
  



Preface 

The objective with this thesis is to assess recent advances in decision theory under uncertainty and 

to find out whether these can be used as an extension to the decision analysis normally performed 

in the industry.  

Oil companies put a lot of effort into reducing the uncertainties in their decision making and invest 

in extensive exploration and front end study activities prior to project sanction. After a project is 

sanctioned the companies select reliable contractors and monitor performance closely to reduce 

uncertainties and ensure predictable project execution. Decision analysis may be performed to 

support decision making at several of these key stages of a project development where identified 

uncertainties are described by the use of probability distributions and Monte Carlo simulations. 

The analysis results are then normally represented by an uncertainty range and an expected value 

of the observable quantities. A qualitative judgement process or management review process is 

then performed to define a margin that addresses the uncertainty in the results.  

Recent advances in decision theory do however have a potential to extend the quantitative 

modelling approach beyond current decision analysis practise. In this thesis, recent advances in 

decision theory models have been assessed and an attempt is made to capture the uncertainties and 

define a single equivalent sure amount for various types of decision problems. The single 

equivalent sure amount value defined by these extended decision analysis models can potentially 

support rational decision making and serve as a potential improvement to the management review 

process of decisions associated with uncertainty. 

There are numerous papers to be found that describe normative and descriptive theoretical models 

for decision analysis, but very few of these are able to translate their theory into practical 

applications. The paper from Borgonovo & Marinacci (2015) that describe decisions under 

ambiguity do however stand out as an exception to the rest. This excellent paper describes the 

theoretical basis and illustrates this theory with numerical analysis of relevant decision problems.     

 

In-depth interviews of a selected group of decision makers are included in the qualitative research 

to assess whether the theoretical models of decision analysis associated with uncertainty are known 

and used by the industry. Scenarios were also included in the in-depth interviews in order to see 

how consistent decision makers are when subject to decision problems associated with various 

forms of uncertainty. 

  

Decision problems have been analysed that includes uncertainties relating to business risk, cost 

risk, production risk and accident risk. The theory and methods for decision analysis under risk 

and ambiguity are intended to give useful information that support rational decision making and 

improve the basis for decision support.    

 

Per Inge Nag 

11.06.2018
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1. Introduction 

We all have to make a lot of important decisions during our lifetime. These decisions are typically 

associated with uncertainties and can among other things be related to choice of friends, lifetime 

partner, education, career or where to settle down and when to retire. Some of these uncertainties 

are known phenomena that can be reasonably well defined by random variations. Other types of 

uncertainties are unknown and are not that easy to define by random variations based on the 

information available at the time of the decision.  These unknown or un-measureable uncertainties 

can for example be related to the choice to move to a new city where you do not know anyone or 

the choice of an education where you do not have any prior knowledge. In business life, oil 

companies are also faced with these types of measureable and un-measureable uncertainties in 

their decision making. The measureable uncertainties are normally defined by the use of 

probability distributions that describe the random variation of the relevant phenomena. The un-

measureable uncertainties are more difficult to describe by the use of probability distribution as 

these refers to unknown phenomena’s as a result of lack of information. Consequently if more 

relevant information is made available, the un-measureable uncertainty can be reduced. Oil 

companies do therefore invest in several activities in order to reduce the un-measureable 

uncertainties in their decision making. Exploration and appraisal wells and seismic surveys are 

performed to collect as much information as possible about the location and size of a reservoir. 

Front end studies are performed to define the solution and cost of a field development project prior 

to project sanction. Information of potential contractor’s previous experience and performance is 

gathered and evaluated by the oil companies prior to contract awards to ensure predictable project 

execution within time and cost.  

Sometimes in our lives, we take wrong decisions due to ignorance or simply bad judgement. We 

then have to live with the consequences which could eventually be broken relationships, lost 

opportunities or other types of losses. In the business world, we also sometimes see that oil 

companies make decisions that result in project delivery failures or lost production. These 

decisions could also be a result of ignorance of the uncertainties or bad judgement of the potential 

outcomes. This could for example be in relation to the choice of novel platform concepts or the 

choice of contractors with limited or no experience with implementation of the function-based 

regulations specific for the Norwegian Continental Shelf (NCS) as defined by the NORSOK1) 

standards. We have in the past even seen projects consisting of novel platform concepts that are to 

be delivered by contractors with limited or no NORSOK experience. In Stavanger Aftenblad, 8th 

of May 2018, we can read about the decisions made in the 80’s and 90’s to place platform contracts 

to yards in Asia. These Asian yards had limited NORSOK experience and it was probably not 

known at the time how big impact this lack of NORSOK experience actually had on the project 

delivery. In retrospect we can see that there are large cultural differences between how work is 

managed and executed in a Norwegian and an Asian Yard.  

1) The acronym NORSOK stands for “the Norwegian shelf’s competitive position”. The 

NORSOK standards serve as references to the authorities regulations and have been in use since 

1994 to ensure adequate safety, value adding and cost effectiveness within development and 

operation of petroleum assets and activities. 
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The cultural differences will also influence how the functional requirements given in Norwegian 

rules and regulations are interpreted and implemented. Did the oil company consider that the prices 

and schedules from an Asian yard had the same predictability as for a Norwegian Yard? The oil 

companies were in these decision problems most likely faced with elements of un-measureable 

uncertainties in relation to the consequence of poor knowledge and understanding of Norwegian 

rules and regulations as defined by the NORSOK standards. These un-measureable uncertainties 

were probability not properly captured by the decision analysis available at the time. The 

consequences of some of these decisions were large cost overruns, significant delays and poor 

quality. A significant amount of rework that caused further delays also had to be done by 

Norwegian yards to ensure that the new platforms satisfied the mandatory functional requirements. 

There are also recent examples of platform projects where the implementation of mandatory 

functional requirements are suspended to the offshore location. These decisions to move large 

portions of the mechanical completion to the offshore location opens up for new both measurable 

and un-measureable uncertainties with an increased potential for cost overruns and delays.     

One of the reasons that Norwegian Yards gets a higher share of platform contracts in the recent 

years could be that the un-measureable uncertainties with respect to the use of Asian yard are 

shifted to measureable uncertainties in recent decision analysis. Recent decision analysis can then 

describe random variations for this phenomena of measureable uncertainty based on the past 

experience of de facto negative outcomes.  

With respect to choice of facility concepts we can also see that oil companies may have different 

preferences. A recent article in Dagens Næringsliv, 7th of May 2018, refers to a current discussion 

between two oil companies on the concept selection for a new field development. One of the 

license partners wants to have a single integrated process platform while the other license partner 

wants to have several smaller wellhead platforms. These different views could be caused by 

different economic drivers. The different views could also be caused by subjective preferences and 

experiences or biased views to the un-measureable uncertainties related to the execution and 

production of the proposed facility concepts. The decision analysis results will then largely depend 

on the respective oil company’s assessments of the level of un-measureable uncertainties and how 

these are balanced with their subjective preferences and experiences. 

The un-measureable uncertainties described in the above examples are, in a decision analysis 

context, commonly termed as ambiguity. Ambiguity can both refer to non-uniqueness, inability or 

lack of information to describe the uncertainty of a decision problem. The measureable 

uncertainties are, on the other hand, commonly termed as risk in a decision analysis context.   

The objective with this thesis is to assess if quantitative models can be introduced to give 

preferences and margins when subject to both measureable uncertainties (risk) and un-measureable 

uncertainties (ambiguity). This assessment of quantitative models will be based on recent advances 

in decision theories and can potentially provide useful additional decision support information 

beyond current industry practice. 

1.1  Background 

A project manager may have to handle different types of decision problems and uncertainties in a 

project’s life cycle. Common capital value processes are however implemented by the industry to 
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capture uncertainty and ensure a staged maturing and definition of a project development. The 

common capital value processes include the decision gates DG1, DG2 and DG3. Decision gate 

DG1 is based on the uncertainties and the technical and cost accuracy described by the feasibility 

study for a project development. Decision gate DG2 is based on the uncertainties and the technical 

and cost accuracy described by the concept study for a project development. Decision gate DG3 is 

based on the uncertainties and the technical and cost accuracy described by the FEED study for a 

project development.   

The types of decision problems that need to be assessed at the decision gates may involve economic 

risks and accidental risks (Aven, 2012).  The decision process that the project manager is expected 

to follow is a value process for decision making under uncertainty (Aven, 2015). This decision 

process starts with a definition of the decision problem and a description of the decision 

alternatives. The next step in the decision process is to perform analysis and evaluations which 

may include risk analyses and decision analyses.  

In decision analysis, the element of risk and uncertainty are assessed by the use of probability 

distributions and Monte Carlo simulations. The analysis results are normally represented by 

expected values and confidence intervals that describe an uncertainty range of the observable 

quantities. Normally the decision analysis stops with the description of the expected value and the 

uncertainty range and a qualitative judgement is performed to define a margin to address the 

uncertainty in the results. The risk and decision analyses and evaluations are subject to value based 

assessments in the form of a management review and judgement process and a stakeholders review 

process. The value based assessments are also evaluating and expected to take due account of 

uncertainties that are not covered by the risk and decision analyses. These uncertainties can lead 

to the implementation of additional precautionary or cautionary measures or other actions that will 

be part of the final risk picture which will form the basis for the decision making. 

In this thesis, the objective is to go one step further in the quantitative decision analysis and include 

analytical models that define margins or premiums for risk and ambiguity. These margins or 

premiums can be used to define a single equivalent sure amount as additional information to the 

expected value and uncertainty range. This information about an equivalent sure amount can 

potentially be used as a guide for rational decision making when qualitative judgements are 

performed. 

1.2  Scope and limitations 

This thesis includes a detailed review of relevant decision theory, qualitative research in the form 

of peer group interviews and quantitative assessments of selected decision problems. The 

assessments performed are referring to the analytical and bureaucratic decision setting (Aven, 

2012) where decisions are made based on strategic decision analysis which may include detailed 

processes of identifying alternatives and based on analysis of probabilities and consequences.  

The concepts and theories relating to decision analysis with risk and ambiguity have been reviewed 

and included in section 2. References have been made to relevant sources of information consisting 

of articles and books found through the UiS library databases. The detailed review is performed 

with an emphasis on identifying quantiative models and methods that can be used by a project 
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manager to perform a rational subjective assessment along with an estimate of the uncertainty for 

his decision alternatives. The relevant decision theories are selected based on the ability to identify 

preferences in outcome sets where the occurrence of only some of the outcomes have a defined 

probability. The other outcomes are then subject to ambiguity in the form of undefined probability.  

The descriptive theories of decision making is only briefly described as these need to be supported 

by extensive specific qualitative research that is beyond the scope of this thesis.  

The research question that has been driving the qualitative research is basically to assess if decision 

theory under ambiguity is known and used by the industry. The quality research performed has 

been in the form of in-depth interviews of a selected peer group. The results of the qualitative 

research described in section 3 are based on a subjective assessment of the responses from the 

members of the peer group.  

Quantiative assessments of selected decision problems in relation to economic risk and accident 

risk have been performed. In section 4, a business risk decision problem related to running or 

withdrawing from a car race has been analysed. In section 5, analysis is performed for a typical 

cost risk decision problem of defining the project contingency for a project cost estimate. In section 

6, a production risk decision problem is analysed regarding the ranking of project development 

scenarios. In section 7, a decision problem associated with accident risk is included that analyse 

whether or not a subsea safety isolation valve (SSIV) need to be installed.      

Analysis and discussions  to the above assessments of decision theory and their application are 

included in section 8. A conclusion of the assessment of ambiguity in decision analysis is given in 

section 9.   
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2. Theoretical models for decision analysis with ambiguity 

A literature review is performed to identify potential decision theories that address uncertainties 

in a decision problem. A detailed review and screening of the identified potential decision theories 

is done to see whether these can define preferences in a three-color decision problem (Ellsberg, 

1961) with elements of both risk and ambiguity.   

2.1  Literature review 

The literature review identify the relevant theoretical basis for decision analysis under uncertainty 

and how these theories correspond and interface with general theories of risk and uncertainty. The 

literature review also identify the relevant basis and standards for decision problems in relation to 

business risk, production risk, cost risk and accidental risk.    

2.1.1  Decision theories 

The expected value method is commonly used in decision analysis and originates from portfolio 

theory (Markowitz, 1952), (Abrahamsen, et al., 2004), (Aven, 2012) . The expected value is 

represented by the average value of the portfolio. The variance of the portfolio is represented by 

the sum of the average variance of the non-systematic risk and the covariance of the systematic 

risk. The expected value method is recommended used in decision problems associated with low 

uncertainty (Soerskaar & Abrahamsen, 2017). The expected value method has remained as a pillar 

in value propositions and net-present value analysis (Bratvold & Begg, 2009), (Willigers, et al., 

2017).  

The expected utility theory (von Neumann & Morgenstern, 1947) and the subjective expected 

utility theory (Savage, 1954) also referred to as Bayesian decision theory (Lindley, 1985) have for 

a long period been the governing framework of decision theory when associated with rational 

decision making under uncertainty. The subjective expected utility was defined as a function of 

the subjective probabilities (Ramsey, 1931) and the utility functions (von Neumann & 

Morgenstern, 1947) for an outcome set. A reduced state space for the subjective expected utility 

was introduced by a two-staged lottery and horse-race definition of the subjective probabilities 

(Anscombe & Aumann, 1963). 

The Wald maximin criterion (Wald, 1949) define the preferences for an extreme risk and 

ambiguity averse decision maker. The maximin criterion has been further generalised in maxmin 

expected utility which define a function of multiple priors and outcomes (Gilboa & Schmeidler, 

1989).  

The axioms and postulates that represent the basis for the subjective expected theory of rational 

decision making have been challenged over the years. Case studies were presented in 1953 by 

Allais and in 1961 by Ellsberg (1961) that showed that a decision maker may struggle to select his 

preferences when faced with un-measureable uncertainty in his decision problems.  

Descriptive decision theories were developed to capture the cognitive thinking behind human 

action based on decision weighting and non-additive probabilities (Quiggin, 1982), (Schmeidler, 

1989), (Kahneman & Tversky, 1992), (Tuthill & Frechette, 2002), (Hampel, 2009), (Aerts & 

Sozzo, 2015), (dos Santos, et al., 2018). It was found that people in both experimental and real life 

situations do not conform to the axioms and postulates that the expected utility and the subjective 
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expected utility are based on (Quiggin, 1982). Anticipated utility theory (Quiggin, 1982) and the 

non-expected utility theories (Tuthill & Frechette, 2002); weighted expected utility, rank 

dependent utility, also called Choquet expected utility, and cumulative prospect theory was 

therefore introduced. These theories are associated with a weaker set of axioms than the expected 

utility axioms. The weaker axioms permits the use of decision weights of non-additive 

probabilities. Tests of the Choquet expected utility (Mangelsdorff & Weber, 1994) concluded that 

the Choquet expected utility was not superior to the expected utility theory when defining 

preferences in the Ellsberg three-color problem (Ellsberg, 1961).  

The normative and descriptive decision theories seem to have very different perspectives. The 

normative decision theories are based on a set of axioms and postulates that define rational decision 

making (Howard, 1988). The descriptive decision theories are based on cognitive testing on how 

people actual make their decisions (Howard, 1988).  The descriptive decision theories are therefore 

based on tests and case studies on how decision makers do behave as opposed to the normative 

decision theory that prescribe how a decision maker should behave. The independence axiom and 

the sure-thing principle defined in the normative decision theories are replaced by weaker axioms 

in the descriptive decision theories to align with tested human behaviour (Howard, 1988).  As 

noted in Howard (1988), it is a descriptive fact that most of us can make mistakes in arithmetic 

calculations, but it is the normative rules of arithmetic that allows us to recognize a mistake. A 

similar relationship exists between normative and descriptive theories in decision analysis 

(Howard, 1988). The acceptance of the normative decision theory thus allows us to recognize our 

decision mistakes (Howard, 1988).     

In recent decision theory literature (Klibanoff, et al., 2005), (Eichberger & Kelsey, 2007), (Gilboa 

& Marinacci, 2011), (Etner, et al., 2012), (Klibanoff, et al., 2012), (Cerreia-Vioglio, et al., 2013a), 

(Maccheroni, et al., 2013), (Borgonovo & Marinacci, 2015), (Hansen & Marinacci, 2016) 

uncertainties are divided into two categories. Uncertainties that can be defined by a probability 

distribution is termed “risk” while uncertainties where the decision maker is not able to specify a 

unique probability distribution is termed “ambiguity”.  

The Smooth Ambiguity Functional (Klibanoff, et al., 2005) and the Extended Arrow-Pratt 

quadratic estimation method (Maccheroni, et al., 2013) are advances to the subjective expected 

utility. These are developed to incorporate the elements of both “risk” and “ambiguity” and the 

decision maker’s risk and ambiguity aversion in the analysis of a decision problem. The Smooth 

Ambiguity Functional (Klibanoff, et al., 2005) introduces second order probabilities of the 

predicted probability for an uncertain outcome. The second order probabilities are a probability 

distribution that introduces a variation in the definition of the predicted probability.  The Smooth 

Ambiguity Functional calculates a risk and ambiguity premium for a decision problem (Klibanoff, 

et al., 2005). The Extended Arrow-Pratt Quadratic estimation (Maccheroni, et al., 2013) can be 

used to provide an estimate of the split between a premium of risk and a premium of ambiguity of 

the risk and ambiguity premium found by the Smooth Ambiguity Functional.  

Quantitative methods are introduced (Borgonovo & Marinacci, 2015) by the use of the Smooth 

Ambiguity Functional (Klibanoff, et al., 2005) and the Extended Arrow-Pratt Quadratic estimation 
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(Maccheroni, et al., 2013) to resolve the decision maker’s preferences in the Ellsberg three-color-

problem (Ellsberg, 1961) and the Carter racing decision problem (Brittain & Sitkin, 1990).  

2.1.2  The bridge between risk and decision theory 

In risk analysis literature (Ramsey, 1931), (Kaplan & Garrick, 1981), (Aven, 2012), (Aven, et al., 

2014), (Aven, 2014), (Aven, 2015), (Soerskaar & Abrahamsen, 2017) the term “risk” is 

recommended to have a broader definition. Risk is here defined by the two main dimensions 

consequences, (C), and uncertainties, (U) (Aven, 2015). The risk description is defined by 

specified consequences and a descriptive measure of the uncertainty (Q). Probability distributions 

are normally used as the descriptive measure of the uncertainty (Q), where subjective probabilities 

are assigned to both of the categories of uncertainty described in the decision theory literature.  

A clear distinction is however made between “aleatory” and “epistemic” uncertainty in risk 

analysis (Aven, 2012), (Aven, et al., 2014). An aleatory uncertainty can be described by both 

subjective and frequentist probabilities in order to describe a natural variation of a phenomena. 

This type of phenomena can however, not necessarily be reduced as more information becomes 

available. An epistemic uncertainty can only be described by subjective probabilities as this 

uncertainty is a result of lack of information. The epistemic uncertainty can therefore be reduced 

if more information becomes available.  

The aleatory and epistemic uncertainties defined in risk analysis do represent an important bridge 

between the risk analysis and the decision analysis that may result in improved decision support 

(Pate-Cornell & Dillon, 2006), (Pate-Cornell, 2007), (Borgonovo, et al., 2015), (Borgonovo, et al., 

2016), (Borgonovo, et al., 2018).  

2.1.3  Risk and ambiguity aversion 

In the past, risk attitudes or risk tolerance have been subject to empirical studies and analysis within 

the petroleum industry (Spetzler, 1968), (Walls, et al., 1995), (Walls & Dyer, 1996), within large 

corporations (Howard, 1988), (Pate-Cornell & Fischbeck, 1992), (Smith, 2004) and within the 

health sector (Treich, 2010). A decision-theoretic status on risk attitudes is presented by Baccelli 

(2017).  

Ambiguity and a decision maker’s attitude towards ambiguity were found by the experiments 

introduced by Allais and Ellsberg (1961). Ambiguity refers to a decision situation under 

uncertainty when there is incomplete information about the likelihood of events (Eichberger & 

Kelsey, 2007). In the Ellsberg experiments it was found that the decision maker would have a 

preference for betting on events with defined probability distributions (Ellsberg, 1961), 

(Eichberger & Kelsey, 2007). The decision maker can be either ambiguity neutral or ambiguity 

averse (Etner, et al., 2012). The dominating behavior for a decision maker in the gain domain 

(upsides) is ambiguity aversion while the dominating behavior for a decision maker in the loss 

domain (downside) is ambiguity neutrality (Etner, et al., 2012).   Negative attitude or aversion 

towards ambiguity do however not seem to hold in situations where the decision maker feels 

comfortable with the situation despite the presence of unknown probabilities (Eichberger & 

Kelsey, 2007).      
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Risk and ambiguity aversion are included in the recent advances in decision theory (Klibanoff, et 

al., 2005), (Maccheroni, et al., 2013), (Borgonovo & Marinacci, 2015). 

2.1.4  Business risk decisions  

The challenger launch decision (Brittain & Sitkin, 1990), (Liedtka, 1990) has been used by many 

organisations as a case study for training in decision making exposed to risk and ambiguity. The 

objective with this training in decision making is to address how actions derived from quantitative 

analysis are implemented using organisational mechanisms and behavioural interventions (Brittain 

& Sitkin, 1990).  

Quantitative analysis performed for the Carter racing case (Borgonovo & Marinacci, 2015) is a 

stylised example of a business risk decision that refers to the Challenger Launch Decision.  

2.1.5  Production risk decisions  

Production risk refers to uncertainties associated with a certain performance measure (Aven, 2012) 

and can refer to potentially reduced production efficiency as a result of downtime caused by 

equipment failures and maintenance or as a result of subsurface production issues. The production 

system for a field development consists of complex subsystems for reservoir, wells and facilities. 

These subsystems are typically treated independently in both design and operations (Chow & 

Arnondin, 2000) and the relevant components of the system have historically been optimised on 

the basis of the local subsystem instead of the overall global production system (Chow & 

Arnondin, 2000). Risk based integrated production models are introduced (Chow & Arnondin, 

2000), (Chow, et al., 2000) (Fassihi, et al., 2000) to quantify and manage uncertainty associated 

with field-development design, implementation and operation. 

2.1.6  Cost risk decisions  

Cost risk refers to uncertainties associated with project cost estimates (Aven, 2012). Cost risk has 

been analysed in cost engineering forums with the objective to improve the predictability of project 

cost estimates (Dillon, et al., 2002), (Burger, 2003), (Sauser, et al., 2009), (Howell, et al., 2010), 

(Olumide, et al., 2010), (Idrus, et al., 2011), (van Niekerk & Bekker, 2014). Standard practices on 

the definitions and guidelines on the use of allowance, contingency and reserves in project cost 

estimates for the building industry have been developed (ASTM-E1946, 2012), (ASTM-E1369, 

2015), (ASTM-E2168, 2016). Deviation in the definition of allowance is found between standard 

practice (ASTM-E2168, 2016) and the previous paper presented by Karlsen & Lereim (2005).  

2.1.7  Accident risk decisions  

An extended risk and performance perspective is recommended (Aven, 2014) to address accidental 

risk associated with large uncertainties and potential high consequences. An extreme safety 

perspective is defined for decisions associated with large uncertainties and potential high 

consequences (Soerskaar & Abrahamsen, 2017). Pre-cautionary and cautionary measures are the 

governing principle in an extreme safety perspective (Soerskaar & Abrahamsen, 2017). 
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2.2 A closer look at relevant theoretical models 

The normative and descriptive models identified in the literature review originates from the first 

principles of portfolio theory and expected utility theory. Table 2.1 give an overview of the first 

generation models that have been developed and the recent advances.  

 

First principles 

 

 

First generation models 

 

Recent advances 

Portfolio 

theory1) (1952) 

 

Expected value method1) 

 

 

Arrow-Pratt quadratic estimation1) 

 

Extended Arrow-Pratt 

quadratic estimation1) (2013) 

 

Expected utility 

theory1) (1947) 

Wald maximin functional1) (1949) 

 

Maxmin expected utility1) 

(2011) 
 

 

Subjective expected utility1) (1954) 
 

Smooth ambiguity functional1) 

(2005) 

 

Choquet 

expected utility  

theory2)(1989) 

Cumulative 

prospect 

theory2) (1994) 

 

1) Normative  

2) Descriptive 

Table 2.2.1 Overview of theoretical models for decision analysis with ambiguity 

The above theories and models are supposed to define the preferences in a decision problem based 

on the decision maker’s attitudes to risk and ambiguity. The decision maker’s attitude to risk can 

be risk neutral, risk averse or risk seeking (Lindley, 1985). A decision maker has a risk neutral 

attitude if negative or positive outcomes are given the same weighting. A decision maker has a 

risk averse attitude if negative outcomes are given higher weighting than positive outcomes. A 

decision maker has a risk seeking attitude if positive outcomes are given higher weighting than 

negative outcomes. Ambiguity and ambiguity aversion are found in the famous case studies of two 

urns with known and unknown numbers of white and black balls (Ellsberg, 1961) and the three-

color-problem (Ellsberg, 1961). The decision maker’s attitude to ambiguity can be ambiguity 

neutral or ambiguity averse (Etner, et al., 2012). Ambiguity aversion is found to be the dominating 

behavior for a decision maker in the gain domain (upsides) while ambiguity neutrality is found to 

be the dominating behavior for a decision maker in the loss domain (downside) (Etner, et al., 

2012).      
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The expected value method is derived from the normative portfolio theory (Markowitz, 1952) and 

represents a linear combination of payoffs and probabilities. The expected value method is 

considered to be a risk neutral approach. The expected utility theory (von Neumann & 

Morgenstern, 1947) is a value representation that can include aversion to risk or loss by a utility 

function. A rational decision maker is then supposed to maximize the expected utility by a linear 

combination of utilities and lotteries described by objective probabilities. The expected utility is a 

normative theory which means that it gives a prescription of a rational decision maker. Subjective 

expected utility (Savage, 1954) is a further development of expected utility theory where the 

lotteries are redefined as acts and the objective probabilities are redefined as subjective 

probabilities.  A rational decision maker is, in the framework of subjective expected utility, also 

maximizing expected utility as a linear combination of utilities and probabilities, and can also have 

utility functions that includes aversion to risk. The subjective expected utility is considered to be 

an ambiguity neutral approach (Etner, et al., 2012). The preferences to an extreme risk and 

ambiguity averse or maxmin decision maker is the minimum of the worst consequences of an 

outcome set (Wald, 1949). The maxmin expected utility (Gilboa & Schmeidler, 1989) is a further 

generalization of the Wald maximin criterion. Maxmin expected utility is based on multiple priors 

for the outcome set where the decision maker will make his preferences by comparing the minimal 

expected utility of two decision alternatives (Etner, et al., 2012). The Extended Arrow-Pratt 

Quadratic Estimation method (Maccheroni, et al., 2013) is based on the portfolio theory of mean, 

variance and covariance and introduce parameters for risk aversion and ambiguity aversion. The 

Smooth Ambiguity Functional (Klibanoff, et al., 2005) is a further development of the subjective 

expected utility theory, where the ambiguity aversion is introduced as a second order function of 

the utility function. The Choquet Expected Utility theory (Schmeidler, 1989) (Mangelsdorff & 

Weber, 1994) is an extension to subjective expected utility theory that is based on non-additive 

probabilities. The Choquet Expected Utility theory is a descriptive theory that cover situations 

where the outcomes are only negative or only positive. The cumulative prospect theory (Kahneman 

& Tversky, 1992) is based on the descriptive Choquet Expected Utility theory. The cumulative 

prospect theory describes how a person makes his choice based on his individual reference point 

and attitude towards loss and gain.  

In Soerskar & Abrahamsen (2017), two extreme perspectives are defined that reflects the high and 

low levels of uncertainty and consequence in a decision problem. These perspectives are shown in 

Figure 2.1. An extreme economic perspective reflects a decision context with low uncertainties 

and low consequences. An extreme safety perspective reflects a decision context with high 

uncertainties and high consequences.   Decision problems that belongs to an extreme economic 

perspective can thus be analysed by use of cost-benefit analysis that are based on expected values. 

Cost-benefit analysis based on expected values should, however, not be used for decision problems 

that belongs to an extreme safety perspective. The cautionary principle should then be followed 

and relevant cautionary and pre-cautionary measures should be introduced with no references to 

cost-benefit analysis nor cost-effectiveness analysis according to Soerskar & Abrahamsen (2017). 
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Figure 2.2.1 Extreme Perspectives on Uncertainty and Consequence 

As shown in the above figure, there seem to be a gap between contexts with low uncertainty, 

referred to as an extreme economic perspective (Soerskaar & Abrahamsen, 2017), and contexts 

with high uncertainty referred to as an extreme safety perspective where no quantitative models 

can be used according to Soerskaar & Abrahamsen (2017).   

Can quantitative models be developed based on the decision theoretical models derived from 

portfolio theory or expected utility theory, and then be used to analyse the uncertainties that are 

referred to in the extreme safety perspective? Maybe some portion of the uncertainty in an extreme 

safety perspective can be better understood if quantitative models were introduced? 

An assessment of the theoretical models given in table 2.2.1 is therefore performed to find out if 

some of these models can capture uncertainty associated with risk and ambiguity, and define 

preferences in the decision problems described by the Ellsberg three-color problem (Ellsberg, 

1961). The Ellsberg three-color problem (Ellsberg, 1961) is described in the next chapter and is a 

decision problem where the decision maker is faced with elements of both risk and ambiguity as a 

result of insufficient information.  

  

High 

Consequence

Low 

Consequence

High UncertaintyLow Uncertainty

An Extreme Safety Perspective

• Cautionary and pre-cautionary 

measures

An Extreme Economic Perspective

• Cost-benefit analysis
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2.2.1 The Ellsberg three-color problem 

The table below show the Ellsberg three-color problem, with the acts f, g, f’ and g’ and the 

corresponding payoff if you draw a specified ball from an urn consisting of red, blue and yellow 

balls. We know that the number of red balls in the urn is 
1

3
  while the number of blue and yellow 

balls are not known.  

 Act 

Payoff 

Red Blue Yellow 

f 100 0 0 

g 0 100 0 

f' 100 0 100 

g' 0 100 100 

 

The outcome space S is defined as S ϵ (Red ball, Blue ball, Yellow ball) and the probability to 

draw a red ball are by the information given described as, P(Red) = 
1

3
 . The probability to draw a 

blue ball P(Blue) or the probability to draw a yellow ball P(Yellow) is however not possible to 

describe based on the information given. We do however know that the probability of drawing 

either a blue or yellow ball is described by P(Blue) + P(Yellow) = 1 − 𝑃(𝑅𝑒𝑑) = 1 −
1

3
=  

2

3
 .  

In the following, the probability of drawing a blue ball is designated, P(Blue) = p. The probability 

of drawing a yellow ball is then a dependency on p given as; P(Yellow) = 
2

3
− 𝑝 . 

The decision maker wants to perform a rational choice. He therefore performs an assessment of 

available normative and descriptive theoretical models to see whether these can help him to decide 

his preferences. He also want to assess whether these models can be used to describe the certainty 

equivalent for the different alternatives. The certainty equivalent is defined as the sure amount of 

an uncertain monetary value (Borgonovo & Marinacci, 2015). 

The decision theoretical models given in table 2.1 have been described and discussed in relation 

to the Ellsberg three-color problem in the subsequent chapters. The objective with this review was 

to see whether some of these models could be used for a decision maker that have a set of 

alternatives and where he needs to incorporate risk and ambiguity in his rational decision making.  

2.2.2 Portfolio theory 

Expected monetary value are often used to support decision making under uncertainty. This 

principle originates from portfolio theory (Markowitz, 1952). As described in Abrahamsen, et al. 

(2004), a portfolio of projects consists of N different projects where each of the projects have a 

weight 
1

𝑁
 in the portfolio. The expected value of the return ri is E(ri) and the variance for the return 

ri can is Var(ri).  

The expected value and variance for the portfolio is expressed: 

𝐸𝑝 =
1

𝑁
 ∑ 𝐸𝑖

𝑁
𝑖=1    
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The variance for the portfolio is expressed: 

 𝑉𝐴𝑅𝑝 =  ∑ (
1

𝑁
)2𝑉𝐴𝑅𝑖

𝑁

𝑖=1
+ ∑ ∑ (

1

𝑁
)2𝐶𝑂𝑉𝑖,𝑗

𝑁

𝑗ǂ𝑖,𝑗=1

𝑁

𝑖=1

= 
1

𝑁
 𝑉𝐴𝑅 + (1 −

1

𝑁
)𝐶𝑂𝑉 

 

Where; 

𝐶𝑂𝑉𝑖,𝑗 = 𝐸{(𝑟𝑖 − 𝐸𝑖) ∙ (𝑟𝑗 − 𝐸𝑗)} 

𝑉𝐴𝑅 =
1

𝑁
 ∑ 𝑉𝐴𝑅𝑖

𝑁
𝑖=1  . 

𝐶𝑂𝑉 =
1

𝑁2−𝑁
 ∑ ∑ 𝐶𝑂𝑉𝑖,𝑗

𝑁

𝑗ǂ𝑖,𝑗=1

𝑁

𝑖=1

  

The unsystematic risk which refers to specific project uncertainties is in the above described by 

the average variance 𝑉𝐴𝑅  and the systematic risk which refers to general market movements is in 

the above described by the average covariance 𝐶𝑂𝑉. In a portfolio with a large number of projects, 

we then see that the systematic risk represented by the average covariance will dominate since the 

average variance will go to zero when N is large. 

The project portfolio perspective is therefore relevant when assessing the risk and return for a 

company with several projects. For a single project however, the unsystematic risk will dominate 

and the expected values can have large deviations from the true values.  

A broader perspective than the expected values is therefore needed in order to take account of 

uncertainties. To calculate the expected monetary values is however a very common method to 

use in decision analysis. The problem with this method is that positive and negative outcomes are 

given the same weight and that the decision maker therefore is neutral to a potential negative or 

positive outcome. This is commonly termed as being risk neutral. 

For the Ellsberg three-color problem, the expected monetary value for each of the alternatives can 

be calculated as the sum of the products of probability and payoff.  We then see that the expected 

monetary value for alternative f and alternative g’ can be determined while the expected monetary 

value for alternative g and alternative f’ depends on the unknown probability p.  

𝔼𝑝(𝑓, 𝑤) =
1

3
∙ (100) + (

2

3
− 𝑝) ∙ (0) + 𝑝 ∙ (0) =

1

3
∙ (100) = 33.33  

𝔼𝑝(𝑔, 𝑤) =
1

3
∙ (0) + (

2

3
− 𝑝) ∙ (100) + 𝑝 ∙ (0) = (

2

3
− 𝑝) ∙ (100)  

𝔼𝑝(𝑓′, 𝑤) =
1

3
∙ (100) + (

2

3
− 𝑝) ∙ (0) + 𝑝 ∙ (100) = (

1

3
+ 𝑝) ∙ (100)  

𝔼𝑝(𝑔′, 𝑤) =
1

3
∙ (0) + (

2

3
− 𝑝) ∙ (100) + 𝑝 ∙ (100) = (

2

3
) ∙ (100) = 66.66  
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The expected monetary value for option g and f’ will vary depending on the probability value of p 

which could range between 0 and 
2

3
 . If p is close to 

2

3
 , then option f’ will have the maximum 

expected value. If p is close to 0 , then option g and option g’ will have the maximum expected 

value. The preferred option in the Ellsberg three-color problem is therefore not possible to decide 

for the decision maker based on the principle of expected monetary value since the probability p 

is non-uniquely defined. 

2.2.3 Expected utility theory 

The expected utility theory assumes that a decision maker’s choice and behavior is based on 

rational decision making. A set of axioms were defined by von Neumann and Morgenstern (1947) 

that defined the rational behavior and the decision maker’s preference over lotteries (Abrahamsen 

& Aven, 2008). A lottery can be described as a set of outcomes where the probability of occurrence 

for each of the outcomes can be described by objective probabilities. Lotteries are defined in a 

state space S = {𝑋, 𝑌, 𝑍} where the decision maker may have a preference over lotteries X, Y and 

Z. The “Weak order” axiom defines the decision maker’s preference over lotteries based on the 

properties of completeness, transitive and reflexive. Completeness means that the decision maker 

can prefer X over Y, or Y over X or can be indifferent between X and Y. Transitive means that the 

decision maker prefer X over Y and Y over Z, it is also then given that the decision maker prefers 

X over Z. Reflexive means that the decision maker is indifferent between two identical lotteries X 

and X. The “Continuity” axiom defines that there exists only one value of p between 0 and 1 which 

makes the decision maker indifferent between lottery Y and  a compound lottery of X and Z, this 

implies that Y~ pX + (1-p)Z. The “Preference increasing with probability” axiom means that a 

decision maker preference of two lotteries X and Y with the same outcomes would be the lottery 

with the highest probability. The “Compound probabilities” axiom defines that any lottery which 

has further lotteries as outcomes can be reduced to a one stage lottery. The “independence” axiom 

states that if a decision maker has a preference to lottery X over lottery Y this preference should 

not change if a common outcome in both lotteries are changed. 

The important feature of utility theory is that the utility value function can have a shape that 

represents the decision maker’s attitude or weighting to gain and loss. The utility can be defined 

as a linear function or in a concave or convex shape. If the utility function is linear the decision 

maker is neutral, which means that a negative or positive outcome are given the same weighting. 

If the utility function has a concave shape this means that negative outcomes are given higher 

weighting than the positive outcomes. If the utility function has a convex shape, this means that 

the positive outcomes are given higher weighting than the negative outcomes. 

If we have a defined state space S = {𝑋, 𝑌, 𝑍} and have defined the utilities and the probabilities of 

occurrence for the outcome space, then the expected utility is found as a linear combination of the 

utilities and the corresponding probabilities. The rational decision maker will then have a 

preference for the lottery that maximizes his expected utility. 

The state space for the Ellsberg three-color problem is however not lotteries where the success of 

all outcomes are described by objective probabilities. An objective probability for red balls exists 

but not objective probabilities for the blue balls and respectively for yellow balls, only for their 
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union. The basis for the use of the expected utility is therefore not satisfied for the Ellsberg three-

color problem and the decision maker is not able to perform a rational choice of his preferences 

by the use of expected utility. 

2.2.4 Subjective expected utility theory 

Savage (1954) described the subjective expected utility (SEU) as a function of the subjective 

probabilities defined by Ramsey (1931) and de Finetti and the expected utility as defined by von 

Neumann and Morgenstern (1947). Several postulates were defined by Savage (1954) that 

represents a further refinement of the axioms defined for expected utility by von Neumann and 

Morgenstern. The most important postulate is the sure-thing principle, which refer back to the 

“independence” axiom. Another important postulate by Savage (1954) relate to the preference of 

an outcome space, which means that if the outcome space {0, 100} is changed to {0, 1000} this 

should not result in change in preference.    

Savage also changed the state space from a set of lotteries to a set of acts which could include 

lotteries but also other actions where the subjective belief of the decision maker is described by 

subjective probabilities. Assume that preferences satisfy Savage postulates and that there exist a 

probability measure µ on S and a utility function u for act f and g. The value representation for the 

preference of act f over act g is then expressed as follows:   

f  ≿ g ↔ ∫ 𝑢(𝑓(𝑠))𝑑µ(𝑠
𝑆

)  ≿  ∫ 𝑢(𝑔(𝑠))𝑑µ(𝑠
𝑆

) 

µ is a subjective probability distribution over the state space and u is a utility function over the 

outcome set. The Savage construction of subjective expected utility includes the subjective beliefs 

of the decision maker which he then uses in a linear manner to find his preferences by maximizing 

expected utility. Savage representation means that the behaviour of a decision maker is to 

maximise the expected utility, with the restriction being that his beliefs must be described by a 

probability distribution.  His beliefs may be strange or unreasonable, but the basis for subjective 

expected utility theory is still satisfied as long as his beliefs are described by a probability 

distribution. (Etner, et al., 2012).  

Anscombe and Aumann (1963) defined a reduced state space for subjective expected utility 

consisting of vectors of two-stage acts or compound lotteries that were a combination of lotteries 

with objective probabilities also called roulette-wheel lotteries, and acts with subjective 

probabilities also called horse-race lotteries. The two-stage acts are based on the assumption of 

monotonicity in the prizes and reversal of order. Monotonicity in the prizes means that if the prize 

for one outcome differs between two otherwise identical horse lotteries then your preference 

associated with the price of that outcome will also govern your preference between the two horse 

races. Reversal of order means that your preference between a set of two-stage acts consisting of 

a compound horse race and roulette-wheel lottery is not affected by the order of these lotteries, i.e. 

whether the horse race starts before or after the spinning of the roulette-wheel. 

The subjective expected theory is a normative theory where the preferred act is to be selected based 

on maximizing the subjective expected utility (Savage, 1954). The subjective expected utility 

allow the decision maker to include his aversion to risk in a utility function. The utility function 
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for risk aversion is normally described as a concave exponential function where the negative 

payoffs are given a much higher weight than a positive payoff and where a high payoff is reduced 

in relation to a lower payoff.  

The subjective expected utilities for the acts in the Ellsberg three-color problem are expressed 

below by the use of the utility function u(a,w)=− e−a∙w (Borgonovo & Marinacci, 2015) with a 

risk aversion constant, a = 
1

100
 and with a wealth w ranging from 0 to 100. 

𝑈(𝑓, 𝑝) =
1

3
𝑢(100) + (

2

3
− 𝑝) 𝑢(0) + 𝑝 ∙ 𝑢(0) =

1

3
∙ 𝑢(100) +

2

3
∙ 𝑢(0) = - 0.79 

𝑈(𝑔, 𝑝) =
1

3
𝑢(0) + (

2

3
− 𝑝) 𝑢(100) + 𝑝 ∙ 𝑢(0) = (

1

3
+ 𝑝) ∙ 𝑢(0) + (

2

3
− 𝑝) ∙ 𝑢(100)=  

𝑈(𝑔, 𝑝) = (
1

3
+ 𝑝) ∙ (−1) + (

2

3
− 𝑝) ∙ (−0.37) 

𝑈(𝑓′, 𝑝) =
1

3
𝑢(100) + (

2

3
− 𝑝) 𝑢(0) + 𝑝 ∙ 𝑢(100) = (

1

3
+ 𝑝) ∙ 𝑢(100) + (

2

3
− 𝑝) ∙ 𝑢(0) =  

𝑈(𝑓′, 𝑝) = (
1

3
+ 𝑝) ∙ (−0.37) + (

2

3
− 𝑝) ∙ (−1) 

𝑈(𝑔′, 𝑝) =
1

3
𝑢(0) + (

2

3
− 𝑝) 𝑢(100) + 𝑝 ∙ 𝑢(100) = (

1

3
) ∙ 𝑢(0) + (

2

3
) ∙ 𝑢(100)= -0.58  

As seen in the above, the maximum expected utility is not uniquely defined since the expected 

utility for act g and act f’ will depend on the probability value p. The rational decision maker 

following the SEU set-up would, in such a situation, assign his subjective probabilities based on 

his judgement and subjective belief of the number of blue and yellow balls in the urn. A reasonable 

assumption could be to go for a symmetry argument with the same number of blue and yellow 

balls. The subjective probability assigned by the decision maker then becomes p = 
1

3
 . With this 

value of p, the decision maker would be indifferent in preference between act f’ and act g’. This 

conclusion does however seem to ignore or miss out some important information. These two acts 

are associated with uncertainties that cannot be sufficiently described by subjective probabilities, 

he can only give a guess. The rational decision maker should thus, in contrast to the SEU behavior, 

accept that he is faced with ambiguity in the results for act g and act f’, and that he would need 

supplementary models in order to decide the preferred act. 

The Ellsberg three-color problem (Ellsberg, 1961) has been used as an example of a violation of 

the sure-thing principle which is one of the key axioms in subjective expected utility. A reframing 

of the Ellsberg three-color problem does however show that a preference for act f over act g and a 

preference for act g’ over act f’ is consistent with the sure-thing principle (Bradley, 2015). The 

Ellsberg three-color problem does however also show that the subjective expected utility have its 

limitations in decision settings where the uncertainties cannot be sufficiently described by 

assigning subjective probabilities. Several extended models have therefore been proposed as a 

further development of the subjective expected utility, in order to cater for such types of 

uncertainty or ambiguity that cannot be described by a probability distribution.   
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2.2.5 Wald maximin functional 

The Wald maximin criterion (Wald, 1949), (Gilboa & Marinacci, 2011), (Etner, et al., 2012) is a 

very conservative model where preference is based exclusively by the worst possible 

consequences. If the outcome set is {𝑥, 𝑦, 𝑧} where x represent the worst consequence, then the 

decision maker would make his preference based on u(x) from this outcome set. (Etner, et al., 

2012). 

For the Ellsberg three-color problem, the use of the Wald maximin functional would give the 

following results: 

 𝑈𝑚𝑖𝑛(𝑓) = 𝑈(𝑓, 𝑝) =
1

3
∙ (−1.00) +

2

3
∙ (−0.37) = - 0.79 

𝑈𝑚𝑖𝑛 (𝑔, 𝑝 =
2

3
) = (

1

3
+ 𝑝) ∙ (−1) + (

2

3
− 𝑝) ∙ (−0.37) = - 1.00 

𝑈𝑚𝑖𝑛(𝑓′, 𝑝 = 0) = (
1

3
+ 𝑝) ∙ (−0.37) + (

2

3
− 𝑝) ∙ (−1) = - 0.79   

𝑈𝑚𝑖𝑛(𝑔′) = 𝑈(𝑔′, 𝑝) = (
1

3
) ∙ (−1.00) + (

2

3
) ∙ (−0.37)= - 0.58  

The decision maker preferences can thus be defined based on this method, but it is considered to 

represent the extreme ambiguity aversion situation. 

2.2.6 Maxmin expected utility theory 

In maxmin expected utility theory (Gilboa & Schmeidler, 1989), an act f is preferred to an act g if 

the minimum expected utility for a set of multiple priors for act f is larger than the minimum 

expected utility for a similar set of multiple priors for act g. The multiple set of priors is then 

supposed to be used in the absence of precise subjective beliefs. (Etner, et al., 2012). The multiple 

priors can then be a set of probability distributions that are used to calculate the maxmin expected 

utility for the state space S = {f, g, f’, g’} in the Ellsberg three-color problem. The decision maker 

then prefers act g’ over act f’ if the minimum expected utility for act g’ is higher than the minimum 

expected utility for act f’ for each of the probability distributions. This is however not the case in 

the Ellsberg three-color problem, since the preference between act f’ and act g’ varies depending 

on the probability distribution between p2 and p3 as shown in figure 2.6. Variations to the 

preferences between act f’ and act g’ therefore result in incomplete preferences for the Ellsberg 

three-color problem. 
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Fig. 2.6 Minimum Expected Utility vs Multiple priors for probability of blue balls (p2) and 

probability of yellow balls (p3) 

The α-Maxmin (Etner, et al., 2012) is a combination of the worst and best consequences. If the 

outcome set is {𝑥, 𝑦, 𝑧} where x represent the worst consequence and z the best consequence, then 

the value for a decision with this outcome set would be, α ∙ u(x) + (1-α) ∙ u(z). If α = 1, then we 

are back to the maxmin expected utility. If α = 0, then we have the maxmax expected utility. The 

idea of having this factor α as a value between 0 and 1 is to have a measure of the decision maker’s 

pessimism. According to Gilboa & Marinacci (2011) however, the theoretical basis for α ϵ (0,1) 

remains unresolved.  

2.2.7 Cumulative prospect theory 

The cumulative prospect theory was developed by Kahneman and Tversky (1992). The cumulative 

prospect theory describes the decision makers’s choice as a function of five defined behavioral 

phenomena; framing, nonlinear preferences, source dependence, risk seeking and loss aversion. 

The framing of the options and their outcome will have an impact on the choice as the decision 

maker has different attitudes to gains and losses. This is also in line with the expected utility theory 

where the expected utility is a weighted product of gain and loss with a higher weight on loss than 

gain. Nonlinear preferences states that difference in probabilities between 0.99 and 1.00 have more 

impact than differences in probabilities between say 0.10 and 0.11. This is in contrast to the 

expectation principle in expected utility theory which states that the expected utility of a risky 

prospect have a linear relation to the outcome probabilities.  

Source dependence describe that a decision maker is more willing to choose an uncertain event or 

prospect in his area of competence over a matched risky event or prospect that lies outside his are 

of comtpetence. Risk seeking is the dominating behavior when decision maker’s need to choose 

between a sure loss and a substantial probability of a larger loss. Loss aversion describes that the 
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decision maker is found to be more sensitive to losses than to gains. The loss aversion, risk seeking 

and nonlinear preferences are in cumulative prospect theory represented by a value and weighting 

function. The value of each outcome are separated for gains and losses and these are then 

multiplied by non-additive decision weights, which is different from gains and losses. 

The cumulative prospect theory (Kahneman & Tversky, 1992) is a further development of rank 

dependent utility also called Choquet expected utility (Etner, et al., 2012). Choquet expected utility 

(Schmeidler, 1989) is then again a further development of the subjective expected theory, but 

where the beliefs of the decision maker are not described by non-additive probabilities, also 

described as non-additive capacities. An act f is then preferred to an act g if there exists a utility 

function u and a capacity v that satisfies the following utility value representations: 

∫ 𝑢(𝑓)𝑑𝑣 ≥  ∫ 𝑢(𝑔)𝑑𝑣
𝐶ℎ𝐶ℎ

 

With the outcome space S={𝑠1, 𝑠2, … . , 𝑠𝑛}, the Choquet integral is further defined by: 

∫ 𝑢(𝑓)𝑑𝑣 ≥  𝑢(𝑥1) +
𝐶ℎ

(𝑢(𝑥2) − 𝑢(𝑥1)) ∙ 𝑣({𝑠2, 𝑠3, … . , 𝑠𝑛}) + ⋯ + (𝑢(𝑥𝑖+1) − 𝑢(𝑥𝑖))

∙ 𝑣({𝑠𝑖+1, … . , 𝑠𝑛}) + ⋯ + (𝑢(𝑥𝑛) − 𝑢(𝑥𝑛−1)) ∙ 𝑣({𝑠𝑛}) 

The Choquet integral consider first the lowest outcome and then add the positive increments that 

are weighted with decision maker’s belief represented by the capacities v(s) over the outcome 

space S. 

The cumulative prospect theory (Kahneman & Tversky, 1992) also uses capacities to describe the 

decision maker’s beliefs. The difference between Choquet expected utility and cumulative 

prospect theory is however that the latter has one set of capacities for gains, and another set of 

capacities for losses. The utility value representation in cumulative prospect theory for an act f is 

then described by a utility function u and a capacity for gain v+ and for loss v- as follows: 

𝑉(𝑓) = 𝑢(𝑥1) +  ∑ 𝑣−(𝑈𝑗=1
𝑘

𝑘

𝑖=2

{𝑠𝑗})(𝑢(𝑥𝑖) − 𝑢(𝑥𝑖−1)) + ∑ 𝑣+(𝑈𝑗=1
𝑘

𝑘

𝑖=𝑘+1

{𝑠𝑗})(𝑢(𝑥𝑖) − 𝑢(𝑥𝑖−1)) 

An issue with the cumulative prospect theory is that the model supposes that there is a reference 

point where the decision maker treats outcomes above as gains and outcomes below as losses.  

In the Ellsberg three-color problem, the reference point for the decision maker is 0 since there are 

only outcomes with a gain of 0 or 100. The negative portion of the value representation for the 

cumulative prospect theory is therefore not relevant and the cumulative prospect theory value 

representation is reduced to a Choquet value representation. In Mangelsdorff & Weber (1994), the 

Ellsberg three-color problem has been assessed by the use of Choquet expected utility. The 

Choquet expected utility is here used to formulate a value representation of the prospects based on 

the decision maker’s initial preferences, or by empirical surveys.    
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2.2.8 Extended Arrow-Pratt Quadratic Estimation 

The certainty equivalent for an expected utility maximizer with utility u, wealth w and investment 

h can be expressed by the Arrow-Pratt approximation (Maccheroni, et al., 2013) given by: 

𝑐(𝑤 + ℎ, 𝑃) ≈ 𝑤 + 𝐸𝑃(ℎ) −
1

2
𝜆𝑢(𝑤)𝜎𝑝

2(ℎ) 

𝐸𝑃(ℎ) is the expected wealth of the investment h based on the probabilistic model P. 𝜎𝑝
2(ℎ) is the 

statistical variation of the investment h with respect to the probabilistic model P. The coefficient 

𝜆𝑢(𝑤) = − 
𝑢′′(𝑤)

𝑢′(𝑤)
  which is the ratio between the double derivative and the derivative of the u 

function, describe the agent’s or decision maker’s aversion to risk.  

By setting f = w + h and 𝜆 = 𝜆𝑢(𝑤), the value representation or certainty equivalent for a prospect 

f becomes: 

𝐶(𝑓) = 𝐸𝑃(𝑓) −
𝜆

2
𝜎𝑝

2(𝑓)  

The risk premium for prospect f is therefore given by: 

П𝜆 = 
𝜆

2
𝜎𝑝

2(𝑓) 

A premium for ambiguity for prospect f can further be found by quadratic approximation of an 

extension to the Arrow-Pratt analysis to account for model uncertainty (Maccheroni, et al., 2013). 

Model uncertainty then refers to situations where the decision maker is uncertain about the 

probabilistic model P.  

The quadratic approximation takes an exact form as given below if the investment h has a normal 

cumulative distribution 𝜑(∙; 𝑚, 𝜎) with unknown mean m and known variance 𝜎2 (Maccheroni, et 

al., 2013). It is also then supposed that the prior on the unknown means m is given by a normal 

cumulative distribution 𝜑(∙; µ, 𝜎).  Due to the normal distribution of the prior, this implies that µ 

is the mean of the unknown means m and  𝜎µ
2  is the variance of the unknown means. 

C(w + h) = 𝑣−1(∫ 𝑣 (𝑢−1(∫ 𝑢(𝑤 + 𝑥)𝑑𝜑(𝑚; µ , 𝜎µ))

= 𝑣−1(∫ 𝑣 (𝑢−1(𝑤 + 𝑚 −
1

2
𝜆𝑢(𝑤) ∙ 𝜎2)𝑑𝜑(𝑚; µ , 𝜎µ))

= 𝑤 + µ −
1

2
𝜆𝑢(𝑤)𝜎2 −

1

2
𝜆𝑣(𝑤)𝜎µ

2   

The standard mean-variance quadratic approximation or certainty equivalent to account for model 

uncertainty or ambiguity is given below and are determined by the parameters, λ, ɵ and µ at a 

constant w such that λ = 𝜆𝑢(𝑤) and ɵ = 𝜆𝑣(𝑤) − 𝜆𝑢(𝑤). The parameters λ and ɵ represents the 

decision maker’s negative attitude towards risk (λ) and ambiguity (ɵ). 𝜎µ
2(𝐸(𝑓)) is the variance of 

the averages of prospect f or the variance of the expected value of prospect f.  

 𝐶(𝑓) = 𝐸𝑃(𝑓) −
𝜆

2
𝜎𝑃

2(𝑓) −
ɵ

2
𝜎µ

2(𝐸(𝑓)) 
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The ambiguity premium for the prospect f is therefore given by: 

Пɵ = 
ɵ

2
𝜎µ

2(𝐸(𝑓)) 

A summary of the analysis results for the exact solution of the Ellsberg three-color problem is 

given below and refers to the detailed analysis in appendix A1. 𝜎µ
2(−) is the statistical variation 

of the investment (-) with respect to the predicted probabilistic model µ and is equivalent to 𝜎𝑝
2(−) 

in the above description. 𝜎𝐴𝑃
2 (−) is the variance of the averages of prospect (-) or the variance of 

the expected value of prospect (-) and is equivalent to 𝜎µ
2(𝐸(−)) in the above description. 

Act 𝜎µ
2(−) 𝜎𝐴𝑃

2 (−) Risk premium Ambiguity premium Certainty equivalent 

f 0.00 2222.22 11.11 0.00 22.22 

g 370.37 2222.22 11.11 1.85 20.37 

f’ 370.37 2222.22 11.11 1.85 53.70 

g’ 0.00 2222.22 11.11 0.00 55.56 

 

The Ellsberg three-color problem can also be solved by the numerical quadratic approximation 

method as described in appendix A2. The analysis results from this numerical estimation is given 

below and show very close correlation to the exact solution given above.  

Act 𝜎µ
2(−) 𝜎𝐴𝑃

2 (−) Risk premium Ambiguity premium Certainty equivalent 

f 0.00 2222.22 11.11 0.00 22.22 

g 363.96 2213.95 11.07 1.82 20.20 

f’ 358.28 2237.69 11.19 1.79 53.22 

g’ 0.00 2222.22 11.11 0.00 55.56 

 

2.2.9 Smooth ambiguity functional 

A smooth ambiguity functional (Klibanoff, et al., 2005) is defined by two utility functions. The 

utility function u is the same as used in subjective expected utility and is a transformation of the 

outcomes with a weighting on negative and positive outcomes that reflects the decision maker’s 

risk aversion. The other utility function φ does a further transformation of the utility function u 

and adds another layer of weighting that reflects the decision maker’s ambiguity aversion. This 

smooth ambiguity model is depending on the selected shape of the utility functions which can be 

very different for different decision makers.  

 

The value representation of smooth ambiguity model (Klibanoff, et al., 2005) is described as an 

increasing concave function of the subjective utility function.  

𝑉(𝑓) = ∫ 𝑣(𝑐(𝑓, 𝑝))𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑣(𝑢−1(𝑢(𝑓, 𝑝)))𝑑µ(𝑝)

𝛥(𝑆)

 

𝑉(𝑔) = ∫ 𝑣(𝑐(𝑔, 𝑝))𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑣(𝑢−1(𝑢(𝑔, 𝑝)))𝑑µ(𝑝)

𝛥(𝑆)
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𝑉(𝑓′) = ∫ 𝑣(𝑐(𝑓′, 𝑝))𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑣(𝑢−1(𝑢(𝑓′, 𝑝)))𝑑µ(𝑝)

𝛥(𝑆)

 

𝑉(𝑔′) = ∫ 𝑣(𝑐(𝑔′, 𝑝))𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑣(𝑢−1(𝑢(𝑔′, 𝑝)))𝑑µ(𝑝)

𝛥(𝑆)

 

The full analysis for the Ellsberg three-color problem are included in appendix A.3 and the results 

are summarized in the table below. The decision maker can select act g’ as the preferred act since 

this act have the highest KMM utility and therefore also the highest certainty equivalent.  

Act KMM Utility, V(-) Certainty Equivalent Risk and ambiguity premium 

f -0.62 23.66 9.67 

g -0.64 22.15 11.18 

f' -0.35 52.11 14.55 

g' -0.33 54.72 11.94 

 

The risk premium for act f and act g’ are now defined since we know that there are no ambiguity 

and therefore no ambiguity premium for act f and act g’. The portion of the risk premium and the 

ambiguity premium for act g and f’ do however need to be further analysed by the use of the 

Extended Arrow-Pratt Quadratic Estimation (Maccheroni, et al., 2013). This method is presented 

in appendix A2 and the results from the numerical estimation is summarized in section 2.8. 

  

2.2.10 Analysis and discussion of theoretical models 

The expected value is a linear combination of payoffs and probabilities that do not include any 

effects due to risk aversion or ambiguity aversion. A decision maker who make his preferences 

based on expected values is therefore considered to be neutral to both risk and ambiguity. Expected 

utility can include aversion to risk or loss and a rational decision maker is then supposed to 

maximize the expected utility by a linear combination of objective probabilities and utilities that 

include risk aversion. The use of multiple priors as an extension of expected utility theory may 

represent a challenge to the decision maker as some priors may show that his preference changes. 

The subjective expected utility is a linear combination of subjective probabilities and utilities that 

include risk aversion.  The Choquet expected utility and the cumulative prospect theory seem to 

be tailored to how a person makes his choice based on his individual reference point and attitude 

towards loss and gain. The Choquet expected utility and prospect theory seem to be less relevant 

for a decision maker that has to find a preference between project alternatives. 

The Wald Maximin Functional is an extreme version of the subjective expected utility. The 

preferences to an extreme risk and ambiguity averse decision maker can be found by the Wald 

Maximin Functional as done for the Ellsberg three-color problem. 

The Extended Arrow-Pratt Quadratic Estimation method defines a risk aversion and an ambiguity 

aversion parameter. The decision maker is then able to define his preferences in the Ellsberg three-

color problem if he is able to define these two parameters. For the Ellsberg three-color problem it 
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was possible to find both an exact and approximate solution that both relies on the decision maker’s 

risk and ambiguity aversion. 

The Smooth Ambiguity Functional is a further development of the subjective expected utility 

theory, where the ambiguity aversion is introduced as a second order function. This method also 

defines the parameters that defines the decision maker’s aversion to risk and ambiguity. The 

decision maker is then able to define his preferences in the Ellsberg three-color problem if he is 

able to define these two parameters. 

The review shows that the Wald Maximin Functional, the Extended Arrow-Pratt Quadratic 

Estimation and the Smooth Ambiguity Functional are models that can be used to define decision 

maker’s preferences when faced with both risk and ambiguity. The basis for the quadratic 

estimation and smooth ambiguity analysis is however the parameters that describe the decision 

maker’s aversion to risk and ambiguity.  

The parameter that describes the decision maker’s risk aversion in a Smooth Ambiguity Model 

needs to be a function of the value of the payoff. If the payoff is {-100, 0, 100} and the risk aversion 

parameter a = 
1

100
 and the utility function have a negative exponential representation then the 

utilities becomes: 

𝑢(−100) = −𝑒−𝑎∙(−100) = −𝑒1 = - 2.72 

𝑢(0) = −𝑒−𝑎∙0 = −𝑒−0 = - 1.00 

𝑢(100) = −𝑒−𝑎∙100 = −𝑒−1 = - 0.37 

If the payoffs were {-1000, 0, 1000} and the corresponding risk aversion parameter were a = 
1

1000
, 

then a similar relation can be found between the utilities of the payoff when the negative 

exponential representation of the utility function is used. Similarly if the payoffs were for example 

{-500, 0, 500}, then the risk aversion parameter of a = 
1

500
 would give the same results.  

The ambiguity aversion parameter b is the other value that needs to be included in the quadratic 

estimation and smooth ambiguity analysis. The ambiguity aversion parameter has to be defined in 

an iterative process where the certainty equivalent found by the Smooth Ambiguity Functional 

(Klibanoff, et al., 2005) is correlated with the certainty equivalent found by the Extended Arrow-

Pratt Quadratic Estimation method (Maccheroni, et al., 2013).   



An Assessment of Ambiguity in Decision Analysis  June 2018 

Student No 238030  Page 27 of 106 

 

3 Qualitative research of decision making practice 
Decisions that are associated with uncertainties need to be based on our subjective judgement and 

our attitude towards risk. Some of us may have a high aversion to risk or losses while others may 

be risk seekers. The uncertainty in our decision making may include elements of both risk and 

ambiguity. Risk is defined as uncertainty that we are confident to describe by assigning a subjective 

probability distribution (Borgonovo & Marinacci, 2015). Ambiguity is defined as uncertainty that 

we are not confident to describe by assigning subjective probabilities (Borgonovo & Marinacci, 

2015).  The uncertainty associated with a decision therefore seems to be very dependent on the 

decision maker’s subjective judgement and tolerance to risk and ambiguity.  

The research question that has been driving the qualitative research of decision making practice is 

to assess if decision theory under ambiguity is known and used by the industry. How decisions are 

analysed and assessed and how these align with the theoretical models of decision analysis have 

therefore formed part of the qualitative research. The qualitative research of decision making 

practice has also assessed how decision maker’s subjective judgement and risk and ambiguity 

tolerance are incorporated in a decision process. Another aspect of the qualitative research has 

been to see whether decision analysis models available from recent advances in decision theory 

can be calibrated and translated into practical methods that can be used to assist in rational  decision 

making.  

3.1 Methodology  

In-depth interviews of a peer group of decision makers have been selected as the methodology for 

the qualitative research. The experts in this peer group represent a diverse base of relevant 

knowledge and practice in the oil and gas industry. Areas of their primary expertise include 

attributes of project management, project assurance, subsurface, facilities engineering, 

decommissioning, field development, modifications and portfolio management. The respondents 

have experience ranging from 28 to 35 years. In total 15 professionals were interviewed, where 13 

respondents have key roles in oil and gas companies and 2 respondents have key roles in project 

services companies. The members of the peer group were interviewed on a one-to-one basis and 

were not introduced to the questions before the individual interviews. Neither did the selected 

members know the composition of the peer group. The average duration of the one-to-one 

interviews were typically one hour. Notes from the interviews were sent to the respondents after 

each of the interviews. The respondents subsequently replied with minor corrections and/or 

acceptance of the notes made from the interviews. 

3.1.1 Interview questions  

In the in-depth interviews, the same set of interview questions were posed to explore and identify 

current practice relating to the application of uncertainties in decision making and decision 

analysis. The interview question protocol is included in Appendix C.  

The interview questions were centered on the use of probabilistic analysis and the processes and 

methods used to translate these into reliable budgets for a project, a portfolio of projects or for a 

value proposition for a field development.  
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The interview questions posed in the in-depth interviews also included scenarios where the 

respondents were requested to choose their preferences among two sets of stylized projects. These 

projects are described in chapter 3.1.2 below and were selected in order to illustrate some of the 

dilemmas and conflicts a decision maker may be faced with when uncertainty is present in analysis 

and assessments. The objective with these scenarios was to assess if the respondents makes 

decisions that are consistent with normative decision theories.  

3.1.2 Framing of scenarios  

The in-depth interviews were performed with reference to two project cases with positive 

outcomes that are referred to as project A and B. The two projects have three possible outcomes 

that may be associated with either risk or a combination of risk and ambiguity. The probability of 

outcome x1 is given as p1=1/3. The probability is not described for the specific outcome of x2 or 

x3. The probability of either outcome x2 or outcome x3 is however p2 + p3 = 2/3. 

 Outcome sets 

Projects x1 x2 x3 

A 100 0 100 

B 0 100 100 
 

The expected values for the projects are the sum of products of probabilities and outcomes and is 
expressed by 𝔼 = p1 ∙ x1 + p2 ∙ x2 + p3 ∙ x3. The expected value for project A is however not uniquely 
defined since p2 ϵ (0, 2/3) due to the uncertain probability distribution between p2 and p3. The 
expected value for project A may therefore range between 33 and 100. The expected value for 
project B is uniquely defined despite p2 ϵ (0, 2/3) due to the defined probability distribution 
between p1 and the sum of p2 and p3. The expected value for project B is 67. 

The in-depth interviews were also performed with reference to two project cases that are referred 

to as project C and D. The description of project C and D for the two first interviews included a 

combination of positive and negative outcomes. The description used for project C and D for the 

subsequent interviews only referred to negative outcomes as shown in the table below. The projects 

C and D then have three possible outcomes that may be associated with either risk or a combination 

of risk and ambiguity. The probability of outcome x1 is given as p1=1/3. The probability is not 

described for the specific outcome of x2 or x3. The probability of either outcome x2 or outcome x3 

is however p2 + p3 = 2/3. 

 

  Outcome sets 

Projects x1 x2 x3 

C -100 0 -100 

D 0 -100 -100 

 

The expected values for the projects are the sum of products of probabilities and outcomes and is 
expressed by 𝔼 = p1 ∙ x1 + p2 ∙ x2 + p3 ∙ x3. The expected value for project C is however not uniquely 
defined since p2 ϵ (0, 2/3) due to the uncertain probability distribution between p2 and p3. The 
expected value for project C may therefore range between -33 and -100. The expected value for 
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project D is uniquely defined despite p2 ϵ (0, 2/3) due to the defined probability distribution 
between p1 and the sum of p2 and p3. The expected value for project D is -67. 

3.2 Results  

The results indicate that the current practice and methods for the assessment of uncertainties for a 

project are very similar across the oil and gas companies. There are probabilistic analysis 

performed which describe an uncertainty range or confidence interval in the form of the P10 and 

P90 confidence levels. The probabilistic analysis also define a P50 confidence level which for 

most of the respondents is considered to be the expected estimate or the base estimate. Qualitative 

assessments are performed in order to establish a project contingency. A specific method for the 

definition of contingency has not been identified. The process to define contingency generally 

include peer reviews and management reviews to go through the base estimate and the identified 

risk elements and then by qualitative judgements establishing a level of contingency for the project.  

Detailed review processes are introduced to ensure conservative estimates and prognosis before a 

project is sanctioned. These detailed processes are introducing technical allowances in the scope 

elements to address the variation of known unknowns in the estimates. The technical allowances 

are then to be added to the base estimate if a deterministic approach is used and alternatively 

modelled as variations to the estimate if a probabilistic approach is used. A definition of allowance 

is given in ASTM E2168 (2016) by the following primary classification: 

“5.2.1 Allowance – a sum of money that is intended to be spent on the planned scope of 

work. Used in the absence of precise knowledge, and estimated to the best of one’s abilities, 

to ensure a full and complete estimate. Allowances cover events and activities that are 

normally internal and so are directly controllable within the project plan.” 

There seem to be some cultural differences between the oil and gas companies when it comes to 

the weighting of positive and negative outcomes. The larger operator would tend to have a more 

linear focus on the upsides and the downsides, while the smaller operator would tend to have a 

relative higher focus or weighting of the downsides. This has some correlation with the analysis 

in Howard (1988) that indicated a higher risk tolerance in companies with a higher financial 

turnover and profit base. The probabilistic analysis done in the oil and gas companies appears to 

be reasonably advanced. However, no analytical methods appear to be used to translate the 

probabilistic analysis into weighting functions as basis for contingency for cost and income.  

The results from the scenarios are listed in table 3.2.1. These results indicate that there do not seem 

to be a consistent approach among the peers of experts in selecting positive and negative outcomes. 

Four of the respondents selected a reliable outcome space for both the positive and negative 

outcomes that is supported by the normative decision theory. Some respondents chose to chase the 

outcomes of project A and are willing to accept that there are some risk and ambiguity to the 

positive outcomes. Others will choose project C and are willing to accept some risk and ambiguity 

on the negative outcomes. None of the respondents selected both project A and project C. This is 

somewhat reassuring since it can be seen that the respondents are not taking a risk seeking 

approach. The approach taken is rather an active strategic position towards either the downside or 
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the upside by implementing necessary actions in order to either maximize the results of project A 

or minimize the results in project C. 

 

 

Response 

Positive outcomes Negative outcomes 

Prefer 

A 

Prefer 

B 

Indifferent 

A=B 
E[A] 

Prefer 

C 

Prefer 

D 

Indifferent 

C=D 
E[C] 

1   v 67     

2   v 75     

3  v  50 v   -50 

4   v 67   v -67 

5  v  67 v   -50 

6 v   67  v  -67 

7  v  67  v  -67 

8  v  67  v  -67 

9  v  50 v   -50 

10  v  45  v  -50 

11 v   -  v  - 

12  v  67 v   -80 

13  v  33 v   0 

14  v  50 v   -80 

15  v  67  v  -67 

 

Table 3.2.1. Responses on the Case Studies 

 

To select projects based on only the expected values does not seem to give enough information in 

cases such as project A and C where the expected values is not uniquely defined due to the 

undefined probabilities for p2 and p3. Analysis results using the Arrow-Pratt quadratic estimation 

is shown in table 3.2.2 and use the risk premiums and the ambiguity premiums for the various 

projects as a guide for preference between the projects.  These analysis then show that project B 

and project D would be the projects with highest certainty equivalent and therefore these should 

be the preference for a rational decision maker according to the normative decision theory. An 

assessment of parameters for risk aversion and ambiguity aversion were planned to be part of the 

case studies. A method or test case for this type of assessment does however need to be more 

comprehensive than the stylized projects that were used.   
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Project Predicted Value 
Risk 

premium 

Ambiguity 

premium 

Certainty 

equivalent (CE)  

A 66.67 11.11 16.67 
 

38.89 

B 66.67 11.11 0.00 55.56 

C -66.67 11.11 16.67 -94.44 

D -66.67 11.11 0.00 -77.78 

 

Table 3.2.2. Certainty Equivalent for the Case Studies 

The project contingency can have elements of both aleatory and epistemic uncertainty. It is normal 

to have a high contingency at the early phase of a project, which then is reduced as the project 

definition is more matured and the epistemic uncertainty then reduced. This staged development 

of contingency is defined by the project stages DG1, DG2 and DG3 which is commonly used in 

the industry. There may however be large uncertainties also at project sanction (after DG3). This 

may be aleatory uncertainties related to weather sensitive activities such as offshore hook-up work, 

marine operations or epistemic uncertainties related to project performance of new contractors or 

the use of novel technology and solutions. A definition of contingency is given in ASTM E2168 

(2016) by the following primary classification: 

 

“5.2.2 Contingency – A sum of money that is provided to cover the occurrence of 

unintended departures from the planned scope of work. Used in the absence of precise 

knowledge, and estimated to the best of one’s knowledge to ensure that a financial buffer 

is available within a budget. Contingencies assist in mitigating the effects of unplanned 

events and other risks that are external to, and are not directly controllable within, a 

project plan.” 

 

The contingency of the cost estimate seem to be based on deterministic based guidelines that may 

range from 40% for DG1 to 15% for DG3. The research results indicate that there is a mixture of 

probabilistic and deterministic approaches used. The P10, P50 and P90 confidence levels are 

probabilistic based while the contingency is deterministic based. The research results also indicate 

some inconsistency in how contingency is introduced. The contingency is either added to the P50 

confidence level or included in the values of P10, P50 and P90 confidence levels. 

The results confirm that there are large uncertainties in the prediction of the oil and gas production 

of a field development. These uncertainties could for example be related to subsurface issues in 

the form of optimistic reservoir characteristics or facility issues in the form of insufficient 

processing capacity or low production efficiency.  Risk and ambiguity aversion and corresponding 
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premiums do however not seem to be used in the value proposition for the overall net present value 

for a life of field estimate. The large uncertainties and the large consequences for a company in 

the event of large negative outcome would however warrant the use of risk and ambiguity 

premiums or contingencies. It should therefore be further assessed if risk and ambiguity premiums 

should be introduced to account for uncertainties related to the oil and gas production. 

Uncertainties in the income of the oil and gas production will also be affected by the external 

factors in the form of a volatile oil price that would warrant the use of ambiguity premiums or 

management reserves. A definition of reserve is given in ASTM E2168 (2016) by the following 

primary classification: 

“5.2.3 Reserve – A sum, usually held by management (client) to be disbursed only when 

project requirements are changed. Used to provide insurance against a project or 

program failing to complete on budget of for the revision of a budget in the case of 

changed management or program direction and requirement.” 

The results confirm that there are situations where potential large negative outcomes can result in 

a decision to stop an activity or to turn down or delay a project development. These types of 

decision problems with high consequence are also normally associated with ambiguity that need 

to be mitigated by pre-cautionary or cautionary measures before the continuation of an activity or 

a project.  

 

3.2.1 The use of expected values and confidence intervals  

The expected value or mean value represents the weighted average or the center of gravity of a 

probability distribution of the outcomes. The mean value is also referred to as the P50 confidence 

level although these may differ if the probability distribution is skewed. The P50 confidence level 

gives equal probability of underrun and overrun and the area under the probability curve is thus 

the same on both sides of the P50 value. 

The questions included in the in-depth interviews were as follows: 

 Are you familiar with the concepts of expected value or P50 confidence level? 

 Do you know where the concepts of expected value or P50 confidence level are used in the 

decision process? 

 

All responses from the oil and gas companies confirmed familiarization with the use of a P50 

confidence level and also confirmed that the term expected value is less frequently used. The 

respondents further described that the P50 confidence level is normally used to determine a base 

estimate within cost and plan for a project. One of the respondents that is managing partner-

operated assets used the P70 confidence level as the base estimate which then was considered to 

be close to the P50 confidence level added with the contingency reported by the asset operator.  

One respondent however referred to contingency as the difference between the base estimate and 

the P50 estimate. This shows that there are some differences in the interpretation and the build- up 

of the project cost estimates between the oil companies.   



An Assessment of Ambiguity in Decision Analysis  June 2018 

Student No 238030  Page 33 of 106 

 

A respondent that has a role as portfolio manager for capital projects described that the term 

expected values is often misused. There can be occasions where managers refer to expected values 

with no underlying probabilistic basis or where the expected value is a mixture of probabilistic and 

deterministic approaches.  

A respondent that is managing field developments described the assessments he performs before 

a project sanction. He then performs a detailed process where all potential downsides and upsides 

are challenged and conservative estimates and prognosis are included in order to take ownership 

and maximise the probability of success in the execution of the project.  

Several respondents described that there can be large uncertainties and corresponding widespread 

confidence intervals in the subsurface results and advanced probabilistic analysis of uncertainties 

are therefore performed within this area.   

The responses describe that the uncertainty represented by the P10 and P90 confidence levels is 

subject to detailed assessments of the elements that give the highest contribution to the confidence 

interval variation. Sensitivity analysis with more refined or skewed probability distributions may 

then be included in the detailed assessments in order to reduce the variation and give a better 

description of the relevant phenomena. 

3.2.2 Are there any weighting of consequences?  

A decision maker is neutral to loss or gain if a negative or positive outcome is given the same 

weighting. This also means that the decision maker has a linear relationship between potential 

negative and potential positive outcomes. 

The questions included in the in-depth interviews were as follows: 

 In a decision process, do you differentiate between a potential positive and a potential negative 

outcome? 

 Do you know how this differentiation of outcomes can be done? 

 Are you familiar with the term of being risk neutral? 

 Do you agree that decisions based on expected values are a risk neutral approach? 

 

The respondents that are managing projects describe that the weighting of potential upsides and 

downsides is based on a balanced judgement of the inputs from the members of the project team. 

A well performing project team will have members with different attitudes and judgements, some 

may have an optimistic attitude that pushes potential upsides and some may have a more skeptical 

attitude which can be used to address and find potential downsides. A mixture of these types of 

personalities are required in a project team in order to ensure a balanced view and steering of the 

outcomes from a project.        

All responses confirmed that there is a high focus on how to reduce or mitigate the downsides or 

negative outcomes. One of the respondents from a larger operator considered however that there 

is a linear weighting relationship and high focus on both the negative and positive outcomes. Only 

one of the respondents was aware and familiar with analytical methods for a non-linear weighting 

of negative and positive outcomes. This respondent has previous experience as decision analyst. 
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Most of the other respondents described the introduction of skewed probability distributions, 

technical reviews, management reviews and cautionary measures to reduce or mitigate the 

potential negative outcomes. 

3.2.3 Familiarity with risk and ambiguity premium and certainty equivalent 

Tolerance of risk or aversion to risk is a subjective judgement and expresses the decision maker’s 

aversion to losses or a potential negative outcome. The potential outcomes are then based on 

uncertainty assessments of the known unknowns of estimated quantities, rates and norms of the 

technical solution or scope. Ambiguity is a term used to describe uncertainty when you are not 

confident in assigning a probability distribution. This could refer to uncertainty of unspecified or 

unknown elements of a technical solution or scope. But it could also include externalities that lie 

outside of the project’s control. When faced with risk and ambiguity the decision maker may 

therefore be willing to pay a premium in order to mitigate or neutralize his uncertainty exposure. 

The certainty equivalent for a project subject to risk and ambiguity is then the difference between 

a predicted expected value and the risk and ambiguity premiums.  

 

The questions included in the in-depth interviews were as follows: 

 Do you know how a decision maker’s risk aversion or contingency is implemented in the 

decision process? 

 Do you know how a decision maker’s ambiguity aversion or budget reserve is implemented 

in the decision process? 

 Are you familiar with the term certainty equivalent value and the use of contingency and 

budget reserves in a decision process? 

 

Only one respondent confirmed that he was familiar with the terminology and use of risk premium, 

ambiguity premium and certainty equivalent. This respondent was the one with experience as 

decision analyst. All responses confirmed that contingency and reserves are commonly used in 

project cost definition. The contingency would then include elements of both risk and ambiguity 

for the defined technical solution and scope. The respondents describe that the project cost 

definition are normally well defined by detailed base cost estimates that is matured during the 

project stages leading up to the decision gate for project sanction and these are also updated at 

different stages during the project execution. The respondents describe the process of defining the 

contingency and reserve as a qualitative process where the 80% confidence interval and the 

corresponding elements with uncertainty are subject to detailed reviews by technical peers group 

and finally decided in management reviews. Contingency ranging from 5% to 20% of the base 

estimate is used at project sanction. Examples referred to by one of the respondents were related 

to the contingency cost of jacket fabrication and jacket installation. Jacket fabrication performed 

in a new fabrication yards are given a higher contingency contribution than the familiar fabrication 

yards with a strong track record of previous jacket fabrication deliveries to company. For the jacket 

installation, the company has experience with launched jackets and no or limited experience with 

lifted jackets. According to the respondent, the lifted jacket concept is therefore given a 

contingency contribution of 20% and the launched jacket is given a contingency contribution of 

12%. 
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Reserve is also by some respondents referred to as the not-to-exceed target or management 

reserves. This reserve is normally not within the control of a project manager and is intended to 

account for external factors that lie outside of the project. This could be elements such as 

fluctuating market situations that will impact the cost and availability of contractor services or 

assets or major changes to the framing of the project. The respondents describe that the reserve is 

defined by a qualitative judgement of the members of the management review.  

 

The respondents describe that the net present value of a field development normally includes cost 

based on the P50 confidence level. The respondents emphasise the importance of the management 

and coordination of the interface between the subsurface and facility groups in order to develop an 

optimum field development solution. One respondent noted that the project execution and project 

control may have been delivered within cost and plan, but the throughput in the form of oil and 

gas production were significant lower than the prognosis that formed the basis for the value 

proposition for the field development. The uncertainties in the oil and gas production for a field 

development are many and can be related to uptime, processing capacity or the presence of process 

bottlenecks or it can be related to subsurface issues relating to for example reservoir volumes, 

pressure or permeability.  

 

3.2.4 Scenarios with positive outcomes 

Project A and B were introduced to the respondents as two projects that only have three possible 

positive outcomes that may be associated with either risk or a combination of risk and ambiguity. 

Project A and B can for example be related to the potential upsides related to the improvement in 

reliability of a production plant.  

It was explained to the respondents that the probability of outcome x1 is defined and given a 

probability of p1=1/3. It was also explained to the respondents that the probability cannot be 

uniquely described for the specific outcome of x2 or x3. The respondent was however reminded 

that the probability of either outcome x2 or outcome x3 is p2 + p3 = 2/3 due to the law of probability 

for a defined outcome set. 

 Outcome sets 

Projects x1 x2 x3 

A 100 0 100 

B 0 100 100 
 

The respondents were informed that the expected values for the projects are the sum of products 
of probabilities and outcomes expressed by 𝔼 = p1 ∙ x1 + p2 ∙ x2 + p3 ∙ x3. The respondent were also 
informed that the expected value for project A cannot be mathematically defined by a single value 
since p2 ϵ (0, 2/3) due to the uncertain probability distribution between p2 and p3. It was therefore 
explained to the respondents that the expected value for project A may range between 33 and 100. 
The respondents were then informed that the expected value for project B is uniquely defined 
despite p2 ϵ (0, 2/3) due to the defined probability distribution between p1 and the sum of p2 and 
p3. The respondents were informed that the calculated expected value for project B is 67. 
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The questions included in the in-depth interviews were as follows: 

 Please have a look at project A and project B, would you prefer one out of these two projects 

or do you consider them to be indifferent? 

 Can you explain how you arrived at your choice between project A and project B? 

 What would you consider as an appropriate expected value for project A? 

 If you had more information about P10 and P90 for the projects would you then assign a reserve 

or buffer to the expected values to account for the statistical variation in project B? 

 Would you assign a reserve or buffer to the expected values to account for the unknown 

unknowns in project A? 

 Can you recall a similar decision setting as for project A where you are not able to describe the 

probabilities for a specific outcome? 

 

Eight of the responses were a preference for project B which would indicate a preference for a 

reliable or predictable opportunity space. Three of the responses were indifferent between the 

projects A and B. The reason for this indifference was explained by a prediction of equal 

probabilities for all outcomes. Two of the responses were a preference for project A as the 

opportunity for maximizing the positive results was considered highest for project A.  The 

responses on the expected value prediction for project A resulted in a mean value of 62.6 and a 

standard deviation of 9.6.  

 

All responses confirmed that a margin for risk and ambiguity would be introduced. More 

background information on the decision setting and basis for the numbers presented for the projects 

is however required in order to assess the appropriate level of the required risk and ambiguity 

margin. Several of the respondents confirmed that projects with elements of variable or undefined 

probabilities are common. There can be many subprojects that have probabilities of variable 

degrees of precision that the project manager has to understand and have a feel or intuition on what 

to challenge and monitor. 

 

3.2.5 Scenarios with negative outcomes 

Project C and D were introduced to the respondents as two projects that only have three possible 

negative outcomes that may be associated with either risk or a combination of risk and ambiguity.  

Project C and D were explained to the respondents as an example related to potential cost increases 

for a contracted delivery. The respondents were informed that the probability of outcome x1 is 

defined and given a probability of p1=1/3. The respondents were informed that the probability is 

not defined for the specific outcome of x2 or x3. It was explained to the respondents that the 

probability of either outcome x2 or outcome x3 is p2 + p3 = 2/3 due to the law of probability for a 

defined outcome set. 
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  Outcome sets 

Projects x1 x2 x3 

C -100 0 -100 

D 0 -100 -100 

 

The respondents were given the same information as for the scenarios with the positive outcomes 
that the expected values for the projects are the sum of products of probabilities and outcomes and 
is expressed by 𝔼 = p1 ∙ x1 + p2 ∙ x2 + p3 ∙ x3. The respondents were reminded that the expected 
value for project C is not uniquely defined since p2 ϵ (0, 2/3) due to the uncertain probability 
distribution between p2 and p3. It was explained to the respondents that the expected value for 
project C may range between -33 and -100. The expected value for project D was informed to the 
respondents as being uniquely defined despite p2 ϵ (0, 2/3) due to the defined probability 
distribution between p1 and the sum of p2 and p3. The respondents were informed that the 
calculated expected value for project D is -67. 

The questions included in the in-depth interviews were as follows: 

 Please have a look at project C and project D, would you prefer one out of these two projects 

or do you consider them to be indifferent? 

 Can you explain how you arrived at your choice between project C and project D? 

 What would you consider as an appropriate expected value for project C? 

 If you had more information about P10 and P90 for the projects would you then assign a reserve 

or buffer to the expected values to account for the statistical variation in project B and D? 

 Would you assign a reserve or buffer to the expected values to account for the unknown 

unknowns in project C? 

 Can you recall a similar decision setting as for project C where you are not able to describe the 

probabilities for a specific outcome? 

 Can you recall a past decision setting where you gave potential negative outcomes more 

weighting or in an extreme case only considered a negative outcome? 

 

Five of the responses were a preference for project C. The reason for the preference for project C 

was explained as a higher opportunity for improving the result than for project D. One of the 

respondents were indifferent between the projects C and D. The reason for this indifference was 

explained by a prediction of equal probabilities for all outcomes. Five of the responses were a 

preference for project D. The reason for the preference for project D was higher reliability. The 

responses on the expected value prediction for project C is shown resulted in a mean value of -

60.9 and a standard deviation of 11.1.  

 

All responses confirmed that a margin for risk and ambiguity would be introduced. More 

background information on the decision setting and basis for the numbers presented for the projects 

are however required in order to assess the appropriate level of the required risk and ambiguity 

margin. The responses confirmed that a potential large negative outcome may be a cause to stop a 

project or a concept development. This could be presented in the form of a likelihood of exceeding 

a certain amount. As an example, barriers for the proximity of LQ to the process facilities resulted 
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in a low expected safety factor which then turned this concept down. This focus on negative 

outcomes is typical when addressing safety, environment and quality issues. Within subsurface, 

one of the respondents noted that the decision to proceed with a field development project largely 

depends on the results from the appraisal wells. Poor results from appraisal wells can increase the 

uncertainty of a reservoir that can lead to a stop or delay of a field development project. 
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4 A business risk decision problem- Race or withdraw 

The Challenger Launch decision (Brittain & Sitkin, 1990), (Liedtka, 1990) has by many 

organisations been used as a business risk case study for decision making with elements of risk 

and ambiguity. The quantitative analysis performed for the Carter racing case (Borgonovo & 

Marinacci, 2015) is a stylised example of a business risk decision that refers to the Challenger 

Launch Decision. 

This business risk decision example could also be seen as a stylised example of the important 

business decisions an oil company often have to make. These decisions can for example be related 

to the selection of a Norwegian or an Asian yard for a platform contract or the trade-off between 

execution of the mechanical completion of a platform on an onshore fabrication site or alternatively 

at the offshore location.   

4.1  Introduction 

Carter is a professional racing driver that has to decide whether to run or withdraw from the next 

race. This decision problem is associated with business risk and been subject to decision analysis 

under uncertainty.  The Carter Racing model (Borgonovo & Marinacci, 2015) address the 

probability p2 of engine failure and the conditional probability p1 of coming top five in the race 

given no engine failure. The outcome m1 is the reward of top five, outcome m2 is the result of 

ending the race below top five and outcome m3 is the downside in the event of engine failure. 

 

 

 

Figure 4.1.1 Carter racing model 

 

4.2 Expected Value 

In Borgonovo & Marinacci (2015), the outcome set is {m1, m2, m3} = {1000, 0, -500}, the 

predicted probability of engine failure given as p2 =0.30 and the conditional probability of coming 

in top five given as p1=5/7. The expected value of the decision to run or not to run can then be 

calculated as follows: 

No engine failure
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HRun=(1-p2) ∙ [p1 ∙m1+(1-p1) ∙ m2]+p2 ∙ m3=(1-0.3) ∙ [5/7 ∙ (1000)+(1-5/7) ∙ (0)]+0.3 ∙ (-500)= 350 

HWithdraw=0 

 

4.3 Smooth ambiguity aversion 

In Borgonovo & Marinacci (2015), the smooth ambiguity aversion model is included. This is also 

referred to as the KMM functional (Klibanoff, et al., 2005). This model can be used to estimate 

risk and ambiguity premiums and the corresponding certainty equivalent. A second order 

probability distribution for the predicted probability is then first included in the Carter Racing 

model by a combination of two sets of beta distributions where the expected probability value is 

similar to predicted probability value. The expected value for the beta distribution with a=2 and 

b=6 is ¼ and the expected value for the beta distribution with a=6 and b=2 is ¾. The expected 

probability value for the second order probability distribution is adjusted to be similar to the 

predicted probability value by a factor m as given by the formula; p2
Pred = (1-m) ∙ beta(2,6) + m ∙ 

beta(6,2) = (1-m)∙1/4 + m∙3/4. The factor m can therefore be calculated as; m = (p2
Pred – ¼) ∙ 2 = 

0.10.  

The calculation of the risk and ambiguity premiums is an iterative process where the risk tolerance 

factor and the ambiguity aversion parameter have to be balanced by the use of the smooth 

ambiguity model (KMM functional) and the Arrow-Pratt (AP) quadratic estimation method. These 

methods are described in Appendix B.  

The risk and ambiguity premiums are calculated by use of both the smooth ambiguity model 

(KMM functional) and the extended form of the AP quadratic estimation. The extended AP 

quadratic estimation also estimate the portion of risk premium and ambiguity premium. The 

certainty equivalent represents the difference between the predicted mean value and the risk and 

ambiguity premiums. The risk and ambiguity premium and corresponding certainty equivalent is 

shown in the table below and is balanced with a risk aversion parameter of 1/1000 and an 

ambiguity aversion parameter of 1/100.  

 KMM functional AP Quadratic Estimation 

Certainty equivalent, C(Run)= -143.31 -147.52 -148.771 -162.92 

Risk premium, ПAM(Run)= 
495.461 497.562 226.661 226.252 

Ambiguity premium, ПAM(Run)= 274.421 286.652 

1) Analysis results derived from model developed in Excel 

2) Analysis results given in  Borgonovo & Marinacci (2015) 

 

4.4 Risk aversion 

The decision three for the Carter Racing decision problem has been modelled by use of the 

Precision Tree Software. A concave exponential function with a risk tolerance factor of 1000 have 

been used. The certainty equivalent that include risk aversion have then been calculated to 

C(Run)= 129.5. This is close to the certainty equivalent with risk aversion of C(Run)=123.75 as 

given in Borgonovo & Marinacci (2015). 
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Figure 4.4.1 CE for Carter Racing with risk aversion 

 

4.5 Extreme Risk and Ambiguity aversion 

The certainty equivalent for the Wald Maximin Functional is the worst possible outcome for the 

decision alternatives. The certainty equivalent values for Wald Maximin Functional is therefore 

C(Run) = -500 and C(Withdraw) = 0. 

4.6 Decision maker’s preferences for the Carter Racing 

The objective with the analysis was to assess the whether to run or withdraw from the race. 

Analysis have been performed to assess the expected values and the certainty equivalent values 

for the decision alternatives. Several methods for analysis the certainty equivalent values have 

been applied that addresses the preferences for a decision maker with risk aversion, risk and 

ambiguity aversion and extreme risk and ambiguity aversion. The results from these analysis 

methods can be summarised as follows: 

• The expected value is maximised for the decision to run 

• The risk and ambiguity averse certainty equivalent is maximised for the decision to 

withdraw from the race 

• The risk averse certainty equivalent is maximised for the decision to run 

• The extreme risk and ambiguity averse certainty equivalent is maximised for the decision 

to withdraw from the race 

A risk neutral decision maker will have a preference to run since expected value is highest for this 

alternative. A risk and ambiguity averse decision maker will have a preference to withdraw since 

the certainty equivalent for the KMM functional and Arrow-Pratt Approximation is highest for 

this alternative. A risk averse decision maker will have a preference to run since the certainty 

equivalent calculated by use of the Precision Tree software is highest for this alternative. An 

extreme risk and ambiguity decision maker will have a preference to withdraw since the maximum 

worst consequence is minimised for this alternative. 
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5 A Cost Risk Decision Problem - Project contingency 

Uncertainties associated with project cost estimates is defined as cost risk (Aven, 2012). Project 

contingency is normally introduced as a buffer or margin to address the cost risk in a project cost 

estimate. The project contingency for a project cost estimate has been analysed by the use of 

theoretical models that capture various levels of risk and ambiguity aversion. 

5.1  Introduction 

There may be uncertainties in the execution of a project that would warrant the use of contingency 

and reserve. This could relate to uncertainties in the design of solutions, uncertainties in the 

complexity and performance of fabrication or uncertainties in the marine operations, subsea 

construction or hook-up and completion activities. A subsea support structure has been developed 

through the feasibility, concept and FEED stages and a DG3 cost estimate need to be defined that 

address the uncertainties in the subsequent project execution. The objective with the decision 

analysis in this example is therefore to define the risk and ambiguity premium for the project 

execution phase. The risk and ambiguity premium would in this case be the same as the project 

contingency.  The assessment will be based on methods for maximising expected utility. The 

expected utility will then further translate into certainty equivalents where risk and ambiguity 

premiums are introduced to address the uncertainties related to the distribution of the input 

variables for the cost estimate.  

5.2 Probability distributions of input variables 

The technical solution for the subsea support structure has been matured during the concept and 

FEED stages but there are still some fatigue sensitive details that has to be detailed in the detail 

engineering stage. The estimated weight of the subsea support structure is based on detailed 

drawings developed from the structural global and local analysis. The main members is therefore 

not likely to change during detail engineering but it is expected that more local stiffeners will be 

added both on the clamp and the leg sleeves. The installation method for the subsea support 

structure was defined during the FEED phase and was subject to HAZID review with participation 

from offshore operations supervisors from one of the potential EPCI contractors. The installation 

methods for the handling and design of required installation aids have therefore been defined but 

not developed in sufficient detail. The subsea installation is planned to be installed in the summer 

season and the critical lifting operations has to be performed in a weather restricted window with 

low sea states. The cost elements are listed in the table below and their minimum, most likely (ml) 

and maximum values have been included with triangular probability distributions. 

  



An Assessment of Ambiguity in Decision Analysis  June 2018 

Student No 238030  Page 43 of 106 

 

 

Input parameters Distributions 

Category Average Downside Upside Min Ml Max 

Company Project 

Management 7.6 10% -10% 6.84 7.6 8.36 

Contractors Project 

Management 7.9 10% -10% 7.11 7.9 8.69 

Installation Engineering1 16.1 10% -10% 14.49 16.1 17,71 

Design Engineering and 

Verification1 11.5 10% -10% 10.35 11.5 12.65 

Production of Clamps and 

Bracings1 40 30% -10% 36 40 52 

FAT 2.8 10% -10% 2.52 2.8 3.08 

Production of temporary 

Clamps 1.2 50% -10% 1.08 1.2 1.8 

Vessel Mobilisation 4.9 10% -10% 4.41 4.9 5.39 

Subsea Installation of Clamps 

and Bracings1 43.5 140% -10% 39.15 43.5 104.4 

Waiting on Weather (WOW) 6.1 140% -60% 2.44 6.1 14.64 

Base Estimate 141.6      

1) The subsea construction cost and the cost elements related to installation engineering, 

design engineering and verification and production of clamps and bracings have been 

included in the analysis with a positive correlation. 

2) Units in MNOK 

 

Table 5.2 Input variables to the cost estimate 

 

5.3 Expected value and confidence interval 

Stochastic simulations are performed by the use of @Risk in order to define the mean value and 

the 100% confidence interval represented by the minimum and maximum levels of the cost 

estimate.  

 Min Max Mean 

Cost estimate (MNOK) 130.1  218.9 164.7 

 

5.4 Smooth ambiguity aversion model 

The Carter Racing model (Borgonovo & Marinacci, 2015) is a numerical model of the smooth 

ambiguity aversion model also referred to as the KMM functional (Klibanoff, et al., 2005). This 

model can be used to estimate risk and ambiguity premiums and the corresponding certainty 

equivalent. 
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Figure 5.3.1 Analysis Model for Project Contingency 

 

The outcome set is {m1, m2, m3} = {-130.1, 0, -218.9}, where m1 is the minimum negative value 

and m3 is the maximum negative value of the cost estimate. The probability p1=1 and the predicted 

probability p2 is calculated based on the relationship between the minimum, mean and maximum 

values by the formulae: p2
Pred = 

(𝑀𝑒𝑎𝑛−𝑚1)

(𝑚3−𝑚1)
 = 0.389. The secondary probability distribution for the 

predicted probability is included in the Carter Racing model by a combination of two sets of beta 

distributions where the expected probability value is similar to predicted probability value. The 

expected value for the beta distribution with a=2 and b=6 is ¼ and the expected value for the beta 

distribution with a=6 and b=2 is ¾. The expected probability value for the secondary probability 

distribution is adjusted to be similar to the predicted probability value by a factor m as given by 

the formula; p2
Pred = (1-m) ∙ beta(2,6) + m ∙ beta(6,2) = (1-m)∙1/4 + m∙3/4. The factor m can 

therefore be calculated as; m = (p2
Pred – ¼) ∙ 2 = 0.279.  

The calculation of the risk and ambiguity premiums is an iterative process where the risk tolerance 

factor and the ambiguity aversion parameter have to be balanced by the use of the smooth 

ambiguity model (KMM functional) and the Arrow-Pratt (AP) quadratic estimation method. The 

risk and ambiguity premiums are calculated by use of both the smooth ambiguity model (KMM 

functional) and the extended form of the Arrow-Pratt quadratic estimation. The extended Arrow-

Pratt quadratic estimation also estimate the portion of risk premium and ambiguity premium. The 

certainty equivalent represents the difference between the predicted mean value and the risk and 

ambiguity premiums. The risk and ambiguity premium and corresponding certainty equivalent is 

shown in the table below and is balanced with a risk aversion parameter of 1/220 and an ambiguity 

aversion parameter of 5/220. 
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 KMM functional AP Quadratic Estimation 

Certainty equivalent -174.5 -174.1 

Risk premium 
9.8 

4.3 

Ambiguity premium 5.4 

 

5.5 Risk aversion model 

The predicted probabilities and the minimum and maximum cost estimate values have been used 

to construct a decision three by the use of the Precision Three Software. Risk aversion is included 

in the Precision Three Software by the use of a risk tolerance factor of 220 and an exponential 

concave utility function. The certainty equivalent derived from the precision three software 

analysis is -169.1 as shown in the decision tree below. 

 

 

 Figure 5.4.1 Decision Tree for CE with Risk Aversion 

 

5.6 Resulting confidence levels for the project cost estimate 

A risk and ambiguity premium of 9.8 MNOK and the corresponding Certainty Equivalent of 174.5 

MNOK is found by the smooth ambiguity aversion model which is similar to the P70 confidence 

level for the cost estimate as shown in figure 5.5.1. The Certainty Equivalent of 169.1 MNOK 

found by the use of the risk aversion model in the Precision Tree Software is similar to the P62 

confidence level of the cost estimate as shown in figure 5.5.2. In Rothwell (2004), the project cost 

contingency of a cost estimate has been evaluated and found to be approximated by the standard 

deviation of the cost estimate. The mean value plus the standard deviation then becomes 184.3 

MNOK which is similar to the P82 confidence level as shown in figure 5.5.3. 
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Figure 5.5.1 Confidence Level and Certainty Equivalent with Risk and Ambiguity Aversion 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.2 Confidence Level and Certainty Equivalent with Risk Aversion 
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Figure 5.5.3 Confidence Level and Standard Deviation 
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6 A Production Risk Decision Problem - Ranking of scenarios 
Production risk may refer to uncertainties associated with a certain performance measure (Aven, 

2012) and can refer to potentially reduced production efficiency as a result of downtime caused by 

equipment failures and maintenance.  

In this example, a ranking of project development scenarios have been performed that address 

Capex, Opex and production efficiency and income. The scenario with the highest certainty 

equivalent net present value has been given the highest ranking.  

6.1   Introduction 

There may be uncertainties in the oil and gas production that would warrant the use of contingency 

and reserve to account for uncertainties and risk and ambiguity aversion. This could relate to 

uncertainties in the subsurface characteristics, uncertainties in the facility performance or 

uncertainties in the oil price. How to introduce the method of risk and ambiguity premiums in the 

net present value of the production for a marginal field is described.  

A marginal field in the North Sea is planned to be developed where the production from the field 

will be transferred to an existing process platform through a subsea pipeline. The production from 

the marginal field can be performed by a subsea system or by two alternative wellhead platform 

solutions.  

The following project development scenarios are defined: 

Scenario 1: Production from a subsea system with tie-back to the host processing platform 

(Subsea) 

Scenario 2: Production from a wellhead platform with sea access and tie-back to the host 

processing platform (SAW) 

Scenario 3: Production from a wellhead platform with helicopter access and production tie-

back to the host processing platform   (HAW) 

The objective with the decision analysis in this example is to perform a ranking of the above 

scenarios. The ranking of the scenarios will be based on methods for maximising expected value 

and maximising expected utility of the net present values. The expected utility will then further 

translate into certainty equivalents where risk and ambiguity premiums are introduced to address 

the uncertainties related to distribution of the net present value.  

6.2 Probability distributions of input variables 

The future oil price used in the analysis is assumed to be approximately represented by the 

statistical variation of the oil price between 1990 and 2018. In this period the minimum oil price 

was 12.3 USD and the maximum oil price was 109.5 USD. The mean oil price in the period was 

46.5 USD with a standard deviation of 32.2. The above parameters has been included in the 

analysis for all three scenarios by the use of the beta distribution. This distribution is shown in 

figure E.1. 
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The predicted average and the predicted potential downside and upside of the cost elements for 

Capex and Opex have been provided as input to the analysis. These cost elements have been 

included with the use of triangular probability distributions. The predicted minimum and 

maximum uptime for each of the scenarios have been provided as input to the analysis. The 

probability distribution between the minimum and maximum uptime is not defined and uniform 

probability distributions are therefore included in the analysis for range in uptime. The input 

variables are summarised in table E.1.  

6.3 Production profiles 

Production profiles based on the predicted uptime for the each of the scenarios have been provided 

as input to the decision analysis and shown in figure E.2. The production profiles have been 

multiplied with the uptime probability distribution and divided by the predicted uptime value in 

order to include the stochastic variation of uptime.  

6.4 Expected value and confidence interval for the net present values 

Stochastic simulations are performed by the use of @Risk in order to define the mean value and 

the P10 and P90 confidence levels of the net present value for the scenarios. Tornado graphs are 

presented in figure E.3. These show the sensitivity of the NPV mean values as a function of the 

input distribution. The tornado graphs show the dominating effect of the oil price. The analysis 

results for the 80% confidence interval for the net present value are presented in the table below. 

Scenario P10 P90 Mean 

1 -1441  10122 3985 

2 -1383 10394 4165 

3 -1967 9795 3625 

 

6.5 Smooth ambiguity aversion model 

The Carter Racing model (Borgonovo & Marinacci, 2015) is a numerical model of the smooth 

ambiguity aversion model also referred to as the KMM functional (Klibanoff, et al., 2005). This 

model can be used to estimate risk and ambiguity premiums and the corresponding certainty 

equivalents. 
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Figure 5.4.1 Analysis Model for Scenario 1 

The outcome sets X1, X2 and X3 in the model represents the calculated net present values for the 

P10 and P90 confidence levels.  

X1= {m1, m2, m3} = {10122, 0, -1441} 

X2= {m1, m2, m3} = {10394, 0, -1383} 

X3= {m1, m2, m3} = {9795, 0, -1967} 

The probability p1=1 and the predicted probability for p2 is calculated based on the relationship 

between the values for P10, Mean and P90 by the formulae: p2
Pred =

(𝑀𝑒𝑎𝑛−𝑃90)

(𝑃10−𝑃90)
 . The calculated 

predicted probabilities are then found to be 0.531, 0.529 and 0.525 for scenario 1, 2 and 3.  

The secondary probability distribution for the predicted probability is included in the Carter Racing 

model by a combination of two sets of beta distributions where the expected probability value is 

similar to predicted probability value. The expected value for the beta distribution with a=2 and 

b=6 is ¼ and the expected value for the beta distribution with a=6 and b=2 is ¾. The expected 

probability value for the secondary probability distribution is adjusted to be similar to the predicted 

probability value by a factor m as given by the following formula: 

p2
Pred = (1-m) ∙ beta(2,6) + m ∙ beta(6,2) = (1-m)∙1/4 + m ∙ 3/4 

The factor m can therefore be expressed as; m = (p2
Pred – ¼) ∙ 2 and the m factors are then found 

to be 0.561, 0.557 and 0.549 for scenario 1, 2 and 3. The calculation of the risk and ambiguity 

premiums is an iterative process where the risk tolerance factor and the ambiguity aversion 

parameter have to be balanced by the use of the smooth ambiguity model (KMM functional) and 

the Extended Arrow-Pratt quadratic estimation method. The risk and ambiguity premiums are 

calculated by use of both the smooth ambiguity model (KMM functional) and the extended form 

of the Arrow-Pratt quadratic estimation. The extended Arrow-Pratt quadratic estimation also 

estimate the portion of risk premium and ambiguity premium. The certainty equivalent for each of 

the scenarios represents the difference between the predicted net present value and the risk and 

ambiguity premiums. The results using these two methods are shown in the table below.   

 

Method/Scenario 1 2 3 

KMM functional    

- Certainty equivalent 23931 24581 18642 

- Risk and ambiguity premium 15921   

Ext. AP quadratic estimation    

- Certainty equivalent 23281 24561 18522 

- Risk premium 16311 16911 16892 

- Ambiguity premium 271 281 1122 



An Assessment of Ambiguity in Decision Analysis  June 2018 

Student No 238030  Page 51 of 106 

 

1) Results are based on a risk aversion parameter of a= 1/10200 and an ambiguity aversion 

parameter of b=1.05/10200 

2) Results are based on a risk aversion parameter of a= 1/10200 and an ambiguity aversion 

parameter of b=1.2/10200 

6.6 Risk aversion model 

The predicted probabilities and the P10 and P90 confidence values have been used to construct a 

decision three by the use of the Precision Three Software. Risk aversion is included in the Precision 

Three Software by the use of a risk tolerance factor and an exponential concave utility function. 

The risk tolerance factor used is consistent with the Carter Racing model. The decision three is 

shown in figure E.5. The certainty equivalents derived from the precision three analysis are 

summarised below. 

Risk aversion model /Scenario 1 2 3 

Certainty equivalent 2439 2562 2020 

 

6.7 Extreme risk and ambiguity aversion model  

The preferences based on the Wald Maximin Functional are based on a comparison of the worst 

possible consequences. The certainty equivalents for the Wald Maximin Functional can therefore 

be represented by the minimum net present values as shown in the table below.   

 

Maxmin model /Scenario 1 2 3 

Certainty equivalent -4729 -4968 -5076 

 

6.8 Decision maker’s preferences for the production scenarios 

Analysis have been performed addressing both a beta distribution and a uniform distribution of the 

oil price. The minimum and maximum values for these distributions are the same and are based 

on the past statistical variation of the oil price.  The selected beta distribution has a higher 

weighting on the low values and do therefore give more conservative results. The results of the 

analysis have been performed by the use of stochastic simulations of the net present value of the 

production. The objective with the analysis was to define a ranking of the three alternative 

scenarios. Analysis have therefore been performed by to assess the expected values (mean values) 

and the certainty equivalent values. Several methods for analysis the certainty equivalent values 

have been applied that addresses the preferences for a decision maker with risk aversion, risk and 

ambiguity aversion and extreme risk and ambiguity aversion. 

The results from these analysis methods can be summarised as follows: 

 The expected value is maximised for scenario 2  

 The risk and ambiguity averse certainty equivalent is maximised for scenario 2 

 The risk averse certainty equivalent is maximised for scenario 2  

 The maximum worst consequence is minimised for scenario 1 
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A risk neutral decision maker will have a preference for scenario 2 since expected value is highest 

for this alternative. 

A risk and ambiguity averse decision maker will also have a preference for scenario 2 since the 

certainty equivalent for the KMM functional is highest for this alternative. 

A risk averse decision maker will have a preference for scenario 2 since the certainty equivalent 

for the risk aversion model is highest for scenario 2. 

An extreme risk and ambiguity decision maker will struggle to take a decision since the extreme 

negative outcomes reflects negative net present values which would indicate that none of the 

alternatives should be further pursued. If he however has to give his preference he would prefer 

scenario 1. 
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Input parameters Distributions 

Category Average Upside Downside Unit Min Ml Max 

Subsea Capex facility 3000 -10% 20% 

MMNOK 

2700 3000 3600 

SAW Capex facility 2800 -10% 20% 2520 2800 3360 

HAW Capex facility 3000 -10% 10% 2700 3000 3300 

Subsea Capex wells 3200 -15% 20% 

MMNOK 

2720 3200 3840 

SAW Capex wells 3200 -15% 20% 2720 3200 3360 

HAW Capex wells 3200 -10% 15% 2880 3200 3680 

Subsea Opex facility 40 -15% 10% 

MMNOK 

per Year 

34 40 44 

SAW Opex facility 40 -10% 30% 36 40 52 

HAW Opex facility 60 -10% 20% 54 60 72 

Subsea Opex wells 40 -20% 30% 

MMNOK 

per Year 

32 40 52 

SAW Opex wells 30 -10% 20% 27 30 36 

HAW Opex wells 20 -10% 10% 18 20 22 

Subsea maintenance 500 -10% 10% 

Mhr per 

Year 

450 500 550 

SAW maintenance 3000 -10% 10% 2700 3000 3300 

HAW maintenance 6000 -10% 10% 5400 6000 6600 

Subsea Uptime 0.95 2% -3% 

  

92% 95% 97% 

SAW Uptime 0.96 2% -2% 94% 96% 98% 

HAW Uptime 0.98 1% -1% 97% 98% 99% 

Oil price    USD/BOE 12.3 46.5 109.8 

Conversion 7.94 15% -15% NOK/USD 6.75 7.94 9.13 

Discount rate 0.1 -2% 2%   8% 10% 12% 

Manhour rate 1500 -10% 10% NOK/hour 1350 1500 1650 

  

Table 6.1 Input parameter to the stochastic analysis 
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Figure 6.1 Beta distribution of oil price 

Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Yr7 Yr8 Yr9 Yr10 Yr11 Yr12 Yr13 Yr14 Yr15 Yr16 Yr17 Yr18 Yr19 Yr20

Subsea 10 21 20 15 10 10 8 6 5 5 5 4 4 3 3 3 3 3 2 2 142

SAW 8 21 20 16 13 11 8 6 5 5 5 4 4 3 3 3 3 3 2 2 145

HAW 6 21 20 18 14 11 8 6 5 5 5 4 4 3 3 3 3 3 2 2 146

0
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15

20

25

Subsea SAW HAW

Figure 6.2 Production profiles with predicted uptime 
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Figure 6.3 Tornado diagram for scenario 1 

Figure 6.4 Scenario 1 – Certainty equivalent with risk and ambiguity aversion 
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Figure 6.6 Scenario 3 - Certainty equivalent with risk and ambiguity aversion 

Figure 6.5 Scenario 2 – Certainty equivalent with risk and ambiguity aversion 
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Figure 6.7 Decision tree for the Certainty equivalent with Risk Aversion 
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7 An Accident Risk Decision Problem – The need for safety valve 
The assessment of the need to have a safety valve on the pipeline is a decision problem that is 

associated with an accident risk with large potential consequences.  

This accident risk decision problem can be categorized to fall within an extreme safety perspective 

(Soerskaar & Abrahamsen, 2017). The certainty equivalent for various levels of risk and ambiguity 

aversion with and without safety valve has been addressed.   

7.1  Introduction 

There may be undesired events associated with an oil and gas production that have a potential for 

large negative outcomes. These types of events have a low probability of occurrence and could for 

example relate to the integrity of the oil & gas facilities. A marginal field in the North Sea is 

planned to be developed where the production from the field will be transferred to an existing 

process platform through a subsea pipeline. The production from the marginal field is planned   

performed based on scenario 2 which includes production from a wellhead platform with sea 

access (SAW) and tie-back to the host processing platform. The objective with the decision 

analysis in this example is to assess whether or not to install a subsea isolation valve (SSIV) on 

the export pipeline between the SAW and the Host Platform. The assessment will be based on 

methods for maximising expected value and maximising expected utility of the net present values. 

The expected utility will then further translate into certainty equivalents where risk and ambiguity 

premiums are introduced to address the uncertainties related to distribution of the net present value.  

7.2 Probability distributions of input variables 

The future oil price used in the analysis is assumed to be approximately represented by the 

statistical variation of the oil price between 1990 and 2018. In this period the minimum oil price 

was 12.3 USD and the maximum oil price was 109.5 USD. The mean oil price in the period was 

46.5 USD with a standard deviation of 32.2. The above parameters has been included in the 

analysis by the use of the beta distribution. (Figure 6.1) 

The predicted average and the predicted potential downside and upside of the cost elements for 

Capex and Opex and the predicted minimum and maximum uptime for each of the scenarios have 

been provided as input to the analysis. The Capex and Opex cost elements have been included with 

the use of triangular probability distributions. The probability distribution between the minimum 

and maximum uptime is not defined and uniform probability distributions are therefore included 

in the analysis for the range in uptime. The input parameter of the net present value for scenario 2 

without SSIV is the same as presented in the previous chapter that describe the ranking of the 

production scenarios. The additional input parameters for the net present value for scenario 2 with 

SSIV installed include an expected investment cost for the SSIV (Abrahamsen, et al., 2004) and 

an annual expected cost for inspection and maintenance of the SSIV (Abrahamsen, et al., 2004). 

The input variables are summarised in table 7.2 below.  
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Input parameters Distributions 

Category Average Upside Downside Min Ml Max 

SAW Capex facility1 2800 -10% 20% 2520 2800 3360 

SAW Capex wells1 3200 -15% 20% 2720 3200 3360 

SAW Opex facility2 40 -10% 30% 36 40 52 

SAW Opex wells2 30 -10% 20% 27 30 36 

SAW maintenance3 3000 -10% 10% 2700 3000 3300 

SAW Uptime 0.96 2% -2% 94% 96% 98% 

Oil price4    12.3 46.5 109.8 

Conversion5 7.94 15% -15% 6.75 7.94 9.13 

Discount rate 0.1 -2% 2% 8% 10% 12% 

Manhour rate6 1500 -10% 10% 1350 1500 1650 

SSIV Capex1 75      

SSIV Opex2 2      

1) Units in MNOK 

2) Units in MNOK/Year 

3) Units in Mhrs/Year 

4) Units in USD/BOE 

5) Units in NOK/USD 

6) Units in NOK/Mhr 

 

Table 7.2 Input Variables 

 

7.3 Production profiles 

Production profiles based on the predicted uptime for the each of the scenarios have been provided 

as input to the decision analysis and shown in figure 6.2. The production profiles have been 

multiplied with the uptime probability distribution and divided by the predicted uptime value in 

order to include the stochastic variation of uptime. 

  

7.4 Expected value and confidence interval given no riser failure 

Stochastic simulations are performed by the use of @Risk in order to define the mean value and 

the P10 and P90 confidence levels of the net present value for scenario 2 with and without SSIV 
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installed. The stochastic simulation results of the net present value for scenario 2 without SSIV is 

the same as presented in the previous chapter that describe the ranking of the production scenarios.  

Scenario 
Net present value without SSIV Net present value with SSIV 

P10 P90 Mean P10 P90 Mean 

2 -1383 10394 4165 -1509 10295 4075 

 

7.5 Consequence of riser failure 

A failure of a pipeline between the producing unit and the host platform could have large 

consequences (Abrahamsen, et al., 2004). If there is no SSIV installed, the continued production 

from the SAW after a pipeline failure could result in many fatalities, severe damage to the host 

platform and years of lost production. If a SSIV is installed the consequence of a pipeline failure 

is reduced. An estimate of the overall cost impact in the event of a pipeline failure is based on the 

expected costs described in Abrahamsen, et al. (2004) and shown in the table below with and 

without SSIV. The monetary values are given in MNOK. 

 Consequence without SSIV Consequence with SSIV 

Expected number of fatalities  5 0.5 

Expected damage cost  800  200 

Expected loss of income 40000 8000  

Value of a Statistical Life (VSL)  30 30 

Total 40950 8215 

 

7.6 Certainty Equivalent using the Expected Monetary Value 

The expected monetary value (EMV) is the certainty equivalent when the expected value method 

is used. The expected values is shown in the table below and also shown in the decision tree shown 

overleaf.  

 Without SSIV With SSIV 

CE – Expected value 4160 4074 
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Figure 7.6.1 Decision tree - Expected Monetary value  

 

7.7 Certainty Equivalent using the Smooth Ambiguity Aversion Model 

The Carter Racing model (Borgonovo & Marinacci, 2015) is a numerical model of the smooth 

ambiguity aversion model also referred to as the KMM functional (Klibanoff, et al., 2005). This 

model is used to estimate risk and ambiguity premiums and the corresponding certainty 

equivalents. 

 

Figure 7.7.1 Analysis Model for Safety Valve 

 

7.7.1 Certainty equivalent conditional of no riser failure 

The outcome set given no riser failure is the calculated net present values for the P10 and P90 

confidence levels. The outcome set without SSIV is therefore {m1, m2, m3} = {10394, 0, -1383} 

and outcome set without SSIV is {m1, m2, m3} = {10295, 0, -1509}. The probability of p1=1 and 
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the predicted probability for the outcome set is calculated based on the relationship between the 

values for P10, Mean and P90 by the formulae; P10Predicted =((𝑀𝑒𝑎𝑛 − 𝑃90))/((𝑃10 −  𝑃90)) . 

The predicted probability for p2 is thus 0.529 without SSIV and 0.527 with SSIV. The second order 

probability distribution for the predicted probability is included in the Carter Racing model by a 

combination of two sets of beta distributions where the expected probability value is similar to 

predicted probability value. The expected value for the beta distribution with a=2 and b=6 is ¼ 

and the expected value for the beta distribution with a=6 and b=2 is ¾. The expected probability 

value for the secondary probability distribution is adjusted to be similar to the predicted probability 

value by a factor m as given by the following formula P10Predicted = (1-m) ∙ beta(2,6) + m ∙ beta(6,2) 

= (1-m)∙ 1/4 + m ∙ 3/4. The factor m is therefore found by the following formula: m = (P10Predicted 

– ¼) ∙ 2 and is 0.558 without SSIV and 0.554 with SSIV.  

The calculation of the risk and ambiguity premiums is an iterative process where the risk tolerance 

factor and the ambiguity aversion parameter have to be balanced by the use of the smooth 

ambiguity model (KMM functional) and the Arrow-Pratt (AP) quadratic estimation method. The 

risk and ambiguity premiums are calculated by use of both the smooth ambiguity model (KMM 

functional) and the extended form of the AP quadratic estimation. The extended AP quadratic 

estimation also estimate the portion of risk premium and ambiguity premium. The certainty 

equivalent for each of the scenarios represents the difference between the predicted net present 

value and the risk and ambiguity premiums. The results using these two methods are shown in the 

table below.   

 Without SSIV given no riser 

failure 

With SSIV given no riser 

failure 

CE - KMM functional 24581 23461 

CE - AP quadratic estimation 24561 23501 

3) The above results are based on a risk aversion parameter of a= 1/10200 and an 

ambiguity aversion parameter of b=1.05/10200 

 

7.7.2 Certainty equivalent unconditional of riser failure 

The outcome set unconditional of riser failure without and with SSIV is the calculated certainty 

equivalent given no riser and the worst possible negative outcome given a riser failure. The 

outcome set without SSIV is therefore {m1, m2, m3} = {2419, 0, -40950} and outcome set without 

SSIV is {m1, m2, m3} = {2346, 0, -8215}. The probability for p1=1 and predicted probability for 

p2 is given as 1e-4. The second order probability distribution for the predicted probability included 

in the Carter Racing model is modified to a single beta distribution where the expected probability 

value is similar to predicted probability value. The reason for this adjustment is due to the low 

predicted probability of 1E-4. The expected value for the beta distribution with a=2 and b=6 is ¼.  

The expected probability value for the secondary probability distribution is adjusted to be similar 

to the predicted probability value by a factor m as given by the following formula; P(predicted) = 

(1-m) ∙ beta(2,6) = (1-m)∙1/4. The factor m is therefore found to be; m = 1- 4 ∙ p2(predicted) = 

0.9996.  
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The calculation of the risk and ambiguity premiums is an iterative process where the risk tolerance 

factor and the ambiguity aversion parameter have to be balanced by the use of the smooth 

ambiguity model (KMM functional) and the Arrow-Pratt (AP) quadratic estimation method. The 

risk and ambiguity premiums are calculated by use of both the smooth ambiguity model (KMM 

functional) and the extended form of the AP quadratic estimation. The extended AP quadratic 

estimation also estimate the portion of risk premium and ambiguity premium. The certainty 

equivalent for each of the scenarios represents the difference between the predicted net present 

value and the risk and ambiguity premiums. The results using these two methods are shown in the 

table below.   

 Without SSIV unconditional 

on riser failure 

With SSIV unconditional on 

riser failure 

CE - KMM functional 24501 23442 

CE - AP quadratic estimation 24501 23442 

1) The above results without SSIV are based on a risk aversion parameter of a= 1/40950 

and an ambiguity aversion parameter of b=12/40950 

2) The above results with SSIV are based on a risk aversion parameter of a= 1/8215 and an 

ambiguity aversion parameter of b=18/8215 

 

7.8 Certainty Equivalent using the Risk Aversion model 

The predicted probabilities and the P10 and P90 confidence values have been used to construct a 

decision three by the use of the Precision Three Software. Risk aversion is included in the Precision 

Tree Software with a risk tolerance factor and an exponential concave utility function. The 

certainty equivalent given no riser failure is 2491 MNOK when SSIV is installed and 2590 MNOK 

when SSIV is not installed based on a risk tolerance of R=10200. The certainty equivalent without 

SSIV and unconditional of riser failure is 2582 MNOK based on a risk tolerance of R=40950. The 

certainty equivalent with SSIV and unconditional of riser failure is 2489 MNOK based on a risk 

tolerance of R=8215.  

 

Figure 7.8.1 CE conditional of no riser failure 
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Figure 7.8.2 CE without SSIV and unconditional of riser failure 

 

 

 

 

 

 

Figure 7.8.3 CE without SSIV and unconditional of riser failure 

 

7.9 Certainty Equivalent using the Extreme Risk and Ambiguity Aversion model  

The preferences based on the Wald Maximin Functional are based on a comparison of the worst 

possible consequences. The certainty equivalents for the Wald Maximin Functional can therefore 

be represented by the possible severe consequences of a riser failure as shown in the table below.   

 

 Without SSIV With SSIV 

Certainty equivalent (MNOK) -40950 -8215 

 

7.10 Decision maker’s preferences for SSIV 

The results of the analysis have been performed by the use of stochastic simulations of the net 

present value of the production. The objective with the analysis was to assess the need for a safety 

valve on the pipeline between the producing unit and the host platform. Analysis have therefore 

been performed to assess the expected values (mean values) and the certainty equivalent values 

with and without a safety valve (SSIV). Several methods for analysis the certainty equivalent 

values have been applied that addresses the preferences for a decision maker neutral to risk and a 

decision maker with risk aversion, risk and ambiguity aversion and extreme risk and ambiguity 

aversion. 

The results from these analysis methods can be summarised as follows: 

 The expected value is maximised without SSIV 
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 The risk and ambiguity averse certainty equivalent is maximised without SSIV 

 The risk averse certainty equivalent is maximised without SSIV 

 The maximum worst consequence is minimised with SSIV 

 

A risk neutral decision maker will have a preference to not have SSIV since expected value is 

highest for this alternative. A risk and ambiguity averse decision maker will have a preference to 

not have a SSIV since the certainty equivalent for the KMM functional and Arrow-Pratt 

Approximation is highest for this alternative. A risk averse decision maker will there also have a 

preference to not have a SSIV since the certainty equivalent calculated by use of the Precision Tree 

software is highest without SSIV. The ALARP principle however states that a safety measure has 

to be implemented unless it can be demonstrated that there is a gross disproportion between the 

cost and the benefit. I.e. that the expected cost of implementation is much larger than the expected 

benefit. The  

An extreme risk and ambiguity decision maker will however have a preference for the alternative 

with SSIV since the maximum worst consequence is minimised for this alternative. 
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8 Analysis and discussions 
As shown by the previous examples, there are theoretical models for decision analysis with 

ambiguity that can be used to analyse several types of decision problems that the industry faces.  

 

It is however a concern that the industry do not seem to be aware of these theoretical models. 

Theoretical models for decision analysis with ambiguity are also not included in the textbooks 

currently used in the lecturing of decision analysis. Models of risk aversion and calculation of 

corresponding certainty equivalent values are covered in the decision analysis textbook “Practical 

Management Science” by Winston & Albright (2018), although ambiguity and ambiguity aversion 

is not covered. It is also stated in Winston & Albright (2018) that the concept of risk aversion and 

certainty equivalent is rarely used in the industry. In the text book “Making good decision” by 

Bratvold & Begg (2009), the concept of risk aversion and certainty equivalent is very briefly 

mentioned. In the papers (Abrahamsen, et al., 2004), (Abrahamsen & Aven, 2008), (Soerskaar & 

Abrahamsen, 2017) used in the course RIS620 “Economic analysis in Risk Management” there is 

also no description given of theoretical models associated with ambiguity. The theoretical models 

for decision analysis with ambiguity do therefore neither seem to be known nor aligned among 

peers of experts within the field of decision theory. Further research on the practical applications 

of the theoretical models represented by the Smooth Ambiguity Functional (Klibanoff, et al., 2005) 

and the Extended Arrow-Pratt Quadratic Estimation (Maccheroni, et al., 2013) should therefore be 

done at several institutions in order to have these theories accepted and included in decision 

analysis textbooks. This is a challenge that I believe needs to be resolved in order to introduce 

quantitative models for decision analysis with ambiguity to the industry. 

 

The balance between normative decision theory and decision making practice, how the decision 

problems that are analysed can be framed in an uncertainty perspective and how these perspectives 

can assist in rational decision making are further discussed in the subsections. 

 

8.1 Decision theory versus decision making practice 

Relevant models considered to be used to define decision maker’s preferences under risk and 

ambiguity have been assessed with reference to a three-color decision problem (Ellsberg, 1961). 

The decision theoretical models that the decision maker can use to find his preferences in the three-

color decision problem were found to be the Smooth Ambiguity Functional (Klibanoff, et al., 

2005), the Extended Arrow-Pratt Quadratic Estimation (Maccheroni, et al., 2013) and the Wald 

Maximin Functional (Wald, 1949).  

Qualitative research of decision making practice have been performed with reference to a selected 

peer group that have project management functions within the oil and gas industry. The objective 

with the qualitative research was to assess if the decision theory under ambiguity is known and 

used by the industry.  The responses indicate that the decision theory under ambiguity and the use 

of certainty equivalent, risk premiums and ambiguity premiums are generally not known by the 

members of the peer group.  Findings from the case studies in the qualitative research do however 

seem to correspond with previous findings (Kahneman & Tversky, 1992) that decision makers 

have a tendency to think differently about positive and negative outcomes. The decision maker 
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may have a tendency to a risk seeking and ambiguity neutral behavior towards negative outcomes 

and a tendency to a risk and ambiguity averse behavior for positive outcomes.  

The normative decision theory under ambiguity (Klibanoff, et al., 2005), (Maccheroni, et al., 

2013), (Wald, 1949) is based on risk and ambiguity aversion. The preference found by the use of 

the normative decision theory would therefore provide guidance to the decision maker, since risk 

and ambiguity aversion are introduced for both positive and negative outcomes.  

8.2 Decision analysis of business risk  

The analytical methods of the Smooth Ambiguity Functional (Klibanoff, et al., 2005), the 

Extended Arrow-Pratt Quadratic Estimation (Maccheroni, et al., 2013) and the Wald Maximin 

Functional (Wald, 1949) have been documented by a stylized business risk decision problem. The 

business risk decision problem is whether to run or withdraw from a race. The analysis shows that 

a risk neutral decision is to run, while a risk and ambiguity averse decision and an extreme risk 

and ambiguity averse decision is to withdraw.  

An oil company are sometimes faced with similar business risk decision problems as illustrated by 

the Carter racing dilemma. These decisions could be related to the trade-off between the selection 

of a familiar Norwegian fabrication yard or an unknown foreign fabrication yard. The business 

risk decision could also be related to the trade-off between onshore and offshore execution of the 

mechanical completion of a platform. Following the logic from the Carter racing, a risk neutral 

decision would be to select the alternative with the lowest cost estimate and shortest delivery, 

while a risk and ambiguity averse decision would be to select the alternative with the highest 

predictability of cost and schedule.       

8.3 Decision analysis of cost risk  

The research results indicate that project contingency is used as a way to account for uncertainties 

in project cost estimates. Project contingency is thus a similar concept as risk and ambiguity 

premiums for an uncertainty associated with cost risk. The decision makers perform a cost risk 

assessment of the uncertainty range or confidence interval and assigns a margin on top of the base 

estimate based on qualitative assessments. The research results indicate that there are differences 

in how project contingency is introduced in a project cost estimate. The project contingency is 

either included as an deterministic margin in the P50 confidence level or the project contingency 

is introduced by a qualitative judgment of the uncertainty range.  The difference between the P70 

confidence level and the P50 confidence level is normally used as the project contingency in cases 

where an uncertainty range or confidence interval is defined. To have project contingency as the 

difference between the P70 confidence level and the P50 confidence level is also in alignment with 

the analysis performed in the project contingency example by the use of the Smooth Ambiguity 

Functional and the Extended Arrow-Pratt Quadratic Estimation method.   

8.4 Decision analysis of production risk  

The responses from the in-depth interviews indicate that the P10, P50 and P90 confidence levels 

are used as the decision parameters for the production risk related to the income prognosis of an 

oil and gas production. It is however not clear from the responses how the confidence levels are 

used to define a margin or buffer in the value proposition for the income prognosis.  
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In the production risk example, the net present value of three alternative project development 

scenarios are compared. The production profiles provided for these scenarios are based on 

expected annual production. Information of the uncertainty range for the expected annual 

production is not defined. The analysis for the production risk example do therefore not include 

the uncertainties associated with the subsurface performance. 

Stochastic analysis has been performed on the variation in Capex, Opex and uptime in order to 

define the 80% confidence interval for the net present value for the three scenarios. The uncertainty 

range represented by the 80% confidence interval have been analysed in order to define the 

preference based on the certainty equivalent. The analysis shows that a wellhead platform with sea 

access (SAW) is the overall preferred alternative as this gives the highest certainty equivalent both 

for a risk neutral decision maker (expected value), for a decision maker with risk aversion 

(Precision tree) and for a decision maker with risk and ambiguity aversion (Smooth Ambiguity 

Functional/Extended Arrow-Pratt Quadratic Estimation Method).  

This production risk decision problem of ranking of different concepts do show the benefit of 

having a single equivalent value (certainty equivalent) to compare. To perform ranking of the 

concepts based on the expected value and the uncertainty range could also be done, but would 

most likely be based on a qualitative judgement of the uncertainty range. 

8.5 Decision analysis of accidental risk  

The responses from the in-depth interviews indicate that impact assessments are used for decision 

problems that relates to accident risk. An example of a decision problem associated with accident 

risk is whether or not to install a SSIV on the pipeline between the wellhead platform and the host 

platform. The second order probability distribution defined by the two beta distributions for the 

Smooth Ambiguity Functional do not work when the probability of riser failure is as low as 1E-4. 

The preferences for this type of accident risk can however be defined by the use of the Wald 

Maximin Functional (Wald, 1949). To install a SSIV is therefore the preferred alternative as this 

gives the highest certainty equivalent for the extreme undesired event. There is also a relatively 

small difference in the expected net present value with and without SSIV. The expected cost with 

SSIV is therefore not in gross disproportion to the benefit gained. A SSIV should therefore be 

installed to satisfy the ALARP principle that states that a safety measure is to be installed unless 

it can be demonstrated that the expected cost is grossly disproportionate to the benefit gained 

(Soerskaar & Abrahamsen, 2017).  

8.6 Use of risk aversion models  

The decision problems were also analysed by the risk aversion model included in the Precision 

Tree software provided by Palisade Ltd. This risk aversion model refers to the subjective expected 

utility and do not include ambiguity aversion. In the decision problems for business risk, the risk 

aversion model gave the same preference as the expected value method. In the cost risk decision 

problem, the risk averse model would include a project contingency equivalent to the difference 

between the P62 confidence level and the P50 confidence level. This project contingency is lower 

than recommended practice.  The risk aversion model seem to capture only part of uncertainty in 

these decision problems. These cost risk and business risk decision problems are therefore not 
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recommended to be analysed by the use of the risk aversion model included in the Precision Tree 

software.  

8.7 Risk and ambiguity aversion parameters  

The analysis performed by the use of the Smooth Ambiguity Functional and the Extended Arrow-

Pratt Quadratic Estimation require a definition of a risk aversion parameter and an ambiguity 

aversion parameter. The Smooth Ambiguity Functional analysis is found to give reasonable results 

when the risk aversion parameter is set to the inverse of the largest outcome for each of the decision 

problems. The same risk and ambiguity aversion parameters are used for the both the Smooth 

Ambiguity Functional and the Extended Arrow-Pratt Quadratic Estimation. The ambiguity 

aversion parameter is defined in an iterative process where the calculated risk and ambiguity 

premium found by the Smooth Ambiguity Functional is balanced with the corresponding risk 

premium and ambiguity premium found by the Extended Arrow-Pratte Quadratic Estimation. 

How to select the risk aversion parameter and how to find the ambiguity aversion parameter is not 

covered in detail in the literature describing the Smooth Ambiguity Functional and the Extended 

Arrow-Pratt Quadratic Estimation. It is recommended that the selection of risk aversion parameters 

and the relationship between the risk aversion parameter and the ambiguity aversion parameter are 

subject to further research.  

8.8 Beyond the economic perspective  

The quantitative methods recommended for the decision analysis for the production risk, cost risk, 

business risk and accident risk decision problems are shown in figure 8.8.1 in relation to high and 

low uncertainty and consequence. Figure 8.8.1 indicates that there are quantitative models that can 

be used to assess the uncertainties beyond the extreme economic perspective. The Smooth 

Ambiguity aversion and Extended Arrow-Pratt estimation can be used for ranking of scenarios, 

project contingency and business risk decisions. The Wald maximin criterion would be the method 

to use when assessing accident risks.   

Figure 8.8.1 Decision problems in relation to analysis methods, uncertainty and consequence 
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8.9 A project manager’s recommendation  

The quantitative methods given in figure 8.8.1 can assist the project manager in his decision 

making as a supplement and input to his recommendations and decision support. A project 

manager’s recommendation is therefore proposed included in the decision value process (Aven, 

2015) shown in figure 8.9.1.  

 

 

 

 

 

 

 

 

 

 

There is a relatively high expectation that a lot of issues are resolved and thought through in the 

above value based assessment involving the management review and judgement process and the 

stakeholders review process. For an oil company the management review and judgement process 

would typically be held at an asset management level and the stakeholder review process would 

typically be facilitated by technical and management partner committees. In such a setting, the 

decision support that is subject to a value based assessment needs to be established by the project 

manager based on performed analysis and evaluations. This means that the project manager needs 

to make up his own mind before he presents key messages and recommendations to stakeholders 

and management, as his personal view will always be part of the discussion in the management 

and stakeholder reviews.  

The responses from the qualitative research do however show that project managers may have 

different preferences when faced with ambiguity in specific decision problems. Some project 

managers prefer a predictable outcome set while others prefer a combination of predictable 

positive outcomes and less predictable negative outcomes. The introduction of quantitative 

methods for analysising the decision problems is therefore recommended. This could give 

guidance to the decision maker on a consistent risk and ambiguity averse approach for both postive 

and negative outcomes.  
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9 Conclusion 
The objective with this thesis was to assess if quantitative models can be introduced to give 

preferences and margins when subject to both measureable uncertainties (risk) and un-measureable 

uncertainties (ambiguity). The assessment shows that quantitative models can be developed based 

on the theoretical models described by the recent advances in decision theory as an extension to 

current decision analysis practice. Large uncertainties referred to in the extreme safety perspective 

is however recommended to be based on the precautionary and cautionary principle.  

A balanced economic and safety perspective is recommended introduced that lies between the 

extreme economic perspective and the extreme safety perspective (Soerskaar & Abrahamsen, 

2017). The uncertainty perspectives can then be described by an extreme economic perspective, a 

balanced economic and safety perspective and an extreme safety perspective. Analytical methods 

relevant for these uncertainty perspectives are shown in figure 9.1 and these are recommended 

used as a guide for a project manager in his analysis and evaluation of specific decision problems. 

 

 

Figure 9.1 Perspectives and recommended analysis methods for uncertainty and consequence 

 

The quantitative decision analysis performed for the balanced economic and safety perspective 

can define margins or premiums for risk and ambiguity. These margins or premiums can then be 

used to define a single equivalent sure amount or certainty equivalent as additional information to 

the expected value and the uncertainty range. This information about an equivalent sure amount 

or certainty equivalent is recommended used as a guide for rational decision making when 

qualitative judgements are performed.  
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Appendix A – Detailed analysis of the Ellsberg three-color problem 
A detailed stepwise description of the analytical methods given in Borgonovo & Marinacci (2015) 

for the Ellsberg three-color problem is included.  

A.1 Exact quadratic solution of the variance of the expected payoff 

The Ellsberg three color problem can be expressed by the following expected utility 

formulations: 

𝑈(𝑓, 𝑝) =
1

3
𝑢(100) +

1

3
𝑢(0) +

1

3
𝑢(0) =

1

3
𝑢(100) +

2

3
𝑢(0)  

𝑈(𝑔, 𝑝) =
1

3
𝑢(0) + (

2

3
− 𝑝) 𝑢(0) + 𝑝 ∙ 𝑢(0) = (

1

3
+ 𝑝) 𝑢(0) + (

2

3
− 𝑝) 𝑢(100)  

𝑈(𝑓′, 𝑝) =
1

3
𝑢(100) + (

2

3
− 𝑝) 𝑢(0) + 𝑝 ∙ 𝑢(100) = (

1

3
+ 𝑝) 𝑢(100) + (

2

3
− 𝑝) 𝑢(0)  

𝑈(𝑔′, 𝑝) =
1

3
𝑢(0) + (

2

3
− 𝑝) 𝑢(100) + 𝑝 ∙ 𝑢(100) = (

1

3
) 𝑢(0) + (

2

3
) 𝑢(100)  

A predictive probability of p can then be assigned. For the Ellsberg paradox it seem natural to 

assign a predictive probability of pµ = 
1

3
 .  The probabilities then becomes pR = 

1

3
 , pB = 

1

3
  and pY = 

1

3
 and these will then result in the following expected utilities which is the certainty equivalent for 

a decision maker neutral to both ambiguity and risk (Borgonovo & Marinacci, 2015): 

𝐻(𝑝µ, 𝑓) = ∑ 𝑝µ
𝑓

𝑄

𝑞=1

(𝑞) ∙ 𝑤𝑞 

𝐻(𝑓) = 𝑈(𝑓, 𝑝µ) =
1

3
𝑢(100) +

1

3
𝑢(0) +

1

3
𝑢(0) =

1

3
∙ (100) +

2

3
∙ (0) = 33.33 

𝐻(𝑔) = 𝑈(𝑔, 𝑝µ) =
1

3
𝑢(0) +

1

3
𝑢(100) +

1

3
𝑢(0) =

2

3
∙ (0) +

1

3
∙ (100) = 33.33 

𝐻(𝑓′) = 𝑈(𝑓′, 𝑝µ) =
1

3
𝑢(100) +

1

3
𝑢(0) +

1

3
𝑢(100) =

1

3
∙ (0) +

2

3
∙ (100) = 66.66 

𝐻(𝑔′) = 𝑈(𝑔′, 𝑝µ) =
1

3
𝑢(0) +

1

3
𝑢(100) +

1

3
𝑢(100) =

1

3
∙ (0) +

2

3
∙ (100) = 66.66 

As shown the preference is then: f ≃ g ≾ f’≃ g’  
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The risk and ambiguity premium of alternative f is in Borgonovo & Marinacci (2015) defined as  

П(𝑓) = 𝐻(𝑝µ, 𝑓) − 𝐶(𝑓) 

The certainty equivalent for act f (Borgonovo & Marinacci, 2015) is defined as: 

𝐶(𝑓) ≃  𝐶𝐴𝑃(𝑓) + П𝐴𝑀(f) 

The classic Arrow-Pratt approximation (Borgonovo & Marinacci, 2015) is defined as: 

𝐶𝐴𝑃(𝑓) = 𝑤 + 𝔼𝑝µ
(𝑤𝑓) −

1

2
∙ 𝜆𝑦(𝑤) ∙ 𝜎𝑝𝑢

2 (𝑤𝑓) 

CAP(f) is based on the predicted probability distribution pµ. 𝔼𝑝µ
(𝑤𝑓) is the expected payoff of 

investment f under the predicted probability distribution pµ. 𝜎𝑝𝑢
2 (𝑤𝑓) is the corresponding variance 

of the investment f under the predicted probability distribution pµ. 

The quadratic ambiguity premium for act f (Borgonovo & Marinacci, 2015) is then defined as: 

П𝐴𝑀(𝑓) = −
1

2
∙ (𝜆𝑣(𝑤) − 𝜆𝑢(𝑤)) ∙ 𝜎µ

2(𝔼𝑝µ
(𝑤𝑓)) 

𝜎µ
2(𝔼𝑝µ

(𝑤𝑓)) is the scope of epistemic uncertainty and 𝜆𝑣(𝑤) − 𝜆𝑢(𝑤) captures the decision 

makers different attitudes toward aleatory and epistemic uncertainty. Theorem 2 in Borgonovo & 

Marinacci (2015) summarize these formulas as follows: 

𝐶𝐴𝑃(𝑓) = 𝑤 + ∑ 𝑝µ
𝑓

𝑄

𝑞=1

(𝑞) ∙ 𝑤𝑞 −
1

2
∙ 𝜆𝑢 ∙ 𝜎𝑝µ

2 (𝑓) 

𝜎𝑝µ
2 (𝑓) = ∑ 𝑝µ

𝑓

𝑄

𝑞=1

(𝑞) ∙ 𝑤𝑞
2 − (∑ 𝑝µ

𝑓

𝑄

𝑞=1

(𝑞) ∙ 𝑤𝑞)2 

П𝐴𝑀(𝑓) = −
1

2
∙ (𝜆𝑣 − 𝜆𝑢) ∙ ( ∑ 𝐶𝑜𝑣µ

𝑄

𝑞,𝑟=1

[𝑝𝑓(𝑞), 𝑝𝑓(𝑟)] ∙ 𝑤𝑞 ∙ 𝑤𝑟) 

𝐶𝑜𝑣[𝑝𝑓(𝑞), 𝑝𝑓(𝑟)] = 𝔼µ[(𝑝𝑓(𝑞) − 𝑝µ
𝑓(𝑞)) ∙ (𝑝𝑓(𝑟) − 𝑝µ

𝑓(𝑟))] 

𝜎µ
2 (𝔼𝑝µ

(𝑤𝑓′)) = ∑ 𝐶𝑜𝑣µ

𝑄

𝑞,𝑟=1

[𝑝𝑓′(𝑞), 𝑝𝑓′(𝑟)]𝑤𝑞𝑤𝑟 

𝐶𝑜𝑣[𝑝𝑓′
(𝑞), 𝑝𝑓′

(𝑟)] = 𝔼µ [(𝑝𝑓′
(𝑞) − 𝑝µ

𝑓′

(𝑞)) (𝑝𝑓′
(𝑟) − 𝑝µ

𝑓′

(𝑟))]=  

𝐶𝑜𝑣[𝑝𝑓′
(𝑞), 𝑝𝑓′

(𝑟)] = 𝔼µ[(𝑝𝑓′
(𝑞)𝑝𝑓′

(𝑟) − 𝑝µ
𝑓′

(𝑞)𝑝𝑓′
(𝑟) − 𝑝𝑓′

(𝑞)𝑝µ
𝑓′

(𝑟) + 𝑝µ
𝑓′

(𝑞)𝑝µ
𝑓′

(𝑞) )=  
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𝐶𝑜𝑣[𝑝𝑓′
(𝑞), 𝑝𝑓′

(𝑟)] = 𝔼µ[(𝑝𝑓′
(𝑞)𝑝𝑓′

(𝑟) − 𝑝µ
𝑓′

(𝑞)𝑝𝑓′
(𝑟) − 𝑝𝑓′

(𝑞)𝑝µ
𝑓′

(𝑟) + 𝑝µ
𝑓′

(𝑞)𝑝µ
𝑓′

(𝑞) ) 

𝐶𝑜𝑣[𝑝𝑓′
(1), 𝑝𝑓′

(1)]=𝔼µ[(𝑝𝑓′
(1)𝑝𝑓′

(1) − 𝑝µ
𝑓′

(1)𝑝𝑓′
(1) − 𝑝𝑓′

(1)𝑝µ
𝑓′

(1) + 𝑝µ
𝑓′

(1)𝑝µ
𝑓′

(1) )= 

𝐶𝑜𝑣[𝑝𝑓′
(1), 𝑝𝑓′

(1)] = 𝔼µ[(𝑝𝑓′
(1)𝑝𝑓′

(1) − 2𝑝µ
𝑓′

(1)𝑝𝑓′
(1) + 𝑝µ

𝑓′

(1)𝑝µ
𝑓′

(1) )= 

𝐶𝑜𝑣[𝑝𝑓′
(1), 𝑝𝑓′

(1)] = 𝔼µ [(𝑝𝑓′
(1))

2

] − 2𝔼µ [(𝑝µ
𝑓′

(1)𝑝𝑓′
(1))] + 𝔼µ [(𝑝µ

𝑓′

(1))
2

] = 

The difference (𝜆𝑣(𝑤) − 𝜆𝑢(𝑤)) = (b – a), captures the decision maker attitudes toward aleatory 

and epistemic uncertainty. (Borgonovo & Marinacci, 2015). In the following calculation we use 

𝜆𝑣(𝑤) = 𝑏 = 
2

100
 and 𝜆𝑢(𝑤) = 𝑎 = 

1

100
. 

w = initial wealth 

wf = wealth added by investment f 

Letting w=0, we then have; 

𝐶𝐴𝑃(𝑓) = ∑ 𝑝µ
𝑓

𝑄

𝑞=1

(𝑞)𝑤𝑞 −
1

2
𝜆𝑢𝜎𝑝µ

2 (𝑓) 

∑ 𝑝µ
𝑓

𝑄

𝑞=1

(𝑞) ∙ 𝑤𝑞 =
1

3
∙ 100 +

1

3
∙ 0 +

1

3
∙ 0 =

100

3
 

𝜎𝑝µ
2 (𝑓) = ∑ 𝑝µ

𝑓

𝑄

𝑞=1

(𝑞)𝑤𝑞
2 − (∑ 𝑝µ

𝑓

𝑄

𝑞=1

(𝑞)𝑤𝑞)

2

 

𝜎𝑝µ
2 (𝑓) == [

1

3
∙ 1002 +

1

3
∙ 02 +

1

3
∙ 02] − [

1

3
∙ 100 +

1

3
∙ 0 +

1

3
∙ 0]

2

=
10000

3
−  

10000

9
 = 2222.22 

 

𝐶𝐴𝑃(𝑓) =
100

3
−

1

2
∙ 𝜆𝑢 ∙ (

10000

3
−  

10000

9
)= 

100

3
−

1

2
∙

1

100
∙ (

10000

3
−  

10000

9
) = 22.22 

𝐶𝐴𝑃(𝑔) = ∑ 𝑝µ
𝑔

𝑄

𝑞=1

(𝑞)𝑤𝑞 −
1

2
∙ 𝜆𝑢𝜎𝑝µ

2 (𝑔) 

∑ 𝑝µ
𝑔

𝑄

𝑞=1

(𝑞)𝑤𝑞 =
1

3
∙ 100 +

1

3
∙ 0 +

1

3
∙ 0 =

100

3
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𝜎𝑝µ
2 (𝑔) = ∑ 𝑝µ

𝑔

𝑄

𝑞=1

(𝑞)𝑤𝑞
2 − (∑ 𝑝µ

𝑔

𝑄

𝑞=1

(𝑞)𝑤𝑞)

2

 

𝜎𝑝µ
2 (𝑔) = [

1

3
∙ 02 +

1

3
∙ 1002 +

1

3
∙ 02] − [

1

3
∙ 0 +

1

3
∙ 100 +

1

3
∙ 0]

2

=
10000

3
−  

10000

9
 = 2222.22 

 

𝐶𝐴𝑃(𝑔) =
100

3
−

1

2
𝜆𝑢 (

10000

3
−  

10000

9
)= 

100

3
−

1

2
∙

1

100
(

10000

3
−  

10000

9
)= 22.22 

𝐶𝐴𝑃(𝑓′) = ∑ 𝑝µ
𝑓′

𝑄

𝑞=1

(𝑞)𝑤𝑞 −
1

2
𝜆𝑢𝜎𝑝µ

2 (𝑓′) 

∑ 𝑝µ
𝑓′

𝑄

𝑞=1

(𝑞)𝑤𝑞 =
1

3
∙ 100 +

1

3
∙ 0 +

1

3
∙ 100 =

200

3
 

𝜎𝑝µ
2 (𝑓′) = ∑ 𝑝µ

𝑓′

𝑄

𝑞=1

(𝑞)𝑤𝑞
2 − (∑ 𝑝µ

𝑓′

𝑄

𝑞=1

(𝑞)𝑤𝑞)

2

 

𝜎𝑝µ
2 (𝑓′) = [

1

3
∙ 1002 +

1

3
∙ 02 +

1

3
∙ 1002] − [

1

3
∙ 100 +

1

3
∙ 0 +

1

3
∙ 100]

2

=
20000

3
− 

40000

9
 =  

𝜎𝑝µ
2 (𝑓′) = 2222.22 

 

𝐶𝐴𝑃(𝑓′) =
200

3
−

1

2
𝜆𝑢 (

20000

3
−  

40000

9
)= 

200

3
−

1

2
∙

1

100
(

20000

3
−  

40000

9
) = 55.55 

𝐶𝐴𝑃(𝑔′) = ∑ 𝑝µ
𝑔′

𝑄

𝑞=1

(𝑞)𝑤𝑞 −
1

2
𝜆𝑢𝜎𝑝µ

2 (𝑔′) 

∑ 𝑝µ
𝑔′

𝑄

𝑞=1

(𝑞)𝑤𝑞 =
1

3
∙ 0 +

1

3
∙ 100 +

1

3
∙ 100 =

200

3
 

𝜎𝑝µ
2 (𝑔′) = ∑ 𝑝µ

𝑔′

𝑄

𝑞=1

(𝑞)𝑤𝑞
2 − (∑ 𝑝µ

𝑔′

𝑄

𝑞=1

(𝑞)𝑤𝑞)

2

 

𝜎𝑝µ
2 (𝑔′) = [

1

3
∙ 02 +

1

3
∙ 1002 +

1

3
∙ 1002] − [

1

3
∙ 0 +

1

3
∙ 100 +

1

3
∙ 100]

2

=
20000

3
−  

40000

9
 = 

𝜎𝑝µ
2 (𝑔′) = 2222.22 
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𝐶𝐴𝑃(𝑔′) =
200

3
−

1

2
𝜆𝑢 (

20000

3
−  

40000

9
)= 

200

3
−

1

2
∙

1

100
∙ (

20000

3
− 

40000

9
)= 55.55 

П𝐴𝑀(𝑓) = −
1

2
(𝜆𝑣 − 𝜆𝑢)𝜎µ

2(𝑓) = −
1

2
(𝜆𝑣 − 𝜆𝑢) ( ∑ 𝐶𝑜𝑣µ

𝑄

𝑞,𝑟=1

[𝑝𝑓(𝑞), 𝑝𝑓(𝑟)]𝑤𝑞𝑤𝑟) 

𝐶𝑜𝑣[𝑝𝑓(𝑞), 𝑝𝑓(𝑟)] = 𝔼µ [(𝑝𝑓(𝑞) − 𝑝µ
𝑓(𝑞)) (𝑝𝑓(𝑟) − 𝑝µ

𝑓(𝑟))] 

r,q=1,2,……….,Q 

𝜎µ
2(𝑓) = ∑ 𝐶𝑜𝑣µ

𝑄

𝑞,𝑟=1

[𝑝𝑓(𝑞), 𝑝𝑓(𝑟)]𝑤𝑞𝑤𝑟 

For the acts in Ellsberg there are three possible states: p1=
1

3
 , p2=

1

3
 , p3=

1

3
 

𝜎µ
2(𝑓) = 𝐶𝑜𝑣 (

1

3
,

1

3
) 𝑤1

2(𝑓) + 𝐶𝑜𝑣(𝑝, 𝑝)𝑤2
2(𝑓) + 𝐶𝑜𝑣 (

2

3
− 𝑝,

2

3
− 𝑝) 𝑤3

2(𝑓) +

𝐶𝑜𝑣 (
1

3
, 𝑝) 𝑤1(𝑓)𝑤2(𝑓) + 𝐶𝑜𝑣 (𝑝,

1

3
) 𝑤2(𝑓)𝑤1(𝑓) + 𝐶𝑜𝑣 (

1

3
,

2

3
− 𝑝) 𝑤1(𝑓)𝑤3(𝑓) +

𝐶𝑜𝑣 (
2

3
− 𝑝,

1

3
) 𝑤3(𝑓)𝑤1(𝑓) + 𝐶𝑜𝑣 (𝑝,

2

3
− 𝑝) 𝑤2(𝑓)𝑤3(𝑓) + 𝐶𝑜𝑣 (

2

3
− 𝑝, 𝑝) 𝑤3(𝑓)𝑤2(𝑓)  

Since 𝐶𝑜𝑣 (
1

3
, 𝑝) =  𝐶𝑜𝑣 (𝑝,

1

3
) and 𝐶𝑜𝑣 (

1

3
,

2

3
− 𝑝) = 𝐶𝑜𝑣 (

2

3
− 𝑝,

1

3
) and 𝐶𝑜𝑣 (𝑝,

2

3
− 𝑝) =

 𝐶𝑜𝑣 (
2

3
− 𝑝, 𝑝) we then have: 

𝜎µ
2(𝑓) = 𝐶𝑜𝑣 (

1

3
,

1

3
) 𝑤1

2(𝑓) + 𝐶𝑜𝑣(𝑝, 𝑝)𝑤2
2(𝑓) + 𝐶𝑜𝑣 (

2

3
− 𝑝,

2

3
− 𝑝) 𝑤3

2(𝑓) +

2𝐶𝑜𝑣 (
1

3
, 𝑝) 𝑤1(𝑓)𝑤2(𝑓) + 2𝐶𝑜𝑣 (

1

3
,

2

3
− 𝑝) 𝑤1(𝑓)𝑤3(𝑓) + 2𝐶𝑜𝑣 (𝑝,

2

3
− 𝑝) 𝑤2(𝑓)𝑤3(𝑓)  

𝐶𝑜𝑣 (
1

3
,

1

3
) = 𝔼µ [(

1

3
−

1

3
) (

1

3
−

1

3
)]= 0 

𝐶𝑜𝑣 (
1

3
, 𝑝) = 𝔼µ [(

1

3
−

1

3
) (

1

3
− 𝑝)]= 0 

𝐶𝑜𝑣 (
1

3
,

2

3
− 𝑝) = 𝔼µ [(

1

3
−

1

3
) (

2

3
− 𝑝 −

1

3
)]= 0 

𝜎µ
2(𝑓) = 𝐶𝑜𝑣(𝑝, 𝑝)𝑤2

2(𝑓) + 𝐶𝑜𝑣 (
2

3
− 𝑝,

2

3
− 𝑝) 𝑤3

2(𝑓) +  2𝐶𝑜𝑣 (𝑝,
2

3
− 𝑝) 𝑤2(𝑓)𝑤3(𝑓)  

𝑤2(𝑓) = 0  

𝑤3(𝑓) = 0 

𝜎µ
2(𝑓) = 0 

𝑤2(𝑔) = 100 

𝑤3(𝑔) = 0  
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𝜎µ
2(𝑔) = 𝐶𝑜𝑣 (

2

3
− 𝑝,

2

3
− 𝑝) 𝑤2

2(𝑔)  

𝑤2(𝑓′) = 0  

𝑤3(𝑓′) = 100  

𝜎µ
2(𝑓′) = 𝐶𝑜𝑣 (

2

3
− 𝑝,

2

3
− 𝑝) 𝑤3

2(𝑓′)=  

𝑤2(𝑔′) = 100 

𝑤3(𝑔′) = 100 

𝜎µ
2(𝑔′) = 𝐶𝑜𝑣(𝑝, 𝑝)𝑤2

2(𝑔′) + 𝐶𝑜𝑣 (
2

3
− 𝑝,

2

3
− 𝑝) 𝑤3

2(𝑔′) +  2 ∙ 𝐶𝑜𝑣 (𝑝,
2

3
− 𝑝) 𝑤2(𝑔′)𝑤3(𝑔′)  

𝐶𝑜𝑣(𝑝, 𝑝) = 𝔼µ [(𝑝 −
1

3
) ∙ (𝑝 −

1

3
)] = 𝔼µ[𝑝2 −

1

3
∙ 𝑝 −

1

3
∙ 𝑝 +

1

9
]= 𝔼µ[𝑝2 −

2

3
∙ 𝑝 +

1

9
] =  

𝐶𝑜𝑣(𝑝, 𝑝) = 𝔼µ[𝑝2] −  
2

3
∙ 𝔼µ[𝑝] +  

1

9
 

𝔼µ[𝑝] = ∫ 𝑝 ∙
3

2

2/3

0

∙ 𝑑𝑝 = [
1

2
∙ 𝑝2 ∙

3

2
]

0

2

3
=

1

2
∙ (

2

3
)

2

∙
3

2
=

1

3
 

𝔼µ[𝑝2] = ∫ 𝑝2 ∙
3

2

2/3

0

∙ 𝑑𝑝 = [
1

3
∙ 𝑝3 ∙

3

2
]

0

2

3
=

1

3
∙ (

2

3
)

3

∙
3

2
=

4

27
 

𝐶𝑜𝑣(𝑝, 𝑝) =
4

27
−

2

3
∙

1

3
+

1

9
=

4

27
−

6

27
+

3

27
=

1

27
  

𝐶𝑜𝑣 (𝑝,
2

3
− 𝑝) = 𝔼µ [(𝑝 −

1

3
) (

2

3
− 𝑝 −

1

3
)] = 𝔼µ [(𝑝 −

1

3
) (

1

3
− 𝑝)] = 𝔼µ[

1

3
∙ 𝑝−𝑝2 −

1

9
+

1

3
∙ 𝑝]= 

𝐶𝑜𝑣 (𝑝,
2

3
− 𝑝) = 𝔼µ[

2

3
∙ 𝑝 − 𝑝2 −

1

9
] =  

2

3
𝔼µ[𝑝] −  𝔼µ[𝑝2] −

1

9
=  

2

3
∙

1

3
−

4

27
−

1

9
=

6

27
−

4

27
−

3

27
= 

𝐶𝑜𝑣 (𝑝,
2

3
− 𝑝) = −

1

27
 

𝐶𝑜𝑣 (
2

3
− 𝑝,

2

3
− 𝑝) = 𝔼µ [(

2

3
− 𝑝 −

1

3
) ∙ (

2

3
− 𝑝 −

1

3
)] = 𝔼µ [(

1

3
− 𝑝) ∙ (

1

3
− 𝑝)]= 

𝐶𝑜𝑣 (
2

3
− 𝑝,

2

3
− 𝑝) = 𝔼µ[

1

9
−

1

3
∙ 𝑝 −

1

3
∙ 𝑝 + 𝑝2]= 𝔼µ[

1

9
−

2

3
∙ 𝑝 + 𝑝2]= 

1

9
 – 

2

3
∙ 𝔼µ[𝑝] + 𝔼µ[𝑝2] = 

𝐶𝑜𝑣 (
2

3
− 𝑝,

2

3
− 𝑝) =

1

9
−

2

3
∙

1

3
+

4

27
=  

3

27
−

6

27
+

4

27
=

1

27
 

𝜎µ
2(𝑔) = 𝐶𝑜𝑣 (

2

3
− 𝑝,

2

3
− 𝑝) 𝑤2

2(𝑔) = (
1

27
)1002 

𝜎µ
2(𝑓′) = 𝐶𝑜𝑣 (

2

3
− 𝑝,

2

3
− 𝑝) 𝑤3

2(𝑓′) = (
1

27
)1002 

𝜎µ
2(𝑔′) = (

1

27
) 𝑤2

2(𝑔′) + (
1

27
) 𝑤3

2(𝑔′) +  2 ∙ (−
1

27
) 𝑤2(𝑔′)𝑤3(𝑔′) = 0  
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П𝐴𝑀(𝑓) = −
1

2
(𝜆𝑣 − 𝜆𝑢)𝜎µ

2(𝑓) = −
1

2
(𝜆𝑣 − 𝜆𝑢) ∙ (0) = 0  

П𝐴𝑀(𝑔) = −
1

2
(𝜆𝑣 − 𝜆𝑢)𝜎µ

2(𝑔) == −
1

2
(𝜆𝑣 − 𝜆𝑢) (𝐶𝑜𝑣 (

2

3
− 𝑝,

2

3
− 𝑝) 𝑤2

2(𝑔)) = 

П𝐴𝑀(𝑔) = −
1

2
(𝜆𝑣 − 𝜆𝑢) ((

1

27
) ∙ 1002) = −

1

2
(𝑏 − 𝑎) ((

1

27
) ∙ 1002)= −

1

2
(0,01) ((

1

27
) ∙ 1002)= 

П𝐴𝑀(𝑔) = −1.85 

П𝐴𝑀(𝑓′) = −
1

2
(𝜆𝑣 − 𝜆𝑢)𝜎µ

2(𝑓′) = −
1

2
(𝜆𝑣 − 𝜆𝑢)(𝐶𝑜𝑣 (

2

3
− 𝑝,

2

3
− 𝑝) 𝑤3

2(𝑓′)) = 

П𝐴𝑀(𝑓′) = −
1

2
(𝜆𝑣 − 𝜆𝑢) ((

1

27
) ∙ 1002) =−

1

2
(𝑏 − 𝑎) ((

1

27
) ∙ 1002) = 

П𝐴𝑀(𝑓′) = −
1

2
(0.01) ((

1

27
) ∙ 1002) = −1.85 

П𝐴𝑀(𝑔′) = −
1

2
(𝜆𝑣 − 𝜆𝑢)𝜎µ

2(𝑔′) = −
1

2
(𝜆𝑣 − 𝜆𝑢) ∙ (0) = 0  
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A.2 Approximate quadratic solution of the variance of the expected payoff 

The approximate quadratic solution for the variance of the expected payoff are shown in the 

following for act f’. 

𝜎µ
2 (𝔼𝑝µ

(𝑤𝑓′)) =𝑠𝑖𝑔11 ∙ 𝑤1 ∙ 𝑤1 + 𝑠𝑖𝑔21 ∙ 𝑤2 ∙ 𝑤1 + 𝑠𝑖𝑔31 ∙ 𝑤3 ∙ 𝑤1 +  𝑠𝑖𝑔12 ∙ 𝑤1 ∙ 𝑤2 +

 𝑠𝑖𝑔22 ∙ 𝑤2 ∙ 𝑤2 +  𝑠𝑖𝑔32 ∙ 𝑤3 ∙ 𝑤2 +  𝑠𝑖𝑔13 ∙ 𝑤1 ∙ 𝑤3 +  𝑠𝑖𝑔23 ∙ 𝑤2 ∙ 𝑤3 +  𝑠𝑖𝑔33 ∙ 𝑤3 ∙ 𝑤3 

𝑝𝑓′(1)= 
1

3
 

𝔼µ[𝑝𝑓′(1)]= ∫ 𝑝𝑓′(1)
2/3

0
µ(p)dp =(

1

𝑁
 ∑

1

3

𝑁

𝑁=1
 ∙  

3

2
 ) ∙

2

3
 = 0.33 

𝑝𝑓′(2)=p = rand()∙ 
2

3
 

𝔼µ[𝑝𝑓′(2)]= ∫ 𝑝𝑓′(2)
2/3

0
µ(p) dp = (

1

𝑁
 ∑ 𝑟𝑎𝑛𝑑() ∙  

2

3

𝑁

𝑁=1
 ∙  

3

2
 ) ∙

2

3
 = 0.33 

𝑝𝑓′(3) = 
2

3
 – p= 

2

3
− rand()∙ 

2

3
 

𝔼µ[𝑝𝑓′(3)]= ∫ 𝑝𝑓′(3)
2/3

0
 µ(p)dp =(

1

𝑁
 ∑ (

2

3
−  𝑟𝑎𝑛𝑑() ∙  

2

3
)

𝑁

𝑁=1
 ∙  

3

2
 ) ∙

2

3
 = 0.33 

𝔼µ [(𝑝𝑓′(1))
2

] = ∫ (𝑝𝑓′(1))
2

∙
2/3

0
 µ(p)dp = (

1

𝑁
 ∑ (

1

3

𝑁

𝑁=1
 ∙  

1

3
) ∙  

3

2
 ) ∙

2

3
 

𝔼µ [(𝑝𝑓′(2))
2

] = ∫ (𝑝𝑓′(2))
2

∙
2/3

0
 µ(p)dp = (

1

𝑁
 ∑ (𝑟𝑎𝑛𝑑() ∙  

2

3

𝑁

𝑁=1
 )(𝑟𝑎𝑛𝑑() ∙  

2

3
 )

3

2
 )

2

3
 

𝔼µ [(𝑝𝑓′(3))
2

] = ∫ (𝑝𝑓′(3))
2

∙
2/3

0
 µ(p)dp = 

𝔼µ [(𝑝𝑓′(3))
2

] = (
1

𝑁
 ∑(

2

3
−  𝑟𝑎𝑛𝑑() ∙  

2

3
)

𝑁

𝑁=1

∙ (
2

3
−  𝑟𝑎𝑛𝑑() ∙  

2

3
)

3

2
 )

2

3
 

𝔼µ [(𝑝𝑓′
(1)) (𝑝𝑓′

(2))] = ∫ (𝑝𝑓′
(1)) (𝑝𝑓′

(2)) ∙
2

3
0

 µ(p)∙ dp =  

𝔼µ [(𝑝𝑓′
(1)) (𝑝𝑓′

(2))] = (
1

𝑁
 ∑( 

1

3

𝑁

𝑁=1

 ) ∙ (𝑟𝑎𝑛𝑑() ∙  
2

3
 ) ∙  

3

2
 ) ∙

2

3
 

𝔼µ [(𝑝𝑓′
(1)) (𝑝𝑓′

(3))] = ∫ (𝑝𝑓′
(1)) (𝑝𝑓′

(3)) ∙
2

3
0

 µ(p)∙ dp = 
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𝔼µ [(𝑝𝑓′
(1)) (𝑝𝑓′

(3))] = (
1

𝑁
 ∑(

1

3
)

𝑁

𝑁=1

∙ (
2

3
−  𝑟𝑎𝑛𝑑() ∙  

2

3
) ∙  

3

2
 ) ∙

2

3
 

𝔼µ [(𝑝𝑓′(2)) (𝑝𝑓′(3))] = ∫ (𝑝𝑓′(2)) (𝑝𝑓′(3)) ∙
2/3

0
 µ(p)∙ dp= 

𝔼µ [(𝑝𝑓′(2)) (𝑝𝑓′(3))] = (
1

𝑁
 ∑(𝑟𝑎𝑛𝑑() ∙  

2

3
)

𝑁

𝑁=1

∙ (
2

3
−  𝑟𝑎𝑛𝑑() ∙  

2

3
) ∙  

3

2
 ) ∙

2

3
 

sig11=𝔼µ [(𝑝𝑓′(1))
2

] −  [𝔼µ[𝑝𝑓′(1)]2= 0 

sig22=𝔼µ [(𝑝𝑓′(2))
2

] −  [𝔼µ[𝑝𝑓′(2)]2= 0.03667 versus 0.03704 (1% deviation) 

sig33= 𝔼µ [(𝑝𝑓′(3))
2

] −  [𝔼µ[𝑝𝑓′(3)]2=0.03667 versus 0.03704 (1% deviation) 

sig12 = sig21= 𝔼µ [(𝑝𝑓′(1)) (𝑝𝑓′(2))] −  𝔼µ[𝑝𝑓′(1)] ∙ 𝔼µ[𝑝𝑓′(2)] = 0 

sig13=sig31=  𝔼µ [(𝑝𝑓′(1)) (𝑝𝑓′(3))] −  𝔼µ[𝑝𝑓′(1)] ∙ 𝔼µ[𝑝𝑓′(3)] = 0 

sig23=sig32=  𝔼µ [(𝑝𝑓′(2)) (𝑝𝑓′(3))] −  𝔼µ[𝑝𝑓′(2)] ∙ 𝔼µ[𝑝𝑓′(3)] =-0.03667 versus 

0.03704=1/27 (i.e. 1% deviation) 
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A.3 Solving the smooth ambiguity functional  

The smooth ambiguity aversion (Klibanoff, et al., 2005) is described as an increasing concave 

function of the subjective utility function.  

𝑉(𝑓) = ∫ 𝑣(𝑐(𝑓, 𝑝)) ∙ 𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑣(𝑢−1(𝑢(𝑓, 𝑝))) ∙ 𝑑µ(𝑝)

𝛥(𝑆)

 

𝑉(𝑔) = ∫ 𝑣(𝑐(𝑔, 𝑝)) ∙ 𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑣(𝑢−1(𝑢(𝑔, 𝑝))) ∙ 𝑑µ(𝑝)

𝛥(𝑆)

 

𝑉(𝑓′) = ∫ 𝑣(𝑐(𝑓′, 𝑝)) ∙ 𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑣(𝑢−1(𝑢(𝑓′, 𝑝))) ∙ 𝑑µ(𝑝)

𝛥(𝑆)

 

𝑉(𝑔′) = ∫ 𝑣(𝑐(𝑔′, 𝑝)) ∙ 𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑣(𝑢−1(𝑢(𝑔′, 𝑝))) ∙ 𝑑µ(𝑝)

𝛥(𝑆)

 

First we find the utility function for the acts that also includes risk aversion by the exponential 

function and the risk aversion constant a:  

𝑢(f, p) = 
1

3
𝑢(100) +  

2

3
𝑢(0) =

1

3
(−e−a ∙(100)) +  

2

3
(−e−a ∙(0)) =

1

3
(−e−a ∙(100)) +  

2

3
(-1) = 

𝑢(f, p) = −
1

3
[e−a ∙(100) + 2]  

𝑢(g, p) = (
1

3
+ 𝑝)𝑢(0) + (

2

3
− 𝑝)𝑢(100) = (

1

3
+ 𝑝)(−e−a ∙(0)) + ( 

2

3
− 𝑝)(−e−a ∙(100)) = 

𝑢(g, p) = −[
1

3
+ 𝑝 + (

2

3
− 𝑝)e−a ∙(100)] 

𝑢(f ′, p) = (1 − 𝑝)𝑢(100) + 𝑝 ∙ 𝑢(0) = (1 − 𝑝)(−e−a ∙(100)) + 𝑝(−e−a ∙(0)) = 

𝑢(f ′, p) = −[(1 − 𝑝)e−a ∙(100) + 𝑝] 

𝑢(g′, p) =
1

3
𝑢(0) +

2

3
𝑢(100) =

1

3
(−e−a ∙(0)) +

2

3
(−e−a ∙(100)) = −[

1

3
+

2

3
e−a ∙(100)] 

The certainty equivalent function of the subjective expected utility function is then found as the 

inverse of the utility function: 

𝑐(𝑓, 𝑝) = 𝑢−1(𝑢(𝑓, 𝑝)) = - 
1

𝑎
ln(−𝑢(𝑓, 𝑝)) = - 

1

𝑎
ln [

1

3
(e−a ∙(100) + 2)] 

𝑐(𝑔, 𝑝) = 𝑢−1(𝑢(𝑔, 𝑝)) = - 
1

𝑎
ln(−𝑢(𝑔, 𝑝)) = - 

1

𝑎
 ln[

1

3
+ 𝑝 + (

2

3
− 𝑝)e−a ∙(100)] 

𝑐(𝑓′, 𝑝) = 𝑢−1(𝑢(𝑓′, 𝑝)) = - 
1

𝑎
ln(−𝑢(𝑓′, 𝑝)) = - 

1

𝑎
ln[(1 − 𝑝)e−a ∙(100) + 𝑝] 

𝑐(𝑔′, 𝑝) = 𝑢−1(𝑢(𝑔′, 𝑝)) = - 
1

𝑎
ln(−𝑢(𝑓𝑔′, 𝑝)) = - 

1

𝑎
ln[

1

3
+

2

3
e−a ∙(100)] 
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The ambiguity aversion function can now be introduced as an exponential function of the 

subjective expected utility function.  

v(𝑐(f,p)) = v(𝑢−1u(f,p)) = - e−b ∙ 𝑢−1(𝑢(𝑓, 𝑝))∙ µ(p) = - e−b[− 
1

𝑎
 ln (

1

3
(e−a ∙(100)+2))]µ(p) 

v(𝑐(g,p)) = v(𝑢−1u(g,p)) = - e−b ∙  𝑢−1(𝑢(𝑔, 𝑝))∙ µ(p) = - e−b[− 
1

𝑎
 ∙ln(

1

3
+𝑝+(

2

3
−𝑝)∙ e−a ∙(100))]µ(p) 

v(𝑐(f’,p)) = v(𝑢−1u(f’,p)) = - e−b ∙ 𝑢−1(𝑢(𝑓′,𝑝))∙ µ(p) = - e−b[− 
1

𝑎
ln((1−𝑝)e−a ∙(100)+𝑝)]µ(p) 

v(𝑐(g’,p)) = v(𝑢−1u(g’,p)) = - e−b ∙ 𝑢−1(𝑢(𝑔′,𝑝))∙ µ(p) = - e−b[− 
1

𝑎
ln(

1

3
+

2

3
e−a ∙(100))]µ(p) 

 

µ(p) is a second order probability density for p. For the Ellsberg case described in Borgonovo & 

Marinacci (2015), the second order probability density is defined as uniform distributed with µ(p)= 
3

2
 for p between 0 and 

2

3
  and µ(p)= 0 for p > 

2

3
. This distribution is shown in the figure below. 

 

The predictive utility function is defined by: 

G(f)=∫ (∫ u(f(s))dp(i))dµ(p)
S

Δ(S)

 

u: X       ℝ   is a utility function that captures risk attitude (i.e. uncertainties toward aleatory 

uncertainty). X is the space of consequences, where the consequences are real numbers (i.e. X ⸦ 

ℝ).  Real numbers are denoted ℝ. 

 

µ: σ(Δ(s))          [0,1]  is a subjective prior distribution that quantifies the epistemic uncertainty 

about models. 

pµ(f) = pµ(g) = pµ(f) = pµ(g′) = ∫ 𝑝(𝑓)𝑑µ(𝑝)

𝛥(𝑆)

= ∫ 𝑝
3

2
𝑑𝑝

2
3

0

= [
1

2
∙

3

2
𝑝2]

0

2
3

= 
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pµ(f) = pµ(g) = pµ(f) = pµ(g′) = [
3

4
∙

4

9
− 0] =

1

3
 

pµ is the predictive probability pµ ϵ Δ(S). The probabilities then becomes P(Red) = 
1

3
 , P(Blue) = 

1

3
  

and P(Yellow) = 
1

3
 and these will then result in the following predicted subjective expected 

utilities: 

𝐺(𝑓) = 𝑈(𝑓, 𝑝µ) =
1

3
(100) +

1

3
(0) +

1

3
(0) =

1

3
(100) +

2

3
(0) = 33.33 

𝐺(𝑔) = 𝑈(𝑔, 𝑝µ) =
1

3
(0) +

1

3
(100) +

1

3
(0) =

2

3
(0) +

1

3
(100) = 33.33 

𝐺(𝑓′) = 𝑈(𝑓′, 𝑝µ) =
1

3
(100) +

1

3
(0) +

1

3
(100) =

1

3
(0) +

2

3
(100) = 66.66 

𝐺(𝑔′) = 𝑈(𝑔′, 𝑝µ) =
1

3
(0) +

1

3
(100) +

1

3
(100) =

1

3
(0) +

2

3
(100) = 66.66 

The total risk and ambiguity aversion is then found by integration for p ϵ (0,  
2

3
 ): 

V(f)=∫ v(u(w))
2/3

0
dµp = ∫ - e−b[− 

1

𝑎
ln(

1

3
(e−a ∙(100)+2))]∙ 

3

2

2/3

0

dp 

V(g)=∫ v(u(w))
2/3

0
dµp = ∫ - e−b[− 

1

𝑎
ln(

1

3
+𝑝+(

2

3
−𝑝)e−a ∙(100))]∙ 

3

2

2/3

0

dp 

V(f’)=∫ v(u(w))
2/3

0
dµp = ∫ - e−b ∙[− 

1

𝑎
 ∙ ln((1−𝑝)∙ e−a ∙(100)+𝑝)]∙ 

3

2

2/3

0

dp 

V(g’)=∫ v(u(w))
2/3

0
dµp = ∫ - e−b[− 

1

𝑎
ln(

1

3
+

2

3
e−a ∙(100))]∙ 

3

2

2/3

0

dp 

The above integrals are numerically estimated. The v(u(w)) function has been calculated N=5000 

times by the use of the constants a = 
1

100
 and b=

2

100
 and the probability p simulated by the Excel 

function, p = rand() ∙ 
2

3
 . 

V(f)=( 
1

𝑁
∑ - e−b[− 

1

𝑎
 ln(

1

3
(e−a ∙(100)+2))]∙ 

3

2

𝑁

𝑁=1
 ) 

2

3
 = -0.62  

V(g)=(
1

𝑁
∑ - e−b[− 

1

𝑎
 ln(

1

3
+𝑟𝑎𝑛𝑑()∙

2

3
 +(

2

3
−𝑝)e−a ∙(100))]∙ 

3

2

𝑁

𝑁=1
 ) 

2

3
 = -0.64 

V(f’)=(
1

𝑁
∑ - e−b[− 

1

𝑎
 ln(− 

1

𝑎
 ln((1−𝑟𝑎𝑛𝑑() ∙ 

2

3
)e−a ∙(100)+𝑟𝑎𝑛𝑑() ∙ 

2

3
))]∙ 

3

2

2/3

0
 )

2

3
 = -0.35 

V(g’)=(
1

𝑁
∑ - e−b[− 

1

𝑎
 ln(− 

1

𝑎
 ln(

1

3
+

2

3
 e−a ∙(100)))]∙ 

3

2

2/3

0
 ) 

2

3
 = -0.33 
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The certainty equivalent using the smooth ambiguity aversion have the following general 

expression: 

𝐶(𝑓) = 𝑣−1(𝑉(𝑓)) = 𝑣−1 [ ∫ 𝑣(𝑐(𝑓, 𝑝))𝑑µ(𝑝)

𝛥(𝑆)

] = 𝑣−1 [ ∫ 𝑣(𝑢−1(𝑢(𝑓, 𝑝)))𝑑µ(𝑝)

𝛥(𝑆)

] 

𝐶(𝑓) = 𝑣−1(𝑉(𝑓)) = − 
1

𝑏
ln[−𝑉(𝑓)] =  − 

1

𝑏
ln [− ∫ - e−b[− 

1

𝑎
 ln(

1

3
 [e−a ∙(100)+2])]∙ 

3

2

2/3

0

dp] 

𝐶(𝑔) = 𝑣−1(𝑉(𝑓)) = 𝑣−1 [ ∫ 𝑣(𝑐(𝑓, 𝑝))𝑑µ(𝑝)

𝛥(𝑆)

] = 𝑣−1 [ ∫ 𝑣(𝑢−1(𝑢(𝑓, 𝑝)))𝑑µ(𝑝)

𝛥(𝑆)

] 

𝐶(𝑔) = 𝑣−1(𝑉(𝑓)) = −
1

𝑏
ln[−𝑉(𝑓)] = 

𝐶(𝑔) = −
1

𝑏
ln[− ∫ - e−b[− 

1

𝑎
 ln(

1

3
+𝑟𝑎𝑛𝑑()∙

2

3
 +(

2

3
−𝑝)e−a ∙(100))]∙

3

2

2/3

0

dp] 

𝐶(𝑓′) = 𝑣−1(𝑉(𝑓)) = 𝑣−1 [ ∫ 𝑣(𝑐(𝑓, 𝑝))𝑑µ(𝑝)

𝛥(𝑆)

] = 𝑣−1 [ ∫ 𝑣(𝑢−1(𝑢(𝑓, 𝑝)))𝑑µ(𝑝)

𝛥(𝑆)

] 

𝐶(𝑓′) = 𝑣−1(𝑉(𝑓)) = − 
1

𝑏
ln[−𝑉(𝑓)] = 

𝐶(𝑓′) =  − 
1

𝑏
ln [− ∫ - e−b[− 

1

𝑎
 ln(− 

1

𝑎
 ln((1−𝑟𝑎𝑛𝑑() ∙ 

2

3
)e−a ∙(100)+𝑟𝑎𝑛𝑑() ∙ 

2

3
))]∙ 

3

2

2/3

0

dp] 

𝐶(𝑔′) = 𝑣−1(𝑉(𝑓)) = 𝑣−1 [ ∫ 𝑣(𝑐(𝑓, 𝑝))𝑑µ(𝑝)

𝛥(𝑆)

] = 𝑣−1 [ ∫ 𝑣(𝑢−1(𝑢(𝑓, 𝑝)))𝑑µ(𝑝)

𝛥(𝑆)

] 

𝐶(𝑔′) = 𝑣−1(𝑉(𝑓)) = − 
1

𝑏
ln[−𝑉(𝑓)] = 

𝐶(𝑔′) =  − 
1

𝑏
ln [− ∫ - e−b[− 

1

𝑎
 ln(− 

1

𝑎
 ln(

1

3
+

2

3
 e−a ∙(100))]∙ 

3

2

2/3

0

dp] 
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By the use of the results of the numerical estimation of the KMM utility V(-) and b = 
2

100
 , we 

then get the following results:  

Act 

Predicted value 

KMM Utility, V(-) Certainty Equivalent 

Risk and 

ambiguity 

premium 

f 33.33 -0.62 23.66 9.67 

g 33.33 -0.64 22.27 11.06 

f' 66.67 -0.35 52.02 14.65 

g' 66.67 -0.33 54.72 11.95 

 

Based on these results, the decision maker can select act g’ as the preferred act since this act have 

the highest KMM utility and therefore also the highest certainty equivalent. The risk premium for 

act f and act g’ are now defined since we know that there are no ambiguity and therefore no 

ambiguity premium for act f and act g’.  

The portion of the risk premium and the ambiguity premium for act g and f’ is further analysed by 

the use of the Arrow-Pratt Quadratic estimation (Maccheroni, et al., 2013) as shown below. 

 

 

  

Certainty Equivalent (AP)

Act Cv(-) Risk premium Ambiguity premium

f σ2
µ(f) 0.00 22.22 11.11 0.00

g σ2
µ(g) 371.76 20.93 11.22 1.86

f' σ2
µ(f') 366.33 53.65 11.12 1.83

g' σ2
µ(g') 0.00 55.56 11.11 0.00

ПAM(f) 0.00 Preferred act (Arrow-Pratt)

ПAM(g) -1.86 g'

ПAM(f') -1.86

ПAM(g') 0.00

Arrow-Pratt Quadratic Estimation
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Appendix B – Detailed analysis of the Carter Racing Model 
A detailed stepwise description of the analytical methods referenced in Borgonovo & Marinacci 

(2015) for the Carter Racing model is described.  

B.1 Second order probability distribution 

The probability of engine failure is denoted p2 and has a predicted probability of 0.3. The 

probability p2 has been subject to uncertainties and a second order probability distribution has 

therefore been assigned which is a combination of the two beta distributions. These are the 

distributions beta (2,6) and beta (6,2) and their combined distribution f(p2,m) that are shown in 

the figures below.  

f(p2,m) = (1-m) ∙ beta(2,6) + m ∙ beta(6,2) 

 

 

 

 

 

 

 

The expected value of p2 for the beta(2,6) distribution is 
1

4
 and the expected value of p2 is 

3

4
  for the 

beta(6,2) distribution. The factor m is then chosen as 
1

10
 as this give the predicted value of 𝑝 = 0.3. 

The predicted value of p2 = 𝑝  is also calculated by the following approximation in the simulations:  

ptilde = ∫ p2 ∙ f(p2, m) ∙ dp2 
1

0
= 

1

𝑁
 ∑ 𝑟𝑎𝑛𝑑() ∙ [

𝑁

𝑁=1
(1 − m)  ∙  beta(2,6)  +  m ∙  beta(6,2)] =

 0.3 

The conditional probability of being the first 5 given no engine failure has been assigned a value 

of p1=
5

7
 . The value of being top 5 is estimated to m1=1000. The value of being below top 5 is 

estimated to m2 = 0. The value of engine failure is estimated to m3 = - 500.  

B.2 Expected value 

The expected value H of the decision problem can be calculated as follows for a risk neutral 

decision maker; 

y0(p2)= (1-p2) ∙ [p1 ∙ m1+(1-p1)∙ m2]+p2 ∙ m3 

H=∫ y0(p2) ∙ f(p2, m) ∙ dp2
1

0
 = 

1

𝑁
 ∑ [1 − 𝑟𝑎𝑛𝑑()] ∙

𝑁

𝑁=1
[p1 ∙  m1 + (1 − p1) ∙  m2] + p2 ∙

 m3] =  

H =
1

𝑁
 ∑ [1 − 𝑟𝑎𝑛𝑑()] ∙ [

𝑁

𝑁=1
[ 

5

7
 ∙ (1000) + (1 −

5

7
 ) ∙ (0)] + rand()  ∙ (−500)] =  352.3 
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B.3 Risk aversion 

A risk averse decision maker will give a lower weighting to positive outcomes and a higher 

weighting to negative outcomes. This can be introduced by the use of a negative exponential 

function and a risk aversion parameter a. A risk aversion parameter of a = 
1

1000
 have been used in 

the analysis. The utility values then becomes: 

u(a,m1)= - 𝑒− 𝑎 ∙𝑚1 = - 𝑒− 
1

1000
 ∙ 1000

= - 𝑒− 1= - 0.37 

u(a,m2)= - 𝑒− 𝑎 ∙𝑚2 = - 𝑒− 
1

1000
 ∙(0)

= - 𝑒0= - 1.00 

u(a,m3)= - 𝑒− 𝑎 ∙𝑚3 = - 𝑒− 
1

1000
 ∙(−500)

= - 𝑒0.5 =  −1.65 

The expected utility of the decision problem can then be calculated:  

u(p2,a)= ya(p2,a)=(1-p2)∙ [p1 ∙ u(a,m1)+(1-p1) ∙ u(a,m2)] + p2 ∙ u(a,m3) 

G(a)=∫ 𝑦𝑎(𝑝2, 𝑎) ∙ 𝑓(𝑝2, 𝑚) ∙ 𝑑𝑝2 
1

0
= 

G(a)= 
1

𝑁
 ∑ [(1 − 𝑟𝑎𝑛𝑑()) ∙

𝑁

𝑁=1
( 

5

7
 ∙ (−0.37) + (1 −

5

7
 ) ∙ (−1.00)) + rand( ) ∙

(−1.65)[(1 − m) ∙  beta(2,6) +  m ∙  beta(6,2)] =  −0.88 

 

B.4 Wald Maximin Functional 

The Wald Maximin Functional is representing an extreme ambiguity averse decision maker. The 

Wald Maximin Functional is in this decision problem the same as the utility for the negative 

outcome m3. 

W=u(a,m3)= - 𝑒− 𝑎 ∙𝑚3 = - 𝑒− 
1

1000
 ∙(−500)

= - 𝑒0.5 =  −1.65 

The corresponding certainty equivalent for the maxmin decision maker is therefore: 

c(p2,a) = uinv(u(a,m3)= 
−ln(−𝑢(𝑎,𝑚3))

𝑎
= - 

1

1000
 ln(-1.65) = - 500 

 

B.5 Risk and ambiguity aversion expressed by the KMM utility 

Risk and ambiguity aversion are introduced by the risk aversion parameter a = 
1

1000
 for the utility 

function u(p2,a) = ya(p2,a) and the ambiguity aversion parameter b = 
1

100
 for the second order 

utility function v(b,uinv(a,u(p2,a))). 
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c(p2,a) = uinv(a, ya(p2,a)) = 
− ln(−𝑦𝑎(𝑝2,𝑎))

𝑎
= 

− ln(−[(1−𝑝2)∙ [𝑝1 ∙ 𝑢(𝑎,𝑚1)+(1−𝑝1)∙ 𝑢(𝑎,𝑚2)]+ 𝑝2 ∙ 𝑢(𝑎,𝑚3)])

𝑎
=  

c(p2,a) = 
− ln(−[(1−𝑟𝑎𝑛𝑑())∙ [ 

5

7
 (−0.37)+(1−

5

7
) ∙ (−1.00)] + 𝑟𝑎𝑛𝑑() ∙ (−1.65)])

𝑎
 

c2= ∫ 𝑐(𝑝2, 𝑎)
1

0
 f(p2,m)dp2 =  

1

𝑁
 ∑

− ln(−𝑦𝑎(𝑝2,𝑎))

𝑎
𝑁
𝑁=1 ∙ [(1 − m) ∙ beta(2,6) +  m ∙  beta(6,2)] = 

c2=   
1

𝑁
 ∑

− ln(−[(1−𝑝2)∙ [𝑝1 ∙ 𝑢(𝑎,𝑚1)+(1−𝑝1) ∙ 𝑢(𝑎,𝑚2)] + 𝑝2 ∙ 𝑢(𝑎,𝑚3)])

𝑎
𝑁
𝑁=1 ∙ [(1 − m) ∙ beta(2,6) +  m ∙

 beta(6,2)] =  

c2 = 
1

𝑁
 ∑

− ln(−[(1−𝑟𝑎𝑛𝑑())∙ [ 
5

7
 (−0.37)+(1−

5

7
) ∙ (−1.00)] + 𝑟𝑎𝑛𝑑() ∙ (−1.65)])

𝑎
𝑁
𝑁=1 ∙ [(1 − m) ∙ beta(2,6) +

 m ∙  beta(6,2)] =  

c2 = 159.68 

y2(p2,a,b)=v(b, c(p2,a)) = - 𝑒(−𝑏 ∙ 𝑐(𝑝2,𝑎)) = - 

𝑒(−𝑏 ∙ 
− ln(−[(1−𝑟𝑎𝑛𝑑())∙ [ 

5
7

 (−0.37)+(1−
5
7

) ∙ (−1.00)] + 𝑟𝑎𝑛𝑑() ∙ (−1.65)])

𝑎
)
 

 

V(a,b)=∫ 𝑦2(𝑝2, 𝑎, 𝑏) ∙
1

0
 f(p2,m) ∙ dp2= 

V(a,b)= ∫ − 𝑒(−𝑏 ∙ 
− ln(−[(1−𝑟𝑎𝑛𝑑())∙ [ 

5
7

 (−0.37)+(1−
5
7

) ∙ (−1.00)] + 𝑟𝑎𝑛𝑑() ∙ (−1.65)])

𝑎
) ∙

1

0

 [(1 − m)beta(2,6)  +  m ∙

beta(6,2)]dp2= 

V(a,b)=
1

𝑁
 ∑ − 𝑒

(−𝑏 ∙ 
− ln(−[(1−𝑟𝑎𝑛𝑑( ))∙ [ 

5
7

 (−0.37)+(1−
5
7

)∙ (−1.00)]+ 𝑟𝑎𝑛𝑑( )∙ (−1.65)])

𝑎
)

[(1 −

𝑁

𝑁=1
1

10
) beta(2,6) + (

1

10
) beta(6,2)]dp2 = - 4.19 

The above method of calculating the KMM utility is similar to the KMM functional for the 

Ellsberg three-color problem. Another method is shown below which gives the same result. 

φ(p2,b,a)= -(-ya(p2,a)) 
𝑏

𝑎 

V2(a,b)=∫ 𝜑(𝑝2, 𝑎, 𝑏)𝑓(𝑝2, 𝑚)𝑑𝑝2
1

0
 = ∫ -(-ya(p2,a)) 

𝑏

𝑎  ∙ [(1 − m)beta(2,6)  +  m ∙
1

0

beta(6,2)]𝑑𝑝2= 
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V2(a,b)= ∫ -((1-p2)∙ [p1 ∙ u(a,m1)+(1-p1) ∙ u(a,m2)] + p2 ∙ u(a,m3)) 
𝑏

𝑎  ∙ [(1 − m)beta(2,6) +
1

0

m ∙ beta(6,2)]𝑑𝑝2= 

V2(a,b)=
1

𝑁
∑ -((1-p2)∙ [p1 ∙ u(a,m1)+(1-p1) ∙ u(a,m2)] + p2 ∙ u(a,m3)) 

𝑏

𝑎  ∙ [(1 −
𝑁

𝑁=1

m)beta(2,6) + m ∙ beta(6,2)]𝑑𝑝2= 

V2(a,b)=
1

𝑁
∑ -((1-rand())∙ [ 

5

7
 (-0.37)+(1- 

5

7
) ∙ (-1.00)] +rand() ∙(-1.65)) 

1/100

1/1000  ∙ [(1 −

𝑁

𝑁=1
1

10
)beta(2,6) +

1

10
∙ beta(6,2)]𝑑𝑝2 = - 4.19 

 

B.6 Certainty equivalent as the inverse of the KMM utility 

The certainty equivalent for the risk and ambiguity averse decision maker are then calculated as 

the inverse of the KMM utility. 

cAmAv = vinv(b, V2(a,b)) = 
−ln(−𝑉2(𝑎,𝑏))

𝑏
=− 

1

𝑏
 ln(−𝑉2(𝑎, 𝑏)) =  − 

1
1

100

ln(−(−4.19)) =

 −143.2 

The risk and ambiguity premium П is the difference between the risk and ambiguity neutral 

expected value H and the certainty equivalent cAmAv. 

П=H-cAmAv = 352.3 – (-143.2) = 495.5 

 

B.7 Balancing the share of risk premium and ambiguity premium 

The portion of the risk premium and the ambiguity premium can be found by the use of the 

quadratic approximation method. The risk premium is calculated by first finding the variance 

sig2pmu by the formula: 

sig2pmu = ∑ (w0,s)2∙ pmu0,s 
2

s=0
- [ ∑ w0,s∙ pmu0,s

2

s=0
]

2
 

𝑤0,0= 1000 

𝑤0,1= 0 

𝑤0,2= - 500 

pmu(0,0)=(1- 𝑝)∙ p1 

pmu(0,1)=(1- �̃�) ∙ (1-p1) 

pmu(0,2)=  �̃�  
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∑ (w0,s)2∙ pmu0,s 
2

s=0
= (1000)2(1- p̃)∙ p1+(0)2(1 −  p̃) ∙  (1 − p1) + (−500)2 ∙ p̃ = 

∑ (w0,s)2∙ pmu0,s 
2

s=0
= (1000)2 ∙(1- p̃) ∙ 

5

7
 +(0)2 ∙ (1 − p̃) ∙  (1 −

5

7
) + (−500)2 ∙  p̃ = 

573924.14 

∑ w0,s∙ pmu0,s

2

s=0

= [(1000)(1 −  p̃) ∙  p1 + (0)(1 −  p̃) ∙  (1 − p1) + (−500) ∙ p̃] = 

∑ w0,s∙ pmu0,s
2

s=0
= [(1000)(1 −  p̃) ∙  

5

7
+ (0)(1 −  p̃) ∙  (1 −

5

7
) + (−500) ∙ p̃] = 347.41 

sig2pmu = 574011.06 - [347.41]
2
= 453314.89 

The certainty equivalent CAP is the difference between the expected value H and the risk 

premium:   

CAP = H - 
1

2
∙ a ∙ sig2pmu = 352.3 - 

1

2
 ∙ (

1

1000
) ∙ (453314.89)= 125.65 

The ambiguity premium is found by the extended quadratic approximation: 

CAM = 
1

2
 ∙ (b-a) ∙ sig2mu 

sig2mu = ∑ ∑ (
2

𝑗=0

2

𝑠=0
𝑆𝐼𝐺𝑠,𝑗 ∙ 𝑤0,𝑠 ∙  𝑤0,𝑗) 

Q1(p2)=(1-p2)p1 

mQ1= ∫ 𝑄1(𝑝2)
1

0
f(p2,m)dp2= ∫ (1 − 𝑝2)𝑝1

1

0
[(1 − m)beta(2,6) + m ∙ beta(6,2)]dp2= 

mQ1=
1

𝑁
 ∑ (1 − 𝑝2)𝑝1[(1 − m)beta(2,6) + m ∙ beta(6,2)] =𝑁

𝑁=1  

𝑚𝑄1 =
1

𝑁
 ∑ (1 − 𝑟𝑎𝑛𝑑()) ∙

5

7
∙ [(1 −

1

10
) beta(2,6) +

1

10
∙ beta(6,2)] =

𝑁

𝑁=1
0.50 

Q2(p2)=(1-p2)(1-p1) 

mQ2= ∫ 𝑄2(𝑝2)
1

0
f(p2,m)dp2= ∫ (1 − 𝑝2)(1 − 𝑝1)

1

0
[(1 − m)beta(2,6) + m ∙ beta(6,2)]dp2= 

mQ2=
1

𝑁
 ∑ (1 − 𝑟𝑎𝑛𝑑()) ∙ (1 −

5

7
) ∙ [(1 −

1

10
) beta(2,6) +

1

10
∙ beta(6,2)] =

𝑁

𝑁=1
0.20 

Q3(p2) = p2 = rand() 

mQ3= ∫ 𝑄3(𝑝2)
1

0
f(p2,m)dp2 =∫ 𝑝2

1

0
[(1 − m)beta(2,6) + m ∙ beta(6,2)]dp2= 

mQ3=
1

𝑁
 ∑ (𝑟𝑎𝑛𝑑()) ∙ [(1 −

1

10
) beta(2,6) +

1

10
∙ beta(6,2)] =

𝑁

𝑁=1
0.30 
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sig11=∫ 𝑄1(𝑝2)21

0
f(p2,m)dp2 - mQ1

2
=∫ ((1 − 𝑝2)𝑝1)21

0
[(1 − m)beta(2,6) + m ∙

beta(6,2)]dp2 - mQ1
2
= 

sig11=
1

𝑁
 ∑ ((1 − 𝑟𝑎𝑛𝑑()) ∙  

5

7
)2 ∙ [(1 −

1

10
) beta(2,6) +

1

10
∙ beta(6,2)] −  0.502 =

𝑁

𝑁=1
 0.0197 

 

sig22=∫ Q2(p2)21

0
f(p2,m)dp2 - mQ2

2
= ∫ ((1 − 𝑝2)(1 − 𝑝1))21

0
[(1 − m)beta(2,6) + m ∙

beta(6,2)]dp2 - mQ22= 

sig22=
1

𝑁
 ∑ ((1 − 𝑟𝑎𝑛𝑑()) ∙ (1 −  

5

7
))2 ∙ [(1 −

1

10
) beta(2,6) +

1

10
∙ beta(6,2)] −

𝑁

𝑁=1

 0.202 = 0.0031 

 

sig33= ∫ 𝑄3(𝑝2)21

0
f(p2,m)dp2 - mQ3

2
= ∫ (p2)21

0
[(1 − m)beta(2,6) + m ∙ beta(6,2)]dp2 - 

mQ32= 

sig33=
1

𝑁
 ∑ (𝑟𝑎𝑛𝑑())2 ∙ [(1 −

1

10
) beta(2,6) +

1

10
∙ beta(6,2)] −  0.302 =

𝑁

𝑁=1
 0.0413 

 

sig12 = sig21=∫ Q1(p2) 
1

0
Q2(p2)f(p2,m)dp2 - mQ1mQ2= 

𝑠𝑖𝑔12 =  𝑠𝑖𝑔21 = ∫ (1 − 𝑝2)𝑝1
1

0
(1-p2)(1-p1)[(1 − m)beta(2,6) + m ∙ beta(6,2)]dp2 - 

mQ1mQ2= 

𝑠𝑖𝑔12 =  
1

𝑁
 ∑ (1 − 𝑟𝑎𝑛𝑑( )) ∙

5

7
∙ (1 − 𝑟𝑎𝑛𝑑()) ∙ (1 −

5

7
) ∙ [(1 −

1

10
) beta(2,6) +

𝑁

𝑁=1
1

10
beta(6,2)] −  0.50 ∙ 0.20 = 7.9E-03 

 

sig13=sig31= ∫ Q1(p2)
1

0
Q3(p2)f(p2,m)dp2 - mQ1mQ3= 

𝑠𝑖𝑔13 =  𝑠𝑖𝑔31 = ∫ (1 − 𝑝2)𝑝1
1

0
(p2)[(1 − m)beta(2,6) + m ∙ beta(6,2)]dp2 - mQ1mQ3= 

𝑠𝑖𝑔13 =  
1

𝑁
 ∑ (1 − 𝑟𝑎𝑛𝑑()) ∙

5

7
∙ (𝑟𝑎𝑛𝑑()) ∙ [(1 −

1

10
) beta(2,6) +

1

10
beta(6,2)] −  0.50 ∙

𝑁

𝑁=1

0.30 = -0.0310 

sig23=sig32= ∫ Q2(p2)
1

0
Q3(p2)f(p2,m)dp2 - mQ2mQ3= 
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𝑠𝑖𝑔23 =  𝑠𝑖𝑔32 = ∫ (1 − 𝑝2)(1 − 𝑝1)
1

0
(p2)[(1 − m)beta(2,6) + m ∙ beta(6,2)]dp2 – 

mQ2mQ3= 

𝑠𝑖𝑔23 =  
1

𝑁
 ∑ (1 − 𝑟𝑎𝑛𝑑( )) ∙ (1 −

5

7
) ∙ (𝑟𝑎𝑛𝑑( )) ∙ [(1 −

1

10
) beta(2,6) +

𝑁

𝑁=1
1

10
beta(6,2)] −  0.21 ∙ 0.30 =  

𝑠𝑖𝑔23 = -0.0124 

sig2mu = ∑ ∑ (
2

𝑗=0

2

𝑠=0
𝑆𝐼𝐺𝑠,𝑗 ∙ 𝑤0,𝑠 ∙  𝑤0,𝑗) 

sig2mu = ∑ ∑ (
2

𝑗=0

2

𝑠=0
𝑆𝐼𝐺𝑠,𝑗 ∙ 𝑤0,𝑠 ∙  𝑤0,𝑗)= 𝑆𝐼𝐺0,0 ∙ 𝑤0,0 ∙  𝑤0,0 +  𝑆𝐼𝐺0,1 ∙ 

𝑤0,0 ∙  𝑤0,1+𝑆𝐼𝐺0,2 ∙ 𝑤0,0 ∙  𝑤0,2 + 𝑆𝐼𝐺1,0 ∙ 𝑤0,1 ∙  𝑤0,0 +  𝑆𝐼𝐺1,1 ∙ 𝑤0,1 ∙  𝑤0,1+𝑆𝐼𝐺1,2 ∙ 

𝑤0,1 ∙  𝑤0,2 + 𝑆𝐼𝐺2,0 ∙ 𝑤0,2 ∙  𝑤0,0 +  𝑆𝐼𝐺2,1 ∙ 𝑤0,2 ∙  𝑤0,1+𝑆𝐼𝐺2,2 ∙ 𝑤0,2 ∙  𝑤0,2= 

sig2mu = 𝑠𝑖𝑔11 ∙ 𝑤(0,0) ∙  𝑤(0,0) +  𝑠𝑖𝑔12 ∙ 𝑤(0,0) ∙  𝑤(0,1)+𝑠𝑖𝑔13 ∙ 𝑤(0,0) ∙  𝑤(0,2) +

𝑠𝑖𝑔21 ∙ 𝑤(0,1) ∙  𝑤(0,0) +  𝑠𝑖𝑔22 ∙ 𝑤(0,1) ∙  𝑤(0,1)+𝑠𝑖𝑔23 ∙ 𝑤(0,1) ∙  𝑤(0,2) + 𝑠𝑖𝑔31 ∙ 

𝑤(0,2) ∙  𝑤(0,0) +  𝑠𝑖𝑔32 ∙ 𝑤(0,2) ∙  𝑤(0,1)+𝑠𝑖𝑔33 ∙ 𝑤(0,2) ∙  𝑤(0,2)= 

sig2pmu = (0.0197) ∙ (1000) ∙ (1000) + (7.9E − 03) ∙ (1000) ∙  (−500)+ (-0.0310) ∙ 

(1000) ∙  (−500) + (7.9E − 03) ∙ (0) ∙  (1000) + (0.0031) ∙ (0) ∙  (0)+(-0.0124) ∙ 

(0) ∙  (−500) + (−0.0310) ∙ (−500) ∙  (1000) + (−0.0124) ∙ (−500) ∙  (0)+(0.0413) ∙ 

(−500) ∙  (−500)= 60982.21 

 

The ambiguity premium CAM can now be calculated: 

CAM = 
1

2
 ∙ (b - a) ∙ sig2mu = 

1

2
 ∙ (

1

100
 - 

1

1000
) ∙ 60987.21 = 274.42 
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B.8  Realisations and integration in Excel 

The formulas described in chapter B.1 to B.7 for the Smooth Ambiguity Functional and the 

Extended Arrow-Pratt Approximation have been analysed by the use of the standard functions in 

Excel. The annotations used correspond to the formulas given in chapter B.1 to B.7. The number 

of realisations, N, used in this analysis is N=1996. This number could be higher or rounded off to 

2000, but this have minimal impact on the results. The formulas for the Smooth Ambiguity 

Functional and the Extended Arrow-Pratt Approximation have been integrated over N realisations 

by the use of the AVERAGE function in Excel. 

B.8.1 Realisations for the Smooth Ambiguity Functional 

Table B8.1 show the set-up and annotations for the realisations for the Smooth Ambiguity 

Functional. The commands for row 5 and column G to V are shown below. These commands have 

been copied to row 6 down to 2001 in order to obtain N=1996 realisations of the formulas.  

 

p2:    G5=RAND() 

beta(2,6):   H5=BETA.DIST(G5,2,6,FALSE) 

beta(6,2):   I5=BETA.DIST(G5,6,2,FALSE) 

f(p2,m):   J5=(1-m)*H5+m*I5 

p2*f(p2,m):   K5=G5*J5 

y0(p2):    L5=(1-G5)*(p1_*m1_+(1-p1_)*m2_)+G5*m3_ 

y0(p2)*f(p2,m):  M5=L5*J5 

y3(p2,b):   N5=-EXP(-b*L5) 

y3(p2,b)*f(p2,m):  O5=N5*J5 

ya(p2,m): P5=(1-G5)*(p1_*(-EXP(-a*m1_))+(1-p1_)*(-EXP(-a*m2_))) 

+G5*(-EXP(-a*m3_)) 

ya(p2,a)*f(p2,m):  Q5=P5*J5 

c(p2,a):   R5=-LN(-P5)/a 

c(p2,a)*f(p2,m):  S5=R5*J5 

y2(p2,a,b):   T5=-EXP(-b*R5) 

y2(p2,a,b)*f(p2,m):  U5=T5*J5 

ϕ(p2,b,a):   V5=-((-p5)^(b/a)) 

ϕ(p2,b,a)*f(p2,m):  W5=V5*J5 
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B.8.2 Realisations for the Extended Arrow-Pratt Approximation 

The formulas for the Extended Arrow-Pratt Approximation have been analysed by the use of the 

standard functions in Excel. Table B8.2 show the set-up and the annotations used where the 

commands for row 5 and column X to AI are shown below. These commands have been copied to 

row 6 down to row 2001 in order to obtain 1996 realisations of the formulas.  

 

Q1(P2):     X5=(1-G5)*p1_ 

Q1(p2)*f(p2,m):    Y5=X5*J5 

Q2(p2):     Z5=(1-G5)*(1-p1_) 

Q2(p2)*f(p2,m):    AA5=Z5*J5 

Q3(p2):     AB5=G5 

Q3(p2)*f(p2,m):    AC5=AB5*J5 

Q1(p2)*Q1(p2)*f(p2,m):   AD5=X5*X5*J5 

Q2(p2)*Q2(p2)*f(p2,m):   AE5=Z5*Z5*J5 

Q3(p2)*Q3(p2)*f(p2,m):   AF5=AB5*AB5*J5 

Q1(p2)*Q2(p2)*f(p2,m):   AG5=X5*Z5*J5 

Q1(p2)*Q3(p2)*f(p2,.m):   AH5=X5*AB5*J5 

Q2(p2)*Q3(p2)*f(p2,m):   AI5=Z5*AB5*J5 
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B.8.3 Analysis results  

Table B8.3 show the analysis results of the integration over the N realisations and post-processing 

of the formulas given in chapter B.1 to B.7. The Excel commands used to arrive at the analysis 

results given in column E of table B8.3 are shown below.  

 

ptilde:       E5=SUM(K5:K2001)/COUNT(K5:K2001) 

H:       E6=AVERAGE(M5:M2001) 

G(a):       E12=AVERAGE(Q5:Q2001) 

W:       E13=-EXP(-a*m3_) 

c2:       E14=AVERAGE(S5:S2001) 

V(a,b):       E15=AVERAGE(U5:U2001) 

V2(a,b):      E16=AVERAGE(W5:W2001) 

cAmAv:      E17=-LN(-E16)/b 

П:       E18=E6-E17 

mQ1:       E19=AVERAGE(Y5:Y2001) 

mQ2:       E20=AVERAGE(AA5:AA2001) 

mQ3:       E21=AVERAGE(AC5:AC2001) 

sig11:       E22=AVERAGE(AD5:AD2001)-E19*E19 

sig22:       E23=AVERAGE(AE5:AE2001)-E20*E20 

sig33:       E24=AVERAGE(AF5:AF2001)-E21*E21 

sig12:       E25=AVERAGE(AG5:AG2001)-E19*E20 

sig13:       E26=AVERAGE(AH5:AH2001)-E19*E21 

sig23:       E27=AVERAGE(AI5:AI2001)-E20*E21 

pmu(0,0):      E31=(1-E5)*p1_ 

pmu(0,1):      E32=(1-E5)*(1-p1_) 

pmu(0,2):      E33=E5 

∑(w(0,s)*pmu(0,s):     E34=E28*E31+E29*E32+E30*E33 

∑(w(0,s)^2*pmu(0,s):     E35=E28^2*E31+E29^2*E32+E30^2*E33 
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sig2pmu:      E36=E35-E34^2 

CAP:       E37==E6-(1/2)*a*E36 

Sig2mu: E38=E22*E28*E28+E25*E28*E29+E26*E28*E30+ 

E23*E29*E29+E25*E28*E29+E27*E29*E30+E26*E28*E30+E27*E29*

E30+E24*E30*E30 

CAM:        E39=(1/2)*(b-a)*E38 

Пquad= CAP-CAM:      E40=E37-E39 

Certainty Equivalent KMM functional (cAmAv):  E42=E17 

Certainty Equivalent Arrow-Pratt Approximation (Пqua): E43=E40 

Risk premium (H-CAP):     E44=E6-E37 

Ambiguity premium (CAM):     E45=E39 

Certainty Equivalent Wald Maximin utility:   E46=-(1/a)*LN(-E13) 

Certainty Equivalent KMM functional (V(a,b)):  E47=-(1/b)*LN(-E15) 
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Table B8.3 Excel analysis results for the Smooth Ambiguity Functional and the Extended Arrow-

Pratt Approximation   
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Appendix C – Interview Question Protocol 
The questions posed in the in-depth interviews of the selected peer group. 

General questions:  

1 

Expected value/mean represents the weighted average. It reflects the “centre of gravity” in a 

probability distribution. The P50 value gives equal probability of under run/overrun and the 

area under the probability curve is then the same on both sides. Are you familiar with these 

concepts of expected value and P50 value? 

2 
Do you know where the concepts of expected values/P50 values are used in a decision 

process? 

3 
In a decision process do you differentiate between a potential positive and a potential 

negative outcome? 

4 Do you know how this differentiation or weighting of outcomes can be done? 

5 
A decision maker is neutral to loss or gain if a negative or positive outcome are given the 

same weighting. Are you familiar with this term of being risk neutral? 

6 Do you agree that decisions based on expected values is a risk neutral approach? 

7 

Tolerance of risk or aversion to risk is a subjective judgment and expresses the decision 

maker’s aversion to losses or potential negative outcomes. The potential outcomes are then 

based on uncertainty assessments of quantities, rates and norms that are related to the known 

elements of the described technical solution.  Do you know how a decision maker’s risk 

aversion or contingency is implemented in the decision process? 

8 

Ambiguity is a term used to describe uncertainty when you are not confident in assigning a 

probability distribution. This could refer to uncertainty of unspecified or unknown elements 

of a technical solution. Do you know how a decision maker’s ambiguity aversion or budget 

reserve is implemented in the decision process? 

9 

The certainty equivalent value is the value you consider as being risk free or the same as 

having money in your bank. For a project subject to risk and ambiguity, the difference 

between an expected value and a risk premium and an ambiguity premium represents the 

certainty equivalent value. The risk and ambiguity premiums are based on a subjective 

judgement by the decision maker. Risk premium have some similarities to the project 

contingency concept and ambiguity premium have some similarities to the use of budget 

reserves. Are you familiar with the term certainty equivalent value and the use of 

contingency and budget reserves in a decision process?  

Project specific questions: 

1 
Please have a look at project A and project B. Would you prefer one out of these two 

projects or do you consider them to be indifferent?  

2 Can you explain how you arrived at your choice between project A and project B? 

3 What would you consider as an appropriate expected value for project A?  

4 

 

Please have a look at project C and project D. Would you prefer one out of these two 

projects or do you consider them to be indifferent? 

5 Can you explain how you arrived at your choice between project C and project D? 

6 What would you consider as an appropriate expected value for project C?  
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7 

 

Can you recall a similar decision setting as for project A and project C where you are not 

able to describe the probabilities for a specific outcome?  

8 

 

If you had more information about P10 and P90 for the projects would you then assign a 

reserve or buffer to the expected values to account for the statistical variation in project B 

and D? 

9 
Would you assign a reserve or buffer to the expected values to account for the unknown 

unknowns in project A and C? 

10 
Can you recall a past decision setting where you gave potential negative outcomes more 

weighting or in an extreme case only considered a negative outcome? 

 


