RunBane;
 }
 }

 /// <summary>
 /// Sets the scaling between Vive-controller and robot
 /// </summary>
 private void SkaleringTrackBar_Scroll(object sender, EventArgs e)
 {
 skalering = SkaleringTrackBar.Value;
 SkaleringText.Text = skalering.ToString();
 }

 private void Start_logging_Click(object sender, EventArgs e)
 {
 log_index = 0;
 log_time = new List<double>();
 plannedPath = new List<double>();
 feedbackPath = new List<double>();
 max_index = 5000;
 loggeTimer = new MicroTimer(1000);
 loggeTimer.MicroTimerElapsed += new MicroLibrary.MicroTimer.MicroTimerElapsedEventHandler(LoggeTimedEvent);
 loggeTimer.Start();
 }

 private void LoggeTimedEvent(object sender,
 MicroLibrary.MicroTimerEventArgs timerEventArgs)
 {
 log_time.Add(log_index);
 plannedPath.Add(sensor.PlannedPos.z);
 feedbackPath.Add(sensor.FeedbackPos.z);

 if (log_index == max_index)
 {
 using (StreamWriter logger = new StreamWriter(@"C:\ELE630\3D_pantograf v1.06\log_vive.txt"))
 {
 System.Globalization.NumberFormatInfo nfi = new System.Globalization.NumberFormatInfo();
 nfi.NumberDecimalSeparator = ".";

 foreach (var number in log_time)
 {
 logger.Write(number.ToString(nfi));
 logger.Write(",");
 }
 logger.WriteLine();
 foreach (var number in plannedPath)
 {
 logger.Write(number.ToString(nfi));
 logger.Write(",");
 }
 logger.WriteLine();
 foreach (var number in feedbackPath)
 {
 logger.Write(number.ToString(nfi));
 logger.Write(",");
 }
 }
 loggeTimer.Stop();
 }
 log_index++;

 }

 protected override void OnFormClosing(FormClosingEventArgs e)
 {
 EGMtimer.Abort();
 timerUpdateGUI.Stop();
 timerUpdateGUI.Dispose();
 if (controller != null)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 controller.Rapid.Stop(ABB.Robotics.Controllers.RapidDomain.StopMode.Instruction);
 }
 TriggerButton.Dispose();
 GripButton.Dispose();
 MenuButton.Dispose();
 DpadButton.Dispose();
 controller.Logoff();
 controller = null;
 }
 sensor.Stop();
 base.OnFormClosing(e);

 }

 private void button2_Click(object sender, EventArgs e)
 {
 using (Mastership m = Mastership.Request(controller.Rapid))
 {
 RapidData rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "index");
 var index = (Num)rd.Value;
 rd = controller.Rapid.GetRapidData("T_ROB1", "EGM", "EGMwobj");
 WobjData wobj = (WobjData)rd.Value;
 RapidData robTargetArray = controller.Rapid.GetRapidData("T_ROB1", "EGM", "stored_path");
 RapidData timeArray = controller.Rapid.GetRapidData("T_ROB1", "EGM", "time");
 RapidData toolOnArray = controller.Rapid.GetRapidData("T_ROB1", "EGM", "triggered");
 RobTarget target;
 Num time;
 Bool toolOn;
 using (StreamWriter writer = new StreamWriter("E:/Online Teaching/testlog.txt"))
 {
 // write wobj first
 writer.Write("-1," + wobj.Uframe.Trans.X + "," + wobj.Uframe.Trans.Y + "," + wobj.Uframe.Trans.Z + ","); // position
 writer.WriteLine(wobj.Uframe.Rot.Q1 + "," + wobj.Uframe.Rot.Q2 + "," + wobj.Uframe.Rot.Q3 + "," + wobj.Uframe.Rot.Q4 + ",0");
 for (int i = 0; i < index; i++)
 {

 target = (RobTarget)robTargetArray.ReadItem(i);
 time = (Num)timeArray.ReadItem(i);
 toolOn = (Bool)toolOnArray.ReadItem(i);
 writer.Write(time.Value + "," + target.Trans.X + "," + target.Trans.Y + "," + target.Trans.Z + ",");
 writer.WriteLine(target.Rot.Q1 + "," + target.Rot.Q2 + "," + target.Rot.Q3 + "," + target.Rot.Q4 + "," + Convert.ToInt16(toolOn.Value));
 }
 }

 }
 }

 private void HapticPulseButton_Click(object sender, EventArgs e)
 {

 tracker.HapticPulse(500);
 }

 private void GetRobTargetButton_Click(object sender, EventArgs e)
 {
 RobTarget pos = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.WorkObject);
 RobTarget basePos = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.Base);
 RobTarget worldPos = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.World);
 // RobTarget toolRot = controller.MotionSystem.ActiveMechanicalUnit.GetPosition(ABB.Robotics.Controllers.MotionDomain.CoordinateSystemType.Tool);
 Console.WriteLine(pos);
 }

 private void QuaternionButton_Click(object sender, EventArgs e)
 {
 Quaternion quat1 = new Quaternion(0.152214, -0.915561, 0.332367, 0.167661);
 Quaternion quat2 = new Quaternion(0.866025, 0, 0.5, 0);
 Quaternion quat3 = quat2 * quat1;
 Quaternion quat4 = quat1 + quat2;
 quat2.Invert();
 quat4.Normalize();
 //quat3 = new Quaternion(0.612, 0.612, 0.354, 0.354); // RotRobVive new Quaternion(0.612, 0.354, 0.354, 0.612);
 //quat3.Invert();
 Console.WriteLine(quat3);
 tooldata = (ToolData)controller.MotionSystem.ActiveMechanicalUnit.Tool.Data;
 }

 private void FindRotationButton_Click(object sender, EventArgs e)

 {
 Matrix4 vive_system = Matrix4.FromThreePoint(p1, p2, p3);
 Matrix3 vive_rot = new Matrix3(vive_system);
 transform = vive_rot;
 inverseTransform = vive_rot.Inverse();

 }
 }
}

Online Teaching/GUI/TestingVive.Designer.cs

namespace GUI
{
 partial class TestingVive
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container();
 this.tableLayoutPanel1 = new System.Windows.Forms.TableLayoutPanel();
 this.tableLayoutPanel8 = new System.Windows.Forms.TableLayoutPanel();
 this.textBox26 = new System.Windows.Forms.TextBox();
 this.textBox27 = new System.Windows.Forms.TextBox();
 this.textBox28 = new System.Windows.Forms.TextBox();
 this.textBox29 = new System.Windows.Forms.TextBox();
 this.textBox30 = new System.Windows.Forms.TextBox();
 this.textRobPosX = new System.Windows.Forms.TextBox();
 this.textRobPosY = new System.Windows.Forms.TextBox();
 this.textRobPosZ = new System.Windows.Forms.TextBox();
 this.textBox34 = new System.Windows.Forms.TextBox();
 this.textBox35 = new System.Windows.Forms.TextBox();
 this.textBox36 = new System.Windows.Forms.TextBox();
 this.textBox37 = new System.Windows.Forms.TextBox();
 this.textRobOriU0 = new System.Windows.Forms.TextBox();
 this.textRobOriU1 = new System.Windows.Forms.TextBox();
 this.textRobOriU2 = new System.Windows.Forms.TextBox();
 this.textRobOriU3 = new System.Windows.Forms.TextBox();
 this.OrientRobTrackU0 = new System.Windows.Forms.TrackBar();
 this.OrientRobTrackU1 = new System.Windows.Forms.TrackBar();
 this.OrientRobTrackU2 = new System.Windows.Forms.TrackBar();
 this.OrientRobTrackU3 = new System.Windows.Forms.TrackBar();
 this.textBox17 = new System.Windows.Forms.TextBox();
 this.tableLayoutPanel2 = new System.Windows.Forms.TableLayoutPanel();
 this.textBox1 = new System.Windows.Forms.TextBox();
 this.textBox2 = new System.Windows.Forms.TextBox();
 this.textBox3 = new System.Windows.Forms.TextBox();
 this.textBox4 = new System.Windows.Forms.TextBox();
 this.textPositionX = new System.Windows.Forms.TextBox();
 this.textPositionY = new System.Windows.Forms.TextBox();
 this.textPositionZ = new System.Windows.Forms.TextBox();
 this.textBox8 = new System.Windows.Forms.TextBox();
 this.textBox9 = new System.Windows.Forms.TextBox();
 this.textOrientationW = new System.Windows.Forms.TextBox();
 this.OrientViveTrackW = new System.Windows.Forms.TrackBar();
 this.textBox7 = new System.Windows.Forms.TextBox();
 this.textBox5 = new System.Windows.Forms.TextBox();
 this.textBox6 = new System.Windows.Forms.TextBox();
 this.textOrientationX = new System.Windows.Forms.TextBox();
 this.textOrientationY = new System.Windows.Forms.TextBox();
 this.textOrientationZ = new System.Windows.Forms.TextBox();
 this.OrientViveTrackZ = new System.Windows.Forms.TrackBar();
 this.OrientViveTrackX = new System.Windows.Forms.TrackBar();
 this.OrientViveTrackY = new System.Windows.Forms.TrackBar();
 this.textBox12 = new System.Windows.Forms.TextBox();
 this.textAngleZ = new System.Windows.Forms.TextBox();
 this.textBox19 = new System.Windows.Forms.TextBox();
 this.textAngleY = new System.Windows.Forms.TextBox();
 this.textAngleX = new System.Windows.Forms.TextBox();
 this.flowLayoutPanel2 = new System.Windows.Forms.FlowLayoutPanel();
 this.tableLayoutPanel3 = new System.Windows.Forms.TableLayoutPanel();
 this.textDpadUpButton = new System.Windows.Forms.TextBox();
 this.textDpadDownButton = new System.Windows.Forms.TextBox();
 this.textBox21 = new System.Windows.Forms.TextBox();
 this.textBox20 = new System.Windows.Forms.TextBox();
 this.textBox18 = new System.Windows.Forms.TextBox();
 this.textDpadLeftButton = new System.Windows.Forms.TextBox();
 this.textBox14 = new System.Windows.Forms.TextBox();
 this.textBox11 = new System.Windows.Forms.TextBox();
 this.textTriggerButton = new System.Windows.Forms.TextBox();
 this.textGripButton = new System.Windows.Forms.TextBox();
 this.textBox15 = new System.Windows.Forms.TextBox();
 this.textMenuButton = new System.Windows.Forms.TextBox();
 this.textBox16 = new System.Windows.Forms.TextBox();
 this.textDpadRightButton = new System.Windows.Forms.TextBox();
 this.ActivityPanel = new System.Windows.Forms.Panel();
 this.textBox13 = new System.Windows.Forms.TextBox();
 this.tableLayoutPanel4 = new System.Windows.Forms.TableLayoutPanel();
 this.Koble_til_button = new System.Windows.Forms.Button();
 this.StopRapidButton = new System.Windows.Forms.Button();
 this.StartRapidButton = new System.Windows.Forms.Button();
 this.koble_fra_button = new System.Windows.Forms.Button();
 this.flowLayoutPanel1 = new System.Windows.Forms.FlowLayoutPanel();
 this.tableLayoutPanel9 = new System.Windows.Forms.TableLayoutPanel();
 this.textBox10 = new System.Windows.Forms.TextBox();
 this.SkaleringText = new System.Windows.Forms.TextBox();
 this.SkaleringTrackBar = new System.Windows.Forms.TrackBar();
 this.tableLayoutPanel7 = new System.Windows.Forms.TableLayoutPanel();
 this.radioButtonKontroll2 = new System.Windows.Forms.RadioButton();
 this.RadioButtonKontroll1 = new System.Windows.Forms.RadioButton();
 this.KjorBaneButton = new System.Windows.Forms.Button();
 this.button1 = new System.Windows.Forms.Button();
 this.button2 = new System.Windows.Forms.Button();
 this.HapticPulseButton = new System.Windows.Forms.Button();
 this.GetRobTargetButton = new System.Windows.Forms.Button();
 this.QuaternionButton = new System.Windows.Forms.Button();
 this.FindRotationButton = new System.Windows.Forms.Button();
 this.timerUpdateGUI = new System.Windows.Forms.Timer(this.components);
 this.tableLayoutPanel1.SuspendLayout();
 this.tableLayoutPanel8.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.OrientRobTrackU0)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientRobTrackU1)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientRobTrackU2)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientRobTrackU3)).BeginInit();
 this.tableLayoutPanel2.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.OrientViveTrackW)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientViveTrackZ)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientViveTrackX)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientViveTrackY)).BeginInit();
 this.flowLayoutPanel2.SuspendLayout();
 this.tableLayoutPanel3.SuspendLayout();
 this.tableLayoutPanel4.SuspendLayout();
 this.flowLayoutPanel1.SuspendLayout();
 this.tableLayoutPanel9.SuspendLayout();
 ((System.ComponentModel.ISupportInitialize)(this.SkaleringTrackBar)).BeginInit();
 this.tableLayoutPanel7.SuspendLayout();
 this.SuspendLayout();
 //
 // tableLayoutPanel1
 //
 this.tableLayoutPanel1.ColumnCount = 2;
 this.tableLayoutPanel1.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel1.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel1.Controls.Add(this.tableLayoutPanel8, 1, 0);
 this.tableLayoutPanel1.Controls.Add(this.tableLayoutPanel2, 0, 0);
 this.tableLayoutPanel1.Controls.Add(this.flowLayoutPanel2, 1, 1);
 this.tableLayoutPanel1.Controls.Add(this.flowLayoutPanel1, 0, 1);
 this.tableLayoutPanel1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel1.Location = new System.Drawing.Point(0, 0);
 this.tableLayoutPanel1.Name = "tableLayoutPanel1";
 this.tableLayoutPanel1.RowCount = 2;
 this.tableLayoutPanel1.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 66.32653F));
 this.tableLayoutPanel1.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 33.67347F));
 this.tableLayoutPanel1.Size = new System.Drawing.Size(952, 692);
 this.tableLayoutPanel1.TabIndex = 0;
 //
 // tableLayoutPanel8
 //
 this.tableLayoutPanel8.ColumnCount = 4;
 this.tableLayoutPanel8.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 15F));
 this.tableLayoutPanel8.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 15F));
 this.tableLayoutPanel8.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 70F));
 this.tableLayoutPanel8.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Absolute, 103F));
 this.tableLayoutPanel8.Controls.Add(this.textBox26, 0, 9);
 this.tableLayoutPanel8.Controls.Add(this.textBox27, 0, 1);
 this.tableLayoutPanel8.Controls.Add(this.textBox28, 0, 2);
 this.tableLayoutPanel8.Controls.Add(this.textBox29, 0, 3);
 this.tableLayoutPanel8.Controls.Add(this.textBox30, 0, 4);
 this.tableLayoutPanel8.Controls.Add(this.textRobPosX, 1, 2);
 this.tableLayoutPanel8.Controls.Add(this.textRobPosY, 1, 3);
 this.tableLayoutPanel8.Controls.Add(this.textRobPosZ, 1, 4);
 this.tableLayoutPanel8.Controls.Add(this.textBox34, 0, 5);
 this.tableLayoutPanel8.Controls.Add(this.textBox35, 0, 6);
 this.tableLayoutPanel8.Controls.Add(this.textBox36, 0, 7);
 this.tableLayoutPanel8.Controls.Add(this.textBox37, 0, 8);
 this.tableLayoutPanel8.Controls.Add(this.textRobOriU0, 1, 6);
 this.tableLayoutPanel8.Controls.Add(this.textRobOriU1, 1, 7);
 this.tableLayoutPanel8.Controls.Add(this.textRobOriU2, 1, 8);
 this.tableLayoutPanel8.Controls.Add(this.textRobOriU3, 1, 9);
 this.tableLayoutPanel8.Controls.Add(this.OrientRobTrackU0, 2, 6);
 this.tableLayoutPanel8.Controls.Add(this.OrientRobTrackU1, 2, 7);
 this.tableLayoutPanel8.Controls.Add(this.OrientRobTrackU2, 2, 8);
 this.tableLayoutPanel8.Controls.Add(this.OrientRobTrackU3, 2, 9);
 this.tableLayoutPanel8.Controls.Add(this.textBox17, 0, 0);
 this.tableLayoutPanel8.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel8.Location = new System.Drawing.Point(479, 3);
 this.tableLayoutPanel8.Name = "tableLayoutPanel8";
 this.tableLayoutPanel8.RowCount = 10;
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel8.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel8.Size = new System.Drawing.Size(470, 452);
 this.tableLayoutPanel8.TabIndex = 6;
 //
 // textBox26
 //
 this.textBox26.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox26.Location = new System.Drawing.Point(3, 396);
 this.textBox26.Name = "textBox26";
 this.textBox26.ReadOnly = true;
 this.textBox26.Size = new System.Drawing.Size(49, 20);
 this.textBox26.TabIndex = 11;
 this.textBox26.Text = "U3";
 this.textBox26.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox27
 //
 this.tableLayoutPanel8.SetColumnSpan(this.textBox27, 3);
 this.textBox27.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox27.Location = new System.Drawing.Point(3, 43);
 this.textBox27.Name = "textBox27";
 this.textBox27.ReadOnly = true;
 this.textBox27.Size = new System.Drawing.Size(360, 20);
 this.textBox27.TabIndex = 0;
 this.textBox27.Text = "Posisjon";
 this.textBox27.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox28
 //
 this.textBox28.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox28.Location = new System.Drawing.Point(3, 83);
 this.textBox28.Name = "textBox28";
 this.textBox28.ReadOnly = true;
 this.textBox28.Size = new System.Drawing.Size(49, 20);
 this.textBox28.TabIndex = 1;
 this.textBox28.Text = "X";
 this.textBox28.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox29
 //
 this.textBox29.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox29.Location = new System.Drawing.Point(3, 123);
 this.textBox29.Name = "textBox29";
 this.textBox29.ReadOnly = true;
 this.textBox29.Size = new System.Drawing.Size(49, 20);
 this.textBox29.TabIndex = 2;
 this.textBox29.Text = "Y";
 this.textBox29.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox30
 //
 this.textBox30.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox30.Location = new System.Drawing.Point(3, 163);
 this.textBox30.Name = "textBox30";
 this.textBox30.ReadOnly = true;
 this.textBox30.Size = new System.Drawing.Size(49, 20);
 this.textBox30.TabIndex = 3;
 this.textBox30.Text = "Z";
 this.textBox30.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textRobPosX
 //
 this.textRobPosX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textRobPosX.Location = new System.Drawing.Point(58, 83);
 this.textRobPosX.Name = "textRobPosX";
 this.textRobPosX.ReadOnly = true;
 this.textRobPosX.Size = new System.Drawing.Size(49, 20);
 this.textRobPosX.TabIndex = 4;
 this.textRobPosX.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textRobPosY
 //
 this.textRobPosY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textRobPosY.Location = new System.Drawing.Point(58, 123);
 this.textRobPosY.Name = "textRobPosY";
 this.textRobPosY.ReadOnly = true;
 this.textRobPosY.Size = new System.Drawing.Size(49, 20);
 this.textRobPosY.TabIndex = 5;
 this.textRobPosY.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textRobPosZ
 //
 this.textRobPosZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textRobPosZ.Location = new System.Drawing.Point(58, 163);
 this.textRobPosZ.Name = "textRobPosZ";
 this.textRobPosZ.ReadOnly = true;
 this.textRobPosZ.Size = new System.Drawing.Size(49, 20);
 this.textRobPosZ.TabIndex = 6;
 this.textRobPosZ.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox34
 //
 this.tableLayoutPanel8.SetColumnSpan(this.textBox34, 3);
 this.textBox34.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox34.Location = new System.Drawing.Point(3, 203);
 this.textBox34.Name = "textBox34";
 this.textBox34.ReadOnly = true;
 this.textBox34.Size = new System.Drawing.Size(360, 20);
 this.textBox34.TabIndex = 7;
 this.textBox34.Text = "Orientering";
 this.textBox34.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox35
 //
 this.textBox35.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox35.Location = new System.Drawing.Point(3, 243);
 this.textBox35.Name = "textBox35";
 this.textBox35.ReadOnly = true;
 this.textBox35.Size = new System.Drawing.Size(49, 20);
 this.textBox35.TabIndex = 8;
 this.textBox35.Text = "U0";
 this.textBox35.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox36
 //
 this.textBox36.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox36.Location = new System.Drawing.Point(3, 294);
 this.textBox36.Name = "textBox36";
 this.textBox36.ReadOnly = true;
 this.textBox36.Size = new System.Drawing.Size(49, 20);
 this.textBox36.TabIndex = 10;
 this.textBox36.Text = "U1";
 this.textBox36.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox37
 //
 this.textBox37.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox37.Location = new System.Drawing.Point(3, 345);
 this.textBox37.Name = "textBox37";
 this.textBox37.ReadOnly = true;
 this.textBox37.Size = new System.Drawing.Size(49, 20);
 this.textBox37.TabIndex = 9;
 this.textBox37.Text = "U2";
 this.textBox37.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textRobOriU0
 //
 this.textRobOriU0.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textRobOriU0.Location = new System.Drawing.Point(58, 243);
 this.textRobOriU0.Name = "textRobOriU0";
 this.textRobOriU0.ReadOnly = true;
 this.textRobOriU0.Size = new System.Drawing.Size(49, 20);
 this.textRobOriU0.TabIndex = 12;
 this.textRobOriU0.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textRobOriU1
 //
 this.textRobOriU1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textRobOriU1.Location = new System.Drawing.Point(58, 294);
 this.textRobOriU1.Name = "textRobOriU1";
 this.textRobOriU1.ReadOnly = true;
 this.textRobOriU1.Size = new System.Drawing.Size(49, 20);
 this.textRobOriU1.TabIndex = 13;
 this.textRobOriU1.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textRobOriU2
 //
 this.textRobOriU2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textRobOriU2.Location = new System.Drawing.Point(58, 345);
 this.textRobOriU2.Name = "textRobOriU2";
 this.textRobOriU2.ReadOnly = true;
 this.textRobOriU2.Size = new System.Drawing.Size(49, 20);
 this.textRobOriU2.TabIndex = 14;
 this.textRobOriU2.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textRobOriU3
 //
 this.textRobOriU3.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textRobOriU3.Location = new System.Drawing.Point(58, 396);
 this.textRobOriU3.Name = "textRobOriU3";
 this.textRobOriU3.ReadOnly = true;
 this.textRobOriU3.Size = new System.Drawing.Size(49, 20);
 this.textRobOriU3.TabIndex = 15;
 this.textRobOriU3.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // OrientRobTrackU0
 //
 this.OrientRobTrackU0.Dock = System.Windows.Forms.DockStyle.Fill;
 this.OrientRobTrackU0.Enabled = false;
 this.OrientRobTrackU0.Location = new System.Drawing.Point(113, 243);
 this.OrientRobTrackU0.Maximum = 1000;
 this.OrientRobTrackU0.Minimum = -1000;
 this.OrientRobTrackU0.Name = "OrientRobTrackU0";
 this.OrientRobTrackU0.Size = new System.Drawing.Size(250, 45);
 this.OrientRobTrackU0.TabIndex = 17;
 this.OrientRobTrackU0.TickFrequency = 100;
 //
 // OrientRobTrackU1
 //
 this.OrientRobTrackU1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.OrientRobTrackU1.Enabled = false;
 this.OrientRobTrackU1.Location = new System.Drawing.Point(113, 294);
 this.OrientRobTrackU1.Maximum = 1000;
 this.OrientRobTrackU1.Minimum = -1000;
 this.OrientRobTrackU1.Name = "OrientRobTrackU1";
 this.OrientRobTrackU1.Size = new System.Drawing.Size(250, 45);
 this.OrientRobTrackU1.TabIndex = 18;
 this.OrientRobTrackU1.TickFrequency = 100;
 //
 // OrientRobTrackU2
 //
 this.OrientRobTrackU2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.OrientRobTrackU2.Enabled = false;
 this.OrientRobTrackU2.Location = new System.Drawing.Point(113, 345);
 this.OrientRobTrackU2.Maximum = 1000;
 this.OrientRobTrackU2.Minimum = -1000;
 this.OrientRobTrackU2.Name = "OrientRobTrackU2";
 this.OrientRobTrackU2.Size = new System.Drawing.Size(250, 45);
 this.OrientRobTrackU2.TabIndex = 19;
 this.OrientRobTrackU2.TickFrequency = 100;
 //
 // OrientRobTrackU3
 //
 this.OrientRobTrackU3.Dock = System.Windows.Forms.DockStyle.Fill;
 this.OrientRobTrackU3.Enabled = false;
 this.OrientRobTrackU3.Location = new System.Drawing.Point(113, 396);
 this.OrientRobTrackU3.Maximum = 1000;
 this.OrientRobTrackU3.Minimum = -1000;
 this.OrientRobTrackU3.Name = "OrientRobTrackU3";
 this.OrientRobTrackU3.Size = new System.Drawing.Size(250, 53);
 this.OrientRobTrackU3.TabIndex = 20;
 this.OrientRobTrackU3.TickFrequency = 100;
 //
 // textBox17
 //
 this.tableLayoutPanel8.SetColumnSpan(this.textBox17, 3);
 this.textBox17.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox17.Location = new System.Drawing.Point(3, 3);
 this.textBox17.Name = "textBox17";
 this.textBox17.ReadOnly = true;
 this.textBox17.Size = new System.Drawing.Size(360, 20);
 this.textBox17.TabIndex = 21;
 this.textBox17.Text = "Feedback fra robot";
 this.textBox17.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // tableLayoutPanel2
 //
 this.tableLayoutPanel2.ColumnCount = 4;
 this.tableLayoutPanel2.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 15F));
 this.tableLayoutPanel2.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 15F));
 this.tableLayoutPanel2.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 70F));
 this.tableLayoutPanel2.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Absolute, 110F));
 this.tableLayoutPanel2.Controls.Add(this.textBox1, 0, 1);
 this.tableLayoutPanel2.Controls.Add(this.textBox2, 0, 2);
 this.tableLayoutPanel2.Controls.Add(this.textBox3, 0, 3);
 this.tableLayoutPanel2.Controls.Add(this.textBox4, 0, 4);
 this.tableLayoutPanel2.Controls.Add(this.textPositionX, 1, 2);
 this.tableLayoutPanel2.Controls.Add(this.textPositionY, 1, 3);
 this.tableLayoutPanel2.Controls.Add(this.textPositionZ, 1, 4);
 this.tableLayoutPanel2.Controls.Add(this.textBox8, 0, 5);
 this.tableLayoutPanel2.Controls.Add(this.textBox9, 0, 6);
 this.tableLayoutPanel2.Controls.Add(this.textOrientationW, 1, 6);
 this.tableLayoutPanel2.Controls.Add(this.OrientViveTrackW, 2, 6);
 this.tableLayoutPanel2.Controls.Add(this.textBox7, 0, 8);
 this.tableLayoutPanel2.Controls.Add(this.textBox5, 0, 7);
 this.tableLayoutPanel2.Controls.Add(this.textBox6, 0, 9);
 this.tableLayoutPanel2.Controls.Add(this.textOrientationX, 1, 7);
 this.tableLayoutPanel2.Controls.Add(this.textOrientationY, 1, 8);
 this.tableLayoutPanel2.Controls.Add(this.textOrientationZ, 1, 9);
 this.tableLayoutPanel2.Controls.Add(this.OrientViveTrackZ, 2, 9);
 this.tableLayoutPanel2.Controls.Add(this.OrientViveTrackX, 2, 7);
 this.tableLayoutPanel2.Controls.Add(this.OrientViveTrackY, 2, 8);
 this.tableLayoutPanel2.Controls.Add(this.textBox12, 0, 0);
 this.tableLayoutPanel2.Controls.Add(this.textAngleZ, 3, 8);
 this.tableLayoutPanel2.Controls.Add(this.textBox19, 3, 5);
 this.tableLayoutPanel2.Controls.Add(this.textAngleY, 3, 7);
 this.tableLayoutPanel2.Controls.Add(this.textAngleX, 3, 6);
 this.tableLayoutPanel2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel2.Location = new System.Drawing.Point(3, 3);
 this.tableLayoutPanel2.Name = "tableLayoutPanel2";
 this.tableLayoutPanel2.RowCount = 10;
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 9F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 11.5F));
 this.tableLayoutPanel2.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 20F));
 this.tableLayoutPanel2.Size = new System.Drawing.Size(470, 452);
 this.tableLayoutPanel2.TabIndex = 0;
 //
 // textBox1
 //
 this.tableLayoutPanel2.SetColumnSpan(this.textBox1, 3);
 this.textBox1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox1.Location = new System.Drawing.Point(3, 43);
 this.textBox1.Name = "textBox1";
 this.textBox1.ReadOnly = true;
 this.textBox1.Size = new System.Drawing.Size(354, 20);
 this.textBox1.TabIndex = 0;
 this.textBox1.Text = "Posisjon";
 this.textBox1.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox2
 //
 this.textBox2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox2.Location = new System.Drawing.Point(3, 83);
 this.textBox2.Name = "textBox2";
 this.textBox2.ReadOnly = true;
 this.textBox2.Size = new System.Drawing.Size(48, 20);
 this.textBox2.TabIndex = 1;
 this.textBox2.Text = "X";
 this.textBox2.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox3
 //
 this.textBox3.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox3.Location = new System.Drawing.Point(3, 123);
 this.textBox3.Name = "textBox3";
 this.textBox3.ReadOnly = true;
 this.textBox3.Size = new System.Drawing.Size(48, 20);
 this.textBox3.TabIndex = 2;
 this.textBox3.Text = "Y";
 this.textBox3.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox4
 //
 this.textBox4.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox4.Location = new System.Drawing.Point(3, 163);
 this.textBox4.Name = "textBox4";
 this.textBox4.ReadOnly = true;
 this.textBox4.Size = new System.Drawing.Size(48, 20);
 this.textBox4.TabIndex = 3;
 this.textBox4.Text = "Z";
 this.textBox4.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textPositionX
 //
 this.textPositionX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textPositionX.Location = new System.Drawing.Point(57, 83);
 this.textPositionX.Name = "textPositionX";
 this.textPositionX.ReadOnly = true;
 this.textPositionX.Size = new System.Drawing.Size(48, 20);
 this.textPositionX.TabIndex = 4;
 this.textPositionX.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textPositionY
 //
 this.textPositionY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textPositionY.Location = new System.Drawing.Point(57, 123);
 this.textPositionY.Name = "textPositionY";
 this.textPositionY.ReadOnly = true;
 this.textPositionY.Size = new System.Drawing.Size(48, 20);
 this.textPositionY.TabIndex = 5;
 this.textPositionY.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textPositionZ
 //
 this.textPositionZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textPositionZ.Location = new System.Drawing.Point(57, 163);
 this.textPositionZ.Name = "textPositionZ";
 this.textPositionZ.ReadOnly = true;
 this.textPositionZ.Size = new System.Drawing.Size(48, 20);
 this.textPositionZ.TabIndex = 6;
 this.textPositionZ.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox8
 //
 this.tableLayoutPanel2.SetColumnSpan(this.textBox8, 3);
 this.textBox8.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox8.Location = new System.Drawing.Point(3, 203);
 this.textBox8.Name = "textBox8";
 this.textBox8.ReadOnly = true;
 this.textBox8.Size = new System.Drawing.Size(354, 20);
 this.textBox8.TabIndex = 7;
 this.textBox8.Text = "Orientering";
 this.textBox8.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox9
 //
 this.textBox9.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox9.Location = new System.Drawing.Point(3, 243);
 this.textBox9.Name = "textBox9";
 this.textBox9.ReadOnly = true;
 this.textBox9.Size = new System.Drawing.Size(48, 20);
 this.textBox9.TabIndex = 11;
 this.textBox9.Text = "W";
 this.textBox9.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textOrientationW
 //
 this.textOrientationW.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textOrientationW.Location = new System.Drawing.Point(57, 243);
 this.textOrientationW.Name = "textOrientationW";
 this.textOrientationW.ReadOnly = true;
 this.textOrientationW.Size = new System.Drawing.Size(48, 20);
 this.textOrientationW.TabIndex = 15;
 this.textOrientationW.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // OrientViveTrackW
 //
 this.OrientViveTrackW.Dock = System.Windows.Forms.DockStyle.Fill;
 this.OrientViveTrackW.Enabled = false;
 this.OrientViveTrackW.Location = new System.Drawing.Point(111, 243);
 this.OrientViveTrackW.Maximum = 1000;
 this.OrientViveTrackW.Minimum = -1000;
 this.OrientViveTrackW.Name = "OrientViveTrackW";
 this.OrientViveTrackW.Size = new System.Drawing.Size(246, 45);
 this.OrientViveTrackW.TabIndex = 19;
 this.OrientViveTrackW.TickFrequency = 100;
 //
 // textBox7
 //
 this.textBox7.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox7.Location = new System.Drawing.Point(3, 345);
 this.textBox7.Name = "textBox7";
 this.textBox7.ReadOnly = true;
 this.textBox7.Size = new System.Drawing.Size(48, 20);
 this.textBox7.TabIndex = 10;
 this.textBox7.Text = "Y";
 this.textBox7.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox5
 //
 this.textBox5.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox5.Location = new System.Drawing.Point(3, 294);
 this.textBox5.Name = "textBox5";
 this.textBox5.ReadOnly = true;
 this.textBox5.Size = new System.Drawing.Size(48, 20);
 this.textBox5.TabIndex = 8;
 this.textBox5.Text = "X";
 this.textBox5.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox6
 //
 this.textBox6.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox6.Location = new System.Drawing.Point(3, 396);
 this.textBox6.Name = "textBox6";
 this.textBox6.ReadOnly = true;
 this.textBox6.Size = new System.Drawing.Size(48, 20);
 this.textBox6.TabIndex = 9;
 this.textBox6.Text = "Z";
 this.textBox6.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textOrientationX
 //
 this.textOrientationX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textOrientationX.Location = new System.Drawing.Point(57, 294);
 this.textOrientationX.Name = "textOrientationX";
 this.textOrientationX.ReadOnly = true;
 this.textOrientationX.Size = new System.Drawing.Size(48, 20);
 this.textOrientationX.TabIndex = 12;
 this.textOrientationX.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textOrientationY
 //
 this.textOrientationY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textOrientationY.Location = new System.Drawing.Point(57, 345);
 this.textOrientationY.Name = "textOrientationY";
 this.textOrientationY.ReadOnly = true;
 this.textOrientationY.Size = new System.Drawing.Size(48, 20);
 this.textOrientationY.TabIndex = 13;
 this.textOrientationY.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textOrientationZ
 //
 this.textOrientationZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textOrientationZ.Location = new System.Drawing.Point(57, 396);
 this.textOrientationZ.Name = "textOrientationZ";
 this.textOrientationZ.ReadOnly = true;
 this.textOrientationZ.Size = new System.Drawing.Size(48, 20);
 this.textOrientationZ.TabIndex = 14;
 this.textOrientationZ.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // OrientViveTrackZ
 //
 this.OrientViveTrackZ.Dock = System.Windows.Forms.DockStyle.Fill;
 this.OrientViveTrackZ.Enabled = false;
 this.OrientViveTrackZ.Location = new System.Drawing.Point(111, 396);
 this.OrientViveTrackZ.Maximum = 1000;
 this.OrientViveTrackZ.Minimum = -1000;
 this.OrientViveTrackZ.Name = "OrientViveTrackZ";
 this.OrientViveTrackZ.Size = new System.Drawing.Size(246, 53);
 this.OrientViveTrackZ.TabIndex = 18;
 this.OrientViveTrackZ.TickFrequency = 100;
 //
 // OrientViveTrackX
 //
 this.OrientViveTrackX.Dock = System.Windows.Forms.DockStyle.Fill;
 this.OrientViveTrackX.Enabled = false;
 this.OrientViveTrackX.Location = new System.Drawing.Point(111, 294);
 this.OrientViveTrackX.Maximum = 1000;
 this.OrientViveTrackX.Minimum = -1000;
 this.OrientViveTrackX.Name = "OrientViveTrackX";
 this.OrientViveTrackX.Size = new System.Drawing.Size(246, 45);
 this.OrientViveTrackX.TabIndex = 16;
 this.OrientViveTrackX.TickFrequency = 100;
 //
 // OrientViveTrackY
 //
 this.OrientViveTrackY.Dock = System.Windows.Forms.DockStyle.Fill;
 this.OrientViveTrackY.Enabled = false;
 this.OrientViveTrackY.Location = new System.Drawing.Point(111, 345);
 this.OrientViveTrackY.Maximum = 1000;
 this.OrientViveTrackY.Minimum = -1000;
 this.OrientViveTrackY.Name = "OrientViveTrackY";
 this.OrientViveTrackY.Size = new System.Drawing.Size(246, 45);
 this.OrientViveTrackY.TabIndex = 17;
 this.OrientViveTrackY.TickFrequency = 100;
 //
 // textBox12
 //
 this.tableLayoutPanel2.SetColumnSpan(this.textBox12, 3);
 this.textBox12.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox12.Location = new System.Drawing.Point(3, 3);
 this.textBox12.Name = "textBox12";
 this.textBox12.ReadOnly = true;
 this.textBox12.Size = new System.Drawing.Size(354, 20);
 this.textBox12.TabIndex = 20;
 this.textBox12.Text = "Fra Vive-kontroll";
 this.textBox12.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textAngleZ
 //
 this.textAngleZ.Location = new System.Drawing.Point(363, 345);
 this.textAngleZ.Name = "textAngleZ";
 this.textAngleZ.ReadOnly = true;
 this.textAngleZ.Size = new System.Drawing.Size(87, 20);
 this.textAngleZ.TabIndex = 25;
 //
 // textBox19
 //
 this.textBox19.Location = new System.Drawing.Point(363, 203);
 this.textBox19.Name = "textBox19";
 this.textBox19.ReadOnly = true;
 this.textBox19.Size = new System.Drawing.Size(95, 20);
 this.textBox19.TabIndex = 22;
 this.textBox19.Text = "Euler vinkler (X,Y,Z)";
 //
 // textAngleY
 //
 this.textAngleY.Location = new System.Drawing.Point(363, 294);
 this.textAngleY.Name = "textAngleY";
 this.textAngleY.ReadOnly = true;
 this.textAngleY.Size = new System.Drawing.Size(87, 20);
 this.textAngleY.TabIndex = 24;
 //
 // textAngleX
 //
 this.textAngleX.Location = new System.Drawing.Point(363, 243);
 this.textAngleX.Name = "textAngleX";
 this.textAngleX.ReadOnly = true;
 this.textAngleX.Size = new System.Drawing.Size(87, 20);
 this.textAngleX.TabIndex = 23;
 //
 // flowLayoutPanel2
 //
 this.flowLayoutPanel2.Controls.Add(this.tableLayoutPanel3);
 this.flowLayoutPanel2.Controls.Add(this.tableLayoutPanel4);
 this.flowLayoutPanel2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.flowLayoutPanel2.Location = new System.Drawing.Point(479, 461);
 this.flowLayoutPanel2.Name = "flowLayoutPanel2";
 this.flowLayoutPanel2.Size = new System.Drawing.Size(470, 228);
 this.flowLayoutPanel2.TabIndex = 4;
 //
 // tableLayoutPanel3
 //
 this.tableLayoutPanel3.ColumnCount = 2;
 this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel3.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel3.Controls.Add(this.textDpadUpButton, 0, 5);
 this.tableLayoutPanel3.Controls.Add(this.textDpadDownButton, 0, 6);
 this.tableLayoutPanel3.Controls.Add(this.textBox21, 0, 5);
 this.tableLayoutPanel3.Controls.Add(this.textBox20, 0, 6);
 this.tableLayoutPanel3.Controls.Add(this.textBox18, 0, 4);
 this.tableLayoutPanel3.Controls.Add(this.textDpadLeftButton, 1, 4);
 this.tableLayoutPanel3.Controls.Add(this.textBox14, 0, 7);
 this.tableLayoutPanel3.Controls.Add(this.textBox11, 0, 0);
 this.tableLayoutPanel3.Controls.Add(this.textTriggerButton, 1, 0);
 this.tableLayoutPanel3.Controls.Add(this.textGripButton, 1, 1);
 this.tableLayoutPanel3.Controls.Add(this.textBox15, 0, 2);
 this.tableLayoutPanel3.Controls.Add(this.textMenuButton, 1, 2);
 this.tableLayoutPanel3.Controls.Add(this.textBox16, 0, 3);
 this.tableLayoutPanel3.Controls.Add(this.textDpadRightButton, 1, 3);
 this.tableLayoutPanel3.Controls.Add(this.ActivityPanel, 1, 7);
 this.tableLayoutPanel3.Controls.Add(this.textBox13, 0, 1);
 this.tableLayoutPanel3.Location = new System.Drawing.Point(3, 3);
 this.tableLayoutPanel3.Name = "tableLayoutPanel3";
 this.tableLayoutPanel3.RowCount = 8;
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 20F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 20F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 20F));
 this.tableLayoutPanel3.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 20F));
 this.tableLayoutPanel3.Size = new System.Drawing.Size(123, 196);
 this.tableLayoutPanel3.TabIndex = 3;
 //
 // textDpadUpButton
 //
 this.textDpadUpButton.BackColor = System.Drawing.Color.Red;
 this.textDpadUpButton.Location = new System.Drawing.Point(64, 138);
 this.textDpadUpButton.Name = "textDpadUpButton";
 this.textDpadUpButton.ReadOnly = true;
 this.textDpadUpButton.Size = new System.Drawing.Size(38, 20);
 this.textDpadUpButton.TabIndex = 34;
 this.textDpadUpButton.Text = "false";
 this.textDpadUpButton.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textDpadDownButton
 //
 this.textDpadDownButton.BackColor = System.Drawing.Color.Red;
 this.textDpadDownButton.Location = new System.Drawing.Point(64, 158);
 this.textDpadDownButton.Name = "textDpadDownButton";
 this.textDpadDownButton.ReadOnly = true;
 this.textDpadDownButton.Size = new System.Drawing.Size(38, 20);
 this.textDpadDownButton.TabIndex = 33;
 this.textDpadDownButton.Text = "false";
 this.textDpadDownButton.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox21
 //
 this.textBox21.Location = new System.Drawing.Point(3, 138);
 this.textBox21.Name = "textBox21";
 this.textBox21.ReadOnly = true;
 this.textBox21.Size = new System.Drawing.Size(55, 20);
 this.textBox21.TabIndex = 32;
 this.textBox21.Text = "D-pad Up";
 this.textBox21.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox20
 //
 this.textBox20.Location = new System.Drawing.Point(3, 158);
 this.textBox20.Name = "textBox20";
 this.textBox20.ReadOnly = true;
 this.textBox20.Size = new System.Drawing.Size(55, 20);
 this.textBox20.TabIndex = 31;
 this.textBox20.Text = "D-pad Down";
 this.textBox20.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox18
 //
 this.textBox18.Location = new System.Drawing.Point(3, 111);
 this.textBox18.Name = "textBox18";
 this.textBox18.ReadOnly = true;
 this.textBox18.Size = new System.Drawing.Size(55, 20);
 this.textBox18.TabIndex = 30;
 this.textBox18.Text = "D-pad Left";
 this.textBox18.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textDpadLeftButton
 //
 this.textDpadLeftButton.BackColor = System.Drawing.Color.Red;
 this.textDpadLeftButton.Location = new System.Drawing.Point(64, 111);
 this.textDpadLeftButton.Name = "textDpadLeftButton";
 this.textDpadLeftButton.ReadOnly = true;
 this.textDpadLeftButton.Size = new System.Drawing.Size(38, 20);
 this.textDpadLeftButton.TabIndex = 29;
 this.textDpadLeftButton.Text = "false";
 this.textDpadLeftButton.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox14
 //
 this.textBox14.Location = new System.Drawing.Point(3, 178);
 this.textBox14.Name = "textBox14";
 this.textBox14.ReadOnly = true;
 this.textBox14.Size = new System.Drawing.Size(55, 20);
 this.textBox14.TabIndex = 27;
 this.textBox14.Text = "Status";
 this.textBox14.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox11
 //
 this.textBox11.Location = new System.Drawing.Point(3, 3);
 this.textBox11.Name = "textBox11";
 this.textBox11.ReadOnly = true;
 this.textBox11.Size = new System.Drawing.Size(55, 20);
 this.textBox11.TabIndex = 16;
 this.textBox11.Text = "Trigger";
 this.textBox11.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textTriggerButton
 //
 this.textTriggerButton.BackColor = System.Drawing.Color.Red;
 this.textTriggerButton.Location = new System.Drawing.Point(64, 3);
 this.textTriggerButton.Name = "textTriggerButton";
 this.textTriggerButton.ReadOnly = true;
 this.textTriggerButton.Size = new System.Drawing.Size(38, 20);
 this.textTriggerButton.TabIndex = 17;
 this.textTriggerButton.Text = "false";
 this.textTriggerButton.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textGripButton
 //
 this.textGripButton.BackColor = System.Drawing.Color.Red;
 this.textGripButton.Location = new System.Drawing.Point(64, 30);
 this.textGripButton.Name = "textGripButton";
 this.textGripButton.ReadOnly = true;
 this.textGripButton.Size = new System.Drawing.Size(38, 20);
 this.textGripButton.TabIndex = 18;
 this.textGripButton.Text = "false";
 this.textGripButton.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox15
 //
 this.textBox15.Location = new System.Drawing.Point(3, 57);
 this.textBox15.Name = "textBox15";
 this.textBox15.ReadOnly = true;
 this.textBox15.Size = new System.Drawing.Size(55, 20);
 this.textBox15.TabIndex = 22;
 this.textBox15.Text = "Meny";
 this.textBox15.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textMenuButton
 //
 this.textMenuButton.BackColor = System.Drawing.Color.Red;
 this.textMenuButton.Location = new System.Drawing.Point(64, 57);
 this.textMenuButton.Name = "textMenuButton";
 this.textMenuButton.ReadOnly = true;
 this.textMenuButton.Size = new System.Drawing.Size(38, 20);
 this.textMenuButton.TabIndex = 23;
 this.textMenuButton.Text = "false";
 this.textMenuButton.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textBox16
 //
 this.textBox16.Location = new System.Drawing.Point(3, 84);
 this.textBox16.Name = "textBox16";
 this.textBox16.ReadOnly = true;
 this.textBox16.Size = new System.Drawing.Size(55, 20);
 this.textBox16.TabIndex = 25;
 this.textBox16.Text = "D-pad Right";
 this.textBox16.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // textDpadRightButton
 //
 this.textDpadRightButton.BackColor = System.Drawing.Color.Red;
 this.textDpadRightButton.Location = new System.Drawing.Point(64, 84);
 this.textDpadRightButton.Name = "textDpadRightButton";
 this.textDpadRightButton.ReadOnly = true;
 this.textDpadRightButton.Size = new System.Drawing.Size(38, 20);
 this.textDpadRightButton.TabIndex = 24;
 this.textDpadRightButton.Text = "false";
 this.textDpadRightButton.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // ActivityPanel
 //
 this.ActivityPanel.BackColor = System.Drawing.Color.Black;
 this.ActivityPanel.Dock = System.Windows.Forms.DockStyle.Fill;
 this.ActivityPanel.Location = new System.Drawing.Point(64, 178);
 this.ActivityPanel.Name = "ActivityPanel";
 this.ActivityPanel.Size = new System.Drawing.Size(56, 15);
 this.ActivityPanel.TabIndex = 28;
 //
 // textBox13
 //
 this.textBox13.Location = new System.Drawing.Point(3, 30);
 this.textBox13.Name = "textBox13";
 this.textBox13.ReadOnly = true;
 this.textBox13.Size = new System.Drawing.Size(55, 20);
 this.textBox13.TabIndex = 19;
 this.textBox13.Text = "Grip";
 this.textBox13.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // tableLayoutPanel4
 //
 this.tableLayoutPanel4.ColumnCount = 2;
 this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel4.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel4.Controls.Add(this.Koble_til_button, 0, 0);
 this.tableLayoutPanel4.Controls.Add(this.StopRapidButton, 1, 1);
 this.tableLayoutPanel4.Controls.Add(this.StartRapidButton, 0, 1);
 this.tableLayoutPanel4.Controls.Add(this.koble_fra_button, 1, 0);
 this.tableLayoutPanel4.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel4.Location = new System.Drawing.Point(132, 3);
 this.tableLayoutPanel4.Name = "tableLayoutPanel4";
 this.tableLayoutPanel4.RowCount = 2;
 this.tableLayoutPanel4.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel4.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel4.Size = new System.Drawing.Size(200, 196);
 this.tableLayoutPanel4.TabIndex = 4;
 //
 // Koble_til_button
 //
 this.Koble_til_button.Dock = System.Windows.Forms.DockStyle.Fill;
 this.Koble_til_button.Location = new System.Drawing.Point(3, 3);
 this.Koble_til_button.Name = "Koble_til_button";
 this.Koble_til_button.Size = new System.Drawing.Size(94, 92);
 this.Koble_til_button.TabIndex = 0;
 this.Koble_til_button.Text = "Koble til Vive";
 this.Koble_til_button.UseVisualStyleBackColor = true;
 this.Koble_til_button.Click += new System.EventHandler(this.Koble_til_button_Click);
 //
 // StopRapidButton
 //
 this.StopRapidButton.Dock = System.Windows.Forms.DockStyle.Fill;
 this.StopRapidButton.Location = new System.Drawing.Point(103, 101);
 this.StopRapidButton.Name = "StopRapidButton";
 this.StopRapidButton.Size = new System.Drawing.Size(94, 92);
 this.StopRapidButton.TabIndex = 5;
 this.StopRapidButton.Text = "Stopp Rapid";
 this.StopRapidButton.UseVisualStyleBackColor = true;
 this.StopRapidButton.Click += new System.EventHandler(this.StopRapidButton_Click);
 //
 // StartRapidButton
 //
 this.StartRapidButton.Dock = System.Windows.Forms.DockStyle.Fill;
 this.StartRapidButton.Location = new System.Drawing.Point(3, 101);
 this.StartRapidButton.Name = "StartRapidButton";
 this.StartRapidButton.Size = new System.Drawing.Size(94, 92);
 this.StartRapidButton.TabIndex = 4;
 this.StartRapidButton.Text = "Start Rapid";
 this.StartRapidButton.UseVisualStyleBackColor = true;
 this.StartRapidButton.Click += new System.EventHandler(this.StartRapidButton_Click);
 //
 // koble_fra_button
 //
 this.koble_fra_button.Dock = System.Windows.Forms.DockStyle.Fill;
 this.koble_fra_button.Location = new System.Drawing.Point(103, 3);
 this.koble_fra_button.Name = "koble_fra_button";
 this.koble_fra_button.Size = new System.Drawing.Size(94, 92);
 this.koble_fra_button.TabIndex = 1;
 this.koble_fra_button.Text = "Koble fra Vive";
 this.koble_fra_button.UseVisualStyleBackColor = true;
 this.koble_fra_button.Click += new System.EventHandler(this.koble_fra_button_Click);
 //
 // flowLayoutPanel1
 //
 this.flowLayoutPanel1.Controls.Add(this.tableLayoutPanel9);
 this.flowLayoutPanel1.Controls.Add(this.tableLayoutPanel7);
 this.flowLayoutPanel1.Controls.Add(this.KjorBaneButton);
 this.flowLayoutPanel1.Controls.Add(this.button1);
 this.flowLayoutPanel1.Controls.Add(this.button2);
 this.flowLayoutPanel1.Controls.Add(this.HapticPulseButton);
 this.flowLayoutPanel1.Controls.Add(this.GetRobTargetButton);
 this.flowLayoutPanel1.Controls.Add(this.QuaternionButton);
 this.flowLayoutPanel1.Controls.Add(this.FindRotationButton);
 this.flowLayoutPanel1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.flowLayoutPanel1.Location = new System.Drawing.Point(3, 461);
 this.flowLayoutPanel1.Name = "flowLayoutPanel1";
 this.flowLayoutPanel1.Size = new System.Drawing.Size(470, 228);
 this.flowLayoutPanel1.TabIndex = 7;
 //
 // tableLayoutPanel9
 //
 this.tableLayoutPanel9.ColumnCount = 2;
 this.tableLayoutPanel9.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 12.5F));
 this.tableLayoutPanel9.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 87.5F));
 this.tableLayoutPanel9.Controls.Add(this.textBox10, 0, 0);
 this.tableLayoutPanel9.Controls.Add(this.SkaleringText, 0, 1);
 this.tableLayoutPanel9.Controls.Add(this.SkaleringTrackBar, 1, 1);
 this.tableLayoutPanel9.Location = new System.Drawing.Point(3, 3);
 this.tableLayoutPanel9.Name = "tableLayoutPanel9";
 this.tableLayoutPanel9.RowCount = 2;
 this.tableLayoutPanel9.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel9.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel9.Size = new System.Drawing.Size(302, 47);
 this.tableLayoutPanel9.TabIndex = 6;
 //
 // textBox10
 //
 this.tableLayoutPanel9.SetColumnSpan(this.textBox10, 2);
 this.textBox10.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBox10.Location = new System.Drawing.Point(3, 3);
 this.textBox10.Name = "textBox10";
 this.textBox10.ReadOnly = true;
 this.textBox10.Size = new System.Drawing.Size(296, 20);
 this.textBox10.TabIndex = 0;
 this.textBox10.Text = "Skalering";
 this.textBox10.TextAlign = System.Windows.Forms.HorizontalAlignment.Center;
 //
 // SkaleringText
 //
 this.SkaleringText.Dock = System.Windows.Forms.DockStyle.Fill;
 this.SkaleringText.Location = new System.Drawing.Point(3, 26);
 this.SkaleringText.Name = "SkaleringText";
 this.SkaleringText.ReadOnly = true;
 this.SkaleringText.Size = new System.Drawing.Size(31, 20);
 this.SkaleringText.TabIndex = 1;
 this.SkaleringText.Text = "1";
 //
 // SkaleringTrackBar
 //
 this.SkaleringTrackBar.Dock = System.Windows.Forms.DockStyle.Fill;
 this.SkaleringTrackBar.Location = new System.Drawing.Point(40, 26);
 this.SkaleringTrackBar.Minimum = 1;
 this.SkaleringTrackBar.Name = "SkaleringTrackBar";
 this.SkaleringTrackBar.Size = new System.Drawing.Size(259, 18);
 this.SkaleringTrackBar.TabIndex = 2;
 this.SkaleringTrackBar.Value = 1;
 this.SkaleringTrackBar.Scroll += new System.EventHandler(this.SkaleringTrackBar_Scroll);
 //
 // tableLayoutPanel7
 //
 this.tableLayoutPanel7.ColumnCount = 1;
 this.tableLayoutPanel7.ColumnStyles.Add(new System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 100F));
 this.tableLayoutPanel7.Controls.Add(this.radioButtonKontroll2, 0, 1);
 this.tableLayoutPanel7.Controls.Add(this.RadioButtonKontroll1, 0, 0);
 this.tableLayoutPanel7.Location = new System.Drawing.Point(311, 3);
 this.tableLayoutPanel7.Name = "tableLayoutPanel7";
 this.tableLayoutPanel7.RowCount = 2;
 this.tableLayoutPanel7.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel7.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel7.RowStyles.Add(new System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Absolute, 20F));
 this.tableLayoutPanel7.Size = new System.Drawing.Size(78, 47);
 this.tableLayoutPanel7.TabIndex = 3;
 //
 // radioButtonKontroll2
 //
 this.radioButtonKontroll2.AutoSize = true;
 this.radioButtonKontroll2.Dock = System.Windows.Forms.DockStyle.Fill;
 this.radioButtonKontroll2.Location = new System.Drawing.Point(3, 26);
 this.radioButtonKontroll2.Name = "radioButtonKontroll2";
 this.radioButtonKontroll2.Size = new System.Drawing.Size(72, 18);
 this.radioButtonKontroll2.TabIndex = 3;
 this.radioButtonKontroll2.Text = "Kontroll 2";
 this.radioButtonKontroll2.UseVisualStyleBackColor = true;
 this.radioButtonKontroll2.CheckedChanged += new System.EventHandler(this.radioButtonKontroll2_CheckedChanged);
 //
 // RadioButtonKontroll1
 //
 this.RadioButtonKontroll1.AutoSize = true;
 this.RadioButtonKontroll1.Checked = true;
 this.RadioButtonKontroll1.Dock = System.Windows.Forms.DockStyle.Fill;
 this.RadioButtonKontroll1.Location = new System.Drawing.Point(3, 3);
 this.RadioButtonKontroll1.Name = "RadioButtonKontroll1";
 this.RadioButtonKontroll1.Size = new System.Drawing.Size(72, 17);
 this.RadioButtonKontroll1.TabIndex = 2;
 this.RadioButtonKontroll1.TabStop = true;
 this.RadioButtonKontroll1.Text = "Kontroll 1";
 this.RadioButtonKontroll1.UseVisualStyleBackColor = true;
 this.RadioButtonKontroll1.CheckedChanged += new System.EventHandler(this.RadioButtonKontroll1_CheckedChanged);
 //
 // KjorBaneButton
 //
 this.KjorBaneButton.Dock = System.Windows.Forms.DockStyle.Fill;
 this.KjorBaneButton.Location = new System.Drawing.Point(3, 56);
 this.KjorBaneButton.Name = "KjorBaneButton";
 this.KjorBaneButton.Size = new System.Drawing.Size(117, 47);
 this.KjorBaneButton.TabIndex = 6;
 this.KjorBaneButton.Text = "Kjør lagret bane";
 this.KjorBaneButton.UseVisualStyleBackColor = true;
 this.KjorBaneButton.Click += new System.EventHandler(this.KjorBaneButton_Click);
 //
 // button1
 //
 this.button1.Location = new System.Drawing.Point(126, 56);
 this.button1.Name = "button1";
 this.button1.Size = new System.Drawing.Size(92, 47);
 this.button1.TabIndex = 7;
 this.button1.Text = "Start logging";
 this.button1.UseVisualStyleBackColor = true;
 this.button1.Click += new System.EventHandler(this.Start_logging_Click);
 //
 // button2
 //
 this.button2.Location = new System.Drawing.Point(224, 56);
 this.button2.Name = "button2";
 this.button2.Size = new System.Drawing.Size(107, 23);
 this.button2.TabIndex = 8;
 this.button2.Text = "Save Recording";
 this.button2.UseVisualStyleBackColor = true;
 this.button2.Click += new System.EventHandler(this.button2_Click);
 //
 // HapticPulseButton
 //
 this.HapticPulseButton.Location = new System.Drawing.Point(337, 56);
 this.HapticPulseButton.Name = "HapticPulseButton";
 this.HapticPulseButton.Size = new System.Drawing.Size(75, 23);
 this.HapticPulseButton.TabIndex = 9;
 this.HapticPulseButton.Text = "Haptic Pulse";
 this.HapticPulseButton.UseVisualStyleBackColor = true;
 this.HapticPulseButton.Click += new System.EventHandler(this.HapticPulseButton_Click);
 //
 // GetRobTargetButton
 //
 this.GetRobTargetButton.Location = new System.Drawing.Point(3, 109);
 this.GetRobTargetButton.Name = "GetRobTargetButton";
 this.GetRobTargetButton.Size = new System.Drawing.Size(86, 23);
 this.GetRobTargetButton.TabIndex = 10;
 this.GetRobTargetButton.Text = "Get robtarget";
 this.GetRobTargetButton.UseVisualStyleBackColor = true;
 this.GetRobTargetButton.Click += new System.EventHandler(this.GetRobTargetButton_Click);
 //
 // QuaternionButton
 //
 this.QuaternionButton.Location = new System.Drawing.Point(95, 109);
 this.QuaternionButton.Name = "QuaternionButton";
 this.QuaternionButton.Size = new System.Drawing.Size(75, 23);
 this.QuaternionButton.TabIndex = 11;
 this.QuaternionButton.Text = "Quaternion";
 this.QuaternionButton.UseVisualStyleBackColor = true;
 this.QuaternionButton.Click += new System.EventHandler(this.QuaternionButton_Click);
 //
 // FindRotationButton
 //
 this.FindRotationButton.Location = new System.Drawing.Point(176, 109);
 this.FindRotationButton.Name = "FindRotationButton";
 this.FindRotationButton.Size = new System.Drawing.Size(129, 23);
 this.FindRotationButton.TabIndex = 12;
 this.FindRotationButton.Text = "Find rotation quaternion";
 this.FindRotationButton.UseVisualStyleBackColor = true;
 this.FindRotationButton.Click += new System.EventHandler(this.FindRotationButton_Click);
 //
 // timerUpdateGUI
 //
 this.timerUpdateGUI.Enabled = true;
 this.timerUpdateGUI.Tick += new System.EventHandler(this.timerUpdateGUI_Tick);
 //
 // TestingVive
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(952, 692);
 this.Controls.Add(this.tableLayoutPanel1);
 this.Name = "TestingVive";
 this.Text = "3D-pantograf";
 this.tableLayoutPanel1.ResumeLayout(false);
 this.tableLayoutPanel8.ResumeLayout(false);
 this.tableLayoutPanel8.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.OrientRobTrackU0)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientRobTrackU1)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientRobTrackU2)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientRobTrackU3)).EndInit();
 this.tableLayoutPanel2.ResumeLayout(false);
 this.tableLayoutPanel2.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.OrientViveTrackW)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientViveTrackZ)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientViveTrackX)).EndInit();
 ((System.ComponentModel.ISupportInitialize)(this.OrientViveTrackY)).EndInit();
 this.flowLayoutPanel2.ResumeLayout(false);
 this.tableLayoutPanel3.ResumeLayout(false);
 this.tableLayoutPanel3.PerformLayout();
 this.tableLayoutPanel4.ResumeLayout(false);
 this.flowLayoutPanel1.ResumeLayout(false);
 this.tableLayoutPanel9.ResumeLayout(false);
 this.tableLayoutPanel9.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.SkaleringTrackBar)).EndInit();
 this.tableLayoutPanel7.ResumeLayout(false);
 this.tableLayoutPanel7.PerformLayout();
 this.ResumeLayout(false);

 }

 #endregion

 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel1;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel2;
 private System.Windows.Forms.TextBox textBox1;
 private System.Windows.Forms.TextBox textBox2;
 private System.Windows.Forms.TextBox textBox3;
 private System.Windows.Forms.TextBox textBox4;
 private System.Windows.Forms.TextBox textPositionX;
 private System.Windows.Forms.TextBox textPositionY;
 private System.Windows.Forms.TextBox textPositionZ;
 private System.Windows.Forms.TextBox textBox8;
 private System.Windows.Forms.TextBox textBox5;
 private System.Windows.Forms.TextBox textBox9;
 private System.Windows.Forms.TextBox textBox7;
 private System.Windows.Forms.TextBox textBox6;
 private System.Windows.Forms.TextBox textOrientationX;
 private System.Windows.Forms.TextBox textOrientationY;
 private System.Windows.Forms.TextBox textOrientationZ;
 private System.Windows.Forms.TextBox textOrientationW;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel3;
 private System.Windows.Forms.TextBox textBox11;
 private System.Windows.Forms.TextBox textTriggerButton;
 private System.Windows.Forms.TextBox textBox13;
 private System.Windows.Forms.TextBox textGripButton;
 private System.Windows.Forms.TextBox textBox15;
 private System.Windows.Forms.TextBox textBox16;
 private System.Windows.Forms.TextBox textDpadRightButton;
 private System.Windows.Forms.TextBox textMenuButton;
 private System.Windows.Forms.TextBox textBox14;
 private System.Windows.Forms.Panel ActivityPanel;
 private System.Windows.Forms.Timer timerUpdateGUI;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel8;
 private System.Windows.Forms.TextBox textBox26;
 private System.Windows.Forms.TextBox textBox27;
 private System.Windows.Forms.TextBox textBox28;
 private System.Windows.Forms.TextBox textBox29;
 private System.Windows.Forms.TextBox textBox30;
 private System.Windows.Forms.TextBox textRobPosX;
 private System.Windows.Forms.TextBox textRobPosY;
 private System.Windows.Forms.TextBox textRobPosZ;
 private System.Windows.Forms.TextBox textBox34;
 private System.Windows.Forms.TextBox textBox35;
 private System.Windows.Forms.TextBox textBox36;
 private System.Windows.Forms.TextBox textBox37;
 private System.Windows.Forms.TextBox textRobOriU0;
 private System.Windows.Forms.TextBox textRobOriU1;
 private System.Windows.Forms.TextBox textRobOriU2;
 private System.Windows.Forms.TextBox textRobOriU3;
 private System.Windows.Forms.TrackBar OrientViveTrackX;
 private System.Windows.Forms.TrackBar OrientViveTrackY;
 private System.Windows.Forms.TrackBar OrientViveTrackZ;
 private System.Windows.Forms.TrackBar OrientViveTrackW;
 private System.Windows.Forms.TrackBar OrientRobTrackU0;
 private System.Windows.Forms.TrackBar OrientRobTrackU1;
 private System.Windows.Forms.TrackBar OrientRobTrackU2;
 private System.Windows.Forms.TrackBar OrientRobTrackU3;
 private System.Windows.Forms.TextBox textBox12;
 private System.Windows.Forms.TextBox textBox17;
 private System.Windows.Forms.FlowLayoutPanel flowLayoutPanel2;
 private System.Windows.Forms.Button Koble_til_button;
 private System.Windows.Forms.Button koble_fra_button;
 private System.Windows.Forms.Button StartRapidButton;
 private System.Windows.Forms.Button StopRapidButton;
 private System.Windows.Forms.Button KjorBaneButton;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel9;
 private System.Windows.Forms.TextBox textBox10;
 private System.Windows.Forms.TextBox SkaleringText;
 private System.Windows.Forms.TrackBar SkaleringTrackBar;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel7;
 private System.Windows.Forms.RadioButton radioButtonKontroll2;
 private System.Windows.Forms.RadioButton RadioButtonKontroll1;
 private System.Windows.Forms.FlowLayoutPanel flowLayoutPanel1;
 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel4;
 private System.Windows.Forms.Button button1;
 private System.Windows.Forms.TextBox textDpadUpButton;
 private System.Windows.Forms.TextBox textDpadDownButton;
 private System.Windows.Forms.TextBox textBox21;
 private System.Windows.Forms.TextBox textBox20;
 private System.Windows.Forms.TextBox textBox18;
 private System.Windows.Forms.TextBox textDpadLeftButton;
 private System.Windows.Forms.Button button2;
 private System.Windows.Forms.Button HapticPulseButton;
 private System.Windows.Forms.Button GetRobTargetButton;
 private System.Windows.Forms.Button QuaternionButton;
 private System.Windows.Forms.Button FindRotationButton;
 private System.Windows.Forms.TextBox textAngleZ;
 private System.Windows.Forms.TextBox textBox19;
 private System.Windows.Forms.TextBox textAngleY;
 private System.Windows.Forms.TextBox textAngleX;
 }
}

Online Teaching/GUI/TestingVive.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 120, 17

 67

Online Teaching/GUI/Workobject.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using Vive;
using ABB.Robotics.Controllers.RapidDomain;
using ABB.Robotics.Controllers;
using ABB.Robotics.Math;
using MicroLibrary;

namespace GUI
{
 public partial class Workobject : Form
 {
 public Vector3 P1 = new Vector3(0, 0, 0);
 public Vector3 P2 = new Vector3(0, 0, 0);
 public Vector3 P3 = new Vector3(0, 0, 0);
 public ViveTracker tracker;
 public MicroTimer EGMtimer;
 public delegate void GetInfoVive();
 public GetInfoVive GetInfoViveDelegate;

 public Workobject()
 {
 InitializeComponent();

 tracker = new ViveTracker(1);
 tracker.Initialize();

 GetInfoViveDelegate = new GetInfoVive(GetInfoViveMethod);

 EGMtimer = new MicroTimer(10000);
 EGMtimer.MicroTimerElapsed += new MicroLibrary.MicroTimer.MicroTimerElapsedEventHandler(EGMTimedEvent);
 EGMtimer.Start();
 }

 private void EGMTimedEvent(object sender,
 MicroLibrary.MicroTimerEventArgs timerEventArgs)
 {
 this.Invoke(GetInfoViveDelegate);
 }

 private void GetInfoViveMethod()
 {

 bool trigger = tracker.Data.ButtonPressed._trigger;

 tracker.UpdateData();

 if (trigger != tracker.Data.ButtonPressed._trigger)
 {

 if (tracker.Data.ButtonPressed._trigger == true)
 {
 if (P1.x == 0)
 {
 P1 = tracker.Data.Position;
 P1Box.Text = P1.ToString();
 return;
 }
 if (P2.x == 0)
 {
 P2 = tracker.Data.Position;
 P2Box.Text = P2.ToString();
 return;
 }
 if (P3.x == 0)
 {
 P3 = tracker.Data.Position;
 P3Box.Text = P3.ToString();
 WobjButton.Enabled = true;
 EGMtimer.Stop();
 return;
 }

 }
 }
 }

 private void WobjButton_Click(object sender, EventArgs e)
 {

 Mainform.staticMatrix4 = Matrix4.FromThreePoint(P1, P2, P3);
 Matrix3 rot = new Matrix3(Mainform.staticMatrix4);
 Mainform.staticMatrix3 = rot.Inverse();
 Close();
 }
 }
}

Online Teaching/GUI/Workobject.Designer.cs

namespace GUI
{
 partial class Workobject
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.label1 = new System.Windows.Forms.Label();
 this.label2 = new System.Windows.Forms.Label();
 this.label3 = new System.Windows.Forms.Label();
 this.P1Box = new System.Windows.Forms.TextBox();
 this.P2Box = new System.Windows.Forms.TextBox();
 this.P3Box = new System.Windows.Forms.TextBox();
 this.WobjButton = new System.Windows.Forms.Button();
 this.SuspendLayout();
 //
 // label1
 //
 this.label1.AutoSize = true;
 this.label1.Location = new System.Drawing.Point(12, 12);
 this.label1.Name = "label1";
 this.label1.Size = new System.Drawing.Size(20, 13);
 this.label1.TabIndex = 0;
 this.label1.Text = "P1";
 //
 // label2
 //
 this.label2.AutoSize = true;
 this.label2.Location = new System.Drawing.Point(13, 34);
 this.label2.Name = "label2";
 this.label2.Size = new System.Drawing.Size(20, 13);
 this.label2.TabIndex = 1;
 this.label2.Text = "P2";
 //
 // label3
 //
 this.label3.AutoSize = true;
 this.label3.Location = new System.Drawing.Point(12, 56);
 this.label3.Name = "label3";
 this.label3.Size = new System.Drawing.Size(20, 13);
 this.label3.TabIndex = 2;
 this.label3.Text = "P3";
 //
 // P1Box
 //
 this.P1Box.Location = new System.Drawing.Point(39, 9);
 this.P1Box.Name = "P1Box";
 this.P1Box.ReadOnly = true;
 this.P1Box.Size = new System.Drawing.Size(394, 20);
 this.P1Box.TabIndex = 3;
 //
 // P2Box
 //
 this.P2Box.Location = new System.Drawing.Point(39, 31);
 this.P2Box.Name = "P2Box";
 this.P2Box.ReadOnly = true;
 this.P2Box.Size = new System.Drawing.Size(394, 20);
 this.P2Box.TabIndex = 4;
 //
 // P3Box
 //
 this.P3Box.Location = new System.Drawing.Point(39, 53);
 this.P3Box.Name = "P3Box";
 this.P3Box.ReadOnly = true;
 this.P3Box.Size = new System.Drawing.Size(394, 20);
 this.P3Box.TabIndex = 5;
 //
 // WobjButton
 //
 this.WobjButton.Enabled = false;
 this.WobjButton.Location = new System.Drawing.Point(39, 79);
 this.WobjButton.Name = "WobjButton";
 this.WobjButton.Size = new System.Drawing.Size(104, 23);
 this.WobjButton.TabIndex = 6;
 this.WobjButton.Text = "Find workobject";
 this.WobjButton.UseVisualStyleBackColor = true;
 this.WobjButton.Click += new System.EventHandler(this.WobjButton_Click);
 //
 // Workobject
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(441, 113);
 this.Controls.Add(this.WobjButton);
 this.Controls.Add(this.P3Box);
 this.Controls.Add(this.P2Box);
 this.Controls.Add(this.P1Box);
 this.Controls.Add(this.label3);
 this.Controls.Add(this.label2);
 this.Controls.Add(this.label1);
 this.Name = "Workobject";
 this.Text = "Workobject";
 this.ResumeLayout(false);
 this.PerformLayout();

 }

 #endregion

 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.Label label3;
 private System.Windows.Forms.TextBox P1Box;
 private System.Windows.Forms.TextBox P2Box;
 private System.Windows.Forms.TextBox P3Box;
 private System.Windows.Forms.Button WobjButton;
 }
}

Online Teaching/GUI/Workobject.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Online Teaching/obj/Debug/CoreCompileInputs.cache

e9952b30118dc663223e8bcb5869670e420423fc

Online Teaching/obj/Debug/DesignTimeResolveAssemblyReferences.cache

Online Teaching/obj/Debug/DesignTimeResolveAssemblyReferencesInput.cache

Online Teaching/obj/Debug/MscAutoTest.csproj.FileListAbsolute.txt

D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\MscAutoTest.exe.config
D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\MscAutoTest.exe
D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\MscAutoTest.pdb
D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\ViveTracker.dll
D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\ViveTracker.pdb
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\MscAutoTest.csprojResolveAssemblyReference.cache
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\MscAutoTest.Properties.Resources.resources
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\MscAutoTest.csproj.GenerateResource.Cache
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\MscAutoTest.exe
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\MscAutoTest.pdb

Online Teaching/obj/Debug/MscAutoTest.csproj.GenerateResource.Cache

Online Teaching/obj/Debug/MscAutoTest.csprojResolveAssemblyReference.cache

Online Teaching/obj/Debug/ResolveAssemblyReference.cache

Online Teaching/obj/Debug/TrackerApi.csproj.CoreCompileInputs.cache

af147f3ffbcd8c025213fcddf291f8cf94b3f8b8

Online Teaching/obj/Debug/TrackerApi.csproj.FileListAbsolute.txt

D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\MscAutoTest.exe.config
D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\MscAutoTest.exe
D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\MscAutoTest.pdb
D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\ViveTracker.dll
D:\dev\project\MscAutoTest\MscAutoTest\bin\Debug\ViveTracker.pdb
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\MscAutoTest.Properties.Resources.resources
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\MscAutoTest.exe
D:\dev\project\MscAutoTest\MscAutoTest\obj\Debug\MscAutoTest.pdb
E:\Dev\MScAutoTest\MscAutoTest\bin\Debug\MscAutoTest.exe.config
E:\Dev\MScAutoTest\MscAutoTest\obj\Debug\MscAutoTest.exe
E:\Dev\MScAutoTest\MscAutoTest\obj\Debug\MscAutoTest.pdb
E:\Dev\MScAutoTest\MscAutoTest\bin\Debug\MscAutoTest.exe
E:\Dev\MScAutoTest\MscAutoTest\bin\Debug\MscAutoTest.pdb
E:\Dev\MScAutoTest\MscAutoTest\bin\Debug\ViveTracker.dll
E:\Dev\MScAutoTest\MscAutoTest\bin\Debug\ViveTracker.pdb
E:\Dev\MScAutoTest\MscAutoTest\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
E:\Dev\MScAutoTest\MscAutoTest\obj\Debug\MscAutoTest.Properties.Resources.resources
E:\Dev\MScAutoTest\MscAutoTest\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
D:\dev\project\AutoTest2\bin\Debug\MscAutoTest.dll.config
D:\dev\project\AutoTest2\bin\Debug\MscAutoTest.dll
D:\dev\project\AutoTest2\bin\Debug\MscAutoTest.pdb
D:\dev\project\AutoTest2\bin\Debug\ViveTracker.dll
D:\dev\project\AutoTest2\bin\Debug\ViveTracker.pdb
D:\dev\project\AutoTest2\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
D:\dev\project\AutoTest2\obj\Debug\MscAutoTest.Properties.Resources.resources
D:\dev\project\AutoTest2\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
D:\dev\project\AutoTest2\obj\Debug\MscAutoTest.dll
D:\dev\project\AutoTest2\obj\Debug\MscAutoTest.pdb
C:\ELE630\AutoTest2\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\ELE630\AutoTest2\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\ELE630\AutoTest2\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\ELE630\AutoTest2\Debug\TrackerAPI.dll.config
C:\ELE630\AutoTest2\Debug\TrackerAPI.dll
C:\ELE630\AutoTest2\Debug\TrackerAPI.pdb
C:\ELE630\AutoTest2\Debug\ViveTracker.pdb
C:\ELE630\AutoTest2\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\ELE630\AutoTest2\obj\Debug\TrackerAPI.dll
C:\ELE630\AutoTest2\obj\Debug\TrackerAPI.pdb
C:\ELE630\3D_Pantograf\Debug\TrackerAPI.dll.config
C:\ELE630\3D_Pantograf\Debug\TrackerAPI.dll
C:\ELE630\3D_Pantograf\Debug\TrackerAPI.pdb
C:\ELE630\3D_Pantograf\Debug\ViveTracker.dll
C:\ELE630\3D_Pantograf\Debug\ViveTracker.pdb
C:\ELE630\3D_Pantograf\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\ELE630\3D_Pantograf\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\ELE630\3D_Pantograf\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\ELE630\3D_Pantograf\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\ELE630\3D_Pantograf\obj\Debug\TrackerAPI.dll
C:\ELE630\3D_Pantograf\obj\Debug\TrackerAPI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\Debug\TrackerAPI.dll.config
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\Debug\TrackerAPI.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\Debug\TrackerAPI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\Debug\ViveTracker.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\Debug\ViveTracker.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\obj\Debug\TrackerAPI.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_Pantograf\obj\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.00\Debug\TrackerAPI.dll.config
C:\ELE630\3D_pantograf v1.00\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.00\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.00\Debug\ViveTracker.dll
C:\ELE630\3D_pantograf v1.00\Debug\ViveTracker.pdb
C:\ELE630\3D_pantograf v1.00\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.00\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.00\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.00\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.00\obj\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.00\obj\Debug\TrackerAPI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\Debug\TrackerAPI.dll.config
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\Debug\TrackerAPI.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\Debug\TrackerAPI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\Debug\ViveTracker.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\Debug\ViveTracker.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\obj\Debug\TrackerAPI.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.02\obj\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.03\Debug\TrackerAPI.dll.config
C:\ELE630\3D_pantograf v1.03\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.03\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.03\Debug\ViveTracker.dll
C:\ELE630\3D_pantograf v1.03\Debug\ViveTracker.pdb
C:\ELE630\3D_pantograf v1.03\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.03\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.03\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.03\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.03\obj\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.03\obj\Debug\TrackerAPI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\Debug\TrackerAPI.dll.config
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\Debug\TrackerAPI.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\Debug\TrackerAPI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\Debug\ViveTracker.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\Debug\ViveTracker.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\obj\Debug\TrackerAPI.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.04\obj\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.04\Debug\TrackerAPI.dll.config
C:\ELE630\3D_pantograf v1.04\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.04\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.04\Debug\ViveTracker.dll
C:\ELE630\3D_pantograf v1.04\Debug\ViveTracker.pdb
C:\ELE630\3D_pantograf v1.04\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.04\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.04\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.04\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.04\obj\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.04\obj\Debug\TrackerAPI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\Debug\TrackerAPI.dll.config
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\Debug\TrackerAPI.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\Debug\TrackerAPI.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\Debug\ViveTracker.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\Debug\ViveTracker.pdb
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\obj\Debug\TrackerAPI.dll
C:\Users\Duran\Documents\Universitetet\ELE630 3D-pantograf\3D_pantograf v1.05\obj\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.06\Debug\TrackerAPI.dll.config
C:\ELE630\3D_pantograf v1.06\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.06\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.06\Debug\ViveTracker.dll
C:\ELE630\3D_pantograf v1.06\Debug\ViveTracker.pdb
C:\ELE630\3D_pantograf v1.06\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.06\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.06\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.06\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.06\obj\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.06\obj\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.07 endelig\Debug\TrackerAPI.dll.config
C:\ELE630\3D_pantograf v1.07 endelig\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.07 endelig\Debug\TrackerAPI.pdb
C:\ELE630\3D_pantograf v1.07 endelig\Debug\ViveTracker.dll
C:\ELE630\3D_pantograf v1.07 endelig\Debug\ViveTracker.pdb
C:\ELE630\3D_pantograf v1.07 endelig\obj\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\ELE630\3D_pantograf v1.07 endelig\obj\Debug\TrackerAPI.Properties.Resources.resources
C:\ELE630\3D_pantograf v1.07 endelig\obj\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\ELE630\3D_pantograf v1.07 endelig\obj\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\ELE630\3D_pantograf v1.07 endelig\obj\Debug\TrackerAPI.dll
C:\ELE630\3D_pantograf v1.07 endelig\obj\Debug\TrackerAPI.pdb

Online Teaching/obj/Debug/TrackerApi.csproj.GenerateResource.Cache

Online Teaching/obj/Debug/TrackerApi.csprojResolveAssemblyReference.cache

Online Teaching/obj/Debug/TrackerAPI.pdb

Online Teaching/obj/Debug/TrackerAPI.Properties.Resources.resources

Online Teaching/obj/x86/Debug/DesignTimeResolveAssemblyReferencesInput.cache

Online Teaching/obj/x86/Debug/MscAutoTest.pdb

Online Teaching/obj/x86/Debug/MscAutoTest.Properties.Resources.resources

Online Teaching/obj/x86/Debug/TrackerApi.csproj.CoreCompileInputs.cache

2e9b095d5131f9df6bed96271f1c5d1646739882

Online Teaching/obj/x86/Debug/TrackerApi.csproj.FileListAbsolute.txt

C:\ELE630\AutoTest2\bin\x86\Debug\MscAutoTest.dll.config
C:\ELE630\AutoTest2\bin\x86\Debug\MscAutoTest.dll
C:\ELE630\AutoTest2\bin\x86\Debug\MscAutoTest.pdb
C:\ELE630\AutoTest2\bin\x86\Debug\ViveTracker.dll
C:\ELE630\AutoTest2\bin\x86\Debug\ViveTracker.pdb
C:\ELE630\AutoTest2\obj\x86\Debug\TrackerApi.csprojResolveAssemblyReference.cache
C:\ELE630\AutoTest2\obj\x86\Debug\MscAutoTest.Properties.Resources.resources
C:\ELE630\AutoTest2\obj\x86\Debug\TrackerApi.csproj.GenerateResource.Cache
C:\ELE630\AutoTest2\obj\x86\Debug\TrackerApi.csproj.CoreCompileInputs.cache
C:\ELE630\AutoTest2\obj\x86\Debug\MscAutoTest.dll
C:\ELE630\AutoTest2\obj\x86\Debug\MscAutoTest.pdb

Online Teaching/obj/x86/Debug/TrackerApi.csproj.GenerateResource.Cache

Online Teaching/obj/x86/Debug/TrackerApi.csprojResolveAssemblyReference.cache

Online Teaching/Online Teaching.sln

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 15
VisualStudioVersion = 15.0.27130.2024
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "GUI", "GUI\GUI.csproj", "{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Vive", "Vive\Vive.csproj", "{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}"
EndProject
Global
	GlobalSection(SolutionConfigurationPlatforms) = preSolution
		Debug|Any CPU = Debug|Any CPU
		Debug|ARM = Debug|ARM
		Debug|x64 = Debug|x64
		Debug|x86 = Debug|x86
		Release|Any CPU = Release|Any CPU
		Release|ARM = Release|ARM
		Release|x64 = Release|x64
		Release|x86 = Release|x86
		VeraTestProjects|Any CPU = VeraTestProjects|Any CPU
		VeraTestProjects|ARM = VeraTestProjects|ARM
		VeraTestProjects|x64 = VeraTestProjects|x64
		VeraTestProjects|x86 = VeraTestProjects|x86
		VeraTestProjectsDebug|Any CPU = VeraTestProjectsDebug|Any CPU
		VeraTestProjectsDebug|ARM = VeraTestProjectsDebug|ARM
		VeraTestProjectsDebug|x64 = VeraTestProjectsDebug|x64
		VeraTestProjectsDebug|x86 = VeraTestProjectsDebug|x86
	EndGlobalSection
	GlobalSection(ProjectConfigurationPlatforms) = postSolution
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Debug|Any CPU.Build.0 = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Debug|ARM.ActiveCfg = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Debug|ARM.Build.0 = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Debug|x64.ActiveCfg = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Debug|x64.Build.0 = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Debug|x86.ActiveCfg = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Debug|x86.Build.0 = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Release|Any CPU.ActiveCfg = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Release|Any CPU.Build.0 = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Release|ARM.ActiveCfg = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Release|ARM.Build.0 = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Release|x64.ActiveCfg = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Release|x64.Build.0 = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Release|x86.ActiveCfg = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.Release|x86.Build.0 = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjects|Any CPU.ActiveCfg = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjects|Any CPU.Build.0 = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjects|ARM.ActiveCfg = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjects|ARM.Build.0 = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjects|x64.ActiveCfg = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjects|x64.Build.0 = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjects|x86.ActiveCfg = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjects|x86.Build.0 = Release|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjectsDebug|Any CPU.ActiveCfg = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjectsDebug|Any CPU.Build.0 = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjectsDebug|ARM.ActiveCfg = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjectsDebug|ARM.Build.0 = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjectsDebug|x64.ActiveCfg = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjectsDebug|x64.Build.0 = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjectsDebug|x86.ActiveCfg = Debug|Any CPU
		{EB4D0BDC-75FC-4C76-83B0-56C1DE1DF3BC}.VeraTestProjectsDebug|x86.Build.0 = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Debug|Any CPU.Build.0 = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Debug|ARM.ActiveCfg = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Debug|ARM.Build.0 = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Debug|x64.ActiveCfg = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Debug|x64.Build.0 = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Debug|x86.ActiveCfg = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Debug|x86.Build.0 = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Release|Any CPU.ActiveCfg = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Release|Any CPU.Build.0 = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Release|ARM.ActiveCfg = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Release|ARM.Build.0 = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Release|x64.ActiveCfg = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Release|x64.Build.0 = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Release|x86.ActiveCfg = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.Release|x86.Build.0 = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjects|Any CPU.ActiveCfg = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjects|Any CPU.Build.0 = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjects|ARM.ActiveCfg = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjects|ARM.Build.0 = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjects|x64.ActiveCfg = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjects|x64.Build.0 = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjects|x86.ActiveCfg = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjects|x86.Build.0 = Release|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjectsDebug|Any CPU.ActiveCfg = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjectsDebug|Any CPU.Build.0 = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjectsDebug|ARM.ActiveCfg = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjectsDebug|ARM.Build.0 = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjectsDebug|x64.ActiveCfg = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjectsDebug|x64.Build.0 = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjectsDebug|x86.ActiveCfg = Debug|Any CPU
		{6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}.VeraTestProjectsDebug|x86.Build.0 = Debug|Any CPU
	EndGlobalSection
	GlobalSection(SolutionProperties) = preSolution
		HideSolutionNode = FALSE
	EndGlobalSection
	GlobalSection(ExtensibilityGlobals) = postSolution
		SolutionGuid = {0FF60019-D634-4A31-AD92-C6898C044022}
	EndGlobalSection
EndGlobal

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/Google.ProtocolBuffers.2.4.1.555.nupkg

_rels/.rels

Google.ProtocolBuffers.nuspec

 Google.ProtocolBuffers
 2.4.1.555
 Google.ProtocolBuffers
 Jon Skeet
 Jon Skeet
 http://code.google.com/p/protobuf-csharp-port/source/browse/license.txt
 http://code.google.com/p/protobuf-csharp-port/
 false
 Protocol Buffers is a binary serialization format and technology, released to the open source community by Google in 2008.
Its primary use is to produce small fast binary representations of a 'message' or object for serialization or transportation.
There are various implementations of Protocol Buffers in .NET. This project is a fairly close port of the Google Java implementation.

There are two main parts:

tools/protoc.exe, which takes the textual representation of the protocol buffer and turns it into a binary representation for use with ProtoGen.exe.
tools/ProtoGen.exe, which takes binary representations of protocol buffer descriptors (as generated by the "stock" protoc binary supplied by Google) and creates C# source code. This is only required at build time.

lib/*/Google.ProtocolBuffers.dll, which is a supporting library. This is required at execution time.
lib/*/Google.ProtocolBuffers.Serialization.dll, a supplementary library that provides extensions for reading and writing protocol buffers to xml, json, and others.

LINKS:

Project Home - http://code.google.com/p/protobuf-csharp-port
Online Help - http://help.protobuffers.net
Developer Guide - http://code.google.com/apis/protocolbuffers/docs/overview.html
Language Guide - http://code.google.com/apis/protocolbuffers/docs/proto.html
 A managed code generator and library for Google's data interchange format.
 Copyright 2008 Google Inc. All rights reserved.
 Protocol Buffers Binary Serialization Format Google

lib/cf20/Google.ProtocolBuffers.dll

lib/cf20/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/cf35/Google.ProtocolBuffers.dll

lib/cf35/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/net20/Google.ProtocolBuffers.dll

lib/net20/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/net35/Google.ProtocolBuffers.dll

lib/net35/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/net40/Google.ProtocolBuffers.dll

lib/net40/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/portable-net40%2Bsl4%2Bsl5%2Bwp7%2Bwp8%2Bwin8/Google.ProtocolBuffers.dll

lib/portable-net40%2Bsl4%2Bsl5%2Bwp7%2Bwp8%2Bwin8/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Dictionary implementation which always yields keys in sorted order.
 This is not particularly efficient: it wraps a normal dictionary
 for most operations, but sorts by key when either iterating or
 fetching the Keys/Values properties.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/sl20/Google.ProtocolBuffers.dll

lib/sl20/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Dictionary implementation which always yields keys in sorted order.
 This is not particularly efficient: it wraps a normal dictionary
 for most operations, but sorts by key when either iterating or
 fetching the Keys/Values properties.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/sl30/Google.ProtocolBuffers.dll

lib/sl30/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Dictionary implementation which always yields keys in sorted order.
 This is not particularly efficient: it wraps a normal dictionary
 for most operations, but sorts by key when either iterating or
 fetching the Keys/Values properties.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/sl40/Google.ProtocolBuffers.dll

lib/sl40/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Dictionary implementation which always yields keys in sorted order.
 This is not particularly efficient: it wraps a normal dictionary
 for most operations, but sorts by key when either iterating or
 fetching the Keys/Values properties.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

lib/cf20/Google.ProtocolBuffers.Serialization.dll

lib/cf20/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

lib/cf35/Google.ProtocolBuffers.Serialization.dll

lib/cf35/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

lib/net20/Google.ProtocolBuffers.Serialization.dll

lib/net20/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

lib/net35/Google.ProtocolBuffers.Serialization.dll

lib/net35/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

lib/net40/Google.ProtocolBuffers.Serialization.dll

lib/net40/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

lib/portable-net40%2Bsl4%2Bsl5%2Bwp7%2Bwp8%2Bwin8/Google.ProtocolBuffers.Serialization.dll

lib/portable-net40%2Bsl4%2Bsl5%2Bwp7%2Bwp8%2Bwin8/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

lib/sl20/Google.ProtocolBuffers.Serialization.dll

lib/sl20/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

lib/sl30/Google.ProtocolBuffers.Serialization.dll

lib/sl30/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

lib/sl40/Google.ProtocolBuffers.Serialization.dll

lib/sl40/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

tools/Google.ProtocolBuffers.dll

tools/Google.ProtocolBuffers.Serialization.dll

tools/ProtoBench.exe

tools/protoc-license.txt

protoc.exe was built from the original source at http://code.google.com/p/protobuf/
The licence for this code is as follows:

Copyright 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
 * Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner
of the input file used when generating it. This code is not
standalone and requires a support library to be linked with it. This
support library is itself covered by the above license.

tools/protoc.exe

tools/ProtoDump.exe

tools/ProtoGen.exe

tools/ProtoGen.exe.config

tools/ProtoMunge.exe

tools/google/protobuf/csharp_options.proto

// Extra options for C# generator

import "google/protobuf/descriptor.proto";

package google.protobuf;

message CSharpFileOptions {

 // Namespace for generated classes; defaults to the package.
 optional string namespace = 1;

 // Name of the "umbrella" class used for metadata about all
 // the messages within this file. Default is based on the name
 // of the file.
 optional string umbrella_classname = 2;

 // Whether classes should be public (true) or internal (false)
 optional bool public_classes = 3 [default = true];

 // Whether to generate a single file for everything within the
 // .proto file (false), or one file per message (true).
 // This option is not currently honored; please log a feature
 // request if you really want it.
 optional bool multiple_files = 4;

 // Whether to nest messages within a single umbrella class (true)
 // or create the umbrella class as a peer, with messages as
 // top-level classes in the namespace (false)
 optional bool nest_classes = 5;

 // Generate appropriate support for Code Contracts
 // (Ongoing; support should improve over time)
 optional bool code_contracts = 6;

 // Create subdirectories for namespaces, e.g. namespace "Foo.Bar"
 // would generate files within [output directory]/Foo/Bar
 optional bool expand_namespace_directories = 7;

 // Generate attributes indicating non-CLS-compliance
 optional bool cls_compliance = 8 [default = true];

 // Generate messages/builders with the [Serializable] attribute
 optional bool add_serializable = 9 [default = false];

 // Generates a private ctor for Message types
 optional bool generate_private_ctor = 10 [default = true];

 // The extension that should be appended to the umbrella_classname when creating files.
 optional string file_extension = 221 [default = ".cs"];

 // A nested namespace for the umbrella class. Helpful for name collisions caused by
 // umbrella_classname conflicting with an existing type. This will be automatically
 // set to 'Proto' if a collision is detected with types being generated. This value
 // is ignored when nest_classes == true
 optional string umbrella_namespace = 222;

 // The output path for the source file(s) generated
 optional string output_directory = 223 [default = "."];

 // Will ignore the type generations and remove dependencies for the descriptor proto
 // files that declare their package to be "google.protobuf"
 optional bool ignore_google_protobuf = 224 [default = false];

 // Controls how services are generated, GENERIC is the deprecated original implementation
 // INTERFACE generates service interfaces only, RPCINTEROP generates interfaces and
 // implementations using the included Windows RPC interop libarary.
 optional CSharpServiceType service_generator_type = 225 [default = NONE];

 // Used to add the System.Runtime.CompilerServices.CompilerGeneratedAttribute and
 // System.CodeDom.Compiler.GeneratedCodeAttribute attributes to generated code.
 optional bool generated_code_attributes = 226 [default = false];
}

enum CSharpServiceType {
 // Services are ignored by the generator
 NONE = 0;
 // Generates the original Java generic service implementations
 GENERIC = 1;
 // Generates an interface for the service and nothing else
 INTERFACE = 2;
 // Generates an interface for the service and client/server wrappers for the interface
 IRPCDISPATCH = 3;
}

extend FileOptions {
 optional CSharpFileOptions csharp_file_options = 1000;
}

extend FieldOptions {
 optional CSharpFieldOptions csharp_field_options = 1000;
}

message CSharpFieldOptions {
 // Provides the ability to override the name of the property
 // generated for this field. This is applied to all properties
 // and methods to do with this field, including HasFoo, FooCount,
 // FooList etc.
 optional string property_name = 1;
}

message CSharpServiceOptions {
 optional string interface_id = 1;
}

extend ServiceOptions {
 optional CSharpServiceOptions csharp_service_options = 1000;
}

message CSharpMethodOptions {
 optional int32 dispatch_id = 1;
}

extend MethodOptions {
 optional CSharpMethodOptions csharp_method_options = 1000;
}

tools/google/protobuf/descriptor.proto

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// The messages in this file describe the definitions found in .proto files.
// A valid .proto file can be translated directly to a FileDescriptorProto
// without any other information (e.g. without reading its imports).

package google.protobuf;
option java_package = "com.google.protobuf";
option java_outer_classname = "DescriptorProtos";

// descriptor.proto must be optimized for speed because reflection-based
// algorithms don't work during bootstrapping.
option optimize_for = SPEED;

// The protocol compiler can output a FileDescriptorSet containing the .proto
// files it parses.
message FileDescriptorSet {
 repeated FileDescriptorProto file = 1;
}

// Describes a complete .proto file.
message FileDescriptorProto {
 optional string name = 1; // file name, relative to root of source tree
 optional string package = 2; // e.g. "foo", "foo.bar", etc.

 // Names of files imported by this file.
 repeated string dependency = 3;

 // All top-level definitions in this file.
 repeated DescriptorProto message_type = 4;
 repeated EnumDescriptorProto enum_type = 5;
 repeated ServiceDescriptorProto service = 6;
 repeated FieldDescriptorProto extension = 7;

 optional FileOptions options = 8;

 // This field contains optional information about the original source code.
 // You may safely remove this entire field whithout harming runtime
 // functionality of the descriptors -- the information is needed only by
 // development tools.
 optional SourceCodeInfo source_code_info = 9;
}

// Describes a message type.
message DescriptorProto {
 optional string name = 1;

 repeated FieldDescriptorProto field = 2;
 repeated FieldDescriptorProto extension = 6;

 repeated DescriptorProto nested_type = 3;
 repeated EnumDescriptorProto enum_type = 4;

 message ExtensionRange {
 optional int32 start = 1;
 optional int32 end = 2;
 }
 repeated ExtensionRange extension_range = 5;

 optional MessageOptions options = 7;
}

// Describes a field within a message.
message FieldDescriptorProto {
 enum Type {
 // 0 is reserved for errors.
 // Order is weird for historical reasons.
 TYPE_DOUBLE = 1;
 TYPE_FLOAT = 2;
 TYPE_INT64 = 3; // Not ZigZag encoded. Negative numbers
 // take 10 bytes. Use TYPE_SINT64 if negative
 // values are likely.
 TYPE_UINT64 = 4;
 TYPE_INT32 = 5; // Not ZigZag encoded. Negative numbers
 // take 10 bytes. Use TYPE_SINT32 if negative
 // values are likely.
 TYPE_FIXED64 = 6;
 TYPE_FIXED32 = 7;
 TYPE_BOOL = 8;
 TYPE_STRING = 9;
 TYPE_GROUP = 10; // Tag-delimited aggregate.
 TYPE_MESSAGE = 11; // Length-delimited aggregate.

 // New in version 2.
 TYPE_BYTES = 12;
 TYPE_UINT32 = 13;
 TYPE_ENUM = 14;
 TYPE_SFIXED32 = 15;
 TYPE_SFIXED64 = 16;
 TYPE_SINT32 = 17; // Uses ZigZag encoding.
 TYPE_SINT64 = 18; // Uses ZigZag encoding.
 };

 enum Label {
 // 0 is reserved for errors
 LABEL_OPTIONAL = 1;
 LABEL_REQUIRED = 2;
 LABEL_REPEATED = 3;
 // TODO(sanjay): Should we add LABEL_MAP?
 };

 optional string name = 1;
 optional int32 number = 3;
 optional Label label = 4;

 // If type_name is set, this need not be set. If both this and type_name
 // are set, this must be either TYPE_ENUM or TYPE_MESSAGE.
 optional Type type = 5;

 // For message and enum types, this is the name of the type. If the name
 // starts with a '.', it is fully-qualified. Otherwise, C++-like scoping
 // rules are used to find the type (i.e. first the nested types within this
 // message are searched, then within the parent, on up to the root
 // namespace).
 optional string type_name = 6;

 // For extensions, this is the name of the type being extended. It is
 // resolved in the same manner as type_name.
 optional string extendee = 2;

 // For numeric types, contains the original text representation of the value.
 // For booleans, "true" or "false".
 // For strings, contains the default text contents (not escaped in any way).
 // For bytes, contains the C escaped value. All bytes >= 128 are escaped.
 // TODO(kenton): Base-64 encode?
 optional string default_value = 7;

 optional FieldOptions options = 8;
}

// Describes an enum type.
message EnumDescriptorProto {
 optional string name = 1;

 repeated EnumValueDescriptorProto value = 2;

 optional EnumOptions options = 3;
}

// Describes a value within an enum.
message EnumValueDescriptorProto {
 optional string name = 1;
 optional int32 number = 2;

 optional EnumValueOptions options = 3;
}

// Describes a service.
message ServiceDescriptorProto {
 optional string name = 1;
 repeated MethodDescriptorProto method = 2;

 optional ServiceOptions options = 3;
}

// Describes a method of a service.
message MethodDescriptorProto {
 optional string name = 1;

 // Input and output type names. These are resolved in the same way as
 // FieldDescriptorProto.type_name, but must refer to a message type.
 optional string input_type = 2;
 optional string output_type = 3;

 optional MethodOptions options = 4;
}

// ===
// Options

// Each of the definitions above may have "options" attached. These are
// just annotations which may cause code to be generated slightly differently
// or may contain hints for code that manipulates protocol messages.
//
// Clients may define custom options as extensions of the *Options messages.
// These extensions may not yet be known at parsing time, so the parser cannot
// store the values in them. Instead it stores them in a field in the *Options
// message called uninterpreted_option. This field must have the same name
// across all *Options messages. We then use this field to populate the
// extensions when we build a descriptor, at which point all protos have been
// parsed and so all extensions are known.
//
// Extension numbers for custom options may be chosen as follows:
// * For options which will only be used within a single application or
// organization, or for experimental options, use field numbers 50000
// through 99999. It is up to you to ensure that you do not use the
// same number for multiple options.
// * For options which will be published and used publicly by multiple
// independent entities, e-mail kenton@google.com to reserve extension
// numbers. Simply tell me how many you need and I'll send you back a
// set of numbers to use -- there's no need to explain how you intend to
// use them. If this turns out to be popular, a web service will be set up
// to automatically assign option numbers.

message FileOptions {

 // Sets the Java package where classes generated from this .proto will be
 // placed. By default, the proto package is used, but this is often
 // inappropriate because proto packages do not normally start with backwards
 // domain names.
 optional string java_package = 1;

 // If set, all the classes from the .proto file are wrapped in a single
 // outer class with the given name. This applies to both Proto1
 // (equivalent to the old "--one_java_file" option) and Proto2 (where
 // a .proto always translates to a single class, but you may want to
 // explicitly choose the class name).
 optional string java_outer_classname = 8;

 // If set true, then the Java code generator will generate a separate .java
 // file for each top-level message, enum, and service defined in the .proto
 // file. Thus, these types will *not* be nested inside the outer class
 // named by java_outer_classname. However, the outer class will still be
 // generated to contain the file's getDescriptor() method as well as any
 // top-level extensions defined in the file.
 optional bool java_multiple_files = 10 [default=false];

 // If set true, then the Java code generator will generate equals() and
 // hashCode() methods for all messages defined in the .proto file. This is
 // purely a speed optimization, as the AbstractMessage base class includes
 // reflection-based implementations of these methods.
 optional bool java_generate_equals_and_hash = 20 [default=false];

 // Generated classes can be optimized for speed or code size.
 enum OptimizeMode {
 SPEED = 1; // Generate complete code for parsing, serialization,
 // etc.
 CODE_SIZE = 2; // Use ReflectionOps to implement these methods.
 LITE_RUNTIME = 3; // Generate code using MessageLite and the lite runtime.
 }
 optional OptimizeMode optimize_for = 9 [default=SPEED];

 // Should generic services be generated in each language? "Generic" services
 // are not specific to any particular RPC system. They are generated by the
 // main code generators in each language (without additional plugins).
 // Generic services were the only kind of service generation supported by
 // early versions of proto2.
 //
 // Generic services are now considered deprecated in favor of using plugins
 // that generate code specific to your particular RPC system. Therefore,
 // these default to false. Old code which depends on generic services should
 // explicitly set them to true.
 optional bool cc_generic_services = 16 [default=false];
 optional bool java_generic_services = 17 [default=false];
 optional bool py_generic_services = 18 [default=false];

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message MessageOptions {
 // Set true to use the old proto1 MessageSet wire format for extensions.
 // This is provided for backwards-compatibility with the MessageSet wire
 // format. You should not use this for any other reason: It's less
 // efficient, has fewer features, and is more complicated.
 //
 // The message must be defined exactly as follows:
 // message Foo {
 // option message_set_wire_format = true;
 // extensions 4 to max;
 // }
 // Note that the message cannot have any defined fields; MessageSets only
 // have extensions.
 //
 // All extensions of your type must be singular messages; e.g. they cannot
 // be int32s, enums, or repeated messages.
 //
 // Because this is an option, the above two restrictions are not enforced by
 // the protocol compiler.
 optional bool message_set_wire_format = 1 [default=false];

 // Disables the generation of the standard "descriptor()" accessor, which can
 // conflict with a field of the same name. This is meant to make migration
 // from proto1 easier; new code should avoid fields named "descriptor".
 optional bool no_standard_descriptor_accessor = 2 [default=false];

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message FieldOptions {
 // The ctype option instructs the C++ code generator to use a different
 // representation of the field than it normally would. See the specific
 // options below. This option is not yet implemented in the open source
 // release -- sorry, we'll try to include it in a future version!
 optional CType ctype = 1 [default = STRING];
 enum CType {
 // Default mode.
 STRING = 0;

 CORD = 1;

 STRING_PIECE = 2;
 }
 // The packed option can be enabled for repeated primitive fields to enable
 // a more efficient representation on the wire. Rather than repeatedly
 // writing the tag and type for each element, the entire array is encoded as
 // a single length-delimited blob.
 optional bool packed = 2;

 // Is this field deprecated?
 // Depending on the target platform, this can emit Deprecated annotations
 // for accessors, or it will be completely ignored; in the very least, this
 // is a formalization for deprecating fields.
 optional bool deprecated = 3 [default=false];

 // EXPERIMENTAL. DO NOT USE.
 // For "map" fields, the name of the field in the enclosed type that
 // is the key for this map. For example, suppose we have:
 // message Item {
 // required string name = 1;
 // required string value = 2;
 // }
 // message Config {
 // repeated Item items = 1 [experimental_map_key="name"];
 // }
 // In this situation, the map key for Item will be set to "name".
 // TODO: Fully-implement this, then remove the "experimental_" prefix.
 optional string experimental_map_key = 9;

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message EnumOptions {

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message EnumValueOptions {
 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message ServiceOptions {

 // Note: Field numbers 1 through 32 are reserved for Google's internal RPC
 // framework. We apologize for hoarding these numbers to ourselves, but
 // we were already using them long before we decided to release Protocol
 // Buffers.

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message MethodOptions {

 // Note: Field numbers 1 through 32 are reserved for Google's internal RPC
 // framework. We apologize for hoarding these numbers to ourselves, but
 // we were already using them long before we decided to release Protocol
 // Buffers.

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

// A message representing a option the parser does not recognize. This only
// appears in options protos created by the compiler::Parser class.
// DescriptorPool resolves these when building Descriptor objects. Therefore,
// options protos in descriptor objects (e.g. returned by Descriptor::options(),
// or produced by Descriptor::CopyTo()) will never have UninterpretedOptions
// in them.
message UninterpretedOption {
 // The name of the uninterpreted option. Each string represents a segment in
 // a dot-separated name. is_extension is true iff a segment represents an
 // extension (denoted with parentheses in options specs in .proto files).
 // E.g.,{ ["foo", false], ["bar.baz", true], ["qux", false] } represents
 // "foo.(bar.baz).qux".
 message NamePart {
 required string name_part = 1;
 required bool is_extension = 2;
 }
 repeated NamePart name = 2;

 // The value of the uninterpreted option, in whatever type the tokenizer
 // identified it as during parsing. Exactly one of these should be set.
 optional string identifier_value = 3;
 optional uint64 positive_int_value = 4;
 optional int64 negative_int_value = 5;
 optional double double_value = 6;
 optional bytes string_value = 7;
 optional string aggregate_value = 8;
}

// ===
// Optional source code info

// Encapsulates information about the original source file from which a
// FileDescriptorProto was generated.
message SourceCodeInfo {
 // A Location identifies a piece of source code in a .proto file which
 // corresponds to a particular definition. This information is intended
 // to be useful to IDEs, code indexers, documentation generators, and similar
 // tools.
 //
 // For example, say we have a file like:
 // message Foo {
 // optional string foo = 1;
 // }
 // Let's look at just the field definition:
 // optional string foo = 1;
 // ^ ^^ ^^ ^ ^^^
 // a bc de f ghi
 // We have the following locations:
 // span path represents
 // [a,i) [4, 0, 2, 0] The whole field definition.
 // [a,b) [4, 0, 2, 0, 4] The label (optional).
 // [c,d) [4, 0, 2, 0, 5] The type (string).
 // [e,f) [4, 0, 2, 0, 1] The name (foo).
 // [g,h) [4, 0, 2, 0, 3] The number (1).
 //
 // Notes:
 // - A location may refer to a repeated field itself (i.e. not to any
 // particular index within it). This is used whenever a set of elements are
 // logically enclosed in a single code segment. For example, an entire
 // extend block (possibly containing multiple extension definitions) will
 // have an outer location whose path refers to the "extensions" repeated
 // field without an index.
 // - Multiple locations may have the same path. This happens when a single
 // logical declaration is spread out across multiple places. The most
 // obvious example is the "extend" block again -- there may be multiple
 // extend blocks in the same scope, each of which will have the same path.
 // - A location's span is not always a subset of its parent's span. For
 // example, the "extendee" of an extension declaration appears at the
 // beginning of the "extend" block and is shared by all extensions within
 // the block.
 // - Just because a location's span is a subset of some other location's span
 // does not mean that it is a descendent. For example, a "group" defines
 // both a type and a field in a single declaration. Thus, the locations
 // corresponding to the type and field and their components will overlap.
 // - Code which tries to interpret locations should probably be designed to
 // ignore those that it doesn't understand, as more types of locations could
 // be recorded in the future.
 repeated Location location = 1;
 message Location {
 // Identifies which part of the FileDescriptorProto was defined at this
 // location.
 //
 // Each element is a field number or an index. They form a path from
 // the root FileDescriptorProto to the place where the definition. For
 // example, this path:
 // [4, 3, 2, 7, 1]
 // refers to:
 // file.message_type(3) // 4, 3
 // .field(7) // 2, 7
 // .name() // 1
 // This is because FileDescriptorProto.message_type has field number 4:
 // repeated DescriptorProto message_type = 4;
 // and DescriptorProto.field has field number 2:
 // repeated FieldDescriptorProto field = 2;
 // and FieldDescriptorProto.name has field number 1:
 // optional string name = 1;
 //
 // Thus, the above path gives the location of a field name. If we removed
 // the last element:
 // [4, 3, 2, 7]
 // this path refers to the whole field declaration (from the beginning
 // of the label to the terminating semicolon).
 repeated int32 path = 1 [packed=true];

 // Always has exactly three or four elements: start line, start column,
 // end line (optional, otherwise assumed same as start line), end column.
 // These are packed into a single field for efficiency. Note that line
 // and column numbers are zero-based -- typically you will want to add
 // 1 to each before displaying to a user.
 repeated int32 span = 2 [packed=true];

 // TODO(kenton): Record comments appearing before and after the
 // declaration.
 }
}

tools/google/protobuf/compiler/plugin.proto

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//
// WARNING: The plugin interface is currently EXPERIMENTAL and is subject to
// change.
//
// protoc (aka the Protocol Compiler) can be extended via plugins. A plugin is
// just a program that reads a CodeGeneratorRequest from stdin and writes a
// CodeGeneratorResponse to stdout.
//
// Plugins written using C++ can use google/protobuf/compiler/plugin.h instead
// of dealing with the raw protocol defined here.
//
// A plugin executable needs only to be placed somewhere in the path. The
// plugin should be named "protoc-gen-$NAME", and will then be used when the
// flag "--${NAME}_out" is passed to protoc.

package google.protobuf.compiler;
option java_package = "com.google.protobuf.compiler";
option java_outer_classname = "PluginProtos";

import "google/protobuf/descriptor.proto";

// An encoded CodeGeneratorRequest is written to the plugin's stdin.
message CodeGeneratorRequest {
 // The .proto files that were explicitly listed on the command-line. The
 // code generator should generate code only for these files. Each file's
 // descriptor will be included in proto_file, below.
 repeated string file_to_generate = 1;

 // The generator parameter passed on the command-line.
 optional string parameter = 2;

 // FileDescriptorProtos for all files in files_to_generate and everything
 // they import. The files will appear in topological order, so each file
 // appears before any file that imports it.
 //
 // protoc guarantees that all proto_files will be written after
 // the fields above, even though this is not technically guaranteed by the
 // protobuf wire format. This theoretically could allow a plugin to stream
 // in the FileDescriptorProtos and handle them one by one rather than read
 // the entire set into memory at once. However, as of this writing, this
 // is not similarly optimized on protoc's end -- it will store all fields in
 // memory at once before sending them to the plugin.
 repeated FileDescriptorProto proto_file = 15;
}

// The plugin writes an encoded CodeGeneratorResponse to stdout.
message CodeGeneratorResponse {
 // Error message. If non-empty, code generation failed. The plugin process
 // should exit with status code zero even if it reports an error in this way.
 //
 // This should be used to indicate errors in .proto files which prevent the
 // code generator from generating correct code. Errors which indicate a
 // problem in protoc itself -- such as the input CodeGeneratorRequest being
 // unparseable -- should be reported by writing a message to stderr and
 // exiting with a non-zero status code.
 optional string error = 1;

 // Represents a single generated file.
 message File {
 // The file name, relative to the output directory. The name must not
 // contain "." or ".." components and must be relative, not be absolute (so,
 // the file cannot lie outside the output directory). "/" must be used as
 // the path separator, not "\".
 //
 // If the name is omitted, the content will be appended to the previous
 // file. This allows the generator to break large files into small chunks,
 // and allows the generated text to be streamed back to protoc so that large
 // files need not reside completely in memory at one time. Note that as of
 // this writing protoc does not optimize for this -- it will read the entire
 // CodeGeneratorResponse before writing files to disk.
 optional string name = 1;

 // If non-empty, indicates that the named file should already exist, and the
 // content here is to be inserted into that file at a defined insertion
 // point. This feature allows a code generator to extend the output
 // produced by another code generator. The original generator may provide
 // insertion points by placing special annotations in the file that look
 // like:
 // @@protoc_insertion_point(NAME)
 // The annotation can have arbitrary text before and after it on the line,
 // which allows it to be placed in a comment. NAME should be replaced with
 // an identifier naming the point -- this is what other generators will use
 // as the insertion_point. Code inserted at this point will be placed
 // immediately above the line containing the insertion point (thus multiple
 // insertions to the same point will come out in the order they were added).
 // The double-@ is intended to make it unlikely that the generated code
 // could contain things that look like insertion points by accident.
 //
 // For example, the C++ code generator places the following line in the
 // .pb.h files that it generates:
 // // @@protoc_insertion_point(namespace_scope)
 // This line appears within the scope of the file's package namespace, but
 // outside of any particular class. Another plugin can then specify the
 // insertion_point "namespace_scope" to generate additional classes or
 // other declarations that should be placed in this scope.
 //
 // Note that if the line containing the insertion point begins with
 // whitespace, the same whitespace will be added to every line of the
 // inserted text. This is useful for languages like Python, where
 // indentation matters. In these languages, the insertion point comment
 // should be indented the same amount as any inserted code will need to be
 // in order to work correctly in that context.
 //
 // The code generator that generates the initial file and the one which
 // inserts into it must both run as part of a single invocation of protoc.
 // Code generators are executed in the order in which they appear on the
 // command line.
 //
 // If |insertion_point| is present, |name| must also be present.
 optional string insertion_point = 2;

 // The file contents.
 optional string content = 15;
 }
 repeated File file = 15;
}

tools/tutorial/addressbook.proto

package tutorial;

import "google/protobuf/csharp_options.proto";
option (google.protobuf.csharp_file_options).namespace = "Google.ProtocolBuffers.Examples.AddressBook";
option (google.protobuf.csharp_file_options).umbrella_classname = "AddressBookProtos";

option optimize_for = SPEED;

message Person {
 required string name = 1;
 required int32 id = 2; // Unique ID number for this person.
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phone = 4;
}

// Our address book file is just one of these.
message AddressBook {
 repeated Person person = 1;
}

tools/CHANGES.txt

===
Welcome to the C# port of Google Protocol Buffers, written by Jon Skeet
(skeet@pobox.com) based on the work of many talented people.

For more information about this port, visit its homepage:
http://protobuf-csharp-port.googlecode.com

For more information about Protocol Buffers in general, visit the project page
for the C++, Java and Python project:
http://protobuf.googlecode.com
===
RELEASE NOTES - Version 2.4.1.555
===

Changes:
- Upgrade solution format to Visual Studio 2012.
- Add the ability to print a builder (not just a message)
- TextGenerator introduces a new overload of PrintTo
- Munge protoc's error format into a VS-C#-compatible output format.
- Work to make ProtoGen clone that acts as a protoc.exe plugin.
- Added the AllowPartiallyTrustedCallers attribute
- Optimized enum parsing.

Fixes:
- Fix for bug in limited input stream's Position, Introduced Position on
 output stream
- Fix for writing a character to a JSON output overflows allocated buffer
- Optimize FromBase64String to return Empty when presented with empty string.
- Use string.Concat instead of operator to avoid potential import problems
- Issue 81: quoting for NUnit parameters.
- Issue 56: NuGet package is noisy
- Issue 70: Portable library project has some invalid Nunit-based code.
- Issue 71: CodedInputStream.ReadBytes go to slow path unnecessarily
- Issue 84: warning CS0219: The variable `size' is assigned but never used

===
RELEASE NOTES - Version 2.4.1.521
===

Changes:
- Add generated_code_attributes option, defaulted to false
- Added support for Portable library
- Added 'Unsafe' static type in ByteString to allow direct buffer access

Fixes:
- Issue 50: The XML serializer will fail to deserialize a message with empty
 child message
- Issue 45: Use of 'item' as a field name causes AmbiguousMatchException
- Issue 49: Generated nested static Types class should be partial
- Issue 38: Disable CLSCompliant warnings (3021)
- Issue 40: proto_path does not work for command-line file names
- Issue 54: should retire all bytes in buffer (bufferSize)
- Issue 43: Fix to correct identical 'umbrella_classname' options from trying
 to write to the same filename.

===
RELEASE NOTES - Version 2.4.1.473
===

Features:
- Added option service_generator_type to control service generation with
 NONE, GENERIC, INTERFACE, or IRPCDISPATCH
- Added interfaces IRpcDispatch and IRpcServerStub to provide for blocking
 services and implementations.
- Added ProtoGen.exe command-line argument "--protoc_dir=" to specify the
 location of protoc.exe.
- Extracted interfaces for ICodedInputStream and ICodedOutputStream to allow
 custom implementation of writers with both speed and size optimizations.
- Addition of the "Google.ProtoBuffers.Serialization" assembly to support
 reading and writing messages to/from XML, JSON, IDictionary<,> and others.
- Several performance related fixes and tweeks
- Issue 3:	Add option to mark generated code with attribute
- Issue 20:	Support for decorating classes [Serializable]
- Issue 21:	Decorate fields with [deprecated=true] as [System.Obsolete]
- Issue 22:	Reusable Builder classes
- Issue 24:	Support for using Json/Xml formats with ICodedInputStream
- Issue 25: Added support for NuGet packages
- Issue 31: Upgraded protoc.exe and descriptor to 2.4.1

Fixes:
- Issue 13:	Message with Field same name as message causes uncompilable .cs
- Issue 16:	Does not integrate well with other tooling
- Issue 19:	Support for negative enum values
- Issue 26:	AddRange in GeneratedBuilder iterates twice.
- Issue 27:	Remove XML documentation output from test projects to clear
 warnings/errors.
- Issue 28: Circular message dependencies result in null default values for
 Message fields.
- Issue 29: Message classes generated have a public default constructor. You
 can disable private ctor generation with the option generate_private_ctor.
- Issue 35: Fixed a bug in ProtoGen handling of arguments with trailing \
- Big-endian support for float, and double on Silverlight
- Packed and Unpacked parsing allow for all repeated, as per version 2.3
- Fix for leaving Builder a public ctor on internal classes for use with
 generic "where T: new()" constraints.

Other:
- Changed the code signing key to a privately held key
- Reformatted all code and line-endings to C# defaults
- Reworking of performance benchmarks to produce reliable results, option /v2
- Issue 34: Silverlight assemblies are now unit tested

===
RELEASE NOTES - Version 2.3.0.277
===

Features:
- Added cls_compliance option to generate attributes indicating
 non-CLS-compliance.
- Added file_extension option to control the generated output file's extension.
- Added umbrella_namespace option to place the umbrella class into a nested
 namespace to address issues with proto files having the same name as a
 message it contains.
- Added output_directory option to set the output path for the source file(s).
- Added ignore_google_protobuf option to avoid generating code for includes
 from the google.protobuf package.
- Added the LITE framework (Google.ProtoBuffersLite.dll) and the ability to
 generate code with "option optimize_for = LITE_RUNTIME;".
- Added ability to invoke protoc.exe from within ProtoGen.exe.
- Upgraded to protoc.exe (2.3) compiler.

Fixes:
- Issue 9:	Class cannot be static and sealed error
- Issue 12:	default value for enumerate fields must be filled out

Other:
- Rewrite of build using MSBbuild instead of NAnt
- Moved to NUnit Version 2.2.8.0
- Changed to using secure .snk for releases

===
RELEASE NOTES - Version 0.9.1
===

Fixes:
- issue 10:	Incorrect encoding of packed fields when serialized

===
RELEASE NOTES - Version 0.9.0
===

- Initial release

===

tools/license.txt

Protocol Buffers - Google's data interchange format
Copyright 2008-2010 Google Inc. All rights reserved.
http://github.com/jskeet/dotnet-protobufs/
Original C++/Java/Python code:
http://code.google.com/p/protobuf/

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
 * Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package/services/metadata/core-properties/cdebcc412e874caf829a3a29b812303a.psmdcp

 Jon Skeet Protocol Buffers is a binary serialization format and technology, released to the open source community by Google in 2008.
Its primary use is to produce small fast binary representations of a 'message' or object for serialization or transportation.
There are various implementations of Protocol Buffers in .NET. This project is a fairly close port of the Google Java implementation.

There are two main parts:

tools/protoc.exe, which takes the textual representation of the protocol buffer and turns it into a binary representation for use with ProtoGen.exe.
tools/ProtoGen.exe, which takes binary representations of protocol buffer descriptors (as generated by the "stock" protoc binary supplied by Google) and creates C# source code. This is only required at build time.

lib/*/Google.ProtocolBuffers.dll, which is a supporting library. This is required at execution time.
lib/*/Google.ProtocolBuffers.Serialization.dll, a supplementary library that provides extensions for reading and writing protocol buffers to xml, json, and others.

LINKS:

Project Home - http://code.google.com/p/protobuf-csharp-port
Online Help - http://help.protobuffers.net
Developer Guide - http://code.google.com/apis/protocolbuffers/docs/overview.html
Language Guide - http://code.google.com/apis/protocolbuffers/docs/proto.html Google.ProtocolBuffers 2.4.1.555 Protocol Buffers Binary Serialization Format Google Google.ProtocolBuffers NuGet, Version=2.8.50926.602, Culture=neutral, PublicKeyToken=null;Microsoft Windows NT 6.1.7601 Service Pack 1;.NET Framework 4

[Content_Types].xml

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/cf20/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/cf20/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/cf35/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/cf35/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net20/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net20/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net35/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net35/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net40/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net40/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/portable-net40+sl4+sl5+wp7+wp8+win8/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/portable-net40+sl4+sl5+wp7+wp8+win8/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Dictionary implementation which always yields keys in sorted order.
 This is not particularly efficient: it wraps a normal dictionary
 for most operations, but sorts by key when either iterating or
 fetching the Keys/Values properties.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl20/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl20/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Dictionary implementation which always yields keys in sorted order.
 This is not particularly efficient: it wraps a normal dictionary
 for most operations, but sorts by key when either iterating or
 fetching the Keys/Values properties.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl30/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl30/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Dictionary implementation which always yields keys in sorted order.
 This is not particularly efficient: it wraps a normal dictionary
 for most operations, but sorts by key when either iterating or
 fetching the Keys/Values properties.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl40/Google.ProtocolBuffers.Serialization.xml

 Google.ProtocolBuffers.Serialization

 Class containing helpful workarounds for various platform compatibility

 Extension methods for using serializers on instances of IMessageLite/IBuilderLite

 Serializes the message to JSON text. This is a trivial wrapper
 around Serialization.JsonFormatWriter.WriteMessage.

 Serializes the message to XML text. This is a trivial wrapper
 around Serialization.XmlFormatWriter.WriteMessage.

 Serializes the message to XML text using the element name provided.
 This is a trivial wrapper around Serialization.XmlFormatWriter.WriteMessage.

 Writes the message instance to the stream using the content type provided

 An instance of a message
 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder and returns

 Merges a JSON object into this builder using the extensions provided and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder and returns

 Merges an XML object into this builder using the extensions provided and returns

 Merges the message from the input stream based on the contentType provided

 A type derived from IBuilderLite
 An instance of a message builder
 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The same builder instance that was supplied in the builder parameter

 Used to implement a service endpoint on an HTTP server. This works with services generated with the
 service_generator_type option set to IRPCDISPATCH.

 The service execution stub
 The name of the method being invoked
 optional arguments for the format reader/writer
 The mime type for the input stream
 The input stream
 The mime type for the output stream
 The output stream

 Allows reading messages from a name/value dictionary

 Provides a base class for text-parsing readers

 Provides a base-class that provides some basic functionality for handling type dispatching

 Constructs a new reader

 Merges the contents of stream into the provided message builder

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Reads an array of T messages

 Reads an array of T messages as a proto-buffer group

 Reads an array of System.Enum type T and adds them to the collection

 Reads an array of T, where T is a primitive type defined by FieldType

 returns true if it was able to read a single primitive value of FieldType into the value reference

 Gets or sets the maximum recursion depth allowed

 Constructs a new reader

 Reads a typed field as a string

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Provides decoding of bytes read from the input stream

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 Constructs a FormUrlEncodedReader to parse form data, or url query text into a message.

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 It's unlikely this will work for anything but text data as bytes UTF8 are transformed to text and back to bytes

 Not Supported

 Not Supported

 Extensions and helpers to abstract the reading/writing of messages by a client-specified content type.

 Constructs an ICodedInputStream from the input stream based on the contentType provided

 Options specific to reading this message and/or content type
 The mime type of the input stream content
 The stream to read the message from
 The ICodedInputStream that can be given to the IBuilder.MergeFrom(...) method

 Writes the message instance to the stream using the content type provided

 Options specific to writing this message and/or content type
 The mime type of the content to be written
 The stream to write the message to
 If you do not dispose of ICodedOutputStream some formats may yield incomplete output

 A delegate used to specify a method that constructs an ICodedInputStream from a .NET Stream.

 A delegate used to specify a method that constructs an ICodedOutputStream from a .NET Stream.

 Defines control information for the various formatting used with HTTP services

 The mime type for xml content
 Other valid xml mime types include: application/binary, application/x-protobuf

 The mime type for xml content
 Other valid xml mime types include: text/xml

 The mime type for json content

 Other valid json mime types include: application/json, application/x-json,
 application/x-javascript, text/javascript, text/x-javascript, text/x-json, text/json

 The mime type for query strings and x-www-form-urlencoded content
 This mime type is input-only

 Default mime-type handling for input

 Default mime-type handling for output

 Provides access to modify the mime-type input stream construction

 Provides access to modify the mime-type input stream construction

 The default content type to use if the input type is null or empty. If this
 value is not supplied an ArgumentOutOfRangeException exception will be raised.

 The extension registry to use when reading messages

 The name of the xml root element when reading messages

 Xml reader options

 True to use formatted output including new-lines and default indentation

 The name of the xml root element when writing messages

 Xml writer options

 Provides a base class for text writers

 Provides a base class for writers that performs some basic type dispatching

 Completes any pending write operations

 Writes the message to the the formatted stream.

 Used to write any nessary root-message preamble. After this call you can call
 IMessageLite.MergeTo(...) and complete the message with a call to WriteMessageEnd().
 These three calls are identical to just calling WriteMessage(message);

 AbstractWriter writer;
 writer.WriteMessageStart();
 message.WriteTo(writer);
 writer.WriteMessageEnd();
 // ... or, but not both ...
 writer.WriteMessage(message);

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes a field of the type determined by field.FieldType

 Writes an array of field values

 Writes a numeric unknown field of wire type: Fixed32, Fixed64, or Variant

 Writes an unknown field, Expect WireType of GroupStart or LengthPrefix

 Encodes raw bytes to be written to the stream

 Writes a typed field as a text value

 Writes a String value

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a set of bytes

 Writes a System.Enum by the numeric and textual value

 Allows reading messages from a name/value dictionary

 Creates a dictionary reader from an enumeration of KeyValuePair data, like an IDictionary

 No-op

 No-op

 Merges the contents of stream into the provided message builder

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 Returns true if it was able to read a Boolean from the input

 Returns true if it was able to read a Int32 from the input

 Returns true if it was able to read a UInt32 from the input

 Returns true if it was able to read a Int64 from the input

 Returns true if it was able to read a UInt64 from the input

 Returns true if it was able to read a Single from the input

 Returns true if it was able to read a Double from the input

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Merges the input stream into the provided IBuilderLite

 Allows writing messages to a name/value dictionary

 Constructs a writer using a new dictionary

 Constructs a writer using an existing dictionary

 Creates the dictionary instance for a child message.

 Accesses the dictionary that is backing this writer

 Writes the message to the the formatted stream.

 No-op

 No-op

 Writes a Boolean value

 Writes a Int32 value

 Writes a UInt32 value

 Writes a Int64 value

 Writes a UInt64 value

 Writes a Single value

 Writes a Double value

 Writes a String value

 Writes a set of bytes

 Writes a message or group as a field

 Writes a System.Enum by the numeric and textual value

 Writes an array of field values

 JsonFormatReader is used to parse Json into a message or an array of messages

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message, this method does not use text encoding, all bytes MUST
 represent ASCII character values.

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Constructs a JsonFormatReader to parse Json into a message

 Returns an enumerator that is used to cursor over an array of messages

 This is generally used when receiving an array of messages rather than a single root message

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter

 Merges the contents of stream into the provided message builder

 Causes the reader to skip past this field

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Returns true if it was able to read a String from the input

 Returns true if it was able to read a ByteString from the input

 Cursors through the array elements and stops at the end of the array

 Merges the input stream into the provided IBuilderLite

 Returns true if the reader is currently on an array element

 JsonFormatWriter is a .NET 2.0 friendly json formatter for proto buffer messages. For .NET 3.5
 you may also use the XmlFormatWriter with an XmlWriter created by the
 JsonReaderWriterFactory.

 Constructs a JsonFormatWriter, use the ToString() member to extract the final Json on completion.

 Constructs a JsonFormatWriter, use ToString() to extract the final output

 Constructs a JsonFormatWriter to output to the given text writer

 Constructs a JsonFormatWriter to output to the given stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Write to the output stream

 Sets the output formatting to use Environment.NewLine with 4-character indentions

 Writes a String value

 Writes a Double value

 Writes a Single value

 Writes an array of field values

 Writes a message

 Writes the message to the the formatted stream.

 Used to write the root-message preamble, in json this is the left-curly brace '{'.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Used to write an array of messages as the output rather than a single message.

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Gets or sets the characters to use for the new-line, default = empty

 Gets or sets the text to use for indenting, default = empty

 Gets or sets the whitespace to use to separate the text, default = empty

 Returns the output of TextWriter.ToString() where TextWriter is the ctor argument.

 Used in streaming arrays of objects to the writer

 using(writer.StartArray())
 foreach(IMessageLite m in messages)
 writer.WriteMessage(m);

 Causes the end of the array character to be written.

 JSon Tokenizer used by JsonFormatReader

 Returns the next character without actually 'reading' it

 Reads the next character in the input

 The exception raised when a recursion limit is reached while parsing input.

 Parses a proto buffer from an XML document or fragment. .NET 3.5 users may also
 use this class to process Json by setting the options to support Json and providing
 an XmlReader obtained from .

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the stream provided as the xml

 Constructs the XmlFormatReader using the string provided as the xml to be read

 Constructs the XmlFormatReader using the xml in the TextReader

 Constructs the XmlFormatReader with the XmlReader

 Constructs the XmlFormatReader with the XmlReader and options

 Sets the options to use while generating the XML

 Reads the root-message preamble specific to this formatter

 Reads the root-message preamble specific to this formatter

 Reads the root-message close specific to this formatter, MUST be called
 on the reader obtained from ReadMessageStart(string element).

 Merge the provided builder as an element named in the current context

 Merge the provided builder as an element of the current context

 Merge the provided builder as an element of the current context

 Peeks at the next field in the input stream and returns what information is available.

 This may be called multiple times without actually reading the field. Only after the field
 is either read, or skipped, should PeekNext return a different value.

 Causes the reader to skip past this field

 returns true if it was able to read a single value into the value reference. The value
 stored may be of type System.String, System.Int32, or an IEnumLite from the IEnumLiteMap.

 Returns true if it was able to read a String from the input

 Merges the input stream into the provided IBuilderLite

 Cursors through the array elements and stops at the end of the array

 Gets or sets the options to use when reading the xml

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Writes a proto buffer to an XML document or fragment. .NET 3.5 users may also
 use this class to produce Json by setting the options to support Json and providing
 an XmlWriter obtained from .

 Constructs the XmlFormatWriter to write to the given TextWriter

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given stream

 Constructs the XmlFormatWriter to write to the given XmlWriter

 Sets the options to use while generating the XML

 Completes any pending write operations

 Used to write the root-message preamble, in xml this is open element for RootElementName,
 by default "<root>". After this call you can call IMessageLite.MergeTo(...) and
 complete the message with a call to WriteMessageEnd().

 Used to write the root-message preamble, in xml this is open element for elementName.
 After this call you can call IMessageLite.MergeTo(...) and complete the message with
 a call to WriteMessageEnd().

 Used to complete a root-message previously started with a call to WriteMessageStart()

 Writes a message as an element using the name defined in

 Writes a message as an element with the given name

 Writes a message

 Writes a String value

 Writes an array of field values

 Writes a System.Enum by the numeric and textual value

 Gets or sets the default element name to use when using the Merge<TBuilder>()

 Gets or sets the options to use while generating the XML

 Options available for the xml reader output

 Simple xml formatting with no attributes

 Requires that arrays items are nested in an <item> element

 Options available for the xml writer output

 Simple xml formatting with no attributes

 Writes the 'value' attribute on all enumerations with the numeric identifier

 Embeds array items into child <item> elements

 Outputs the 'type' attribute for compatibility with the JsonReaderWriterFactory
 This option must, by nessessity, also enable NestedArrayItems

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl40/Google.ProtocolBuffers.xml

 Google.ProtocolBuffers

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, ExtensionRegistry).

 Get's the message's type's default instance.

 Stream implementation which proxies another stream, only allowing a certain amount
 of data to be read. Note that this is only used to read delimited streams, so it
 doesn't attempt to implement everything.

 Interface implemented by Protocol Message builders.
 TODO(jonskeet): Consider "SetXXX" methods returning the builder, as well as the properties.

 Type of message
 Type of builder

 Non-generic interface for all members whose signatures don't require knowledge of
 the type being built. The generic interface extends this one. Some methods return
 either an IBuilder or an IMessage; in these cases the generic interface redeclares
 the same method with a type-specific signature. Implementations are encouraged to
 use explicit interface implemenation for the non-generic form. This mirrors
 how IEnumerable and IEnumerable<T> work.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Only present in the nongeneric interface - useful for tests, but
 not as much in real life.

 Create a builder for messages of the appropriate type for the given field.
 Messages built with this can then be passed to the various mutation properties
 and methods.

 Returns true iff all required fields in the message and all
 embedded messages are set.

 Behaves like the equivalent property in IMessage<T>.
 The returned map may or may not reflect future changes to the builder.
 Either way, the returned map is unmodifiable.

 Allows getting and setting of a field.

 Get the message's type descriptor.

 Allows getting and setting of a repeated field value.

 Resets all fields to their default values.

 Merge the specified other message which may be a different implementation of
 the same message descriptor.

 Constructs the final message. Once this is called, this Builder instance
 is no longer valid, and calling any other method may throw a
 NullReferenceException. If you need to continue working with the builder
 after calling Build, call Clone first.

 the message
 is missing one or more required fields; use BuildPartial to bypass
 this check

 Like Build(), but does not throw an exception if the message is missing
 required fields. Instead, a partial message is returned.

 Clones this builder.
 TODO(jonskeet): Explain depth of clone.

 Like MergeFrom(ICodedInputStream), but also parses extensions.
 The extensions that you want to be able to parse must be registered
 in . Extensions not in the registry
 will be treated as unknown fields.

 Clears the field. This is exactly equivalent to calling the generated
 Clear method corresponding to the field.

 Appends the given value as a new element for the specified repeated field.

 the field is not a repeated field,
 the field does not belong to this builder's type, or the value is
 of the incorrect type

 Merge some unknown fields into the set for this message.

 Like MergeFrom(Stream), but does not read until the end of the file.
 Instead, the size of the message (encoded as a varint) is read first,
 then the message data. Use Message.WriteDelimitedTo(Stream) to
 write messages in this format.

 Like MergeDelimitedFrom(Stream) but supporting extensions.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream). Note that this method always reads
 the entire input (unless it throws an exception). If you want it to
 stop earlier, you will need to wrap the input in a wrapper
 stream which limits reading. Or, use IMessage.WriteDelimitedTo(Stream)
 to write your message and MmergeDelimitedFrom(Stream) to read it.
 Despite usually reading the entire stream, this method never closes the stream.

 Parse as a message of this type and merge
 it with the message being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream, extensionRegistry).

 Get's the message's type's default instance.

 Merge the specified other message into the message being
 built. Merging occurs as follows. For each field:
 For singular primitive fields, if the field is set in ,
 then 's value overwrites the value in this message.
 For singular message fields, if the field is set in ,
 it is merged into the corresponding sub-message of this message using the same
 merging rules.
 For repeated fields, the elements in are concatenated
 with the elements in this message.

 Converts this builder to a string using .

 This method is not sealed (in the way that it is in
 as it was added after earlier releases; some other implementations may already be overriding the
 method.

 Implementation of the non-generic IMessage interface as far as possible.

 Implementation of the non-generic IMessage interface as far as possible.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Converts the message to a string.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(CodedOutputStream). This
 does not flush or close the stream.

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Type-safe interface for all generated messages to implement.

 Non-generic interface used for all parts of the API which don't require
 any type knowledge.

 Returns true if the given field is set. This is exactly equivalent
 to calling the generated "Has" property corresponding to the field.

 the field is a repeated field,
 or it's not a field of this type

 Returns the number of elements of a repeated field. This is
 exactly equivalent to calling the generated "Count" property
 corresponding to the field.

 the field is not a repeated field,
 or it's not a field of this type

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Like WriteTo(Stream) but writes the size of the message as a varint before
 writing the data. This allows more data to be written to the stream after the
 message without the need to delimit the message data yourself. Use
 IBuilder.MergeDelimitedFrom(Stream) or the static method
 YourMessageType.ParseDelimitedFrom(Stream) to parse messages written by this method.

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Converts the message to a string in protocol buffer text format.
 This is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array. This is a trivial wrapper
 around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to the given stream.
 This is just a wrapper around WriteTo(ICodedOutputStream). This
 does not flush or close the stream.

 Creates a builder for the type, but in a weakly typed manner. This
 is typically implemented by strongly typed messages by just returning
 the result of CreateBuilderForType.

 Creates a builder with the same contents as this message. This
 is typically implemented by strongly typed messages by just returning
 the result of ToBuilder.

 Returns the message's type's descriptor. This differs from the
 Descriptor property of each generated message class in that this
 method is an abstract method of IMessage whereas Descriptor is
 a static property of a specific class. They return the same thing.

 Returns a collection of all the fields in this message which are set
 and their corresponding values. A singular ("required" or "optional")
 field is set iff HasField() returns true for that field. A "repeated"
 field is set iff GetRepeatedFieldSize() is greater than zero. The
 values are exactly what would be returned by calling
 GetField(FieldDescriptor) for each field. The map
 is guaranteed to be a sorted map, so iterating over it will return fields
 in order by field number.

 Obtains the value of the given field, or the default value if
 it isn't set. For value type fields, the boxed value is returned.
 For enum fields, the EnumValueDescriptor for the enum is returned.
 For embedded message fields, the sub-message
 is returned. For repeated fields, an IList<T> is returned.

 Gets an element of a repeated field. For value type fields
 excluding enums, the boxed value is returned. For embedded
 message fields, the sub-message is returned. For enums, the
 relevant EnumValueDescriptor is returned.

 the field is not a repeated field,
 or it's not a field of this type
 the index is out of
 range for the repeated field's value

 Returns the unknown fields for this message.

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Returns an instance of this message type with all fields set to
 their default values. This may or may not be a singleton. This differs
 from the DefaultInstance property of each generated message class in that this
 method is an abstract method of IMessage whereas DefaultInstance is
 a static property of a specific class. They return the same thing.

 Constructs a new builder for a message of the same type as this message.

 Creates a builder with the same contents as this current instance.
 This is typically implemented by strongly typed messages by just
 returning the result of ToBuilder().

 The serialized size if it's already been computed, or null
 if we haven't computed it yet.

 Serializes the message and writes it to the given output stream.
 This does not flush or close the stream.

 Protocol Buffers are not self-delimiting. Therefore, if you write
 any more data to the stream after the message, you must somehow ensure
 that the parser on the receiving end does not interpret this as being
 part of the protocol message. One way of doing this is by writing the size
 of the message before the data, then making sure you limit the input to
 that size when receiving the data. Alternatively, use WriteDelimitedTo(Stream).

 Compares the specified object with this message for equality.
 Returns true iff the given object is a message of the same type
 (as defined by DescriptorForType) and has identical values
 for all its fields.

 Returns the hash code value for this message.
 TODO(jonskeet): Specify the hash algorithm, but better than the Java one!

 Returns true iff all required fields in the message and all embedded
 messages are set.

 Returns the number of bytes required to encode this message.
 The result is only computed on the first call and memoized after that.

 Provides a utility routine to copy small arrays much more quickly than Buffer.BlockCopy

 The threshold above which you should use Buffer.BlockCopy rather than ByteArray.Copy

 Determines which copy routine to use based on the number of bytes to be copied.

 Copy the bytes provided with a for loop, faster when there are only a few bytes to copy

 Reverses the order of bytes in the array

 Immutable array of bytes.
 TODO(jonskeet): Implement the common collection interfaces?

 Internal use only. Ensure that the provided array is not mutated and belongs to this instance.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Constructs a ByteString from the Base64 Encoded String.

 Constructs a ByteString from the given array. The contents
 are copied, so further modifications to the array will not
 be reflected in the returned ByteString.

 Constructs a ByteString from a portion of a byte array.

 Creates a new ByteString by encoding the specified text with
 the given encoding.

 Creates a new ByteString by encoding the specified text in UTF-8.

 Creates a CodedInputStream from this ByteString's data.

 Used internally by CodedOutputStream to avoid creating a copy for the write

 Copies the entire byte array to the destination array provided at the offset specified.

 Writes the entire byte array to the provided stream

 Returns an empty ByteString.

 Returns the length of this ByteString in bytes.

 Retuns the byte at the given index.

 Unsafe operations that can cause IO Failure and/or other catestrophic side-effects.

 Constructs a new ByteString from the given byte array. The array is
 not copied, and must not be modified after this constructor is called.

 Provides direct, unrestricted access to the bytes contained in this instance.
 You must not modify or resize the byte array returned by this method.

 Builder for ByteStrings which allows them to be created without extra
 copying being involved. This has to be a nested type in order to have access
 to the private ByteString constructor.

 Utility class for IEnumerable (and potentially the generic version in the future).

 A list which has an Add method which accepts an IEnumerable[T].
 This allows whole collections to be added easily using collection initializers.
 It causes a potential overload confusion if T : IEnumerable[T], but in
 practice that won't happen in protocol buffers.

 This is only currently implemented by PopsicleList, and it's likely
 to stay that way - hence the name. More genuinely descriptive names are
 horribly ugly. (At least, the ones the author could think of...)
 The element type of the list

 Used to efficiently cast the elements of enumerations

 Proxies calls to a , but allows the list
 to be made read-only (with the method),
 after which any modifying methods throw .

 Makes this list read-only ("freezes the popsicle"). From this
 point on, mutating methods (Clear, Add etc) will throw a
 NotSupportedException. There is no way of "defrosting" the list afterwards.

 Encodes and writes protocol message fields.

 This class contains two kinds of methods: methods that write specific
 protocol message constructs and field types (e.g. WriteTag and
 WriteInt32) and methods that write low-level values (e.g.
 WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
 messages, you should use the former methods, but if you are writing some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)

 Provides an interface that is used write a message. Most often proto buffers are written
 in their binary form by creating a instance via the CodedOutputStream.CreateInstance
 static factory.

 Writes any message initialization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Writes any message finalization data needed to the output stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Indicates that all temporary buffers be written to the final output.

 Writes an unknown message as a group

 Writes an unknown field value of bytes

 Writes an unknown field of a primitive type

 Writes an extension as a message-set group

 Writes an unknown extension as a message-set group

 Writes a field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a message field value, including tag, to the stream.

 Writes a byte array field value, including tag, to the stream.

 Writes a UInt32 field value, including tag, to the stream.

 Writes an enum field value, including tag, to the stream.

 Writes a fixed 32-bit field value, including tag, to the stream.

 Writes a signed fixed 64-bit field value, including tag, to the stream.

 Writes a signed 32-bit field value, including tag, to the stream.

 Writes a signed 64-bit field value, including tag, to the stream.

 Writes a repeated field value, including tag(s), to the stream.

 Writes a repeated group value, including tag(s), to the stream.

 Writes a repeated message value, including tag(s), to the stream.

 Writes a repeated string value, including tag(s), to the stream.

 Writes a repeated ByteString value, including tag(s), to the stream.

 Writes a repeated boolean value, including tag(s), to the stream.

 Writes a repeated Int32 value, including tag(s), to the stream.

 Writes a repeated SInt32 value, including tag(s), to the stream.

 Writes a repeated UInt32 value, including tag(s), to the stream.

 Writes a repeated Fixed32 value, including tag(s), to the stream.

 Writes a repeated SFixed32 value, including tag(s), to the stream.

 Writes a repeated Int64 value, including tag(s), to the stream.

 Writes a repeated SInt64 value, including tag(s), to the stream.

 Writes a repeated UInt64 value, including tag(s), to the stream.

 Writes a repeated Fixed64 value, including tag(s), to the stream.

 Writes a repeated SFixed64 value, including tag(s), to the stream.

 Writes a repeated Double value, including tag(s), to the stream.

 Writes a repeated Float value, including tag(s), to the stream.

 Writes a repeated enumeration value of type T, including tag(s), to the stream.

 Writes a packed repeated primitive, including tag and length, to the stream.

 Writes a packed repeated boolean, including tag and length, to the stream.

 Writes a packed repeated Int32, including tag and length, to the stream.

 Writes a packed repeated SInt32, including tag and length, to the stream.

 Writes a packed repeated UInt32, including tag and length, to the stream.

 Writes a packed repeated Fixed32, including tag and length, to the stream.

 Writes a packed repeated SFixed32, including tag and length, to the stream.

 Writes a packed repeated Int64, including tag and length, to the stream.

 Writes a packed repeated SInt64, including tag and length, to the stream.

 Writes a packed repeated UInt64, including tag and length, to the stream.

 Writes a packed repeated Fixed64, including tag and length, to the stream.

 Writes a packed repeated SFixed64, including tag and length, to the stream.

 Writes a packed repeated Double, including tag and length, to the stream.

 Writes a packed repeated Float, including tag and length, to the stream.

 Writes a packed repeated enumeration of type T, including tag and length, to the stream.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 double field, including the tag.

 Compute the number of bytes that would be needed to encode a
 float field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 int32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 fixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bool field, including the tag.

 Compute the number of bytes that would be needed to encode a
 string field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field, including the tag.

 Compute the number of bytes that would be needed to encode a
 group field represented by an UnknownFieldSet, including the tag.

 Compute the number of bytes that would be needed to encode an
 embedded message field, including the tag.

 Compute the number of bytes that would be needed to encode a
 bytes field, including the tag.

 Compute the number of bytes that would be needed to encode a
 uint32 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 enum field, including the tag. The caller is responsible for
 converting the enum value to its numeric value.

 Compute the number of bytes that would be needed to encode an
 sfixed32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sfixed64 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint32 field, including the tag.

 Compute the number of bytes that would be needed to encode an
 sint64 field, including the tag.

 Compute the number of bytes that would be needed to encode a
 MessageSet extension to the stream. For historical reasons,
 the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode an
 unparsed MessageSet extension field to the stream. For
 historical reasons, the wire format differs from normal fields.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a varint.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, including the tag, to the stream.

 Compute the number of bytes that would be needed to encode a
 field of arbitrary type, excluding the tag, to the stream.

 Compute the number of bytes that would be needed to encode a tag.

 The buffer size used by CreateInstance(Stream).

 Creates a new CodedOutputStream which write to the given stream.

 Creates a new CodedOutputStream which write to the given stream and uses
 the specified buffer size.

 Creates a new CodedOutputStream that writes directly to the given
 byte array. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Creates a new CodedOutputStream that writes directly to the given
 byte array slice. If more bytes are written than fit in the array,
 OutOfSpaceException will be thrown.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, including tag, to the stream.

 Writes a uint64 field value, including tag, to the stream.

 Writes an int64 field value, including tag, to the stream.

 Writes an int32 field value, including tag, to the stream.

 Writes a fixed64 field value, including tag, to the stream.

 Writes a fixed32 field value, including tag, to the stream.

 Writes a bool field value, including tag, to the stream.

 Writes a string field value, including tag, to the stream.

 Writes a group field value, including tag, to the stream.

 Writes a double field value, including tag, to the stream.

 Writes a float field value, without a tag, to the stream.

 Writes a uint64 field value, without a tag, to the stream.

 Writes an int64 field value, without a tag, to the stream.

 Writes an int32 field value, without a tag, to the stream.

 Writes a fixed64 field value, without a tag, to the stream.

 Writes a fixed32 field value, without a tag, to the stream.

 Writes a bool field value, without a tag, to the stream.

 Writes a string field value, without a tag, to the stream.

 Writes a group field value, without a tag, to the stream.

 Encodes and writes a tag.

 Writes a 32 bit value as a varint. The fast route is taken when
 there's enough buffer space left to whizz through without checking
 for each byte; otherwise, we resort to calling WriteRawByte each time.

 Writes out an array of bytes.

 Writes out part of an array of bytes.

 Encode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Encode a 64-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Verifies that SpaceLeft returns zero. It's common to create a byte array
 that is exactly big enough to hold a message, then write to it with
 a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
 the message was actually as big as expected, which can help bugs.

 Returns the current position in the stream, or the position in the output buffer

 If writing to a flat array, returns the space left in the array. Otherwise,
 throws an InvalidOperationException.

 Indicates that a CodedOutputStream wrapping a flat byte array
 ran out of space.

 Delegate to return a stream when asked, used by MessageStreamIterator.

 Readings and decodes protocol message fields.

 This class contains two kinds of methods: methods that read specific
 protocol message constructs and field types (e.g. ReadTag and
 ReadInt32) and methods that read low-level values (e.g.
 ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
 messages, you should use the former methods, but if you are reading some
 other format of your own design, use the latter. The names of the former
 methods are taken from the protocol buffer type names, not .NET types.
 (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)

 TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
 set at construction time.

 Reads any message initialization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Reads any message finalization data expected from the input stream

 This is primarily used by text formats and unnecessary for protobuffers' own
 binary format. The API for MessageStart/End was added for consistent handling
 of output streams regardless of the actual writer implementation.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 If fieldTag is non-zero and ReadTag returns true then the value in fieldName
 may or may not be populated. However, if fieldTag is zero and ReadTag returns
 true, then fieldName should be populated with a non-null field name.

 In other words if ReadTag returns true then either fieldTag will be non-zero OR
 fieldName will be non-zero. In some cases both may be populated, however the
 builders will always prefer the fieldTag over fieldName.

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unkown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed and the
 type is numeric, it will read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads an array of primitive values into the list, if the wire-type of fieldTag is length-prefixed, it will
 read a packed array.

 Reads a set of messages using the as a template. T is not guaranteed to be
 the most derived type, it is only the type specifier for the collection.

 Reads a set of messages using the as a template.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads one or more repeated string field values from the stream.

 Reads one or more repeated ByteString field values from the stream.

 Reads one or more repeated boolean field values from the stream.

 Reads one or more repeated Int32 field values from the stream.

 Reads one or more repeated SInt32 field values from the stream.

 Reads one or more repeated UInt32 field values from the stream.

 Reads one or more repeated Fixed32 field values from the stream.

 Reads one or more repeated SFixed32 field values from the stream.

 Reads one or more repeated Int64 field values from the stream.

 Reads one or more repeated SInt64 field values from the stream.

 Reads one or more repeated UInt64 field values from the stream.

 Reads one or more repeated Fixed64 field values from the stream.

 Reads one or more repeated SFixed64 field values from the stream.

 Reads one or more repeated Double field values from the stream.

 Reads one or more repeated Float field values from the stream.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 The total number of bytes read before the current buffer. The
 total bytes read up to the current position can be computed as
 totalBytesRetired + bufferPos.

 The absolute position of the end of the current message.

 Creates a new CodedInputStream reading data from the given
 stream.

 Creates a new CodedInputStream reading data from the given
 stream and a pre-allocated memory buffer.

 Creates a new CodedInputStream reading data from the given
 byte array.

 Creates a new CodedInputStream that reads from the given
 byte array slice.

 Verifies that the last call to ReadTag() returned the given tag value.
 This is used to verify that a nested group ended with the correct
 end tag.

 The last
 tag read was not the one specified

 Attempt to peek at the next field tag.

 Attempt to read a field tag, returning false if we have reached the end
 of the input data.

 The 'tag' of the field (id * 8 + wire-format)
 Not Supported - For protobuffer streams, this parameter is always null
 true if the next fieldTag was read

 Read a double field from the stream.

 Read a float field from the stream.

 Read a uint64 field from the stream.

 Read an int64 field from the stream.

 Read an int32 field from the stream.

 Read a fixed64 field from the stream.

 Read a fixed32 field from the stream.

 Read a bool field from the stream.

 Reads a string field from the stream.

 Reads a group field value from the stream.

 Reads a group field value from the stream and merges it into the given
 UnknownFieldSet.

 Reads an embedded message field value from the stream.

 Reads a bytes field value from the stream.

 Reads a uint32 field value from the stream.

 Reads an enum field value from the stream. The caller is responsible
 for converting the numeric value to an actual enum.

 Reads an enum field value from the stream. If the enum is valid for type T,
 then the ref value is set and it returns true. Otherwise the unknown output
 value is set and this method returns false.

 Reads an sfixed32 field value from the stream.

 Reads an sfixed64 field value from the stream.

 Reads an sint32 field value from the stream.

 Reads an sint64 field value from the stream.

 Returns true if the next tag is also part of the same unpacked array.

 Returns true if the next tag is also part of the same array, which may or may not be packed.

 Reads a field of any primitive type. Enums, groups and embedded
 messages are not handled by this method.

 Same code as ReadRawVarint32, but read each byte individually, checking for
 buffer overflow.

 Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
 This method is optimised for the case where we've got lots of data in the buffer.
 That means we can check the size just once, then just read directly from the buffer
 without constant rechecking of the buffer length.

 Reads a varint from the input one byte at a time, so that it does not
 read any bytes after the end of the varint. If you simply wrapped the
 stream in a CodedInputStream and used ReadRawVarint32(Stream)}
 then you would probably end up reading past the end of the varint since
 CodedInputStream buffers its input.

 Read a raw varint from the stream.

 Read a 32-bit little-endian integer from the stream.

 Read a 64-bit little-endian integer from the stream.

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Decode a 32-bit value with ZigZag encoding.

 ZigZag encodes signed integers into values that can be efficiently
 encoded with varint. (Otherwise, negative values must be
 sign-extended to 64 bits to be varint encoded, thus always taking
 10 bytes on the wire.)

 Set the maximum message recursion depth.

 In order to prevent malicious
 messages from causing stack overflows, CodedInputStream limits
 how deeply messages may be nested. The default limit is 64.

 Set the maximum message size.

 In order to prevent malicious messages from exhausting memory or
 causing integer overflows, CodedInputStream limits how large a message may be.
 The default limit is 64MB. You should set this limit as small
 as you can without harming your app's functionality. Note that
 size limits only apply when reading from an InputStream, not
 when constructed around a raw byte array (nor with ByteString.NewCodedInput).
 If you want to read several messages from a single CodedInputStream, you
 can call ResetSizeCounter() after each message to avoid hitting the
 size limit.

 Resets the current size counter to zero (see SetSizeLimit).

 Sets currentLimit to (current position) + byteLimit. This is called
 when descending into a length-delimited embedded message. The previous
 limit is returned.

 The old limit.

 Discards the current limit, returning the previous limit.

 Called when buffer is empty to read more bytes from the
 input. If is true, RefillBuffer() gurantees that
 either there will be at least one byte in the buffer when it returns
 or it will throw an exception. If is false,
 RefillBuffer() returns false if no more bytes were available.

 Read one byte from the input.

 the end of the stream or the current limit was reached

 Read a fixed size of bytes from the input.

 the end of the stream or the current limit was reached

 Reads and discards a single field, given its tag value.

 false if the tag is an end-group tag, in which case
 nothing is skipped. Otherwise, returns true.

 Reads and discards an entire message. This will read either until EOF
 or until an endgroup tag, whichever comes first.

 Reads and discards bytes.

 the end of the stream
 or the current limit was reached

 Abstraction of skipping to cope with streams which can't really skip.

 Returns the current position in the input stream, or the position in the input buffer

 Returns whether or not all the data before the limit has been read.

 Returns true if the stream has reached the end of the input. This is the
 case if either the end of the underlying input source has been reached or
 the stream has reached a limit created using PushLimit.

 Utility class for dictionaries.

 Compares two dictionaries for equality. Each value is compared with equality using Equals
 for non-IEnumerable implementations, and using EnumerableEquals otherwise.
 TODO(jonskeet): This is clearly pretty slow, and involves lots of boxing/unboxing...

 Creates a hashcode for a dictionary by XORing the hashcodes of all the fields
 and values. (By XORing, we avoid ordering issues.)
 TODO(jonskeet): Currently XORs other stuff too, and assumes non-null values.

 Determines the hash of a value by either taking it directly or hashing all the elements
 for IEnumerable implementations.

 Utility non-generic class for calling into Lists{T} using type inference.

 Returns a read-only view of the specified list.

 Utility class for dealing with lists.

 Returns either the original reference if it's already read-only,
 or a new ReadOnlyCollection wrapping the original list.

 Returns an immutable empty list.

 Read-only wrapper around another dictionary.

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 Replaces the set of unknown fields for this message. This should
 only be used before a message is built, by the builder. (In the
 Java code it is private, but the builder is nested so has access
 to it.)

 Returns the message as a TMessage.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Interface implemented by all DescriptorProtos. The generator doesn't
 emit the interface implementation claim, so PartialClasses.cs contains
 partial class declarations for each of them.

 The associated options protocol buffer type

 The brief name of the descriptor's target.

 The options for this descriptor.

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 Base class for nearly all descriptors, providing common functionality.

 Type of the protocol buffer form of this descriptor
 Type of the options protocol buffer for this descriptor

 Strongly-typed form of the IDescriptor interface.

 Protocol buffer type underlying this descriptor type

 The non-generic form of the IDescriptor interface. Useful for describing a general
 descriptor.

 Returns the protocol buffer form of this descriptor.

 The fully qualified name of the descriptor's target.

 The brief name of the descriptor's target.

 The file this descriptor was declared in.

 Contains lookup tables containing all the descriptors defined in a particular file.

 Finds a symbol of the given name within the pool.

 The type of symbol to look for
 Fully-qualified name to look up
 The symbol with the given name and type,
 or null if the symbol doesn't exist or has the wrong type

 Adds a package to the symbol tables. If a package by the same name
 already exists, that is fine, but if some other kind of symbol
 exists under the same name, an exception is thrown. If the package
 has multiple components, this also adds the parent package(s).

 Adds a symbol to the symbol table.

 The symbol already existed
 in the symbol table.

 Verifies that the descriptor's name is valid (i.e. it contains
 only letters, digits and underscores, and does not start with a digit).

 Returns the field with the given number in the given descriptor,
 or null if it can't be found.

 Adds a field to the fieldsByNumber table.

 A field with the same
 containing type and number already exists.

 Adds an enum value to the enumValuesByNumber table. If an enum value
 with the same type and number already exists, this method does nothing.
 (This is allowed; the first value defined with the number takes precedence.)

 Looks up a descriptor by name, relative to some other descriptor.
 The name may be fully-qualified (with a leading '.'), partially-qualified,
 or unqualified. C++-like name lookup semantics are used to search for the
 matching descriptor.

 Struct used to hold the keys for the fieldByNumber table.

 Internal class containing utility methods when working with descriptors.

 Converts the given array into a read-only list, applying the specified conversion to
 each input element.

 Equivalent to Func[TInput, int, TOutput] but usable in .NET 2.0. Only used to convert
 arrays.

 Thrown when building descriptors fails because the source DescriptorProtos
 are not valid.

 The full name of the descriptor where the error occurred.

 The protocol message representation of the invalid descriptor.

 A human-readable description of the error. (The Message property
 is made up of the descriptor's name and this description.)

 Descriptor for an enum type in a .proto file.

 Base class for descriptors which are also indexed. This is all of them other than
 .

 The index of this descriptor within its parent descriptor.

 This returns the index of this descriptor within its parent, for
 this descriptor's type. (There can be duplicate values for different
 types, e.g. one enum type with index 0 and one message type with index 0.)

 Interface for an object which maps integers to {@link EnumLite}s.
 {@link Descriptors.EnumDescriptor} implements this interface by mapping
 numbers to {@link Descriptors.EnumValueDescriptor}s. Additionally,
 every generated enum type has a static method internalGetValueMap() which
 returns an implementation of this type that maps numbers to enum values.

 Logic moved from FieldSet to continue current behavior

 Finds an enum value by number. If multiple enum values have the
 same number, this returns the first defined value with that number.

 Finds an enum value by name.

 The unqualified name of the value (e.g. "FOO").
 The value's descriptor, or null if not found.

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of defined value descriptors for this enum.

 Descriptor for a single enum value within an enum in a .proto file.

 Interface for an enum value or value descriptor, to be used in FieldSet.
 The lite library stores enum values directly in FieldSets but the full
 library stores EnumValueDescriptors in order to better support reflection.

 Descriptor for a field or extension within a message in a .proto file.

 Maps a field type as included in the .proto file to a FieldType.

 Returns the default value for a mapped type.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Compares this descriptor with another one, ordering in "canonical" order
 which simply means ascending order by field number.
 must be a field of the same type, i.e. the of
 both fields must be the same.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Look up and cross-link all field types etc.

 The field's default value. Valid for all types except messages
 and groups. For all other types, the object returned is of the
 same class that would be returned by IMessage[this].
 For repeated fields this will always be an empty immutable list compatible with IList[object].
 For message fields it will always be null. For singular values, it will depend on the descriptor.

 Indicates whether or not this field is an extension.

 Get the field's containing type. For extensions, this is the type being
 extended, not the location where the extension was defined. See
 .

 Returns the C#-specific options for this field descriptor. This will always be
 completely filled in.

 For extensions defined nested within message types, gets
 the outer type. Not valid for non-extension fields.

 message Foo {
 extensions 1000 to max;
 }
 extend Foo {
 optional int32 baz = 1234;
 }
 message Bar {
 extend Foo {
 optional int32 qux = 4321;
 }
 }

 The containing type for both baz and qux is Foo.
 However, the extension scope for baz is null while
 the extension scope for qux is Bar.

 For enum fields, returns the field's type.

 For embedded message and group fields, returns the field's type.

 Defined specifically for the enumeration,
 this allows each field type to specify the mapped type and wire type.

 Immutable mapping from field type to mapped type. Built using the attributes on
 FieldType values.

 Enumeration of all the possible field types. The odd formatting is to make it very clear
 which attribute applies to which value, while maintaining a compact format.

 Describes a .proto file, including everything defined within.
 IDescriptor is implemented such that the File property returns this descriptor,
 and the FullName is the same as the Name.

 Allows a file descriptor to be configured with a set of external options, e.g. from the
 command-line arguments to protogen.

 Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.

 The unqualified type name to look for.
 The type of descriptor to look for (or ITypeDescriptor for any)
 The type's descriptor, or null if not found.

 Builds a FileDescriptor from its protocol buffer representation.

 The protocol message form of the FileDescriptor.
 FileDescriptors corresponding to all of the
 file's dependencies, in the exact order listed in the .proto file. May be null,
 in which case it is treated as an empty array.
 If is not
 a valid descriptor. This can occur for a number of reasons, such as a field
 having an undefined type or because two messages were defined with the same name.

 This method is to be called by generated code only. It is equivalent
 to BuildFrom except that the FileDescriptorProto is encoded in
 protocol buffer wire format. This overload is maintained for backward
 compatibility with source code generated before the custom options were available
 (and working).

 Replace our FileDescriptorProto with the given one, which is
 identical except that it might contain extensions that weren't present
 in the original. This method is needed for bootstrapping when a file
 defines custom options. The options may be defined in the file itself,
 so we can't actually parse them until we've constructed the descriptors,
 but to construct the decsriptors we have to have parsed the descriptor
 protos. So, we have to parse the descriptor protos a second time after
 constructing the descriptors.

 The descriptor in its protocol message representation.

 The defined in descriptor.proto.

 Returns the C#-specific options for this file descriptor. This will always be
 completely filled in.

 The file name.

 The package as declared in the .proto file. This may or may not
 be equivalent to the .NET namespace of the generated classes.

 Unmodifiable list of top-level message types declared in this file.

 Unmodifiable list of top-level enum types declared in this file.

 Unmodifiable list of top-level services declared in this file.

 Unmodifiable list of top-level extensions declared in this file.

 Unmodifiable list of this file's dependencies (imports).

 Implementation of IDescriptor.FullName - just returns the same as Name.

 Implementation of IDescriptor.File - just returns this descriptor.

 Protocol buffer describing this descriptor.

 Pool containing symbol descriptors.

 This delegate should be used by generated code only. When calling
 FileDescriptor.InternalBuildGeneratedFileFrom, the caller can provide
 a callback which assigns the global variables defined in the generated code
 which point at parts of the FileDescriptor. The callback returns an
 Extension Registry which contains any extensions which might be used in
 the descriptor - that is, extensions of the various "Options" messages defined
 in descriptor.proto. The callback may also return null to indicate that
 no extensions are used in the descriptor.

 Type as it's mapped onto a .NET type.

 Describes a message type.

 Determines if the given field number is an extension.

 Finds a field by field name.

 The unqualified name of the field (e.g. "foo").
 The field's descriptor, or null if not found.

 Finds a field by field number.

 The field number within this message type.
 The field's descriptor, or null if not found.

 Finds a field by its property name, as it would be generated by protogen.

 The property name within this message type.
 The field's descriptor, or null if not found.

 Finds a nested descriptor by name. The is valid for fields, nested
 message types and enums.

 The unqualified name of the descriptor, e.g. "Foo"
 The descriptor, or null if not found.

 Looks up and cross-links all fields, nested types, and extensions.

 See FileDescriptor.ReplaceProto

 If this is a nested type, get the outer descriptor, otherwise null.

 An unmodifiable list of this message type's fields.

 An unmodifiable list of this message type's extensions.

 An unmodifiable list of this message type's nested types.

 An unmodifiable list of this message type's enum types.

 Returns a pre-computed result as to whether this message
 has required fields. This includes optional fields which are
 message types which in turn have required fields, and any
 extension fields.

 Describes a single method in a service.

 The service this method belongs to.

 The method's input type.

 The method's input type.

 Represents a package in the symbol table. We use PackageDescriptors
 just as placeholders so that someone cannot define, say, a message type
 that has the same name as an existing package.

 Describes a service type.

 Finds a method by name.

 The unqualified name of the method (e.g. "Foo").
 The method's decsriptor, or null if not found.

 An unmodifiable list of methods in this service.

 An implementation of IMessage that can represent arbitrary types, given a MessageaDescriptor.

 Creates a DynamicMessage with the given FieldSet.

 Returns a DynamicMessage representing the default instance of the given type.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parses a message of the given type from the given stream.

 Parse a message of the given type from the given stream and extension registry.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Parse as a message of the given type and return it.

 Constructs a builder for the given type.

 Constructs a builder for a message of the same type as ,
 and initializes it with the same contents.

 Verifies that the field is a field of this message.

 Builder for dynamic messages. Instances are created with DynamicMessage.CreateBuilder.

 Helper for DynamicMessage.ParseFrom() methods to call. Throws
 InvalidProtocolBufferException

 Verifies that the field is a field of this message.

 Tries to convert an integer to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 Tries to convert a string to its enum representation. This would take an out parameter,
 but the caller uses ref, so this approach is simpler.

 All generated protocol message builder classes extend this class. It implements
 most of the IBuilder interface using reflection. Users can ignore this class
 as an implementation detail.

 Called by derived classes to parse an unknown field.

 true unless the tag is an end-group tag

 Like Build(), but will wrap UninitializedMessageException in
 InvalidProtocolBufferException.

 Implementation of .

 Returns the message being built at the moment.

 Checks if a singular extension is present

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Sets the value of an extension.

 Sets the value of one element of a repeated extension.

 Appends a value to a repeated extension.

 Clears an extension.

 Called by subclasses to parse an unknown field or an extension.

 true unless the tag is an end-group tag

 All generated protocol message classes extend this class. It implements
 most of the IMessage interface using reflection. Users
 can ignore this class as an implementation detail.

 PrintTo() helper methods for Lite Runtime

 PrintTo() helper methods for Lite Runtime

 COPIED from TextFormat
 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 writes the extensions to the text stream

 Checks if a singular extension is present.

 Returns the number of elements in a repeated extension.

 Returns the value of an extension.

 Returns one element of a repeated extension.

 Access for the builder.

 Called to check if all extensions are initialized.

 Called by subclasses to compute the size of extensions.

 Used by subclasses to serialize extensions. Extension ranges may be
 interleaves with field numbers, but we must write them in canonical
 (sorted by field number) order. This class helps us to write individual
 ranges of extensions at once.

 TODO(jonskeet): See if we can improve this in terms of readability.

 The extension's descriptor

 A default instance of the extensions's type, if it has a message type,
 or null otherwise.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 ExtensionRegistry registry = ExtensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 A table of known extensions, searchable by name or field number. When
 parsing a protocol message that might have extensions, you must provide
 an in which you have registered any extensions
 that you want to be able to parse. Otherwise, those extensions will just
 be treated like unknown fields.

 For example, if you had the .proto file:

 option java_class = "MyProto";

 message Foo {
 extensions 1000 to max;
 }

 extend Foo {
 optional int32 bar;
 }

 Then you might write code like:

 extensionRegistry registry = extensionRegistry.CreateInstance();
 registry.Add(MyProto.Bar);
 MyProto.Foo message = MyProto.Foo.ParseFrom(input, registry);

 You might wonder why this is necessary. Two alternatives might come to
 mind. First, you might imagine a system where generated extensions are
 automatically registered when their containing classes are loaded. This
 is a popular technique, but is bad design; among other things, it creates a
 situation where behavior can change depending on what classes happen to be
 loaded. It also introduces a security vulnerability, because an
 unprivileged class could cause its code to be called unexpectedly from a
 privileged class by registering itself as an extension of the right type.

 Another option you might consider is lazy parsing: do not parse an
 extension until it is first requested, at which point the caller must
 provide a type to use. This introduces a different set of problems. First,
 it would require a mutex lock any time an extension was accessed, which
 would be slow. Second, corrupt data would not be detected until first
 access, at which point it would be much harder to deal with it. Third, it
 could violate the expectation that message objects are immutable, since the
 type provided could be any arbitrary message class. An unprivileged user
 could take advantage of this to inject a mutable object into a message
 belonging to privileged code and create mischief.

 Add an extension from a generated file to the registry.

 Adds a non-message-type extension to the registry by descriptor.

 Adds a message-type-extension to the registry by descriptor.

 Construct a new, empty instance.

 Add an extension from a generated file to the registry.

 Finds an extension by fully-qualified field name, in the
 proto namespace, i.e. result.Descriptor.FullName will match
 if a match is found. A null
 reference is returned if the extension can't be found.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Get the unmodifiable singleton empty instance.

 Finds an extension by containing type and field number.
 A null reference is returned if the extension can't be found.

 Nested type just used to represent a pair of MessageDescriptor and int, as
 the key into the "by number" map.

 The methods in this class are somewhat evil, and should not be tampered with lightly.
 Basically they allow the creation of relatively weakly typed delegates from MethodInfos
 which are more strongly typed. They do this by creating an appropriate strongly typed
 delegate from the MethodInfo, and then calling that within an anonymous method.
 Mind-bending stuff (at least to your humble narrator) but the resulting delegates are
 very fast compared with calling Invoke later on.

 Empty Type[] used when calling GetProperty to force property instead of indexer fetching.

 Creates a delegate which will execute the given method and then return
 the result as an object.

 Method used solely for implementing CreateUpcastDelegate. Public to avoid trust issues
 in low-trust scenarios.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given method after casting the parameter
 down from object to the required parameter type.

 Creates a delegate which will execute the given static method and cast the result up to IBuilder.

 Accessor for fields representing a non-repeated enum value.

 Access for a non-repeated field of a "primitive" type (i.e. not another message or an enum).

 Allows fields to be reflectively accessed in a smart manner.
 The property descriptors for each field are created once and then cached.
 In addition, this interface holds knowledge of repeated fields, builders etc.

 Indicates whether the specified message contains the field.

 Gets the count of the repeated field in the specified message.

 Clears the field in the specified builder.

 Creates a builder for the type of this field (which must be a message field).

 Accessor for single fields

 Mutator for single fields

 Accessor for repeated fields

 Mutator for repeated fields

 Adds the specified value to the field in the given builder.

 Returns a read-only wrapper around the value of a repeated field.

 Only valid for message types - this implementation throws InvalidOperationException.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 As declared by the property.

 Returns an EnumValueDescriptor representing the value in the builder.
 Note that if an enum has multiple values for the same number, the descriptor
 for the first value with that number will be returned.

 Sets the value as an enum (via an int) in the builder,
 from an EnumValueDescriptor parameter.

 Accessor for fields representing a non-repeated message value.

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 Accessor for a repeated field of type int, ByteString etc.

 The builder class's accessor already builds a read-only wrapper for
 us, which is exactly what we want.

 The CLR type of the field (int, the enum type, ByteString, the message etc).
 This is taken from the return type of the method used to retrieve a single
 value.

 Accessor for a repeated enum field.

 Provides access to fields in generated messages via reflection.
 This type is public to allow it to be used by generated messages, which
 create appropriate instances in the .proto file description class.
 TODO(jonskeet): See if we can hide it somewhere...

 Constructs a FieldAccessorTable for a particular message class.
 Only one FieldAccessorTable should be constructed per class.
 The property names should all actually correspond with the field descriptor's
 CSharpOptions.PropertyName property, but bootstrapping issues currently
 prevent us from using that. This may be addressed at a future time, in which case
 we can keep this constructor for backwards compatibility, just ignoring the parameter.
 TODO(jonskeet): Make it so.

 The type's descriptor
 The Pascal-case names of all the field-based properties in the message.

 Creates an accessor for a single field

 Accessor for a repeated message field.

 TODO(jonskeet): Try to extract the commonality between this and SingleMessageAccessor.
 We almost want multiple inheritance...

 The static method to create a builder for the property type. For example,
 in a message type "Foo", a field called "bar" might be of type "Baz". This
 method is Baz.CreateBuilder.

 Creates a message of the appropriate CLR type from the given value,
 which may already be of the right type or may be a dynamic message.

 A class which represents an arbitrary set of fields of some message type.
 This is used to implement DynamicMessage, and also to represent extensions
 in GeneratedMessage. This class is internal, since outside users should probably
 be using DynamicMessage.

 As in the Java implementation, this class goes against the rest of the framework
 in terms of mutability. Instead of having a mutable Builder class and an immutable
 FieldSet class, FieldSet just has a MakeImmutable() method. This is safe so long as
 all callers are careful not to let a mutable FieldSet escape into the open. This would
 be impossible to guarantee if this were a public class, of course.

 All repeated fields are stored as IList[object] even
 TODO(jonskeet): Finish this comment!

 Makes this FieldSet immutable, and returns it for convenience. Any
 mutable repeated fields are made immutable, as well as the map itself.

 See .

 Clears all fields.

 See

 Returns an enumerator for the field map. Used to write the fields out.

 Verifies whether all the required fields in the specified message
 descriptor are present in this field set, as well as whether
 all the embedded messages are themselves initialized.

 See

 See

 See

 Implementation of both MergeFrom methods.

 See .

 Writes a single field to a CodedOutputStream.

 Verifies that the given object is of the correct type to be a valid
 value for the given field.

 For repeated fields, this checks if the object is of the right
 element type, not whether it's a list.

 The value is not of the right type.
 The value is null.

 Returns the default, immutable instance with no fields defined.

 Returns an immutable mapping of fields. Note that although the mapping itself
 is immutable, the entries may not be (i.e. any repeated values are represented by
 mutable lists). The behaviour is not specified if the contents are mutated.

 Force coercion to full descriptor dictionary.

 See

 If the field is not set, the behaviour when fetching this property varies by field type:

 For singular message values, null is returned.
 For singular non-message values, the default value of the field is returned.
 For repeated values, an empty immutable list is returned. This will be compatible
 with IList[object], regardless of the type of the repeated item.

 This method returns null if the field is a singular message type
 and is not set; in this case it is up to the caller to fetch the
 message's default instance. For repeated fields of message types,
 an empty collection is returned. For repeated fields of non-message
 types, null is returned.

 When setting this property, any list values are copied, and each element is checked
 to ensure it is of an appropriate type.

 See

 See

 Since FieldSet itself does not have any way of knowing about
 required fields that aren't actually present in the set, it is up
 to the caller to check for genuinely required fields. This property
 merely checks that any messages present are themselves initialized.

 See . It's up to the caller to
 cache the resulting size if desired.

 Class containing helpful workarounds for various platform compatibility

 This is not supported and assertions are made to ensure this does not exist on extensions of Lite types

 For use by generated code only.

 Repeating fields: For use by generated code only.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns information about this extension

 Returns the default value for this extension

 used for the extension registry

 Default instance of the type being extended, used to identify that type.

 Get the field number.

 If the extension is an embedded message, this is the default instance of
 that type.

 Class used to represent repeat extensions in generated classes.

 Base type for all generated extensions.

 The protocol compiler generates a static singleton instance of this
 class for each extension. For exmaple, imagine a .proto file with:

 message Foo {
 extensions 1000 to max
 }

 extend Foo {
 optional int32 bar;
 }

 Then MyProto.Foo.Bar has type GeneratedExtensionBase<MyProto.Foo,int>.

 In general, users should ignore the details of this type, and
 simply use the static singletons as parameters to the extension accessors
 in ExtendableMessage and ExtendableBuilder.
 The interface implemented by both GeneratedException and GeneratedRepeatException,
 to make it easier to cope with repeats separately.

 Converts from the type used by the native accessors to the type
 used by reflection accessors. For example, the reflection accessors
 for enums use EnumValueDescriptors but the native accessors use
 the generated enum type.

 Like ToReflectionType(object) but for a single element.

 Returns the default message instance for extensions which are message types.

 Converts the list to the right type.
 TODO(jonskeet): Check where this is used, and whether we need to convert
 for primitive types.

 Thrown when a protocol message being parsed is invalid in some way,
 e.g. it contains a malformed varint or a negative byte length.

 Interface for an RPC channel. A channel represents a communication line to
 a service (IService implementation) which can be used to call that service's
 methods. The service may be running on another machine. Normally, you should
 not call an IRpcChannel directly, but instead construct a stub wrapping it.
 Generated service classes contain a CreateStub method for precisely this purpose.

 Calls the given method of the remote service. This method is similar
 to with one important difference: the
 caller decides the types of the IMessage objects, not the implementation.
 The request may be of any type as long as request.Descriptor == method.InputType.
 The response passed to the callback will be of the same type as
 (which must be such that
 responsePrototype.Descriptor == method.OutputType).

 Mediates a single method call. The primary purpose of the controller
 is to provide a way to manipulate settings specific to the
 RPC implementation and to find out about RPC-level errors.

 The methods provided by this interface are intended to be a "least
 common denominator" set of features which we expect all implementations to
 support. Specific implementations may provide more advanced features,
 (e.g. deadline propagation).

 Resets the controller to its initial state so that it may be reused in
 a new call. This can be called from the client side only. It must not
 be called while an RPC is in progress.

 Advises the RPC system that the caller desires that the RPC call be
 canceled. The RPC system may cancel it immediately, may wait awhile and
 then cancel it, or may not even cancel the call at all. If the call is
 canceled, the "done" callback will still be called and the RpcController
 will indicate that the call failed at that time.

 Causes Failed to return true on the client side.
 will be incorporated into the message returned by ErrorText.
 If you find you need to return machine-readable information about
 failures, you should incorporate it into your response protocol buffer
 and should *not* call SetFailed.

 If true, indicates that the client canceled the RPC, so the server may as
 well give up on replying to it. This method must be called on the server
 side only. The server should still call the final "done" callback.

 Requests that the given callback be called when the RPC is canceled.
 The parameter passed to the callback will always be null. The callback will
 be called exactly once. If the RPC completes without being canceled, the
 callback will be called after completion. If the RPC has already been canceled
 when NotifyOnCancel is called, the callback will be called immediately.

 NotifyOnCancel must be called no more than once per request. It must be
 called on the server side only.

 After a call has finished, returns true if the call failed. The possible
 reasons for failure depend on the RPC implementation. Failed must
 only be called on the client side, and must not be called before a call has
 finished.

 If Failed is true, ErrorText returns a human-readable description of the error.

 Provides an entry-point for transport listeners to call a specified method on a service

 Calls the method identified by methodName and returns the message

 The method name on the service descriptor (case-sensitive)
 The ICodedInputStream to deserialize the call parameter from
 The extension registry to use when deserializing the call parameter
 The message that was returned from the service's method

 Used to forward an invocation of a service method to a transport sender implementation

 Calls the service member on the endpoint connected. This is generally done by serializing
 the message, sending the bytes over a transport, and then deserializing the call parameter
 to invoke the service's actual implementation via IRpcServerStub. Once the call has
 completed the result message is serialized and returned to the originating endpoint.

 The type of the response message
 The type of of the response builder
 The name of the method on the service
 The message instance provided to the service call
 The builder used to deserialize the response
 The resulting message of the service call

 Base interface for protocol-buffer-based RPC services. Services themselves
 are abstract classes (implemented either by servers or as stubs) but they
 implement this itnerface. The methods of this interface can be used to call
 the methods of the service without knowing its exact type at compile time
 (analagous to the IMessage interface).

 Call a method of the service specified by MethodDescriptor. This is
 normally implemented as a simple switch that calls the standard
 definitions of the service's methods.

 Preconditions

 method.Service == DescriptorForType
 request is of the exact same class as the object returned by GetRequestPrototype(method)
 controller is of the correct type for the RPC implementation being used by this service.
 For stubs, the "correct type" depends on the IRpcChannel which the stub is using. Server-side
 implementations are expected to accept whatever type of IRpcController the server-side RPC implementation
 uses.

 Postconditions

 will be called when the method is complete.
 This may before CallMethod returns or it may be at some point in the future.
 The parameter to is the response. It will be of the
 exact same type as would be returned by .
 If the RPC failed, the parameter to will be null.
 Further details about the failure can be found by querying .

 CallMethod requires that the request passed in is of a particular implementation
 of IMessage. This method gets the default instance of this type of a given method.
 You can then call WeakCreateBuilderForType to create a builder to build an object which
 you can then pass to CallMethod.

 Like GetRequestPrototype, but returns a prototype of the response message.
 This is generally not needed because the IService implementation contructs
 the response message itself, but it may be useful in some cases to know ahead
 of time what type of object will be returned.

 The ServiceDescriptor describing this service and its methods.

 Iterates over data created using a .
 Unlike MessageStreamWriter, this class is not usually constructed directly with
 a stream; instead it is provided with a way of opening a stream when iteration
 is started. The stream is closed when the iteration is completed or the enumerator
 is disposed. (This occurs naturally when using foreach.)

 The default instance of TMessage type used to construct builders while reading

 Any exception (within reason) thrown in type ctor is caught and rethrown in the constructor.
 This makes life a lot simpler for the caller.

 Vastly simplified the reflection to simply obtain the default instance and use it to construct
 the weak builder while simply casting the result. Ideally this class should have required a
 TBuilder type argument with a new() constraint to construct the initial instance thereby the
 reflection could be eliminated.

 Creates a new instance which uses the same stream provider as this one,
 but the specified extension registry.

 Creates a new instance which uses the same stream provider and extension registry as this one,
 but with the specified size limit. Note that this must be big enough for the largest message
 and the tag and size preceding it.

 Writes multiple messages to the same stream. Each message is written
 as if it were an element of a repeated field 1 in a larger protocol buffer.
 This class takes no ownership of the stream it is given; it never closes the
 stream.

 Creates an instance which writes to the given stream.

 Stream to write messages to.

 Utilities for arbitrary messages of an unknown type. This class does not use
 generics precisely because it is designed for dynamically discovered types.

 Returns the default message for the given type. If an exception is thrown
 (directly from this code), the message will be suitable to be displayed to a user.

 The type parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or is generic or abstract.

 Returns the default message for the type with the given name. This is just
 a convenience wrapper around calling Type.GetType and then GetDefaultMessage.
 If an exception is thrown, the message will be suitable to be displayed to a user.

 The typeName parameter is null.
 The type doesn't implement IMessage, or doesn't
 have a static DefaultMessage property of the same type, or can't be found.

 Helpers for converting names to pascal case etc.

 All characters that are not alpha-numeric

 Matches lower-case character that follow either an underscore, or a number

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always upper case.

 Removes non alpha numeric characters while capitalizing letters that follow
 a number or underscore. The first letter is always lower case.

 Capitalizes any characters following an '_' or a number '0' - '9' and removes
 all non alpha-numeric characters. If the resulting string begins with a number
 an '_' will be prefixed.

 Attempts to strip a suffix from a string, returning whether
 or not the suffix was actually present.

 Grab-bag of utility functions useful when dealing with RPCs.

 Converts an Action[IMessage] to an Action[T].

 Converts an Action[T] to an Action[IMessage].
 The generalized action will accept any message object which has
 the same descriptor, and will convert it to the correct class
 before calling the original action. However, if the generalized
 callback is given a message with a different descriptor, an
 exception will be thrown.

 Dictionary implementation which always yields keys in sorted order.
 This is not particularly efficient: it wraps a normal dictionary
 for most operations, but sorts by key when either iterating or
 fetching the Keys/Values properties.

 Provides ASCII text formatting support for messages.
 TODO(jonskeet): Support for alternative line endings.
 (Easy to print, via TextGenerator. Not sure about parsing.)

 Outputs a textual representation of the Protocol Message supplied into
 the parameter output.

 Outputs a textual representation of the Protocol Message builder supplied into
 the parameter output.

 Outputs a textual representation of to .

 Parses an integer in hex (leading 0x), decimal (no prefix) or octal (leading 0).
 Only a negative sign is permitted, and it must come before the radix indicator.

 Tests a character to see if it's an octal digit.

 Tests a character to see if it's a hex digit.

 Interprets a character as a digit (in any base up to 36) and returns the
 numeric value.

 Unescapes a text string as escaped using .
 Two-digit hex escapes (starting with "\x" are also recognised.

 Like but escapes a text string.
 The string is first encoded as UTF-8, then each byte escaped individually.
 The returned value is guaranteed to be entirely ASCII.

 Escapes bytes in the format used in protocol buffer text format, which
 is the same as the format used for C string literals. All bytes
 that are not printable 7-bit ASCII characters are escaped, as well as
 backslash, single-quote, and double-quote characters. Characters for
 which no defined short-hand escape sequence is defined will be escaped
 using 3-digit octal sequences.
 The returned value is guaranteed to be entirely ASCII.

 Performs string unescaping from C style (octal, hex, form feeds, tab etc) into a byte string.

 Parses a single field from the specified tokenizer and merges it into
 the builder.

 Helper class to control indentation. Used for TextFormat and by ProtoGen.

 The string to use at the end of each line. We assume that "Print" is only called using \n
 to indicate a line break; that's what we use to detect when we need to indent etc, and
 just the \n is replaced with the contents of lineBreak.

 Writer to write formatted text to.

 Keeps track of whether the next piece of text should be indented

 Keeps track of the current level of indentation

 Creates a generator writing to the given writer. The writer
 is not closed by this class.

 Indents text by two spaces. After calling Indent(), two spaces
 will be inserted at the beginning of each line of text. Indent() may
 be called multiple times to produce deeper indents.

 Reduces the current indent level by two spaces.

 Prints the given text to the output stream, indenting at line boundaries.

 Represents a stream of tokens parsed from a string.

 The character index within the text to perform the next regex match at.

 The character index within the text at which the current token begins.

 The line number of the current token.

 The column number of the current token.

 The line number of the previous token.

 The column number of the previous token.

 Construct a tokenizer that parses tokens from the given text.

 Advances to the next token.

 Skip over any whitespace so that matchPos starts at the next token.

 If the next token exactly matches the given token, consume it and return
 true. Otherwise, return false without doing anything.

 If the next token exactly matches the specified one, consume it.
 Otherwise, throw a FormatException.

 Returns true if the next token is an integer, but does not consume it.

 If the next token is an identifier, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a 32-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 32-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit signed integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a 64-bit unsigned integer, consume it and return its
 value. Otherwise, throw a FormatException.

 If the next token is a double, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a float, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a Boolean, consume it and return its value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it and return its (unescaped) value.
 Otherwise, throw a FormatException.

 If the next token is a string, consume it, unescape it as a
 ByteString and return it. Otherwise, throw a FormatException.

 Returns a format exception with the current line and column numbers
 in the description, suitable for throwing.

 Returns a format exception with the line and column numbers of the
 previous token in the description, suitable for throwing.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse an integer.

 Constructs an appropriate FormatException for the given existing exception
 when trying to parse a float or double.

 Are we at the end of the input?

 Helper methods for throwing exceptions

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value is null.

 Throws an ArgumentNullException if the given value or any element within it is null.

 TODO(jonskeet): Write summary text.

 Converts this exception into an InvalidProtocolBufferException.
 When a parsed message is missing required fields, this should be thrown
 instead of UninitializedMessageException.

 Constructs the description string for a given list of missing fields.

 For Lite exceptions that do not known how to enumerate missing fields

 Returns a list of the full "paths" of missing required
 fields in the specified message.

 Recursive helper implementing FindMissingFields.

 Returns a read-only list of human-readable names of
 required fields missing from this message. Each name
 is a full path to a field, e.g. "foo.bar[5].baz"

 Represents a single field in an UnknownFieldSet.

 An UnknownField consists of five lists of values. The lists correspond
 to the five "wire types" used in the protocol buffer binary format.
 The wire type of each field can be determined from the encoded form alone,
 without knowing the field's declared type. So, we are able to parse
 unknown values at least this far and separate them. Normally, only one
 of the five lists will contain any values, since it is impossible to
 define a valid message type that declares two different types for the
 same field number. However, the code is designed to allow for the case
 where the same unknown field number is encountered using multiple different
 wire types.

 UnknownField is an immutable class. To construct one, you must use an
 UnknownField.Builder.

 Constructs a new Builder.

 Constructs a new Builder and initializes it to a copy of .

 Serializes the field, including the field number, and writes it to
 .

 Computes the number of bytes required to encode this field, including field
 number.

 Serializes the length-delimited values of the field, including field
 number, and writes them to using the MessageSet wire format.

 Get the number of bytes required to encode this field, incuding field number,
 using the MessageSet wire format.

 The list of varint values for this field.

 The list of fixed32 values for this field.

 The list of fixed64 values for this field.

 The list of length-delimited values for this field.

 The list of embedded group values for this field. These
 are represented using UnknownFieldSets rather than Messages
 since the group's type is presumably unknown.

 Used to build instances of UnknownField.

 Builds the field. After building, the builder is reset to an empty
 state. (This is actually easier than making it unusable.)

 Merge the values in into this field. For each list
 of values, 's values are append to the ones in this
 field.

 Returns a new list containing all of the given specified values from
 both the and lists.
 If is null and is empty,
 null is returned. Otherwise, either a new list is created (if
 is null) or the elements of are added to .

 Clears the contents of this builder.

 Adds a varint value.

 Adds a fixed32 value.

 Adds a fixed64 value.

 Adds a length-delimited value.

 Adds an embedded group.

 Adds to the , creating
 a new list if is null. The list is returned - either
 the original reference or the new list.

 Returns a read-only version of the given IList, and clears
 the field used for . If the value
 is null, an empty list is produced using Lists.Empty.

 Used to keep track of fields which were seen when parsing a protocol message
 but whose field numbers or types are unrecognized. This most frequently
 occurs when new fields are added to a message type and then messages containing
 those fields are read by old software that was built before the new types were
 added.

 Every message contains an UnknownFieldSet.

 Most users will never need to use this class directly.

 Creates a new unknown field set builder.

 Creates a new unknown field set builder
 and initialize it from .

 Checks whether or not the given field number is present in the set.

 Serializes the set and writes it to .

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Converts the set to a string in protocol buffer text format. This
 is just a trivial wrapper around TextFormat.PrintToString.

 Serializes the message to a ByteString and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message to a byte array and returns it. This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the message and writes it to . This is
 just a trivial wrapper around WriteTo(ICodedOutputStream).

 Serializes the set and writes it to using
 the MessageSet wire format.

 Parses an UnknownFieldSet from the given input.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given data.

 Parses an UnknownFieldSet from the given input.

 Returns a read-only view of the mapping from field numbers to values.

 Fetches a field by number, returning an empty field if not present.
 Never returns null.

 Gets the number of bytes required to encode this set.

 Gets the number of bytes required to encode this set using the MessageSet
 wire format.

 Builder for UnknownFieldSets.

 Mapping from number to field. Note that by using a SortedList we ensure
 that the fields will be serialized in ascending order.

 Returns a field builder for the specified field number, including any values
 which already exist.

 Build the UnknownFieldSet and return it. Once this method has been called,
 this instance will no longer be usable. Calling any method after this
 will throw a NullReferenceException.

 Adds a field to the set. If a field with the same number already exists, it
 is replaced.

 Resets the builder to an empty set.

 Parse an entire message from and merge
 its fields into this set.

 Parse a single field from and merge it
 into this set.

 The field's tag number, which was already parsed.
 The coded input stream containing the field
 false if the tag is an "end group" tag, true otherwise

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Parses as an UnknownFieldSet and merge it
 with the set being built. This is just a small wrapper around
 MergeFrom(ICodedInputStream).

 Convenience method for merging a new field containing a single varint
 value. This is used in particular when an unknown enum value is
 encountered.

 Merges the fields from into this set.
 If a field number exists in both sets, the values in
 will be appended to the values in this set.

 Checks if the given field number is present in the set.

 Adds a field to the unknown field set. If a field with the same
 number already exists, the two are merged.

 Like
 but parses a single field.

 The input to read the field from
 Registry to use when an extension field is encountered
 Builder to merge field into, if it's a known field
 The tag, which should already have been read from the input
 true unless the tag is an end-group tag

 Called by MergeFieldFrom to parse a MessageSet extension.

 This class is used internally by the Protocol Buffer Library and generated
 message implementations. It is public only for the sake of those generated
 messages. Others should not use this class directly.

 This class contains constants and helper functions useful for dealing with
 the Protocol Buffer wire format.

 Given a tag value, determines the wire type (lower 3 bits).

 Given a tag value, determines the field number (the upper 29 bits).

 Makes a tag value given a field number and wire type.
 TODO(jonskeet): Should we just have a Tag structure?

 Returns the wire type for the given field descriptor. This differs
 from GetWireType(FieldType) for packed repeated fields.

 Converts a field type to its wire type. Done with a switch for the sake
 of speed - this is significantly faster than a dictionary lookup.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/CHANGES.txt

===
Welcome to the C# port of Google Protocol Buffers, written by Jon Skeet
(skeet@pobox.com) based on the work of many talented people.

For more information about this port, visit its homepage:
http://protobuf-csharp-port.googlecode.com

For more information about Protocol Buffers in general, visit the project page
for the C++, Java and Python project:
http://protobuf.googlecode.com
===
RELEASE NOTES - Version 2.4.1.555
===

Changes:
- Upgrade solution format to Visual Studio 2012.
- Add the ability to print a builder (not just a message)
- TextGenerator introduces a new overload of PrintTo
- Munge protoc's error format into a VS-C#-compatible output format.
- Work to make ProtoGen clone that acts as a protoc.exe plugin.
- Added the AllowPartiallyTrustedCallers attribute
- Optimized enum parsing.

Fixes:
- Fix for bug in limited input stream's Position, Introduced Position on
 output stream
- Fix for writing a character to a JSON output overflows allocated buffer
- Optimize FromBase64String to return Empty when presented with empty string.
- Use string.Concat instead of operator to avoid potential import problems
- Issue 81: quoting for NUnit parameters.
- Issue 56: NuGet package is noisy
- Issue 70: Portable library project has some invalid Nunit-based code.
- Issue 71: CodedInputStream.ReadBytes go to slow path unnecessarily
- Issue 84: warning CS0219: The variable `size' is assigned but never used

===
RELEASE NOTES - Version 2.4.1.521
===

Changes:
- Add generated_code_attributes option, defaulted to false
- Added support for Portable library
- Added 'Unsafe' static type in ByteString to allow direct buffer access

Fixes:
- Issue 50: The XML serializer will fail to deserialize a message with empty
 child message
- Issue 45: Use of 'item' as a field name causes AmbiguousMatchException
- Issue 49: Generated nested static Types class should be partial
- Issue 38: Disable CLSCompliant warnings (3021)
- Issue 40: proto_path does not work for command-line file names
- Issue 54: should retire all bytes in buffer (bufferSize)
- Issue 43: Fix to correct identical 'umbrella_classname' options from trying
 to write to the same filename.

===
RELEASE NOTES - Version 2.4.1.473
===

Features:
- Added option service_generator_type to control service generation with
 NONE, GENERIC, INTERFACE, or IRPCDISPATCH
- Added interfaces IRpcDispatch and IRpcServerStub to provide for blocking
 services and implementations.
- Added ProtoGen.exe command-line argument "--protoc_dir=" to specify the
 location of protoc.exe.
- Extracted interfaces for ICodedInputStream and ICodedOutputStream to allow
 custom implementation of writers with both speed and size optimizations.
- Addition of the "Google.ProtoBuffers.Serialization" assembly to support
 reading and writing messages to/from XML, JSON, IDictionary<,> and others.
- Several performance related fixes and tweeks
- Issue 3:	Add option to mark generated code with attribute
- Issue 20:	Support for decorating classes [Serializable]
- Issue 21:	Decorate fields with [deprecated=true] as [System.Obsolete]
- Issue 22:	Reusable Builder classes
- Issue 24:	Support for using Json/Xml formats with ICodedInputStream
- Issue 25: Added support for NuGet packages
- Issue 31: Upgraded protoc.exe and descriptor to 2.4.1

Fixes:
- Issue 13:	Message with Field same name as message causes uncompilable .cs
- Issue 16:	Does not integrate well with other tooling
- Issue 19:	Support for negative enum values
- Issue 26:	AddRange in GeneratedBuilder iterates twice.
- Issue 27:	Remove XML documentation output from test projects to clear
 warnings/errors.
- Issue 28: Circular message dependencies result in null default values for
 Message fields.
- Issue 29: Message classes generated have a public default constructor. You
 can disable private ctor generation with the option generate_private_ctor.
- Issue 35: Fixed a bug in ProtoGen handling of arguments with trailing \
- Big-endian support for float, and double on Silverlight
- Packed and Unpacked parsing allow for all repeated, as per version 2.3
- Fix for leaving Builder a public ctor on internal classes for use with
 generic "where T: new()" constraints.

Other:
- Changed the code signing key to a privately held key
- Reformatted all code and line-endings to C# defaults
- Reworking of performance benchmarks to produce reliable results, option /v2
- Issue 34: Silverlight assemblies are now unit tested

===
RELEASE NOTES - Version 2.3.0.277
===

Features:
- Added cls_compliance option to generate attributes indicating
 non-CLS-compliance.
- Added file_extension option to control the generated output file's extension.
- Added umbrella_namespace option to place the umbrella class into a nested
 namespace to address issues with proto files having the same name as a
 message it contains.
- Added output_directory option to set the output path for the source file(s).
- Added ignore_google_protobuf option to avoid generating code for includes
 from the google.protobuf package.
- Added the LITE framework (Google.ProtoBuffersLite.dll) and the ability to
 generate code with "option optimize_for = LITE_RUNTIME;".
- Added ability to invoke protoc.exe from within ProtoGen.exe.
- Upgraded to protoc.exe (2.3) compiler.

Fixes:
- Issue 9:	Class cannot be static and sealed error
- Issue 12:	default value for enumerate fields must be filled out

Other:
- Rewrite of build using MSBbuild instead of NAnt
- Moved to NUnit Version 2.2.8.0
- Changed to using secure .snk for releases

===
RELEASE NOTES - Version 0.9.1
===

Fixes:
- issue 10:	Incorrect encoding of packed fields when serialized

===
RELEASE NOTES - Version 0.9.0
===

- Initial release

===

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/google/protobuf/compiler/plugin.proto

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//
// WARNING: The plugin interface is currently EXPERIMENTAL and is subject to
// change.
//
// protoc (aka the Protocol Compiler) can be extended via plugins. A plugin is
// just a program that reads a CodeGeneratorRequest from stdin and writes a
// CodeGeneratorResponse to stdout.
//
// Plugins written using C++ can use google/protobuf/compiler/plugin.h instead
// of dealing with the raw protocol defined here.
//
// A plugin executable needs only to be placed somewhere in the path. The
// plugin should be named "protoc-gen-$NAME", and will then be used when the
// flag "--${NAME}_out" is passed to protoc.

package google.protobuf.compiler;
option java_package = "com.google.protobuf.compiler";
option java_outer_classname = "PluginProtos";

import "google/protobuf/descriptor.proto";

// An encoded CodeGeneratorRequest is written to the plugin's stdin.
message CodeGeneratorRequest {
 // The .proto files that were explicitly listed on the command-line. The
 // code generator should generate code only for these files. Each file's
 // descriptor will be included in proto_file, below.
 repeated string file_to_generate = 1;

 // The generator parameter passed on the command-line.
 optional string parameter = 2;

 // FileDescriptorProtos for all files in files_to_generate and everything
 // they import. The files will appear in topological order, so each file
 // appears before any file that imports it.
 //
 // protoc guarantees that all proto_files will be written after
 // the fields above, even though this is not technically guaranteed by the
 // protobuf wire format. This theoretically could allow a plugin to stream
 // in the FileDescriptorProtos and handle them one by one rather than read
 // the entire set into memory at once. However, as of this writing, this
 // is not similarly optimized on protoc's end -- it will store all fields in
 // memory at once before sending them to the plugin.
 repeated FileDescriptorProto proto_file = 15;
}

// The plugin writes an encoded CodeGeneratorResponse to stdout.
message CodeGeneratorResponse {
 // Error message. If non-empty, code generation failed. The plugin process
 // should exit with status code zero even if it reports an error in this way.
 //
 // This should be used to indicate errors in .proto files which prevent the
 // code generator from generating correct code. Errors which indicate a
 // problem in protoc itself -- such as the input CodeGeneratorRequest being
 // unparseable -- should be reported by writing a message to stderr and
 // exiting with a non-zero status code.
 optional string error = 1;

 // Represents a single generated file.
 message File {
 // The file name, relative to the output directory. The name must not
 // contain "." or ".." components and must be relative, not be absolute (so,
 // the file cannot lie outside the output directory). "/" must be used as
 // the path separator, not "\".
 //
 // If the name is omitted, the content will be appended to the previous
 // file. This allows the generator to break large files into small chunks,
 // and allows the generated text to be streamed back to protoc so that large
 // files need not reside completely in memory at one time. Note that as of
 // this writing protoc does not optimize for this -- it will read the entire
 // CodeGeneratorResponse before writing files to disk.
 optional string name = 1;

 // If non-empty, indicates that the named file should already exist, and the
 // content here is to be inserted into that file at a defined insertion
 // point. This feature allows a code generator to extend the output
 // produced by another code generator. The original generator may provide
 // insertion points by placing special annotations in the file that look
 // like:
 // @@protoc_insertion_point(NAME)
 // The annotation can have arbitrary text before and after it on the line,
 // which allows it to be placed in a comment. NAME should be replaced with
 // an identifier naming the point -- this is what other generators will use
 // as the insertion_point. Code inserted at this point will be placed
 // immediately above the line containing the insertion point (thus multiple
 // insertions to the same point will come out in the order they were added).
 // The double-@ is intended to make it unlikely that the generated code
 // could contain things that look like insertion points by accident.
 //
 // For example, the C++ code generator places the following line in the
 // .pb.h files that it generates:
 // // @@protoc_insertion_point(namespace_scope)
 // This line appears within the scope of the file's package namespace, but
 // outside of any particular class. Another plugin can then specify the
 // insertion_point "namespace_scope" to generate additional classes or
 // other declarations that should be placed in this scope.
 //
 // Note that if the line containing the insertion point begins with
 // whitespace, the same whitespace will be added to every line of the
 // inserted text. This is useful for languages like Python, where
 // indentation matters. In these languages, the insertion point comment
 // should be indented the same amount as any inserted code will need to be
 // in order to work correctly in that context.
 //
 // The code generator that generates the initial file and the one which
 // inserts into it must both run as part of a single invocation of protoc.
 // Code generators are executed in the order in which they appear on the
 // command line.
 //
 // If |insertion_point| is present, |name| must also be present.
 optional string insertion_point = 2;

 // The file contents.
 optional string content = 15;
 }
 repeated File file = 15;
}

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/google/protobuf/csharp_options.proto

// Extra options for C# generator

import "google/protobuf/descriptor.proto";

package google.protobuf;

message CSharpFileOptions {

 // Namespace for generated classes; defaults to the package.
 optional string namespace = 1;

 // Name of the "umbrella" class used for metadata about all
 // the messages within this file. Default is based on the name
 // of the file.
 optional string umbrella_classname = 2;

 // Whether classes should be public (true) or internal (false)
 optional bool public_classes = 3 [default = true];

 // Whether to generate a single file for everything within the
 // .proto file (false), or one file per message (true).
 // This option is not currently honored; please log a feature
 // request if you really want it.
 optional bool multiple_files = 4;

 // Whether to nest messages within a single umbrella class (true)
 // or create the umbrella class as a peer, with messages as
 // top-level classes in the namespace (false)
 optional bool nest_classes = 5;

 // Generate appropriate support for Code Contracts
 // (Ongoing; support should improve over time)
 optional bool code_contracts = 6;

 // Create subdirectories for namespaces, e.g. namespace "Foo.Bar"
 // would generate files within [output directory]/Foo/Bar
 optional bool expand_namespace_directories = 7;

 // Generate attributes indicating non-CLS-compliance
 optional bool cls_compliance = 8 [default = true];

 // Generate messages/builders with the [Serializable] attribute
 optional bool add_serializable = 9 [default = false];

 // Generates a private ctor for Message types
 optional bool generate_private_ctor = 10 [default = true];

 // The extension that should be appended to the umbrella_classname when creating files.
 optional string file_extension = 221 [default = ".cs"];

 // A nested namespace for the umbrella class. Helpful for name collisions caused by
 // umbrella_classname conflicting with an existing type. This will be automatically
 // set to 'Proto' if a collision is detected with types being generated. This value
 // is ignored when nest_classes == true
 optional string umbrella_namespace = 222;

 // The output path for the source file(s) generated
 optional string output_directory = 223 [default = "."];

 // Will ignore the type generations and remove dependencies for the descriptor proto
 // files that declare their package to be "google.protobuf"
 optional bool ignore_google_protobuf = 224 [default = false];

 // Controls how services are generated, GENERIC is the deprecated original implementation
 // INTERFACE generates service interfaces only, RPCINTEROP generates interfaces and
 // implementations using the included Windows RPC interop libarary.
 optional CSharpServiceType service_generator_type = 225 [default = NONE];

 // Used to add the System.Runtime.CompilerServices.CompilerGeneratedAttribute and
 // System.CodeDom.Compiler.GeneratedCodeAttribute attributes to generated code.
 optional bool generated_code_attributes = 226 [default = false];
}

enum CSharpServiceType {
 // Services are ignored by the generator
 NONE = 0;
 // Generates the original Java generic service implementations
 GENERIC = 1;
 // Generates an interface for the service and nothing else
 INTERFACE = 2;
 // Generates an interface for the service and client/server wrappers for the interface
 IRPCDISPATCH = 3;
}

extend FileOptions {
 optional CSharpFileOptions csharp_file_options = 1000;
}

extend FieldOptions {
 optional CSharpFieldOptions csharp_field_options = 1000;
}

message CSharpFieldOptions {
 // Provides the ability to override the name of the property
 // generated for this field. This is applied to all properties
 // and methods to do with this field, including HasFoo, FooCount,
 // FooList etc.
 optional string property_name = 1;
}

message CSharpServiceOptions {
 optional string interface_id = 1;
}

extend ServiceOptions {
 optional CSharpServiceOptions csharp_service_options = 1000;
}

message CSharpMethodOptions {
 optional int32 dispatch_id = 1;
}

extend MethodOptions {
 optional CSharpMethodOptions csharp_method_options = 1000;
}

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/google/protobuf/descriptor.proto

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// The messages in this file describe the definitions found in .proto files.
// A valid .proto file can be translated directly to a FileDescriptorProto
// without any other information (e.g. without reading its imports).

package google.protobuf;
option java_package = "com.google.protobuf";
option java_outer_classname = "DescriptorProtos";

// descriptor.proto must be optimized for speed because reflection-based
// algorithms don't work during bootstrapping.
option optimize_for = SPEED;

// The protocol compiler can output a FileDescriptorSet containing the .proto
// files it parses.
message FileDescriptorSet {
 repeated FileDescriptorProto file = 1;
}

// Describes a complete .proto file.
message FileDescriptorProto {
 optional string name = 1; // file name, relative to root of source tree
 optional string package = 2; // e.g. "foo", "foo.bar", etc.

 // Names of files imported by this file.
 repeated string dependency = 3;

 // All top-level definitions in this file.
 repeated DescriptorProto message_type = 4;
 repeated EnumDescriptorProto enum_type = 5;
 repeated ServiceDescriptorProto service = 6;
 repeated FieldDescriptorProto extension = 7;

 optional FileOptions options = 8;

 // This field contains optional information about the original source code.
 // You may safely remove this entire field whithout harming runtime
 // functionality of the descriptors -- the information is needed only by
 // development tools.
 optional SourceCodeInfo source_code_info = 9;
}

// Describes a message type.
message DescriptorProto {
 optional string name = 1;

 repeated FieldDescriptorProto field = 2;
 repeated FieldDescriptorProto extension = 6;

 repeated DescriptorProto nested_type = 3;
 repeated EnumDescriptorProto enum_type = 4;

 message ExtensionRange {
 optional int32 start = 1;
 optional int32 end = 2;
 }
 repeated ExtensionRange extension_range = 5;

 optional MessageOptions options = 7;
}

// Describes a field within a message.
message FieldDescriptorProto {
 enum Type {
 // 0 is reserved for errors.
 // Order is weird for historical reasons.
 TYPE_DOUBLE = 1;
 TYPE_FLOAT = 2;
 TYPE_INT64 = 3; // Not ZigZag encoded. Negative numbers
 // take 10 bytes. Use TYPE_SINT64 if negative
 // values are likely.
 TYPE_UINT64 = 4;
 TYPE_INT32 = 5; // Not ZigZag encoded. Negative numbers
 // take 10 bytes. Use TYPE_SINT32 if negative
 // values are likely.
 TYPE_FIXED64 = 6;
 TYPE_FIXED32 = 7;
 TYPE_BOOL = 8;
 TYPE_STRING = 9;
 TYPE_GROUP = 10; // Tag-delimited aggregate.
 TYPE_MESSAGE = 11; // Length-delimited aggregate.

 // New in version 2.
 TYPE_BYTES = 12;
 TYPE_UINT32 = 13;
 TYPE_ENUM = 14;
 TYPE_SFIXED32 = 15;
 TYPE_SFIXED64 = 16;
 TYPE_SINT32 = 17; // Uses ZigZag encoding.
 TYPE_SINT64 = 18; // Uses ZigZag encoding.
 };

 enum Label {
 // 0 is reserved for errors
 LABEL_OPTIONAL = 1;
 LABEL_REQUIRED = 2;
 LABEL_REPEATED = 3;
 // TODO(sanjay): Should we add LABEL_MAP?
 };

 optional string name = 1;
 optional int32 number = 3;
 optional Label label = 4;

 // If type_name is set, this need not be set. If both this and type_name
 // are set, this must be either TYPE_ENUM or TYPE_MESSAGE.
 optional Type type = 5;

 // For message and enum types, this is the name of the type. If the name
 // starts with a '.', it is fully-qualified. Otherwise, C++-like scoping
 // rules are used to find the type (i.e. first the nested types within this
 // message are searched, then within the parent, on up to the root
 // namespace).
 optional string type_name = 6;

 // For extensions, this is the name of the type being extended. It is
 // resolved in the same manner as type_name.
 optional string extendee = 2;

 // For numeric types, contains the original text representation of the value.
 // For booleans, "true" or "false".
 // For strings, contains the default text contents (not escaped in any way).
 // For bytes, contains the C escaped value. All bytes >= 128 are escaped.
 // TODO(kenton): Base-64 encode?
 optional string default_value = 7;

 optional FieldOptions options = 8;
}

// Describes an enum type.
message EnumDescriptorProto {
 optional string name = 1;

 repeated EnumValueDescriptorProto value = 2;

 optional EnumOptions options = 3;
}

// Describes a value within an enum.
message EnumValueDescriptorProto {
 optional string name = 1;
 optional int32 number = 2;

 optional EnumValueOptions options = 3;
}

// Describes a service.
message ServiceDescriptorProto {
 optional string name = 1;
 repeated MethodDescriptorProto method = 2;

 optional ServiceOptions options = 3;
}

// Describes a method of a service.
message MethodDescriptorProto {
 optional string name = 1;

 // Input and output type names. These are resolved in the same way as
 // FieldDescriptorProto.type_name, but must refer to a message type.
 optional string input_type = 2;
 optional string output_type = 3;

 optional MethodOptions options = 4;
}

// ===
// Options

// Each of the definitions above may have "options" attached. These are
// just annotations which may cause code to be generated slightly differently
// or may contain hints for code that manipulates protocol messages.
//
// Clients may define custom options as extensions of the *Options messages.
// These extensions may not yet be known at parsing time, so the parser cannot
// store the values in them. Instead it stores them in a field in the *Options
// message called uninterpreted_option. This field must have the same name
// across all *Options messages. We then use this field to populate the
// extensions when we build a descriptor, at which point all protos have been
// parsed and so all extensions are known.
//
// Extension numbers for custom options may be chosen as follows:
// * For options which will only be used within a single application or
// organization, or for experimental options, use field numbers 50000
// through 99999. It is up to you to ensure that you do not use the
// same number for multiple options.
// * For options which will be published and used publicly by multiple
// independent entities, e-mail kenton@google.com to reserve extension
// numbers. Simply tell me how many you need and I'll send you back a
// set of numbers to use -- there's no need to explain how you intend to
// use them. If this turns out to be popular, a web service will be set up
// to automatically assign option numbers.

message FileOptions {

 // Sets the Java package where classes generated from this .proto will be
 // placed. By default, the proto package is used, but this is often
 // inappropriate because proto packages do not normally start with backwards
 // domain names.
 optional string java_package = 1;

 // If set, all the classes from the .proto file are wrapped in a single
 // outer class with the given name. This applies to both Proto1
 // (equivalent to the old "--one_java_file" option) and Proto2 (where
 // a .proto always translates to a single class, but you may want to
 // explicitly choose the class name).
 optional string java_outer_classname = 8;

 // If set true, then the Java code generator will generate a separate .java
 // file for each top-level message, enum, and service defined in the .proto
 // file. Thus, these types will *not* be nested inside the outer class
 // named by java_outer_classname. However, the outer class will still be
 // generated to contain the file's getDescriptor() method as well as any
 // top-level extensions defined in the file.
 optional bool java_multiple_files = 10 [default=false];

 // If set true, then the Java code generator will generate equals() and
 // hashCode() methods for all messages defined in the .proto file. This is
 // purely a speed optimization, as the AbstractMessage base class includes
 // reflection-based implementations of these methods.
 optional bool java_generate_equals_and_hash = 20 [default=false];

 // Generated classes can be optimized for speed or code size.
 enum OptimizeMode {
 SPEED = 1; // Generate complete code for parsing, serialization,
 // etc.
 CODE_SIZE = 2; // Use ReflectionOps to implement these methods.
 LITE_RUNTIME = 3; // Generate code using MessageLite and the lite runtime.
 }
 optional OptimizeMode optimize_for = 9 [default=SPEED];

 // Should generic services be generated in each language? "Generic" services
 // are not specific to any particular RPC system. They are generated by the
 // main code generators in each language (without additional plugins).
 // Generic services were the only kind of service generation supported by
 // early versions of proto2.
 //
 // Generic services are now considered deprecated in favor of using plugins
 // that generate code specific to your particular RPC system. Therefore,
 // these default to false. Old code which depends on generic services should
 // explicitly set them to true.
 optional bool cc_generic_services = 16 [default=false];
 optional bool java_generic_services = 17 [default=false];
 optional bool py_generic_services = 18 [default=false];

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message MessageOptions {
 // Set true to use the old proto1 MessageSet wire format for extensions.
 // This is provided for backwards-compatibility with the MessageSet wire
 // format. You should not use this for any other reason: It's less
 // efficient, has fewer features, and is more complicated.
 //
 // The message must be defined exactly as follows:
 // message Foo {
 // option message_set_wire_format = true;
 // extensions 4 to max;
 // }
 // Note that the message cannot have any defined fields; MessageSets only
 // have extensions.
 //
 // All extensions of your type must be singular messages; e.g. they cannot
 // be int32s, enums, or repeated messages.
 //
 // Because this is an option, the above two restrictions are not enforced by
 // the protocol compiler.
 optional bool message_set_wire_format = 1 [default=false];

 // Disables the generation of the standard "descriptor()" accessor, which can
 // conflict with a field of the same name. This is meant to make migration
 // from proto1 easier; new code should avoid fields named "descriptor".
 optional bool no_standard_descriptor_accessor = 2 [default=false];

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message FieldOptions {
 // The ctype option instructs the C++ code generator to use a different
 // representation of the field than it normally would. See the specific
 // options below. This option is not yet implemented in the open source
 // release -- sorry, we'll try to include it in a future version!
 optional CType ctype = 1 [default = STRING];
 enum CType {
 // Default mode.
 STRING = 0;

 CORD = 1;

 STRING_PIECE = 2;
 }
 // The packed option can be enabled for repeated primitive fields to enable
 // a more efficient representation on the wire. Rather than repeatedly
 // writing the tag and type for each element, the entire array is encoded as
 // a single length-delimited blob.
 optional bool packed = 2;

 // Is this field deprecated?
 // Depending on the target platform, this can emit Deprecated annotations
 // for accessors, or it will be completely ignored; in the very least, this
 // is a formalization for deprecating fields.
 optional bool deprecated = 3 [default=false];

 // EXPERIMENTAL. DO NOT USE.
 // For "map" fields, the name of the field in the enclosed type that
 // is the key for this map. For example, suppose we have:
 // message Item {
 // required string name = 1;
 // required string value = 2;
 // }
 // message Config {
 // repeated Item items = 1 [experimental_map_key="name"];
 // }
 // In this situation, the map key for Item will be set to "name".
 // TODO: Fully-implement this, then remove the "experimental_" prefix.
 optional string experimental_map_key = 9;

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message EnumOptions {

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message EnumValueOptions {
 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message ServiceOptions {

 // Note: Field numbers 1 through 32 are reserved for Google's internal RPC
 // framework. We apologize for hoarding these numbers to ourselves, but
 // we were already using them long before we decided to release Protocol
 // Buffers.

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

message MethodOptions {

 // Note: Field numbers 1 through 32 are reserved for Google's internal RPC
 // framework. We apologize for hoarding these numbers to ourselves, but
 // we were already using them long before we decided to release Protocol
 // Buffers.

 // The parser stores options it doesn't recognize here. See above.
 repeated UninterpretedOption uninterpreted_option = 999;

 // Clients can define custom options in extensions of this message. See above.
 extensions 1000 to max;
}

// A message representing a option the parser does not recognize. This only
// appears in options protos created by the compiler::Parser class.
// DescriptorPool resolves these when building Descriptor objects. Therefore,
// options protos in descriptor objects (e.g. returned by Descriptor::options(),
// or produced by Descriptor::CopyTo()) will never have UninterpretedOptions
// in them.
message UninterpretedOption {
 // The name of the uninterpreted option. Each string represents a segment in
 // a dot-separated name. is_extension is true iff a segment represents an
 // extension (denoted with parentheses in options specs in .proto files).
 // E.g.,{ ["foo", false], ["bar.baz", true], ["qux", false] } represents
 // "foo.(bar.baz).qux".
 message NamePart {
 required string name_part = 1;
 required bool is_extension = 2;
 }
 repeated NamePart name = 2;

 // The value of the uninterpreted option, in whatever type the tokenizer
 // identified it as during parsing. Exactly one of these should be set.
 optional string identifier_value = 3;
 optional uint64 positive_int_value = 4;
 optional int64 negative_int_value = 5;
 optional double double_value = 6;
 optional bytes string_value = 7;
 optional string aggregate_value = 8;
}

// ===
// Optional source code info

// Encapsulates information about the original source file from which a
// FileDescriptorProto was generated.
message SourceCodeInfo {
 // A Location identifies a piece of source code in a .proto file which
 // corresponds to a particular definition. This information is intended
 // to be useful to IDEs, code indexers, documentation generators, and similar
 // tools.
 //
 // For example, say we have a file like:
 // message Foo {
 // optional string foo = 1;
 // }
 // Let's look at just the field definition:
 // optional string foo = 1;
 // ^ ^^ ^^ ^ ^^^
 // a bc de f ghi
 // We have the following locations:
 // span path represents
 // [a,i) [4, 0, 2, 0] The whole field definition.
 // [a,b) [4, 0, 2, 0, 4] The label (optional).
 // [c,d) [4, 0, 2, 0, 5] The type (string).
 // [e,f) [4, 0, 2, 0, 1] The name (foo).
 // [g,h) [4, 0, 2, 0, 3] The number (1).
 //
 // Notes:
 // - A location may refer to a repeated field itself (i.e. not to any
 // particular index within it). This is used whenever a set of elements are
 // logically enclosed in a single code segment. For example, an entire
 // extend block (possibly containing multiple extension definitions) will
 // have an outer location whose path refers to the "extensions" repeated
 // field without an index.
 // - Multiple locations may have the same path. This happens when a single
 // logical declaration is spread out across multiple places. The most
 // obvious example is the "extend" block again -- there may be multiple
 // extend blocks in the same scope, each of which will have the same path.
 // - A location's span is not always a subset of its parent's span. For
 // example, the "extendee" of an extension declaration appears at the
 // beginning of the "extend" block and is shared by all extensions within
 // the block.
 // - Just because a location's span is a subset of some other location's span
 // does not mean that it is a descendent. For example, a "group" defines
 // both a type and a field in a single declaration. Thus, the locations
 // corresponding to the type and field and their components will overlap.
 // - Code which tries to interpret locations should probably be designed to
 // ignore those that it doesn't understand, as more types of locations could
 // be recorded in the future.
 repeated Location location = 1;
 message Location {
 // Identifies which part of the FileDescriptorProto was defined at this
 // location.
 //
 // Each element is a field number or an index. They form a path from
 // the root FileDescriptorProto to the place where the definition. For
 // example, this path:
 // [4, 3, 2, 7, 1]
 // refers to:
 // file.message_type(3) // 4, 3
 // .field(7) // 2, 7
 // .name() // 1
 // This is because FileDescriptorProto.message_type has field number 4:
 // repeated DescriptorProto message_type = 4;
 // and DescriptorProto.field has field number 2:
 // repeated FieldDescriptorProto field = 2;
 // and FieldDescriptorProto.name has field number 1:
 // optional string name = 1;
 //
 // Thus, the above path gives the location of a field name. If we removed
 // the last element:
 // [4, 3, 2, 7]
 // this path refers to the whole field declaration (from the beginning
 // of the label to the terminating semicolon).
 repeated int32 path = 1 [packed=true];

 // Always has exactly three or four elements: start line, start column,
 // end line (optional, otherwise assumed same as start line), end column.
 // These are packed into a single field for efficiency. Note that line
 // and column numbers are zero-based -- typically you will want to add
 // 1 to each before displaying to a user.
 repeated int32 span = 2 [packed=true];

 // TODO(kenton): Record comments appearing before and after the
 // declaration.
 }
}

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/license.txt

Protocol Buffers - Google's data interchange format
Copyright 2008-2010 Google Inc. All rights reserved.
http://github.com/jskeet/dotnet-protobufs/
Original C++/Java/Python code:
http://code.google.com/p/protobuf/

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
 * Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/protoc-license.txt

protoc.exe was built from the original source at http://code.google.com/p/protobuf/
The licence for this code is as follows:

Copyright 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
 * Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner
of the input file used when generating it. This code is not
standalone and requires a support library to be linked with it. This
support library is itself covered by the above license.

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/ProtoGen.exe.config

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/tutorial/addressbook.proto

package tutorial;

import "google/protobuf/csharp_options.proto";
option (google.protobuf.csharp_file_options).namespace = "Google.ProtocolBuffers.Examples.AddressBook";
option (google.protobuf.csharp_file_options).umbrella_classname = "AddressBookProtos";

option optimize_for = SPEED;

message Person {
 required string name = 1;
 required int32 id = 2; // Unique ID number for this person.
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phone = 4;
}

// Our address book file is just one of these.
message AddressBook {
 repeated Person person = 1;
}

Online Teaching/Properties/AssemblyInfo.cs

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("MscAutoTest")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("MscAutoTest")]
[assembly: AssemblyCopyright("Copyright © 2017")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("4557610b-3a85-41ea-a1d4-c6ef41e0ab3d")]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

Online Teaching/Properties/Resources.Designer.cs

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.42000
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace TrackerAPI.Properties {
 using System;

 /// <summary>
 /// A strongly-typed resource class, for looking up localized strings, etc.
 /// </summary>
 // This class was auto-generated by the StronglyTypedResourceBuilder
 // class via a tool like ResGen or Visual Studio.
 // To add or remove a member, edit your .ResX file then rerun ResGen
 // with the /str option, or rebuild your VS project.
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyTypedResourceBuilder", "15.0.0.0")]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 internal class Resources {

 private static global::System.Resources.ResourceManager resourceMan;

 private static global::System.Globalization.CultureInfo resourceCulture;

 [global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode")]
 internal Resources() {
 }

 /// <summary>
 /// Returns the cached ResourceManager instance used by this class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Resources.ResourceManager ResourceManager {
 get {
 if (object.ReferenceEquals(resourceMan, null)) {
 global::System.Resources.ResourceManager temp = new global::System.Resources.ResourceManager("TrackerAPI.Properties.Resources", typeof(Resources).Assembly);
 resourceMan = temp;
 }
 return resourceMan;
 }
 }

 /// <summary>
 /// Overrides the current thread's CurrentUICulture property for all
 /// resource lookups using this strongly typed resource class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Globalization.CultureInfo Culture {
 get {
 return resourceCulture;
 }
 set {
 resourceCulture = value;
 }
 }
 }
}

Online Teaching/Properties/Resources.resx

	
	
	
		
			
				
					
						
							
								
								
							
							
							
							
						
					
					
						
							
								
							
							
						
					
				
			
		
	
	
		 text/microsoft-resx
	
	
		 1.3
	
	
		 System.Resources.ResXResourceReader, System.Windows.Forms, Version=2.0.3500.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
	
	
		 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=2.0.3500.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
	

Online Teaching/RAPID code/Continuous.mod

MODULE Continuous

 PROC Continuousmain()

 ContinuousInterruptSetup;

 WHILE TRUE DO

 IF EGMactive = TRUE THEN
 	EGMRun;
 ENDIF

 IF PlayRecording = TRUE THEN
 PlayRecordingProc;

 PlayRecording := FALSE;
 ENDIF

 ENDWHILE

 ENDPROC

 PROC ContinuousInterruptSetup()
 CONNECT GripInterruptHigh WITH ContinuousGripHigh;
 CONNECT TriggerInterruptHigh WITH ContinuousTriggerHigh;
 CONNECT TriggerInterruptLow WITH ContinuousTriggerLow;
 ISignalDI GripButton, high, GripInterruptHigh;
 ISignalDI TriggerButton, high, TriggerInterruptHigh;
 ISignalDI TriggerButton, low, TriggerInterruptLow;
 ENDPROC

 ! Runs when Vive trigger button is pressed and starts EGM-movement
 TRAP ContinuousTriggerHigh
 SetBrush brush;
 ENDTRAP

 ! Runs when Vive trigger button is released and stops EGM-movement
 TRAP ContinuousTriggerLow
 SetBrush 0;
 endtrap

 ! Runs when Vive grip is pressed and closes the gripper
 TRAP ContinuousGripHigh
 IF EGMactive = FALSE THEN
 EGMactive:= TRUE;
 ELSEIF EGMactive = TRUE THEN
 EGMStop egmID1, EGM_STOP_HOLD;
 EGMactive := FALSE;
 ENDIF

 ENDTRAP

 ! Starts recording path
 TRAP ContinuousMenu

 ENDTRAP

ENDMODULE

Online Teaching/RAPID code/EGM.mod

MODULE EGM
 ! EGM variables
 VAR egmident egmID1;
 VAR egmstate egmSt1;
 CONST egm_minmax egm_minmax_lin1:=[-1,1]; ! limits for cartesian convergence: +-1 mm
 CONST egm_minmax egm_minmax_rot1:=[-2,2]; ! limits for orientation convergence: +-2 degrees
 VAR pose corr_frame_offs:=[[0,0,0],[1,0,0,0]];
 ! VAR pose corr_frame_offs:=[[0,0,0],[0.612,0.612,0.354,0.354]]; ! corr-frame: wobj, sens-frame: wobj
 ! Correction frame: 60 degrees around Z, 90 degrees around X.

 TASK PERS wobjdata EGMwobj:=[FALSE,TRUE,"",[[0,800,900],[1,0,0,0]],[[0,0,0],[1,0,0,0]]];
 CONST robtarget startPos:=[[0,800,900],[0.353,-0.612,0.612,0.353],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; ! Start position for EGM
 !TASK PERS tooldata EGMtool :=[TRUE,[[0,0,114.25],[1,0,0,0]],[1,[-0.095984607,0.082520613,38.69176324],[1,0,0,0],0,0,0]]; ! tGriper
 !TASK PERS tooldata EGMtool := [TRUE,[[59,0,205],[0.866025,0,0.5,0]],[1,[0,0,150],[1,0,0,0],0,0,0]]; ! t_gun tip
 !TASK PERS tooldata EGMtool := [true,[[121.25,0,450],[0.866025,0,0.5,0]],[13.0,[-52,0,270],[1,0,0,0],0,0,0]]; ! tRB1000WSC_0
 !PERS tooldata EGMtool:=[TRUE,[[79.4113,-4.07359,174.994],[0.710747,0.0218125,0.702779,-0.021568]],[1.2,[1.6,0,96],[1,0,0,0],0,0,0]]; !AGMDprotip
 TASK PERS tooldata EGMtool := [TRUE, [[0, 0, 0], [1, 0, 0, 0]],[0.001, [0, 0, 0.001],[1, 0, 0, 0], 0, 0, 0]]; !tool0
 CONST speeddata baseSpeed := v500;
 CONST zonedata baseZone := z50;
 TASK PERS tooldata toolSRP := [TRUE, [[0, 0, 0], [1, 0, 0, 0]],[0.001, [0, 0, 0.001],[1, 0, 0, 0], 0, 0, 0]]; !tool0
 TASK PERS wobjdata wobjSRP:=[FALSE,TRUE,"",[[0,800,900],[1,0,0,0]],[[0,0,0],[1,0,0,0]]];
 CONST jointtarget calib_pos := [[0, 0, 0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

! Variables for communication with C#
 VAR string mode;
 VAR bool PlayRecording := FALSE;
 VAR bool ResetRecording := FALSE;
 VAR bool EGMactive:= FALSE;
 VAR bool RunBane:= FALSE;
 VAR bool IsRecording := FALSE;
 VAR robtarget P2Ppos;
 VAR num brush := 1;

 ! Variables for stored path
 VAR clock path_clock;
 VAR num time{1000};
 VAR robtarget stored_path{1000};
 VAR num index;
 VAR num max_index;
 VAR num trigger := 0;
 VAR num brushnumber{1000};
 VAR speeddata speed_vector{1000};
 VAR num speed;

! Interrupt identities
 VAR intnum TriggerInterruptHigh;
 VAR intnum TriggerInterruptLow;
 Var intnum GripInterruptHigh;
 Var intnum GripInterruptLow;
 Var intnum MenuInterruptHigh;
 Var intnum MenuInterruptLow;
 Var intnum DpadInterruptHigh;
 Var intnum DpadInterruptLow;
 Var intnum DpadUpInterruptHigh;
 Var intnum DpadUpInterruptLow;
 Var intnum DpadDownInterruptHigh;
 Var intnum DpadDownInterruptLow;
 Var intnum DpadRightInterruptHigh;
 Var intnum DpadRightInterruptLow;
 Var intnum DpadLeftInterruptHigh;
 Var intnum DpadLeftInterruptLow;
 VAR intnum TimerInterrupt;

 PROC EGMmain()
 ! Move to start position. Fine point is demanded.

 !MoveAbsJ [[40,-20,10,-60,-10,30],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], v100,fine,EGMtool;
 MoveJ startPos,baseSpeed,fine,EGMtool;

 SetUpUDP;

	 EGMSetup;

 TEST mode
 CASE "testing" :
 Testingmain;
 CASE "continuous" :
 Continuousmain;
 CASE "P2P" :
 P2Pmain;
 ENDTEST
 ENDPROC

 ! Sets up UDP-connection robot-PC
 PROC SetUpUDP()
 EGMReset egmID1;
 EGMGetId egmID1;
 egmSt1:=EGMGetState(egmID1);
 ! TPWrite "EGM state: "\Num:=egmSt1;
 IF egmSt1<=EGM_STATE_CONNECTED THEN
 ! Set up the EGM data source: UdpUc server using device "EGMsensor:" and
 ! configuration "default"
 EGMSetupUC ROB_1,egmID1,"default","EGMsensor:"\pose;
 ENDIF

 ENDPROC

 ! Sets up static variables for EGM movements
 PROC EGMSetup()
 ! Correction frame is the work object coordinate system and the sensor measurements are relative
 ! to the tool frame of the used tool (EGMtool)
 EGMActPose
 egmID1
 \Tool:=EGMtool
 \Wobj:=EGMwobj
 ,corr_frame_offs
 ,EGM_FRAME_WOBJ
 ,corr_frame_offs
 ,EGM_FRAME_WOBJ
 \x:=egm_minmax_lin1\y:=egm_minmax_lin1\z:=egm_minmax_lin1
 \rx:=egm_minmax_rot1\ry:=egm_minmax_rot1\rz:=egm_minmax_rot1
 \LPfilter:=6
 \MaxSpeedDeviation:=100;
 ENDPROC

 ! Runs the EGM movement until convergence condition has been met or EGM movement is stopped
 PROC EGMRun()

 EGMRunPose egmID1,EGM_STOP_HOLD
 \X\Y\Z
 \RX\RY\RZ
	 \CondTime:=10
 \RampInTime:=0.05;
 ENDPROC

 PROC PlayRecordingProc()
 FOR i FROM index TO max_index DO
 TPWrite("pos" + NumToStr(i,1)) \Pos:=stored_path{i}.trans;
 TPWrite("orient") \Orient:=stored_path{i}.rot;
 SetBrush brushnumber{i};
 moveJ stored_path{i},baseSpeed,baseZone,EGMtool \WObj:=EGMwobj;
 ENDFOR
 ENDPROC

ENDMODULE

Online Teaching/RAPID code/PointToPoint.mod

MODULE PointToPoint

 PROC P2Pmain()

 P2PInterruptSetup;

 WHILE TRUE DO

 IF EGMactive = TRUE THEN
 	EGMRun;
 ENDIF

 IF PlayRecording = TRUE THEN
 PlayRecordingProc;

 PlayRecording := FALSE;
 ENDIF

 ENDWHILE

 ENDPROC

 PROC P2PInterruptSetup()
 CONNECT TriggerInterruptHigh WITH P2PTriggerHigh;
 CONNECT TriggerInterruptLow WITH P2PTriggerLow;
 CONNECT GripInterruptHigh WITH P2PGripHigh;
 CONNECT MenuInterruptHigh WITH P2PMenu;
 CONNECT DpadInterruptHigh WITH P2PDpad;
 ISignalDI TriggerButton, high, TriggerInterruptHigh;
 ISignalDI TriggerButton, low, TriggerInterruptLow;
 ISignalDI GripButton, high, GripInterruptHigh;
 ISignalDI MenuButton, high, MenuInterruptHigh;
 ISignalDI DpadButton, high, DpadInterruptHigh;

 ENDPROC

 ! Runs when Vive trigger button is pressed and starts EGM-movement
 TRAP P2PTriggerHigh
 SetBrush Brush;
 ENDTRAP

 ! Runs when Vive trigger button is released and stops EGM-movement
 TRAP P2PTriggerLow
 SetBrush 0;
 endtrap

 ! Runs when Vive grip is pressed and closes the gripper
 TRAP P2PGripHigh
 IF EGMactive = FALSE THEN
 EGMactive:= TRUE;
 ELSEIF EGMactive = TRUE THEN
 EGMStop egmID1, EGM_STOP_HOLD;
 EGMactive := FALSE;
 ENDIF

 ENDTRAP

 ! Starts recording path
 TRAP P2PMenu

 ENDTRAP

 TRAP P2PDpad
 MoveL P2Ppos,baseSpeed,baseZone,EGMtool,\WObj:=EGMwobj;
 endtrap

 ! Adds point
 TRAP P2PDpadUp

 ENDTRAP

 ! Deletes point
 TRAP P2PDpadDown

 ENDTRAP

 ! Moves to next point
 TRAP P2PDpadRight

 ENDTRAP

 ! Moves to previous point
 TRAP P2PDpadLeft

 ENDTRAP

ENDMODULE

Online Teaching/RAPID code/Testing.mod

MODULE Testing

 VAR num klossehoyde := 0; ! Offset for flyttkloss

 PROC Testingmain()

 TestingInterruptSetup;

 WHILE TRUE DO

 IF EGMactive = TRUE THEN
 	EGMRun;
 ENDIF

 IF RunBane = TRUE THEN
 Finnspeed;
 KjorBane;
 WaitTime 1;
 MoveJ startPos,V100,fine,EGMtool;
 RunBane := FALSE;
 ENDIF

 ENDWHILE

 ENDPROC

 ! Sets up the interrupts, signals and traps
 PROC TestingInterruptSetup()
 CONNECT TriggerInterruptHigh WITH TestingTriggerHigh;
 CONNECT TriggerInterruptLow WITH TestingTriggerLow;
 CONNECT GripInterruptHigh WITH TestingGripHigh;
 CONNECT GripInterruptLow WITH TestingGripLow;
 CONNECT MenuInterruptHigh WITH TestingMenu;
 CONNECT DpadInterruptHigh WITH TestingDpadHigh;
 CONNECT DpadInterruptLow WITH TestingDpadLow;
 ISignalDI TriggerButton, high, TriggerInterruptHigh;
 ISignalDI TriggerButton, low, TriggerInterruptLow;
 ISignalDI GripButton, high, GripInterruptHigh;
 ISignalDI GripButton, low, GripInterruptLow;
 ISignalDI MenuButton, high, MenuInterruptHigh;
 ISignalDI DpadButton, high, DpadInterruptHigh;
 ISignalDI DpadButton, low, DpadInterruptLow;

 ENDPROC

 PROC FlyttKlossTilMidten()
 moveJ Offs([[310,-535,55],[0,0.5,0.866,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],0,0,klossehoyde), v100,z5,EGMtool;
 moveJ Offs([[310,-535,35],[0,0.5,0.866,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],0,0,klossehoyde), v100,fine,EGMtool;
 !setDO doGripOpen, 1;
 !setDO doGripClose, 0;
 moveJ Offs([[310,-535,65],[0,0.5,0.866,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],0,0,klossehoyde), v100,z50,EGMtool;
 endproc

 PROC KjorBane()
 FOR i FROM 1 TO index DO
 moveJ stored_path{i},speed_vector{i},z5,EGMtool \WObj:=EGMwobj;
 ENDFOR
 ENDPROC

 PROC Finnspeed()
 speed_vector{1} := v100;
 FOR i FROM 2 TO index-1 DO
 speed := Sqrt(Pow(stored_path{i+1}.trans.x -stored_path{i}.trans.x,2) + Pow(stored_path{i+1}.trans.y -stored_path{i}.trans.y,2) + Pow(stored_path{i+1}.trans.z -stored_path{i}.trans.z,2))/0.1;

 IF speed < 5 THEN
 speed_vector{i} := v5;
 ELSEIF speed < 10 THEN
 speed_vector{i} := v10;
 ELSEIF speed < 20 THEN
 speed_vector{i} := v20;
 ELSEIF speed < 30 THEN
 speed_vector{i} := v30;
 ELSEIF speed < 40 THEN
 speed_vector{i} := v40;
 ELSEIF speed < 50 THEN
 speed_vector{i} := v50;
 ELSEIF speed < 60 THEN
 speed_vector{i} := v60;
 ELSEIF speed < 80 THEN
 speed_vector{i} := v80;
 ELSEIF speed < 100 THEN
 speed_vector{i} := v100;
 ELSEIF speed < 150 THEN
 speed_vector{i} := v150;
 ELSEIF speed < 200 THEN
 speed_vector{i} := v200;
 ELSEIF speed < 300 THEN
 speed_vector{i} := v300;
 ELSEIF speed < 400 THEN
 speed_vector{i} := v400;
 ELSEIF speed < 500 THEN
 speed_vector{i} := v500;
 ELSEIF speed < 600 THEN
 speed_vector{i} := v600;
 ELSEIF speed < 800 THEN
 speed_vector{i} := v800;
 ELSE
 speed_vector{i} := baseSpeed;
 ENDIF

 ENDFOR
 speed_vector{index} := speed_vector{index-1};
 ENDPROC

 ! Trap routines

 ! Runs when the timer reaches programmed time and stores current position in an array
 TRAP TestingTimer
 index := index+1;
 stored_path{index} := CRobT();

 endtrap

 ! Runs when Vive trigger button is pressed and starts EGM-movement
 TRAP TestingTriggerHigh
 EGMactive := TRUE;
 ENDTRAP

 ! Runs when Vive trigger button is released and stops EGM-movement
 TRAP TestingTriggerLow
 EGMStop egmID1, EGM_STOP_HOLD;
 EGMactive := False;
 endtrap

 ! Runs when Vive grip is pressed and closes the gripper
 TRAP TestingGripHigh
 !setDO doGripOpen, 0;
 !setDO doGripClose, 1;
 ENDTRAP

 ! Runs when Vive grip is released and opens the gripper
 TRAP TestingGripLow
 ! setDO doGripOpen, 1;
 !setDO doGripClose, 0;
 ENDTRAP

 ! Runs when Vive menu button is pressed runs a preprogrammed automated process
 ! Here it stacks the objects picked up by the user in the middle of the table
 TRAP TestingMenu
 EGMStop egmID1, EGM_STOP_HOLD;
 EGMactive := False;
 MoveJ Offs(CRobT(),0,0,klossehoyde+50),v50,z5,EGMtool \WObj:=EGMwobj;
 FlyttKlossTilMidten;
 MoveJ startPos,v100,fine,EGMtool;
 klossehoyde := klossehoyde+45;
 ENDTRAP

 ! Runs when Vive dpad button is pressed, starts the timer which starts storing the path run by the robot
 TRAP TestingDpadHigh
 CONNECT TimerInterrupt WITH TestingTimer;
 ITimer 0.1, TimerInterrupt;

 ENDTRAP

 ! Runs when Vive dpad button is released, stops the timer which stops storing the path run by the robot
 TRAP TestingDpadLow
 IDelete TimerInterrupt;
 ENDTRAP

ENDMODULE

Online Teaching/Vive/bin/Debug/ABB.Robotics.Math.xml

 ABB.Robotics.Math

 Axis-aligned bounding box

 min/max corners of the box.

 min/max corners of the box.

 Empty bounding box

 Creates a bounding box from min and max

 Equality operator

 Inequality operator

 Addition operator

 A bounding box that contains both operands

 Addition operator

 A bounding box that contains both operands

 Checks if this is a valid bounding box.

 Checks if box is contained by this box

 Checks if a point is inside this box

 Returns the distance between min and max corners

 Returns the volume of this

 Returns the center point of this

 Returns the eight corners of this.

 Returns a BoundingBox expanded by an amount in all directions.

 Returns a bounding box that is the result of an affine transformation

 Returns true if two bounding boxes intersect

 Returns true if two bounding boxes intersect.

 Returns true if a ray intersects the bounding box.

 Returns the distance between two bounding boxes.

 Returns the distance between this BoundingBox and a point.

 Returns 0 if the point is inside the box.

 Returns the interection of this and a second

 Determines whether this instance and the specified object are equal

 Returns the hash code for this object.

 Returns a string representation of this instance

 ABB Internal use only.

 Solve a linear equation system using Gaussian elimination.

 Matrix containing coeffiecients for linear eq. system.
 Right hand side.
 Solution on success, null on failure.

 Uses partial pivoting so should be numerically stable. Not terribly optimized,
 100 by 100 matrices is quick (a few ms) but 1000 by 1000 takes some time (a few s).

 Parses and evaluates a logic (boolean) expression

 Creates an expression without variables, if 'literal' is true.
 Any non-operators are evaluated by string comparison.

 Creates an expression.

 Returns True if the expression is valid and can be evaluated

 Gets or sets the source expression string

 Returns the names of variables used in the expression

 Returns the allowed operators

 Sets the value of a variable, which will be used the next time the expression
 is evaluated.

 Name of the variable to set
 New value of the variable

 Sets the value of a variable, which will be used the next time the expression
 is evaluated.

 Name of the variable to set
 New value of the variable

 True if the variable could be set (i.e. if it exists), false otherwise

 Evaluates the expression

 The evaluated value of the expression

 Builds an expression in Reverse Polish Notation format

 True if the RPN expression was successfully generated, False otherwise

 Contains static constants and utility methods.

 Constant used to compensate for rounding errors.

 Always take this into account when comparing a calculated value with a constant (e.g. 1 or -1).

 Epsilon for comparing single precision values.

 See http://en.wikipedia.org/wiki/Machine_epsilon

 Use when comparing a calculated value with -1

 Use when comparing a calculated value with 1

 Checks if the difference between two numbers is smaller than EPS.

 Checks if the difference between two numbers is smaller than a specified precision.

 The number of decimals to check (max 12)

 Converts degrees to radians.

 Converts radians to degrees.

 Clamps a value to -1=d=1.

 Axis enumeration

 Undefined axis

 X axis

 Y axis

 Z axis

 Directed axis enumeration

 Undefined axis

 Positive X axis

 Positive Y axis

 Positive Z axis

 Negative X axis

 Negative Y axis

 Negative Z axis

 Simple math expression parser and evaluator

 Literal values should be using '.' as a decimal separator.

 Creates a new MathExpression class from a mathematical expression

 Creates a simple MathExpression from the given value

 Value to build expression for

 Calling Evaluate() will return the given value

 Creates a simple MathExpression from the given value with the specified number of decimals

 Value to build expression for
 Maximum number of decimals to use

 Calling Evaluate() will return the given value (rounded to the given number of decimals).

 This constructor is obsolete.

 Returns True if the expression is valid and can be evaluated

 If the expression is invalid (IsValid returns false), this property may return
 more information why.

 Returns True if the expression consists of a single value

 Gets or sets the source expression string

 Returns the names of variables used in the expression

 Returns the allowed operators

 Sets the value of a variable, which will be used the next time the expression
 is evaluated.

 Name of the variable to set
 New value of the variable

 Sets the value of a variable, which will be used the next time the expression
 is evaluated.

 Name of the variable to set
 New value of the variable

 True if the variable could be set (i.e. if it exists), false otherwise

 This method is obsolete. Use SetVariableValue() instead.

 Evaluates the expression

 The evaluated value of the expression

 Builds an expression in Reverse Polish Notation format

 True if the RPN expression was successfully generated, False otherwise

 Returns the linear coefficients, if this expression is linear in the set of given variables. Otherwise it returns null.

 Contains miscellaneous math functions

 Calculates a circle from three points

 First point
 Second point
 Third point
 Radius of the circle
 Center point of the circle
 Normal of the circle
 True is the circle could be calculated, false otherwise
 (e.g. the three points are on a straight line)

 Arbitrary-sized matrix

 Creates a new Matrix with the given number of rows and columns

 ABB Internal use only

 Creates a new Matrix that is a copy of the given Matrix

 Returns the number of columns in the matrix

 Checks that a matrices only differs by an epsilon-sized amount.

 The matrix to compare to.
 true if almost equals, false otherwise.

 Returns the number of rows in the matrix

 Element access

 Matrix-Matrix multiplication operator.

 Matrix-Matrix multiplication method.

 Element-wise addition operator.

 Element-wise subtraction operator.

 Returns a string that represents this Matrix

 3x3 matrix, typically used to describe a rotation.

 Column vector.

 Column vector.

 Column vector.

 Identity matrix.

 Creates a matrix from three column vectors.

 Creates a matrix from elements row by row.

 Creates a 3x3 matrix from the upper-left part of a 4x4 matrix.
 Corresponds to extracting the rotation part of a transformation matrix.

 Column vector access.

 Returns an array of all elements in column-first order.

 Matrix-Matrix multiplication operator.

 Matrix-Matrix multiplication method.

 Matrix-Vector3 multiplication operator.

 Matrix-Vector3 multiplication method.

 Multiples each element with the supplied value and returns the resulting Matrix3

 Adds each element of the two Matrix3 values and returns the resulting Matrix3

 Returns the determinant.

 Inverts the matrix, using Cramer's rule.

 Returns the inverse.

 Inverted matrix

 Transposes the matrix.

 Zeroes any values smaller than Globals.EPS.

 Comparison method for matrices with tolerance

 Matrix to compare with
 true if equals within tolerance

 Returns a string in the format
 [[x.x x.y x.z] [y.x y.y y.z] [z.x z.y z.z]]

 4x4 matrix, typically used to describe a transformation
 (rotation and translation).

 Column vector.

 Column vector.

 Column vector.

 Column vector.

 Identity matrix.

 Creates a matrix from four column vectors.

 First column
 Second column
 Third column
 Fourth column

 Creates an affine matrix from four vectors

 X axis
 Y axis
 Z axis
 Translation

 Creates a matrix with unit rotation and a specified translation.

 Translation vector

 Creates a matrix from a translation vector and
 Euler angles (zyx).

 Translation vector
 Euler angles (zyx order)

 Creates a matrix from a translation vector and a quaternion.

 Translation vector
 Quaternion

 Creates a matrix from a rotation axis and angle,
 with unit translation.

 Rotation axis
 Rotation angle
 Invalid rotation axis

 Creates a matrix from an array of 16 values.

 Constructs a matrix from a 3x3 orientation matrix and a translation.

 Column vector access.

 Returns an array of all elements in column-first order.

 Gets/sets the translation vector.

 Gets/sets the rotation as a quaternion.

 Gets/sets the rotation as Euler angles (xyz order).

 Gets/sets the rotation as Euler angles (zyx order).
 Note: the vector contains the angles as [rx,ry,rz].

 Gets/sets the rotation as axis/angle
 (represented by a 4-vector [axis,angle]).

 Invalid rotation axis

 Gets/sets the rotation as a 3x3 matrix.

 Returns a value indicating whether any elements evaluates to a value that is not a number (NaN).

 Matrix-Matrix multiplication operator.

 Matrix-Matrix multiplication method.

 Matrix-Vector4 multiplication operator.

 Matrix-Vector4 multiplication method.

 Creates a matrix from three points.

 First point on x axis
 Second point on x axis
 Point on y axis

 Creates a matrix from a translation and two points

 Translation
 Point on x axis
 Point in x-y plane

 Creates a matrix from a translation and two points

 Translation
 Point on x axis
 Point in x-z plane

 Creates a matrix from a translation and two axis vectors

 Translation
 First axis

 Second axis

 Matrix-Vector3 (interpreted as a point) multiplication.

 Matrix-Vector3 (interpreted as a direction) multiplication.

 Comparison method for matrices with default tolerance

 Matrix to compare with
 true if equals within tolerance

 Comparison method for matrices with tolerance

 Matrix to compare with
 tolerance
 true if equals within tolerance

 Returns true if this matrix is rigid (orthogonal),
 e.g. it represents a pure rotation and translation.

 Throws an exception if this matrix is not rigid.

 Inverts a rigid (pure translation+rotation) matrix.

 Returns a an inverted copy of the matrix. If the matrix is non-rigid the result is undefined.

 The inverse of the matrix.

 Returns true if the matrix is affine.

 Returns true if the matrix is identity.

 Inverts an affine matrix.

 Inverts a general matrix, using Cramer's rule.

 Returns the inverse of a general matrix.

 Inverted matrix

 Rotates the matrix around an axis through the origin.

 Invalid rotation axis

 Rotates the matrix around an axis through a point.

 Invalid rotation axis

 Translates the matrix by a vector.

 Translates the matrix by x,y,z.

 Translates the matrix by a vector in its own coordinate system.

 Translates the matrix by x,y,z in its own coordinate system.

 Scale uniformly about origin.

 Scale by vector about origin.

 Scale by vector about a point.

 Returns the determinant.

 Transposes the matrix.

 Zeroes any values smaller than Globals.EPS.

 Ensures this is a valid rigid matrix

 Gets the axis vector from the specified axis

 the axis whose vector to get
 the axis vector

 Returns a matrix representing the relative transform, between the two specified matrices.

 Returns a string in the format
 [[x.x x.y x.z x.w] [y.x y.y y.z y.w] [z.x z.y z.z z.w] [t.x t.y t.z t.w]]

 Converts the string representation to its Matrix4 equivalent.

 A value indicating whether the conversion succeeded

 Plane, represented by the plane equation n·p+d=0,
 where n is the normal [x,y,z] and p is any point on the plane.

 Plane normal

 Plane normal

 Plane normal

 Distance from origin.
 Negative if the normal points away from the origin,
 positive if the normal points toward the origin.

 Creates a plane from four doubles.

 Creates a plane from a normal and a distance.

 Creates a plane from a normal and a point on the plane.

 Creates a plane from three points.
 The points are in counterclockwise order seen from in front of the plane.

 Creates a plane from a matrix

 the matrix to create the plane from
 Which axis will be the normal of the plane

 Gets/sets the normal of the plane.

 Equality operator

 Inequality operator

 Returns the distance between the plane and a point.

 Positive if the point is in front of the plane,
 negative if it is behind the plane

 Projects a point onto the plane.

 Projected point

 Projects a vector into the plane.

 Vector to project
 Projected vector

 Mirrors a point in the plane.

 Mirrored point

 Mirrors a vector (direction) in the plane.

 Mirrored vector

 Mirrors a coordinate system (represented by a matrix) in the plane
 and optionally switches two axes to keep the handedness.
 The matrix is assumed to be affine.

 Undefined - Mirror all axes, the handedness of the system will be changed
 X - Keep x, switch y and z axes to keep handedness
 Y - Keep y, switch x and z axes to keep handedness
 Z - Keep z, Switch y and z axes to keep handedness
 Mirrored matrix

 Mirrors a coordinate system (represented by a matrix) in the plane
 and optionally inverts one axis to keep the handedness.
 The matrix is assumed to be affine.

 the matrix to be mirrored
 Undefined - Mirror all axes, the handedness of the system will be changed
 X - Invert x axis to keep handedness
 Y - Invert y axis to keep handedness
 Z - Invert z axis to keep handedness
 Mirrored matrix

 Calculates if and where a straight line between two
 points intersects the plane.

 Intersection point
 True if the line intersects the plane between point1 and point2.

 Calculates if and where a straight line between two
 points intersects the plane.

 Intersection point
 Returns the parameter value of the intersection point, or NaN if the line is parallel to the plane.
 True if the line intersects the plane between point1 and point2

 Computes the angle between the projection of two vectors onto the plane.

 Returns a string in the format
 [x y z d]

 Quaternion, used to describe a rotation.

 Scalar part.

 Vector part.

 Vector part.

 Vector part.

 Identity quaternion [1,0,0,0]

 Creates a quaternion from four doubles.

 Creates a quaternion from scalar and vector.

 Scalar part
 Vector part

 Creates a quaternion from rotation axis and angle.

 Normalized rotation axis
 Rotation angle (radians)
 Invalid rotation axis

 Creates a quaternion from Euler angles (zyx order).

 Rotation around the x axis (radians)
 Rotation around the y axis (radians)
 Rotation around the z axis (radians)

 Creates a quaternion from the rotation part of a 4x4 matrix.

 Matrix (assumed to be pure rotation/translation)

 Obsolete constructor

 Matrix (assumed to be pure rotation/translation)

 Array access.

 Gets/sets the scalar part.

 Gets/sets the vector part.

 Gets/sets the rotation as Euler angles (xyz order).
 Equivalent to RPY (?).

 Gets/sets the rotation as Euler angles (zyx order).
 Note: the vector contains the angles as [rx,ry,rz]

 Gets/sets the rotation as normalized rotation axis and angle
 (represesented by a Vector4 [axis, angle]).

 Invalid rotation axis

 Gets/sets the rotation as a 3x3 matrix

 Equality operator

 Inequality operator

 Element-wise addition operator.

 Element-wise addition method.

 Element-wise subtraction operator.

 Element-wise subtraction method.

 Quaternion-Quaternion multiplication operator.

 Quaternion-Quaternion multiplication method.

 Quaternion-scalar multiplication operator.

 Quaternion-scalar multiplication method.

 Scalar-Quaternion multiplication operator.

 Quaternion-scalar division operator.

 Quaternion-scalar division method.

 Unary negation operator.

 Returns the norm of the quaternion.

 Returns the magnitude of the quaternion.

 Normalizes the quaternion.

 Inverts the quaternion.

 Returns the inverse (conjugate*1/norm) of the quaternion.

 Returns the conjugate [q1,-q2,-q3,-q4] of the quaternion.

 Quaternion dot product.

 Spherical linear interpolation.

 Second quaternion
 Interpolation parameter
 Interpolated quaternion

 Comparison method for quaternions with tolerance ()

 Returns a string in the format
 [q1 q2 q3 q4]

 Represents a 3D ray with an origin and a direction.

 The start point of the ray.

 The direction vector of the ray.

 Creates a ray from an origin and a direction

 Calculates the distance between two rays and the closest points on each ray.

 First ray
 Second ray
 Closest point on first ray
 Closest point on second ray
 Distance between p0 and p1

 Three element vector, typically used to describe
 a position, normal or euler rotation.

 x,y,z values.

 x,y,z values.

 x,y,z values.

 Unit vector in the x direction.

 Unit vector in the y direction.

 Unit vector in the z direction.

 Zero-length vector.

 Creates a vector from three doubles.

 Creates a vector from an array of doubles.

 Creates a vector from a homogenous 4-vector.

 Rescale from homegenous coordinates

 Creates a vector from a 4-vector, truncating the last element.

 Creates a unit vector from an axis

 axis
 Invalid axis

 Array access.

 Array to vector conversion.

 Equality operator

 Inequality operator

 Element-wise addition operator.

 Element-wise addition method.

 Element-wise subtraction operator.

 Element-wise subtraction method.

 Unary negation operator.

 Vector-scalar multiplication operator.

 Vector-scalar multiplication method.

 Scalar-Vector multiplication operator.

 Vector-scalar division operator.

 Vector scalar division method.

 Returns the length of this.

 Returns the squared length of this.

 Returns the distance between this and a vector.

 Returns the squared distance between this and a vector.

 Ensures that the length of this is 1.

 Returns a vector with the same direction as this, but with length 1

 Angle between this and a vector.

 radians

 Dot product.

 Cross product.

 Comparison method for vectors with tolerance ()

 Vector to compare with
 true if equals within tolerance

 Comparison method for vectors with tolerance

 Vector to compare with
 Tolerance to use in the comparison
 true if equals within tolerance

 Linear interpolation between this and a vector.

 Second vector
 Interpolation parameter
 Interpolated vector
 Use for position vectors

 Spherical interpolation between this and a vector.

 Second vector
 Interpolation parameter
 Interpolated vector
 Use for direction vectors

 Transforms a point between coordinate systems.

 Point in the "to" system

 Transforms a vector between coordinate systems.

 Vector in the "to" system

 Returns a unit vector normal to this

 Returns a vector that is this vector rotated around an axis.

 Rotation axis
 Rotation angle
 Rotated vector

 Returns the elements (x,y,z) as an array

 Returns a string in the format
 [x y z]

 Converts the string representation to its Vector3 equivalent.

 A value indicating whether the conversion succeeded

 Converts the string representation to its Vector3 equivalent.

 Two element vector

 u,v values.

 u,v values.

 Creates a vector from two doubles.

 Returns a string in the format
 [u v]

 Equality operator

 Inequality operator

 Four element vector, typically used to describe
 a homogenous translation

 x,y,z,w values.

 x,y,z,w values.

 x,y,z,w values.

 x,y,z,w values.

 Creates a vector from four doubles.

 Creates a vector from three doubles and sets w=1.

 Creates a vector from an array.
 Sets w=1 if the array has less than four elements.

 Creates a vector from a 3-vector and a scalar.

 Array access.

 Returns a value indicating whether any elements evaluates to a value that is not a number (NaN).

 Equality operator

 Inequality operator

 Array to vector conversion.

 Element-wise addition operator.

 Element-wise addition.

 Element-wise subtraction operator.

 Element-wise subtraction.

 Unary negation operator.

 Vector-scalar multiplication operator.

 Vector-scalar multiplication.

 Scalar-Vector multiplication operator.

 Vector-scalar division operator.

 Vector-scalar division method.

 Dot product.

 Returns the magnitude of this.

 Ensures that the magnitude of this is 1.

 Comparison method for vectors with default tolerance

 Vector to compare with
 true if equals within default tolerance

 Comparison method for vectors with tolerance

 Vector to compare with
 tolerance
 true if equals within tolerance

 Returns the elements (x,y,z,w) as an array

 Returns a string in the format
 [x y z w]

 Internal math helpers

 Returns precalculated cosinus and sinus for a full revolution (with wrap-around)

Online Teaching/Vive/bin/Debug/Vive.pdb

Online Teaching/Vive/obj/Debug/DesignTimeResolveAssemblyReferencesInput.cache

Online Teaching/Vive/obj/Debug/Vive.csproj.CoreCompileInputs.cache

21a1ee4057f022a65b37677641b55d4aab1f9909

Online Teaching/Vive/obj/Debug/Vive.csproj.FileListAbsolute.txt

D:\Online Teaching\Vive\bin\Debug\Vive.dll
D:\Online Teaching\Vive\bin\Debug\Vive.pdb
D:\Online Teaching\Vive\bin\Debug\ABB.Robotics.Math.dll
D:\Online Teaching\Vive\bin\Debug\ABB.Robotics.Math.xml
D:\Online Teaching\Vive\obj\Debug\Vive.csprojResolveAssemblyReference.cache
D:\Online Teaching\Vive\obj\Debug\Vive.csproj.CoreCompileInputs.cache
D:\Online Teaching\Vive\obj\Debug\Vive.dll
D:\Online Teaching\Vive\obj\Debug\Vive.pdb
E:\Online Teaching\Vive\bin\Debug\Vive.dll
E:\Online Teaching\Vive\bin\Debug\Vive.pdb
E:\Online Teaching\Vive\bin\Debug\ABB.Robotics.Math.dll
E:\Online Teaching\Vive\bin\Debug\ABB.Robotics.Math.xml
E:\Online Teaching\Vive\obj\Debug\Vive.csproj.CoreCompileInputs.cache
E:\Online Teaching\Vive\obj\Debug\Vive.dll
E:\Online Teaching\Vive\obj\Debug\Vive.pdb
E:\Online Teaching\Vive\obj\Debug\Vive.csprojResolveAssemblyReference.cache
D:\Online Teaching\Vive\obj\Debug\Vive.csproj.CopyComplete

Online Teaching/Vive/obj/Debug/Vive.csprojResolveAssemblyReference.cache

Online Teaching/Vive/obj/Debug/Vive.pdb

Online Teaching/Vive/openvr_api.cs

//======= Copyright (c) Valve Corporation, All rights reserved. ===============
//
// Purpose: This file contains C#/managed code bindings for the OpenVR interfaces
// This file is auto-generated, do not edit it.
//
//===

using System;
using System.Runtime.InteropServices;
using Valve.VR;

namespace Valve.VR
{

[StructLayout(LayoutKind.Sequential)]
public struct IVRSystem
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetRecommendedRenderTargetSize(ref uint pnWidth, ref uint pnHeight);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetRecommendedRenderTargetSize GetRecommendedRenderTargetSize;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate HmdMatrix44_t _GetProjectionMatrix(EVREye eEye, float fNearZ, float fFarZ);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetProjectionMatrix GetProjectionMatrix;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetProjectionRaw(EVREye eEye, ref float pfLeft, ref float pfRight, ref float pfTop, ref float pfBottom);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetProjectionRaw GetProjectionRaw;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _ComputeDistortion(EVREye eEye, float fU, float fV, ref DistortionCoordinates_t pDistortionCoordinates);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ComputeDistortion ComputeDistortion;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate HmdMatrix34_t _GetEyeToHeadTransform(EVREye eEye);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetEyeToHeadTransform GetEyeToHeadTransform;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetTimeSinceLastVsync(ref float pfSecondsSinceLastVsync, ref ulong pulFrameCounter);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetTimeSinceLastVsync GetTimeSinceLastVsync;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate int _GetD3D9AdapterIndex();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetD3D9AdapterIndex GetD3D9AdapterIndex;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetDXGIOutputInfo(ref int pnAdapterIndex);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetDXGIOutputInfo GetDXGIOutputInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetOutputDevice(ref ulong pnDevice, ETextureType textureType);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOutputDevice GetOutputDevice;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsDisplayOnDesktop();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsDisplayOnDesktop IsDisplayOnDesktop;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _SetDisplayVisibility(bool bIsVisibleOnDesktop);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetDisplayVisibility SetDisplayVisibility;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetDeviceToAbsoluteTrackingPose(ETrackingUniverseOrigin eOrigin, float fPredictedSecondsToPhotonsFromNow, [In, Out] TrackedDevicePose_t[] pTrackedDevicePoseArray, uint unTrackedDevicePoseArrayCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetDeviceToAbsoluteTrackingPose GetDeviceToAbsoluteTrackingPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ResetSeatedZeroPose();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ResetSeatedZeroPose ResetSeatedZeroPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate HmdMatrix34_t _GetSeatedZeroPoseToStandingAbsoluteTrackingPose();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetSeatedZeroPoseToStandingAbsoluteTrackingPose GetSeatedZeroPoseToStandingAbsoluteTrackingPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate HmdMatrix34_t _GetRawZeroPoseToStandingAbsoluteTrackingPose();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetRawZeroPoseToStandingAbsoluteTrackingPose GetRawZeroPoseToStandingAbsoluteTrackingPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetSortedTrackedDeviceIndicesOfClass(ETrackedDeviceClass eTrackedDeviceClass, [In, Out] uint[] punTrackedDeviceIndexArray, uint unTrackedDeviceIndexArrayCount, uint unRelativeToTrackedDeviceIndex);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetSortedTrackedDeviceIndicesOfClass GetSortedTrackedDeviceIndicesOfClass;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EDeviceActivityLevel _GetTrackedDeviceActivityLevel(uint unDeviceId);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetTrackedDeviceActivityLevel GetTrackedDeviceActivityLevel;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ApplyTransform(ref TrackedDevicePose_t pOutputPose, ref TrackedDevicePose_t pTrackedDevicePose, ref HmdMatrix34_t pTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ApplyTransform ApplyTransform;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetTrackedDeviceIndexForControllerRole(ETrackedControllerRole unDeviceType);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetTrackedDeviceIndexForControllerRole GetTrackedDeviceIndexForControllerRole;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ETrackedControllerRole _GetControllerRoleForTrackedDeviceIndex(uint unDeviceIndex);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetControllerRoleForTrackedDeviceIndex GetControllerRoleForTrackedDeviceIndex;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ETrackedDeviceClass _GetTrackedDeviceClass(uint unDeviceIndex);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetTrackedDeviceClass GetTrackedDeviceClass;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsTrackedDeviceConnected(uint unDeviceIndex);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsTrackedDeviceConnected IsTrackedDeviceConnected;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetBoolTrackedDeviceProperty(uint unDeviceIndex, ETrackedDeviceProperty prop, ref ETrackedPropertyError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetBoolTrackedDeviceProperty GetBoolTrackedDeviceProperty;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate float _GetFloatTrackedDeviceProperty(uint unDeviceIndex, ETrackedDeviceProperty prop, ref ETrackedPropertyError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetFloatTrackedDeviceProperty GetFloatTrackedDeviceProperty;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate int _GetInt32TrackedDeviceProperty(uint unDeviceIndex, ETrackedDeviceProperty prop, ref ETrackedPropertyError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetInt32TrackedDeviceProperty GetInt32TrackedDeviceProperty;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ulong _GetUint64TrackedDeviceProperty(uint unDeviceIndex, ETrackedDeviceProperty prop, ref ETrackedPropertyError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetUint64TrackedDeviceProperty GetUint64TrackedDeviceProperty;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate HmdMatrix34_t _GetMatrix34TrackedDeviceProperty(uint unDeviceIndex, ETrackedDeviceProperty prop, ref ETrackedPropertyError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetMatrix34TrackedDeviceProperty GetMatrix34TrackedDeviceProperty;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetStringTrackedDeviceProperty(uint unDeviceIndex, ETrackedDeviceProperty prop, System.Text.StringBuilder pchValue, uint unBufferSize, ref ETrackedPropertyError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetStringTrackedDeviceProperty GetStringTrackedDeviceProperty;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetPropErrorNameFromEnum(ETrackedPropertyError error);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetPropErrorNameFromEnum GetPropErrorNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _PollNextEvent(ref VREvent_t pEvent, uint uncbVREvent);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _PollNextEvent PollNextEvent;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _PollNextEventWithPose(ETrackingUniverseOrigin eOrigin, ref VREvent_t pEvent, uint uncbVREvent, ref TrackedDevicePose_t pTrackedDevicePose);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _PollNextEventWithPose PollNextEventWithPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetEventTypeNameFromEnum(EVREventType eType);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetEventTypeNameFromEnum GetEventTypeNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate HiddenAreaMesh_t _GetHiddenAreaMesh(EVREye eEye, EHiddenAreaMeshType type);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetHiddenAreaMesh GetHiddenAreaMesh;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetControllerState(uint unControllerDeviceIndex, ref VRControllerState_t pControllerState, uint unControllerStateSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetControllerState GetControllerState;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetControllerStateWithPose(ETrackingUniverseOrigin eOrigin, uint unControllerDeviceIndex, ref VRControllerState_t pControllerState, uint unControllerStateSize, ref TrackedDevicePose_t pTrackedDevicePose);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetControllerStateWithPose GetControllerStateWithPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _TriggerHapticPulse(uint unControllerDeviceIndex, uint unAxisId, uint usDurationMicroSec);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _TriggerHapticPulse TriggerHapticPulse;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetButtonIdNameFromEnum(EVRButtonId eButtonId);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetButtonIdNameFromEnum GetButtonIdNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetControllerAxisTypeNameFromEnum(EVRControllerAxisType eAxisType);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetControllerAxisTypeNameFromEnum GetControllerAxisTypeNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _CaptureInputFocus();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CaptureInputFocus CaptureInputFocus;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ReleaseInputFocus();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ReleaseInputFocus ReleaseInputFocus;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsInputFocusCapturedByAnotherProcess();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsInputFocusCapturedByAnotherProcess IsInputFocusCapturedByAnotherProcess;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _DriverDebugRequest(uint unDeviceIndex, string pchRequest, string pchResponseBuffer, uint unResponseBufferSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _DriverDebugRequest DriverDebugRequest;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRFirmwareError _PerformFirmwareUpdate(uint unDeviceIndex);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _PerformFirmwareUpdate PerformFirmwareUpdate;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _AcknowledgeQuit_Exiting();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _AcknowledgeQuit_Exiting AcknowledgeQuit_Exiting;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _AcknowledgeQuit_UserPrompt();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _AcknowledgeQuit_UserPrompt AcknowledgeQuit_UserPrompt;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRExtendedDisplay
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetWindowBounds(ref int pnX, ref int pnY, ref uint pnWidth, ref uint pnHeight);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetWindowBounds GetWindowBounds;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetEyeOutputViewport(EVREye eEye, ref uint pnX, ref uint pnY, ref uint pnWidth, ref uint pnHeight);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetEyeOutputViewport GetEyeOutputViewport;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetDXGIOutputInfo(ref int pnAdapterIndex, ref int pnAdapterOutputIndex);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetDXGIOutputInfo GetDXGIOutputInfo;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRTrackedCamera
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetCameraErrorNameFromEnum(EVRTrackedCameraError eCameraError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCameraErrorNameFromEnum GetCameraErrorNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _HasCamera(uint nDeviceIndex, ref bool pHasCamera);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _HasCamera HasCamera;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _GetCameraFrameSize(uint nDeviceIndex, EVRTrackedCameraFrameType eFrameType, ref uint pnWidth, ref uint pnHeight, ref uint pnFrameBufferSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCameraFrameSize GetCameraFrameSize;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _GetCameraIntrinsics(uint nDeviceIndex, EVRTrackedCameraFrameType eFrameType, ref HmdVector2_t pFocalLength, ref HmdVector2_t pCenter);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCameraIntrinsics GetCameraIntrinsics;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _GetCameraProjection(uint nDeviceIndex, EVRTrackedCameraFrameType eFrameType, float flZNear, float flZFar, ref HmdMatrix44_t pProjection);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCameraProjection GetCameraProjection;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _AcquireVideoStreamingService(uint nDeviceIndex, ref ulong pHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _AcquireVideoStreamingService AcquireVideoStreamingService;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _ReleaseVideoStreamingService(ulong hTrackedCamera);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ReleaseVideoStreamingService ReleaseVideoStreamingService;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _GetVideoStreamFrameBuffer(ulong hTrackedCamera, EVRTrackedCameraFrameType eFrameType, IntPtr pFrameBuffer, uint nFrameBufferSize, ref CameraVideoStreamFrameHeader_t pFrameHeader, uint nFrameHeaderSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetVideoStreamFrameBuffer GetVideoStreamFrameBuffer;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _GetVideoStreamTextureSize(uint nDeviceIndex, EVRTrackedCameraFrameType eFrameType, ref VRTextureBounds_t pTextureBounds, ref uint pnWidth, ref uint pnHeight);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetVideoStreamTextureSize GetVideoStreamTextureSize;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _GetVideoStreamTextureD3D11(ulong hTrackedCamera, EVRTrackedCameraFrameType eFrameType, IntPtr pD3D11DeviceOrResource, ref IntPtr ppD3D11ShaderResourceView, ref CameraVideoStreamFrameHeader_t pFrameHeader, uint nFrameHeaderSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetVideoStreamTextureD3D11 GetVideoStreamTextureD3D11;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _GetVideoStreamTextureGL(ulong hTrackedCamera, EVRTrackedCameraFrameType eFrameType, ref uint pglTextureId, ref CameraVideoStreamFrameHeader_t pFrameHeader, uint nFrameHeaderSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetVideoStreamTextureGL GetVideoStreamTextureGL;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRTrackedCameraError _ReleaseVideoStreamTextureGL(ulong hTrackedCamera, uint glTextureId);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ReleaseVideoStreamTextureGL ReleaseVideoStreamTextureGL;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRApplications
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _AddApplicationManifest(string pchApplicationManifestFullPath, bool bTemporary);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _AddApplicationManifest AddApplicationManifest;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _RemoveApplicationManifest(string pchApplicationManifestFullPath);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _RemoveApplicationManifest RemoveApplicationManifest;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsApplicationInstalled(string pchAppKey);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsApplicationInstalled IsApplicationInstalled;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetApplicationCount();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationCount GetApplicationCount;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _GetApplicationKeyByIndex(uint unApplicationIndex, System.Text.StringBuilder pchAppKeyBuffer, uint unAppKeyBufferLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationKeyByIndex GetApplicationKeyByIndex;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _GetApplicationKeyByProcessId(uint unProcessId, string pchAppKeyBuffer, uint unAppKeyBufferLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationKeyByProcessId GetApplicationKeyByProcessId;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _LaunchApplication(string pchAppKey);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LaunchApplication LaunchApplication;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _LaunchTemplateApplication(string pchTemplateAppKey, string pchNewAppKey, [In, Out] AppOverrideKeys_t[] pKeys, uint unKeys);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LaunchTemplateApplication LaunchTemplateApplication;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _LaunchApplicationFromMimeType(string pchMimeType, string pchArgs);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LaunchApplicationFromMimeType LaunchApplicationFromMimeType;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _LaunchDashboardOverlay(string pchAppKey);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LaunchDashboardOverlay LaunchDashboardOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _CancelApplicationLaunch(string pchAppKey);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CancelApplicationLaunch CancelApplicationLaunch;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _IdentifyApplication(uint unProcessId, string pchAppKey);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IdentifyApplication IdentifyApplication;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetApplicationProcessId(string pchAppKey);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationProcessId GetApplicationProcessId;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetApplicationsErrorNameFromEnum(EVRApplicationError error);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationsErrorNameFromEnum GetApplicationsErrorNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetApplicationPropertyString(string pchAppKey, EVRApplicationProperty eProperty, System.Text.StringBuilder pchPropertyValueBuffer, uint unPropertyValueBufferLen, ref EVRApplicationError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationPropertyString GetApplicationPropertyString;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetApplicationPropertyBool(string pchAppKey, EVRApplicationProperty eProperty, ref EVRApplicationError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationPropertyBool GetApplicationPropertyBool;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ulong _GetApplicationPropertyUint64(string pchAppKey, EVRApplicationProperty eProperty, ref EVRApplicationError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationPropertyUint64 GetApplicationPropertyUint64;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _SetApplicationAutoLaunch(string pchAppKey, bool bAutoLaunch);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetApplicationAutoLaunch SetApplicationAutoLaunch;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetApplicationAutoLaunch(string pchAppKey);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationAutoLaunch GetApplicationAutoLaunch;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _SetDefaultApplicationForMimeType(string pchAppKey, string pchMimeType);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetDefaultApplicationForMimeType SetDefaultApplicationForMimeType;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetDefaultApplicationForMimeType(string pchMimeType, string pchAppKeyBuffer, uint unAppKeyBufferLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetDefaultApplicationForMimeType GetDefaultApplicationForMimeType;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetApplicationSupportedMimeTypes(string pchAppKey, string pchMimeTypesBuffer, uint unMimeTypesBuffer);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationSupportedMimeTypes GetApplicationSupportedMimeTypes;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetApplicationsThatSupportMimeType(string pchMimeType, string pchAppKeysThatSupportBuffer, uint unAppKeysThatSupportBuffer);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationsThatSupportMimeType GetApplicationsThatSupportMimeType;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetApplicationLaunchArguments(uint unHandle, string pchArgs, uint unArgs);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationLaunchArguments GetApplicationLaunchArguments;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _GetStartingApplication(string pchAppKeyBuffer, uint unAppKeyBufferLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetStartingApplication GetStartingApplication;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationTransitionState _GetTransitionState();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetTransitionState GetTransitionState;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _PerformApplicationPrelaunchCheck(string pchAppKey);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _PerformApplicationPrelaunchCheck PerformApplicationPrelaunchCheck;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetApplicationsTransitionStateNameFromEnum(EVRApplicationTransitionState state);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetApplicationsTransitionStateNameFromEnum GetApplicationsTransitionStateNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsQuitUserPromptRequested();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsQuitUserPromptRequested IsQuitUserPromptRequested;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRApplicationError _LaunchInternalProcess(string pchBinaryPath, string pchArguments, string pchWorkingDirectory);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LaunchInternalProcess LaunchInternalProcess;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetCurrentSceneProcessId();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCurrentSceneProcessId GetCurrentSceneProcessId;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRChaperone
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ChaperoneCalibrationState _GetCalibrationState();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCalibrationState GetCalibrationState;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetPlayAreaSize(ref float pSizeX, ref float pSizeZ);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetPlayAreaSize GetPlayAreaSize;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetPlayAreaRect(ref HmdQuad_t rect);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetPlayAreaRect GetPlayAreaRect;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ReloadInfo();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ReloadInfo ReloadInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetSceneColor(HmdColor_t color);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetSceneColor SetSceneColor;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetBoundsColor(ref HmdColor_t pOutputColorArray, int nNumOutputColors, float flCollisionBoundsFadeDistance, ref HmdColor_t pOutputCameraColor);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetBoundsColor GetBoundsColor;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _AreBoundsVisible();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _AreBoundsVisible AreBoundsVisible;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ForceBoundsVisible(bool bForce);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ForceBoundsVisible ForceBoundsVisible;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRChaperoneSetup
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _CommitWorkingCopy(EChaperoneConfigFile configFile);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CommitWorkingCopy CommitWorkingCopy;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _RevertWorkingCopy();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _RevertWorkingCopy RevertWorkingCopy;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetWorkingPlayAreaSize(ref float pSizeX, ref float pSizeZ);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetWorkingPlayAreaSize GetWorkingPlayAreaSize;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetWorkingPlayAreaRect(ref HmdQuad_t rect);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetWorkingPlayAreaRect GetWorkingPlayAreaRect;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetWorkingCollisionBoundsInfo([In, Out] HmdQuad_t[] pQuadsBuffer, ref uint punQuadsCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetWorkingCollisionBoundsInfo GetWorkingCollisionBoundsInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetLiveCollisionBoundsInfo([In, Out] HmdQuad_t[] pQuadsBuffer, ref uint punQuadsCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetLiveCollisionBoundsInfo GetLiveCollisionBoundsInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetWorkingSeatedZeroPoseToRawTrackingPose(ref HmdMatrix34_t pmatSeatedZeroPoseToRawTrackingPose);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetWorkingSeatedZeroPoseToRawTrackingPose GetWorkingSeatedZeroPoseToRawTrackingPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetWorkingStandingZeroPoseToRawTrackingPose(ref HmdMatrix34_t pmatStandingZeroPoseToRawTrackingPose);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetWorkingStandingZeroPoseToRawTrackingPose GetWorkingStandingZeroPoseToRawTrackingPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetWorkingPlayAreaSize(float sizeX, float sizeZ);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetWorkingPlayAreaSize SetWorkingPlayAreaSize;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetWorkingCollisionBoundsInfo([In, Out] HmdQuad_t[] pQuadsBuffer, uint unQuadsCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetWorkingCollisionBoundsInfo SetWorkingCollisionBoundsInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetWorkingSeatedZeroPoseToRawTrackingPose(ref HmdMatrix34_t pMatSeatedZeroPoseToRawTrackingPose);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetWorkingSeatedZeroPoseToRawTrackingPose SetWorkingSeatedZeroPoseToRawTrackingPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetWorkingStandingZeroPoseToRawTrackingPose(ref HmdMatrix34_t pMatStandingZeroPoseToRawTrackingPose);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetWorkingStandingZeroPoseToRawTrackingPose SetWorkingStandingZeroPoseToRawTrackingPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ReloadFromDisk(EChaperoneConfigFile configFile);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ReloadFromDisk ReloadFromDisk;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetLiveSeatedZeroPoseToRawTrackingPose(ref HmdMatrix34_t pmatSeatedZeroPoseToRawTrackingPose);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetLiveSeatedZeroPoseToRawTrackingPose GetLiveSeatedZeroPoseToRawTrackingPose;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetWorkingCollisionBoundsTagsInfo([In, Out] byte[] pTagsBuffer, uint unTagCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetWorkingCollisionBoundsTagsInfo SetWorkingCollisionBoundsTagsInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetLiveCollisionBoundsTagsInfo([In, Out] byte[] pTagsBuffer, ref uint punTagCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetLiveCollisionBoundsTagsInfo GetLiveCollisionBoundsTagsInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _SetWorkingPhysicalBoundsInfo([In, Out] HmdQuad_t[] pQuadsBuffer, uint unQuadsCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetWorkingPhysicalBoundsInfo SetWorkingPhysicalBoundsInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetLivePhysicalBoundsInfo([In, Out] HmdQuad_t[] pQuadsBuffer, ref uint punQuadsCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetLivePhysicalBoundsInfo GetLivePhysicalBoundsInfo;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _ExportLiveToBuffer(System.Text.StringBuilder pBuffer, ref uint pnBufferLength);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ExportLiveToBuffer ExportLiveToBuffer;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _ImportFromBufferToWorking(string pBuffer, uint nImportFlags);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ImportFromBufferToWorking ImportFromBufferToWorking;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRCompositor
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetTrackingSpace(ETrackingUniverseOrigin eOrigin);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetTrackingSpace SetTrackingSpace;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ETrackingUniverseOrigin _GetTrackingSpace();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetTrackingSpace GetTrackingSpace;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRCompositorError _WaitGetPoses([In, Out] TrackedDevicePose_t[] pRenderPoseArray, uint unRenderPoseArrayCount, [In, Out] TrackedDevicePose_t[] pGamePoseArray, uint unGamePoseArrayCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _WaitGetPoses WaitGetPoses;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRCompositorError _GetLastPoses([In, Out] TrackedDevicePose_t[] pRenderPoseArray, uint unRenderPoseArrayCount, [In, Out] TrackedDevicePose_t[] pGamePoseArray, uint unGamePoseArrayCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetLastPoses GetLastPoses;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRCompositorError _GetLastPoseForTrackedDeviceIndex(uint unDeviceIndex, ref TrackedDevicePose_t pOutputPose, ref TrackedDevicePose_t pOutputGamePose);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetLastPoseForTrackedDeviceIndex GetLastPoseForTrackedDeviceIndex;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRCompositorError _Submit(EVREye eEye, ref Texture_t pTexture, ref VRTextureBounds_t pBounds, EVRSubmitFlags nSubmitFlags);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _Submit Submit;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ClearLastSubmittedFrame();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ClearLastSubmittedFrame ClearLastSubmittedFrame;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _PostPresentHandoff();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _PostPresentHandoff PostPresentHandoff;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetFrameTiming(ref Compositor_FrameTiming pTiming, uint unFramesAgo);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetFrameTiming GetFrameTiming;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetFrameTimings(ref Compositor_FrameTiming pTiming, uint nFrames);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetFrameTimings GetFrameTimings;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate float _GetFrameTimeRemaining();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetFrameTimeRemaining GetFrameTimeRemaining;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetCumulativeStats(ref Compositor_CumulativeStats pStats, uint nStatsSizeInBytes);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCumulativeStats GetCumulativeStats;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _FadeToColor(float fSeconds, float fRed, float fGreen, float fBlue, float fAlpha, bool bBackground);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _FadeToColor FadeToColor;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate HmdColor_t _GetCurrentFadeColor(bool bBackground);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCurrentFadeColor GetCurrentFadeColor;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _FadeGrid(float fSeconds, bool bFadeIn);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _FadeGrid FadeGrid;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate float _GetCurrentGridAlpha();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCurrentGridAlpha GetCurrentGridAlpha;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRCompositorError _SetSkyboxOverride([In, Out] Texture_t[] pTextures, uint unTextureCount);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetSkyboxOverride SetSkyboxOverride;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ClearSkyboxOverride();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ClearSkyboxOverride ClearSkyboxOverride;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _CompositorBringToFront();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CompositorBringToFront CompositorBringToFront;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _CompositorGoToBack();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CompositorGoToBack CompositorGoToBack;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _CompositorQuit();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CompositorQuit CompositorQuit;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsFullscreen();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsFullscreen IsFullscreen;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetCurrentSceneFocusProcess();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetCurrentSceneFocusProcess GetCurrentSceneFocusProcess;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetLastFrameRenderer();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetLastFrameRenderer GetLastFrameRenderer;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _CanRenderScene();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CanRenderScene CanRenderScene;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ShowMirrorWindow();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ShowMirrorWindow ShowMirrorWindow;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _HideMirrorWindow();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _HideMirrorWindow HideMirrorWindow;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsMirrorWindowVisible();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsMirrorWindowVisible IsMirrorWindowVisible;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _CompositorDumpImages();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CompositorDumpImages CompositorDumpImages;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _ShouldAppRenderWithLowResources();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ShouldAppRenderWithLowResources ShouldAppRenderWithLowResources;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ForceInterleavedReprojectionOn(bool bOverride);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ForceInterleavedReprojectionOn ForceInterleavedReprojectionOn;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ForceReconnectProcess();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ForceReconnectProcess ForceReconnectProcess;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SuspendRendering(bool bSuspend);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SuspendRendering SuspendRendering;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRCompositorError _GetMirrorTextureD3D11(EVREye eEye, IntPtr pD3D11DeviceOrResource, ref IntPtr ppD3D11ShaderResourceView);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetMirrorTextureD3D11 GetMirrorTextureD3D11;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ReleaseMirrorTextureD3D11(IntPtr pD3D11ShaderResourceView);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ReleaseMirrorTextureD3D11 ReleaseMirrorTextureD3D11;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRCompositorError _GetMirrorTextureGL(EVREye eEye, ref uint pglTextureId, IntPtr pglSharedTextureHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetMirrorTextureGL GetMirrorTextureGL;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _ReleaseSharedGLTexture(uint glTextureId, IntPtr glSharedTextureHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ReleaseSharedGLTexture ReleaseSharedGLTexture;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _LockGLSharedTextureForAccess(IntPtr glSharedTextureHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LockGLSharedTextureForAccess LockGLSharedTextureForAccess;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _UnlockGLSharedTextureForAccess(IntPtr glSharedTextureHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _UnlockGLSharedTextureForAccess UnlockGLSharedTextureForAccess;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetVulkanInstanceExtensionsRequired(System.Text.StringBuilder pchValue, uint unBufferSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetVulkanInstanceExtensionsRequired GetVulkanInstanceExtensionsRequired;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetVulkanDeviceExtensionsRequired(IntPtr pPhysicalDevice, System.Text.StringBuilder pchValue, uint unBufferSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetVulkanDeviceExtensionsRequired GetVulkanDeviceExtensionsRequired;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVROverlay
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _FindOverlay(string pchOverlayKey, ref ulong pOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _FindOverlay FindOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _CreateOverlay(string pchOverlayKey, string pchOverlayName, ref ulong pOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CreateOverlay CreateOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _DestroyOverlay(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _DestroyOverlay DestroyOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetHighQualityOverlay(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetHighQualityOverlay SetHighQualityOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ulong _GetHighQualityOverlay();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetHighQualityOverlay GetHighQualityOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetOverlayKey(ulong ulOverlayHandle, System.Text.StringBuilder pchValue, uint unBufferSize, ref EVROverlayError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayKey GetOverlayKey;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetOverlayName(ulong ulOverlayHandle, System.Text.StringBuilder pchValue, uint unBufferSize, ref EVROverlayError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayName GetOverlayName;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayName(ulong ulOverlayHandle, string pchName);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayName SetOverlayName;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayImageData(ulong ulOverlayHandle, IntPtr pvBuffer, uint unBufferSize, ref uint punWidth, ref uint punHeight);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayImageData GetOverlayImageData;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetOverlayErrorNameFromEnum(EVROverlayError error);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayErrorNameFromEnum GetOverlayErrorNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayRenderingPid(ulong ulOverlayHandle, uint unPID);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayRenderingPid SetOverlayRenderingPid;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetOverlayRenderingPid(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayRenderingPid GetOverlayRenderingPid;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayFlag(ulong ulOverlayHandle, VROverlayFlags eOverlayFlag, bool bEnabled);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayFlag SetOverlayFlag;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayFlag(ulong ulOverlayHandle, VROverlayFlags eOverlayFlag, ref bool pbEnabled);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayFlag GetOverlayFlag;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayColor(ulong ulOverlayHandle, float fRed, float fGreen, float fBlue);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayColor SetOverlayColor;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayColor(ulong ulOverlayHandle, ref float pfRed, ref float pfGreen, ref float pfBlue);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayColor GetOverlayColor;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayAlpha(ulong ulOverlayHandle, float fAlpha);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayAlpha SetOverlayAlpha;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayAlpha(ulong ulOverlayHandle, ref float pfAlpha);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayAlpha GetOverlayAlpha;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayTexelAspect(ulong ulOverlayHandle, float fTexelAspect);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayTexelAspect SetOverlayTexelAspect;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTexelAspect(ulong ulOverlayHandle, ref float pfTexelAspect);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTexelAspect GetOverlayTexelAspect;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlaySortOrder(ulong ulOverlayHandle, uint unSortOrder);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlaySortOrder SetOverlaySortOrder;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlaySortOrder(ulong ulOverlayHandle, ref uint punSortOrder);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlaySortOrder GetOverlaySortOrder;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayWidthInMeters(ulong ulOverlayHandle, float fWidthInMeters);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayWidthInMeters SetOverlayWidthInMeters;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayWidthInMeters(ulong ulOverlayHandle, ref float pfWidthInMeters);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayWidthInMeters GetOverlayWidthInMeters;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayAutoCurveDistanceRangeInMeters(ulong ulOverlayHandle, float fMinDistanceInMeters, float fMaxDistanceInMeters);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayAutoCurveDistanceRangeInMeters SetOverlayAutoCurveDistanceRangeInMeters;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayAutoCurveDistanceRangeInMeters(ulong ulOverlayHandle, ref float pfMinDistanceInMeters, ref float pfMaxDistanceInMeters);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayAutoCurveDistanceRangeInMeters GetOverlayAutoCurveDistanceRangeInMeters;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayTextureColorSpace(ulong ulOverlayHandle, EColorSpace eTextureColorSpace);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayTextureColorSpace SetOverlayTextureColorSpace;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTextureColorSpace(ulong ulOverlayHandle, ref EColorSpace peTextureColorSpace);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTextureColorSpace GetOverlayTextureColorSpace;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayTextureBounds(ulong ulOverlayHandle, ref VRTextureBounds_t pOverlayTextureBounds);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayTextureBounds SetOverlayTextureBounds;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTextureBounds(ulong ulOverlayHandle, ref VRTextureBounds_t pOverlayTextureBounds);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTextureBounds GetOverlayTextureBounds;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetOverlayRenderModel(ulong ulOverlayHandle, string pchValue, uint unBufferSize, ref HmdColor_t pColor, ref EVROverlayError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayRenderModel GetOverlayRenderModel;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayRenderModel(ulong ulOverlayHandle, string pchRenderModel, ref HmdColor_t pColor);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayRenderModel SetOverlayRenderModel;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTransformType(ulong ulOverlayHandle, ref VROverlayTransformType peTransformType);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTransformType GetOverlayTransformType;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayTransformAbsolute(ulong ulOverlayHandle, ETrackingUniverseOrigin eTrackingOrigin, ref HmdMatrix34_t pmatTrackingOriginToOverlayTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayTransformAbsolute SetOverlayTransformAbsolute;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTransformAbsolute(ulong ulOverlayHandle, ref ETrackingUniverseOrigin peTrackingOrigin, ref HmdMatrix34_t pmatTrackingOriginToOverlayTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTransformAbsolute GetOverlayTransformAbsolute;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayTransformTrackedDeviceRelative(ulong ulOverlayHandle, uint unTrackedDevice, ref HmdMatrix34_t pmatTrackedDeviceToOverlayTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayTransformTrackedDeviceRelative SetOverlayTransformTrackedDeviceRelative;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTransformTrackedDeviceRelative(ulong ulOverlayHandle, ref uint punTrackedDevice, ref HmdMatrix34_t pmatTrackedDeviceToOverlayTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTransformTrackedDeviceRelative GetOverlayTransformTrackedDeviceRelative;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayTransformTrackedDeviceComponent(ulong ulOverlayHandle, uint unDeviceIndex, string pchComponentName);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayTransformTrackedDeviceComponent SetOverlayTransformTrackedDeviceComponent;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTransformTrackedDeviceComponent(ulong ulOverlayHandle, ref uint punDeviceIndex, string pchComponentName, uint unComponentNameSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTransformTrackedDeviceComponent GetOverlayTransformTrackedDeviceComponent;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTransformOverlayRelative(ulong ulOverlayHandle, ref ulong ulOverlayHandleParent, ref HmdMatrix34_t pmatParentOverlayToOverlayTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTransformOverlayRelative GetOverlayTransformOverlayRelative;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayTransformOverlayRelative(ulong ulOverlayHandle, ulong ulOverlayHandleParent, ref HmdMatrix34_t pmatParentOverlayToOverlayTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayTransformOverlayRelative SetOverlayTransformOverlayRelative;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _ShowOverlay(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ShowOverlay ShowOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _HideOverlay(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _HideOverlay HideOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsOverlayVisible(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsOverlayVisible IsOverlayVisible;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetTransformForOverlayCoordinates(ulong ulOverlayHandle, ETrackingUniverseOrigin eTrackingOrigin, HmdVector2_t coordinatesInOverlay, ref HmdMatrix34_t pmatTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetTransformForOverlayCoordinates GetTransformForOverlayCoordinates;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _PollNextOverlayEvent(ulong ulOverlayHandle, ref VREvent_t pEvent, uint uncbVREvent);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _PollNextOverlayEvent PollNextOverlayEvent;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayInputMethod(ulong ulOverlayHandle, ref VROverlayInputMethod peInputMethod);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayInputMethod GetOverlayInputMethod;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayInputMethod(ulong ulOverlayHandle, VROverlayInputMethod eInputMethod);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayInputMethod SetOverlayInputMethod;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayMouseScale(ulong ulOverlayHandle, ref HmdVector2_t pvecMouseScale);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayMouseScale GetOverlayMouseScale;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayMouseScale(ulong ulOverlayHandle, ref HmdVector2_t pvecMouseScale);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayMouseScale SetOverlayMouseScale;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _ComputeOverlayIntersection(ulong ulOverlayHandle, ref VROverlayIntersectionParams_t pParams, ref VROverlayIntersectionResults_t pResults);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ComputeOverlayIntersection ComputeOverlayIntersection;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _HandleControllerOverlayInteractionAsMouse(ulong ulOverlayHandle, uint unControllerDeviceIndex);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _HandleControllerOverlayInteractionAsMouse HandleControllerOverlayInteractionAsMouse;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsHoverTargetOverlay(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsHoverTargetOverlay IsHoverTargetOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ulong _GetGamepadFocusOverlay();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetGamepadFocusOverlay GetGamepadFocusOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetGamepadFocusOverlay(ulong ulNewFocusOverlay);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetGamepadFocusOverlay SetGamepadFocusOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayNeighbor(EOverlayDirection eDirection, ulong ulFrom, ulong ulTo);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayNeighbor SetOverlayNeighbor;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _MoveGamepadFocusToNeighbor(EOverlayDirection eDirection, ulong ulFrom);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _MoveGamepadFocusToNeighbor MoveGamepadFocusToNeighbor;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayTexture(ulong ulOverlayHandle, ref Texture_t pTexture);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayTexture SetOverlayTexture;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _ClearOverlayTexture(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ClearOverlayTexture ClearOverlayTexture;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayRaw(ulong ulOverlayHandle, IntPtr pvBuffer, uint unWidth, uint unHeight, uint unDepth);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayRaw SetOverlayRaw;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayFromFile(ulong ulOverlayHandle, string pchFilePath);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayFromFile SetOverlayFromFile;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTexture(ulong ulOverlayHandle, ref IntPtr pNativeTextureHandle, IntPtr pNativeTextureRef, ref uint pWidth, ref uint pHeight, ref uint pNativeFormat, ref ETextureType pAPIType, ref EColorSpace pColorSpace, ref VRTextureBounds_t pTextureBounds);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTexture GetOverlayTexture;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _ReleaseNativeOverlayHandle(ulong ulOverlayHandle, IntPtr pNativeTextureHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ReleaseNativeOverlayHandle ReleaseNativeOverlayHandle;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayTextureSize(ulong ulOverlayHandle, ref uint pWidth, ref uint pHeight);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayTextureSize GetOverlayTextureSize;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _CreateDashboardOverlay(string pchOverlayKey, string pchOverlayFriendlyName, ref ulong pMainHandle, ref ulong pThumbnailHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CreateDashboardOverlay CreateDashboardOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsDashboardVisible();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsDashboardVisible IsDashboardVisible;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _IsActiveDashboardOverlay(ulong ulOverlayHandle);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _IsActiveDashboardOverlay IsActiveDashboardOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetDashboardOverlaySceneProcess(ulong ulOverlayHandle, uint unProcessId);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetDashboardOverlaySceneProcess SetDashboardOverlaySceneProcess;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetDashboardOverlaySceneProcess(ulong ulOverlayHandle, ref uint punProcessId);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetDashboardOverlaySceneProcess GetDashboardOverlaySceneProcess;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _ShowDashboard(string pchOverlayToShow);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ShowDashboard ShowDashboard;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetPrimaryDashboardDevice();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetPrimaryDashboardDevice GetPrimaryDashboardDevice;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _ShowKeyboard(int eInputMode, int eLineInputMode, string pchDescription, uint unCharMax, string pchExistingText, bool bUseMinimalMode, ulong uUserValue);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ShowKeyboard ShowKeyboard;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _ShowKeyboardForOverlay(ulong ulOverlayHandle, int eInputMode, int eLineInputMode, string pchDescription, uint unCharMax, string pchExistingText, bool bUseMinimalMode, ulong uUserValue);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ShowKeyboardForOverlay ShowKeyboardForOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetKeyboardText(System.Text.StringBuilder pchText, uint cchText);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetKeyboardText GetKeyboardText;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _HideKeyboard();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _HideKeyboard HideKeyboard;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetKeyboardTransformAbsolute(ETrackingUniverseOrigin eTrackingOrigin, ref HmdMatrix34_t pmatTrackingOriginToKeyboardTransform);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetKeyboardTransformAbsolute SetKeyboardTransformAbsolute;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetKeyboardPositionForOverlay(ulong ulOverlayHandle, HmdRect2_t avoidRect);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetKeyboardPositionForOverlay SetKeyboardPositionForOverlay;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _SetOverlayIntersectionMask(ulong ulOverlayHandle, ref VROverlayIntersectionMaskPrimitive_t pMaskPrimitives, uint unNumMaskPrimitives, uint unPrimitiveSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetOverlayIntersectionMask SetOverlayIntersectionMask;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVROverlayError _GetOverlayFlags(ulong ulOverlayHandle, ref uint pFlags);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetOverlayFlags GetOverlayFlags;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate VRMessageOverlayResponse _ShowMessageOverlay(string pchText, string pchCaption, string pchButton0Text, string pchButton1Text, string pchButton2Text, string pchButton3Text);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _ShowMessageOverlay ShowMessageOverlay;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRRenderModels
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRRenderModelError _LoadRenderModel_Async(string pchRenderModelName, ref IntPtr ppRenderModel);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LoadRenderModel_Async LoadRenderModel_Async;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _FreeRenderModel(IntPtr pRenderModel);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _FreeRenderModel FreeRenderModel;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRRenderModelError _LoadTexture_Async(int textureId, ref IntPtr ppTexture);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LoadTexture_Async LoadTexture_Async;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _FreeTexture(IntPtr pTexture);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _FreeTexture FreeTexture;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRRenderModelError _LoadTextureD3D11_Async(int textureId, IntPtr pD3D11Device, ref IntPtr ppD3D11Texture2D);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LoadTextureD3D11_Async LoadTextureD3D11_Async;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRRenderModelError _LoadIntoTextureD3D11_Async(int textureId, IntPtr pDstTexture);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LoadIntoTextureD3D11_Async LoadIntoTextureD3D11_Async;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _FreeTextureD3D11(IntPtr pD3D11Texture2D);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _FreeTextureD3D11 FreeTextureD3D11;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetRenderModelName(uint unRenderModelIndex, System.Text.StringBuilder pchRenderModelName, uint unRenderModelNameLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetRenderModelName GetRenderModelName;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetRenderModelCount();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetRenderModelCount GetRenderModelCount;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetComponentCount(string pchRenderModelName);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetComponentCount GetComponentCount;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetComponentName(string pchRenderModelName, uint unComponentIndex, System.Text.StringBuilder pchComponentName, uint unComponentNameLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetComponentName GetComponentName;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate ulong _GetComponentButtonMask(string pchRenderModelName, string pchComponentName);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetComponentButtonMask GetComponentButtonMask;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetComponentRenderModelName(string pchRenderModelName, string pchComponentName, System.Text.StringBuilder pchComponentRenderModelName, uint unComponentRenderModelNameLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetComponentRenderModelName GetComponentRenderModelName;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetComponentState(string pchRenderModelName, string pchComponentName, ref VRControllerState_t pControllerState, ref RenderModel_ControllerMode_State_t pState, ref RenderModel_ComponentState_t pComponentState);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetComponentState GetComponentState;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _RenderModelHasComponent(string pchRenderModelName, string pchComponentName);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _RenderModelHasComponent RenderModelHasComponent;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetRenderModelThumbnailURL(string pchRenderModelName, System.Text.StringBuilder pchThumbnailURL, uint unThumbnailURLLen, ref EVRRenderModelError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetRenderModelThumbnailURL GetRenderModelThumbnailURL;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetRenderModelOriginalPath(string pchRenderModelName, System.Text.StringBuilder pchOriginalPath, uint unOriginalPathLen, ref EVRRenderModelError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetRenderModelOriginalPath GetRenderModelOriginalPath;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetRenderModelErrorNameFromEnum(EVRRenderModelError error);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetRenderModelErrorNameFromEnum GetRenderModelErrorNameFromEnum;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRNotifications
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRNotificationError _CreateNotification(ulong ulOverlayHandle, ulong ulUserValue, EVRNotificationType type, string pchText, EVRNotificationStyle style, ref NotificationBitmap_t pImage, ref uint pNotificationId);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _CreateNotification CreateNotification;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRNotificationError _RemoveNotification(uint notificationId);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _RemoveNotification RemoveNotification;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRSettings
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate IntPtr _GetSettingsErrorNameFromEnum(EVRSettingsError eError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetSettingsErrorNameFromEnum GetSettingsErrorNameFromEnum;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _Sync(bool bForce, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _Sync Sync;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetBool(string pchSection, string pchSettingsKey, bool bValue, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetBool SetBool;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetInt32(string pchSection, string pchSettingsKey, int nValue, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetInt32 SetInt32;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetFloat(string pchSection, string pchSettingsKey, float flValue, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetFloat SetFloat;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _SetString(string pchSection, string pchSettingsKey, string pchValue, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SetString SetString;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetBool(string pchSection, string pchSettingsKey, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetBool GetBool;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate int _GetInt32(string pchSection, string pchSettingsKey, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetInt32 GetInt32;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate float _GetFloat(string pchSection, string pchSettingsKey, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetFloat GetFloat;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _GetString(string pchSection, string pchSettingsKey, System.Text.StringBuilder pchValue, uint unValueLen, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetString GetString;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _RemoveSection(string pchSection, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _RemoveSection RemoveSection;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate void _RemoveKeyInSection(string pchSection, string pchSettingsKey, ref EVRSettingsError peError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _RemoveKeyInSection RemoveKeyInSection;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRScreenshots
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRScreenshotError _RequestScreenshot(ref uint pOutScreenshotHandle, EVRScreenshotType type, string pchPreviewFilename, string pchVRFilename);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _RequestScreenshot RequestScreenshot;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRScreenshotError _HookScreenshot([In, Out] EVRScreenshotType[] pSupportedTypes, int numTypes);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _HookScreenshot HookScreenshot;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRScreenshotType _GetScreenshotPropertyType(uint screenshotHandle, ref EVRScreenshotError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetScreenshotPropertyType GetScreenshotPropertyType;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetScreenshotPropertyFilename(uint screenshotHandle, EVRScreenshotPropertyFilenames filenameType, System.Text.StringBuilder pchFilename, uint cchFilename, ref EVRScreenshotError pError);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetScreenshotPropertyFilename GetScreenshotPropertyFilename;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRScreenshotError _UpdateScreenshotProgress(uint screenshotHandle, float flProgress);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _UpdateScreenshotProgress UpdateScreenshotProgress;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRScreenshotError _TakeStereoScreenshot(ref uint pOutScreenshotHandle, string pchPreviewFilename, string pchVRFilename);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _TakeStereoScreenshot TakeStereoScreenshot;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate EVRScreenshotError _SubmitScreenshot(uint screenshotHandle, EVRScreenshotType type, string pchSourcePreviewFilename, string pchSourceVRFilename);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _SubmitScreenshot SubmitScreenshot;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRResources
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _LoadSharedResource(string pchResourceName, string pchBuffer, uint unBufferLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _LoadSharedResource LoadSharedResource;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetResourceFullPath(string pchResourceName, string pchResourceTypeDirectory, string pchPathBuffer, uint unBufferLen);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetResourceFullPath GetResourceFullPath;

}

[StructLayout(LayoutKind.Sequential)]
public struct IVRDriverManager
{
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetDriverCount();
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetDriverCount GetDriverCount;

	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate uint _GetDriverName(uint nDriver, System.Text.StringBuilder pchValue, uint unBufferSize);
	[MarshalAs(UnmanagedType.FunctionPtr)]
	internal _GetDriverName GetDriverName;

}

public class CVRSystem
{
	IVRSystem FnTable;
	internal CVRSystem(IntPtr pInterface)
	{
		FnTable = (IVRSystem)Marshal.PtrToStructure(pInterface, typeof(IVRSystem));
	}
	public void GetRecommendedRenderTargetSize(ref uint pnWidth,ref uint pnHeight)
	{
		pnWidth = 0;
		pnHeight = 0;
		FnTable.GetRecommendedRenderTargetSize(ref pnWidth,ref pnHeight);
	}
	public HmdMatrix44_t GetProjectionMatrix(EVREye eEye,float fNearZ,float fFarZ)
	{
		HmdMatrix44_t result = FnTable.GetProjectionMatrix(eEye,fNearZ,fFarZ);
		return result;
	}
	public void GetProjectionRaw(EVREye eEye,ref float pfLeft,ref float pfRight,ref float pfTop,ref float pfBottom)
	{
		pfLeft = 0;
		pfRight = 0;
		pfTop = 0;
		pfBottom = 0;
		FnTable.GetProjectionRaw(eEye,ref pfLeft,ref pfRight,ref pfTop,ref pfBottom);
	}
	public bool ComputeDistortion(EVREye eEye,float fU,float fV,ref DistortionCoordinates_t pDistortionCoordinates)
	{
		bool result = FnTable.ComputeDistortion(eEye,fU,fV,ref pDistortionCoordinates);
		return result;
	}
	public HmdMatrix34_t GetEyeToHeadTransform(EVREye eEye)
	{
		HmdMatrix34_t result = FnTable.GetEyeToHeadTransform(eEye);
		return result;
	}
	public bool GetTimeSinceLastVsync(ref float pfSecondsSinceLastVsync,ref ulong pulFrameCounter)
	{
		pfSecondsSinceLastVsync = 0;
		pulFrameCounter = 0;
		bool result = FnTable.GetTimeSinceLastVsync(ref pfSecondsSinceLastVsync,ref pulFrameCounter);
		return result;
	}
	public int GetD3D9AdapterIndex()
	{
		int result = FnTable.GetD3D9AdapterIndex();
		return result;
	}
	public void GetDXGIOutputInfo(ref int pnAdapterIndex)
	{
		pnAdapterIndex = 0;
		FnTable.GetDXGIOutputInfo(ref pnAdapterIndex);
	}
	public void GetOutputDevice(ref ulong pnDevice,ETextureType textureType)
	{
		pnDevice = 0;
		FnTable.GetOutputDevice(ref pnDevice,textureType);
	}
	public bool IsDisplayOnDesktop()
	{
		bool result = FnTable.IsDisplayOnDesktop();
		return result;
	}
	public bool SetDisplayVisibility(bool bIsVisibleOnDesktop)
	{
		bool result = FnTable.SetDisplayVisibility(bIsVisibleOnDesktop);
		return result;
	}
	public void GetDeviceToAbsoluteTrackingPose(ETrackingUniverseOrigin eOrigin,float fPredictedSecondsToPhotonsFromNow,TrackedDevicePose_t [] pTrackedDevicePoseArray)
	{
		FnTable.GetDeviceToAbsoluteTrackingPose(eOrigin,fPredictedSecondsToPhotonsFromNow,pTrackedDevicePoseArray,(uint) pTrackedDevicePoseArray.Length);
	}
	public void ResetSeatedZeroPose()
	{
		FnTable.ResetSeatedZeroPose();
	}
	public HmdMatrix34_t GetSeatedZeroPoseToStandingAbsoluteTrackingPose()
	{
		HmdMatrix34_t result = FnTable.GetSeatedZeroPoseToStandingAbsoluteTrackingPose();
		return result;
	}
	public HmdMatrix34_t GetRawZeroPoseToStandingAbsoluteTrackingPose()
	{
		HmdMatrix34_t result = FnTable.GetRawZeroPoseToStandingAbsoluteTrackingPose();
		return result;
	}
	public uint GetSortedTrackedDeviceIndicesOfClass(ETrackedDeviceClass eTrackedDeviceClass,uint [] punTrackedDeviceIndexArray,uint unRelativeToTrackedDeviceIndex)
	{
		uint result = FnTable.GetSortedTrackedDeviceIndicesOfClass(eTrackedDeviceClass,punTrackedDeviceIndexArray,(uint) punTrackedDeviceIndexArray.Length,unRelativeToTrackedDeviceIndex);
		return result;
	}
	public EDeviceActivityLevel GetTrackedDeviceActivityLevel(uint unDeviceId)
	{
		EDeviceActivityLevel result = FnTable.GetTrackedDeviceActivityLevel(unDeviceId);
		return result;
	}
	public void ApplyTransform(ref TrackedDevicePose_t pOutputPose,ref TrackedDevicePose_t pTrackedDevicePose,ref HmdMatrix34_t pTransform)
	{
		FnTable.ApplyTransform(ref pOutputPose,ref pTrackedDevicePose,ref pTransform);
	}
	public uint GetTrackedDeviceIndexForControllerRole(ETrackedControllerRole unDeviceType)
	{
		uint result = FnTable.GetTrackedDeviceIndexForControllerRole(unDeviceType);
		return result;
	}
	public ETrackedControllerRole GetControllerRoleForTrackedDeviceIndex(uint unDeviceIndex)
	{
		ETrackedControllerRole result = FnTable.GetControllerRoleForTrackedDeviceIndex(unDeviceIndex);
		return result;
	}
	public ETrackedDeviceClass GetTrackedDeviceClass(uint unDeviceIndex)
	{
		ETrackedDeviceClass result = FnTable.GetTrackedDeviceClass(unDeviceIndex);
		return result;
	}
	public bool IsTrackedDeviceConnected(uint unDeviceIndex)
	{
		bool result = FnTable.IsTrackedDeviceConnected(unDeviceIndex);
		return result;
	}
	public bool GetBoolTrackedDeviceProperty(uint unDeviceIndex,ETrackedDeviceProperty prop,ref ETrackedPropertyError pError)
	{
		bool result = FnTable.GetBoolTrackedDeviceProperty(unDeviceIndex,prop,ref pError);
		return result;
	}
	public float GetFloatTrackedDeviceProperty(uint unDeviceIndex,ETrackedDeviceProperty prop,ref ETrackedPropertyError pError)
	{
		float result = FnTable.GetFloatTrackedDeviceProperty(unDeviceIndex,prop,ref pError);
		return result;
	}
	public int GetInt32TrackedDeviceProperty(uint unDeviceIndex,ETrackedDeviceProperty prop,ref ETrackedPropertyError pError)
	{
		int result = FnTable.GetInt32TrackedDeviceProperty(unDeviceIndex,prop,ref pError);
		return result;
	}
	public ulong GetUint64TrackedDeviceProperty(uint unDeviceIndex,ETrackedDeviceProperty prop,ref ETrackedPropertyError pError)
	{
		ulong result = FnTable.GetUint64TrackedDeviceProperty(unDeviceIndex,prop,ref pError);
		return result;
	}
	public HmdMatrix34_t GetMatrix34TrackedDeviceProperty(uint unDeviceIndex,ETrackedDeviceProperty prop,ref ETrackedPropertyError pError)
	{
		HmdMatrix34_t result = FnTable.GetMatrix34TrackedDeviceProperty(unDeviceIndex,prop,ref pError);
		return result;
	}
	public uint GetStringTrackedDeviceProperty(uint unDeviceIndex,ETrackedDeviceProperty prop,System.Text.StringBuilder pchValue,uint unBufferSize,ref ETrackedPropertyError pError)
	{
		uint result = FnTable.GetStringTrackedDeviceProperty(unDeviceIndex,prop,pchValue,unBufferSize,ref pError);
		return result;
	}
	public string GetPropErrorNameFromEnum(ETrackedPropertyError error)
	{
		IntPtr result = FnTable.GetPropErrorNameFromEnum(error);
		return Marshal.PtrToStringAnsi(result);
	}
// This is a terrible hack to workaround the fact that VRControllerState_t and VREvent_t were
// originally mis-compiled with the wrong packing for Linux and OSX.
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _PollNextEventPacked(ref VREvent_t_Packed pEvent,uint uncbVREvent);
	[StructLayout(LayoutKind.Explicit)]
	struct PollNextEventUnion
	{
		[FieldOffset(0)]
		public IVRSystem._PollNextEvent pPollNextEvent;
		[FieldOffset(0)]
		public _PollNextEventPacked pPollNextEventPacked;
	}
	public bool PollNextEvent(ref VREvent_t pEvent,uint uncbVREvent)
	{
#if !UNITY_METRO
		if ((System.Environment.OSVersion.Platform == System.PlatformID.MacOSX) ||
				(System.Environment.OSVersion.Platform == System.PlatformID.Unix))
		{
			PollNextEventUnion u;
			VREvent_t_Packed event_packed = new VREvent_t_Packed();
			u.pPollNextEventPacked = null;
			u.pPollNextEvent = FnTable.PollNextEvent;
			bool packed_result = u.pPollNextEventPacked(ref event_packed,(uint)System.Runtime.InteropServices.Marshal.SizeOf(typeof(VREvent_t_Packed)));

			event_packed.Unpack(ref pEvent);
			return packed_result;
		}
#endif
		bool result = FnTable.PollNextEvent(ref pEvent,uncbVREvent);
		return result;
	}
	public bool PollNextEventWithPose(ETrackingUniverseOrigin eOrigin,ref VREvent_t pEvent,uint uncbVREvent,ref TrackedDevicePose_t pTrackedDevicePose)
	{
		bool result = FnTable.PollNextEventWithPose(eOrigin,ref pEvent,uncbVREvent,ref pTrackedDevicePose);
		return result;
	}
	public string GetEventTypeNameFromEnum(EVREventType eType)
	{
		IntPtr result = FnTable.GetEventTypeNameFromEnum(eType);
		return Marshal.PtrToStringAnsi(result);
	}
	public HiddenAreaMesh_t GetHiddenAreaMesh(EVREye eEye,EHiddenAreaMeshType type)
	{
		HiddenAreaMesh_t result = FnTable.GetHiddenAreaMesh(eEye,type);
		return result;
	}
// This is a terrible hack to workaround the fact that VRControllerState_t and VREvent_t were
// originally mis-compiled with the wrong packing for Linux and OSX.
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetControllerStatePacked(uint unControllerDeviceIndex,ref VRControllerState_t_Packed pControllerState,uint unControllerStateSize);
	[StructLayout(LayoutKind.Explicit)]
	struct GetControllerStateUnion
	{
		[FieldOffset(0)]
		public IVRSystem._GetControllerState pGetControllerState;
		[FieldOffset(0)]
		public _GetControllerStatePacked pGetControllerStatePacked;
	}
	public bool GetControllerState(uint unControllerDeviceIndex,ref VRControllerState_t pControllerState,uint unControllerStateSize)
	{
#if !UNITY_METRO
		if ((System.Environment.OSVersion.Platform == System.PlatformID.MacOSX) ||
				(System.Environment.OSVersion.Platform == System.PlatformID.Unix))
		{
			GetControllerStateUnion u;
			VRControllerState_t_Packed state_packed = new VRControllerState_t_Packed(pControllerState);
			u.pGetControllerStatePacked = null;
			u.pGetControllerState = FnTable.GetControllerState;
			bool packed_result = u.pGetControllerStatePacked(unControllerDeviceIndex,ref state_packed,(uint)System.Runtime.InteropServices.Marshal.SizeOf(typeof(VRControllerState_t_Packed)));

			state_packed.Unpack(ref pControllerState);
			return packed_result;
		}
#endif
		bool result = FnTable.GetControllerState(unControllerDeviceIndex,ref pControllerState,unControllerStateSize);
		return result;
	}
// This is a terrible hack to workaround the fact that VRControllerState_t and VREvent_t were
// originally mis-compiled with the wrong packing for Linux and OSX.
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetControllerStateWithPosePacked(ETrackingUniverseOrigin eOrigin,uint unControllerDeviceIndex,ref VRControllerState_t_Packed pControllerState,uint unControllerStateSize,ref TrackedDevicePose_t pTrackedDevicePose);
	[StructLayout(LayoutKind.Explicit)]
	struct GetControllerStateWithPoseUnion
	{
		[FieldOffset(0)]
		public IVRSystem._GetControllerStateWithPose pGetControllerStateWithPose;
		[FieldOffset(0)]
		public _GetControllerStateWithPosePacked pGetControllerStateWithPosePacked;
	}
	public bool GetControllerStateWithPose(ETrackingUniverseOrigin eOrigin,uint unControllerDeviceIndex,ref VRControllerState_t pControllerState,uint unControllerStateSize,ref TrackedDevicePose_t pTrackedDevicePose)
	{
#if !UNITY_METRO
		if ((System.Environment.OSVersion.Platform == System.PlatformID.MacOSX) ||
				(System.Environment.OSVersion.Platform == System.PlatformID.Unix))
		{
			GetControllerStateWithPoseUnion u;
			VRControllerState_t_Packed state_packed = new VRControllerState_t_Packed(pControllerState);
			u.pGetControllerStateWithPosePacked = null;
			u.pGetControllerStateWithPose = FnTable.GetControllerStateWithPose;
			bool packed_result = u.pGetControllerStateWithPosePacked(eOrigin,unControllerDeviceIndex,ref state_packed,(uint)System.Runtime.InteropServices.Marshal.SizeOf(typeof(VRControllerState_t_Packed)),ref pTrackedDevicePose);

			state_packed.Unpack(ref pControllerState);
			return packed_result;
		}
#endif
		bool result = FnTable.GetControllerStateWithPose(eOrigin,unControllerDeviceIndex,ref pControllerState,unControllerStateSize,ref pTrackedDevicePose);
		return result;
	}
	public void TriggerHapticPulse(uint unControllerDeviceIndex,uint unAxisId,uint usDurationMicroSec)
	{
		FnTable.TriggerHapticPulse(unControllerDeviceIndex,unAxisId,usDurationMicroSec);
	}
	public string GetButtonIdNameFromEnum(EVRButtonId eButtonId)
	{
		IntPtr result = FnTable.GetButtonIdNameFromEnum(eButtonId);
		return Marshal.PtrToStringAnsi(result);
	}
	public string GetControllerAxisTypeNameFromEnum(EVRControllerAxisType eAxisType)
	{
		IntPtr result = FnTable.GetControllerAxisTypeNameFromEnum(eAxisType);
		return Marshal.PtrToStringAnsi(result);
	}
	public bool CaptureInputFocus()
	{
		bool result = FnTable.CaptureInputFocus();
		return result;
	}
	public void ReleaseInputFocus()
	{
		FnTable.ReleaseInputFocus();
	}
	public bool IsInputFocusCapturedByAnotherProcess()
	{
		bool result = FnTable.IsInputFocusCapturedByAnotherProcess();
		return result;
	}
	public uint DriverDebugRequest(uint unDeviceIndex,string pchRequest,string pchResponseBuffer,uint unResponseBufferSize)
	{
		uint result = FnTable.DriverDebugRequest(unDeviceIndex,pchRequest,pchResponseBuffer,unResponseBufferSize);
		return result;
	}
	public EVRFirmwareError PerformFirmwareUpdate(uint unDeviceIndex)
	{
		EVRFirmwareError result = FnTable.PerformFirmwareUpdate(unDeviceIndex);
		return result;
	}
	public void AcknowledgeQuit_Exiting()
	{
		FnTable.AcknowledgeQuit_Exiting();
	}
	public void AcknowledgeQuit_UserPrompt()
	{
		FnTable.AcknowledgeQuit_UserPrompt();
	}
}

public class CVRExtendedDisplay
{
	IVRExtendedDisplay FnTable;
	internal CVRExtendedDisplay(IntPtr pInterface)
	{
		FnTable = (IVRExtendedDisplay)Marshal.PtrToStructure(pInterface, typeof(IVRExtendedDisplay));
	}
	public void GetWindowBounds(ref int pnX,ref int pnY,ref uint pnWidth,ref uint pnHeight)
	{
		pnX = 0;
		pnY = 0;
		pnWidth = 0;
		pnHeight = 0;
		FnTable.GetWindowBounds(ref pnX,ref pnY,ref pnWidth,ref pnHeight);
	}
	public void GetEyeOutputViewport(EVREye eEye,ref uint pnX,ref uint pnY,ref uint pnWidth,ref uint pnHeight)
	{
		pnX = 0;
		pnY = 0;
		pnWidth = 0;
		pnHeight = 0;
		FnTable.GetEyeOutputViewport(eEye,ref pnX,ref pnY,ref pnWidth,ref pnHeight);
	}
	public void GetDXGIOutputInfo(ref int pnAdapterIndex,ref int pnAdapterOutputIndex)
	{
		pnAdapterIndex = 0;
		pnAdapterOutputIndex = 0;
		FnTable.GetDXGIOutputInfo(ref pnAdapterIndex,ref pnAdapterOutputIndex);
	}
}

public class CVRTrackedCamera
{
	IVRTrackedCamera FnTable;
	internal CVRTrackedCamera(IntPtr pInterface)
	{
		FnTable = (IVRTrackedCamera)Marshal.PtrToStructure(pInterface, typeof(IVRTrackedCamera));
	}
	public string GetCameraErrorNameFromEnum(EVRTrackedCameraError eCameraError)
	{
		IntPtr result = FnTable.GetCameraErrorNameFromEnum(eCameraError);
		return Marshal.PtrToStringAnsi(result);
	}
	public EVRTrackedCameraError HasCamera(uint nDeviceIndex,ref bool pHasCamera)
	{
		pHasCamera = false;
		EVRTrackedCameraError result = FnTable.HasCamera(nDeviceIndex,ref pHasCamera);
		return result;
	}
	public EVRTrackedCameraError GetCameraFrameSize(uint nDeviceIndex,EVRTrackedCameraFrameType eFrameType,ref uint pnWidth,ref uint pnHeight,ref uint pnFrameBufferSize)
	{
		pnWidth = 0;
		pnHeight = 0;
		pnFrameBufferSize = 0;
		EVRTrackedCameraError result = FnTable.GetCameraFrameSize(nDeviceIndex,eFrameType,ref pnWidth,ref pnHeight,ref pnFrameBufferSize);
		return result;
	}
	public EVRTrackedCameraError GetCameraIntrinsics(uint nDeviceIndex,EVRTrackedCameraFrameType eFrameType,ref HmdVector2_t pFocalLength,ref HmdVector2_t pCenter)
	{
		EVRTrackedCameraError result = FnTable.GetCameraIntrinsics(nDeviceIndex,eFrameType,ref pFocalLength,ref pCenter);
		return result;
	}
	public EVRTrackedCameraError GetCameraProjection(uint nDeviceIndex,EVRTrackedCameraFrameType eFrameType,float flZNear,float flZFar,ref HmdMatrix44_t pProjection)
	{
		EVRTrackedCameraError result = FnTable.GetCameraProjection(nDeviceIndex,eFrameType,flZNear,flZFar,ref pProjection);
		return result;
	}
	public EVRTrackedCameraError AcquireVideoStreamingService(uint nDeviceIndex,ref ulong pHandle)
	{
		pHandle = 0;
		EVRTrackedCameraError result = FnTable.AcquireVideoStreamingService(nDeviceIndex,ref pHandle);
		return result;
	}
	public EVRTrackedCameraError ReleaseVideoStreamingService(ulong hTrackedCamera)
	{
		EVRTrackedCameraError result = FnTable.ReleaseVideoStreamingService(hTrackedCamera);
		return result;
	}
	public EVRTrackedCameraError GetVideoStreamFrameBuffer(ulong hTrackedCamera,EVRTrackedCameraFrameType eFrameType,IntPtr pFrameBuffer,uint nFrameBufferSize,ref CameraVideoStreamFrameHeader_t pFrameHeader,uint nFrameHeaderSize)
	{
		EVRTrackedCameraError result = FnTable.GetVideoStreamFrameBuffer(hTrackedCamera,eFrameType,pFrameBuffer,nFrameBufferSize,ref pFrameHeader,nFrameHeaderSize);
		return result;
	}
	public EVRTrackedCameraError GetVideoStreamTextureSize(uint nDeviceIndex,EVRTrackedCameraFrameType eFrameType,ref VRTextureBounds_t pTextureBounds,ref uint pnWidth,ref uint pnHeight)
	{
		pnWidth = 0;
		pnHeight = 0;
		EVRTrackedCameraError result = FnTable.GetVideoStreamTextureSize(nDeviceIndex,eFrameType,ref pTextureBounds,ref pnWidth,ref pnHeight);
		return result;
	}
	public EVRTrackedCameraError GetVideoStreamTextureD3D11(ulong hTrackedCamera,EVRTrackedCameraFrameType eFrameType,IntPtr pD3D11DeviceOrResource,ref IntPtr ppD3D11ShaderResourceView,ref CameraVideoStreamFrameHeader_t pFrameHeader,uint nFrameHeaderSize)
	{
		EVRTrackedCameraError result = FnTable.GetVideoStreamTextureD3D11(hTrackedCamera,eFrameType,pD3D11DeviceOrResource,ref ppD3D11ShaderResourceView,ref pFrameHeader,nFrameHeaderSize);
		return result;
	}
	public EVRTrackedCameraError GetVideoStreamTextureGL(ulong hTrackedCamera,EVRTrackedCameraFrameType eFrameType,ref uint pglTextureId,ref CameraVideoStreamFrameHeader_t pFrameHeader,uint nFrameHeaderSize)
	{
		pglTextureId = 0;
		EVRTrackedCameraError result = FnTable.GetVideoStreamTextureGL(hTrackedCamera,eFrameType,ref pglTextureId,ref pFrameHeader,nFrameHeaderSize);
		return result;
	}
	public EVRTrackedCameraError ReleaseVideoStreamTextureGL(ulong hTrackedCamera,uint glTextureId)
	{
		EVRTrackedCameraError result = FnTable.ReleaseVideoStreamTextureGL(hTrackedCamera,glTextureId);
		return result;
	}
}

public class CVRApplications
{
	IVRApplications FnTable;
	internal CVRApplications(IntPtr pInterface)
	{
		FnTable = (IVRApplications)Marshal.PtrToStructure(pInterface, typeof(IVRApplications));
	}
	public EVRApplicationError AddApplicationManifest(string pchApplicationManifestFullPath,bool bTemporary)
	{
		EVRApplicationError result = FnTable.AddApplicationManifest(pchApplicationManifestFullPath,bTemporary);
		return result;
	}
	public EVRApplicationError RemoveApplicationManifest(string pchApplicationManifestFullPath)
	{
		EVRApplicationError result = FnTable.RemoveApplicationManifest(pchApplicationManifestFullPath);
		return result;
	}
	public bool IsApplicationInstalled(string pchAppKey)
	{
		bool result = FnTable.IsApplicationInstalled(pchAppKey);
		return result;
	}
	public uint GetApplicationCount()
	{
		uint result = FnTable.GetApplicationCount();
		return result;
	}
	public EVRApplicationError GetApplicationKeyByIndex(uint unApplicationIndex,System.Text.StringBuilder pchAppKeyBuffer,uint unAppKeyBufferLen)
	{
		EVRApplicationError result = FnTable.GetApplicationKeyByIndex(unApplicationIndex,pchAppKeyBuffer,unAppKeyBufferLen);
		return result;
	}
	public EVRApplicationError GetApplicationKeyByProcessId(uint unProcessId,string pchAppKeyBuffer,uint unAppKeyBufferLen)
	{
		EVRApplicationError result = FnTable.GetApplicationKeyByProcessId(unProcessId,pchAppKeyBuffer,unAppKeyBufferLen);
		return result;
	}
	public EVRApplicationError LaunchApplication(string pchAppKey)
	{
		EVRApplicationError result = FnTable.LaunchApplication(pchAppKey);
		return result;
	}
	public EVRApplicationError LaunchTemplateApplication(string pchTemplateAppKey,string pchNewAppKey,AppOverrideKeys_t [] pKeys)
	{
		EVRApplicationError result = FnTable.LaunchTemplateApplication(pchTemplateAppKey,pchNewAppKey,pKeys,(uint) pKeys.Length);
		return result;
	}
	public EVRApplicationError LaunchApplicationFromMimeType(string pchMimeType,string pchArgs)
	{
		EVRApplicationError result = FnTable.LaunchApplicationFromMimeType(pchMimeType,pchArgs);
		return result;
	}
	public EVRApplicationError LaunchDashboardOverlay(string pchAppKey)
	{
		EVRApplicationError result = FnTable.LaunchDashboardOverlay(pchAppKey);
		return result;
	}
	public bool CancelApplicationLaunch(string pchAppKey)
	{
		bool result = FnTable.CancelApplicationLaunch(pchAppKey);
		return result;
	}
	public EVRApplicationError IdentifyApplication(uint unProcessId,string pchAppKey)
	{
		EVRApplicationError result = FnTable.IdentifyApplication(unProcessId,pchAppKey);
		return result;
	}
	public uint GetApplicationProcessId(string pchAppKey)
	{
		uint result = FnTable.GetApplicationProcessId(pchAppKey);
		return result;
	}
	public string GetApplicationsErrorNameFromEnum(EVRApplicationError error)
	{
		IntPtr result = FnTable.GetApplicationsErrorNameFromEnum(error);
		return Marshal.PtrToStringAnsi(result);
	}
	public uint GetApplicationPropertyString(string pchAppKey,EVRApplicationProperty eProperty,System.Text.StringBuilder pchPropertyValueBuffer,uint unPropertyValueBufferLen,ref EVRApplicationError peError)
	{
		uint result = FnTable.GetApplicationPropertyString(pchAppKey,eProperty,pchPropertyValueBuffer,unPropertyValueBufferLen,ref peError);
		return result;
	}
	public bool GetApplicationPropertyBool(string pchAppKey,EVRApplicationProperty eProperty,ref EVRApplicationError peError)
	{
		bool result = FnTable.GetApplicationPropertyBool(pchAppKey,eProperty,ref peError);
		return result;
	}
	public ulong GetApplicationPropertyUint64(string pchAppKey,EVRApplicationProperty eProperty,ref EVRApplicationError peError)
	{
		ulong result = FnTable.GetApplicationPropertyUint64(pchAppKey,eProperty,ref peError);
		return result;
	}
	public EVRApplicationError SetApplicationAutoLaunch(string pchAppKey,bool bAutoLaunch)
	{
		EVRApplicationError result = FnTable.SetApplicationAutoLaunch(pchAppKey,bAutoLaunch);
		return result;
	}
	public bool GetApplicationAutoLaunch(string pchAppKey)
	{
		bool result = FnTable.GetApplicationAutoLaunch(pchAppKey);
		return result;
	}
	public EVRApplicationError SetDefaultApplicationForMimeType(string pchAppKey,string pchMimeType)
	{
		EVRApplicationError result = FnTable.SetDefaultApplicationForMimeType(pchAppKey,pchMimeType);
		return result;
	}
	public bool GetDefaultApplicationForMimeType(string pchMimeType,string pchAppKeyBuffer,uint unAppKeyBufferLen)
	{
		bool result = FnTable.GetDefaultApplicationForMimeType(pchMimeType,pchAppKeyBuffer,unAppKeyBufferLen);
		return result;
	}
	public bool GetApplicationSupportedMimeTypes(string pchAppKey,string pchMimeTypesBuffer,uint unMimeTypesBuffer)
	{
		bool result = FnTable.GetApplicationSupportedMimeTypes(pchAppKey,pchMimeTypesBuffer,unMimeTypesBuffer);
		return result;
	}
	public uint GetApplicationsThatSupportMimeType(string pchMimeType,string pchAppKeysThatSupportBuffer,uint unAppKeysThatSupportBuffer)
	{
		uint result = FnTable.GetApplicationsThatSupportMimeType(pchMimeType,pchAppKeysThatSupportBuffer,unAppKeysThatSupportBuffer);
		return result;
	}
	public uint GetApplicationLaunchArguments(uint unHandle,string pchArgs,uint unArgs)
	{
		uint result = FnTable.GetApplicationLaunchArguments(unHandle,pchArgs,unArgs);
		return result;
	}
	public EVRApplicationError GetStartingApplication(string pchAppKeyBuffer,uint unAppKeyBufferLen)
	{
		EVRApplicationError result = FnTable.GetStartingApplication(pchAppKeyBuffer,unAppKeyBufferLen);
		return result;
	}
	public EVRApplicationTransitionState GetTransitionState()
	{
		EVRApplicationTransitionState result = FnTable.GetTransitionState();
		return result;
	}
	public EVRApplicationError PerformApplicationPrelaunchCheck(string pchAppKey)
	{
		EVRApplicationError result = FnTable.PerformApplicationPrelaunchCheck(pchAppKey);
		return result;
	}
	public string GetApplicationsTransitionStateNameFromEnum(EVRApplicationTransitionState state)
	{
		IntPtr result = FnTable.GetApplicationsTransitionStateNameFromEnum(state);
		return Marshal.PtrToStringAnsi(result);
	}
	public bool IsQuitUserPromptRequested()
	{
		bool result = FnTable.IsQuitUserPromptRequested();
		return result;
	}
	public EVRApplicationError LaunchInternalProcess(string pchBinaryPath,string pchArguments,string pchWorkingDirectory)
	{
		EVRApplicationError result = FnTable.LaunchInternalProcess(pchBinaryPath,pchArguments,pchWorkingDirectory);
		return result;
	}
	public uint GetCurrentSceneProcessId()
	{
		uint result = FnTable.GetCurrentSceneProcessId();
		return result;
	}
}

public class CVRChaperone
{
	IVRChaperone FnTable;
	internal CVRChaperone(IntPtr pInterface)
	{
		FnTable = (IVRChaperone)Marshal.PtrToStructure(pInterface, typeof(IVRChaperone));
	}
	public ChaperoneCalibrationState GetCalibrationState()
	{
		ChaperoneCalibrationState result = FnTable.GetCalibrationState();
		return result;
	}
	public bool GetPlayAreaSize(ref float pSizeX,ref float pSizeZ)
	{
		pSizeX = 0;
		pSizeZ = 0;
		bool result = FnTable.GetPlayAreaSize(ref pSizeX,ref pSizeZ);
		return result;
	}
	public bool GetPlayAreaRect(ref HmdQuad_t rect)
	{
		bool result = FnTable.GetPlayAreaRect(ref rect);
		return result;
	}
	public void ReloadInfo()
	{
		FnTable.ReloadInfo();
	}
	public void SetSceneColor(HmdColor_t color)
	{
		FnTable.SetSceneColor(color);
	}
	public void GetBoundsColor(ref HmdColor_t pOutputColorArray,int nNumOutputColors,float flCollisionBoundsFadeDistance,ref HmdColor_t pOutputCameraColor)
	{
		FnTable.GetBoundsColor(ref pOutputColorArray,nNumOutputColors,flCollisionBoundsFadeDistance,ref pOutputCameraColor);
	}
	public bool AreBoundsVisible()
	{
		bool result = FnTable.AreBoundsVisible();
		return result;
	}
	public void ForceBoundsVisible(bool bForce)
	{
		FnTable.ForceBoundsVisible(bForce);
	}
}

public class CVRChaperoneSetup
{
	IVRChaperoneSetup FnTable;
	internal CVRChaperoneSetup(IntPtr pInterface)
	{
		FnTable = (IVRChaperoneSetup)Marshal.PtrToStructure(pInterface, typeof(IVRChaperoneSetup));
	}
	public bool CommitWorkingCopy(EChaperoneConfigFile configFile)
	{
		bool result = FnTable.CommitWorkingCopy(configFile);
		return result;
	}
	public void RevertWorkingCopy()
	{
		FnTable.RevertWorkingCopy();
	}
	public bool GetWorkingPlayAreaSize(ref float pSizeX,ref float pSizeZ)
	{
		pSizeX = 0;
		pSizeZ = 0;
		bool result = FnTable.GetWorkingPlayAreaSize(ref pSizeX,ref pSizeZ);
		return result;
	}
	public bool GetWorkingPlayAreaRect(ref HmdQuad_t rect)
	{
		bool result = FnTable.GetWorkingPlayAreaRect(ref rect);
		return result;
	}
	public bool GetWorkingCollisionBoundsInfo(out HmdQuad_t [] pQuadsBuffer)
	{
		uint punQuadsCount = 0;
		bool result = FnTable.GetWorkingCollisionBoundsInfo(null,ref punQuadsCount);
		pQuadsBuffer= new HmdQuad_t[punQuadsCount];
		result = FnTable.GetWorkingCollisionBoundsInfo(pQuadsBuffer,ref punQuadsCount);
		return result;
	}
	public bool GetLiveCollisionBoundsInfo(out HmdQuad_t [] pQuadsBuffer)
	{
		uint punQuadsCount = 0;
		bool result = FnTable.GetLiveCollisionBoundsInfo(null,ref punQuadsCount);
		pQuadsBuffer= new HmdQuad_t[punQuadsCount];
		result = FnTable.GetLiveCollisionBoundsInfo(pQuadsBuffer,ref punQuadsCount);
		return result;
	}
	public bool GetWorkingSeatedZeroPoseToRawTrackingPose(ref HmdMatrix34_t pmatSeatedZeroPoseToRawTrackingPose)
	{
		bool result = FnTable.GetWorkingSeatedZeroPoseToRawTrackingPose(ref pmatSeatedZeroPoseToRawTrackingPose);
		return result;
	}
	public bool GetWorkingStandingZeroPoseToRawTrackingPose(ref HmdMatrix34_t pmatStandingZeroPoseToRawTrackingPose)
	{
		bool result = FnTable.GetWorkingStandingZeroPoseToRawTrackingPose(ref pmatStandingZeroPoseToRawTrackingPose);
		return result;
	}
	public void SetWorkingPlayAreaSize(float sizeX,float sizeZ)
	{
		FnTable.SetWorkingPlayAreaSize(sizeX,sizeZ);
	}
	public void SetWorkingCollisionBoundsInfo(HmdQuad_t [] pQuadsBuffer)
	{
		FnTable.SetWorkingCollisionBoundsInfo(pQuadsBuffer,(uint) pQuadsBuffer.Length);
	}
	public void SetWorkingSeatedZeroPoseToRawTrackingPose(ref HmdMatrix34_t pMatSeatedZeroPoseToRawTrackingPose)
	{
		FnTable.SetWorkingSeatedZeroPoseToRawTrackingPose(ref pMatSeatedZeroPoseToRawTrackingPose);
	}
	public void SetWorkingStandingZeroPoseToRawTrackingPose(ref HmdMatrix34_t pMatStandingZeroPoseToRawTrackingPose)
	{
		FnTable.SetWorkingStandingZeroPoseToRawTrackingPose(ref pMatStandingZeroPoseToRawTrackingPose);
	}
	public void ReloadFromDisk(EChaperoneConfigFile configFile)
	{
		FnTable.ReloadFromDisk(configFile);
	}
	public bool GetLiveSeatedZeroPoseToRawTrackingPose(ref HmdMatrix34_t pmatSeatedZeroPoseToRawTrackingPose)
	{
		bool result = FnTable.GetLiveSeatedZeroPoseToRawTrackingPose(ref pmatSeatedZeroPoseToRawTrackingPose);
		return result;
	}
	public void SetWorkingCollisionBoundsTagsInfo(byte [] pTagsBuffer)
	{
		FnTable.SetWorkingCollisionBoundsTagsInfo(pTagsBuffer,(uint) pTagsBuffer.Length);
	}
	public bool GetLiveCollisionBoundsTagsInfo(out byte [] pTagsBuffer)
	{
		uint punTagCount = 0;
		bool result = FnTable.GetLiveCollisionBoundsTagsInfo(null,ref punTagCount);
		pTagsBuffer= new byte[punTagCount];
		result = FnTable.GetLiveCollisionBoundsTagsInfo(pTagsBuffer,ref punTagCount);
		return result;
	}
	public bool SetWorkingPhysicalBoundsInfo(HmdQuad_t [] pQuadsBuffer)
	{
		bool result = FnTable.SetWorkingPhysicalBoundsInfo(pQuadsBuffer,(uint) pQuadsBuffer.Length);
		return result;
	}
	public bool GetLivePhysicalBoundsInfo(out HmdQuad_t [] pQuadsBuffer)
	{
		uint punQuadsCount = 0;
		bool result = FnTable.GetLivePhysicalBoundsInfo(null,ref punQuadsCount);
		pQuadsBuffer= new HmdQuad_t[punQuadsCount];
		result = FnTable.GetLivePhysicalBoundsInfo(pQuadsBuffer,ref punQuadsCount);
		return result;
	}
	public bool ExportLiveToBuffer(System.Text.StringBuilder pBuffer,ref uint pnBufferLength)
	{
		pnBufferLength = 0;
		bool result = FnTable.ExportLiveToBuffer(pBuffer,ref pnBufferLength);
		return result;
	}
	public bool ImportFromBufferToWorking(string pBuffer,uint nImportFlags)
	{
		bool result = FnTable.ImportFromBufferToWorking(pBuffer,nImportFlags);
		return result;
	}
}

public class CVRCompositor
{
	IVRCompositor FnTable;
	internal CVRCompositor(IntPtr pInterface)
	{
		FnTable = (IVRCompositor)Marshal.PtrToStructure(pInterface, typeof(IVRCompositor));
	}
	public void SetTrackingSpace(ETrackingUniverseOrigin eOrigin)
	{
		FnTable.SetTrackingSpace(eOrigin);
	}
	public ETrackingUniverseOrigin GetTrackingSpace()
	{
		ETrackingUniverseOrigin result = FnTable.GetTrackingSpace();
		return result;
	}
	public EVRCompositorError WaitGetPoses(TrackedDevicePose_t [] pRenderPoseArray,TrackedDevicePose_t [] pGamePoseArray)
	{
		EVRCompositorError result = FnTable.WaitGetPoses(pRenderPoseArray,(uint) pRenderPoseArray.Length,pGamePoseArray,(uint) pGamePoseArray.Length);
		return result;
	}
	public EVRCompositorError GetLastPoses(TrackedDevicePose_t [] pRenderPoseArray,TrackedDevicePose_t [] pGamePoseArray)
	{
		EVRCompositorError result = FnTable.GetLastPoses(pRenderPoseArray,(uint) pRenderPoseArray.Length,pGamePoseArray,(uint) pGamePoseArray.Length);
		return result;
	}
	public EVRCompositorError GetLastPoseForTrackedDeviceIndex(uint unDeviceIndex,ref TrackedDevicePose_t pOutputPose,ref TrackedDevicePose_t pOutputGamePose)
	{
		EVRCompositorError result = FnTable.GetLastPoseForTrackedDeviceIndex(unDeviceIndex,ref pOutputPose,ref pOutputGamePose);
		return result;
	}
	public EVRCompositorError Submit(EVREye eEye,ref Texture_t pTexture,ref VRTextureBounds_t pBounds,EVRSubmitFlags nSubmitFlags)
	{
		EVRCompositorError result = FnTable.Submit(eEye,ref pTexture,ref pBounds,nSubmitFlags);
		return result;
	}
	public void ClearLastSubmittedFrame()
	{
		FnTable.ClearLastSubmittedFrame();
	}
	public void PostPresentHandoff()
	{
		FnTable.PostPresentHandoff();
	}
	public bool GetFrameTiming(ref Compositor_FrameTiming pTiming,uint unFramesAgo)
	{
		bool result = FnTable.GetFrameTiming(ref pTiming,unFramesAgo);
		return result;
	}
	public uint GetFrameTimings(ref Compositor_FrameTiming pTiming,uint nFrames)
	{
		uint result = FnTable.GetFrameTimings(ref pTiming,nFrames);
		return result;
	}
	public float GetFrameTimeRemaining()
	{
		float result = FnTable.GetFrameTimeRemaining();
		return result;
	}
	public void GetCumulativeStats(ref Compositor_CumulativeStats pStats,uint nStatsSizeInBytes)
	{
		FnTable.GetCumulativeStats(ref pStats,nStatsSizeInBytes);
	}
	public void FadeToColor(float fSeconds,float fRed,float fGreen,float fBlue,float fAlpha,bool bBackground)
	{
		FnTable.FadeToColor(fSeconds,fRed,fGreen,fBlue,fAlpha,bBackground);
	}
	public HmdColor_t GetCurrentFadeColor(bool bBackground)
	{
		HmdColor_t result = FnTable.GetCurrentFadeColor(bBackground);
		return result;
	}
	public void FadeGrid(float fSeconds,bool bFadeIn)
	{
		FnTable.FadeGrid(fSeconds,bFadeIn);
	}
	public float GetCurrentGridAlpha()
	{
		float result = FnTable.GetCurrentGridAlpha();
		return result;
	}
	public EVRCompositorError SetSkyboxOverride(Texture_t [] pTextures)
	{
		EVRCompositorError result = FnTable.SetSkyboxOverride(pTextures,(uint) pTextures.Length);
		return result;
	}
	public void ClearSkyboxOverride()
	{
		FnTable.ClearSkyboxOverride();
	}
	public void CompositorBringToFront()
	{
		FnTable.CompositorBringToFront();
	}
	public void CompositorGoToBack()
	{
		FnTable.CompositorGoToBack();
	}
	public void CompositorQuit()
	{
		FnTable.CompositorQuit();
	}
	public bool IsFullscreen()
	{
		bool result = FnTable.IsFullscreen();
		return result;
	}
	public uint GetCurrentSceneFocusProcess()
	{
		uint result = FnTable.GetCurrentSceneFocusProcess();
		return result;
	}
	public uint GetLastFrameRenderer()
	{
		uint result = FnTable.GetLastFrameRenderer();
		return result;
	}
	public bool CanRenderScene()
	{
		bool result = FnTable.CanRenderScene();
		return result;
	}
	public void ShowMirrorWindow()
	{
		FnTable.ShowMirrorWindow();
	}
	public void HideMirrorWindow()
	{
		FnTable.HideMirrorWindow();
	}
	public bool IsMirrorWindowVisible()
	{
		bool result = FnTable.IsMirrorWindowVisible();
		return result;
	}
	public void CompositorDumpImages()
	{
		FnTable.CompositorDumpImages();
	}
	public bool ShouldAppRenderWithLowResources()
	{
		bool result = FnTable.ShouldAppRenderWithLowResources();
		return result;
	}
	public void ForceInterleavedReprojectionOn(bool bOverride)
	{
		FnTable.ForceInterleavedReprojectionOn(bOverride);
	}
	public void ForceReconnectProcess()
	{
		FnTable.ForceReconnectProcess();
	}
	public void SuspendRendering(bool bSuspend)
	{
		FnTable.SuspendRendering(bSuspend);
	}
	public EVRCompositorError GetMirrorTextureD3D11(EVREye eEye,IntPtr pD3D11DeviceOrResource,ref IntPtr ppD3D11ShaderResourceView)
	{
		EVRCompositorError result = FnTable.GetMirrorTextureD3D11(eEye,pD3D11DeviceOrResource,ref ppD3D11ShaderResourceView);
		return result;
	}
	public void ReleaseMirrorTextureD3D11(IntPtr pD3D11ShaderResourceView)
	{
		FnTable.ReleaseMirrorTextureD3D11(pD3D11ShaderResourceView);
	}
	public EVRCompositorError GetMirrorTextureGL(EVREye eEye,ref uint pglTextureId,IntPtr pglSharedTextureHandle)
	{
		pglTextureId = 0;
		EVRCompositorError result = FnTable.GetMirrorTextureGL(eEye,ref pglTextureId,pglSharedTextureHandle);
		return result;
	}
	public bool ReleaseSharedGLTexture(uint glTextureId,IntPtr glSharedTextureHandle)
	{
		bool result = FnTable.ReleaseSharedGLTexture(glTextureId,glSharedTextureHandle);
		return result;
	}
	public void LockGLSharedTextureForAccess(IntPtr glSharedTextureHandle)
	{
		FnTable.LockGLSharedTextureForAccess(glSharedTextureHandle);
	}
	public void UnlockGLSharedTextureForAccess(IntPtr glSharedTextureHandle)
	{
		FnTable.UnlockGLSharedTextureForAccess(glSharedTextureHandle);
	}
	public uint GetVulkanInstanceExtensionsRequired(System.Text.StringBuilder pchValue,uint unBufferSize)
	{
		uint result = FnTable.GetVulkanInstanceExtensionsRequired(pchValue,unBufferSize);
		return result;
	}
	public uint GetVulkanDeviceExtensionsRequired(IntPtr pPhysicalDevice,System.Text.StringBuilder pchValue,uint unBufferSize)
	{
		uint result = FnTable.GetVulkanDeviceExtensionsRequired(pPhysicalDevice,pchValue,unBufferSize);
		return result;
	}
}

public class CVROverlay
{
	IVROverlay FnTable;
	internal CVROverlay(IntPtr pInterface)
	{
		FnTable = (IVROverlay)Marshal.PtrToStructure(pInterface, typeof(IVROverlay));
	}
	public EVROverlayError FindOverlay(string pchOverlayKey,ref ulong pOverlayHandle)
	{
		pOverlayHandle = 0;
		EVROverlayError result = FnTable.FindOverlay(pchOverlayKey,ref pOverlayHandle);
		return result;
	}
	public EVROverlayError CreateOverlay(string pchOverlayKey,string pchOverlayName,ref ulong pOverlayHandle)
	{
		pOverlayHandle = 0;
		EVROverlayError result = FnTable.CreateOverlay(pchOverlayKey,pchOverlayName,ref pOverlayHandle);
		return result;
	}
	public EVROverlayError DestroyOverlay(ulong ulOverlayHandle)
	{
		EVROverlayError result = FnTable.DestroyOverlay(ulOverlayHandle);
		return result;
	}
	public EVROverlayError SetHighQualityOverlay(ulong ulOverlayHandle)
	{
		EVROverlayError result = FnTable.SetHighQualityOverlay(ulOverlayHandle);
		return result;
	}
	public ulong GetHighQualityOverlay()
	{
		ulong result = FnTable.GetHighQualityOverlay();
		return result;
	}
	public uint GetOverlayKey(ulong ulOverlayHandle,System.Text.StringBuilder pchValue,uint unBufferSize,ref EVROverlayError pError)
	{
		uint result = FnTable.GetOverlayKey(ulOverlayHandle,pchValue,unBufferSize,ref pError);
		return result;
	}
	public uint GetOverlayName(ulong ulOverlayHandle,System.Text.StringBuilder pchValue,uint unBufferSize,ref EVROverlayError pError)
	{
		uint result = FnTable.GetOverlayName(ulOverlayHandle,pchValue,unBufferSize,ref pError);
		return result;
	}
	public EVROverlayError SetOverlayName(ulong ulOverlayHandle,string pchName)
	{
		EVROverlayError result = FnTable.SetOverlayName(ulOverlayHandle,pchName);
		return result;
	}
	public EVROverlayError GetOverlayImageData(ulong ulOverlayHandle,IntPtr pvBuffer,uint unBufferSize,ref uint punWidth,ref uint punHeight)
	{
		punWidth = 0;
		punHeight = 0;
		EVROverlayError result = FnTable.GetOverlayImageData(ulOverlayHandle,pvBuffer,unBufferSize,ref punWidth,ref punHeight);
		return result;
	}
	public string GetOverlayErrorNameFromEnum(EVROverlayError error)
	{
		IntPtr result = FnTable.GetOverlayErrorNameFromEnum(error);
		return Marshal.PtrToStringAnsi(result);
	}
	public EVROverlayError SetOverlayRenderingPid(ulong ulOverlayHandle,uint unPID)
	{
		EVROverlayError result = FnTable.SetOverlayRenderingPid(ulOverlayHandle,unPID);
		return result;
	}
	public uint GetOverlayRenderingPid(ulong ulOverlayHandle)
	{
		uint result = FnTable.GetOverlayRenderingPid(ulOverlayHandle);
		return result;
	}
	public EVROverlayError SetOverlayFlag(ulong ulOverlayHandle,VROverlayFlags eOverlayFlag,bool bEnabled)
	{
		EVROverlayError result = FnTable.SetOverlayFlag(ulOverlayHandle,eOverlayFlag,bEnabled);
		return result;
	}
	public EVROverlayError GetOverlayFlag(ulong ulOverlayHandle,VROverlayFlags eOverlayFlag,ref bool pbEnabled)
	{
		pbEnabled = false;
		EVROverlayError result = FnTable.GetOverlayFlag(ulOverlayHandle,eOverlayFlag,ref pbEnabled);
		return result;
	}
	public EVROverlayError SetOverlayColor(ulong ulOverlayHandle,float fRed,float fGreen,float fBlue)
	{
		EVROverlayError result = FnTable.SetOverlayColor(ulOverlayHandle,fRed,fGreen,fBlue);
		return result;
	}
	public EVROverlayError GetOverlayColor(ulong ulOverlayHandle,ref float pfRed,ref float pfGreen,ref float pfBlue)
	{
		pfRed = 0;
		pfGreen = 0;
		pfBlue = 0;
		EVROverlayError result = FnTable.GetOverlayColor(ulOverlayHandle,ref pfRed,ref pfGreen,ref pfBlue);
		return result;
	}
	public EVROverlayError SetOverlayAlpha(ulong ulOverlayHandle,float fAlpha)
	{
		EVROverlayError result = FnTable.SetOverlayAlpha(ulOverlayHandle,fAlpha);
		return result;
	}
	public EVROverlayError GetOverlayAlpha(ulong ulOverlayHandle,ref float pfAlpha)
	{
		pfAlpha = 0;
		EVROverlayError result = FnTable.GetOverlayAlpha(ulOverlayHandle,ref pfAlpha);
		return result;
	}
	public EVROverlayError SetOverlayTexelAspect(ulong ulOverlayHandle,float fTexelAspect)
	{
		EVROverlayError result = FnTable.SetOverlayTexelAspect(ulOverlayHandle,fTexelAspect);
		return result;
	}
	public EVROverlayError GetOverlayTexelAspect(ulong ulOverlayHandle,ref float pfTexelAspect)
	{
		pfTexelAspect = 0;
		EVROverlayError result = FnTable.GetOverlayTexelAspect(ulOverlayHandle,ref pfTexelAspect);
		return result;
	}
	public EVROverlayError SetOverlaySortOrder(ulong ulOverlayHandle,uint unSortOrder)
	{
		EVROverlayError result = FnTable.SetOverlaySortOrder(ulOverlayHandle,unSortOrder);
		return result;
	}
	public EVROverlayError GetOverlaySortOrder(ulong ulOverlayHandle,ref uint punSortOrder)
	{
		punSortOrder = 0;
		EVROverlayError result = FnTable.GetOverlaySortOrder(ulOverlayHandle,ref punSortOrder);
		return result;
	}
	public EVROverlayError SetOverlayWidthInMeters(ulong ulOverlayHandle,float fWidthInMeters)
	{
		EVROverlayError result = FnTable.SetOverlayWidthInMeters(ulOverlayHandle,fWidthInMeters);
		return result;
	}
	public EVROverlayError GetOverlayWidthInMeters(ulong ulOverlayHandle,ref float pfWidthInMeters)
	{
		pfWidthInMeters = 0;
		EVROverlayError result = FnTable.GetOverlayWidthInMeters(ulOverlayHandle,ref pfWidthInMeters);
		return result;
	}
	public EVROverlayError SetOverlayAutoCurveDistanceRangeInMeters(ulong ulOverlayHandle,float fMinDistanceInMeters,float fMaxDistanceInMeters)
	{
		EVROverlayError result = FnTable.SetOverlayAutoCurveDistanceRangeInMeters(ulOverlayHandle,fMinDistanceInMeters,fMaxDistanceInMeters);
		return result;
	}
	public EVROverlayError GetOverlayAutoCurveDistanceRangeInMeters(ulong ulOverlayHandle,ref float pfMinDistanceInMeters,ref float pfMaxDistanceInMeters)
	{
		pfMinDistanceInMeters = 0;
		pfMaxDistanceInMeters = 0;
		EVROverlayError result = FnTable.GetOverlayAutoCurveDistanceRangeInMeters(ulOverlayHandle,ref pfMinDistanceInMeters,ref pfMaxDistanceInMeters);
		return result;
	}
	public EVROverlayError SetOverlayTextureColorSpace(ulong ulOverlayHandle,EColorSpace eTextureColorSpace)
	{
		EVROverlayError result = FnTable.SetOverlayTextureColorSpace(ulOverlayHandle,eTextureColorSpace);
		return result;
	}
	public EVROverlayError GetOverlayTextureColorSpace(ulong ulOverlayHandle,ref EColorSpace peTextureColorSpace)
	{
		EVROverlayError result = FnTable.GetOverlayTextureColorSpace(ulOverlayHandle,ref peTextureColorSpace);
		return result;
	}
	public EVROverlayError SetOverlayTextureBounds(ulong ulOverlayHandle,ref VRTextureBounds_t pOverlayTextureBounds)
	{
		EVROverlayError result = FnTable.SetOverlayTextureBounds(ulOverlayHandle,ref pOverlayTextureBounds);
		return result;
	}
	public EVROverlayError GetOverlayTextureBounds(ulong ulOverlayHandle,ref VRTextureBounds_t pOverlayTextureBounds)
	{
		EVROverlayError result = FnTable.GetOverlayTextureBounds(ulOverlayHandle,ref pOverlayTextureBounds);
		return result;
	}
	public uint GetOverlayRenderModel(ulong ulOverlayHandle,string pchValue,uint unBufferSize,ref HmdColor_t pColor,ref EVROverlayError pError)
	{
		uint result = FnTable.GetOverlayRenderModel(ulOverlayHandle,pchValue,unBufferSize,ref pColor,ref pError);
		return result;
	}
	public EVROverlayError SetOverlayRenderModel(ulong ulOverlayHandle,string pchRenderModel,ref HmdColor_t pColor)
	{
		EVROverlayError result = FnTable.SetOverlayRenderModel(ulOverlayHandle,pchRenderModel,ref pColor);
		return result;
	}
	public EVROverlayError GetOverlayTransformType(ulong ulOverlayHandle,ref VROverlayTransformType peTransformType)
	{
		EVROverlayError result = FnTable.GetOverlayTransformType(ulOverlayHandle,ref peTransformType);
		return result;
	}
	public EVROverlayError SetOverlayTransformAbsolute(ulong ulOverlayHandle,ETrackingUniverseOrigin eTrackingOrigin,ref HmdMatrix34_t pmatTrackingOriginToOverlayTransform)
	{
		EVROverlayError result = FnTable.SetOverlayTransformAbsolute(ulOverlayHandle,eTrackingOrigin,ref pmatTrackingOriginToOverlayTransform);
		return result;
	}
	public EVROverlayError GetOverlayTransformAbsolute(ulong ulOverlayHandle,ref ETrackingUniverseOrigin peTrackingOrigin,ref HmdMatrix34_t pmatTrackingOriginToOverlayTransform)
	{
		EVROverlayError result = FnTable.GetOverlayTransformAbsolute(ulOverlayHandle,ref peTrackingOrigin,ref pmatTrackingOriginToOverlayTransform);
		return result;
	}
	public EVROverlayError SetOverlayTransformTrackedDeviceRelative(ulong ulOverlayHandle,uint unTrackedDevice,ref HmdMatrix34_t pmatTrackedDeviceToOverlayTransform)
	{
		EVROverlayError result = FnTable.SetOverlayTransformTrackedDeviceRelative(ulOverlayHandle,unTrackedDevice,ref pmatTrackedDeviceToOverlayTransform);
		return result;
	}
	public EVROverlayError GetOverlayTransformTrackedDeviceRelative(ulong ulOverlayHandle,ref uint punTrackedDevice,ref HmdMatrix34_t pmatTrackedDeviceToOverlayTransform)
	{
		punTrackedDevice = 0;
		EVROverlayError result = FnTable.GetOverlayTransformTrackedDeviceRelative(ulOverlayHandle,ref punTrackedDevice,ref pmatTrackedDeviceToOverlayTransform);
		return result;
	}
	public EVROverlayError SetOverlayTransformTrackedDeviceComponent(ulong ulOverlayHandle,uint unDeviceIndex,string pchComponentName)
	{
		EVROverlayError result = FnTable.SetOverlayTransformTrackedDeviceComponent(ulOverlayHandle,unDeviceIndex,pchComponentName);
		return result;
	}
	public EVROverlayError GetOverlayTransformTrackedDeviceComponent(ulong ulOverlayHandle,ref uint punDeviceIndex,string pchComponentName,uint unComponentNameSize)
	{
		punDeviceIndex = 0;
		EVROverlayError result = FnTable.GetOverlayTransformTrackedDeviceComponent(ulOverlayHandle,ref punDeviceIndex,pchComponentName,unComponentNameSize);
		return result;
	}
	public EVROverlayError GetOverlayTransformOverlayRelative(ulong ulOverlayHandle,ref ulong ulOverlayHandleParent,ref HmdMatrix34_t pmatParentOverlayToOverlayTransform)
	{
		ulOverlayHandleParent = 0;
		EVROverlayError result = FnTable.GetOverlayTransformOverlayRelative(ulOverlayHandle,ref ulOverlayHandleParent,ref pmatParentOverlayToOverlayTransform);
		return result;
	}
	public EVROverlayError SetOverlayTransformOverlayRelative(ulong ulOverlayHandle,ulong ulOverlayHandleParent,ref HmdMatrix34_t pmatParentOverlayToOverlayTransform)
	{
		EVROverlayError result = FnTable.SetOverlayTransformOverlayRelative(ulOverlayHandle,ulOverlayHandleParent,ref pmatParentOverlayToOverlayTransform);
		return result;
	}
	public EVROverlayError ShowOverlay(ulong ulOverlayHandle)
	{
		EVROverlayError result = FnTable.ShowOverlay(ulOverlayHandle);
		return result;
	}
	public EVROverlayError HideOverlay(ulong ulOverlayHandle)
	{
		EVROverlayError result = FnTable.HideOverlay(ulOverlayHandle);
		return result;
	}
	public bool IsOverlayVisible(ulong ulOverlayHandle)
	{
		bool result = FnTable.IsOverlayVisible(ulOverlayHandle);
		return result;
	}
	public EVROverlayError GetTransformForOverlayCoordinates(ulong ulOverlayHandle,ETrackingUniverseOrigin eTrackingOrigin,HmdVector2_t coordinatesInOverlay,ref HmdMatrix34_t pmatTransform)
	{
		EVROverlayError result = FnTable.GetTransformForOverlayCoordinates(ulOverlayHandle,eTrackingOrigin,coordinatesInOverlay,ref pmatTransform);
		return result;
	}
// This is a terrible hack to workaround the fact that VRControllerState_t and VREvent_t were
// originally mis-compiled with the wrong packing for Linux and OSX.
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _PollNextOverlayEventPacked(ulong ulOverlayHandle,ref VREvent_t_Packed pEvent,uint uncbVREvent);
	[StructLayout(LayoutKind.Explicit)]
	struct PollNextOverlayEventUnion
	{
		[FieldOffset(0)]
		public IVROverlay._PollNextOverlayEvent pPollNextOverlayEvent;
		[FieldOffset(0)]
		public _PollNextOverlayEventPacked pPollNextOverlayEventPacked;
	}
	public bool PollNextOverlayEvent(ulong ulOverlayHandle,ref VREvent_t pEvent,uint uncbVREvent)
	{
#if !UNITY_METRO
		if ((System.Environment.OSVersion.Platform == System.PlatformID.MacOSX) ||
				(System.Environment.OSVersion.Platform == System.PlatformID.Unix))
		{
			PollNextOverlayEventUnion u;
			VREvent_t_Packed event_packed = new VREvent_t_Packed();
			u.pPollNextOverlayEventPacked = null;
			u.pPollNextOverlayEvent = FnTable.PollNextOverlayEvent;
			bool packed_result = u.pPollNextOverlayEventPacked(ulOverlayHandle,ref event_packed,(uint)System.Runtime.InteropServices.Marshal.SizeOf(typeof(VREvent_t_Packed)));

			event_packed.Unpack(ref pEvent);
			return packed_result;
		}
#endif
		bool result = FnTable.PollNextOverlayEvent(ulOverlayHandle,ref pEvent,uncbVREvent);
		return result;
	}
	public EVROverlayError GetOverlayInputMethod(ulong ulOverlayHandle,ref VROverlayInputMethod peInputMethod)
	{
		EVROverlayError result = FnTable.GetOverlayInputMethod(ulOverlayHandle,ref peInputMethod);
		return result;
	}
	public EVROverlayError SetOverlayInputMethod(ulong ulOverlayHandle,VROverlayInputMethod eInputMethod)
	{
		EVROverlayError result = FnTable.SetOverlayInputMethod(ulOverlayHandle,eInputMethod);
		return result;
	}
	public EVROverlayError GetOverlayMouseScale(ulong ulOverlayHandle,ref HmdVector2_t pvecMouseScale)
	{
		EVROverlayError result = FnTable.GetOverlayMouseScale(ulOverlayHandle,ref pvecMouseScale);
		return result;
	}
	public EVROverlayError SetOverlayMouseScale(ulong ulOverlayHandle,ref HmdVector2_t pvecMouseScale)
	{
		EVROverlayError result = FnTable.SetOverlayMouseScale(ulOverlayHandle,ref pvecMouseScale);
		return result;
	}
	public bool ComputeOverlayIntersection(ulong ulOverlayHandle,ref VROverlayIntersectionParams_t pParams,ref VROverlayIntersectionResults_t pResults)
	{
		bool result = FnTable.ComputeOverlayIntersection(ulOverlayHandle,ref pParams,ref pResults);
		return result;
	}
	public bool HandleControllerOverlayInteractionAsMouse(ulong ulOverlayHandle,uint unControllerDeviceIndex)
	{
		bool result = FnTable.HandleControllerOverlayInteractionAsMouse(ulOverlayHandle,unControllerDeviceIndex);
		return result;
	}
	public bool IsHoverTargetOverlay(ulong ulOverlayHandle)
	{
		bool result = FnTable.IsHoverTargetOverlay(ulOverlayHandle);
		return result;
	}
	public ulong GetGamepadFocusOverlay()
	{
		ulong result = FnTable.GetGamepadFocusOverlay();
		return result;
	}
	public EVROverlayError SetGamepadFocusOverlay(ulong ulNewFocusOverlay)
	{
		EVROverlayError result = FnTable.SetGamepadFocusOverlay(ulNewFocusOverlay);
		return result;
	}
	public EVROverlayError SetOverlayNeighbor(EOverlayDirection eDirection,ulong ulFrom,ulong ulTo)
	{
		EVROverlayError result = FnTable.SetOverlayNeighbor(eDirection,ulFrom,ulTo);
		return result;
	}
	public EVROverlayError MoveGamepadFocusToNeighbor(EOverlayDirection eDirection,ulong ulFrom)
	{
		EVROverlayError result = FnTable.MoveGamepadFocusToNeighbor(eDirection,ulFrom);
		return result;
	}
	public EVROverlayError SetOverlayTexture(ulong ulOverlayHandle,ref Texture_t pTexture)
	{
		EVROverlayError result = FnTable.SetOverlayTexture(ulOverlayHandle,ref pTexture);
		return result;
	}
	public EVROverlayError ClearOverlayTexture(ulong ulOverlayHandle)
	{
		EVROverlayError result = FnTable.ClearOverlayTexture(ulOverlayHandle);
		return result;
	}
	public EVROverlayError SetOverlayRaw(ulong ulOverlayHandle,IntPtr pvBuffer,uint unWidth,uint unHeight,uint unDepth)
	{
		EVROverlayError result = FnTable.SetOverlayRaw(ulOverlayHandle,pvBuffer,unWidth,unHeight,unDepth);
		return result;
	}
	public EVROverlayError SetOverlayFromFile(ulong ulOverlayHandle,string pchFilePath)
	{
		EVROverlayError result = FnTable.SetOverlayFromFile(ulOverlayHandle,pchFilePath);
		return result;
	}
	public EVROverlayError GetOverlayTexture(ulong ulOverlayHandle,ref IntPtr pNativeTextureHandle,IntPtr pNativeTextureRef,ref uint pWidth,ref uint pHeight,ref uint pNativeFormat,ref ETextureType pAPIType,ref EColorSpace pColorSpace,ref VRTextureBounds_t pTextureBounds)
	{
		pWidth = 0;
		pHeight = 0;
		pNativeFormat = 0;
		EVROverlayError result = FnTable.GetOverlayTexture(ulOverlayHandle,ref pNativeTextureHandle,pNativeTextureRef,ref pWidth,ref pHeight,ref pNativeFormat,ref pAPIType,ref pColorSpace,ref pTextureBounds);
		return result;
	}
	public EVROverlayError ReleaseNativeOverlayHandle(ulong ulOverlayHandle,IntPtr pNativeTextureHandle)
	{
		EVROverlayError result = FnTable.ReleaseNativeOverlayHandle(ulOverlayHandle,pNativeTextureHandle);
		return result;
	}
	public EVROverlayError GetOverlayTextureSize(ulong ulOverlayHandle,ref uint pWidth,ref uint pHeight)
	{
		pWidth = 0;
		pHeight = 0;
		EVROverlayError result = FnTable.GetOverlayTextureSize(ulOverlayHandle,ref pWidth,ref pHeight);
		return result;
	}
	public EVROverlayError CreateDashboardOverlay(string pchOverlayKey,string pchOverlayFriendlyName,ref ulong pMainHandle,ref ulong pThumbnailHandle)
	{
		pMainHandle = 0;
		pThumbnailHandle = 0;
		EVROverlayError result = FnTable.CreateDashboardOverlay(pchOverlayKey,pchOverlayFriendlyName,ref pMainHandle,ref pThumbnailHandle);
		return result;
	}
	public bool IsDashboardVisible()
	{
		bool result = FnTable.IsDashboardVisible();
		return result;
	}
	public bool IsActiveDashboardOverlay(ulong ulOverlayHandle)
	{
		bool result = FnTable.IsActiveDashboardOverlay(ulOverlayHandle);
		return result;
	}
	public EVROverlayError SetDashboardOverlaySceneProcess(ulong ulOverlayHandle,uint unProcessId)
	{
		EVROverlayError result = FnTable.SetDashboardOverlaySceneProcess(ulOverlayHandle,unProcessId);
		return result;
	}
	public EVROverlayError GetDashboardOverlaySceneProcess(ulong ulOverlayHandle,ref uint punProcessId)
	{
		punProcessId = 0;
		EVROverlayError result = FnTable.GetDashboardOverlaySceneProcess(ulOverlayHandle,ref punProcessId);
		return result;
	}
	public void ShowDashboard(string pchOverlayToShow)
	{
		FnTable.ShowDashboard(pchOverlayToShow);
	}
	public uint GetPrimaryDashboardDevice()
	{
		uint result = FnTable.GetPrimaryDashboardDevice();
		return result;
	}
	public EVROverlayError ShowKeyboard(int eInputMode,int eLineInputMode,string pchDescription,uint unCharMax,string pchExistingText,bool bUseMinimalMode,ulong uUserValue)
	{
		EVROverlayError result = FnTable.ShowKeyboard(eInputMode,eLineInputMode,pchDescription,unCharMax,pchExistingText,bUseMinimalMode,uUserValue);
		return result;
	}
	public EVROverlayError ShowKeyboardForOverlay(ulong ulOverlayHandle,int eInputMode,int eLineInputMode,string pchDescription,uint unCharMax,string pchExistingText,bool bUseMinimalMode,ulong uUserValue)
	{
		EVROverlayError result = FnTable.ShowKeyboardForOverlay(ulOverlayHandle,eInputMode,eLineInputMode,pchDescription,unCharMax,pchExistingText,bUseMinimalMode,uUserValue);
		return result;
	}
	public uint GetKeyboardText(System.Text.StringBuilder pchText,uint cchText)
	{
		uint result = FnTable.GetKeyboardText(pchText,cchText);
		return result;
	}
	public void HideKeyboard()
	{
		FnTable.HideKeyboard();
	}
	public void SetKeyboardTransformAbsolute(ETrackingUniverseOrigin eTrackingOrigin,ref HmdMatrix34_t pmatTrackingOriginToKeyboardTransform)
	{
		FnTable.SetKeyboardTransformAbsolute(eTrackingOrigin,ref pmatTrackingOriginToKeyboardTransform);
	}
	public void SetKeyboardPositionForOverlay(ulong ulOverlayHandle,HmdRect2_t avoidRect)
	{
		FnTable.SetKeyboardPositionForOverlay(ulOverlayHandle,avoidRect);
	}
	public EVROverlayError SetOverlayIntersectionMask(ulong ulOverlayHandle,ref VROverlayIntersectionMaskPrimitive_t pMaskPrimitives,uint unNumMaskPrimitives,uint unPrimitiveSize)
	{
		EVROverlayError result = FnTable.SetOverlayIntersectionMask(ulOverlayHandle,ref pMaskPrimitives,unNumMaskPrimitives,unPrimitiveSize);
		return result;
	}
	public EVROverlayError GetOverlayFlags(ulong ulOverlayHandle,ref uint pFlags)
	{
		pFlags = 0;
		EVROverlayError result = FnTable.GetOverlayFlags(ulOverlayHandle,ref pFlags);
		return result;
	}
	public VRMessageOverlayResponse ShowMessageOverlay(string pchText,string pchCaption,string pchButton0Text,string pchButton1Text,string pchButton2Text,string pchButton3Text)
	{
		VRMessageOverlayResponse result = FnTable.ShowMessageOverlay(pchText,pchCaption,pchButton0Text,pchButton1Text,pchButton2Text,pchButton3Text);
		return result;
	}
}

public class CVRRenderModels
{
	IVRRenderModels FnTable;
	internal CVRRenderModels(IntPtr pInterface)
	{
		FnTable = (IVRRenderModels)Marshal.PtrToStructure(pInterface, typeof(IVRRenderModels));
	}
	public EVRRenderModelError LoadRenderModel_Async(string pchRenderModelName,ref IntPtr ppRenderModel)
	{
		EVRRenderModelError result = FnTable.LoadRenderModel_Async(pchRenderModelName,ref ppRenderModel);
		return result;
	}
	public void FreeRenderModel(IntPtr pRenderModel)
	{
		FnTable.FreeRenderModel(pRenderModel);
	}
	public EVRRenderModelError LoadTexture_Async(int textureId,ref IntPtr ppTexture)
	{
		EVRRenderModelError result = FnTable.LoadTexture_Async(textureId,ref ppTexture);
		return result;
	}
	public void FreeTexture(IntPtr pTexture)
	{
		FnTable.FreeTexture(pTexture);
	}
	public EVRRenderModelError LoadTextureD3D11_Async(int textureId,IntPtr pD3D11Device,ref IntPtr ppD3D11Texture2D)
	{
		EVRRenderModelError result = FnTable.LoadTextureD3D11_Async(textureId,pD3D11Device,ref ppD3D11Texture2D);
		return result;
	}
	public EVRRenderModelError LoadIntoTextureD3D11_Async(int textureId,IntPtr pDstTexture)
	{
		EVRRenderModelError result = FnTable.LoadIntoTextureD3D11_Async(textureId,pDstTexture);
		return result;
	}
	public void FreeTextureD3D11(IntPtr pD3D11Texture2D)
	{
		FnTable.FreeTextureD3D11(pD3D11Texture2D);
	}
	public uint GetRenderModelName(uint unRenderModelIndex,System.Text.StringBuilder pchRenderModelName,uint unRenderModelNameLen)
	{
		uint result = FnTable.GetRenderModelName(unRenderModelIndex,pchRenderModelName,unRenderModelNameLen);
		return result;
	}
	public uint GetRenderModelCount()
	{
		uint result = FnTable.GetRenderModelCount();
		return result;
	}
	public uint GetComponentCount(string pchRenderModelName)
	{
		uint result = FnTable.GetComponentCount(pchRenderModelName);
		return result;
	}
	public uint GetComponentName(string pchRenderModelName,uint unComponentIndex,System.Text.StringBuilder pchComponentName,uint unComponentNameLen)
	{
		uint result = FnTable.GetComponentName(pchRenderModelName,unComponentIndex,pchComponentName,unComponentNameLen);
		return result;
	}
	public ulong GetComponentButtonMask(string pchRenderModelName,string pchComponentName)
	{
		ulong result = FnTable.GetComponentButtonMask(pchRenderModelName,pchComponentName);
		return result;
	}
	public uint GetComponentRenderModelName(string pchRenderModelName,string pchComponentName,System.Text.StringBuilder pchComponentRenderModelName,uint unComponentRenderModelNameLen)
	{
		uint result = FnTable.GetComponentRenderModelName(pchRenderModelName,pchComponentName,pchComponentRenderModelName,unComponentRenderModelNameLen);
		return result;
	}
// This is a terrible hack to workaround the fact that VRControllerState_t and VREvent_t were
// originally mis-compiled with the wrong packing for Linux and OSX.
	[UnmanagedFunctionPointer(CallingConvention.StdCall)]
	internal delegate bool _GetComponentStatePacked(string pchRenderModelName,string pchComponentName,ref VRControllerState_t_Packed pControllerState,ref RenderModel_ControllerMode_State_t pState,ref RenderModel_ComponentState_t pComponentState);
	[StructLayout(LayoutKind.Explicit)]
	struct GetComponentStateUnion
	{
		[FieldOffset(0)]
		public IVRRenderModels._GetComponentState pGetComponentState;
		[FieldOffset(0)]
		public _GetComponentStatePacked pGetComponentStatePacked;
	}
	public bool GetComponentState(string pchRenderModelName,string pchComponentName,ref VRControllerState_t pControllerState,ref RenderModel_ControllerMode_State_t pState,ref RenderModel_ComponentState_t pComponentState)
	{
#if !UNITY_METRO
		if ((System.Environment.OSVersion.Platform == System.PlatformID.MacOSX) ||
				(System.Environment.OSVersion.Platform == System.PlatformID.Unix))
		{
			GetComponentStateUnion u;
			VRControllerState_t_Packed state_packed = new VRControllerState_t_Packed(pControllerState);
			u.pGetComponentStatePacked = null;
			u.pGetComponentState = FnTable.GetComponentState;
			bool packed_result = u.pGetComponentStatePacked(pchRenderModelName,pchComponentName,ref state_packed,ref pState,ref pComponentState);

			state_packed.Unpack(ref pControllerState);
			return packed_result;
		}
#endif
		bool result = FnTable.GetComponentState(pchRenderModelName,pchComponentName,ref pControllerState,ref pState,ref pComponentState);
		return result;
	}
	public bool RenderModelHasComponent(string pchRenderModelName,string pchComponentName)
	{
		bool result = FnTable.RenderModelHasComponent(pchRenderModelName,pchComponentName);
		return result;
	}
	public uint GetRenderModelThumbnailURL(string pchRenderModelName,System.Text.StringBuilder pchThumbnailURL,uint unThumbnailURLLen,ref EVRRenderModelError peError)
	{
		uint result = FnTable.GetRenderModelThumbnailURL(pchRenderModelName,pchThumbnailURL,unThumbnailURLLen,ref peError);
		return result;
	}
	public uint GetRenderModelOriginalPath(string pchRenderModelName,System.Text.StringBuilder pchOriginalPath,uint unOriginalPathLen,ref EVRRenderModelError peError)
	{
		uint result = FnTable.GetRenderModelOriginalPath(pchRenderModelName,pchOriginalPath,unOriginalPathLen,ref peError);
		return result;
	}
	public string GetRenderModelErrorNameFromEnum(EVRRenderModelError error)
	{
		IntPtr result = FnTable.GetRenderModelErrorNameFromEnum(error);
		return Marshal.PtrToStringAnsi(result);
	}
}

public class CVRNotifications
{
	IVRNotifications FnTable;
	internal CVRNotifications(IntPtr pInterface)
	{
		FnTable = (IVRNotifications)Marshal.PtrToStructure(pInterface, typeof(IVRNotifications));
	}
	public EVRNotificationError CreateNotification(ulong ulOverlayHandle,ulong ulUserValue,EVRNotificationType type,string pchText,EVRNotificationStyle style,ref NotificationBitmap_t pImage,ref uint pNotificationId)
	{
		pNotificationId = 0;
		EVRNotificationError result = FnTable.CreateNotification(ulOverlayHandle,ulUserValue,type,pchText,style,ref pImage,ref pNotificationId);
		return result;
	}
	public EVRNotificationError RemoveNotification(uint notificationId)
	{
		EVRNotificationError result = FnTable.RemoveNotification(notificationId);
		return result;
	}
}

public class CVRSettings
{
	IVRSettings FnTable;
	internal CVRSettings(IntPtr pInterface)
	{
		FnTable = (IVRSettings)Marshal.PtrToStructure(pInterface, typeof(IVRSettings));
	}
	public string GetSettingsErrorNameFromEnum(EVRSettingsError eError)
	{
		IntPtr result = FnTable.GetSettingsErrorNameFromEnum(eError);
		return Marshal.PtrToStringAnsi(result);
	}
	public bool Sync(bool bForce,ref EVRSettingsError peError)
	{
		bool result = FnTable.Sync(bForce,ref peError);
		return result;
	}
	public void SetBool(string pchSection,string pchSettingsKey,bool bValue,ref EVRSettingsError peError)
	{
		FnTable.SetBool(pchSection,pchSettingsKey,bValue,ref peError);
	}
	public void SetInt32(string pchSection,string pchSettingsKey,int nValue,ref EVRSettingsError peError)
	{
		FnTable.SetInt32(pchSection,pchSettingsKey,nValue,ref peError);
	}
	public void SetFloat(string pchSection,string pchSettingsKey,float flValue,ref EVRSettingsError peError)
	{
		FnTable.SetFloat(pchSection,pchSettingsKey,flValue,ref peError);
	}
	public void SetString(string pchSection,string pchSettingsKey,string pchValue,ref EVRSettingsError peError)
	{
		FnTable.SetString(pchSection,pchSettingsKey,pchValue,ref peError);
	}
	public bool GetBool(string pchSection,string pchSettingsKey,ref EVRSettingsError peError)
	{
		bool result = FnTable.GetBool(pchSection,pchSettingsKey,ref peError);
		return result;
	}
	public int GetInt32(string pchSection,string pchSettingsKey,ref EVRSettingsError peError)
	{
		int result = FnTable.GetInt32(pchSection,pchSettingsKey,ref peError);
		return result;
	}
	public float GetFloat(string pchSection,string pchSettingsKey,ref EVRSettingsError peError)
	{
		float result = FnTable.GetFloat(pchSection,pchSettingsKey,ref peError);
		return result;
	}
	public void GetString(string pchSection,string pchSettingsKey,System.Text.StringBuilder pchValue,uint unValueLen,ref EVRSettingsError peError)
	{
		FnTable.GetString(pchSection,pchSettingsKey,pchValue,unValueLen,ref peError);
	}
	public void RemoveSection(string pchSection,ref EVRSettingsError peError)
	{
		FnTable.RemoveSection(pchSection,ref peError);
	}
	public void RemoveKeyInSection(string pchSection,string pchSettingsKey,ref EVRSettingsError peError)
	{
		FnTable.RemoveKeyInSection(pchSection,pchSettingsKey,ref peError);
	}
}

public class CVRScreenshots
{
	IVRScreenshots FnTable;
	internal CVRScreenshots(IntPtr pInterface)
	{
		FnTable = (IVRScreenshots)Marshal.PtrToStructure(pInterface, typeof(IVRScreenshots));
	}
	public EVRScreenshotError RequestScreenshot(ref uint pOutScreenshotHandle,EVRScreenshotType type,string pchPreviewFilename,string pchVRFilename)
	{
		pOutScreenshotHandle = 0;
		EVRScreenshotError result = FnTable.RequestScreenshot(ref pOutScreenshotHandle,type,pchPreviewFilename,pchVRFilename);
		return result;
	}
	public EVRScreenshotError HookScreenshot(EVRScreenshotType [] pSupportedTypes)
	{
		EVRScreenshotError result = FnTable.HookScreenshot(pSupportedTypes,(int) pSupportedTypes.Length);
		return result;
	}
	public EVRScreenshotType GetScreenshotPropertyType(uint screenshotHandle,ref EVRScreenshotError pError)
	{
		EVRScreenshotType result = FnTable.GetScreenshotPropertyType(screenshotHandle,ref pError);
		return result;
	}
	public uint GetScreenshotPropertyFilename(uint screenshotHandle,EVRScreenshotPropertyFilenames filenameType,System.Text.StringBuilder pchFilename,uint cchFilename,ref EVRScreenshotError pError)
	{
		uint result = FnTable.GetScreenshotPropertyFilename(screenshotHandle,filenameType,pchFilename,cchFilename,ref pError);
		return result;
	}
	public EVRScreenshotError UpdateScreenshotProgress(uint screenshotHandle,float flProgress)
	{
		EVRScreenshotError result = FnTable.UpdateScreenshotProgress(screenshotHandle,flProgress);
		return result;
	}
	public EVRScreenshotError TakeStereoScreenshot(ref uint pOutScreenshotHandle,string pchPreviewFilename,string pchVRFilename)
	{
		pOutScreenshotHandle = 0;
		EVRScreenshotError result = FnTable.TakeStereoScreenshot(ref pOutScreenshotHandle,pchPreviewFilename,pchVRFilename);
		return result;
	}
	public EVRScreenshotError SubmitScreenshot(uint screenshotHandle,EVRScreenshotType type,string pchSourcePreviewFilename,string pchSourceVRFilename)
	{
		EVRScreenshotError result = FnTable.SubmitScreenshot(screenshotHandle,type,pchSourcePreviewFilename,pchSourceVRFilename);
		return result;
	}
}

public class CVRResources
{
	IVRResources FnTable;
	internal CVRResources(IntPtr pInterface)
	{
		FnTable = (IVRResources)Marshal.PtrToStructure(pInterface, typeof(IVRResources));
	}
	public uint LoadSharedResource(string pchResourceName,string pchBuffer,uint unBufferLen)
	{
		uint result = FnTable.LoadSharedResource(pchResourceName,pchBuffer,unBufferLen);
		return result;
	}
	public uint GetResourceFullPath(string pchResourceName,string pchResourceTypeDirectory,string pchPathBuffer,uint unBufferLen)
	{
		uint result = FnTable.GetResourceFullPath(pchResourceName,pchResourceTypeDirectory,pchPathBuffer,unBufferLen);
		return result;
	}
}

public class CVRDriverManager
{
	IVRDriverManager FnTable;
	internal CVRDriverManager(IntPtr pInterface)
	{
		FnTable = (IVRDriverManager)Marshal.PtrToStructure(pInterface, typeof(IVRDriverManager));
	}
	public uint GetDriverCount()
	{
		uint result = FnTable.GetDriverCount();
		return result;
	}
	public uint GetDriverName(uint nDriver,System.Text.StringBuilder pchValue,uint unBufferSize)
	{
		uint result = FnTable.GetDriverName(nDriver,pchValue,unBufferSize);
		return result;
	}
}

public class OpenVRInterop
{
	[DllImportAttribute("openvr_api", EntryPoint = "VR_InitInternal", CallingConvention = CallingConvention.Cdecl)]
	internal static extern uint InitInternal(ref EVRInitError peError, EVRApplicationType eApplicationType);
	[DllImportAttribute("openvr_api", EntryPoint = "VR_ShutdownInternal", CallingConvention = CallingConvention.Cdecl)]
	internal static extern void ShutdownInternal();
	[DllImportAttribute("openvr_api", EntryPoint = "VR_IsHmdPresent", CallingConvention = CallingConvention.Cdecl)]
	internal static extern bool IsHmdPresent();
	[DllImportAttribute("openvr_api", EntryPoint = "VR_IsRuntimeInstalled", CallingConvention = CallingConvention.Cdecl)]
	internal static extern bool IsRuntimeInstalled();
	[DllImportAttribute("openvr_api", EntryPoint = "VR_GetStringForHmdError", CallingConvention = CallingConvention.Cdecl)]
	internal static extern IntPtr GetStringForHmdError(EVRInitError error);
	[DllImportAttribute("openvr_api", EntryPoint = "VR_GetGenericInterface", CallingConvention = CallingConvention.Cdecl)]
	internal static extern IntPtr GetGenericInterface([In, MarshalAs(UnmanagedType.LPStr)] string pchInterfaceVersion, ref EVRInitError peError);
	[DllImportAttribute("openvr_api", EntryPoint = "VR_IsInterfaceVersionValid", CallingConvention = CallingConvention.Cdecl)]
	internal static extern bool IsInterfaceVersionValid([In, MarshalAs(UnmanagedType.LPStr)] string pchInterfaceVersion);
	[DllImportAttribute("openvr_api", EntryPoint = "VR_GetInitToken", CallingConvention = CallingConvention.Cdecl)]
	internal static extern uint GetInitToken();
}

public enum EVREye
{
	Eye_Left = 0,
	Eye_Right = 1,
}
public enum ETextureType
{
	DirectX = 0,
	OpenGL = 1,
	Vulkan = 2,
	IOSurface = 3,
	DirectX12 = 4,
}
public enum EColorSpace
{
	Auto = 0,
	Gamma = 1,
	Linear = 2,
}
public enum ETrackingResult
{
	Uninitialized = 1,
	Calibrating_InProgress = 100,
	Calibrating_OutOfRange = 101,
	Running_OK = 200,
	Running_OutOfRange = 201,
}
public enum ETrackedDeviceClass
{
	Invalid = 0,
	HMD = 1,
	Controller = 2,
	GenericTracker = 3,
	TrackingReference = 4,
	DisplayRedirect = 5,
}
public enum ETrackedControllerRole
{
	Invalid = 0,
	LeftHand = 1,
	RightHand = 2,
}
public enum ETrackingUniverseOrigin
{
	TrackingUniverseSeated = 0,
	TrackingUniverseStanding = 1,
	TrackingUniverseRawAndUncalibrated = 2,
}
public enum ETrackedDeviceProperty
{
	Prop_Invalid = 0,
	Prop_TrackingSystemName_String = 1000,
	Prop_ModelNumber_String = 1001,
	Prop_SerialNumber_String = 1002,
	Prop_RenderModelName_String = 1003,
	Prop_WillDriftInYaw_Bool = 1004,
	Prop_ManufacturerName_String = 1005,
	Prop_TrackingFirmwareVersion_String = 1006,
	Prop_HardwareRevision_String = 1007,
	Prop_AllWirelessDongleDescriptions_String = 1008,
	Prop_ConnectedWirelessDongle_String = 1009,
	Prop_DeviceIsWireless_Bool = 1010,
	Prop_DeviceIsCharging_Bool = 1011,
	Prop_DeviceBatteryPercentage_Float = 1012,
	Prop_StatusDisplayTransform_Matrix34 = 1013,
	Prop_Firmware_UpdateAvailable_Bool = 1014,
	Prop_Firmware_ManualUpdate_Bool = 1015,
	Prop_Firmware_ManualUpdateURL_String = 1016,
	Prop_HardwareRevision_Uint64 = 1017,
	Prop_FirmwareVersion_Uint64 = 1018,
	Prop_FPGAVersion_Uint64 = 1019,
	Prop_VRCVersion_Uint64 = 1020,
	Prop_RadioVersion_Uint64 = 1021,
	Prop_DongleVersion_Uint64 = 1022,
	Prop_BlockServerShutdown_Bool = 1023,
	Prop_CanUnifyCoordinateSystemWithHmd_Bool = 1024,
	Prop_ContainsProximitySensor_Bool = 1025,
	Prop_DeviceProvidesBatteryStatus_Bool = 1026,
	Prop_DeviceCanPowerOff_Bool = 1027,
	Prop_Firmware_ProgrammingTarget_String = 1028,
	Prop_DeviceClass_Int32 = 1029,
	Prop_HasCamera_Bool = 1030,
	Prop_DriverVersion_String = 1031,
	Prop_Firmware_ForceUpdateRequired_Bool = 1032,
	Prop_ViveSystemButtonFixRequired_Bool = 1033,
	Prop_ParentDriver_Uint64 = 1034,
	Prop_ResourceRoot_String = 1035,
	Prop_ReportsTimeSinceVSync_Bool = 2000,
	Prop_SecondsFromVsyncToPhotons_Float = 2001,
	Prop_DisplayFrequency_Float = 2002,
	Prop_UserIpdMeters_Float = 2003,
	Prop_CurrentUniverseId_Uint64 = 2004,
	Prop_PreviousUniverseId_Uint64 = 2005,
	Prop_DisplayFirmwareVersion_Uint64 = 2006,
	Prop_IsOnDesktop_Bool = 2007,
	Prop_DisplayMCType_Int32 = 2008,
	Prop_DisplayMCOffset_Float = 2009,
	Prop_DisplayMCScale_Float = 2010,
	Prop_EdidVendorID_Int32 = 2011,
	Prop_DisplayMCImageLeft_String = 2012,
	Prop_DisplayMCImageRight_String = 2013,
	Prop_DisplayGCBlackClamp_Float = 2014,
	Prop_EdidProductID_Int32 = 2015,
	Prop_CameraToHeadTransform_Matrix34 = 2016,
	Prop_DisplayGCType_Int32 = 2017,
	Prop_DisplayGCOffset_Float = 2018,
	Prop_DisplayGCScale_Float = 2019,
	Prop_DisplayGCPrescale_Float = 2020,
	Prop_DisplayGCImage_String = 2021,
	Prop_LensCenterLeftU_Float = 2022,
	Prop_LensCenterLeftV_Float = 2023,
	Prop_LensCenterRightU_Float = 2024,
	Prop_LensCenterRightV_Float = 2025,
	Prop_UserHeadToEyeDepthMeters_Float = 2026,
	Prop_CameraFirmwareVersion_Uint64 = 2027,
	Prop_CameraFirmwareDescription_String = 2028,
	Prop_DisplayFPGAVersion_Uint64 = 2029,
	Prop_DisplayBootloaderVersion_Uint64 = 2030,
	Prop_DisplayHardwareVersion_Uint64 = 2031,
	Prop_AudioFirmwareVersion_Uint64 = 2032,
	Prop_CameraCompatibilityMode_Int32 = 2033,
	Prop_ScreenshotHorizontalFieldOfViewDegrees_Float = 2034,
	Prop_ScreenshotVerticalFieldOfViewDegrees_Float = 2035,
	Prop_DisplaySuppressed_Bool = 2036,
	Prop_DisplayAllowNightMode_Bool = 2037,
	Prop_DisplayMCImageWidth_Int32 = 2038,
	Prop_DisplayMCImageHeight_Int32 = 2039,
	Prop_DisplayMCImageNumChannels_Int32 = 2040,
	Prop_DisplayMCImageData_Binary = 2041,
	Prop_SecondsFromPhotonsToVblank_Float = 2042,
	Prop_DriverDirectModeSendsVsyncEvents_Bool = 2043,
	Prop_DisplayDebugMode_Bool = 2044,
	Prop_GraphicsAdapterLuid_Uint64 = 2045,
	Prop_DriverProvidedChaperonePath_String = 2048,
	Prop_AttachedDeviceId_String = 3000,
	Prop_SupportedButtons_Uint64 = 3001,
	Prop_Axis0Type_Int32 = 3002,
	Prop_Axis1Type_Int32 = 3003,
	Prop_Axis2Type_Int32 = 3004,
	Prop_Axis3Type_Int32 = 3005,
	Prop_Axis4Type_Int32 = 3006,
	Prop_ControllerRoleHint_Int32 = 3007,
	Prop_FieldOfViewLeftDegrees_Float = 4000,
	Prop_FieldOfViewRightDegrees_Float = 4001,
	Prop_FieldOfViewTopDegrees_Float = 4002,
	Prop_FieldOfViewBottomDegrees_Float = 4003,
	Prop_TrackingRangeMinimumMeters_Float = 4004,
	Prop_TrackingRangeMaximumMeters_Float = 4005,
	Prop_ModeLabel_String = 4006,
	Prop_IconPathName_String = 5000,
	Prop_NamedIconPathDeviceOff_String = 5001,
	Prop_NamedIconPathDeviceSearching_String = 5002,
	Prop_NamedIconPathDeviceSearchingAlert_String = 5003,
	Prop_NamedIconPathDeviceReady_String = 5004,
	Prop_NamedIconPathDeviceReadyAlert_String = 5005,
	Prop_NamedIconPathDeviceNotReady_String = 5006,
	Prop_NamedIconPathDeviceStandby_String = 5007,
	Prop_NamedIconPathDeviceAlertLow_String = 5008,
	Prop_DisplayHiddenArea_Binary_Start = 5100,
	Prop_DisplayHiddenArea_Binary_End = 5150,
	Prop_UserConfigPath_String = 6000,
	Prop_InstallPath_String = 6001,
	Prop_HasDisplayComponent_Bool = 6002,
	Prop_HasControllerComponent_Bool = 6003,
	Prop_HasCameraComponent_Bool = 6004,
	Prop_HasDriverDirectModeComponent_Bool = 6005,
	Prop_HasVirtualDisplayComponent_Bool = 6006,
	Prop_VendorSpecific_Reserved_Start = 10000,
	Prop_VendorSpecific_Reserved_End = 10999,
}
public enum ETrackedPropertyError
{
	TrackedProp_Success = 0,
	TrackedProp_WrongDataType = 1,
	TrackedProp_WrongDeviceClass = 2,
	TrackedProp_BufferTooSmall = 3,
	TrackedProp_UnknownProperty = 4,
	TrackedProp_InvalidDevice = 5,
	TrackedProp_CouldNotContactServer = 6,
	TrackedProp_ValueNotProvidedByDevice = 7,
	TrackedProp_StringExceedsMaximumLength = 8,
	TrackedProp_NotYetAvailable = 9,
	TrackedProp_PermissionDenied = 10,
	TrackedProp_InvalidOperation = 11,
}
public enum EVRSubmitFlags
{
	Submit_Default = 0,
	Submit_LensDistortionAlreadyApplied = 1,
	Submit_GlRenderBuffer = 2,
	Submit_Reserved = 4,
}
public enum EVRState
{
	Undefined = -1,
	Off = 0,
	Searching = 1,
	Searching_Alert = 2,
	Ready = 3,
	Ready_Alert = 4,
	NotReady = 5,
	Standby = 6,
	Ready_Alert_Low = 7,
}
public enum EVREventType
{
	VREvent_None = 0,
	VREvent_TrackedDeviceActivated = 100,
	VREvent_TrackedDeviceDeactivated = 101,
	VREvent_TrackedDeviceUpdated = 102,
	VREvent_TrackedDeviceUserInteractionStarted = 103,
	VREvent_TrackedDeviceUserInteractionEnded = 104,
	VREvent_IpdChanged = 105,
	VREvent_EnterStandbyMode = 106,
	VREvent_LeaveStandbyMode = 107,
	VREvent_TrackedDeviceRoleChanged = 108,
	VREvent_WatchdogWakeUpRequested = 109,
	VREvent_LensDistortionChanged = 110,
	VREvent_PropertyChanged = 111,
	VREvent_WirelessDisconnect = 112,
	VREvent_WirelessReconnect = 113,
	VREvent_ButtonPress = 200,
	VREvent_ButtonUnpress = 201,
	VREvent_ButtonTouch = 202,
	VREvent_ButtonUntouch = 203,
	VREvent_MouseMove = 300,
	VREvent_MouseButtonDown = 301,
	VREvent_MouseButtonUp = 302,
	VREvent_FocusEnter = 303,
	VREvent_FocusLeave = 304,
	VREvent_Scroll = 305,
	VREvent_TouchPadMove = 306,
	VREvent_OverlayFocusChanged = 307,
	VREvent_InputFocusCaptured = 400,
	VREvent_InputFocusReleased = 401,
	VREvent_SceneFocusLost = 402,
	VREvent_SceneFocusGained = 403,
	VREvent_SceneApplicationChanged = 404,
	VREvent_SceneFocusChanged = 405,
	VREvent_InputFocusChanged = 406,
	VREvent_SceneApplicationSecondaryRenderingStarted = 407,
	VREvent_HideRenderModels = 410,
	VREvent_ShowRenderModels = 411,
	VREvent_OverlayShown = 500,
	VREvent_OverlayHidden = 501,
	VREvent_DashboardActivated = 502,
	VREvent_DashboardDeactivated = 503,
	VREvent_DashboardThumbSelected = 504,
	VREvent_DashboardRequested = 505,
	VREvent_ResetDashboard = 506,
	VREvent_RenderToast = 507,
	VREvent_ImageLoaded = 508,
	VREvent_ShowKeyboard = 509,
	VREvent_HideKeyboard = 510,
	VREvent_OverlayGamepadFocusGained = 511,
	VREvent_OverlayGamepadFocusLost = 512,
	VREvent_OverlaySharedTextureChanged = 513,
	VREvent_DashboardGuideButtonDown = 514,
	VREvent_DashboardGuideButtonUp = 515,
	VREvent_ScreenshotTriggered = 516,
	VREvent_ImageFailed = 517,
	VREvent_DashboardOverlayCreated = 518,
	VREvent_RequestScreenshot = 520,
	VREvent_ScreenshotTaken = 521,
	VREvent_ScreenshotFailed = 522,
	VREvent_SubmitScreenshotToDashboard = 523,
	VREvent_ScreenshotProgressToDashboard = 524,
	VREvent_PrimaryDashboardDeviceChanged = 525,
	VREvent_Notification_Shown = 600,
	VREvent_Notification_Hidden = 601,
	VREvent_Notification_BeginInteraction = 602,
	VREvent_Notification_Destroyed = 603,
	VREvent_Quit = 700,
	VREvent_ProcessQuit = 701,
	VREvent_QuitAborted_UserPrompt = 702,
	VREvent_QuitAcknowledged = 703,
	VREvent_DriverRequestedQuit = 704,
	VREvent_ChaperoneDataHasChanged = 800,
	VREvent_ChaperoneUniverseHasChanged = 801,
	VREvent_ChaperoneTempDataHasChanged = 802,
	VREvent_ChaperoneSettingsHaveChanged = 803,
	VREvent_SeatedZeroPoseReset = 804,
	VREvent_AudioSettingsHaveChanged = 820,
	VREvent_BackgroundSettingHasChanged = 850,
	VREvent_CameraSettingsHaveChanged = 851,
	VREvent_ReprojectionSettingHasChanged = 852,
	VREvent_ModelSkinSettingsHaveChanged = 853,
	VREvent_EnvironmentSettingsHaveChanged = 854,
	VREvent_PowerSettingsHaveChanged = 855,
	VREvent_EnableHomeAppSettingsHaveChanged = 856,
	VREvent_StatusUpdate = 900,
	VREvent_MCImageUpdated = 1000,
	VREvent_FirmwareUpdateStarted = 1100,
	VREvent_FirmwareUpdateFinished = 1101,
	VREvent_KeyboardClosed = 1200,
	VREvent_KeyboardCharInput = 1201,
	VREvent_KeyboardDone = 1202,
	VREvent_ApplicationTransitionStarted = 1300,
	VREvent_ApplicationTransitionAborted = 1301,
	VREvent_ApplicationTransitionNewAppStarted = 1302,
	VREvent_ApplicationListUpdated = 1303,
	VREvent_ApplicationMimeTypeLoad = 1304,
	VREvent_ApplicationTransitionNewAppLaunchComplete = 1305,
	VREvent_ProcessConnected = 1306,
	VREvent_ProcessDisconnected = 1307,
	VREvent_Compositor_MirrorWindowShown = 1400,
	VREvent_Compositor_MirrorWindowHidden = 1401,
	VREvent_Compositor_ChaperoneBoundsShown = 1410,
	VREvent_Compositor_ChaperoneBoundsHidden = 1411,
	VREvent_TrackedCamera_StartVideoStream = 1500,
	VREvent_TrackedCamera_StopVideoStream = 1501,
	VREvent_TrackedCamera_PauseVideoStream = 1502,
	VREvent_TrackedCamera_ResumeVideoStream = 1503,
	VREvent_TrackedCamera_EditingSurface = 1550,
	VREvent_PerformanceTest_EnableCapture = 1600,
	VREvent_PerformanceTest_DisableCapture = 1601,
	VREvent_PerformanceTest_FidelityLevel = 1602,
	VREvent_MessageOverlay_Closed = 1650,
	VREvent_VendorSpecific_Reserved_Start = 10000,
	VREvent_VendorSpecific_Reserved_End = 19999,
}
public enum EDeviceActivityLevel
{
	k_EDeviceActivityLevel_Unknown = -1,
	k_EDeviceActivityLevel_Idle = 0,
	k_EDeviceActivityLevel_UserInteraction = 1,
	k_EDeviceActivityLevel_UserInteraction_Timeout = 2,
	k_EDeviceActivityLevel_Standby = 3,
}
public enum EVRButtonId
{
	k_EButton_System = 0,
	k_EButton_ApplicationMenu = 1,
	k_EButton_Grip = 2,
	k_EButton_DPad_Left = 3,
	k_EButton_DPad_Up = 4,
	k_EButton_DPad_Right = 5,
	k_EButton_DPad_Down = 6,
	k_EButton_A = 7,
	k_EButton_ProximitySensor = 31,
	k_EButton_Axis0 = 32,
	k_EButton_Axis1 = 33,
	k_EButton_Axis2 = 34,
	k_EButton_Axis3 = 35,
	k_EButton_Axis4 = 36,
	k_EButton_SteamVR_Touchpad = 32,
	k_EButton_SteamVR_Trigger = 33,
	k_EButton_Dashboard_Back = 2,
	k_EButton_Max = 64,
}
public enum EVRMouseButton
{
	Left = 1,
	Right = 2,
	Middle = 4,
}
public enum EHiddenAreaMeshType
{
	k_eHiddenAreaMesh_Standard = 0,
	k_eHiddenAreaMesh_Inverse = 1,
	k_eHiddenAreaMesh_LineLoop = 2,
	k_eHiddenAreaMesh_Max = 3,
}
public enum EVRControllerAxisType
{
	k_eControllerAxis_None = 0,
	k_eControllerAxis_TrackPad = 1,
	k_eControllerAxis_Joystick = 2,
	k_eControllerAxis_Trigger = 3,
}
public enum EVRControllerEventOutputType
{
	ControllerEventOutput_OSEvents = 0,
	ControllerEventOutput_VREvents = 1,
}
public enum ECollisionBoundsStyle
{
	COLLISION_BOUNDS_STYLE_BEGINNER = 0,
	COLLISION_BOUNDS_STYLE_INTERMEDIATE = 1,
	COLLISION_BOUNDS_STYLE_SQUARES = 2,
	COLLISION_BOUNDS_STYLE_ADVANCED = 3,
	COLLISION_BOUNDS_STYLE_NONE = 4,
	COLLISION_BOUNDS_STYLE_COUNT = 5,
}
public enum EVROverlayError
{
	None = 0,
	UnknownOverlay = 10,
	InvalidHandle = 11,
	PermissionDenied = 12,
	OverlayLimitExceeded = 13,
	WrongVisibilityType = 14,
	KeyTooLong = 15,
	NameTooLong = 16,
	KeyInUse = 17,
	WrongTransformType = 18,
	InvalidTrackedDevice = 19,
	InvalidParameter = 20,
	ThumbnailCantBeDestroyed = 21,
	ArrayTooSmall = 22,
	RequestFailed = 23,
	InvalidTexture = 24,
	UnableToLoadFile = 25,
	KeyboardAlreadyInUse = 26,
	NoNeighbor = 27,
	TooManyMaskPrimitives = 29,
	BadMaskPrimitive = 30,
}
public enum EVRApplicationType
{
	VRApplication_Other = 0,
	VRApplication_Scene = 1,
	VRApplication_Overlay = 2,
	VRApplication_Background = 3,
	VRApplication_Utility = 4,
	VRApplication_VRMonitor = 5,
	VRApplication_SteamWatchdog = 6,
	VRApplication_Bootstrapper = 7,
	VRApplication_Max = 8,
}
public enum EVRFirmwareError
{
	None = 0,
	Success = 1,
	Fail = 2,
}
public enum EVRNotificationError
{
	OK = 0,
	InvalidNotificationId = 100,
	NotificationQueueFull = 101,
	InvalidOverlayHandle = 102,
	SystemWithUserValueAlreadyExists = 103,
}
public enum EVRInitError
{
	None = 0,
	Unknown = 1,
	Init_InstallationNotFound = 100,
	Init_InstallationCorrupt = 101,
	Init_VRClientDLLNotFound = 102,
	Init_FileNotFound = 103,
	Init_FactoryNotFound = 104,
	Init_InterfaceNotFound = 105,
	Init_InvalidInterface = 106,
	Init_UserConfigDirectoryInvalid = 107,
	Init_HmdNotFound = 108,
	Init_NotInitialized = 109,
	Init_PathRegistryNotFound = 110,
	Init_NoConfigPath = 111,
	Init_NoLogPath = 112,
	Init_PathRegistryNotWritable = 113,
	Init_AppInfoInitFailed = 114,
	Init_Retry = 115,
	Init_InitCanceledByUser = 116,
	Init_AnotherAppLaunching = 117,
	Init_SettingsInitFailed = 118,
	Init_ShuttingDown = 119,
	Init_TooManyObjects = 120,
	Init_NoServerForBackgroundApp = 121,
	Init_NotSupportedWithCompositor = 122,
	Init_NotAvailableToUtilityApps = 123,
	Init_Internal = 124,
	Init_HmdDriverIdIsNone = 125,
	Init_HmdNotFoundPresenceFailed = 126,
	Init_VRMonitorNotFound = 127,
	Init_VRMonitorStartupFailed = 128,
	Init_LowPowerWatchdogNotSupported = 129,
	Init_InvalidApplicationType = 130,
	Init_NotAvailableToWatchdogApps = 131,
	Init_WatchdogDisabledInSettings = 132,
	Init_VRDashboardNotFound = 133,
	Init_VRDashboardStartupFailed = 134,
	Init_VRHomeNotFound = 135,
	Init_VRHomeStartupFailed = 136,
	Driver_Failed = 200,
	Driver_Unknown = 201,
	Driver_HmdUnknown = 202,
	Driver_NotLoaded = 203,
	Driver_RuntimeOutOfDate = 204,
	Driver_HmdInUse = 205,
	Driver_NotCalibrated = 206,
	Driver_CalibrationInvalid = 207,
	Driver_HmdDisplayNotFound = 208,
	Driver_TrackedDeviceInterfaceUnknown = 209,
	Driver_HmdDriverIdOutOfBounds = 211,
	Driver_HmdDisplayMirrored = 212,
	IPC_ServerInitFailed = 300,
	IPC_ConnectFailed = 301,
	IPC_SharedStateInitFailed = 302,
	IPC_CompositorInitFailed = 303,
	IPC_MutexInitFailed = 304,
	IPC_Failed = 305,
	IPC_CompositorConnectFailed = 306,
	IPC_CompositorInvalidConnectResponse = 307,
	IPC_ConnectFailedAfterMultipleAttempts = 308,
	Compositor_Failed = 400,
	Compositor_D3D11HardwareRequired = 401,
	Compositor_FirmwareRequiresUpdate = 402,
	Compositor_OverlayInitFailed = 403,
	Compositor_ScreenshotsInitFailed = 404,
	Compositor_UnableToCreateDevice = 405,
	VendorSpecific_UnableToConnectToOculusRuntime = 1000,
	VendorSpecific_HmdFound_CantOpenDevice = 1101,
	VendorSpecific_HmdFound_UnableToRequestConfigStart = 1102,
	VendorSpecific_HmdFound_NoStoredConfig = 1103,
	VendorSpecific_HmdFound_ConfigTooBig = 1104,
	VendorSpecific_HmdFound_ConfigTooSmall = 1105,
	VendorSpecific_HmdFound_UnableToInitZLib = 1106,
	VendorSpecific_HmdFound_CantReadFirmwareVersion = 1107,
	VendorSpecific_HmdFound_UnableToSendUserDataStart = 1108,
	VendorSpecific_HmdFound_UnableToGetUserDataStart = 1109,
	VendorSpecific_HmdFound_UnableToGetUserDataNext = 1110,
	VendorSpecific_HmdFound_UserDataAddressRange = 1111,
	VendorSpecific_HmdFound_UserDataError = 1112,
	VendorSpecific_HmdFound_ConfigFailedSanityCheck = 1113,
	Steam_SteamInstallationNotFound = 2000,
}
public enum EVRScreenshotType
{
	None = 0,
	Mono = 1,
	Stereo = 2,
	Cubemap = 3,
	MonoPanorama = 4,
	StereoPanorama = 5,
}
public enum EVRScreenshotPropertyFilenames
{
	Preview = 0,
	VR = 1,
}
public enum EVRTrackedCameraError
{
	None = 0,
	OperationFailed = 100,
	InvalidHandle = 101,
	InvalidFrameHeaderVersion = 102,
	OutOfHandles = 103,
	IPCFailure = 104,
	NotSupportedForThisDevice = 105,
	SharedMemoryFailure = 106,
	FrameBufferingFailure = 107,
	StreamSetupFailure = 108,
	InvalidGLTextureId = 109,
	InvalidSharedTextureHandle = 110,
	FailedToGetGLTextureId = 111,
	SharedTextureFailure = 112,
	NoFrameAvailable = 113,
	InvalidArgument = 114,
	InvalidFrameBufferSize = 115,
}
public enum EVRTrackedCameraFrameType
{
	Distorted = 0,
	Undistorted = 1,
	MaximumUndistorted = 2,
	MAX_CAMERA_FRAME_TYPES = 3,
}
public enum EVRApplicationError
{
	None = 0,
	AppKeyAlreadyExists = 100,
	NoManifest = 101,
	NoApplication = 102,
	InvalidIndex = 103,
	UnknownApplication = 104,
	IPCFailed = 105,
	ApplicationAlreadyRunning = 106,
	InvalidManifest = 107,
	InvalidApplication = 108,
	LaunchFailed = 109,
	ApplicationAlreadyStarting = 110,
	LaunchInProgress = 111,
	OldApplicationQuitting = 112,
	TransitionAborted = 113,
	IsTemplate = 114,
	SteamVRIsExiting = 115,
	BufferTooSmall = 200,
	PropertyNotSet = 201,
	UnknownProperty = 202,
	InvalidParameter = 203,
}
public enum EVRApplicationProperty
{
	Name_String = 0,
	LaunchType_String = 11,
	WorkingDirectory_String = 12,
	BinaryPath_String = 13,
	Arguments_String = 14,
	URL_String = 15,
	Description_String = 50,
	NewsURL_String = 51,
	ImagePath_String = 52,
	Source_String = 53,
	IsDashboardOverlay_Bool = 60,
	IsTemplate_Bool = 61,
	IsInstanced_Bool = 62,
	IsInternal_Bool = 63,
	WantsCompositorPauseInStandby_Bool = 64,
	LastLaunchTime_Uint64 = 70,
}
public enum EVRApplicationTransitionState
{
	VRApplicationTransition_None = 0,
	VRApplicationTransition_OldAppQuitSent = 10,
	VRApplicationTransition_WaitingForExternalLaunch = 11,
	VRApplicationTransition_NewAppLaunched = 20,
}
public enum ChaperoneCalibrationState
{
	OK = 1,
	Warning = 100,
	Warning_BaseStationMayHaveMoved = 101,
	Warning_BaseStationRemoved = 102,
	Warning_SeatedBoundsInvalid = 103,
	Error = 200,
	Error_BaseStationUninitialized = 201,
	Error_BaseStationConflict = 202,
	Error_PlayAreaInvalid = 203,
	Error_CollisionBoundsInvalid = 204,
}
public enum EChaperoneConfigFile
{
	Live = 1,
	Temp = 2,
}
public enum EChaperoneImportFlags
{
	EChaperoneImport_BoundsOnly = 1,
}
public enum EVRCompositorError
{
	None = 0,
	RequestFailed = 1,
	IncompatibleVersion = 100,
	DoNotHaveFocus = 101,
	InvalidTexture = 102,
	IsNotSceneApplication = 103,
	TextureIsOnWrongDevice = 104,
	TextureUsesUnsupportedFormat = 105,
	SharedTexturesNotSupported = 106,
	IndexOutOfRange = 107,
	AlreadySubmitted = 108,
	InvalidBounds = 109,
}
public enum VROverlayInputMethod
{
	None = 0,
	Mouse = 1,
}
public enum VROverlayTransformType
{
	VROverlayTransform_Absolute = 0,
	VROverlayTransform_TrackedDeviceRelative = 1,
	VROverlayTransform_SystemOverlay = 2,
	VROverlayTransform_TrackedComponent = 3,
}
public enum VROverlayFlags
{
	None = 0,
	Curved = 1,
	RGSS4X = 2,
	NoDashboardTab = 3,
	AcceptsGamepadEvents = 4,
	ShowGamepadFocus = 5,
	SendVRScrollEvents = 6,
	SendVRTouchpadEvents = 7,
	ShowTouchPadScrollWheel = 8,
	TransferOwnershipToInternalProcess = 9,
	SideBySide_Parallel = 10,
	SideBySide_Crossed = 11,
	Panorama = 12,
	StereoPanorama = 13,
	SortWithNonSceneOverlays = 14,
	VisibleInDashboard = 15,
}
public enum VRMessageOverlayResponse
{
	ButtonPress_0 = 0,
	ButtonPress_1 = 1,
	ButtonPress_2 = 2,
	ButtonPress_3 = 3,
	CouldntFindSystemOverlay = 4,
	CouldntFindOrCreateClientOverlay = 5,
	ApplicationQuit = 6,
}
public enum EGamepadTextInputMode
{
	k_EGamepadTextInputModeNormal = 0,
	k_EGamepadTextInputModePassword = 1,
	k_EGamepadTextInputModeSubmit = 2,
}
public enum EGamepadTextInputLineMode
{
	k_EGamepadTextInputLineModeSingleLine = 0,
	k_EGamepadTextInputLineModeMultipleLines = 1,
}
public enum EOverlayDirection
{
	Up = 0,
	Down = 1,
	Left = 2,
	Right = 3,
	Count = 4,
}
public enum EVROverlayIntersectionMaskPrimitiveType
{
	OverlayIntersectionPrimitiveType_Rectangle = 0,
	OverlayIntersectionPrimitiveType_Circle = 1,
}
public enum EVRRenderModelError
{
	None = 0,
	Loading = 100,
	NotSupported = 200,
	InvalidArg = 300,
	InvalidModel = 301,
	NoShapes = 302,
	MultipleShapes = 303,
	TooManyVertices = 304,
	MultipleTextures = 305,
	BufferTooSmall = 306,
	NotEnoughNormals = 307,
	NotEnoughTexCoords = 308,
	InvalidTexture = 400,
}
public enum EVRComponentProperty
{
	IsStatic = 1,
	IsVisible = 2,
	IsTouched = 4,
	IsPressed = 8,
	IsScrolled = 16,
}
public enum EVRNotificationType
{
	Transient = 0,
	Persistent = 1,
	Transient_SystemWithUserValue = 2,
}
public enum EVRNotificationStyle
{
	None = 0,
	Application = 100,
	Contact_Disabled = 200,
	Contact_Enabled = 201,
	Contact_Active = 202,
}
public enum EVRSettingsError
{
	None = 0,
	IPCFailed = 1,
	WriteFailed = 2,
	ReadFailed = 3,
	JsonParseFailed = 4,
	UnsetSettingHasNoDefault = 5,
}
public enum EVRScreenshotError
{
	None = 0,
	RequestFailed = 1,
	IncompatibleVersion = 100,
	NotFound = 101,
	BufferTooSmall = 102,
	ScreenshotAlreadyInProgress = 108,
}

[StructLayout(LayoutKind.Explicit)] public struct VREvent_Data_t
{
	[FieldOffset(0)] public VREvent_Reserved_t reserved;
	[FieldOffset(0)] public VREvent_Controller_t controller;
	[FieldOffset(0)] public VREvent_Mouse_t mouse;
	[FieldOffset(0)] public VREvent_Scroll_t scroll;
	[FieldOffset(0)] public VREvent_Process_t process;
	[FieldOffset(0)] public VREvent_Notification_t notification;
	[FieldOffset(0)] public VREvent_Overlay_t overlay;
	[FieldOffset(0)] public VREvent_Status_t status;
	[FieldOffset(0)] public VREvent_Ipd_t ipd;
	[FieldOffset(0)] public VREvent_Chaperone_t chaperone;
	[FieldOffset(0)] public VREvent_PerformanceTest_t performanceTest;
	[FieldOffset(0)] public VREvent_TouchPadMove_t touchPadMove;
	[FieldOffset(0)] public VREvent_SeatedZeroPoseReset_t seatedZeroPoseReset;
	[FieldOffset(0)] public VREvent_Screenshot_t screenshot;
	[FieldOffset(0)] public VREvent_ScreenshotProgress_t screenshotProgress;
	[FieldOffset(0)] public VREvent_ApplicationLaunch_t applicationLaunch;
	[FieldOffset(0)] public VREvent_EditingCameraSurface_t cameraSurface;
	[FieldOffset(0)] public VREvent_MessageOverlay_t messageOverlay;
	[FieldOffset(0)] public VREvent_Keyboard_t keyboard; // This has to be at the end due to a mono bug
}

[StructLayout(LayoutKind.Explicit)] public struct VROverlayIntersectionMaskPrimitive_Data_t
{
	[FieldOffset(0)] public IntersectionMaskRectangle_t m_Rectangle;
	[FieldOffset(0)] public IntersectionMaskCircle_t m_Circle;
}

[StructLayout(LayoutKind.Sequential)] public struct HmdMatrix34_t
{
	public float m0; //float[3][4]
	public float m1;
	public float m2;
	public float m3;
	public float m4;
	public float m5;
	public float m6;
	public float m7;
	public float m8;
	public float m9;
	public float m10;
	public float m11;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdMatrix44_t
{
	public float m0; //float[4][4]
	public float m1;
	public float m2;
	public float m3;
	public float m4;
	public float m5;
	public float m6;
	public float m7;
	public float m8;
	public float m9;
	public float m10;
	public float m11;
	public float m12;
	public float m13;
	public float m14;
	public float m15;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdVector3_t
{
	public float v0; //float[3]
	public float v1;
	public float v2;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdVector4_t
{
	public float v0; //float[4]
	public float v1;
	public float v2;
	public float v3;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdVector3d_t
{
	public double v0; //double[3]
	public double v1;
	public double v2;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdVector2_t
{
	public float v0; //float[2]
	public float v1;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdQuaternion_t
{
	public double w;
	public double x;
	public double y;
	public double z;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdColor_t
{
	public float r;
	public float g;
	public float b;
	public float a;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdQuad_t
{
	public HmdVector3_t vCorners0; //HmdVector3_t[4]
	public HmdVector3_t vCorners1;
	public HmdVector3_t vCorners2;
	public HmdVector3_t vCorners3;
}
[StructLayout(LayoutKind.Sequential)] public struct HmdRect2_t
{
	public HmdVector2_t vTopLeft;
	public HmdVector2_t vBottomRight;
}
[StructLayout(LayoutKind.Sequential)] public struct DistortionCoordinates_t
{
	public float rfRed0; //float[2]
	public float rfRed1;
	public float rfGreen0; //float[2]
	public float rfGreen1;
	public float rfBlue0; //float[2]
	public float rfBlue1;
}
[StructLayout(LayoutKind.Sequential)] public struct Texture_t
{
	public IntPtr handle; // void *
	public ETextureType eType;
	public EColorSpace eColorSpace;
}
[StructLayout(LayoutKind.Sequential)] public struct TrackedDevicePose_t
{
	public HmdMatrix34_t mDeviceToAbsoluteTracking;
	public HmdVector3_t vVelocity;
	public HmdVector3_t vAngularVelocity;
	public ETrackingResult eTrackingResult;
	[MarshalAs(UnmanagedType.I1)]
	public bool bPoseIsValid;
	[MarshalAs(UnmanagedType.I1)]
	public bool bDeviceIsConnected;
}
[StructLayout(LayoutKind.Sequential)] public struct VRTextureBounds_t
{
	public float uMin;
	public float vMin;
	public float uMax;
	public float vMax;
}
[StructLayout(LayoutKind.Sequential)] public struct VRVulkanTextureData_t
{
	public ulong m_nImage;
	public IntPtr m_pDevice; // struct VkDevice_T *
	public IntPtr m_pPhysicalDevice; // struct VkPhysicalDevice_T *
	public IntPtr m_pInstance; // struct VkInstance_T *
	public IntPtr m_pQueue; // struct VkQueue_T *
	public uint m_nQueueFamilyIndex;
	public uint m_nWidth;
	public uint m_nHeight;
	public uint m_nFormat;
	public uint m_nSampleCount;
}
[StructLayout(LayoutKind.Sequential)] public struct D3D12TextureData_t
{
	public IntPtr m_pResource; // struct ID3D12Resource *
	public IntPtr m_pCommandQueue; // struct ID3D12CommandQueue *
	public uint m_nNodeMask;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Controller_t
{
	public uint button;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Mouse_t
{
	public float x;
	public float y;
	public uint button;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Scroll_t
{
	public float xdelta;
	public float ydelta;
	public uint repeatCount;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_TouchPadMove_t
{
	[MarshalAs(UnmanagedType.I1)]
	public bool bFingerDown;
	public float flSecondsFingerDown;
	public float fValueXFirst;
	public float fValueYFirst;
	public float fValueXRaw;
	public float fValueYRaw;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Notification_t
{
	public ulong ulUserValue;
	public uint notificationId;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Process_t
{
	public uint pid;
	public uint oldPid;
	[MarshalAs(UnmanagedType.I1)]
	public bool bForced;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Overlay_t
{
	public ulong overlayHandle;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Status_t
{
	public uint statusState;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Keyboard_t
{
	public byte cNewInput0,cNewInput1,cNewInput2,cNewInput3,cNewInput4,cNewInput5,cNewInput6,cNewInput7;
	public ulong uUserValue;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Ipd_t
{
	public float ipdMeters;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Chaperone_t
{
	public ulong m_nPreviousUniverse;
	public ulong m_nCurrentUniverse;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Reserved_t
{
	public ulong reserved0;
	public ulong reserved1;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_PerformanceTest_t
{
	public uint m_nFidelityLevel;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_SeatedZeroPoseReset_t
{
	[MarshalAs(UnmanagedType.I1)]
	public bool bResetBySystemMenu;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Screenshot_t
{
	public uint handle;
	public uint type;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_ScreenshotProgress_t
{
	public float progress;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_ApplicationLaunch_t
{
	public uint pid;
	public uint unArgsHandle;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_EditingCameraSurface_t
{
	public ulong overlayHandle;
	public uint nVisualMode;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_MessageOverlay_t
{
	public uint unVRMessageOverlayResponse;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_Property_t
{
	public ulong container;
	public ETrackedDeviceProperty prop;
}
[StructLayout(LayoutKind.Sequential)] public struct VREvent_t
{
	public uint eventType;
	public uint trackedDeviceIndex;
	public float eventAgeSeconds;
	public VREvent_Data_t data;
}
// This structure is for backwards binary compatibility on Linux and OSX only
[StructLayout(LayoutKind.Sequential, Pack = 4)] public struct VREvent_t_Packed
{
	public uint eventType;
	public uint trackedDeviceIndex;
	public float eventAgeSeconds;
	public VREvent_Data_t data;
	public VREvent_t_Packed(VREvent_t unpacked)
	{
		this.eventType = unpacked.eventType;
		this.trackedDeviceIndex = unpacked.trackedDeviceIndex;
		this.eventAgeSeconds = unpacked.eventAgeSeconds;
		this.data = unpacked.data;
	}
	public void Unpack(ref VREvent_t unpacked)
	{
		unpacked.eventType = this.eventType;
		unpacked.trackedDeviceIndex = this.trackedDeviceIndex;
		unpacked.eventAgeSeconds = this.eventAgeSeconds;
		unpacked.data = this.data;
	}
}
[StructLayout(LayoutKind.Sequential)] public struct HiddenAreaMesh_t
{
	public IntPtr pVertexData; // const struct vr::HmdVector2_t *
	public uint unTriangleCount;
}
[StructLayout(LayoutKind.Sequential)] public struct VRControllerAxis_t
{
	public float x;
	public float y;
}
[StructLayout(LayoutKind.Sequential)] public struct VRControllerState_t
{
	public uint unPacketNum;
	public ulong ulButtonPressed;
	public ulong ulButtonTouched;
	public VRControllerAxis_t rAxis0; //VRControllerAxis_t[5]
	public VRControllerAxis_t rAxis1;
	public VRControllerAxis_t rAxis2;
	public VRControllerAxis_t rAxis3;
	public VRControllerAxis_t rAxis4;
}
// This structure is for backwards binary compatibility on Linux and OSX only
[StructLayout(LayoutKind.Sequential, Pack = 4)] public struct VRControllerState_t_Packed
{
	public uint unPacketNum;
	public ulong ulButtonPressed;
	public ulong ulButtonTouched;
	public VRControllerAxis_t rAxis0; //VRControllerAxis_t[5]
	public VRControllerAxis_t rAxis1;
	public VRControllerAxis_t rAxis2;
	public VRControllerAxis_t rAxis3;
	public VRControllerAxis_t rAxis4;
	public VRControllerState_t_Packed(VRControllerState_t unpacked)
	{
		this.unPacketNum = unpacked.unPacketNum;
		this.ulButtonPressed = unpacked.ulButtonPressed;
		this.ulButtonTouched = unpacked.ulButtonTouched;
		this.rAxis0 = unpacked.rAxis0;
		this.rAxis1 = unpacked.rAxis1;
		this.rAxis2 = unpacked.rAxis2;
		this.rAxis3 = unpacked.rAxis3;
		this.rAxis4 = unpacked.rAxis4;
	}
	public void Unpack(ref VRControllerState_t unpacked)
	{
		unpacked.unPacketNum = this.unPacketNum;
		unpacked.ulButtonPressed = this.ulButtonPressed;
		unpacked.ulButtonTouched = this.ulButtonTouched;
		unpacked.rAxis0 = this.rAxis0;
		unpacked.rAxis1 = this.rAxis1;
		unpacked.rAxis2 = this.rAxis2;
		unpacked.rAxis3 = this.rAxis3;
		unpacked.rAxis4 = this.rAxis4;
	}
}
[StructLayout(LayoutKind.Sequential)] public struct Compositor_OverlaySettings
{
	public uint size;
	[MarshalAs(UnmanagedType.I1)]
	public bool curved;
	[MarshalAs(UnmanagedType.I1)]
	public bool antialias;
	public float scale;
	public float distance;
	public float alpha;
	public float uOffset;
	public float vOffset;
	public float uScale;
	public float vScale;
	public float gridDivs;
	public float gridWidth;
	public float gridScale;
	public HmdMatrix44_t transform;
}
[StructLayout(LayoutKind.Sequential)] public struct CameraVideoStreamFrameHeader_t
{
	public EVRTrackedCameraFrameType eFrameType;
	public uint nWidth;
	public uint nHeight;
	public uint nBytesPerPixel;
	public uint nFrameSequence;
	public TrackedDevicePose_t standingTrackedDevicePose;
}
[StructLayout(LayoutKind.Sequential)] public struct AppOverrideKeys_t
{
	public IntPtr pchKey; // const char *
	public IntPtr pchValue; // const char *
}
[StructLayout(LayoutKind.Sequential)] public struct Compositor_FrameTiming
{
	public uint m_nSize;
	public uint m_nFrameIndex;
	public uint m_nNumFramePresents;
	public uint m_nNumMisPresented;
	public uint m_nNumDroppedFrames;
	public uint m_nReprojectionFlags;
	public double m_flSystemTimeInSeconds;
	public float m_flPreSubmitGpuMs;
	public float m_flPostSubmitGpuMs;
	public float m_flTotalRenderGpuMs;
	public float m_flCompositorRenderGpuMs;
	public float m_flCompositorRenderCpuMs;
	public float m_flCompositorIdleCpuMs;
	public float m_flClientFrameIntervalMs;
	public float m_flPresentCallCpuMs;
	public float m_flWaitForPresentCpuMs;
	public float m_flSubmitFrameMs;
	public float m_flWaitGetPosesCalledMs;
	public float m_flNewPosesReadyMs;
	public float m_flNewFrameReadyMs;
	public float m_flCompositorUpdateStartMs;
	public float m_flCompositorUpdateEndMs;
	public float m_flCompositorRenderStartMs;
	public TrackedDevicePose_t m_HmdPose;
}
[StructLayout(LayoutKind.Sequential)] public struct Compositor_CumulativeStats
{
	public uint m_nPid;
	public uint m_nNumFramePresents;
	public uint m_nNumDroppedFrames;
	public uint m_nNumReprojectedFrames;
	public uint m_nNumFramePresentsOnStartup;
	public uint m_nNumDroppedFramesOnStartup;
	public uint m_nNumReprojectedFramesOnStartup;
	public uint m_nNumLoading;
	public uint m_nNumFramePresentsLoading;
	public uint m_nNumDroppedFramesLoading;
	public uint m_nNumReprojectedFramesLoading;
	public uint m_nNumTimedOut;
	public uint m_nNumFramePresentsTimedOut;
	public uint m_nNumDroppedFramesTimedOut;
	public uint m_nNumReprojectedFramesTimedOut;
}
[StructLayout(LayoutKind.Sequential)] public struct VROverlayIntersectionParams_t
{
	public HmdVector3_t vSource;
	public HmdVector3_t vDirection;
	public ETrackingUniverseOrigin eOrigin;
}
[StructLayout(LayoutKind.Sequential)] public struct VROverlayIntersectionResults_t
{
	public HmdVector3_t vPoint;
	public HmdVector3_t vNormal;
	public HmdVector2_t vUVs;
	public float fDistance;
}
[StructLayout(LayoutKind.Sequential)] public struct IntersectionMaskRectangle_t
{
	public float m_flTopLeftX;
	public float m_flTopLeftY;
	public float m_flWidth;
	public float m_flHeight;
}
[StructLayout(LayoutKind.Sequential)] public struct IntersectionMaskCircle_t
{
	public float m_flCenterX;
	public float m_flCenterY;
	public float m_flRadius;
}
[StructLayout(LayoutKind.Sequential)] public struct VROverlayIntersectionMaskPrimitive_t
{
	public EVROverlayIntersectionMaskPrimitiveType m_nPrimitiveType;
	public VROverlayIntersectionMaskPrimitive_Data_t m_Primitive;
}
[StructLayout(LayoutKind.Sequential)] public struct RenderModel_ComponentState_t
{
	public HmdMatrix34_t mTrackingToComponentRenderModel;
	public HmdMatrix34_t mTrackingToComponentLocal;
	public uint uProperties;
}
[StructLayout(LayoutKind.Sequential)] public struct RenderModel_Vertex_t
{
	public HmdVector3_t vPosition;
	public HmdVector3_t vNormal;
	public float rfTextureCoord0; //float[2]
	public float rfTextureCoord1;
}
[StructLayout(LayoutKind.Sequential)] public struct RenderModel_TextureMap_t
{
	public char unWidth;
	public char unHeight;
	public IntPtr rubTextureMapData; // const uint8_t *
}
// This structure is for backwards binary compatibility on Linux and OSX only
[StructLayout(LayoutKind.Sequential, Pack = 4)] public struct RenderModel_TextureMap_t_Packed
{
	public char unWidth;
	public char unHeight;
	public IntPtr rubTextureMapData; // const uint8_t *
	public RenderModel_TextureMap_t_Packed(RenderModel_TextureMap_t unpacked)
	{
		this.unWidth = unpacked.unWidth;
		this.unHeight = unpacked.unHeight;
		this.rubTextureMapData = unpacked.rubTextureMapData;
	}
	public void Unpack(ref RenderModel_TextureMap_t unpacked)
	{
		unpacked.unWidth = this.unWidth;
		unpacked.unHeight = this.unHeight;
		unpacked.rubTextureMapData = this.rubTextureMapData;
	}
}
[StructLayout(LayoutKind.Sequential)] public struct RenderModel_t
{
	public IntPtr rVertexData; // const struct vr::RenderModel_Vertex_t *
	public uint unVertexCount;
	public IntPtr rIndexData; // const uint16_t *
	public uint unTriangleCount;
	public int diffuseTextureId;
}
// This structure is for backwards binary compatibility on Linux and OSX only
[StructLayout(LayoutKind.Sequential, Pack = 4)] public struct RenderModel_t_Packed
{
	public IntPtr rVertexData; // const struct vr::RenderModel_Vertex_t *
	public uint unVertexCount;
	public IntPtr rIndexData; // const uint16_t *
	public uint unTriangleCount;
	public int diffuseTextureId;
	public RenderModel_t_Packed(RenderModel_t unpacked)
	{
		this.rVertexData = unpacked.rVertexData;
		this.unVertexCount = unpacked.unVertexCount;
		this.rIndexData = unpacked.rIndexData;
		this.unTriangleCount = unpacked.unTriangleCount;
		this.diffuseTextureId = unpacked.diffuseTextureId;
	}
	public void Unpack(ref RenderModel_t unpacked)
	{
		unpacked.rVertexData = this.rVertexData;
		unpacked.unVertexCount = this.unVertexCount;
		unpacked.rIndexData = this.rIndexData;
		unpacked.unTriangleCount = this.unTriangleCount;
		unpacked.diffuseTextureId = this.diffuseTextureId;
	}
}
[StructLayout(LayoutKind.Sequential)] public struct RenderModel_ControllerMode_State_t
{
	[MarshalAs(UnmanagedType.I1)]
	public bool bScrollWheelVisible;
}
[StructLayout(LayoutKind.Sequential)] public struct NotificationBitmap_t
{
	public IntPtr m_pImageData; // void *
	public int m_nWidth;
	public int m_nHeight;
	public int m_nBytesPerPixel;
}
[StructLayout(LayoutKind.Sequential)] public struct COpenVRContext
{
	public IntPtr m_pVRSystem; // class vr::IVRSystem *
	public IntPtr m_pVRChaperone; // class vr::IVRChaperone *
	public IntPtr m_pVRChaperoneSetup; // class vr::IVRChaperoneSetup *
	public IntPtr m_pVRCompositor; // class vr::IVRCompositor *
	public IntPtr m_pVROverlay; // class vr::IVROverlay *
	public IntPtr m_pVRResources; // class vr::IVRResources *
	public IntPtr m_pVRRenderModels; // class vr::IVRRenderModels *
	public IntPtr m_pVRExtendedDisplay; // class vr::IVRExtendedDisplay *
	public IntPtr m_pVRSettings; // class vr::IVRSettings *
	public IntPtr m_pVRApplications; // class vr::IVRApplications *
	public IntPtr m_pVRTrackedCamera; // class vr::IVRTrackedCamera *
	public IntPtr m_pVRScreenshots; // class vr::IVRScreenshots *
	public IntPtr m_pVRDriverManager; // class vr::IVRDriverManager *
}

public class OpenVR
{

	public static uint InitInternal(ref EVRInitError peError, EVRApplicationType eApplicationType)
	{
		return OpenVRInterop.InitInternal(ref peError, eApplicationType);
	}

	public static void ShutdownInternal()
	{
		OpenVRInterop.ShutdownInternal();
	}

	public static bool IsHmdPresent()
	{
		return OpenVRInterop.IsHmdPresent();
	}

	public static bool IsRuntimeInstalled()
	{
		return OpenVRInterop.IsRuntimeInstalled();
	}

	public static string GetStringForHmdError(EVRInitError error)
	{
		return Marshal.PtrToStringAnsi(OpenVRInterop.GetStringForHmdError(error));
	}

	public static IntPtr GetGenericInterface(string pchInterfaceVersion, ref EVRInitError peError)
	{
		return OpenVRInterop.GetGenericInterface(pchInterfaceVersion, ref peError);
	}

	public static bool IsInterfaceVersionValid(string pchInterfaceVersion)
	{
		return OpenVRInterop.IsInterfaceVersionValid(pchInterfaceVersion);
	}

	public static uint GetInitToken()
	{
		return OpenVRInterop.GetInitToken();
	}

	public const uint k_nDriverNone = 4294967295;
	public const uint k_unMaxDriverDebugResponseSize = 32768;
	public const uint k_unTrackedDeviceIndex_Hmd = 0;
	public const uint k_unMaxTrackedDeviceCount = 16;
	public const uint k_unTrackedDeviceIndexOther = 4294967294;
	public const uint k_unTrackedDeviceIndexInvalid = 4294967295;
	public const ulong k_ulInvalidPropertyContainer = 0;
	public const uint k_unInvalidPropertyTag = 0;
	public const uint k_unFloatPropertyTag = 1;
	public const uint k_unInt32PropertyTag = 2;
	public const uint k_unUint64PropertyTag = 3;
	public const uint k_unBoolPropertyTag = 4;
	public const uint k_unStringPropertyTag = 5;
	public const uint k_unHmdMatrix34PropertyTag = 20;
	public const uint k_unHmdMatrix44PropertyTag = 21;
	public const uint k_unHmdVector3PropertyTag = 22;
	public const uint k_unHmdVector4PropertyTag = 23;
	public const uint k_unHiddenAreaPropertyTag = 30;
	public const uint k_unOpenVRInternalReserved_Start = 1000;
	public const uint k_unOpenVRInternalReserved_End = 10000;
	public const uint k_unMaxPropertyStringSize = 32768;
	public const uint k_unControllerStateAxisCount = 5;
	public const ulong k_ulOverlayHandleInvalid = 0;
	public const uint k_unScreenshotHandleInvalid = 0;
	public const string IVRSystem_Version = "IVRSystem_016";
	public const string IVRExtendedDisplay_Version = "IVRExtendedDisplay_001";
	public const string IVRTrackedCamera_Version = "IVRTrackedCamera_003";
	public const uint k_unMaxApplicationKeyLength = 128;
	public const string k_pch_MimeType_HomeApp = "vr/home";
	public const string k_pch_MimeType_GameTheater = "vr/game_theater";
	public const string IVRApplications_Version = "IVRApplications_006";
	public const string IVRChaperone_Version = "IVRChaperone_003";
	public const string IVRChaperoneSetup_Version = "IVRChaperoneSetup_005";
	public const string IVRCompositor_Version = "IVRCompositor_020";
	public const uint k_unVROverlayMaxKeyLength = 128;
	public const uint k_unVROverlayMaxNameLength = 128;
	public const uint k_unMaxOverlayCount = 64;
	public const uint k_unMaxOverlayIntersectionMaskPrimitivesCount = 32;
	public const string IVROverlay_Version = "IVROverlay_016";
	public const string k_pch_Controller_Component_GDC2015 = "gdc2015";
	public const string k_pch_Controller_Component_Base = "base";
	public const string k_pch_Controller_Component_Tip = "tip";
	public const string k_pch_Controller_Component_HandGrip = "handgrip";
	public const string k_pch_Controller_Component_Status = "status";
	public const string IVRRenderModels_Version = "IVRRenderModels_005";
	public const uint k_unNotificationTextMaxSize = 256;
	public const string IVRNotifications_Version = "IVRNotifications_002";
	public const uint k_unMaxSettingsKeyLength = 128;
	public const string IVRSettings_Version = "IVRSettings_002";
	public const string k_pch_SteamVR_Section = "steamvr";
	public const string k_pch_SteamVR_RequireHmd_String = "requireHmd";
	public const string k_pch_SteamVR_ForcedDriverKey_String = "forcedDriver";
	public const string k_pch_SteamVR_ForcedHmdKey_String = "forcedHmd";
	public const string k_pch_SteamVR_DisplayDebug_Bool = "displayDebug";
	public const string k_pch_SteamVR_DebugProcessPipe_String = "debugProcessPipe";
	public const string k_pch_SteamVR_DisplayDebugX_Int32 = "displayDebugX";
	public const string k_pch_SteamVR_DisplayDebugY_Int32 = "displayDebugY";
	public const string k_pch_SteamVR_SendSystemButtonToAllApps_Bool = "sendSystemButtonToAllApps";
	public const string k_pch_SteamVR_LogLevel_Int32 = "loglevel";
	public const string k_pch_SteamVR_IPD_Float = "ipd";
	public const string k_pch_SteamVR_Background_String = "background";
	public const string k_pch_SteamVR_BackgroundUseDomeProjection_Bool = "backgroundUseDomeProjection";
	public const string k_pch_SteamVR_BackgroundCameraHeight_Float = "backgroundCameraHeight";
	public const string k_pch_SteamVR_BackgroundDomeRadius_Float = "backgroundDomeRadius";
	public const string k_pch_SteamVR_GridColor_String = "gridColor";
	public const string k_pch_SteamVR_PlayAreaColor_String = "playAreaColor";
	public const string k_pch_SteamVR_ShowStage_Bool = "showStage";
	public const string k_pch_SteamVR_ActivateMultipleDrivers_Bool = "activateMultipleDrivers";
	public const string k_pch_SteamVR_DirectMode_Bool = "directMode";
	public const string k_pch_SteamVR_DirectModeEdidVid_Int32 = "directModeEdidVid";
	public const string k_pch_SteamVR_DirectModeEdidPid_Int32 = "directModeEdidPid";
	public const string k_pch_SteamVR_UsingSpeakers_Bool = "usingSpeakers";
	public const string k_pch_SteamVR_SpeakersForwardYawOffsetDegrees_Float = "speakersForwardYawOffsetDegrees";
	public const string k_pch_SteamVR_BaseStationPowerManagement_Bool = "basestationPowerManagement";
	public const string k_pch_SteamVR_NeverKillProcesses_Bool = "neverKillProcesses";
	public const string k_pch_SteamVR_SupersampleScale_Float = "supersampleScale";
	public const string k_pch_SteamVR_AllowAsyncReprojection_Bool = "allowAsyncReprojection";
	public const string k_pch_SteamVR_AllowReprojection_Bool = "allowInterleavedReprojection";
	public const string k_pch_SteamVR_ForceReprojection_Bool = "forceReprojection";
	public const string k_pch_SteamVR_ForceFadeOnBadTracking_Bool = "forceFadeOnBadTracking";
	public const string k_pch_SteamVR_DefaultMirrorView_Int32 = "defaultMirrorView";
	public const string k_pch_SteamVR_ShowMirrorView_Bool = "showMirrorView";
	public const string k_pch_SteamVR_MirrorViewGeometry_String = "mirrorViewGeometry";
	public const string k_pch_SteamVR_StartMonitorFromAppLaunch = "startMonitorFromAppLaunch";
	public const string k_pch_SteamVR_StartCompositorFromAppLaunch_Bool = "startCompositorFromAppLaunch";
	public const string k_pch_SteamVR_StartDashboardFromAppLaunch_Bool = "startDashboardFromAppLaunch";
	public const string k_pch_SteamVR_StartOverlayAppsFromDashboard_Bool = "startOverlayAppsFromDashboard";
	public const string k_pch_SteamVR_EnableHomeApp = "enableHomeApp";
	public const string k_pch_SteamVR_CycleBackgroundImageTimeSec_Int32 = "CycleBackgroundImageTimeSec";
	public const string k_pch_SteamVR_RetailDemo_Bool = "retailDemo";
	public const string k_pch_SteamVR_IpdOffset_Float = "ipdOffset";
	public const string k_pch_SteamVR_AllowSupersampleFiltering_Bool = "allowSupersampleFiltering";
	public const string k_pch_Lighthouse_Section = "driver_lighthouse";
	public const string k_pch_Lighthouse_DisableIMU_Bool = "disableimu";
	public const string k_pch_Lighthouse_UseDisambiguation_String = "usedisambiguation";
	public const string k_pch_Lighthouse_DisambiguationDebug_Int32 = "disambiguationdebug";
	public const string k_pch_Lighthouse_PrimaryBasestation_Int32 = "primarybasestation";
	public const string k_pch_Lighthouse_DBHistory_Bool = "dbhistory";
	public const string k_pch_Null_Section = "driver_null";
	public const string k_pch_Null_SerialNumber_String = "serialNumber";
	public const string k_pch_Null_ModelNumber_String = "modelNumber";
	public const string k_pch_Null_WindowX_Int32 = "windowX";
	public const string k_pch_Null_WindowY_Int32 = "windowY";
	public const string k_pch_Null_WindowWidth_Int32 = "windowWidth";
	public const string k_pch_Null_WindowHeight_Int32 = "windowHeight";
	public const string k_pch_Null_RenderWidth_Int32 = "renderWidth";
	public const string k_pch_Null_RenderHeight_Int32 = "renderHeight";
	public const string k_pch_Null_SecondsFromVsyncToPhotons_Float = "secondsFromVsyncToPhotons";
	public const string k_pch_Null_DisplayFrequency_Float = "displayFrequency";
	public const string k_pch_UserInterface_Section = "userinterface";
	public const string k_pch_UserInterface_StatusAlwaysOnTop_Bool = "StatusAlwaysOnTop";
	public const string k_pch_UserInterface_MinimizeToTray_Bool = "MinimizeToTray";
	public const string k_pch_UserInterface_Screenshots_Bool = "screenshots";
	public const string k_pch_UserInterface_ScreenshotType_Int = "screenshotType";
	public const string k_pch_Notifications_Section = "notifications";
	public const string k_pch_Notifications_DoNotDisturb_Bool = "DoNotDisturb";
	public const string k_pch_Keyboard_Section = "keyboard";
	public const string k_pch_Keyboard_TutorialCompletions = "TutorialCompletions";
	public const string k_pch_Keyboard_ScaleX = "ScaleX";
	public const string k_pch_Keyboard_ScaleY = "ScaleY";
	public const string k_pch_Keyboard_OffsetLeftX = "OffsetLeftX";
	public const string k_pch_Keyboard_OffsetRightX = "OffsetRightX";
	public const string k_pch_Keyboard_OffsetY = "OffsetY";
	public const string k_pch_Keyboard_Smoothing = "Smoothing";
	public const string k_pch_Perf_Section = "perfcheck";
	public const string k_pch_Perf_HeuristicActive_Bool = "heuristicActive";
	public const string k_pch_Perf_NotifyInHMD_Bool = "warnInHMD";
	public const string k_pch_Perf_NotifyOnlyOnce_Bool = "warnOnlyOnce";
	public const string k_pch_Perf_AllowTimingStore_Bool = "allowTimingStore";
	public const string k_pch_Perf_SaveTimingsOnExit_Bool = "saveTimingsOnExit";
	public const string k_pch_Perf_TestData_Float = "perfTestData";
	public const string k_pch_Perf_LinuxGPUProfiling_Bool = "linuxGPUProfiling";
	public const string k_pch_CollisionBounds_Section = "collisionBounds";
	public const string k_pch_CollisionBounds_Style_Int32 = "CollisionBoundsStyle";
	public const string k_pch_CollisionBounds_GroundPerimeterOn_Bool = "CollisionBoundsGroundPerimeterOn";
	public const string k_pch_CollisionBounds_CenterMarkerOn_Bool = "CollisionBoundsCenterMarkerOn";
	public const string k_pch_CollisionBounds_PlaySpaceOn_Bool = "CollisionBoundsPlaySpaceOn";
	public const string k_pch_CollisionBounds_FadeDistance_Float = "CollisionBoundsFadeDistance";
	public const string k_pch_CollisionBounds_ColorGammaR_Int32 = "CollisionBoundsColorGammaR";
	public const string k_pch_CollisionBounds_ColorGammaG_Int32 = "CollisionBoundsColorGammaG";
	public const string k_pch_CollisionBounds_ColorGammaB_Int32 = "CollisionBoundsColorGammaB";
	public const string k_pch_CollisionBounds_ColorGammaA_Int32 = "CollisionBoundsColorGammaA";
	public const string k_pch_Camera_Section = "camera";
	public const string k_pch_Camera_EnableCamera_Bool = "enableCamera";
	public const string k_pch_Camera_EnableCameraInDashboard_Bool = "enableCameraInDashboard";
	public const string k_pch_Camera_EnableCameraForCollisionBounds_Bool = "enableCameraForCollisionBounds";
	public const string k_pch_Camera_EnableCameraForRoomView_Bool = "enableCameraForRoomView";
	public const string k_pch_Camera_BoundsColorGammaR_Int32 = "cameraBoundsColorGammaR";
	public const string k_pch_Camera_BoundsColorGammaG_Int32 = "cameraBoundsColorGammaG";
	public const string k_pch_Camera_BoundsColorGammaB_Int32 = "cameraBoundsColorGammaB";
	public const string k_pch_Camera_BoundsColorGammaA_Int32 = "cameraBoundsColorGammaA";
	public const string k_pch_Camera_BoundsStrength_Int32 = "cameraBoundsStrength";
	public const string k_pch_audio_Section = "audio";
	public const string k_pch_audio_OnPlaybackDevice_String = "onPlaybackDevice";
	public const string k_pch_audio_OnRecordDevice_String = "onRecordDevice";
	public const string k_pch_audio_OnPlaybackMirrorDevice_String = "onPlaybackMirrorDevice";
	public const string k_pch_audio_OffPlaybackDevice_String = "offPlaybackDevice";
	public const string k_pch_audio_OffRecordDevice_String = "offRecordDevice";
	public const string k_pch_audio_VIVEHDMIGain = "viveHDMIGain";
	public const string k_pch_Power_Section = "power";
	public const string k_pch_Power_PowerOffOnExit_Bool = "powerOffOnExit";
	public const string k_pch_Power_TurnOffScreensTimeout_Float = "turnOffScreensTimeout";
	public const string k_pch_Power_TurnOffControllersTimeout_Float = "turnOffControllersTimeout";
	public const string k_pch_Power_ReturnToWatchdogTimeout_Float = "returnToWatchdogTimeout";
	public const string k_pch_Power_AutoLaunchSteamVROnButtonPress = "autoLaunchSteamVROnButtonPress";
	public const string k_pch_Power_PauseCompositorOnStandby_Bool = "pauseCompositorOnStandby";
	public const string k_pch_Dashboard_Section = "dashboard";
	public const string k_pch_Dashboard_EnableDashboard_Bool = "enableDashboard";
	public const string k_pch_Dashboard_ArcadeMode_Bool = "arcadeMode";
	public const string k_pch_modelskin_Section = "modelskins";
	public const string k_pch_Driver_Enable_Bool = "enable";
	public const string IVRScreenshots_Version = "IVRScreenshots_001";
	public const string IVRResources_Version = "IVRResources_001";
	public const string IVRDriverManager_Version = "IVRDriverManager_001";

	static uint VRToken { get; set; }

	const string FnTable_Prefix = "FnTable:";

	class COpenVRContext
	{
		public COpenVRContext() { Clear(); }

		public void Clear()
		{
			m_pVRSystem = null;
			m_pVRChaperone = null;
			m_pVRChaperoneSetup = null;
			m_pVRCompositor = null;
			m_pVROverlay = null;
			m_pVRRenderModels = null;
			m_pVRExtendedDisplay = null;
			m_pVRSettings = null;
			m_pVRApplications = null;
			m_pVRScreenshots = null;
			m_pVRTrackedCamera = null;
		}

		void CheckClear()
		{
			if (VRToken != GetInitToken())
			{
				Clear();
				VRToken = GetInitToken();
			}
		}

		public CVRSystem VRSystem()
		{
			CheckClear();
			if (m_pVRSystem == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRSystem_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRSystem = new CVRSystem(pInterface);
			}
			return m_pVRSystem;
		}

		public CVRChaperone VRChaperone()
		{
			CheckClear();
			if (m_pVRChaperone == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRChaperone_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRChaperone = new CVRChaperone(pInterface);
			}
			return m_pVRChaperone;
		}

		public CVRChaperoneSetup VRChaperoneSetup()
		{
			CheckClear();
			if (m_pVRChaperoneSetup == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRChaperoneSetup_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRChaperoneSetup = new CVRChaperoneSetup(pInterface);
			}
			return m_pVRChaperoneSetup;
		}

		public CVRCompositor VRCompositor()
		{
			CheckClear();
			if (m_pVRCompositor == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRCompositor_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRCompositor = new CVRCompositor(pInterface);
			}
			return m_pVRCompositor;
		}

		public CVROverlay VROverlay()
		{
			CheckClear();
			if (m_pVROverlay == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVROverlay_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVROverlay = new CVROverlay(pInterface);
			}
			return m_pVROverlay;
		}

		public CVRRenderModels VRRenderModels()
		{
			CheckClear();
			if (m_pVRRenderModels == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRRenderModels_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRRenderModels = new CVRRenderModels(pInterface);
			}
			return m_pVRRenderModels;
		}

		public CVRExtendedDisplay VRExtendedDisplay()
		{
			CheckClear();
			if (m_pVRExtendedDisplay == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRExtendedDisplay_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRExtendedDisplay = new CVRExtendedDisplay(pInterface);
			}
			return m_pVRExtendedDisplay;
		}

		public CVRSettings VRSettings()
		{
			CheckClear();
			if (m_pVRSettings == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRSettings_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRSettings = new CVRSettings(pInterface);
			}
			return m_pVRSettings;
		}

		public CVRApplications VRApplications()
		{
			CheckClear();
			if (m_pVRApplications == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRApplications_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRApplications = new CVRApplications(pInterface);
			}
			return m_pVRApplications;
		}

		public CVRScreenshots VRScreenshots()
		{
			CheckClear();
			if (m_pVRScreenshots == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRScreenshots_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRScreenshots = new CVRScreenshots(pInterface);
			}
			return m_pVRScreenshots;
		}

		public CVRTrackedCamera VRTrackedCamera()
		{
			CheckClear();
			if (m_pVRTrackedCamera == null)
			{
				var eError = EVRInitError.None;
				var pInterface = OpenVRInterop.GetGenericInterface(FnTable_Prefix+IVRTrackedCamera_Version, ref eError);
				if (pInterface != IntPtr.Zero && eError == EVRInitError.None)
					m_pVRTrackedCamera = new CVRTrackedCamera(pInterface);
			}
			return m_pVRTrackedCamera;
		}

		private CVRSystem m_pVRSystem;
		private CVRChaperone m_pVRChaperone;
		private CVRChaperoneSetup m_pVRChaperoneSetup;
		private CVRCompositor m_pVRCompositor;
		private CVROverlay m_pVROverlay;
		private CVRRenderModels m_pVRRenderModels;
		private CVRExtendedDisplay m_pVRExtendedDisplay;
		private CVRSettings m_pVRSettings;
		private CVRApplications m_pVRApplications;
		private CVRScreenshots m_pVRScreenshots;
		private CVRTrackedCamera m_pVRTrackedCamera;
	};

	private static COpenVRContext _OpenVRInternal_ModuleContext = null;
	static COpenVRContext OpenVRInternal_ModuleContext
	{
		get
		{
			if (_OpenVRInternal_ModuleContext == null)
				_OpenVRInternal_ModuleContext = new COpenVRContext();
			return _OpenVRInternal_ModuleContext;
		}
	}

	public static CVRSystem System { get { return OpenVRInternal_ModuleContext.VRSystem(); } }
	public static CVRChaperone Chaperone { get { return OpenVRInternal_ModuleContext.VRChaperone(); } }
	public static CVRChaperoneSetup ChaperoneSetup { get { return OpenVRInternal_ModuleContext.VRChaperoneSetup(); } }
	public static CVRCompositor Compositor { get { return OpenVRInternal_ModuleContext.VRCompositor(); } }
	public static CVROverlay Overlay { get { return OpenVRInternal_ModuleContext.VROverlay(); } }
	public static CVRRenderModels RenderModels { get { return OpenVRInternal_ModuleContext.VRRenderModels(); } }
	public static CVRExtendedDisplay ExtendedDisplay { get { return OpenVRInternal_ModuleContext.VRExtendedDisplay(); } }
	public static CVRSettings Settings { get { return OpenVRInternal_ModuleContext.VRSettings(); } }
	public static CVRApplications Applications { get { return OpenVRInternal_ModuleContext.VRApplications(); } }
	public static CVRScreenshots Screenshots { get { return OpenVRInternal_ModuleContext.VRScreenshots(); } }
	public static CVRTrackedCamera TrackedCamera { get { return OpenVRInternal_ModuleContext.VRTrackedCamera(); } }

	/** Finds the active installation of vrclient.dll and initializes it */
	public static CVRSystem Init(ref EVRInitError peError, EVRApplicationType eApplicationType = EVRApplicationType.VRApplication_Scene)
	{
		VRToken = InitInternal(ref peError, eApplicationType);
		OpenVRInternal_ModuleContext.Clear();

		if (peError != EVRInitError.None)
			return null;

		bool bInterfaceValid = IsInterfaceVersionValid(IVRSystem_Version);
		if (!bInterfaceValid)
		{
			ShutdownInternal();
			peError = EVRInitError.Init_InterfaceNotFound;
			return null;
		}

		return OpenVR.System;
	}

	/** unloads vrclient.dll. Any interface pointers from the interface are
	* invalid after this point */
	public static void Shutdown()
	{
		ShutdownInternal();
	}

}

}

Online Teaching/Vive/Properties/AssemblyInfo.cs

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("Vive")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("Vive")]
[assembly: AssemblyCopyright("Copyright © 2018")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("6b5e0d93-4b40-4a38-b9bd-27db47985eb2")]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

Online Teaching/Vive/Vive.csproj

 Debug
 AnyCPU
 {6B5E0D93-4B40-4A38-B9BD-27DB47985EB2}
 Library
 Properties
 Vive
 Vive
 v4.6.1
 512

 true
 full
 false
 bin\Debug\
 DEBUG;TRACE
 prompt
 4

 pdbonly
 true
 bin\Release\
 TRACE
 prompt
 4

 ..\Debug\ABB.Robotics.Math.dll

Online Teaching/Vive/ViveData.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using ABB.Robotics.Math;
using Valve.VR;

namespace Vive
{

 public class ViveData
 {
 internal Matrix4 _poseMatrix;
 internal Vector3 _position;
 internal Quaternion _orientation;
 internal Vector3 _velocity;
 internal Vector3 _angularVelocity;
 internal EDeviceActivityLevel _activityState;
 internal ButtonState _buttonPressed;

 public Matrix4 PoseMatrix { get { return _poseMatrix; } }
 public Vector3 Position { get { return _position; } }
 public Quaternion Orientation { get { return _orientation; } }
 public Vector3 Velocity { get { return _velocity; } }
 public Vector3 AngularVelocity { get { return _angularVelocity; } }
 public EDeviceActivityLevel ActivityState { get { return _activityState; } }
 public ButtonState ButtonPressed { get { return _buttonPressed; } }

 public ViveData()
 {

 }

 public struct ButtonState
 {
 public bool _trigger;
 public bool _grip;
 public bool _menu;
 public bool dPad_Up;
 public bool dPad_Down;
 public bool dPad_Left;
 public bool dPad_Right;
 }

 public enum ButtonMask
 {
 Menu = 0b10,
 Grip = 0b100,
 //Trigger = 0b100000000000000000000000000000000,
 }

 }
}

Online Teaching/Vive/ViveTracker.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Threading;
using ABB.Robotics.Math;
using Valve.VR;

namespace Vive
{
 public class ViveTracker
 {
 private ViveData _data;
 private ETrackingUniverseOrigin _trackingUniverse;
 private uint _deviceIndex;
 private Matrix4 _conversionMatrix = Matrix4.Identity;

 public ViveData Data { get { return _data; } }
 public ETrackingUniverseOrigin TrackingUniverse
 {
 get { return _trackingUniverse; }
 set { _trackingUniverse = value; }
 }
 public uint DeviceIndex { get { return _deviceIndex; } }

 public ViveTracker(uint deviceIndex)
 {
 _data = new ViveData();
 _trackingUniverse = ETrackingUniverseOrigin.TrackingUniverseStanding;
 _deviceIndex = deviceIndex;
 }

 public ViveTracker(uint deviceIndex, Matrix4 conversionMatrix)
 {
 _data = new ViveData();
 _trackingUniverse = ETrackingUniverseOrigin.TrackingUniverseStanding;
 _deviceIndex = deviceIndex;
 _conversionMatrix = conversionMatrix;
 }

 public void Initialize()
 {
 var error = EVRInitError.None;

 OpenVR.Init(ref error, EVRApplicationType.VRApplication_Background);

 }

 public void UpdateData()
 {
 VRControllerState_t state = new VRControllerState_t();
 TrackedDevicePose_t pose = new TrackedDevicePose_t();
 _data._activityState = OpenVR.System.GetTrackedDeviceActivityLevel(_deviceIndex);
 bool result = OpenVR.System.GetControllerStateWithPose(_trackingUniverse, _deviceIndex,
 ref state,System.Convert.ToUInt16(System.Runtime.InteropServices.Marshal.SizeOf(state)), ref pose);
 if (result)
 {

 _data._poseMatrix = _conversionMatrix * ConvertMatrix(pose.mDeviceToAbsoluteTracking);
 _data._position = _data._poseMatrix.Translation;
 _data._orientation = _data._poseMatrix.Quaternion;
 _data._buttonPressed._menu = 0 != (state.ulButtonPressed & 0b10);
 _data._buttonPressed._grip = 0 != (state.ulButtonPressed & 0b100);
 _data._buttonPressed._trigger = 0 != (state.ulButtonPressed & 0b1000000000000000000000000000000000);

 if (0 != (state.ulButtonPressed & 0b100000000000000000000000000000000))
 {
 if (state.rAxis0.x > 0.7)
 {
 _data._buttonPressed.dPad_Right = true;
 }
 else if (state.rAxis0.x < -0.7)
 {
 _data._buttonPressed.dPad_Left = true;
 }
 if (state.rAxis0.y > 0.7)
 {
 _data._buttonPressed.dPad_Up = true;
 }
 else if (state.rAxis0.y < -0.7)
 {
 _data._buttonPressed.dPad_Down = true;
 }
 }
 else _data._buttonPressed.dPad_Right = _data._buttonPressed.dPad_Left = _data._buttonPressed.dPad_Up = _data._buttonPressed.dPad_Down = false;

 }
 }

 public void HapticSinglePulse()
 {
 OpenVR.System.TriggerHapticPulse(_deviceIndex, 0, 1000);
 }

 public void HapticPulse(uint duration)
 {
 Task.Run(() => {
 for (uint i = 0; i < (duration / 5); i++)
 {
 HapticSinglePulse();
 Thread.Sleep(5);
 }
 });
 }

 internal Matrix4 ConvertMatrix(HmdMatrix34_t ViveMatrix)
 {
 Matrix4 matrix4 = new Matrix4();
 matrix4.x.x = ViveMatrix.m0;
 matrix4.x.y = ViveMatrix.m1;
 matrix4.x.z = ViveMatrix.m2;
 matrix4.x.w = 0;
 matrix4.y.x = ViveMatrix.m4;
 matrix4.y.y = ViveMatrix.m5;
 matrix4.y.z = ViveMatrix.m6;
 matrix4.y.w = 0;
 matrix4.z.x = ViveMatrix.m8;
 matrix4.z.y = ViveMatrix.m9;
 matrix4.z.z = ViveMatrix.m10;
 matrix4.z.w = 0;
 matrix4.t.x = ViveMatrix.m3 * 1000;
 matrix4.t.y = ViveMatrix.m7 * 1000;
 matrix4.t.z = ViveMatrix.m11 * 1000;
 matrix4.t.w = 1;

 return matrix4;
 }
 }
}

Online Teaching/Debug/ABB.Robotics.Controllers.PC.dll

Online Teaching/Debug/ABB.Robotics.Math.dll

Online Teaching/Debug/Google.ProtocolBuffers.dll

Online Teaching/Debug/Google.ProtocolBuffers.Serialization.dll

Online Teaching/Debug/GUI.exe

Online Teaching/Debug/openvr_api.dll

Online Teaching/Debug/RobotStudio.Services.RobApi.Desktop.dll

Online Teaching/Debug/RobotStudio.Services.RobApi.dll

Online Teaching/Debug/Testing.exe

Online Teaching/Debug/TrackerAPI.dll

Online Teaching/Debug/Vive.dll

Online Teaching/Debug/ViveTracker.dll

Online Teaching/Debug/WPFCustomMessageBox.dll

Online Teaching/GUI/bin/Debug/GUI.exe

Online Teaching/GUI/obj/Debug/GUI.exe

Online Teaching/obj/Debug/TempPE/Properties.Resources.Designer.cs.dll

Online Teaching/obj/Debug/TrackerAPI.dll

Online Teaching/obj/x86/Debug/MscAutoTest.dll

Online Teaching/obj/x86/Debug/TempPE/Properties.Resources.Designer.cs.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/cf20/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/cf20/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/cf35/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/cf35/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net20/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net20/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net35/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net35/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net40/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/net40/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/portable-net40+sl4+sl5+wp7+wp8+win8/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/portable-net40+sl4+sl5+wp7+wp8+win8/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl20/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl20/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl30/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl30/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl40/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/lib/sl40/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/Google.ProtocolBuffers.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/Google.ProtocolBuffers.Serialization.dll

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/ProtoBench.exe

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/protoc.exe

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/ProtoDump.exe

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/ProtoGen.exe

Online Teaching/packages/Google.ProtocolBuffers.2.4.1.555/tools/ProtoMunge.exe

Online Teaching/Vive/bin/Debug/ABB.Robotics.Math.dll

Online Teaching/Vive/bin/Debug/Vive.dll

Online Teaching/Vive/obj/Debug/Vive.dll

Eivind Sandve Haus
Online Teaching C# and RAPID source code

	0063_001
	msc-3d-teaching
	List of Figures
	Code excerpts
	Introduction
	Industrial painting
	Automation of spray painting
	This project's idea
	Defining the tasks
	Structure of the report

	Prerequisites
	Motion tracking
	HTC Vive
	OpenVR API

	Robotics
	3D transformations
	ABB robots
	Externally Guided Motion - EGM
	Simplified Robot Programming - SRP

	Programming tools

	Implementation
	Hardware
	Software
	ViveTracker
	Simplified Robot Programming
	System overview
	Implementing new sensor
	New recording mode
	Reachability checking

	Online Teaching
	System overview
	Robot program
	PC application
	Continuous mode
	Point to point mode

	Tests and results
	Simplified Robot Programming
	Continuous recording
	Point to point recording
	Reachability checker

	Online Teaching
	Continuous mode
	Point to point mode

	Discussion
	Hardware
	Sensor system
	Controller

	ViveTracker interface
	Simplified Robot Programming
	Recording mode
	Reachability checking
	Improvements and future work

	Online Teaching
	Calibration and recording
	Possible solutions to singularity problems
	Improvements and future work

	Conclusion
	References
	Appendices
	Online Teaching source code

