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Abstract 

The binomial real options valuation approach using the market asset disclaimer assumption 

with an emphasis on state-dependent cash flows is reviewed and implemented using geometric 

Brownian Motion as the stochastic process for project uncertainty and the cash flows. A 

comprehensive analysis is conducted to identify the value drivers of options, including timing-

aspects, intrinsic option value versus the value of flexibility, sensitivities of the binomial model 

to interest rate and volatility, and revision of volatility estimates for the BDH case. 

The example case is then extended by using the mean reverting stochastic process for the project 

value and cash flows using the censored binomial presented by Hahn (2005) and the non-

censored binomial presented by Bastian-Pinto, Brandão, and Hahn (2010).  

Finally, the case is valued with a simple, European option equivalent, Monte Carlo approach 

with the underlying factors following geometric Brownian Motion and mean reverting models, 

and the results are compared.  

 

The model files can be made available upon request to the author for anybody interested. 
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Abbreviations and general nomenclature 

The following abbreviations are used throughout the text.  Additional abbreviations necessary 

in specific chapters will be introduced when used in the individual chapters.   

 

BDH Referring to binomial project value model by Brandao, Dyer and Hahn 

CF Cash flow 

DCF Discounted cash flow 

GBM Geometric Brownian motion 

GCE Generalized Conditional Expectations (approach for project volatility estimation) 

M1 Model 1 of Schwartz 

MAD Market Asset Disclaimer (assuming the NPV to be a project twin-asset) 

MCS Monte Carlo simulation 

MR Mean reversion / mean reverting process 

NPV Net present value 

OU Ornstein-Uhlenbeck process 

ROA Real options analysis 

ROV Real options valuation 

SDE Stochastic differential equation 

 

State variables 

𝑖  - # of up movements 

𝑗  - # of down movements 

𝑛 - period number = 𝑖 + 𝑗 

𝑡  - time at period 𝑛 

𝛥𝑡  - time increment 

   

   

Nomenclature for stochastic process definitions 

𝑆 - underlying asset / twin asset 

𝑌 - logarithm of the underlying, ln⁡(𝑆)  

Φ - mean reversion point of the underlying asset 

𝜑 - logarithm of the mean reversion point, ln⁡(Φ) 

𝜎 - volatility of the process measured as standard deviation > 0 

𝜇 - drift of the process (absolute measure for arithmetic, percentage drift  

for geometric models) 

𝑑𝑡 - time increment 

𝜂 - mean reversion coefficient / mean reversion speed 

𝑊𝑡 - the Wiener process 

𝜀 - standard normally distributed 𝑁(0,1) random component 
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Unit variables for binomial methods 

𝑉𝑖,𝑗 - NPV of project in given state 

𝑧 - logarithm of period return, percentage return in continuous compounding 

𝜎 - annual standard deviation of 𝑧 

𝜂 - mean reversion coefficient 

𝑝 - probability of up movement in next period for given state 

Φ - long-term equilibrium level 

𝐶𝐹𝑖,𝑗 - cash flow in given state 

𝛬 - dynamically programmed NPV from roll-back calculation 
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1. Introduction 

 

1.1. General introduction: 

This paper is about real options modelling. Real options valuation (ROV) is the valuation of 

future actions with flexibility, where several processes and modelling methods are available. 

This paper will focus on the application of binomial option pricing models to projects with both 

geometric Brownian motion and mean reverting characteristics. These financial models are 

tools to evaluate different possibilities but are not the same as performing the decisions. The 

models are based on assumptions that must be considered when used for decision support. 

 

Real options analysis is acknowledged to be a good tool to valuate strategic investments and 

investment under uncertainty, but presentation of the results is often hard to communicate to 

non-technical decision-makers and stakeholders. The results from closed-form solutions and 

Monte Carlo methods are often presented as a single number, whereby they lose part of the 

reason for doing the analysis – understanding the forecast of the value development with its 

uncertainty and corresponding optimal decision strategies. Binomial and trinomial methods 

have been criticized for being too simple, but we argue that lattice-based models have a high 

communicational value, especially when presented to non-technical decision-makers. 

 

Generic simplified models for option pricing is becoming more accessible, but accurate 

valuation of real options based on several uncertainties with realistic models still require 

expertise in the fields of stochastic theory, market understanding and modelling skills or 

mathematical skills (depending on approach). 

 

Many widely traded commodities often exhibit mean reverting characteristics. Still, projects 

with a value dependent upon mean reverting processes have generally been modelled as 

geometric Brownian Motion as an extension of the financial options theory and methods. If the 

underlying revenues and costs have mean reverting characteristics, we have assumed that the 

development of the remaining project value will also be better approximated to a mean reverting 

process than a geometric Brownian Motion. 
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First, we introduce the background of options pricing and real options valuation with definitions 

of the concepts and the main modelling methods. The second part of the paper focus on the 

theory and implementation of a binomial option pricing model for projects (as a whole) 

approximating geometric Brownian motion based on the discounted cash flow estimates for 

parameter estimation, called the marketed asset disclaimer, with focus on state-dependent cash 

flow estimates (building on Copeland and Antikarov, 2001, and Brandao et al., 2005).  The 

method and results are analyzed and decomposed to identify the value drivers of the options in 

the model. Further, the same approach is implemented in two different mean reverting binomial 

lattice methods, the censored model and the non-censored model. The case example is also 

valued using a simplified European Monte Carlo method with sales price and cost processes 

modelled as geometric Brownian Motions and mean reverting, using the expected value at the 

term date of the options as the best estimate of the option payoff. In the end the results are 

analyzed and compared with concluding remarks. 

 

1.2. Introduction to options valuation 

In 1900 Louis Bachelier (Bachelier) was the first to introduce stochastic processes to finance 

through applying what is now called a Brownian motion to model the market noise of the Paris 

Bourse. The field of stochastic integration continued to develop through the work of Einstein 

(1905), Wiener, and most significantly Itô. In the realm of financial options Kassouf and Thorp 

introduced hedge ratios and dynamic hedging.  

 

Based on these stochastic processes Black and Scholes (1973) developed their famous option-

pricing formula for European financial options. By setting up and solving a partial differential 

equation for a risk-neutral portfolio with continuously revised delta hedging, they enabled easy 

calculation of the “right price” of an option. In other words, they showed how one can set up a 

portfolio of stocks and issued bonds (borrowings) that replicates the change in value for an 

option in the short term and thereby how that value is expected to change for a given range of 

outcomes, determined by a volatility estimate. The derivation of the Black-Scholes formula is 

consequently the solution of the Black-Scholes equation using Itô´s lemma. Merton (1973b) 

contributed the formula with the no-arbitrage argument. 

 

Four years later Myers (1977) coined the phrase “Real-Options” as he started to gain insight 

into how financial option-theory can be used in valuation of real (non-financial) assets.  
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Cox, Ross, and Rubinstein (1979) developed the binomial option pricing model, where the 

underlying financial asset is modelled in a discrete-time tree or lattice. The option value is 

calculated from the replicating portfolio theory. 

 

Boyl (1977) introduced Monte Carlo methods to option pricing, but not until the 90´s did they 

become readily available with possibilities for valuation of American options. 
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2. Theory 

 

2.1. What are real options? 

The name real options comes from Myers (1977) description of options on “real assets”. Real 

options are options on non-financial assets and can be seen as decision opportunities for a 

corporation or an individual. The real option is based on the uncertain value of some underlying 

asset, representing a right, but not obligation, to execute an action – typically an investment, at 

some point in time. The options may be related to the project value as a whole, like growth 

options and abandonment options, or to operational flexibility, like switching options on inputs 

and outputs for a production system. The contingent claim from a real option depends on the 

outcome of some uncertain events, including the effect of learning over time. 

 

In their book Investments under Uncertainty Dixit and Pindyck (1994) describe how real 

options can capture the value of flexibility in investments with uncertainty. In their book Real-

Options: A Practitioner’s Guide Copeland and Antikarov (2001) describe the comparison to 

financial options with examples of their respective financial option counterparts. Trigeorgis 

(1993) explain that the value of managerial flexibility is a type of real option and Luehrman 

(1998) state that real options theory can be used to valuate strategic decision-making, noting 

how business strategy is much more like a series of options than a series of static cash flows. 

Triantis and Borison (2001) describe three categories of interpretations of real options by 

practitioners as (1) a way of thinking, (2) an analytical tool, and (3) an organizational process. 

This thesis will mainly focus on the modelling of real options using different stochastic 

processes, exemplified in a case with two real options on the project value level. 

 

To understand the dynamics of real option valuations (ROV) one must get an overview of 4 

major aspects of real options:  

1. Types of options 

2. Stochastic processes 

3. Modelling methods 

4. Model inputs 
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2.2. Types of options  

To understand the drivers of an option’s value, it is first important to understand the structure 

of the option. The two most basic option types are call options and put options.  

 

Call option: Gives the option holder the right, but not obligation to acquire an asset in 

the future. 

Put option: Gives the option holder the right, but not obligation to sell an asset in the 

future. 

 

The price to which the option holder can buy or sell is called the strike price. Further, an option 

can be classified as a European or an American option. 

 

European option: Can only be exercised at a pre-determined expiration date. 

American option: Can be exercised at any time up to the expiration date. 

 

Options limited to this framework (American or European, call or put options) are called vanilla 

options. Two other exercise-time related financial options terms that are particularly related to 

ROA are: 

Bermudan option: Can be exercised at any time in a set exercise interval. 

Evergreen option: Can be exercised only after a predetermined period of notice 

(giving a lag-effect). 

 

 

2.2.1. Simple options 

Options that gives the right to only one action (subsequent) and are exposed to only one 

underlying risky asset are often called simple options. These basic option types are related to 

time perspectives, scaling decisions, and single start/stop decisions. Below is a list of the 

common simple real option types: 
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Real option Financial option 

equivalent 
Type and description 

Invest Call Call for project CF 

Abandon Put Put of full CF 

Expand Scale up (call) Call for marginal expansion of CF 

Contract Scale down (put) Put for marginal downscaling of CF 

Postpone Call Call for project CF at a later time (learning option) 

Extend Call Call for extended CF after original project CF 

Table 1 - Simple real options 

 

2.2.2. Non-simple options 

Simple options can be combined subsequently to form non-simple options. Also, options 

dependent on multiple underlying processes are classified as non-simple. These include 

compound options, rainbow options and switching options. Examples of actions that can be 

modelled as non-simple options include product mix (output) options, process mix (input) 

options, operation options and sequencing options. Option valuation modelled dependent on 

the outcome of a combination of private- and market uncertainties is another example. 

 

2.2.3. In- or out of the money 

Options with an expected value of the payout at a given point in time are termed to be “in the 

money”. For call options, this means that the price of the underlying asset is higher than the 

strike price, and for put options that the asset price is below the strike price. Options with 

expected value of payout if exercised at current time are termed to be “out of the money”.  

 

2.3. Stochastic processes and concepts 

An options payoff is a function of the development of the underlying asset in time. Option 

pricing models estimate this uncertain development as a stochastic process. Stochastic process 

characteristics include arithmetic versus geometric development, processes with drift versus 

martingales, continuous versus discrete models, mean reversion, jump diffusions and many 

other factors. The most common stochastic process used in ROA is geometric Brownian motion 

(GBM). A general introduction to stochastic processes can be found in Options, Futures and 

Other Derivatives by Hull and Basu (2016), Paul Wilmott Introduces Quantitative Finance 

Wilmott (2007) or Introduction to Stochastic Calculus Applied to Finance by Lamberton and 

Lapeyre (2011) and others. 
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As an introduction to stochastic modelling some basic concepts of stochastic processes are 

described in the following section. The general nomenclature of for the processes are as follows: 

 

𝑆 - underlying asset / twin asset 

𝑌 - logarithm of the underlying, ln⁡(𝑆)  

Φ - mean reversion point of the underlying asset 

𝜑 - logarithm of the mean reversion point, ln⁡(Φ) 

𝜎 - volatility of the process measured as standard deviation > 0 

𝜇 - drift of the process (absolute measure for arithmetic, percentage drift  

for geometric models) 

𝑑𝑡 - time increment 

𝜂 - mean reversion coefficient / mean reversion speed 

𝑊𝑡 - the Wiener process 

𝜀 - standard normally distributed 𝑁(0,1) random component 

   

 

2.3.1. Random walk 

A random walk is a stochastic process that starts in 0 and evolves with +1 or −1 with 

probability 𝑝 and (1 − 𝑝) respectively over 𝑛 periods. This is a discrete model. 

 

2.3.2. Markov process 

A Markov process is a memoryless process where history is irrelevant, whereby only the current 

value of the variable is relevant for predictions. 

 

2.3.3. Martingale process 

A Martingale is a process with expected value equal current value. This is equivalent to zero 

expected drift. 

𝐸(𝑆𝑡+1) = 𝑆𝑡, 𝜇 = 0 

 

2.3.4. Wiener process 

A Wiener process is a standard Brownian motion for time 0 ≤ 𝑠 ≤ 𝑡 characterized by: 

1. 𝑊0 = 0 
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2. 𝑊𝑡 is almost surely continous 

3. Each increment is independent 

4. Each increment is normally distributed with expected value 𝜇 = 0 (no drift) and 

variance 𝜎2 = 𝑡 − 𝑠 (written 𝑊𝑡~𝑁(0, 𝑡 − 𝑠)) 

 

The stochastic differential equation (SDE) for a Wiener process can be written as 

𝑑𝑆𝑡 = 𝜇(𝑆𝑡, 𝑡)𝑑𝑡 + 𝜎(𝑆𝑡, 𝑡)𝑑𝑊𝑡 

2.3.5. Arithmetic VS Geometric  

While an arithmetic change process is additive, a geometric process is multiplicative. For many 

processes a series of percentage-wise changes is preferred for modelling as this often reflects 

the underlying change better than a series of absolute changes. For example, changes in the 

logarithmic value limit the development to non-negative values, which is true for stock- and 

commodity prices. 

 

2.3.6. Geometric Brownian motion 

Geometric Brownian Motion (GBM) is the most commonly used stochastic process for option 

valuation in general. GBM follows the stochastic differential equation: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

Where the increment of the wiener process is 𝑑𝑊𝑡 = √𝑑𝑡⁡𝜀𝑡. In the geometric process the drift 

is measured as expected percentage change. Discounting of future cash flows is incorporated 

as drift. Itô’s lemma gives the analytical solution 

ln(𝑆𝑡) = ln(𝑆0) + (𝜇 −
𝜎2

2
)𝑑𝑡 + 𝜎√𝑑𝑡𝜀𝑡⁡, 𝑆𝑡 = 𝑆0𝑒

(𝜇−𝜎2

2
)𝑡+𝜎√𝑡𝜀𝑡

 

The conditional expected value is 𝐸[𝑆𝑡|𝑆𝑡−Δ𝑡] = 𝑆𝑡−∆𝑡𝑒
𝜇Δ𝑡 where 𝜇 = ln(1 + 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒⁡𝑑𝑟𝑖𝑓𝑡) 

is the continuous drift. From time series data the model can by calibrated by 𝜎̂ = √
𝑉𝑎𝑟[𝑧]

Δ𝑡
 and 

𝜇̂ =
𝐸[𝑧]

𝑡
+

𝜎2

2
 where 𝑧 = ln (

𝑆𝑡

𝑆𝑡−1
) is the period return in percent for which 𝐸[𝑧] is the expected 

value and 𝑉𝑎𝑟[𝑧] is the variance. One can also calibrate the process from futures data, reflecting 

the markets view of uncertainty, giving the risk-neutral drift. One can also calculate the 

expected future volatility in the market from the market prices of options on the asset (implied 

volatility). 
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2.3.7. Mean reverting models 

In contrast to Brownian Motion processes with drift, mean reverting processes (MR) tend to 

revert to some long-term equilibrium value. Macroeconomic principles support the assumption 

of mean reversion in commodity markets (Schwartz, 1997). High prices tend to stimulate 

additional investments (to increase capacity), dampen demand and increase substitution where 

possible. Low prices tend to reduce investments in new capacity and increase demand for the 

commodity. These reactions all tend to normalize to a long-term supply-demand equilibrium. 

We will discuss whether we can categorize projects exposed to mean reverting processes to the 

same stochastic behavior is chapter 5. 

 

2.3.7.1. Arithmetic Ornstein-Uhlenbeck processes 

The most basic mean reversion is the arithmetic Ornstein-Uhlenbeck process. The SDE for the 

Ornstein-Uhlenbeck process (OU) can be written as 

𝑑𝑆𝑡 = 𝜂(Φ − 𝑆𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 

The process has the expected value 𝐸[𝑆𝑡|𝑆𝑡−Δ𝑡] = 𝑆𝑡−Δ𝑡𝑒
−𝜂Δ𝑡 + Φ(1 − 𝑒−𝜂Δ𝑡). The process is 

a Markov process, but the increments are not independent since they depend on the difference 

between the current price and the long run equilibrium. The three quantitative methods for 

calibration of an observed arithmetic OU process are least squares estimation, maximum 

likelihood estimation and the jackknife technique. This is covered by W. Smith (2010). The 

discretized solution is to the SDE is 

𝑆𝑡 = 𝑆𝑡−1𝑒
−𝜂Δ𝑡 + Φ(1 − 𝑒−𝜂Δ𝑡) + 𝜎√

1 − 𝑒−𝜂Δ𝑡

2𝜂
𝜀𝑡 

 

An alternative process to the OU process is a model that reverts to the slope of the starting point 

plus a drift component Φ𝑡 = 𝑆0 + 𝜇𝑡. The arithmetic Ornstein-Uhlenbeck process with drift 

can be called trend stationary. 

𝑑𝑆𝑡 = (𝜇 + 𝜂(𝜇𝑡 − 𝑆𝑡))𝑑𝑡 + 𝜎𝑑𝑊𝑡 

It can be shown that the exact solution is 

𝑆𝑡 = 𝑆0𝑒
−𝜂Δ𝑡 + 𝜇Δ𝑡 + 𝜎√

1 − 𝑒−𝜂Δ𝑡

2𝜂
𝜀𝑡 

When 𝜂 goes to 0 the process becomes the arithmetic Brownian motion. 
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2.3.7.2. Geometric mean reverting models 

To restrict the values to be non-negative we can model the mean reversion geometrically. The 

simplest approach for this is to model the volatility geometrically, keeping the other parameters 

similar to the arithmetic Ornstein-Uhlenbeck process. 

𝑑𝑆𝑡 = 𝜂(Φ − 𝑆𝑡)𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

This however is not practical when it comes to finding the numerical solution and calibration 

of the model. For these reasons it is often preferred to work with the arithmetic OU process. 

This has led to development of arithmetic processes of the logarithm of the price. One of these 

is the model of Dixit and Pindyck (1994), dubbed the DPM model for mean reversion 

𝑑𝑆𝑡 = 𝜂𝑆𝑡(Φ − 𝑆𝑡)𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

By Itô’s lemma the process becomes  

𝑑𝑌𝑡 = 𝜂∗(φ∗ − 𝑌𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 

Where φ∗ = (Φ −
𝜎2

2𝜂
)

𝑌𝑡

𝑆𝑡
= (ln⁡(φ) −

𝜎2

2𝜂
)

ln⁡(𝑆𝑡)

𝑆𝑡
 and 𝜂∗ = 𝜂

𝑆𝑡

𝑌𝑡
 whereby the parameters are 

functions of 𝑆𝑡 and not constant, making the model hard or impossible to calibrate from 

historical data or the derivatives market. 

 

Schwartz (1997) proposed 3 different models for commodity pricing. Model 1 describes  

𝑑𝑆𝑡 = 𝜂(𝜑 − ln(𝑆𝑡))𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

From Itô’s lemma on 𝑌𝑡: 

𝑑𝑌𝑡 = 𝜂(𝜑∗ − 𝑌𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 

Where 𝜑∗ = 𝜑 − 𝜎2/2𝜂. The expected value is 𝐸[𝑌𝑡] = 𝑌𝑡−Δ𝑡𝑒
−𝜂Δ𝑡 + 𝜑∗(1 − 𝑒−𝜂Δ𝑡) +

𝜎2(1 − 𝑒−2𝜂Δ𝑡)/4𝜂. Note that this process does not refer to the mean reversion of the price, 

but of the logarithm of the price.  

 

The model for mean reversion of the project value modelled in chapter 5 is that of an arithmetic 

OU-process of the logarithmic value 

𝑑𝑌𝑡 = 𝜂(𝜑 − 𝑌𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 

The mean reverting models takes the long-term equilibrium as a constant over time, and so 

stochastic processes far into the future for quickly reverting processes might undervalue the 

long-term uncertainty. E.g. for an oil field with expected life of 40 years, the uncertainty of the 

oil and gas prices will likely be undervalued, and the outcome heavily dependent on the long-

term equilibrium. 
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2.3.8. Two-factor models 

Schwartz and Smith (2000) proposed a two-factor model with short-term variation and long-

term drift for commodity spot-price modelling, where both are stochastic processes. The model 

decomposes the price to a long-term drift component 𝜉𝑡 modelled as a GBM, and a short-term 

variation component 𝜒𝑡 modelled as an Ornstein-Uhlenbeck process that revert to zero.  

𝑙𝑛(𝑆𝑡) = 𝑌𝑡 = 𝜒𝑡 + 𝜉𝑡 

𝑑𝜒𝑡 = −𝜂𝜒𝑡𝑑𝑡 + 𝜎𝜒𝑑𝑧𝜒 

𝑑𝜉𝑡 = 𝜇𝜉𝑑𝑡 + 𝜎𝜉𝑑𝑧𝜉 

When the short-term component is zero the price will be equal to the long-term equilibrium 

price. The increments of the two Brownian motion processes, 𝑑𝑧𝜉 and 𝑑𝑧𝜒 are assumed to be 

correlated (𝑑𝑧𝜉𝑑𝑧𝜒 = 𝜌𝜉𝜒𝑑𝑡). Possible calibration methods for the model includes (1) implied 

estimation, (2) sequential optimization and (3) Kalman filtering applied with the state-space 

approach using maximum likelihood estimators for parameters of the unobserved state 

variables. 

 

2.3.9. Other processes 

Other significantly relevant concepts in the field that are not covered in this article include 

gaussian jump diffusion processes, multifactor processes and processes with stochastic 

volatility and stochastic discount rate. The use of stochastic models is also widespread in 

interest rate modelling, including the Vasicek model, the Cox-Ingersoll-Ross model, the Ho-

Lee model and the Hull-White model.  

 

Engle (1982) developed a model for autoregressive conditional heteroscedasticity (ARCH), 

enabling fluctuation of the volatility according to an autoregressive function, where the 

geometric processes presented assume the volatility to be constant. Bollerslev (1986) further 

developed a generalized autoregressive constant heteroscedasticity model (GARCH) where the 

variance of the process is modelled as an autoregressive moving average process (ARMA). 

This paper will only model homoscedastic volatility. 

 

2.3.10. Tests for determination of stochastic process 

Ozorio, Bastian-Pinto, and Brandão (2012) discuss the importance of choosing the right 

stochastic process to approximate the uncertainty of the process in question. They suggest 5 

methods to test the stochastic process type to data: 
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• Dickey-Fuller test 

• Augmenterd DF test 

• Unit roots 

• Variance ratio test  

• Adherence measures for a sample (e.g. Pseudo R2, Mean quadratic error and Mean 

absolute percentage error) 

 

 

 

2.4. Investment valuation principles 

2.4.1. Net Present Value approach 

The traditional approach to value potential capital investments is the net present value (NPV) 

approach. The NPV of a project is the present value of the expected future cash flows. This is 

set up in a discounted cash flow (DCF) model with expected future income and expenses 

discounted at a “risk-adjusted” rate. Riskier projects will thus be discounted more.  

𝑁𝑃𝑉 = −𝐼 + ∑
𝐶𝐹𝑖

(1 + 𝑊𝐴𝐶𝐶)𝑡𝑖

𝑁

𝑖=0

 

The most common method for finding the risk-adjusted rate is the weighted average cost of 

capital (WACC) of a firm. The WACC is weighted between the required rate of return from 

equity holders, calculated from Merton´s capital asset pricing model (CAPM), and the cost of 

debt. 

𝑊𝐴𝐶𝐶 = 𝑟𝐸
𝐸

𝐷+𝐸
+ 𝑟𝐷

𝐷

𝐷+𝐸
(1 − 𝜏)⁡ where  𝑟𝐸 = 𝑟𝑓 + 𝛽(𝑟𝑚 − 𝑟𝑓) 

E is the market value of equity and D is the market value of debt, and 𝜏 is the tax rate. 𝑟𝑓 is the 

risk-free rate, 𝑟𝑚 is the expected return in the market and 𝛽 indicates whether the investment is 

more or less volatile than the market. Discounting with the firms WACC might be appropriate 

when valuing projects that extends a homogeneous project portfolio. For projects that does not 

mimic the general riskiness of the firm, the problem is to find a discount rate that reflect the 

economic project riskiness.  
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2.4.2. Decision Analysis 

Decision analysis was coined by Ron Howard in the 1960s. The decision analysis approach sets 

up a decision tree that describes the sequence of uncertainties and decisions. This is done in a 

dynamic tree or an influence diagram consisting of chance nodes, decision nodes and 

information nodes. The chance nodes carry subjectively assigned probabilities of each outcome 

of the node, where the outcomes are quantified with a utility value for general decisions. The 

optimal decision strategy is found as the highest certainty equivalent when solving the tree 

backward. The certainty equivalent is the value for which the decision maker is indifferent 

between taking the certainty equivalent for sure or the uncertain alternative. Qualitative 

decisions can be modelled by quantifying the utility of each outcome as a measure of 

preference. An investors utility function describes his/her preferences, where he/she can be 

classified as risk-loving, risk-neutral or risk-averse. For more on decision analysis see Bratvold 

and Begg (2010).  

 

2.4.3. Risk-neutral valuation 

The objective of the risk-adjustment of the discount rate used in NPV analysis is to compensate 

for uncertainty in future cash flows. If the future cash flows were certain we could discount at 

the risk-free rate. An alternative valuation approach to the NPV analysis thus becomes the 

certainty equivalent of the uncertain future cash flows discounted at the risk-free rate. The 

certainty equivalent is the value adjusted by the risk-neutral measure, also called the martingale 

equivalent. 

  

Let’s look at this for a stock. In a complete market the no-arbitrage argument state that the price 

calibrated with the right expectations of the value of the underlying. Thereby the expected 

return of holding the stock will be the risk-free rate of return. 

For real options the risk-neutral process is estimated from using the risk-neutral processes of 

the variables affecting the project valuation. If an oil project knows its production, sells future 

production in the futures market, hedges its costs and adjusted the valuation for other private 

risks (with risk-neutral probabilities), then we can estimate the risk-neutral cash flows of the 

project. If the project with its rights can be bought or sold (shorted) in the market, the price 

must be the risk-neutral cash flows discounted at the risk-free rate. If it was not, one could buy 

or short the project value and pocket the difference to the risk-neutral project value. 
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The risk-adjusted NPV method and decision analysis are not directly compatible methods 

because of the risk-adjusted discount-rate, but J. E. Smith and Nau (1995) showed how decision 

analysis is consistent with option pricing methods when using risk-neutral valuation. J. E. Smith 

and McCardle (1998) implement a combination of decision analysis for private risks and risk-

neutral real option pricing for market risks that can be hedged, through the valuation of an oil 

property. The certainty equivalent of expected future cash flows is the value of the discounted 

cash flows. Smith and McCardle call the approach an integrated valuation procedure.  

 

Risk-neutral processes can be estimated using the capital asset pricing model of Merton (1973a) 

or other methods. For widely traded commodities the risk-neutral drift can be calculated from 

the futures market, where futures are standardized contracts for delivery on a future date for a 

given price. (The spot price is the special case of a futures contract where time to term date 

equal null.) Thereby the futures price captures the markets expectations of the price 

development. The benefit or premium associated with holding the underlying asset rather than 

a futures contract or derivative product is known as the convenience yield. For further 

discussion of estimation of estimation of market price of risk, see Hull and Basu (2016). 

 

2.4.4. Replicating portfolio theory 

The most basic idea behind options pricing is to make a portfolio that replicate the payoffs of a 

given option, where the no-arbitrage argument (Merton, 1973b) state that the option and the 

replicating portfolio must at all times and in all states have the same value. The replicating 

portfolio is set up based on the underlying asset of the option and borrowings. In financial terms 

the replicating portfolio approach valuate the option based on a continually revised delta-hedge 

of the option using the underlying security and bonds. Black and Scholes (1973) proved that 

this continuous hedge removes the expected return of the underlying asset as a factor in the 

options value, enabling risk-neutral valuation of the option value. The expected return of the 

option can thus be discounted at the risk-free rate. This was the key insight behind the Black-

Scholes model.   

 

The replicating portfolio consist of m units of the underlying security with value V and B units 

of a risk-free bonds paying 𝑟 in annual interest. The option is a contingent claim on the 

underlying security. The capital loss or gain from the replicating portfolio in an up or down 
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state is calculated as the payoff of the call option C in the up and down state of the underlying 

asset.  

 

We get two equations, one for each state,⁡𝑚𝑢𝑆 + 𝐵𝑒𝑟 = 𝐶𝑢𝑝 and 𝑚𝑑𝑆 + 𝐵𝑒𝑟 = 𝐶𝑑𝑜𝑤𝑛. 

Solving for the unknowns, m and B, we get  

𝑚 =
𝐶𝑢𝑝 − 𝐶𝑑𝑜𝑤𝑛

(𝑢 − 𝑑)𝑆
, 𝐵 =

𝑢𝐶𝑑𝑜𝑤𝑛 − 𝑑𝐶𝑢𝑝

(𝑢 − 𝑑)𝑒𝑟
 

 

If an option trades above or below the two perfectly hedged replication, then one would be able 

to sell (short) or buy the option while also constructing the hedged replicating portfolio, 

pocketing the difference as an arbitrage opportunity. By imposing the no-arbitrage argument 

we can calculate the risk-neutral probability of the replicating portfolio, where 

𝑆 =
𝑝𝑢𝑆 + (1 − 𝑝)𝑑𝑆

𝑒𝑟
 

gives 

𝑝 =
𝑒𝑟 − 𝑑

𝑢 − 𝑑
 

 

 

2.4.5. Perspectives on uncertainty for real options  

We use real options models as a valuation tool under conditions of uncertainty. Whenever we 

need to quantify uncertainty we should consider who´s uncertainty. For project evaluation we 

aim to represent the uncertainty of the decision-maker, where the decision-maker ultimately 

represent the shareholders of the company. The uncertainty is most often represented through 

risk-adjusted discounting, or alternatively through the utility value from decision analysis.  

 

The breakthrough in option pricing came when option prices became independent from the 

expected development of the underlying based on the theory that one can replicate the payoff 

of the option with a delta-hedged replicating portfolio. The payoff from the option can thus be 

scaled up and down, and the alternative investment is the risk-free rate. The cost of synthesizing 
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the replicated portfolio is a function of the uncertainty of the underlying asset, which is 

calculated from a stochastic process. 

 

With the MAD approach real options pricing is done using replicating portfolio theory on the 

NPV, but a replicating project does not (necessarily) exist. Thereby it’s not obvious that the 

drift is the risk-free rate, and the uncertainty we want to quantify will be the expected forward-

looking uncertainty for the stakeholders of the company.  

 

2.5. Real option valuation methods 

2.5.1. Black-Scholes option pricing model 

Black and Scholes (1973) developed the first option pricing model from the replicating portfolio 

approach. The Black-Scholes equation is a stochastic differential equation that captures the 

replicating portfolio for a European option that consist of the underlying uncertain financial 

asset (stock) modelled as a GBM, and borrowings. Because of the no-arbitrage argument the 

option value equals the cost of synthesizing the replicated portfolio. For a European option, the 

equation is 

𝜕𝐶

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆
+ 𝑟𝑆

𝜕𝐶

𝜕𝑆
− 𝑟𝐶 = 0 

 

Where 𝐶 is the call option value and 𝑃 is the put option value. The closed-form solution to the 

equation is the Black-Scholes formula as follows 

𝐶 = 𝑁(𝑑1)𝑆0 − 𝑁(𝑑2)𝐾𝑒−𝑟𝑇 , 𝑃 = −𝑁(−𝑑1)𝑆0 + 𝑁(−𝑑2)𝐾𝑒−𝑟𝑇 

 

where  

𝑑1 =
1

𝜎√𝑇
(ln (

𝑆0

𝐾
) + (𝑟 +

𝜎2

2
) (𝑇)) , 𝑑2 = 𝑑1 − 𝜎√𝑇 

 

𝐾 strike price and 𝑁(∙) is the cumulative distribution function of the standard normal 

distribution function. The formula is extensively used in financial markets, but carry a strict set 

of assumptions, limiting the applicability to ROV. The model assumes: 

1. Only be exercised at maturity – European options only 

2. Only one source of uncertainty – no rainbow options 

3. Contingent on only one underlying asset – no compound options 
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4. No dividends 

5. Uncertainty follows geometric Brownian motion 

6. Parameters are observable 

7. Volatility is constant with time 

8. Risk-free rate is constant with time 

(Black & Scholes) (Copeland & Antikarov) 

 

2.5.2. Other stochastic differential equations 

Several expanded SDE-based closed-form solution models have been developed since the 

Black-Sholes formula was published. Examples of relaxed assumptions in other SDE-based 

models include correction for dividends, perpetual American option model adjustments, mean 

reversion characteristic of risky asset, correction for varying volatility (Heston) and models for 

two underlying risky assets. However, some of these models become to mathematically 

sophisticated to be practical for practitioners, and SDE-based models has limitations when 

working with high-dimensional problems or don’t have an analytical solution. The closed form 

solutions to the basic stochastic processes are presented in chapter 2.3. 

 

2.5.3. Binomial option pricing model 

Binomial recombining trees for financial options were first developed by Cox et al. (1979) 

based on the replicating portfolio theory through the binomial option pricing model. The model 

can value American options with dividends as fractions of the asset and added educational value 

through visualization of discrete steps. The twin security, 𝑆, can over each discrete time step 

Δ𝑡 develop to an up value, 𝑆𝑢, or a down value, 𝑆𝑑, with respective probabilities 𝑝 and (1 −

𝑝). By requiring that the first and second moment of the of the binomial diffusion to match that 

of the continuous diffusion, the up and down movements are calculated as 𝑢 = 𝑒𝜎√Δ𝑡 and 𝑑 =

𝑒−𝜎√Δ𝑡 = 1/𝑢. The up-probability is defined as 𝑝 =
1+𝑟𝑓Δ𝑡−𝑑

𝑢−𝑑
, where 𝑟𝑓 is the risk-free rate.  

  

The probability of an up move, 𝑝 is calculated as 

𝑝 =
𝑒𝑟𝑓Δ𝑡 − 𝑑

𝑢 − 𝑑
 

𝑉𝑡+𝑑𝑡
𝑢𝑝

= 𝑉𝑡𝑢

𝑉𝑡+𝑑𝑡
𝑑𝑜𝑤𝑛 = 𝑉𝑡𝑑

𝑉𝑡

𝑝

1−𝑝
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The values are calculated back from the end values to the When a rollback tree with the possible 

developments of 𝑆 is constructed options are added in the lattice as maximum values of the 

exercise and not exercise values in their respective exercise times. Starting with the endpoint 

the nodes in the lattice are calculated backwards to time 𝑡 = 0 as 

𝑆 =
𝑝𝑆𝑢 + (1 − 𝑝)𝑆𝑑

𝑒𝑟𝑓Δ𝑡
 

The probability distribution implied by the lattice converges to a geometric Brownian motion 

when Δ𝑡 goes to zero. 

 

Binomial trees can be developed in several other ways, including binomial trees correcting for 

skewness and kurtosis, trees with probability of 0,5 for all nodes,  trees approximating mean-

reverting processes, and to three-dimensional trees (2 underlying uncertainties) and two-factor 

trees. Boyle (1986) introduced trinomial trees, much used in interest rate modelling. 

 

Binomial trees with recombining nodes are called lattices. The original binomial option pricing 

model is recombining, but if the volatility is not considered constant over time (if the diffusion 

is heteroscedastic) or the model includes fixed dividends, the tree will not be recombining. 

However, heteroscedastic diffusion models can be transformed to be homoscedastic, and 

dividends can be modelled as a fraction of the underlying to keep the lattice form. Despite the 

limitations, lattices are popular with practitioners because of the computational simplicity and 

how they allow for ease of communication of the optimal decision strategy and identification 

of option value drivers without much additional analysis. Another advantage of lattices is the 

reduced computational burden. For 𝑛 periods (coundting from 0) a lattice will have 𝑛 endpoints 

and 𝑛(1 + 𝑛)/2 nodes. Non-recombining trees will have 2𝑛−1 and 2𝑛 − 1. (J. E. Smith, 2005) 

 

Lattices can easily be modelled in excel. From personal experience the preferred tool of 

modelling non-recombining trees is DPL from Syncopation Software, but this can also be 

calculated in excel with VBA or using other programming languages. 

 

2.5.4. Marketed Asset Disclaimer (MAD) 

Previous models work well for modelling financial options based on the replicating portfolio 

approach, but what is the twin-security for a project? It is practically impossible to find a priced 

security whose cash payouts are perfectly correlated to a project. Copeland and Antikarov 
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(2001) suggest using the present value of the project without options. By assuming that the 

NPV is the best unbiased estimator for the market value of the project we can use it as the 

underlying asset for calculating real options on the project level. They call this the marketed 

asset disclaimer. Further they assume that the change in project value follow a random walk. A 

Monte Carlo simulation of the DCF with uncertainty in marketable parameters create a 

distribution of possible periodic project return. The periodic return volatility is estimated as the 

standard deviation of the return distribution from the simulation. Brandão, Dyer, and Hahn 

(2005a) point out that it’s important to isolate the uncertainty in project variables to the period 

for which project returns are estimated. Following periods are set to conditional expected values 

to avoid overstating the period volatility by including uncertainty in later periods. They also 

stress the extraction and add-back of cash flows from the project in the development and roll-

back trees to avoid the modelled volatility in later years from affecting received cash flows. 

The cash flow manipulation is analogous to dividends of financial options.   

 

J. E. Smith (2005) point out that the MAD approach inconsistently use a risk-adjusted discount 

rate in the calculation of the NPV, but risk-free rate in the following binomial lattice of the 

development of the remaining project value. He suggests using a fully risk-neutral approach, 

adjusting the stochastic processes to risk-free development discounted at the risk-free rate in 

the DCF with the MCS estimation of the project process parameters. The risk-neutral MAD 

approach with extraction of period cash flows, coined the BDH method, will be thoroughly 

covered from chapter 3 and onwards. 

 

2.5.5. Monte Carlo Method 

Monte Carlo simulation (MCS) is the method of generating a probability distribution for the 

range of potential outcomes of an uncertain calculation by sampling a large number of iterations 

of the problem. MCS was first applied for option pricing by Boyle (1977). The use of MCS to 

value a European vanilla option is done by estimating the discounted average option payout at 

time 𝑇. The iterative process for a GBM process follows Itô’s formula as ln(𝑆𝑇) = (𝜇 −

𝜎2/2)𝑇 + 𝜎√𝑇𝜀, where 𝜀 represent the standard wiener process, normally distributed with 

mean of 0, standard deviation 1, 𝑁(0⁡, 1). Using the risk-free rate 𝑟𝑓 as drift the value of the 

underlying will thus evolve to 

𝑆𝑇 = 𝑆0𝑒
(𝑟𝑓−

𝜎2

2
)𝑇+𝜎√𝑇𝜀
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The call option for the presented process can be calculated as 

𝐶0 = 𝑒−𝑟𝑇average(max(𝑆𝑇 − 𝐾, 0)) 

 

The main strength of MCS for option pricing is the potential to value high-dimensional path-

dependent American options, where the least squares Monte Carlo method (LSM) of Longstaff 

and Schwartz (2001) is the most common. These models can also incorporate many different 

stochastic processes into one model. However, the model is computationally intensive and less 

visually intuitive compared to policy trees from binomial models. Thomas and Bratvold (2015) 

implemented the LSM method to the switching option of a blowdown decision using the 

correlated two-factor models for oil and gas prices. Before 1993 MCS was only used for 

European options. 

 

2.5.6. Greeks  

The Greeks are quantities representing the sensitivities of options parameters to differences in 

the input parameters, where the first order Greeks refers to the percentage sensitivities of the 

options value. These are tools extensively used for understanding development of the option 

value and in the hedging of portfolios of financial options rather than options valuation.  

 

 Underlying (𝑆) Volatility (𝜎) Interest rate (𝑟𝑓) Time to expiry (𝑇) 

Option value (𝑉) Delta (∆) Vega (𝜐) Rho (𝜌) Theta (𝜃) 

 

Although much of the developments in financial options have been applied to real options, these 

risk management tools have received less focus in the ROA literature (Haug, 2006, 2007). Vega 

and rho has been calculated for a real options case in chapter 4.3 with subsequent discussion.  

 

2.5.7. Local conclusion for methods 

The three most used models for ROV are closed-form solutions to stochastic differential 

equations, binomial option pricing methods, and the least squares Monte Carlo method. Closed-

form solutions are exact, but have limitations, especially for multi-dimensional problems. 

Binomial methods have proven robust and are often good tools for visualization of the optimal 

policy when limited to one or two dimensions. These can also value American options. The 

most widely used method is the least squares MCS method from its flexibility and accuracy.  
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For American mean reverting real options the main methods are least squares MCS, binomial 

approximations and trinomial approximations. 

 

2.6. Input variables 

The last part needed to understand the mechanisms of ROV are the input variables to the 

methods. The input variables required vary with the type of method and stochastic process. This 

paper will later cover parameter estimation for the BDH-method (GBM), and for a mean-

reverting versions of the BDH, where we model the project value with cash flows (as opposed 

to the underlying variables; oil price and operational cost).  
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3. BDH method 

Brandão, Dyer, and Hahn (2005b) (further BDH) describe an approach to ROV of projects 

building on the MAD approach of Copeland and Antikarov (2001) with a particular focus on 

separating the periodic project cash flows (like dividends). The concepts were demonstrated in 

an example case of an oil production project. Through correspondence with (J. E. Smith, 2005) 

the case was developed as a fully risk-neutral version, where the DCF values are estimated with 

risk-neutral growth and discounting. The case was first developed from a standard equilibrium 

DCF with wrong volatility estimates, but in subsequent versions the volatility estimate was 

corrected to capture isolated annual volatility. The example case given by BDH has been 

developed both as a lattice in excel and as a tree in DPL, including a non-recombining tree 

capturing the heteroscedastic diffusion results from running the MCS for each year separately 

and a bivariate tree of the underlying uncertainties. The method is referred to as the BDH 

method (though ‘MAD cash flow method’ might be a more describing name), and the example 

case is called the BDH case.  

 

As a preparation for the development of the mean-reverting BDH method this chapter 

summarize the BDH method with its developments, before presenting the BDH case with 

extended analysis. 

 

3.1. Model overview 

The model development can be decomposed into a series of 4 main steps:  

First, the risk-neutral DCF for the project is constructed. The equilibrium DCF (discounted at 

WACC) is standard procedure for valuation and can serve as a starting-point and as a reference.  

 

Next, the risk-neutral stochastic behavior of the uncertain variables with corresponding 

correlations must be estimated and incorporated into the risk-neutral DCF. The consolidated 

project volatility is estimated by the standard deviation of the logarithmic return of one period 

in a Monte Carlo simulation modelling the isolated stochastic behavior of the uncertain 

variables with conditional expected values for the following periods.  

 

Based on the project value and volatility a binomial lattice is constructed following up and 

down movements subtracting the cash flow proportional to the payout ratio in the given state 

and time. The probability of moving up from any point in the lattice is calculated from the 
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volatility estimate and the risk-free rate. The project value can now be calculated as the 

discounted expected value in the next period (given by the up and down nodes) plus the cash 

flow in the given state and time. This is referred to as dynamic programming.  

 

Finally, options can be added as maximum statements in the lattice in their respective term 

periods, where the value of the opportunity will be added to the risk-neutral NPV estimate.  

 

Figure 1 - MAD cash flow method overview 

Note that the process consolidates the uncertainties, enabling the valuation of projects 

dependent on multiple uncertain processes to be modelled as simple options (of not 

subsequent). 

 

3.2. Parameter estimation – calibration of the model 

As financial options are based on traded securities, estimation of the parameters for financial 

option valuation are fairly straight forward. For ROA, where the underlying asset is generally 

not traded, these parameters must be estimated differently.  

 

The binomial GBM approximation of the real option related to the project value require the 

following parameters with comparisons to valuation of stock options: 

• Present value of expected future cash flows (NPV) (equivalent to stock price) 

• Consolidated volatility of project return (equivalent to stock volatility) 

• Cash flow payout ratio (equivalent to dividend yield) 

• Discount rate, at risk-free rate for risk-neutral valuation (drift) 

• Investment cost or selling price (strike price) 

Use expected 
free cash flow to 

estimate NPV

Build risk-neutral 
DCF

Discount at risk-free 
rate

Calculate NPV and 
cash flow payout 

ratio

Model variable 
uncertainties

Identify main 
sources of 

uncertainty

Characterize and 
model behavior of 

underlying 
uncertainties (risk-

neutral)

Capture correlation 
between 

uncertainties

Use MCS to 
generate 

distribution of 
NPVs

Define MCS one-
period uncertainties 

in DCF

Define log-return as 
MCS output 
parameter

Run MSC for each 
period and evaluate

Extract annual 
volatility from log-

return variable

Normalize to 
homoscedastic 

standard deviation if 
necessary

Construct GBM 
binomial lattice

With input 
parameters: 𝑉0, 𝜎, 
Δ𝑡, 𝑟𝑓, estimate up, 

down and 
probability of up

Construct NPV 
lattive (V*up/down -

CF)

Derive Cash flow 
lattice (NPV * cash 
flow payout ratio)

Construct roll-back 
lattice

Incorporate options 
in roll-back tree
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Also, the option type must be defined with the payoff function and time/time interval for 

exercise.  

 

3.2.1. Project value and cash flow payout ratio 

Based on the MAD assumption we use the NPV of the project without flexibility as the twin 

asset. Since we will develop the case fully risk neutral, we use the risk-neutral NPV with risk-

adjusted processes for the uncertain project variables and discount the cash flows at the risk-

free rate. Otherwise, the method is similar to the equilibrium DCF method. The cash flows of 

the projects are analogous to dividend yields for a financial option, where the cash flow payout 

ratio 𝛿𝑡 is used to estimate the cash flow in each year. The cash flow payout ratio is calculated 

as the fraction of the 𝑁𝑃𝑉𝑡 in time 𝑡 that comes from the cash flow, 𝐶𝐹𝑡.  

 

3.2.2. Underlying sources of uncertainty 

As a starting point, the prices, quantities and costs related to the operation are often the main 

sources of uncertainty. Tools like tornado diagrams and sensitivity analysis can be helpful for 

selecting the most significant sources of uncertainty. The uncertain variables are modelled in 

the DCF as stochastic processes, where choosing the stochastic process that best represent the 

expected behavior of the given variable is important. The moments of the respective processes 

are estimated through historical data, implied volatility from derivative markets, a twin security, 

or simply through an educated guess. See (Ozorio et al., 2012) and (Ozorio, Shevchenko, & 

Bastian-Pinto, 2013) for more on calibration and fitness tests for stochastic processes in ROV. 

 

3.2.3. Consolidated project volatility 

The volatility, denoted by σ, is defined here as the standard deviation of the logarithmic project 

returns, 𝜎(𝑧), for a defined time increment, 𝑑𝑡. The logarithmic return represents the percentage 

change in expected NPV from period 𝑛 − 1 to 𝑛, representing time 𝑡 − ∆𝑡 to 𝑡. 

𝑧 = ln (
𝑉𝑡

𝑉𝑡−∆𝑡
) 

While estimation of volatility for financial options is based on implied volatility from the Black 

Scholes formula, the volatility of the expected cash flows in ROV must be estimated in a 

bottom-up manner. This is done by identifying and estimating the stochastic variation for each 

uncertain variable in the DCF with corresponding correlations and then running Monte Carlo 

simulations (MCS) to collect them to a consolidated project value volatility.  
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Figure 2 - Estimation procedure for consolidated project volatility 

 

With the stochastic input variable models defined, we are almost ready to run the MCS. Recall 

that the volatility, 𝜎(𝑧), is defined as the standard deviation of the logarithmic return for a 

defined time increment  𝒕 − ∆𝒕 to 𝒕. Therefore, we must isolate the underlying parameter 

volatility to one time increment in the DCF, using conditional expected values in the following 

periods. Brandão, Dyer, and Hahn (2012) call this the Generalized Conditional Expectations 

(GCE) approach. This will give one volatility estimate for each time step, 𝜎(𝑧𝑡), when done for 

all time steps. 

𝑧𝑡 = ln (
𝑉𝑡

𝑉𝑡−∆𝑡
) = ln (

𝐶𝐹𝑡+{𝑁𝑃𝑉𝑡+∆t|𝐶𝐹𝑡}

𝑁𝑃𝑉𝑡−∆t
) = ln⁡(

𝐶𝐹𝑡+𝑃𝑉𝑡(𝐸𝑡(𝐶𝐹𝑡+𝑑𝑡) + ⋯+ 𝐸𝑡(𝐶𝐹𝑇)|𝐶𝐹𝑡)

𝑉𝑡−∆𝑡
 

Where 

𝑁𝑃𝑉𝑡 = ∑
𝐶𝐹𝑖

(1 + 𝑘)𝑡𝑖
⁡

𝑇

𝑖=𝑡+1

| 𝐶𝐹𝑡 

 

After having defined the stochastic inputs parameters and the output function 𝑧𝑡 in Crystal Ball 

or @Risk, we are ready to run the MCS. We get the standard deviation 𝜎 from the program 

output for variable 𝑧𝑡.  

 

The annual project volatility is defined as 𝜎𝐴 =
𝜎∆𝑡

√∆𝑡
 where 𝑑𝑡 is the time step used in the pro 

forma DCF in years (normally yearly, quarterly or monthly). 

 

Normalize volatility to a homoscedastic distribution over time

Repeat step 2-4 for all times, t

Read standard deviation of period log-return from simulation

Run MCS

Define one-period log-return as output parameter

Define stochastic MCS for one period with following dependent expected values in the DCF 

Characterize and model behavior of uncertain parameters with correlations

Identify underlying sources of uncertainties
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As an alternative to the MCS estimation and statistical calibration procedures, Copeland and 

Antikarov argues that managers and industry experts working with valuation will have 

subjective estimates, not only for the expected values required for a DCF model, but can also 

give, for example a 95% confidence interval for the parameter or the project uncertainty. They 

argue that many professionals also have direct intuitions of the parameter volatilities. Others 

have used the volatility of the stock price (Dixit & Pindyck, 1994), or the traded commodity 

price volatility (Paddock, Siegel, & Smith, 1988) as proxies for the project volatility. Tufano 

(1998) showed that fixed costs and leverage affect the volatility of stocks and project value.  

 

When more than one uncertainty is modelled, the correlation between them needs to be 

considered for the consolidated project volatility to be representative. 

 

For a binomial tree to be convertible to a binomial lattice the volatility needs to be 

homoscedastic over time. When the simulation gives a heteroscedastic volatility distribution 

this can be normalized to become homoscedastic or the problem can be modelled with a (non-

recombining) binomial tree. 

 

On a side-note, MCS is in and of itself a good tool to say something about the range of outcomes 

with corresponding probability estimates. For other uses the MCS normally carries uncertainty 

in all years of the time series. Glasserman (2013) covers MCS in financial engineering at large. 

 

3.3. Binomial trees 

Let´s start with developing the BDH method binomial lattice approximating geometric 

Brownian Motion. The input parameters, 𝑉0, 𝜎, 𝑟, ∆𝑡, 𝛿𝑡 for all discrete times, 𝑡, define the up 

and down movements, 𝑢 and 𝑑. 

𝑢 = 𝑒+𝜎√∆𝑡, 𝑑 = 𝑒−𝜎√∆𝑡 

Here 𝑢 > 1 and 𝑑 < 1 are the multiplicative factors for each step development in the binomial 

model. 

 

For each state 𝑖, 𝑗 after 𝑛 steps, where 𝑖 is the number up movements, and 𝑗 is the number of 

down movements, time 𝑡 can be written as 𝑡 = (𝑖 + 𝑗)∆𝑡 = 𝑛∆𝑡. In excel the lattice is 

implemented with step numbers increasing in the column rightward and down-moves 
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developing in the rows downward. The number of moves away from the expected value 𝑖 − 𝑗 

can be written 𝑛 − 2𝑗 for ease of implementation in excel. 

 

3.3.1. Development tree 

We can now develop the first NPV lattice from the following equations: 

 

   

 

The general formula for the value after an up move or a down move at a given time 𝑡 is 

expressed in normal values and logarithmic values, where the ± indicates up or down, as 

follows: 

𝑉𝑡
± = 𝑉𝑡−∆𝑡(1 − 𝛿𝑡−∆𝑡)𝑒

±𝜎√∆𝑡 

 

ln(𝑉𝑡
±) = ln(𝑉𝑡−∆𝑡) + ln(1 − 𝛿𝑡−∆𝑡) ± 𝜎√∆𝑡 

 

3.3.2. Cash flow lattice  

The cash flow for each state is given by the remaining project value in the given state and time 

multiplied by the cash flow payout ratio for step 𝑛. 

𝐶𝐹𝑖,𝑗 = 𝑉𝑖,𝑗𝛿𝑛 

 

These to lattices, the development lattice and the cash flow lattice, describe the value of the 

remaining cash flows, and the cash flows given in each state. If we were to model the project 

value without subtracting the cash flow as dividends from each period, the volatility would be 

overestimated because we would model uncertainty into the realized cash flows. Also, since 

the project value would not correctly estimate the remaining portion of the project value, the 

option would be compared to an incorrect estimate of the underlying. 

 

3.3.3. Roll-back lattice 

To calculate the roll-back lattice the probability of up movement, 𝑝 is needed. For the GBM 

approximation 𝑝 is the same for all states in the lattice. From the theory of the replicating 

portfolio Copeland and Antikariv showed that  

𝑉𝑛
𝑢𝑝

= 𝑉𝑛−1 1− 𝛿𝑛−1 𝑢

𝑉𝑛
𝑑𝑜𝑤𝑛 = 𝑉𝑛−1 1−𝛿𝑛−1 𝑑

𝑉𝑛−1

𝑝

1−𝑝
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𝑝 =
1 + 𝑟∆𝑡 − 𝑑

𝑢 − 𝑑
 

Now we can calculate the NPV in a given state dependent on the CF in the period and the NPV 

in the next period (instead of the previous one). The last year will consist only of the cash flows 

in the last year, while the previous years are calculated as 

 

Λ𝑖,𝑗 = 𝐶𝐹𝑖,𝑗 +
𝑝Λ𝑖+1,𝑗 + (1 − 𝑝)Λ𝑖,𝑗+1

1 + 𝑟
 

 

Λ𝑡 = 𝐶𝐹𝑖,𝑗 +
𝑝Λ𝑡+∆t

𝑢𝑝 + (1 − 𝑝)Λ𝑡+∆t
𝑑𝑜𝑤𝑛

1 + 𝑟
 

 

For any GBM approximated lattice the roll-back tree will carry identical values as the 

development tree before options are incorporated. The last step of the lattice development is to 

incorporate the project options to the roll-back tree.  

 

Options are incorporated by taking the highest value of the available alternatives for the future.  

 

Λ𝑖,𝑗 = 𝐶𝐹𝑖,𝑗 + 𝑚𝑎𝑥 {
𝑝Λ𝑖+1,𝑗 + (1 − 𝑝)Λ𝑖,𝑗+1

1 + 𝑟
, 𝑂𝑝𝑡𝑖𝑜𝑛} 

 

𝑂𝑝𝑡𝑖𝑜𝑛⁡𝑣𝑎𝑙𝑢𝑒 = Λ0 − 𝑉0 

 

The main differences of the presented approach from the approach BDH first implemented in 

(Brandão et al., 2005b) is the correction of the volatility estimation by the GCE approach, risk 

neutralization of uncertain project variables with risk-neutral discounting, and development 

from a non-recombining tree into a lattice. The last two developments were suggested by J. E. 

Smith (2005).  
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3.4. The BDH case 

When working with real options the devil is in the details. We present a walkthrough of the 

risk-neutral BDH oil case with GBM processes for anyone new to the BDH framework.  

 

The oil article case has the goal of modelling two real options on an oil field. The owners with 

a stake of 75% of the field are given the opportunity to either buy out the remaining stake of 

the field for the fixed sum of $40 million, or the opportunity to sell the project for $100 million. 

The option term date is in year 5. 

 

The oil reserves and production profile are assumed to be estimated deterministic. The field 

will start production at 10% of the 90 million barrels, declining with 15% annually. The initial 

oil price is $25/bbl, and variable cost is $10/bbl, with risk-neutral growth rates of 0% and 2% 

respectively. For details on estimation of risk-neutral growth rates, see (J. E. Smith, 2005). In 

the risk-neutral approach the cash flows are discounted at the risk-free rate, set to 5%. 

The most accurate binomial model for a problem with two underlying uncertain parameters 

approximated by GBM or MR is the bivariate tree model, developed with a binomial process 

for each of the variables. The case is still developed in the BDH framework which an example, 

with the possibility of adding additional uncertain project variables. 

 

The risk-neutral DCF is set up in excel: 

 

 

Figure 3 - Risk-neutral DCF for GBM BDH case 

Risk-Free Rate 5 %

Oil Reserves 90 MM bbls

Initial Production Rate 0,10 of reserves

Decline Rate 0,15 per year

Fixed Prod. Cost 5 ($MM)/year

Develop Cost 180 ($MM)capital

PSC Share 0,25 share

𝑟𝑓

Year 0 1 2 3 4 5 6 7 8 9 10

Remaining Reserves 90,0 81,0 73,4 66,8 61,3 56,6 52,6 49,2 46,3 43,9

Production Level 9,0 7,7 6,5 5,5 4,7 4,0 3,4 2,9 2,5 2,1

Variable Op Cost Rate 10,2 10,4 10,6 10,8 11,0 11,3 11,5 11,7 12,0 12,2

Oil Price 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0

Revenues 225,0 191,3 162,6 138,2 117,5 99,8 84,9 72,1 61,3 52,1

Production Cost (96,8) (84,6) (74,0) (64,8) (56,9) (50,0) (44,0) (38,8) (34,3) (30,4)

Cash Flow 128,2 106,7 88,6 73,4 60,6 49,9 40,9 33,3 27,0 21,7

Profit Sharing (32,1) (26,7) (22,1) (18,3) (15,1) (12,5) (10,2) (8,3) (6,8) (5,4)

Net Cash Flows 96,2 80,0 66,4 55,0 45,4 37,4 30,7 25,0 20,3 16,3

PV of Cash Flows 392,0 411,6 331,2 263,8 207,3 159,9 120,1 86,9 59,0 35,8 16,3

Cash Flow Ratios 0,2336 0,2415 0,2518 0,2654 0,2842 0,3113 0,3528 0,4233 0,5664 1,0000
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The risk-neutral project NPV is calculated to be $392 million. The cash flow payout ratio, 𝛿𝑡 is 

calculated as 𝐶𝐹𝑡/𝑁𝑃𝑉𝑡. 

 

     

Figure 4 - Input parameters for the stochastic project variables 

To calculate the consolidated volatility in period 1 the price and cost are evaluated as a 

stochastic process from step 0 to step 1: 

𝑃𝑟𝑖𝑐𝑒1 = 𝑃𝑟𝑖𝑐𝑒0𝑒
𝜇𝑃𝑟𝑖𝑐𝑒
∗ +𝜎𝑃𝑟𝑖𝑐𝑒𝑑𝑧𝑃𝑟𝑖𝑐𝑒  

𝑉𝑎𝑟𝐶𝑜𝑠𝑡1 = 𝑉𝑎𝑟𝐶𝑜𝑠𝑡0𝑒
𝜇𝑉𝑎𝑟𝐶𝑜𝑠𝑡
∗ +𝜎𝑉𝑎𝑟𝐶𝑜𝑠𝑡𝑑𝑧𝐶𝑜𝑠𝑡 

Here 𝑑𝑧 is a Wiener process normally distributed 𝑁(0,1) with mean 0 and standard deviation 

1, and 𝜇∗ = 𝜇𝑐 − 𝜎2/2. The adjusted drift is obtained from Itôs lemma (chapter 13, (Hull & 

Basu, 2016)). For this case the two stochastic project variables are assumed to be uncorrelated 

(𝑑𝑧𝑃𝑟𝑖𝑐𝑒𝑑𝑧𝑐𝑜𝑠𝑡 = 𝜌𝑃𝑟𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑑𝑡, where 𝜌𝑃𝑟𝑖𝑐𝑒𝐶𝑜𝑠𝑡 = 0), but correlation can easily be added when 

using professional MCS software like @Risk and Crystal ball. In contrast to closed-form 

solutions and multivariable lattices, correlation and additional stochastic variables can be added 

to MCS method without a heavy computational burden.  

 

The following periods are calculated as conditional expected values, based on the value from 

time step 1. 

𝑃𝑟𝑖𝑐𝑒𝑛 = 𝑃𝑟𝑖𝑐𝑒𝑛−𝑖(1 + 𝜇𝑑,𝑃𝑟𝑖𝑐𝑒) 

𝑉𝑎𝑟𝐶𝑜𝑠𝑡𝑛 = 𝑉𝑎𝑟𝐶𝑜𝑠𝑡𝑛−𝑖(1 + 𝜇𝑑,𝑉𝑎𝑟𝐶𝑜𝑠𝑡) 

To estimate the consolidated project volatility correctly the MCS should model all stochastic 

variables in the DCF with corresponding correlations. For this case the production profile and 

fixed cost are modelled deterministically, and the correlation between price and cost ignored. 

 

Define the logarithmic period return as 𝑧 = ln(𝑉1,𝑀𝐶𝑆/𝑉0̅).  

Oil price GBM process

Oil price 25 per bbl

Price growth (discrete) 0,00 %

Price growth (continuous) 0,00 %

Volatility 15,0 %

Drift -1,13 %

𝜇𝑑

𝜇𝑐

𝜎
𝜇∗

Variable cost GBM process

Operating Cost 10 per bbl

Cost growth (discrete) 2,00 %

Cost growth (continuous) 1,98 %

Volatility 10,0 %

Drift 1,48 %

𝜇𝑑

𝜇𝑐

𝜎
𝜇∗
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Figure 5 - Monte Carlo simulation DCF for the GBM BDH case 

Colored cells carry stochastic functions. The mean present value of the cash flows converges 

to the expected value, but @Risk displays the median value when set to static results. When the 

functions are defined we run the simulation with for example 100 000 iterations. We now have 

the current price of the underlying 𝑉0 = 392,02 and the cash flow payout ratio vector 𝛿𝑛 from 

the base case DCF and obtain the volatility 𝜎 = 31,77% from the simulation. We use the 

volatility estimate to calculate the up and down movements of the model and set up the value 

development tree.  

𝑢 = 𝑒𝜎√∆𝑡 = 1,374⁡, 𝑑 =
1

𝑢
= 0,728 

 

 

 

 

Figure 6 - Development lattice Cash flow lattice for GBM BDH case 

Year 0 1 2 3 4 5 6 7 8 9 10

Remaining Reserves 90,0 81,0 73,4 66,8 61,3 56,6 52,6 49,2 46,3 43,9

Production Level 9,0 7,7 6,5 5,5 4,7 4,0 3,4 2,9 2,5 2,1

Variable Op Cost Rate 10,1 10,4 10,6 10,8 11,0 11,2 11,4 11,7 11,9 12,1

Oil Price 24,7 24,7 24,7 24,7 24,7 24,7 24,7 24,7 24,7 24,7

Revenues 222,5 189,1 160,7 136,6 116,1 98,7 83,9 71,3 60,6 51,5

Production Cost (96,3) (84,2) (73,7) (64,5) (56,6) (49,7) (43,8) (38,6) (34,2) (30,3)

Cash Flow 126,1 104,9 87,1 72,1 59,5 49,0 40,1 32,7 26,5 21,2

Profit Sharing (31,5) (26,2) (21,8) (18,0) (14,9) (12,2) (10,0) (8,2) (6,6) (5,3)

Net Cash Flows 94,6 78,7 65,3 54,1 44,6 36,7 30,1 24,5 19,8 15,9

PV of Cash Flows 385,3 404,6 325,5 259,1 203,5 156,9 117,9 85,2 57,9 35,0 15,9

E(PV of Cash Flows) 392,0 411,6 331,2 263,8 207,3 159,9 120,1 86,9 59,0 35,8 16,3

z 0,031556

s(z) 31,8 %
𝑧 = ln

𝑉1

𝑉 0

Year 0 1 2 3 4 5 6 7 8 9 10

CF payout ratio 0 0,2336 0,2415 0,2518 0,2654 0,2842 0,3113 0,3528 0,4233 0,5664 1

Value without 392,02 538,6 567,1 591,0 607,6 613,2 603,1 570,7 507,5 402,1 239,5

options 285,3 300,4 313,1 321,9 324,9 319,5 302,3 268,8 213,0 126,9

159,2 165,9 170,5 172,1 169,2 160,1 142,4 112,8 67,2

87,9 90,3 91,2 89,7 84,8 75,4 59,8 35,6

47,9 48,3 47,5 44,9 40,0 31,7 18,9

25,6 25,2 23,8 21,2 16,8 10,0

13,3 12,6 11,2 8,9 5,3

6,7 5,9 4,7 2,8

3,1 2,5 1,5

1,3 0,8

0,4

𝑉𝑡+1
𝑢𝑝 = 𝑉𝑡 1− 𝛿𝑡 𝑢

𝑉𝑡+1
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Figure 7 shows the expected value of remaining project cash flows over time without options. 

 

Figure 7 - Remaining project value graph for the GBM BDH case 

To roll the tree back we need the probability for the remaining project value moving up. The 

risk-free rate is set to 5%. 

𝑝 =
1 + 𝑟∆𝑡 − 𝑑

𝑢 − 𝑑
= 49,86% 

The rollback lattice is first set up without options as the discounted expected value of the 

subsequent period. For a GBM model like this, the rollback lattice without options will have 

identical values to the development lattice. Finally, the options are inserted as maximum 

functions of the expected value and the option. Note that rows 6-10 of the roll-back tree still 

stems from the development tree without options, and is not the value in the given state if an 

option is exercised before the project gets to that state. 

 

Figure 8 - Roll-back lattice for GBM BDH case 

 

For the BDH case this yields a value of the project with options of $418,03 million, which is 

$26,02 million more than the project value without the options. 
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4. Option value analysis and discussion 

We will analyze the first case results before we implement the case with mean reversion. This 

is done through decomposition of where the option value lies, looking at the sensitivities, 

analyzing the decision strategy with visualizing tools, and finally looking at the timing aspects 

of the options. 

 

4.1. Decomposition of action value and flexibility value 

Real options have extensively been referred to as “the value of flexibility”. However, one 

should be careful not to interpret the option value as the value of flexibility before correcting 

for the possible value of the action in the base case scenario.  

When the option is in-the-money we can distinguish between: 

Value of the action – the static NPV with option minus the NPV without option 

Value of the flexibility – the value added from having the right, but not the obligation 

to exercise the option 

 

𝑉𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝑎𝑐𝑡𝑖𝑜𝑛 = (𝑁𝑃𝑉𝑤𝑖𝑡ℎ⁡𝑜𝑝𝑡𝑖𝑜𝑛 − 𝑁𝑃𝑉𝑤𝑖𝑡ℎ𝑜𝑢𝑡⁡𝑜𝑝𝑡𝑖𝑜𝑛|𝑛𝑜⁡𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) 

 

𝑉𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑂𝑝𝑡𝑖𝑜𝑛⁡𝑣𝑎𝑙𝑢𝑒 − 𝑉𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝑎𝑐𝑡𝑖𝑜𝑛 

 

From this we see that the real option value can rightly be referred to as the value of flexibility 

when the option is out of the money.  

 

For the risk-neutral BDH case the risk-neutral NPV values of the two actions are: 

𝐸[𝑁𝑃𝑉𝑛𝑜⁡𝑎𝑐𝑡𝑖𝑜𝑛] = 392,016 

𝐸[𝑁𝑃𝑉𝑏𝑢𝑦𝑜𝑢𝑡] = 392,052 

𝐸[𝑁𝑃𝑉𝑑𝑖𝑣𝑒𝑠𝑡] = 380,715 

Without flexibility the buyout case has a marginally higher NPV by 0,036 million. We can 

conclude that the option value primarily stem from flexibility. 
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4.2. Separate option values 

The option characteristic of the two options for the BDH case in year 5 are characterized in the 

figure below. Figures exclude the cash flow from year 5 and only consider sales value, buyout 

cost and expected future value.  

 

Figure 9 - Payoff graph of difference of value with options in year 5 for the GBM BDH case 

The combined option value is generally not the sum of the series of option values, but since 

both options can only “be exercised” in year 5 and does not overlap we can add the option 

values.  

 

In the decomposition of the values of the separate options we demonstrate an alternative 

calculation of the option values showing the explicit option values over time. A separate lattice 

is constructed for each option including only the value of the option. This is programmed as 

=IF (Buyout option = MAX(Buyout option; Divest option; Base case); Buyout option – Base case; 0), 

where the nodes where the option is the optimal decision will return the added value of the 

option in the given year. The values are rolled back as discounted expected values (without the 

cash flows of the base case). The combined option value is consistent with the option value 

calculated in chapter 3. 
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Figure 10 - Single option values for the GBM BDH case 

The same results can be obtained from only including one option in the roll-back lattice and 

subtracting the base case in the end. 

 

4.3. Sensitivity analysis and the Greek equivalents 

It is important to run a sensitivity analysis as the volatility often are the most sensitive parameter 

in the option valuation, and binomial lattices normalize the volatility. Haug (2007) gives a 

thorough description of the local sensitivities of financial options, called the Greeks. In The 

Collector - Know your weapons 2 (Haug, 2006) covers an options vega, which gives the 

percentage change in the option price for each percentage change in implied volatility. In ROV 

the volatility quote is not from the implied volatility, but from a volatility estimate, so we will 

call this the vega-equivalent, denoted 𝜐.  

 

Running a sensitivity of the option value analysis by changing the volatility gives that a 1% 

increase in volatility (from 31,77%) will increase the combined option value with just under 1 

million. The local vega-equivalent is 𝜐 = 0,041. 

 

The rho-equivalent 𝜌 is the Greek of the interest rate (drift), measuring the percentage change 

in option value for each percentage change in the interest rate. Sensitivity analysis of the interest 

rate show that a 1% increase in the interest rate (from 5%) will decrease the option value by 1,8 

million and the rho-equivalent 𝜌 = −0,067. Beware that this is the rho of the binomial model, 

and a sensitivity analysis of interest rate referencing (as a cell link in excel) back to the base 

case DCF will give different values. 
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Figure 11 - Sensitivity analysis and the Greeks for the GBM BDH case 

 

 

Figure 12 - Two-way sensitivity analysis of rf and 𝜎 of the GBM BDH case 

 

It can be argued that the Greeks are less important for real options for three main reasons; (1) 

the input parameters to the options value formula are normally derived parameters, and so 

sensitivities to the underlying parameters are more relevant (i.e. consolidated volatility based 

on Monte Carlo Simulation of DCF), and (2) the illiquid nature of real options makes global 

sensitivities more relevant than the local sensitivities represented by the Greeks. Finally (3) 

project valuation is normally more concerned with sensitivities to the absolute option value than 

the relative sensitivities. 
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4.4. Normalization of volatility 

Going through the input parameters for GBM models, the volatility is usually the most sensitive 

parameter for a given parameter confidence interval. For implementation of binomial lattices 

according to the BDH-method, the period volatility can be estimated from the standard 

deviation of the logarithmic return between any two subsequent periods, as the volatility of a 

GBM remain constant with time. However, the project log-returns do not follow an exact GBM 

process, and so the volatility will tend to change with time. For this reason, running MCS to 

estimate project volatility for a set of periods can give valuable information.  

 

Just by using the average volatility over time, or alternatively a weighted average to the 

remaining project value, one might get estimates more that better represent the actual DCF 

numbers. From the table below containing the annual volatility estimates, we see that the first 

estimate might have been too low. This can then either be updated, or we can interpret a range 

of probable option values from the sensitivity analysis of the volatility. 

 

1 2 3 4 5 6 7 8 9 10 

31,77 % 32,55 % 33,58 % 34,83 % 37,02 % 36,47 % 39,97 % 40,76 % 43,41 % 45,57 % 

Figure 13 - Annual volatility of the GBM BDH case from GCE 

 

Periodic volatility can also be implemented in the model, but this will lead to non-recombing 

trees. (Brandão et al., 2005a) For practitioners it is still important to reflect on whether the 

volatility makes sense, where the other parameters for the binomial model are covered in the 

DCF and the option definitions as investment and term date.  
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4.5. Option timing (year 4-6) 

To analyze the time aspect of the two options we can model the option value of equivalent 

options with exercise time in years 4, 5 and 6 instead of only year 5. The results are presented 

in figure 14 below. 

 

Figure 14 - Roll-back lattice for GBM BDH lattice with extended exercise time 

 

The new option value is (431,38 − 392,02) = 39,36 million. Expanding the exercise window 

one year in each direction will increase the option value by 51%⁡(13,34 million). The 

highlighted optimal decision strategy also shows how the optimal exercise date for the 

divestiture option is as late as possible and the buyout exercise date as early as possible. If a 

real option with a single period exercise window is seen as a European option, then this 

expansion of the exercise window makes the option the equivalent of a Bermudan option. 

 

When modelling scaling options, like the option to buyout the remaining license, the rollback 

of the scaled cash flow needs to reference a rollback-lattice without options to avoid double-

counting the payoff function of an option (e.g. since one can only own up to 100% of the 

production license).  

 

Another aspect of the binomial options method to be considered is the course time 

discretization. Cox et al. (1979) showed how the original binomial option pricing model for 

European options converges to the results of Black and Scholes when the time increment of the 

steps approach null. Hull and Basu (2016) report that binomial trees typically are divided into 

30 or more steps in practice. Binomial models (and trinomial models and Monte Carlo methods) 

of ROV are normally based on DCF analysis carrying monthly, quarterly, semiannual or annual 

estimates. By converting the BDH case to quarterly steps the precision of the model would 

increase, but as we see from the sensitivities of the other aspects this is not critical. 

0 1 2 3 4 5 6 7 8 9 10

431,38 579,7 616,7 661,2 716,4 719,5 701,5 570,7 507,5 402,1 239,5

326,9 337,2 347,1 360,7 362,4 352,8 302,3 268,8 213,0 126,9

209,6 209,1 203,2 190,4 169,2 160,1 142,4 112,8 67,2

150,4 148,3 141,5 127,9 84,8 75,4 59,8 35,6

121,2 119,7 114,8 44,9 40,0 31,7 18,9

108,2 107,8 23,8 21,2 16,8 10,0

104,1 12,6 11,2 8,9 5,3

6,7 5,9 4,7 2,8

3,1 2,5 1,5

1,3 0,8

0,4
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4.6. Parameter correlation with strike value 

The model creates scenarios of the development of the remaining project cash flow but does 

not consider stochastic behavior of the strike value (and thus, the options payout). If the selling 

price of $100 million in the divest option was not a contractually bound option, but an estimated 

asset value, then we should consider how the asset value would correlate with the market 

conditions. Investment costs, or the strike price of a future option to invest, might also be 

somewhat variable with supply and demand in the industry in question. Consider the examples 

of how shipyards vary prices with orderbook size which correlate to the shipping industry, or 

how rig costs have up to a 12-month lagged correlation component to the oil price. This aspect 

is especially important in the consideration of strategic options (as opposed to contractual ones, 

like the option of a ship or rig from a yard). 
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5. Mean reverting BDH approach 

In cases where the underlying stochastic process fits a mean-reverting process, the problem can 

be modelled either with the Monte Carlo method, or by one of several different tree-building 

approaches.  

 

The most commonly used method for operational options is the least-squares MCS model by 

Longstaff and Schwartz (2001). The model enables valuation of American style- and path 

dependent options by using the least squares method to estimate the conditional expected payoff 

to the option holder from continuation.  

 

Hahn and Dyer (2008) implemented a mean reverting process to the binomial diffusion 

approximation method developed by Nelson and Ramaswamy (1990), where the probability of 

the value to move to the next up-state in the lattice is dependent on the difference to the mean. 

The model has been coined the censored model, as values for the probability must be censored 

for probabilities outside the defined space from 0% to 100%. The model approximates the 

arithmetic Ornstein-Uhlenbeck process of the logarithmic value of the underlying. 

 

Bastian-Pinto et al. (2010) developed a binomial tree for pricing of the arithmetic Ornstein-

Uhlenbeck process of the logarithmic values based on the Hull and White (1994) model. They 

made a lattice of the added volatility component and expected value as this development lattice 

is enabling rollback with non-censored probabilities.  

 

Mean reverting models have also been developed in trinomial trees, especially for interest rate 

modelling, but this is considered out of scope here. 

 

Now, we will implement the BDH method in the censored and non-censored models for mean 

reversion with adjustments. The model is adjusted to incorporate the drift of the discount rate. 

For the development of a mean-reverting BDH method, it was natural to implement it as a twist 

on the case originally presented by BDH, despite having to adjust the inputs for the mean 

reverting process subjectively which would distance the numbers from the original ones. This 

is mainly due to usage of the same parameters for different stochastic processes of the project 

variables, instead of calibrating the processes from the same data sets, which would make the 

models more comparable in an operational sense. 



41 

 

 

This covers instances where the underlying asset of the option, the remaining project value, 

follows a mean reverting process. One should however not confuse this with the different 

processes of the individual factors affecting the project value. The processes modelled in the 

MCS of the risk-neutral DCF may be approximated by a variety of different processes. The 

process of the value development over time should then be evaluated based on the MCS results 

with subjective adjustments.  

 

The BDH case was developed with oil price and variable cost modelled as Model 1 of Schwartz 

and as an arithmetic OU process with geometric volatility. The presented case is that of Model 

1 since this can be calibrated from market data. The project is assumed to follow the stochastic 

process defined from the binomial MR model implemented, namely the arithmetic OU process 

of the logarithmic value with an indirect adjustment for drift. 

 

The binomial model of the remaining project value is still based on risk-neutral (to the market) 

uncertain future cash flows, discounted at risk-free rate. Thereby the model needs to be adjusted 

for drift. The GBM BDH model incorporated the drift in the probability calculation and in the 

discounting in the roll-back formula. The MR models will tackle the drift differently as the 

long-term mean level used in the model incorporate a part of the discount effect. The 

incorporation of drift in the roll-back is done by simply discounting over time, in the same 

manner as in the BDH model. This is further explained in the long-term mean estimation. 

 

To understand why we assume that primary production projects (commodity industry projects) 

can be categorized as mean reverting, let´s compare them to stocks. Stocks are generally 

assumed to follow a geometric Brownian motion characterized by an average yield (return on 

common equity) and a volatility. Companies are expected to grow over time and employ their 

capital to optimize value generation and yield. This is typically done with a portfolio of projects 

in different phases. Cash flows from commodity production on the other hand, are bound by 

limiting conditions. This contrasts with strategic growth options, where jumps from market 

positioning and major technological changes will recalibrate the new mean net income of the 

project. Technological advances are expected to influence commodity prices over time, but for 

oil production projects and other capital-intensive projects these advances are hard to 
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incorporate after the project has first been initiated (exceptions include some secondary and 

tertiary production technologies and plugging and abandonment). 

 

5.1. Parameter estimation 

The most likely reason for a project value to be mean reverting is that the main uncertain 

variables affecting the project value are mean reverting. The project parameters we need to 

estimate are current value 𝑉0, cash flow payout ratio 𝜹𝒏 (vector), value to which the process 

revert 𝚽 (vector), volatility 𝜎, and mean reversion coefficient 𝜂.  

 

5.1.1. Uncertain project variables 

The reversion point for the oil price and variable cost is set to $25 and $12,19 respectively, 

equal to the expected value of the GBM at the end of the project for the sake of consistency. 

The variables are modelled by the Ornstein-Uhlenbeck process with geometric volatility. The 

price and cost values are programmed discretely in period 1 as 

𝑆1 = (𝑆0)𝑒
−𝜂∆𝑡 + (Φ)(1 − 𝑒−𝜂∆𝑡) + 𝜎𝑆0𝑑𝑊𝑡 

The two variables are still assumed to be uncorrelated. The mean reversion point for 

commodities can be approximated from the futures market. The mean reversion coefficient for 

the oil price was estimated to 17,24% for oil prices calibrated to Model 1 of Schwartz from the 

crude futures and options market as of May 2018, using the least squares method. For the 

variable cost a subjective estimate of 15% is assigned. The basic assumption is that variable 

cost reverts to the long-term mean just a little slower than the oil price.  

 

 

Figure 15 - Project variable inputs for the MR BDH case 

 

5.1.2. Project value 

The current value 𝑉0 and consolidated volatility 𝜎 are estimated the same way as in the GBM 

case. The current value of the project is calculated deterministically with expected values for 

the stochastic variables. The project value will change over time as parts of the project are 

realized in cash flows, calculated from the cash flow payout ratio vector covered in the 
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presentation of the GBM BDH method. The risk-neutral NPV without flexibility is  

$389,91 million. Also note that the expected values of the two options are both below the base 

case NPV in the deterministic case, so the option value arise from flexibility.  

 

  

Figure 16 - Risk-neutral DCF for the MR BDH case 

  

5.1.3. Long-term equilibrium 

The remaining project value is not constant but will change as the project progresses and cash 

flows are realized. Therefore, the value to which the process will revert also cannot be constant. 

The most basic mean reverting models revert to a calculated mean value, referenced as the long-

term mean but in our case this value will necessarily change over time. The term still makes 

sense if we interpret the value as the mean project value at time 𝑡 in the project life cycle if the 

project were to be developed an infinite number of times, as opposed to the value to which the 

project value will revert to as time goes to infinity. The parameter is not necessarily a mean 

value either, though calibration from historical data is typically calculated as a logarithmic 

mean value. One could argue that a more accurate name could be the value to which the process 

reverts at time 𝑡, or the reversion point of the process, but for consistency to other papers on 

mean reverting processes this paper will continue to call it the long-term mean. 

 

By extending the MAD assumption to hold true over time we argue that the best estimator for 

the long-term mean vector is the base case NPV estimate at time 𝑡 in the risk-neutral DCF 

without flexibility. The process would be expected to revert to the mean project value, 

approximated by the expected value in the base case at the given time, Φ𝑡 in 𝚽 vector. 

 

Year 0 1 2 3 4 5 6 7 8 9 10

Remaining Reserves 90,0 81,0 73,4 66,8 61,3 56,6 52,6 49,2 46,3 43,9

Production Level 9,0 7,7 6,5 5,5 4,7 4,0 3,4 2,9 2,5 2,1

2,330 2,353 2,374 2,391 2,406 2,419 2,430 2,439 2,448 2,455

Variable Op Cost Rate 10,3 10,5 10,7 10,9 11,1 11,2 11,4 11,5 11,6 11,6

3,218 3,217 3,217 3,216 3,216 3,216 3,215 3,215 3,215 3,215

Oil Price 25,0 25,0 24,9 24,9 24,9 24,9 24,9 24,9 24,9 24,9

Revenues 224,8 191,0 162,2 137,8 117,1 99,5 84,6 71,9 61,1 51,9

Production Cost (97,5) (85,5) (74,8) (65,4) (57,1) (49,9) (43,5) (38,1) (33,4) (29,3)

Cash Flow 127,3 105,5 87,4 72,4 60,0 49,7 41,0 33,8 27,7 22,6

Profit Sharing (31,8) (26,4) (21,9) (18,1) (15,0) (12,4) (10,3) (8,4) (6,9) (5,7)

Net Cash Flows 95,5 79,1 65,6 54,3 45,0 37,2 30,8 25,3 20,8 17,0

E[PV of Cash Flows] 389,91 409,4 329,6 263,0 207,3 160,6 121,4 88,4 60,5 36,9 17,0

CF payout ratio 0,2333 0,2400 0,2493 0,2621 0,2802 0,3067 0,3479 0,4186 0,5626 1,0000

E[PV with buyout] 388,8      408,2      328,3      261,7      205,9      159,2     

E[PV with divest] 377,7      396,5      316,1      248,8      192,4      145,0      
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Note that the NPV estimates used as long-term mean vector are discounted, so we regard this 

as including the drift on the pre-option side of the option pricing. The post-option side is done 

similar to the GBM version, by discounting the roll-back tree. The degree to which the process 

will be discounted is thus to small since the value component from the last period (non-long-

term mean) is not discounted. This could be corrected for by adjusting the process with a risk-

premium 𝜆 corresponding to the lack of discounting mentioned. Alternatively, the long-term 

mean could be modelled without discounting as pure cash flows, discounting the whole process 

by the discount rate.  

 

5.1.4. Project return volatility 

The consolidated project volatility is calculated from the GCE approach, like what we did in 

the GBM approximation. 

 

 

Figure 17 - GCE volatility estimation with MCS for the MR BDH case 

Note that the volatility estimate is considerably lower at 𝜎 = 20,36%. Estimates for annual 

project return volatility grow with time for the given case, but we have not normalized the 

volatility estimate (to stay consistent) and will use the volatility from year 1 in the binomial 

models. 

 

1 2 3 4 5 6 7 8 9 10 

20,36 % 21,28 % 22,44 % 23,96 % 25,35 % 27,60 % 29,74 % 32,61 % 36,70 % 41,43 % 

Figure 18 - Table of annual project return volatility with MR price and cost from GCE 

 

Year 0 1 2 3 4 5 6 7 8 9 10

Remaining Reserves 90,0 81,0 73,4 66,8 61,3 56,6 52,6 49,2 46,3 43,9

Production Level 9,0 7,7 6,5 5,5 4,7 4,0 3,4 2,9 2,5 2,1

2,327 2,351 2,372 2,389 2,404 2,418 2,429 2,438 2,447 2,454

Variable Op Cost Rate 10,3 10,5 10,7 10,9 11,1 11,2 11,3 11,5 11,6 11,6

3,208 3,209 3,209 3,210 3,211 3,211 3,212 3,212 3,212 3,212

Oil Price 24,7 24,7 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8

Revenues 222,5 189,3 161,0 137,0 116,5 99,1 84,2 71,6 60,9 51,8

Production Cost (97,3) (85,3) (74,7) (65,3) (57,0) (49,8) (43,5) (38,1) (33,3) (29,3)

Cash Flow 125,2 104,0 86,4 71,7 59,5 49,3 40,7 33,6 27,6 22,5

Profit Sharing (31,3) (26,0) (21,6) (17,9) (14,9) (12,3) (10,2) (8,4) (6,9) (5,6)

Net Cash Flows 93,9 78,0 64,8 53,8 44,6 37,0 30,5 25,2 20,7 16,9

388,7

PV of Cash Flows 385,4 404,6 326,2 260,7 205,7 159,5 120,6 87,9 60,2 36,8 16,9

E(PV of Cash Flows) 389,9 409,4 329,6 263,0 207,3 160,6 121,4 88,4 60,5 36,9 17,0

Cash flow payout ratio 0,2321 0,2391 0,2485 0,2614 0,2796 0,3063 0,3476 0,4183 0,5624 1,0000

z1 3,70 %

s(z) 20,36 %
𝑧 = ln

𝑉1

𝑉 0
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It’s important to note that the process volatility will be less for Model 1 than for a GBM model 

for a given periodic volatility. When time goes to infinity the variance of Model 1 goes to 

𝜎2/2𝜂, while the variance of the GBM model goes to infinity. This reflects the higher 

uncertainty in a process that does not revert to a mean, resulting in higher flexibility values. 

Jafarizadeh and Bratvold (2012) further discusses the potential overestimation of real option 

values from using GBM. 

 

Figure 19 - GBM vs MR process variance (Hahn 2005)  

 

5.1.5. Mean reversion coefficient 

The mean reversion coefficient is a measure of the speed with which the process will revert to 

the long-term mean. An equivalent, more intuitive notation for the mean reversion speed is the 

half-life of the difference in between the current value and the long-term equilibrium. This is 

calculated as ln(2) /𝜂 and represent the time until half of the difference from the long-term 

mean is closed in. 

 

Bastian-Pinto et al. (2010) presents a method of estimating the process parameters for a 

geometric Ornstein-Uhlenbeck process from historical time-series data. For an underlying 

process 𝑆, the following regression is run:  

ln(𝑆𝑡) − ln(𝑆𝑡−1) = 𝛽0 + 𝛽1 ln(𝑆𝑡−1) + 𝜀 

Where the mean reversion coefficient, volatility and long-term mean level are obtained from 

the following equations 

𝜂 = −
ln(𝛽1 + 1)

Δ𝑡
, 𝜎 = 𝜎𝜀√2 ln(𝛽1 + 1) /(Δ𝑡[(𝛽1 + 1)2 − 1], 𝑆̅ = 𝑒

−
𝛽0
𝛽1

+
𝜎2

2𝜂 

Where 𝜎𝜀
2 is the variance of the regressions error. For widely traded commodities the coefficient 

can also be estimated from the futures market.  
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Project process parameters, however are estimated from DCF and MCS tools. Some projects, 

like similar type oil field projects, might have sufficient historical data to estimate parameters. 

 

As an alternative one could assume that the cyclicality of an industry would give information 

about the reversion speed, but industry cycles are different processes. Such cycles are more like 

a sine-function description of the long-term mean, or like geometric Brownian motion with 

positive drift and a negative jump-diffusion component.  

 

In the estimation of a consolidated project volatility through MCS, Copeland and Antikarov 

(p253-255 and p262-264) describes how to model the project value as mean reverting (in real 

– non-log values). The mean reversion speed for an arithmetic Ornstein-Uhlenbeck process can 

intuitively be estimated by asking management or industry professionals “If the uncertainty 

tend to revert to its average value, what percentage of the one-period deviation do you expect 

to be eliminated on average during the next period?” (Copeland and Antikarov, 2001, page 264) 

 

One could also make the naïve assumption that the project is characterized by the same mean 

reversion speed as the uncertain project parameters. For projects with one main uncertain 

variable following a mean reversion, it’s natural to think that the projects value development 

will follow the same time-line. In contrast to the naïve approach of mistaking the project 

volatility with the volatility of the uncertain project variable, the mean reversion coefficient is 

a measure of time, not magnitude. Thereby, the effects of fixed costs and leverage does not 

affect this parameter as they remain constant over time. However, correlations between 

uncertain variables will affect the mean reversion speed estimate.  

 

Next, consider whether the half-life of the oil production project should be faster or slower 

compared to the half-life of the oil price. The answer to this will depend on the correlation 

between the uncertain project parameters (including lag-effects) and the reversion speed and/or 

drift of the other variables. For a project with two underlying MR variables with different mean 

reversion speeds the periodic cash flows will follow a mean reverting process where the project 

value will have a hockey-stick characteristic.  

 

The parameter was estimated to be somewhere between that of the price and cost, at 17%. That 

correspond to an expectation of 17% of the difference in logarithmic value being closed each 
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period. The corresponding half-life is 4,1 years, meaning that half the difference in logarithmic 

value will be closed in after 4,1 years. 

 

5.2. Censored model 

Nelson and Ramaswamy (1990) proposed an approach to model a range of different processes 

in a standardized way. The general form for the stochastic differential equation is given by  

𝑑𝑥 = 𝜐(𝑥, 𝑡)𝑑𝑡 + 𝜎(𝑥, 𝑡)𝑑𝑧 

For implementation of a mean reverting process the problem is to find a binomial sequence 

with 1st moment 𝜐(𝑥, 𝑡) (expected value) and 2nd moment 𝜎(𝑥, 𝑡) that converges to the given 

SDE.  

 

Hahn (2005) implemented the arithmetic Ornstein-Uhlenbeck process of the logarithmic values 

in the Nelson and Ramaswamy approach, substituting 𝜐(𝑥, 𝑡) = 𝜂(𝜑 − 𝑥𝑡) and 𝜎(𝑥, 𝑡) = 𝜎, 

where 𝑥 is the logarithm of the value. The end values are rolled back using a probability that 

reflect the mean reversion but must be censored for probabilities below and above 0% and 

100%.  

 

The development tree is modelled in the same way, here shown in logarithmic development 

without dividends: 

𝑥𝑡
+ = 𝑥 + 𝜎√∆𝑡 

𝑥𝑡
− = 𝑥 − 𝜎√∆𝑡 

 

𝑝𝑥,𝑡 =

{
 
 

 
 0 𝑖𝑓

1

2
+

𝜈(𝑥, 𝑡)

2𝜎
√∆𝑡 ≤ 0

1

2
+

𝜈(𝑥, 𝑡)

2𝜎
√∆𝑡 𝑖𝑓 0 ≤

1

2
+

𝜈(𝑥, 𝑡)

2𝜎
√∆𝑡 ≤ 1

1 𝑖𝑓 0 ≤
1

2
+

𝜈(𝑥, 𝑡)

2𝜎
√∆𝑡 ≤ 1

 

 

where 

𝑝𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 =
1

2
+

𝜈(𝑥, 𝑡)

2𝜎
=

1

2
+

𝜂(φ − 𝑥𝑡)

2𝜎
√Δ𝑡 

Programmed as 

𝑝 = max(0;min (1;
1

2
+

𝜂(𝜑 − 𝑥𝑡)

2𝜎
√Δ𝑡)) 
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Where  

𝑥 = ln⁡(𝑆) is the natural logarithm of the stochastic process 𝑆, (from which it follows 

that ΔS± = 𝑒±𝜎√Δ𝑡) 

𝜎 is the annual volatility of the stochastic process 𝑆 (assumed to be homoscedastic or 

transformed from heteroscedastic to homoscedastic to enable recombination), 

Δ𝑡 is the time increment of each step, 

𝑥𝑡
± are the up and down states of the logarithm of 𝑆 in time 𝑡,  

𝑝𝑥,𝑡 is the probability if an up move to the next state, and 1 − 𝑝𝑥,𝑡 for a down move, 

𝜂 is the mean reversion coefficient. 

 

Since the up probabilities 𝑝𝑖,𝑗 are now state dependent they are set up in a lattice, whereas the 

probability for the GBM version is constant. The down probabilities remain 1 − 𝑝𝑖,𝑗. The 

rollback will be like the BDH-method with GBM but using the censored state-specific 

probabilities. Note that the roll-back lattice without options no longer has identical values to 

the development lattice.  

 

The roll-back calculation references the state- and time-specific probability of moving up from 

the previous time step. Otherwise the roll-back calculation is identical to the GBM 

implementation. The expected value in the next period is still discounted, incorporating drift to 

the model. The drift was not factored directly into the probability estimate but indirectly from 

the reversion point as discussed in the parameter estimation. 

Λ𝑖,𝑗 = 𝐶𝐹𝑖,𝑗 +
𝑝𝑖,𝑗Λ𝑖+1,𝑗 + (1 − 𝑝𝑖,𝑗)Λ𝑖,𝑗+1

1 + 𝑟
 

 

Hahn and Dyer (2011) further developed the model to include correlated dual one-factor mean-

reversion processes, and a two-factor Ornstein-Uhlenbeck process, but calculation of the 

probabilities of the up and down diffusions becomes computationally intensive and the tree 

becomes more complicated to visualize and less intuitive (e.g. 3-dimensional or non-

recombining with alternating process development of the factors).  

 

5.2.1. Censored model implementation on the BDH oil case 

The real-space development lattice and cash flow lattice are developed exactly the same was as 

for the BDH method.  
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Figure 20 - Development lattice and cash flow lattice for the censored MR BDH case 

 

 

The probability lattice from periods 0 to 𝑛 − 1 for the BDH oil case is developed in the 

following figure. 

 

 

Figure 21 - Censored probabilities 

 

Year 0 1 2 3 4 5 6 7 8 9 10

CF payout ratio 0,233256 0,240018 0,249278 0,262084 0,280179 0,306704 0,347943 0,418562 0,562567 1

E(NPV) = F 389,9 409,4 329,6 263,0 207,3 160,6 121,4 88,4 60,5 36,9 17,0

389,9 478,0 449,2 418,5 385,1 348,4 307,4 261,2 208,8 148,8 79,8

Development 318,1 299,0 278,5 256,3 231,8 204,6 173,8 139,0 99,0 53,1

tree 199,0 185,4 170,6 154,3 136,1 115,7 92,5 65,9 35,3

123,4 113,5 102,7 90,6 77,0 61,5 43,9 23,5

75,5 68,3 60,3 51,2 41,0 29,2 15,7

45,5 40,1 34,1 27,3 19,4 10,4

26,7 22,7 18,1 12,9 6,9

15,1 12,1 8,6 4,6

8,0 5,7 3,1

3,8 2,0

1,4

0 1 2 3 4 5 6 7 8 9 10

0,0 111,5 107,8 104,3 100,9 97,6 94,3 90,9 87,4 83,7 79,8

Cash flows 74,2 71,8 69,4 67,2 65,0 62,7 60,5 58,2 55,7 53,1

47,8 46,2 44,7 43,2 41,8 40,3 38,7 37,1 35,3

30,7 29,8 28,8 27,8 26,8 25,8 24,7 23,5

19,8 19,1 18,5 17,8 17,1 16,4 15,7

12,7 12,3 11,9 11,4 10,9 10,4

8,2 7,9 7,6 7,3 6,9

5,3 5,1 4,8 4,6

3,4 3,2 3,1

2,1 2,0

1,4

𝐶𝐹𝑖,𝑗 = 𝑉𝑖,𝑗𝛿𝑡

𝑉𝑛
𝑢 = 𝑉𝑛−1 1− 𝛿𝑛−1 𝑢

𝑉𝑛
𝑑 = 𝑉𝑛−1 1− 𝛿𝑛−1 𝑑

𝑉𝑛−1

0 1 2 3 4 5 6 7 8 9

50 % 44 % 37 % 31 % 24 % 18 % 11 % 5 % 0 % 0 %

61 % 54 % 48 % 41 % 35 % 28 % 22 % 15 % 9 %

71 % 65 % 58 % 52 % 45 % 39 % 32 % 26 %

100 % 82 % 75 % 69 % 62 % 56 % 49 % 43 %

92 % 86 % 79 % 73 % 66 % 60 %

100 % 96 % 90 % 83 % 77 %

100 % 100 % 100 % 94 %

100 % 100 % 100 %

100 % 100 %

100 %

𝑝𝑉 = max 0, min 1,
1

2
+

𝜂  −ln(𝑉𝑡) Δ𝑡

2𝜎
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Figure 22 - Roll-back trees with and without options for the censored MR BDH case 

 

The project value in the roll-back lattice is 8,3% less than the NPV, of which part is expected 

to be from the lack of drift in the model. The option values can still be calculated as the 

difference between the rollback tree with and without options. The combined option value is 

$7,76 million. 

 

 

 

Figure 23 - Censored probabilities of up move for the censored BDH case 

The bleaker project value is reflected in the increased value of the divest option, which is 

especially evident from the analysis of the expanded option. 

 

0 1 2 3 4 5 6 7 8 9 10

Without 357,668 427,2 385,4 346,8 310,8 276,4 243,0 209,2 173,9 134,3 79,8

options 323,9 290,0 258,8 229,9 202,4 175,9 149,4 121,7 90,9 53,1

219,5 194,2 170,7 148,7 127,6 106,8 85,5 62,4 35,3

146,4 127,3 109,6 92,7 76,4 60,0 42,8 23,5

95,3 80,9 67,5 54,7 42,1 29,3 15,7

59,6 49,2 39,1 29,5 20,1 10,4

34,5 27,6 20,7 13,7 6,9

18,4 13,8 9,2 4,6

9,2 6,1 3,1

4,1 2,0

1,4

0 1 2 3 4 5 6 7 8 9 10

With 365,43 433,3 389,7 350,9 319,5 296,0 243,0 209,2 173,9 134,3 79,8

options 334,1 297,9 263,7 232,1 208,3 175,9 149,4 121,7 90,9 53,1

234,6 206,6 178,4 148,7 127,6 106,8 85,5 62,4 35,3

170,7 150,1 128,8 92,7 76,4 60,0 42,8 23,5

132,8 119,1 67,5 54,7 42,1 29,3 15,7

112,7 49,2 39,1 29,5 20,1 10,4

34,5 27,6 20,7 13,7 6,9

18,4 13,8 9,2 4,6

9,2 6,1 3,1

With option in year 5 4,1 2,0

1,4
⁡Λ ,𝑗 = 𝐶𝐹 ,𝑗 +max +

𝑝 ∗ Λ ,𝑗 + 1−𝑝 Λ ,𝑗+1

1 + 𝑟∆𝑡
, −40 +

4

3
∗
𝑝 ∗ Λ ,𝑗 + 1−𝑝 Λ ,𝑗+1

1 + 𝑟∆𝑡
, +100

⁡Λ𝑡 ,𝑗 = 𝐶𝐹𝑡,𝑗 +
𝑝𝑉 ∗ Λ𝑡+1,𝑗 + 1−𝑝𝑉 Λ𝑡+1,𝑗+1

1 + 𝑟∆𝑡

0 1 2 3 4 5 6 7 8 9 10

380,083 448,5 405,1 366,4 340,7 296,0 252,5 209,2 173,9 134,3 79,8

349,7 314,3 280,2 246,2 211,2 175,9 149,4 121,7 90,9 53,1

250,8 224,6 198,7 171,8 141,8 106,8 85,5 62,4 35,3

185,4 166,5 147,7 127,8 76,4 60,0 42,8 23,5

143,9 131,2 118,5 54,7 42,1 29,3 15,7

119,7 112,3 39,1 29,5 20,1 10,4

108,2 27,6 20,7 13,7 6,9

18,4 13,8 9,2 4,6

9,2 6,1 3,1

4,1 2,0

1,4



51 

 

Two-way sensitivity analysis of volatility, mean reversion coefficient and risk-free rate are 

supplied in the appendix. 

 

 

5.3. Non-censored model 

Bastian-Pinto et al. (2010) developed a non-censored model based on the censored model. 

Instead of defining the development lattice as a geometric development of the project, they 

isolated the volatility as suggested by Hull and White (1994) (used in trinomial Hull-White 

model). They start by defining an arithmetic lattice presenting the volatility in 𝑥, 𝑥∗. The lattice 

changes ±⁡𝜎√Δ𝑡 for each up or down step. Since the volatility is modelled separately the 

relative magnitude in the binomial process will remain unaltered, whereby they argue that the 

roll-back can be done in logarithmic values. In Excel each step is modelled as (𝑛 − 2𝑗)𝜎√Δ𝑡, 

where 𝑛 and 𝑗 are counted on the horizontal and vertical axis respectively. The tree will be 

symmetric with expected value of null. For each step Δ𝑡 in the binomial process we then have 

that 𝐸[𝑥𝑡] = 𝑝𝜎 + (1 − 𝑝)(−𝜎) = 𝑝𝑈 + (1 − 𝑝)𝐷 and 𝑉𝑎𝑟[𝑥𝑡] = 𝐸[𝑥𝑡
2] − 𝐸[𝑥𝑡]

2 = 𝑝(1 −

𝑝)(𝑈 − 𝐷)2. Since these are different expressions for the first and second moment, 𝜐(𝑥, 𝑡) and 

𝜎(𝑥, 𝑡), the probability is calculated differently from the censored model. By using the 

approximation 𝑒−𝜂Δ𝑡 ≈ 1 − 𝜂Δ𝑡 from Taylor expansion the expected value and variance of an 

Ornstein-Uhlenbeck process of logarithmic values can be rewritten as 

𝐸[𝑥𝑡] = 𝜑 + (𝑥𝑡−∆𝑡 − 𝜑)𝑒−𝜂Δ𝑡 ≈ 𝑥𝑡−∆𝑡 + (𝜑 − 𝑥𝑡−∆𝑡)𝜂Δ𝑡  

𝑉𝑎𝑟[𝑥𝑡] =
𝜎2

2𝜂
(1 − 𝑒−2𝜂Δ𝑡) ≈ 𝜎2Δ𝑡 

By setting up the moment-matching equations for the expected value and variance with starting 

point 𝑥∗ = 0 and long-term mean of 𝑥∗   = 0 we get 

(−𝑥𝑡
∗)𝜂Δ𝑡 = 𝑝𝑈 + (1 − 𝑝)𝐷, 𝜎2Δ𝑡 = 𝑝(1 − 𝑝)(𝑈 − 𝐷)2 

From further substituting and rewriting of the equations the probability of an up move is 

obtained as 

𝑝𝑖,𝑗 =  
1

2
−

𝜂(−𝑥𝑖,𝑗
∗ )√𝛥𝑡

2√𝜂2(−𝑥𝑖,𝑗
∗ )2𝛥𝑡 + 𝜎2

 

This limits the volatility of the process and will be used in the roll-back. To calibrate the scale 

and slope to the reversion point the expected value of the underlying is added to the lattice. An 

intuitive way of understanding this is as the development of the uncertainty estimate as a 



52 

 

generalized certainty equivalent band before scaling the band to the starting point and long-

term equilibrium value. A time vector of the expected value of 𝑥 is calculated as 𝐸[𝑥𝑡] = 𝜑 +

(𝑥𝑡−∆𝑡 − 𝜑)𝑒−𝜂Δ𝑡. The development tree is now 𝑥𝑡 = 𝐸[𝑥𝑡] + 𝑥𝑡
∗ = 𝑥𝑜𝑒

−𝜂𝑡 + φ(1 − 𝑒−𝜂𝑡) +

𝑥𝑡
∗.  

 

5.3.1. Non-censored model implementation on the BDH oil case 

Since the model includes cash flows as dividends the model must be developed in normal values 

as 𝑉𝑡 = (𝑉𝑡−1(1 − 𝛿𝑡−1))
𝑒−𝜂𝑡

Φ𝑡
1−𝑒−𝜂𝑡

𝑒𝑥𝑡
∗
. In Excel the logarithmic volatility lattice 𝑥∗ is 

modelled as (𝑛 − 2𝑗)𝜎√Δ𝑡, where 𝑛 and 𝑗 are counted on the horizontal and vertical axis 

respectively. The nodes are programmed as 𝑉𝑖,𝑗 = 𝐸[𝑉𝑖,𝑗]𝑒
(𝑛−2𝑗)𝜎√Δ𝑡, where⁡𝐸[𝑉𝑖,𝑗] =

(𝑉𝑡−1)
𝑒−𝜂𝑛Δ𝑡

Φt
1−𝑒−𝜂𝑛Δ𝑡

 is developed in a separate vector.  

 

  

 

Figure 24 - Development lattice and cash flow lattice for the non-censored MR BDH case 

d 0,000 0,233 0,240 0,249 0,262 0,280 0,307 0,348 0,419 0,563 1,000

F 389,9 409,4 329,6 263,0 207,3 160,6 121,4 88,4 60,5 36,9 17,0

E [V t ] 389,9 392,9 305,5 236,8 182,1 138,2 102,6 73,6 49,8 30,1 13,7

j \ n 0 1 2 3 4 5 6 7 8 9 10

0 389,9 481,6 459,1 436,1 411,1 382,4 348,1 306,0 253,6 187,8 104,8

1 320,5 305,5 290,2 273,6 254,5 231,7 203,7 168,8 125,0 69,8

2 203,3 193,1 182,1 169,4 154,2 135,5 112,3 83,2 46,4

3 128,5 121,2 112,7 102,6 90,2 74,8 55,4 30,9

4 80,6 75,0 68,3 60,0 49,8 36,8 20,6

5 49,9 45,4 40,0 33,1 24,5 13,7

6 30,2 26,6 22,0 16,3 9,1

7 17,7 14,7 10,9 6,1

8 9,8 7,2 4,0

9 4,8 2,7

10 1,8

0 1 2 3 4 5 6 7 8 9 10

0 0,0 112,3 110,2 108,7 107,7 107,1 106,8 106,5 106,2 105,7 104,8

1 74,8 73,3 72,3 71,7 71,3 71,0 70,9 70,7 70,3 69,8

2 48,8 48,1 47,7 47,4 47,3 47,2 47,0 46,8 46,4

3 32,0 31,8 31,6 31,5 31,4 31,3 31,1 30,9

4 21,1 21,0 20,9 20,9 20,8 20,7 20,6

5 14,0 13,9 13,9 13,9 13,8 13,7

6 9,3 9,3 9,2 9,2 9,1

7 6,2 6,1 6,1 6,1

8 4,1 4,1 4,0

9 2,7 2,7

10 1,8

Cash flow lattice

Development lattice

𝑉𝑡 = 𝐸 𝑉𝑡 𝑒(𝑛−2𝑗)𝜎 Δ𝑡

𝐶𝐹𝑖,𝑗 = 𝑉𝑖,𝑗𝛿𝑖+𝑗

𝐸[𝑉𝑡] = 𝑉𝑡−1 1− 𝛿𝑡−1

𝑒−𝜂Δ𝑡

Φ𝑡
1−𝑒−𝜂Δ𝑡
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Bastian-Pinto et al. (2010) showed that the probability of an up move for a given state and time 

is 

𝑝𝑥,𝑡 =
1

2
+

𝜂(−𝑥𝑡
∗)√Δ𝑡

2⁡√𝜂2(−𝑥𝑡
∗)2Δ𝑡 + 𝜎2

 

By incorporating the Excel volatility lattice formula we get the simplified state dependent 

formula  

𝑝𝑥,𝑡 =
1

2
−

(𝑛 − 2𝑗)𝜂Δ𝑡

2√(𝑛 − 2𝑗)2𝜂2Δ𝑡2 + 1
 

 

   

Figure 25 - Probability lattice for the non-censored MR BDH case 

 

   

Figure 26 - Roll-back tree without options for the non-censored MR BDH case 

0 1 2 3 4 5 6 7 8 9

50 % 42 % 34 % 27 % 22 % 18 % 14 % 12 % 10 % 8 %

58 % 50 % 42 % 34 % 27 % 22 % 18 % 14 % 12 %

66 % 58 % 50 % 42 % 34 % 27 % 22 % 18 %

73 % 66 % 58 % 50 % 42 % 34 % 27 %

78 % 73 % 66 % 58 % 50 % 42 %

82 % 78 % 73 % 66 % 58 %

86 % 82 % 78 % 73 %

88 % 86 % 82 %

90 % 88 %

92 %

Probability lattice

𝑝𝑖,𝑗 =⁡
1

2
−

𝜂 𝑖 − 𝑗 Δ𝑡

2 𝜂2 𝑖− 𝑗 2Δ𝑡2+1
⁡

0 1 2 3 4 5 6 7 8 9 10

364,48 435,9 398,3 366,0 337,8 312,0 286,5 258,3 223,1 174,8 104,8

329,5 298,0 269,9 244,7 221,8 199,8 177,2 150,9 117,1 69,8

224,6 202,0 180,9 161,1 142,3 123,5 103,2 78,8 46,4

150,7 134,3 118,5 103,0 87,6 71,5 53,4 30,9

98,6 86,7 74,8 62,7 50,1 36,5 20,6

62,3 53,6 44,5 35,1 25,0 13,7

37,6 31,1 24,3 17,1 9,1

21,4 16,6 11,5 6,1

11,2 7,8 4,0

5,2 2,7

1,8

Roll-back lattice without options

Λ𝑖,𝑗 = 𝐶𝐹𝑖 ,𝑗 +
𝑝𝑖,𝑗Λ𝑖+1,𝑗 + 1− 𝑝𝑖,𝑗 Λ𝑖,𝑗+1

1+ 𝑟𝑓∆𝑡
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Figure 27 - Graph of remaining project value in each state without options for the non-censored MR BDH case 

  

Figure 28 - Roll-back tree with options for the non-censored MR BDH case 

 

The option value is the difference from the roll-back tree without options to the one with options 

included, $7,63 million. 

 

Figure 29 - Roll-back tree for the non-censored MR BDH case 

The extended options from year 4-6 have a value of $21,86 million. 
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Mean reverting binomial lattice 
of remaining project value without options

0 1 2 3 4 5 6 7 8 9 10

372,12 442,0 403,1 371,7 351,2 340,3 286,5 258,3 223,1 174,8 104,8

339,4 305,6 274,7 248,0 231,9 199,8 177,2 150,9 117,1 69,8

239,0 213,1 187,1 161,1 142,3 123,5 103,2 78,8 46,4

173,5 153,7 131,6 103,0 87,6 71,5 53,4 30,9

134,9 121,0 74,8 62,7 50,1 36,5 20,6

114,0 53,6 44,5 35,1 25,0 13,7

37,6 31,1 24,3 17,1 9,1

21,4 16,6 11,5 6,1

11,2 7,8 4,0

5,2 2,7

1,8

Roll-back lattice with options

0 1 2 3 4 5 6 7 8 9 10

386,3 456,9 418,4 387,7 374,4 340,3 306,4 258,3 223,1 174,8 104,8

354,4 321,4 290,7 262,4 231,9 202,8 177,2 150,9 117,1 69,8

254,7 230,3 205,6 178,9 147,3 123,5 103,2 78,8 46,4

188,7 171,2 152,6 131,5 87,6 71,5 53,4 30,9

146,5 134,4 120,9 62,7 50,1 36,5 20,6

121,7 113,9 44,5 35,1 25,0 13,7

109,3 31,1 24,3 17,1 9,1

21,4 16,6 11,5 6,1

11,2 7,8 4,0

5,2 2,7

1,8

Roll-back lattice with options with extension



55 

 

6. Monte Carlo method 

We developed the BDH case with a MCS method for further comparison, especially against the 

mean reverting binomial models. In comparison to financial options these real options must be 

considered differently. The payoff of financial options is given by the maximum of the 

difference between the strike price and the market price and null at the term date. Note that for  

these real options, exemplified by the BDH case, the ‘payoff’ of exercising the option is the 

difference of the value from the exercised path and the not exercised path in year 10, even 

though the term date of the option is in year 5. Still, the decision-maker can only decide at the 

term date but is still exposed to uncertainty. The option is neither an American nor a European 

option, but best approximated by an Evergreen option when comparing to financial option 

equivalents (although Evergreen options don’t get/pay the strike before the closing date).  

 

If we interpret the exercise right of the option as the decision, then we only have one “term 

date” where the option holder can choose to exercise or not, even though the final payoff still 

carry uncertainty and the actual payoff is not closed yet.  A naïve valuation approach to these 

kinds of options is to calculate the payoff using the expected values of the payoff to come at 

the closing date, estimated at the term date, as the best estimate of the payoff. In this way we 

have simplified the valuation method to the equivalent of a European option with the payoff of 

the difference in the expected value of the strike and the expected value of the initial base case 

estimates.  

 

The mean option value calculated from the expected values are representative for the numbers 

we would get by running the simulation to the end in a sufficient number of iterations (assuming 

the proportion of type 1 errors and type 2 errors are approximately equal). This simplifies the 

valuation compared to American valuation techniques (like the least squares method) without 

being too strong an assumption.  

 

6.1. Implementation of simplified MCS valuation on the BDH case 

Periods 1 through 5 are modelled stochastic and the following periods are modelled as 

conditional expected values. The stochastic processes and conditional expected values are an 

extension of the GCE approach where volatility is isolated to one period. The value of each 

option is the mean of the discounted payoffs from the simulation. The payoff function in year 

5 is: 
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= MAX(𝑆𝑒𝑙𝑙𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒 −
𝑁𝑃𝑉(6|5)

1 + 𝑟𝑓
; ⁡−𝐵𝑢𝑦𝑜𝑢𝑡𝐶𝑜𝑠𝑡 + 𝑁𝑒𝑤𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗

𝑁𝑃𝑉(6|5)

1 + 𝑟𝑓
−

𝑁𝑃𝑉(6|5)

1 + 𝑟𝑓
; 0) 

 

The parameters of the GBM process and Model 1 process can be estimated from market data. 

The geometric OU process was approximated with the mean reversion coefficient from the 

Model 1 calibration.  

 

Below is the Monte Carlo model where the price and cost are represented by GBM processes 

as specified in the original case. Beware that static cell outputs in @Risk display the median 

value instead of the mean. The model below displays the mean results of the option values. The 

frequencies of each option being in-the-money from the simulation are given in the lower right 

corner. 

 

 

Figure 30 - Monte Carlo method for the Geometric Brownian Motion price processes 

 

MCS valuation of the BDH case was run with the price and cost approximated by GBM, OU 

with geometric volatility and Model 1 of Schwartz. More than 90% of the iterations estimated 

one of the options to be in-the-money and thereby the optimal decision strategy in year 5 for 

the GBM model. The corresponding frequency for the mean reverting models were 80%. This 

is because the reduced volatility from modelling the price and cost as MR processes leads to a 

tighter distribution of project value outcomes in the mid-range between the two options. Model 

screenshots of the results for the MR models are attached in Appendix C. Results from 100 000 

simulations are summarized in the figure below. 

 

Year 0 1 2 3 4 5 6 7 8 9 10

Remaining Reserves 90,0 81,0 73,4 66,8 61,3 56,6 52,6 49,2 46,3 43,9

Production Level 9,0 7,7 6,5 5,5 4,7 4,0 3,4 2,9 2,5 2,1

Variable Op Cost Rate 10,1 10,3 10,5 10,6 10,8 11,0 11,2 11,4 11,7 11,9

Oil Price 24,7 24,4 24,2 23,9 23,6 23,6 23,6 23,6 23,6 23,6

Revenues 222,5 187,0 157,2 132,1 111,0 94,4 80,2 68,2 58,0 49,3

Production Cost (96,3) (83,8) (73,0) (63,6) (55,6) (48,9) (43,0) (38,0) (33,6) (29,8)

Cash Flow 126,1 103,2 84,2 68,5 55,4 45,5 37,2 30,2 24,4 19,5

Profit Sharing (31,5) (25,8) (21,0) (17,1) (13,9) (11,4) (9,3) (7,6) (6,1) (4,9)

Net Cash Flows 94,6 77,4 63,1 51,3 41,6 34,1 27,9 22,7 18,3 14,6

NPV 371,05 389,6 309,7 244,0 189,9 145,4 109,1 78,7 53,3 32,2 14,6

E(divest option) 20,74 26,46 P(Divest) 48,88 %

E(buyout option) 8,25 10,52 P(Buyout) 41,67 %

E(both options) 28,98 36,99 P(Divest or Buyout) 90,55 %

Options valuation by the Monte Carlo method for GBM price processes
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Figure 31 - Monte Carlo option valuation results 

These results are compared to the other models in the next chapter. 

Process \ Option Buyout Divest Both options

Geometric Brownian Motion 8,25 20,74 28,98

OU with geometric volatility 3,81 7,35 11,16

Model 1 of Schwartz 3,50 8,08 11,58



58 

 

7. Comparison of results and model differences 

The project process parameters estimated from the GBM and MR models for the uncertain 

project parameters are presented in figures 32 through 34. The results are seen to be consistent 

enough to be comparable when correcting for the expected model differences explained in this 

chapter. 

 

 Years 5 5 5  4-6  

Method Process Buyout Divest Both Extended 
options 

BDH GBM 28 % 7,38 72 % 18,63 26,01 39,36 

MCS GBM 28 % 8,25 72 % 20,74 28,98  
Bivariate GBM 33 % 10,28 67 % 20,97 31,25  
Censored BDH MR (lnOU) 11 % 0,83 89 % 6,80 7,63 22,41 

Non-censored BDH MR (lnOU) 15 % 1,38 85 % 7,56 8,94 22,88 

MCS MR (M1) 30 % 3,50 70 % 8,08 11,58  
MCS MR (gOU) 34 % 3,81 66 % 7,35 11,16  

Figure 32 - Comparison of option value from different approaches to the BDH case 

 

Modelling the project with the two mean reverting binomial methods results in a lower total 

option value compared to the conventional geometric Brownian Motion.  

 

This is because (1) GBM processes tend to overestimate long-term uncertainty and (2) because 

of a partial lack of incorporation of drift in the model. The censored and non-censored models 

only incorporate the indirect drift of the long-term mean (estimated as the base case NPV at 

time t), but do not discount the continuing project value from the last period (where the drift is 

the discounting to reflect the time value of money).  

 

The lower value from moving from a GBM to an MR model is expected (Jafarizadeh & 

Bratvold, 2012), but the underestimation of drift in the project development also underestimate 

the value development, resulting in an overall underestimation of the upside option (buyout). 

The effects are visually represented in figures 33 and 34. This is also evident from the 

comparison of the MR binomial models to the MR MCS models.  

 

All other models than the mean reverting lattice models has an option value distribution 

between the buyout option on the upside and the divest option on the downside of 30/70 ± 4%. 

In contrast, the value in the MR binomial models comes mainly from divest option (85-90%). 
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Figure 33 - Bar chart of option value estimate from each model 

 

 

Figure 34 - Bar chart of option value estimate for each option 
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8. Conclusion and suggestions for further work 

First, we introduce the background of options pricing and real options valuation with definitions 

of the concepts and the main modelling methods. The second part of the paper reviewed the 

BDH method with its developments and implemented the BDH case as an introduction. The 

method and results have been analyzed and decomposed to identify the value drivers of the 

options in the model. Further, the same approach has been implemented in the censored and 

non-censored mean reverting binomial lattice methods. We investigated the implications of the 

fundamental option pricing principles for project valuation, specifically reflecting on the 

compatibility of mean reverting project value development used for real options valuation. The 

case example was also valued using a simplified European Monte Carlo method with sales price 

and cost processes modelled as geometric Brownian Motions and mean reverting, using the 

expected value at the term date of the options as the best estimate of the option payoff. Finally, 

the case results were compared, and the model differences are explained. 

 

 

Suggestions for further work in the area includes: 

• Test whether the project value of projects in industries with mean reverting prices can 

be approximated to a mean reverting process (examples of tests listed in introduction) 

• Develop the same models for another case where project variables are calibrated from 

the same dataset (versus using same information points with some additional 

information, as done in the BDH case) 

• Estimation of mean reversion speed and other parameters from the Monte Carlo 

simulation of the discounted cash flow model. 

• Develop a censored or uncensored model for a mean reverting model with drift? The 

challenge is not only to make a general binomial model of a mean reverting process 

with drift, but also to capture the right amount of drift, not captured in the mean 

reversion. The alternative would be to estimate the long-term equilibrium without 

discounting to separate the two, but this introduces other challenges. 
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Appendix A. Practical Excel tips for lattice development 

Use of Excel as a modelling tool can be very powerful, both as a computational tool and for 

presentation and visualization of data. The main alternative for tree development is DPL from 

Syncopation Software, where DPL is very good for visualizing non-recombining trees and have 

good analysis tools for anything from tornado diagrams and influence diagrams to optimal 

policy analysis, cumulative distribution functions and rainbow charts. The tree however, 

becomes extensively large as the number of modelled periods increase in a non-recombining 

tree (as discussed in chapter 2.5.3). 

 

Since one of the arguments for using a binomial lattice is the ease of communication of the tool, 

additional steps to make the model more intuitive are considered to be important, especially 

when presenting for non-technical decision-makers. 

 

A.1. Conditional formatting for action determination 

To highligth whether the option should be excersised in a given state in the lattice one can use 

conditional formatting, using a formula for the maximum value to identify the preferred action 

and highlighting it. 

 

 

Figure 35 – Optimal decision strategy highlighted using conditional formatting, GBM BDH case 

Base case Buyout Divest

0 1 2 3 4 5 5 5 5 6 7 8 9 10

418,0 562,6 594,8 632,3 676,0 719,5 613,2 719,5 274,3 603,1 570,7 507,5 402,1 239,5

315,9 323,2 330,0 340,2 362,4 324,9 362,4 192,3 319,5 302,3 268,8 213,0 126,9

200,6 196,8 187,6 173,1 172,1 173,1 148,9 169,2 160,1 142,4 112,8 67,2

144,0 138,1 125,9 91,2 72,9 125,9 89,7 84,8 75,4 59,8 35,6

117,9 113,7 48,3 19,8 113,7 47,5 44,9 40,0 31,7 18,9

107,3 25,6 -8,3 107,3 25,2 23,8 21,2 16,8 10,0

13,3 12,6 11,2 8,9 5,3

6,7 5,9 4,7 2,8

3,1 2,5 1,5

1,3 0,8

0,4
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The same conditional formatting technique can be used without expanding the tree at the 

decision point by using several conditioning rules on the same cells. Each conditional 

formatting rule is determined using a logic statement referencing if the cell is equal the output 

given by the specific option.  

 

A.2. Figure of remaining project value or development of underlying asset 

The development of the underlying asset can be visualized by a line chart or a scatter chart with 

straight lines in Excel. Lines connect the points in a series, so to connect both up and down 

development we must make a duplicate lattice with down series in the rows.  

 

j \ n 0 1 2 3 4 5 6 7 8 9 10 

0 389,4 508,9 514,9 522,5 530,7 537,9 540,8 533,5 505,4 436,7 291,0 

1  308,7 308,8 309,2 309,4 308,5 305,0 295,9 275,8 234,6 154,2 

2   186,7 184,9 182,6 179,3 174,3 165,9 151,7 126,6 81,7 

3    110,9 108,4 105,0 100,4 93,9 84,1 68,6 43,3 

4     64,1 61,5 58,0 53,3 46,8 37,3 22,9 

5      35,7 33,3 30,2 26,0 20,3 12,1 

6       18,9 17,0 14,4 11,0 6,4 

7        9,4 7,9 6,0 3,4 

8         4,3 3,2 1,8 

9          1,7 1,0 

10           0,5 

           291,0 

          436,7 154,2 

         505,4 234,6 81,7 

        533,5 275,8 126,6 43,3 

       540,8 295,9 151,7 68,6 22,9 

      537,9 305,0 165,9 84,1 37,3 12,1 

     530,7 308,5 174,3 93,9 46,8 20,3 6,4 

    522,5 309,4 179,3 100,4 53,3 26,0 11,0 3,4 

   514,9 309,2 182,6 105,0 58,0 30,2 14,4 6,0 1,8 

  508,9 308,8 184,9 108,4 61,5 33,3 17,0 7,9 3,2 1,0 

 389,4 308,7 186,7 110,9 64,1 35,7 18,9 9,4 4,3 1,7 0,5 

            

Figure 36 - Development lattice with up series and down series for graph development 

 

When we have both the up series and down series the graph can be made. Figure 37 shows the 

mean reverting binomial rollback lattice without options, with the median remaining project 

value in red and the deterministic base case estimate in green. 
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Figure 37 - Value development graph example 

 

 

A.3. Conditional formatting for censoring of probabilities 

For visualization of which of the state-dependent probabilities are censored in the censored 

model we can use the Icon sets of conditional formatting, defining the criteria for the icon to 

the absolute levels of 0% and 100%. 

 

  

Figure 38 - Conditional formatting window for censoring traffic lights 
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A.4. Conditional formatting for intuition of development 

When a lattice model does not include dividends, it can be modelled with color-coding of the 

values in each state for a much clearer intuition of the development. An example of this is how 

the probability tree in the non-censored model, figure 25. 

 

 

A.5. VBA 

Haug (2007) implement a wide variety of option pricing methods in Visual Basic for 

Applications (VBA), the macro programming system implemented in Microsoft Excel.  

 

 



68 

 

Appendix B. Two-way sensitivity analysis of mean reverting models 

 

Two-way sensitivity analysis of volatility, risk-free interest rate and mean reversion coefficient 

for the censored model for mean reversion. 

 

 

 

Figure 39 - Two-way sensitivity analysis of volatility, risk-free rate and mean reversion coefficient for the censored MR BDH 

case 

 

s \ h 5 % 10 % 15 % 17 % 20 % 30 % 40 %

5 % 11,27 8,36 5,89 4,97 3,93 1,56 1,00

10 % 11,73 8,92 6,51 5,65 4,46 1,34 0,40

15 % 12,46 9,36 6,72 5,92 4,84 2,30 0,97

20,36 % 14,47 11,28 8,64 7,71 6,47 3,36 1,55

25 % 16,69 13,07 10,08 9,05 7,64 4,11 1,99

30 % 19,14 14,93 11,51 10,33 8,74 4,75 2,32

35 % 22,64 17,55 13,48 12,07 10,18 5,40 2,53

s \ rf 2 % 3 % 4 % 5 % 6 % 7 % 8 %

5 % 1,17 2,53 3,69 4,97 6,32 7,48 8,50

10 % 3,02 3,50 4,45 5,65 6,68 7,55 8,30

15 % 5,08 5,42 5,70 5,92 6,73 7,66 8,45

20,36 % 7,03 7,32 7,55 7,71 7,83 7,91 8,33

25 % 8,53 8,76 8,93 9,05 9,11 9,14 9,14

30 % 10,85 10,59 10,32 10,33 10,35 10,32 10,26

35 % 13,26 12,86 12,46 12,07 11,69 11,40 11,29

rf \ h 5 % 10 % 15 % 17 % 20 % 30 % 40 %

2 % 15,15 11,29 8,12 7,03 5,57 2,06 0,32

3 % 14,95 11,33 8,35 7,32 5,94 2,57 0,72

4 % 14,72 11,33 8,52 7,55 6,23 3,00 1,17

5 % 14,47 11,28 8,64 7,71 6,47 3,36 1,55

6 % 14,19 11,20 8,71 7,83 6,65 3,67 1,88

7 % 13,94 11,10 8,74 7,91 6,79 3,92 2,19

8 % 14,18 11,47 9,16 8,33 7,20 4,18 2,48



69 

 

Two-way sensitivity analysis of volatility, risk-free interest rate and mean reversion coefficient 

for the non-censored model for mean reversion. 

 

 

 

 

Figure 40 - Two-way sensitivity analysis of volatility, risk-free rate and mean reversion coefficient for the non-censored MR 

BDH case 

s \ h 5 % 10 % 15 % 17 % 20 % 30 % 40 %

5 % 10,33 7,03 4,31 3,35 2,37 0,25 0,05

10 % 10,92 7,45 5,28 4,58 3,65 1,24 0,26

15 % 11,90 9,15 6,88 6,08 5,01 2,20 0,52

20,36 % 14,40 11,16 8,49 7,57 6,32 3,09 0,89

25 % 16,55 12,82 9,79 8,75 7,36 3,87 1,46

30 % 19,33 15,16 11,81 10,65 9,10 5,11 2,38

35 % 22,83 17,87 13,97 12,65 10,87 6,34 3,26

s \ rf 2 % 3 % 4 % 5 % 6 % 7 % 8 %

5 % 0,59 1,53 2,42 3,35 4,70 5,86 6,89

10 % 2,44 3,26 3,96 4,58 5,15 5,97 6,97

15 % 4,32 5,01 5,60 6,08 6,49 6,82 7,09

20,36 % 6,45 6,71 7,18 7,57 7,88 8,12 8,30

25 % 8,64 8,71 8,73 8,75 8,98 9,16 9,28

30 % 11,02 10,93 10,80 10,65 10,49 10,30 10,27

35 % 13,47 13,21 12,93 12,65 12,35 12,05 11,74

rf \ h 5 % 10 % 15 % 17 % 20 % 30 % 40 %

2 % 14,87 10,72 7,54 6,45 4,97 2,29 1,69

3 % 14,75 10,93 7,80 6,71 5,29 1,84 1,23

4 % 14,59 11,07 8,18 7,18 5,83 2,33 0,83

5 % 14,40 11,16 8,49 7,57 6,32 3,09 0,89

6 % 14,18 11,19 8,73 7,88 6,72 3,74 1,71

7 % 13,94 11,18 8,91 8,12 7,05 4,29 2,41

8 % 13,69 11,13 9,03 8,30 7,32 4,77 3,02
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Appendix C. MCS valuation output 

 

 

Figure 41 - Monte Carlo method for geometric volatility Ornstein-Uhlenbeck price processes 

 

 

 

Figure 42 - Monte Carlo method for price processes following Model 1 

 

 

Year 0 1 2 3 4 5 6 7 8 9 10

Remaining Reserves 90,0 81,0 73,4 66,8 61,3 56,6 52,6 49,2 46,3 43,9

Production Level 9,0 7,7 6,5 5,5 4,7 4,0 3,4 2,9 2,5 2,1

Variable Op Cost Rate 10,3 10,6 10,8 11,0 11,2 11,4 11,5 11,6 11,7 11,7

Oil Price 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0

Revenues 225,0 191,3 162,6 138,2 117,5 99,8 84,9 72,1 61,3 52,1

Production Cost (98,0) (86,1) (75,5) (66,1) (57,7) (50,3) (43,9) (38,4) (33,6) (29,5)

Cash Flow 127,0 105,1 87,0 72,1 59,7 49,5 40,9 33,7 27,7 22,7

Profit Sharing (31,8) (26,3) (21,8) (18,0) (14,9) (12,4) (10,2) (8,4) (6,9) (5,7)

Net Cash Flows 95,3 78,8 65,3 54,1 44,8 37,1 30,7 25,3 20,8 17,0

PV of Cash Flows 388,7 408,2 328,5 262,2 206,7 160,3 121,3 88,3 60,5 37,0 17,0

E(divest option) 7,35 9,38 P(Divest) 38,78 %

E(buyout option) 3,81 4,86 P(Buyout) 41,56 %

E(both options) 11,16 14,24 P(Divest or Buyout) 80,34 %

Options valuation by the Monte Carlo method for OU processes with geometric volatility 

Year 0 1 2 3 4 5 6 7 8 9 10

Remaining Reserves 90,0 81,0 73,4 66,8 61,3 56,6 52,6 49,2 46,3 43,9

Production Level 9,0 7,7 6,5 5,5 4,7 4,0 3,4 2,9 2,5 2,1

2,327 2,348 2,366 2,381 2,394 2,409 2,421 2,432 2,441 2,449

Variable Op Cost Rate 10,3 10,5 10,7 10,8 11,0 11,1 11,3 11,4 11,5 11,6

3,208 3,198 3,191 3,184 3,179 3,184 3,189 3,193 3,196 3,199

Oil Price 24,7 24,5 24,3 24,1 24,0 24,2 24,3 24,4 24,4 24,5

Revenues 222,5 187,4 158,0 133,5 112,9 96,5 82,4 70,3 59,9 51,1

Production Cost (97,3) (85,1) (74,3) (64,8) (56,5) (49,4) (43,2) (37,8) (33,2) (29,1)

Cash Flow 125,2 102,3 83,7 68,7 56,4 47,1 39,2 32,5 26,8 22,0

Profit Sharing (31,3) (25,6) (20,9) (17,2) (14,1) (11,8) (9,8) (8,1) (6,7) (5,5)

Net Cash Flows 93,9 76,7 62,8 51,5 42,3 35,3 29,4 24,3 20,1 16,5

PV of Cash Flows 375,5 394,3 315,4 250,6 197,2 153,0 116,2 85,0 58,4 35,8 16,5

E(divest option) 8,08 10,31 P(Divest) 39,79 %

E(buyout option) 3,50 4,47 P(Buyout) 40,65 %

E(both options) 11,58 14,78 P(Divest or Buyout) 80,44 %

Options valuation by the Monte Carlo method for Model 1 processes


