
Scheduling Drilling Processes With Petri

Nets

Nejm Saadallah

Thesis submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor (Ph.D.)

August 12, 2013

ISBN:978-82-7644-542-8
PhD: Dr avh. Nr 201
ISSN: 1890-1387

Dedicated to Nadia, Teo and Daria

Abstract

Safety issues in drilling are related to two facts: Wells are becoming
more complex, and manually piloting a drilling rig is a difficult task
which requires highly skilled personnel. Consequently, improving
safety is conditioned on a better anticipation of the well behaviour,
and an easier way of operating drilling rigs.

On top of safety issues comes the drilling industry vision of
autonomous drilling control systems. This vision aims at realizing
a drilling control system, which not only is capable of executing a
drilling program but can also automatically respond to incidents.
However, we need to overcome a number of challenges before the
autonomous drilling vision comes true.

In this thesis we aim to address the following challenges: First, we
need to provide a system component which guaranties a safe control
of the rig. That is, any control operation that can be performed has
to be legal. Such a component is called control supervisor.

Second, we need to provide a capability for handling incidents.
This includes processes that can monitor the well dynamics and
trigger actions to cope with eventual incidents. Such processes are
called reactive processes.

Third, because reactive processes could trigger conflicting actions,
we need a mechanism to coordinate them. We call such a mechanism
reactive process scheduler.

Realizing a control supervisor has its foundation in the Discrete
Event System (DES) paradigm. The main problem we address in that
context is to provide a DES model that captures the dynamics of the
rig, and which can be checked for correctness.

Realizing a reactive process scheduler is related to obtaining an

3

4

emergent behaviour out of basic ones. A basic behaviour is associated
to every reactive process, and the task of a reactive process scheduler is
to coordinate those reactive processes in order to obtain a satisfactory
behaviour of the overall system.

The main contributions of this thesis are:
1. Bringing to light some hidden challenges related to drilling

control systems.
2. Including two system components to the existing drilling control

system architecture: A control supervisor, and a reactive process
scheduler.

3. A Petri net class to model the control supervisor which proper-
ties can be fully analysed.

4. A theoretical approach for modelling reactive processes and
their scheduling.

All in all, this thesis aims to not only ease the development of safer
drilling systems, but also to take a step towards the more ambitious
vision of autonomous drilling.

Preface

This thesis is submitted in partial fulfilment for the degree of
Philosophiae Doctor (Ph.D.) at the University of Stavanger (UiS).
The research has been carried out at the Department of Electrical
Engineering and Computer Science, and the International Research
Institute of Stavanger (IRIS).

This research was funded by the joint industry project Au-
toConRig, involving the following participants: National Oilwell
Varco (NOV), Statoil, Baker Hughes, Computas AS, Det Norske
Veritas (DNV), International Research Institue of Stavanger (IRIS),
University of Stavanger (UiS) and University of Oslo (UiO).

Readership

This thesis aims at improving existing drilling control systems using
knowledge and theory from the Discrete Event System (DES) field in
general and Petri nets in particular. Even if the thesis introduces most
of the used concepts, its full appreciation requires a good background
in DES formal methods, and some knowledge of drilling.

5

6

Acknowledgements

I would like to take this opportunity to thank a number of people
who have helped me completing this thesis.

First of all, I would like to thank my thesis advisor Professor
Hein Meling. Without your guidance this thesis would not have been
possible. Thank you for being generous with your time and for sharing
your knowledge and experience with me.

Thanks to Professor Reggie Davidrajuh, for being at the same time
a tough, and a kind supervisor. I owe you a big thank for directing
me into the wonderful domain of Discrete Event Systems.

Thanks to my friend and colleague Dr.Benoit Daireaux for accept-
ing to supervise this thesis despite an already overloaded every day.
Your advices have truly influenced this thesis, I thank you for that.

I would like to thank Associate Professor Slawomir Samulej,
Professor Lars Kristensen and Associate Professor Erlend Tøssebro
for taking the time to serve on my dissertation committee.

Thanks to Eric Cayeux for his invaluable advices, and for sharing
his knowledge with me. Thanks to the Drilling and Well Modelling
group leader Helga Gjeraldstveit for her encouragements. Thanks to
all may colleagues at IRIS and UiS for contributing to a joyful working
environment.

Thanks to all the project participants of AutoConRig: National
Oilwell Varco, Statoil, Baker Hughes, Det Norske Veritas, Computas
AS, IRIS, UiS and UiO. In particular, I wish to thank Henning
Jansen for including this PhD into the AutoConrig project, Jens
Ingvald Ornaes for following my progress, Professor Roar Fjellheim
and Professor Chunming Rong for all their advices.

Thanks to Elisabeth Fisk̊a from the Department of Electrical

7

8

Engineering and Computer Science for all kinds of administrative
help.

I would like to thank all my friends and family members who
supported me in any respect during this period.

Finally, and most of all thanks to my lovely wife Dasha, without
whom I would have neither begun nor finished this thesis.

Contents

Abstract 3

Symbols And Abbreviations 23

I Overview of Research 1

1 Introduction 3
1.1 Motivation . 4
1.2 Objectives . 8

1.2.1 Safe Machine Control 8
1.2.2 Safe Well Control 9
1.2.3 Plan Execution 9

1.3 Contributions . 10
1.4 Outline . 11

2 Introduction to Drilling 13
2.1 The Basics of Drilling 13
2.2 High-Level Drilling Operations 16
2.3 Drilling and Safety . 19
2.4 Existing Systems . 21

3 Enabling Autonomous Drilling Control 25
3.1 Introduction . 25
3.2 System Components 27

3.2.1 Command Controller 28
3.2.2 Safety Process Scheduler 30

9

10 CONTENTS

3.3 Chapter Summary . 31

II Theoretical Foundation 33

4 Literature Review 35
4.1 Introduction . 35
4.2 Discrete Event Systems 36
4.3 Supervisory Control . 37
4.4 Reactive Systems . 39
4.5 Petri Nets . 40

4.5.1 Automata and Petri Nets 41
4.5.2 Grafcets and Petri Nets 42
4.5.3 Process Algebra and Petri Nets 43
4.5.4 Petri net Classes 45

4.6 Emergent Behaviour 48

5 Petri Nets 51
5.1 Introduction to Petri Nets 51
5.2 Basic Definitions . 54

5.2.1 P/T Nets . 54
5.2.2 P/T net Example 55
5.2.3 Transition Firing and Sequences 56
5.2.4 Transition Firing Example 57

5.3 P/T Nets Problems and Analysis 57
5.3.1 Reachability Graph 58
5.3.2 Coverability Graph 60
5.3.3 Coverability Graph Example 61
5.3.4 Boundedness Detection 62
5.3.5 Deadlock Detection 63
5.3.6 Marking and Sub-Marking Reachability 64
5.3.7 Path . 66
5.3.8 Home Marking and Reversibility 67
5.3.9 Transition Liveness and Quasi-Liveness 68

5.4 P/T Nets Extended With Inhibitor Arcs 70
5.4.1 Definitions . 70
5.4.2 Analysis . 71

CONTENTS 11

5.5 Chapter Summary . 72
5.6 Algorithms . 74

6 Place/Transition nets with Inhibitor Arcs 77
6.1 Introduction . 78
6.2 Turing Equivalence . 79
6.3 Coverability Graph Problem 82
6.4 Cohesive Place/Transition Nets with Inhibitors 85
6.5 Monotonicity of Cohesive PTI Nets 88
6.6 Cohesive PTI Coverability 90
6.7 Analysis of Cohesive PTI 92

6.7.1 Boundedness 93
6.7.2 Deadlock . 93
6.7.3 Marking and Sub-Marking Reachability 94
6.7.4 Path . 96
6.7.5 Home Marking and Reversibility 97
6.7.6 Transition Liveness and Quasi-Liveness 97

6.8 Mutually Inhibited Cohesive PTI Nets 99
6.9 Monotonicity of Mutually Inhibited CPTI 101
6.10 Analysis of Mutually Inhibited CPTI 103

6.10.1 Reachability in MICPTI 103
6.10.2 Path Problem for MICPTI 104
6.10.3 Home Marking and Reversibility 112
6.10.4 Transition Liveness and Quasi-Liveness 112
6.10.5 An Example . 112

6.11 Chapter Summary . 114
6.12 Proofs . 115

6.12.1 CPTI Proofs 115
6.12.2 MICPTI Proofs 118

6.13 Algorithms . 120

7 Reactive Processes 125
7.1 Introduction . 125
7.2 Basic Notions . 128

7.2.1 Goal . 129
7.2.2 Relation Between Goals 130

7.3 Reactive Processes and Bounded Nets 131

12 CONTENTS

7.3.1 Elevator Example 132

7.3.2 Short Interpretation 133

7.4 Reactive Processes And MICPTI Nets 134

7.4.1 Determining Goals 136

7.4.2 Determining Relation Between Goals 136

7.4.3 Feasible Path 139

7.5 Scheduler Problem . 139

7.6 Scheduling Policies . 141

7.6.1 Basic Scenario 142

7.6.2 First-In-First-Out 142

7.6.3 Priority . 145

7.7 System Realisation . 148

7.7.1 Case: Garbage Transport System 149

7.7.2 Petri net model 150

7.7.3 Processes and goals 151

7.7.4 Simulation result 153

7.8 Chapter summary . 155

7.9 Algorithms . 158

8 The Software Packages 165

8.1 Introduction . 165

8.2 Basics . 167

8.3 Code For CPTI Analyses 170

8.3.1 Coverability Graph 171

8.3.2 Boundedness 171

8.3.3 Deadlock . 171

8.3.4 Transition Liveness 171

8.4 Code For MICPTI Analyses 176

8.4.1 Marking Reachability 176

8.4.2 Characteristic Graph 177

8.4.3 Reversibility . 178

8.4.4 Finding Paths 179

8.5 Code For Goal Analyses 181

8.6 Chapter Summary . 183

CONTENTS 13

III Application 185

9 Drilling Control System 187
9.1 Introduction . 187
9.2 The Pipe Handling Mode 189

9.2.1 The Power-Slips 192
9.2.2 The Elevator 192
9.2.3 The Draw-works 194
9.2.4 Rack Arm . 195
9.2.5 Iron roughneck 196

9.3 Analysing the Pipe Handling Model 196
9.3.1 General Properties 196
9.3.2 State properties 197
9.3.3 Transition properties 198
9.3.4 Transition Labelling 199

9.4 Modelling the Operational Mode 201
9.4.1 Using MICPTI nets 202
9.4.2 The Operational Model 202

9.5 Operational Model Analysis 203
9.5.1 General Properties 203
9.5.2 State Properties 203
9.5.3 Transition properties 205
9.5.4 Transition Labelling 206

9.6 Assisted Control . 207
9.6.1 Assisting Processes 208
9.6.2 Simulation results 211

9.7 Autopilot . 214
9.7.1 Planned processes 214
9.7.2 Unplanned processes 218
9.7.3 Drilling Program Scenario 218
9.7.4 Simulation Results 220

9.8 Chapter Summary . 221

IV Conclusions 225

10 Conclusions and Further Work 227

14 CONTENTS

List of Publications 231
10.1 Relevant . 231
10.2 Less Relevant . 231

List of Figures

2.1 Oil drilling rig . 14
2.2 Common Drilling Control 22
2.3 State of the art Drilling Control Setup 22

3.1 Current system architecture 26
3.2 Extending the current architecture system 28

4.1 Basic P/T net with inhibitors 46
4.2 An example MICPTI net 47

5.1 P/T net with weighted arcs 52
5.2 P/T net model of an espresso machine 56
5.3 Transition firing illustration 58
5.4 Reachability graph of Figure 5.2 59
5.5 Illustration of the coverability algorithm 62
5.6 A bounded P/T net with deadlock 64
5.7 unbounded P/T net with deadlock 64
5.8 Coverability and marking reachability 66
5.9 Transition liveness and quasi-liveness 69
5.10 An unbounded P/T net with inhibitor arcs 71

6.1 Part of a rig PTI . 80
6.2 Registry machine using PTI 80
6.3 A PTI net representing a program 81
6.4 Bounded PTI net . 84
6.5 Unbounded PTI net 84
6.6 Primitive systems nets 86
6.7 Flat versus circular elementary structures 87

15

16 LIST OF FIGURES

6.8 CPTI net versus none CPTI net 88
6.9 A CPTI net and its corresponding coverability graph . 91
6.10 Bounded CPTI net . 94
6.11 Unbounded CPTI net 95
6.12 CPTI nets and deadlock markings 96
6.13 The problem of find a Path in CPTI nets 98
6.14 T −monotonicity vs S −monotonicity 100
6.15 The S −monotonicity is satisfied 100
6.16 MICPTI and S −monotonicity 102
6.17 MICPTI net and the path problem 106
6.18 Coverability graph of MICPTI net from Fig 6.17 107
6.19 Characteristic graph of MICPTI net from Fig 6.17 . . . 108
6.20 Characteristic graph of MICPTI net from Fig 6.1 . . . 113
6.21 Marking m = [1 0 1] is covered but not reachable . . . 118

7.1 Reactive processes domain 128
7.2 The Four relations between goals 130
7.3 Elevator model . 132
7.4 Goals on MICPTI nets 135
7.5 Reactive Process Elements 140
7.6 Non Preemptive FIFO 145
7.7 Preemptive FIFO . 146
7.8 Non Preemptive Priority 147
7.9 Preemptive Priority . 148
7.10 Process execution schema 150
7.11 Garbage Machine Schematic 150
7.12 MICPTI net of garbage system 152
7.13 Simulation results . 156

8.1 An overview of the simulation tool 166
8.2 MICPTI net of garbage system 181

9.1 Two components . 188
9.2 Pipe Handling model 191
9.3 Power-slips Petri net model 192
9.4 Elevator Petri net model 193
9.5 Draw-works Petri net model 194

LIST OF FIGURES 17

9.6 Star Racker arm Petri net model 195
9.7 Iron-roughneck Petri net model 196
9.8 Ambiguity between transitions 200
9.9 No ambiguity between transitions 200
9.10 Top-drive and power slips modelled using MICPTI . . 202
9.11 Operational model for each tool 204
9.12 Operational model relating the sub-models 205
9.13 Control panel in operational mode 208
9.14 Control panel in pipe handling mode 209
9.15 Operational mode in assisted drilling 215
9.16 Pipe handling mode in assisted drilling 216
9.17 Operational mode in auto drilling 222
9.18 Pipe handling mode in auto drilling 223

18 LIST OF FIGURES

List of Tables

5.1 P/T definition example 55
5.2 Summary of P/T net properties 73

6.1 MICPTI path experimental results 111

7.1 Relations between the Five goals 134
7.2 Goals and extended markings 137
7.3 Relations between the Five goals in MICPTI 138
7.4 An illustrative scheduling scenario 143
7.5 Garbage system variables 151
7.6 Garbage system process definitions and goals relations 154

8.1 Basic Petri net code 168
8.2 Random token game 169
8.3 Checking CPTI Code 170
8.4 CPTI Coverability graph Code 172
8.5 Code for CPTI Boundedness 173
8.6 Code for CPTI deadlock markings 174
8.7 Code for CPTI deadlock transition 175
8.8 Checking MICPTI Code 176
8.9 Checking reachability in MICPTI 177
8.10 Characteristic graph in MICPTI 178
8.11 Reversibility of MICPTI 179
8.12 Path in MICPTI . 180

9.1 Pipe handling events and control variables 190
9.2 General properties of the pipe handling model 197
9.3 State specific rules . 198

19

20 LIST OF TABLES

9.4 Mapping transitions to labels (Control components) . . 201
9.5 Places and transitions for the operational mode 203
9.6 General properties of the operational model 206
9.7 State specific rules . 206
9.8 Commands and sensors 210
9.9 Processes and goals in assisted control 212
9.10 Planned processes definition 218
9.11 Unplanned processes definition 219

List of Algorithms

1 Finding the Reachability graph of a P/T net 74
2 Finding the Coverability graph of a P/T net 75
3 This program adds the content of register R2 to R1 . . 81
4 Determining whether a net is CPTI 120
5 Finding the Coverability Graph of a CPTI net 121
6 Determining if a net is a MICPTI net 121
7 Finding Characteristic graph of a MICPTI net 122
8 Finding a Path between two markings of a MICPTI net 122
9 Find Firing plan . 123
10 Find Characteristic path 124
11 A goal g, a marking m outputs m′ satisfies g 158
12 Determine whether A ⊆ B A and B are sets of markings159
13 Determine A ∩ B, where A and B are sets of markings 159
14 Determine

⋂
Θ, where Θ is a set of sets of markings . . 160

15 Feasible path between a goals 160
16 Deciding whether a reactive process runs or waits . . . 161
17 FIFO Scheduling Algorithms 162
18 Priority based Scheduling Algorithms 163

21

22 LIST OF ALGORITHMS

Symbols And Abbreviations

•p pre-transition of p

∃ there exists

∀ for all

≤ m ≤ m′ stands for m′ covers m

N the set of Natural numbers

ω very large number

σ Sequence of transitions

•t pre-place of t

◦p set of inhibited transitions by p

◦t set of inhibiting places of t

a ∈ B element a in set B

A ⊂ B A is subset of B

CCS Calculus of Communicating Systems

CES Set of circular elementary structures

ces circular elementary structure

CPN Coloured Petri nets

CPTI Cohesive P/T nets with inhibitors

23

24 LIST OF ALGORITHMS

CSP Communicating Sequential Processes

DES Discrete Event System

E Set of Edges

ES Set of elementary structures

es elementary structure

FES Set of flat elementary structures

fes flat elementary structure

FIFO fist in first out

gi goal i

Gm set of goals satisfied by m

I set of inhibitor arcs

m Petri net marking

m0 initial marking

mi Petri net marking i

Mω Set of extended markings

MEX mutual exclusive relation

Mgi set of markings satisfying gi

MICPTI Mutually Inhibited Cohesive P/T nets with inhibitors

MINC mutual inclusive relation

P the set of Petri net places

P/T Place Transition nets

p• numbers of tokens of p at making m

LIST OF ALGORITHMS 25

p• post-transition of p

pi Petri net place i

P INC partial inclusive relation

proci process i

PT the name of the quadruple defining P/T nets

PTI Place Transition net extended with inhibitor arcs

R(m) reachable markings from m

SFC Sequential Functional Chart

T Petri net transition set

t• post-place of t

ti Petri net transition i

T INC partial exclusive relation

V Set of Vertices

26 LIST OF ALGORITHMS

Part I

Overview of Research

1

Chapter 1

Introduction

Drilling technology has seen great advances over the past two decades,
and as the world’s energy demand continues to grow, large strides will
be made for further advancement. Drilling complicated wells with
lengths beyond 7 km have become common practice [17]; something
that were unthinkable only a few years ago. Finalized in May 2008,
the BD-04A well measures 12.3 km long with a 10.9 km horizontal
section, and placed in an oil reservoir spanning only six meters [29].

Nevertheless, drilling a well remains dangerous and costly. For
example, drilling a well in the North Sea may take up to 60 days with
a typical rig rental of 500.000 dollars per day [125]. Hence, a major
contributor to the costs of realizing a well is the daily rig rental. Thus
to reduce costs, the obvious target is to reduce the non-productive
time. It is even more important to reduce the risk of incidents as
these tend to increase with the well’s complexity.

Even if cost and safety are major challenges, the drilling indus-
try remains optimistic about the future, because overcoming these
challenges enables a broader application of drilling. Among these
applications, the geothermal energy is the most promising [127],
because drilling deeper at lower costs implies higher energy conversion
efficiency [82]. Second, the remaining oil and gas resources are found
in areas with rough and stormy weather, which implies a higher risk of
incidents. Third, the developing CO2 storage technology also implies
drilling a well [55].

These drilling applications are pushing the industry towards the

3

4 1 1. INTRODUCTION

ambitious vision of autonomous drilling. We define autonomous
drilling as the ability of a drilling control system to run a drilling plan
without damaging the rig or causing any hazardous well incidents.

In state-of-the-art drilling systems, the drilling process is mainly
handled by a driller that operates the rig machinery through a
drilling control station. The rig machinery is in turn composed of
a multitude of devices that are largely operated independently by the
driller. Hence, coordination between the different devices is generally
entrusted to the driller’s abilities and experience. Moreover, the
driller performs manoeuvres based on input from sensory observa-
tions. Interpreting these observations can be very intricate, making
it difficult to identify the proper next manoeuvre, and may eventually
cause an incident [73, 76, 42]. In this thesis we consider two types:
well incidents and machine control incidents.

A well incident is usually caused by applying wrong drilling
parameters, such as a too high flow-rate, or a too high drill-string
velocity, which can, not only fracture the formation but also cause
a gas kick. A machine control incident occurs when the rig is not
correctly operated. For example, releasing the drill-string, before
activating the power-slips (used to suspend the drill-string), causes
the drill-string fall into the well.

Safety in drilling refers to machine control safety and well
safety [26], where the first aims to avoid machine control incidents,
and the second to avoid well incidents. In order to improve
machine control safety, piloting a rig has to become easier. As for
improving well safety, we need to anticipate well incidents, and trigger
appropriate responses to handle them.

We consider that guaranteeing a safe machine control, and en-
abling automatic responses to well incidents are necessary conditions
for achieving the autonomous drilling vision. These conditions will
be addressed in this thesis.

1.1 Motivation

Traditionally, the main challenge of the drilling discipline is to realise
long reaching wells. Long wells, especially those with long horizontal

1.1. MOTIVATION 5

sections are difficult to drill, because they impose significant me-
chanical and hydraulic constraints. In the planning phase, drilling
engineers must answer whether the target depth can be reached, and
how to reach it. For that, they need physical models, software tools
using those models, and sufficiently powerful drilling rigs.

Today, in addition to reaching the target depth, planning a well
requires costs analysis, safety analysis and alternative plans.

The result of the planning phase is a drilling plan for the
drilling crew to use. A drilling plan includes information about the
characteristics of the drilling fluid, the planned trajectory of the well,
the casing sections, the type of drill-string, drilling parameter under
different conditions etc.

When drilling a well, the driller executes the drilling plan, and
eventually reach the target depth. Because a drilling plan cannot
account for all possible situations, the drilling crew is supported
by a monitoring team of engineers whose main task is to estimate
the well conditions and suggest actions in response to changing well
conditions. Typically, when the friction in the well increases, the
driller should adjust the flow rate or the rotational speed based on
inputs from the monitoring team. About ten years ago, these teams
were located on the rig, but today they usually reside in Drilling
Operation Centres. These centres run 24/7, and monitor ongoing
drilling operations in real-time using dedicated software tools called
Drilling Decision Support Systems [41, 42].

Some incidents require immediate actions, hence, the driller
can not always rely on the monitoring team. This issue has
motivated the development of drilling control systems that limit
the drilling parameters available to the driller based on the well
conditions. These are usually referred to as drilling-by-wire-systems
(or safe-guarding-systems). The idea behind drilling-by-wire-systems
is to enforce smooth drilling operations avoiding well incidents, and
some of these systems are already deployed offshore [76, 77, 41, 42,
50, 115].

The challenges of the drilling-by-wire-systems are mainly related
to their well models. Improving those models results in a high
confidence when limiting drilling parameters such as rotational and
axial velocities. However, drilling-by-wire-systems do not implement

6 1 1. INTRODUCTION

automated responses to well incidents. That is, the rig control is still
left to the driller.

From the innovation of drilling-by-wire-systems and Decision
Support Systems emerged drilling simulators [43]. The objective
of these is to provide a realistic drilling environment and generate
simulated well incidents in order to train drillers on a rapid assessment
and reactions to dangerous situations.

Despite the good results from drilling-by-wire-systems, there is
hesitation in the industry to take one step further and implement
automated responses. For example, if a situation that requires an
immediate activation of the mud pump occurs, today’s systems can
in the best case generate alarms, while it is up to the driller to
respond to those alarms or to disregard them. The reason for this
hesitation is that there is no known approach that can automatically
generate consequent actions for well incidents without compromising
machine safety. So, before taking this step, machine safety must be
guaranteed. Thus, when taking a step towards autonomous drilling,
machine safety and well safety become even more important.

Several research and industrial initiatives are working towards the
autonomous drilling vision. One such initiative is the Continuous
Motion Rig (CMR) [91, 90], which aims at reducing drilling operation
time, and providing better well stability. CMRs differ from existing
rigs in the way they handle pipe connections. When running the
drill-string down the well on a conventional rig, the downward motion
needs to be stopped, the drill-string needs to be suspended using
the power-slips, and the mud pump needs to be turned off. These
combined can have undesired side effects on the conditions in the well.
In contrast to conventional rigs, CMRs aims to enable attaching new
pipe segments while maintaining the downward motion, which is also
combined with continuous fluid circulation when needed. That is,
there is no need to activate power-slips or to turn off the mud pump.
As a result, operations are expected to run smoothly and continuously
without interruptions. This leads to faster drilling and improved well
integrity.

The Seabed Rig project [89, 8] is another initiative towards
autonomous drilling. The objective of the Seabed Rig project is
the construction of a new generation drilling rig that is placed on

1.1. MOTIVATION 7

the sea-bed and operated from an offshore support vessel. The rig
will be equipped with appropriate cameras, and sensors for providing
sufficient situation awareness to the driller. Because the rig will be
placed on the sea-bed, new and more robust drilling equipment must
be developed. Since human interventions will be difficult, such a
system must have the ability to handle incidents.

Another initiative towards the autonomous drilling vision is the
AutoConRig project [104, 105], which is a joint industry project
with the following participants: National Oilwell Varco (NOV),
Statoil, Baker Hughes, Computas AS, Det Norske Veritas (DNV),
International Research Institue of Stavanger (IRIS), University of
Stavanger (UiS) and University of Oslo (UiO). The AutoConRig
project has two main objectives [105]:

1. The primary objective of this project is to analyze, develop and
test an autonomous and semi-automated drilling control system
for Oil and Gas Drilling in High North areas, where unmanned
drilling rigs placed on the sea bottom can be used to eliminate
constraints from extreme conditions. The outcome of the main
objective will be used to demonstrate an automated tripping
sequence where predictive control parameters from an advanced
well model is executed by an autonomous control system. The
automated tripping sequence takes into account characteristics
and constraints in the well, avoiding damage to the well and at
the same time optimizing the tripping sequence.

2. The secondary objective for the project is to standardize commu-
nications protocols for drilling control systems and a framework
for advanced software agents, which is a prerequisite to fulfil the
integration scope of the primary objective.

This thesis is part of the AutoConRig project, and addresses mod-
elling aspects that must be considered in order to obtain such an
automated tripping sequence. As for the role of software agents, this
thesis proposes a definition of their action domain. However, we shall
use the term reactive process rather than agent.

This thesis addresses safety from two distinct, yet interrelated
aspects. One focuses on machine control safety by keeping the rig

8 1 1. INTRODUCTION

dynamics within the set of acceptable states. The other focuses on
well safety by keeping the well dynamics within the set of acceptable
states.

Obtaining machine control safety requires a model that captures
the rig dynamics. We abstract the rig dynamics to the domain of
Discrete Event Systems, because they offer suitable model checking
capabilities.

To obtain well safety, we propose an approach that aims at
achieving satisfactory emergent behaviour out of basic processes. We
call those basic processes for reactive processes, where their role is to
observe key aspects of the well dynamics, and trigger actions using
the rig.

1.2 Objectives

The vision of this thesis is to propose an approach for executing a
drilling plan without violating the rig legal behaviour or damaging the
well. To move towards that vision, we define three main objectives:
Safe Machine Control, Safe Well Control, and Automated Plan
Execution.

1.2.1 Safe Machine Control

The first objective of this thesis is to propose a method for modelling
drilling control systems that guarantees a safe control of the rig
machinery. For that, we need to find an appropriate domain of
abstraction that best fits our needs. This issue is discussed in
Chapter 4 which can be summarised in: Discrete Event Systems
(DES) [25] and their modelling by means of Petri nets [108].

Modelling DES with a Petri net formalism has the following
attractive characteristics:

1. Petri nets provide an explicit model for the system dynamics.

2. Many properties of the modelled system can be validated using
model checking [107, 99].

1.2. OBJECTIVES 9

3. Petri nets can provide a means for systematically determining
sequences of actions.

The first reason is always true, the two others are true for some classes
of Petri nets only. That is, not all Petri net models can be checked
for behavioural properties. Because we are faced with such issues
when attempting to capture the rig dynamics in a Petri net model,
we propose a specific class that matches our needs. This class is
described in Chapter 6.

1.2.2 Safe Well Control

The second objective of this thesis is to enable reactive processes to
trigger actions for handling well incidents. Capturing the physical
behaviours of the well is out of the scope of this thesis. However,
combining partial observations of the well with appropriate responses
can still lead to a satisfactory global behaviour.

This second objective assumes that a safe machine control is
obtained (the first objective). It particularly assumes that we have a
method for finding sequences of actions between a source and target
state. Under this assumption, the problem becomes to model reactive
processes such that they do not conflict with each other. That is, given
that a process has triggered, can another one also trigger without
stopping the first one? Answering this question provides a foundation
for designing a scheduler for reactive processes. This issue is addressed
in Chapter 7.

1.2.3 Plan Execution

The third objective of this thesis is to propose an approach for an
automated execution of a drilling plan. This objective builds on the
two previous ones, and attempts to stretch towards our vision.

To reach this objective we assume a safe machine control, and a set
of reactive processes capable of handling well incidents if they occur.
On top of those two concepts we propose an approach for executing
segments of drilling plans.

10 1 1. INTRODUCTION

1.3 Contributions

A Formalisation of Drilling Control Safety

Existing drilling control systems are usually presented at a high level,
providing little or no view into fundamental control system problems.
This thesis formalises key issues related to drilling, and points at
fundamental aspects that need to be addressed before we can move
towards autonomous drilling. We emphasise two facts:

1. The well exhibits a complex behaviour which is in the best case
estimated through partial observations. This means, that a
precise control of the well dynamics is hard or even impossible
to obtain.

2. The rig is the tool by which the well is drilled and by which
drilling related problems are solved. This means that the rig
must be operated properly and that the rig dynamics must be
kept within the legal states.

In Chapter 3 we present issues related to drilling, and propose an
improvement to existing drilling control systems based on the above
mentioned facts. In Chapter 4 we present arguments for using Petri
nets as a modelling formalism.

A Subclass of Petri nets with Inhibitors

When modelling the dynamics of the rig in Petri nets, we found it
necessary to use inhibitor arcs. However, Petri nets with inhibitors
are problematic, because they are hard to analyse. As a contribution
to the field of Discrete Event Systems and Petri nets, we propose a
sub-class of Petri nets with inhibitors which can be fully analysed.
This class of Petri nets is presented in Chapter 6 and later on used
to model the rig dynamics in Chapter 9.

Reactive Processes on top of Petri Nets

Because the well behaviour is hard to capture in a precise model,
we use a strategy that uses partial observations in order to trigger
actions. In other words, we want to obtain a satisfactory behaviour
of the well using basic reactions to observations. In this contribution

1.4. OUTLINE 11

we propose a method for modelling reactive processes on top of Petri
nets. This method will be used to provide a process scheduler that is
capable of determining which reactive processes can take actions and
which have to wait (Chapter 7).

A Petri Net Model of a Drilling Control System

To demonstrate the usefulness of the above mentioned approaches,
we present a Petri net model of a rig, and a set of reactive processes
on top of that model. This is done is Chapter 9, where we first show
how the properties of the rig dynamics can be analysed. Second, we
show that we can obtain a satisfactory behaviour by combining an
appropriate set of reactive processes. Finally, we suggest an approach
for executing a plan and systematically handle incidents when they
occur.

1.4 Outline

This chapter has presented the motivation of this thesis, its objectives
and contributions.

Chapter 2 starts with an introduction to drilling, and drilling
related issues. It also gives an overview of existing drilling control
systems. Chapter 3 presents the limitations of existing drilling control
systems, and suggests improvements.

Chapter 4 gives an introduction to the different theoretical
domains of interest. It gives a short introduction to DES, Supervisory
Control and Reactive Systems, and relates them to our problem of
modelling the rig dynamics. This Chapter also explains our choice of
using Petri nets as modelling formalism for the rig control. Finally,
this chapter explains the concept of emergent behaviour.

Chapter 5 presents Place/Transition nets (P/T), and mainly
focuses on its analysis by means of state space exploration methods.
That is, using either a reachability graph for nets representing finite
systems, or coverability graph for nets representing infinite systems.
The objective of this chapter is to present the necessary definitions,
the benefits and limitations of P/T nets. This chapter can be viewed

12 1 1. INTRODUCTION

as background material for Chapter 6.
Chapter 6 presents our main theoretical contributions. It intro-

duces a new class of Petri nets extended with inhibitor arcs which
has interesting properties. In particular, this class of nets can model
some infinite systems, and can also model situations that P/T nets
fail to model. Another benefit of this class of Petri nets is that it can
be analysed for almost all the properties of interest.

Chapter 7 presents the concept of reactive processes. It gives
them a formal definition, shows how they can be modelled on top
of Petri nets. We then present a method for analysing the interaction
between reactive processes and show how a process scheduler can take
advantage of that analyses.

Chapter 8 presents our newly developed software package based
on the results from Chapter 7 and 6.

Chapter 9 presents a drilling control model that uses the above
mentioned concepts. It shows how our Petri net class can be used
to model the dynamics of the rig, and how the properties of that
model can be analysed to derive conclusions about the correctness of
the system. We also show how to use reactive processes to obtain
a satisfactory emergent behaviour of the overall system. Finally,
this chapter extends the use of reactive processes to represent an
execution plan. All-in-all this chapter demonstrates that under
some assumptions, our method can run an operation plan, cope
with incidents as they occur, and without violating control-specific
constraints.

Chapter 2

Introduction to Drilling

In this chapter we start by giving a short introduction to the physics
of drilling, how things usually work, and what should be avoided.
We also discuss existing systems role in addressing today’s drilling
problems.

2.1 The Basics of Drilling

We start with a short and informal introduction to drilling. Covering
the complete spectrum of the drilling field is not our goal. However,
we recommend the following [9, 35, 11]for the interested reader.

A drilling rig is a structure specially built for drilling wells. It
is composed of different devices, each of them designed to perform
a specific task. Figure 2.1 presents a schematic of the different rig
devices. The crow block (13 in the figure) is at about the hight of the
Derrick(14). The travelling block (11) is pulled up, and lower down
using the Drill line(12), which in turn is attached to the Draw-works.
The to drive (18) is connected to the drill-string (25) and attached
to the travelling block. The standpipe (8), the kelly-hose (9) and
the Goose-neck (10) constitute a flexible pipe, starting from the mud
pump (4) and ending at the top-drive. From an abstract perspective, a
drilling rig has three degrees of freedom, reflected in three subsystems:
rotation system, hoisting system, and fluid circulation system.

Drilling a well consists of putting the drill-bit in the earth, press

13

14 2 2. INTRODUCTION TO DRILLING

12

14

15

16

17

18

19

20

22
23
24 28

21

9

8 5

4 3

10

2 1

11

13

25 27 7 6

26

Legend:

 * 1. Mud tank

 * 2. Shale shakers

 * 3. Suction line (mud pump)

 * 4. Mud pump

 * 5. Motor or power source

 * 6. Vibrating hose

 * 7. Draw-works (winch)

 * 8. Standpipe

 * 9. Kelly hose

 * 10. Goose-neck

 * 11. Traveling block

 * 12. Drill line

 * 13. Crown block

 * 14. Derrick

 * 15. Monkey board

 * 16. Stand (of drill pipe)

 * 17. Pipe rack (floor)

 * 18. Swivel (Or top drive in orange)

 * 19. Kelly drive

 * 20. Rotary table

 * 21. Drill floor

 * 22. Bell nipple

 * 23. Blowout preventer (BOP) Annular

 * 24. Blowout preventers (BOPs) pipe ram & shear ram

 * 25. Drill string

 * 26. Drill bit

 * 27. Casing head

 * 28. Flow line

Figure 2.1: A simple illustration of an oil drilling rig. The figure is
obtained from [137] and is licensed under Creative commons [28]

it against the ground and rotate it. As the drill-bit smashes the
rock into cuttings, these must be removed continuously while rotating
the drill-bit. To move cuttings away from the bit, a special liquid
called drilling fluid (also called drilling mud) is pumped through the
drill-string into to the drill-bit to push away the cuttings and carry
them back to the surface. The drilling fluid flows through the drill-bit
via the bit nozzles (holes with small diameter), the fluid jets out, and
lifts the cuttings from the bottom of the well. The cuttings and the
fluid flow back to the surface via the annulus, which is the space
between the drill-string outer wall and the wall of the hole. Once at
the surface the drilling fluid is treated, discharged to the suction tank,
and pumped back down the drill-string to the well.

Another important role of circulating a drilling fluid is to keep the
well pressure between the fracturing and collapse pressure. That is,

2.1. THE BASICS OF DRILLING 15

the pressure inside the well should be less than the well fracturing
pressure, and more than the well collapse pressure. Because the
drilling fluid is the means by which the pressure in the well is
controlled, its properties must be carefully chosen.

The mud pump is connected to a rotating device called top-drive
via a rotary hose. The top-drive is responsible of rotating the
drill-string, and thus must have powerful built-in motors to obtain the
required torque to drill the rock. The top-drive is in turn suspended
to the travelling block which is elevated or lowered using the hoisting
system. In order to put pressure on the drill-bit the hoisting system
has to be lowered just enough to push to drill-bit, but not too much
to preventing the drill-string from buckling.

Fluid circulation, rotation and hoisting are what constitute the
basic mechanisms for not only drilling a well, but also for handling
well incidents. Examples of well incidents are: gas kick, stuck pipe,
pack off, hole collapse, formation fracturing etc. When a well incident
occurs, fast responses are usually required. Typically in form of
adjustments to flow-rate, rotational or axial velocity.

When drilling through a zone containing gas with a too light
drilling fluid, the gas can enter the well and migrate to the surface,
causing a so-called gas kick. A possible response to such a case is
to pump the fluid with sufficiently high flow-rate to increase the well
pressure and eventually push back the gas to the formation. However,
using a heavier mud, we run the risk of fracturing the formation
causing fluid losses. That is, the pumped fluid does not return back
to the surface, but is pushed into the formation surrounding the
drill-string. This situation is very undesirable because it can cause a
hole collapse, which would not only suspend the drill-string, but also
cause an uncontrolled kick.

An uncontrolled kick is also called a Blow out, and its occurrence
requires the activation of the Blow Out Preventer (BOP). The BOP
is a mechanical device capable of locking the well in order to contain
the kick. After the BOP is activated, the well is usually lost.

Other tools are also used in the drilling process, and are often
seen as utilities responsible for intermediate operations. For example,
connecting a new drill-pipe to the drill-string would require the
activation of the power slips, which is used to suspend the drill-string

16 2 2. INTRODUCTION TO DRILLING

and preventing it from falling into the well. Another tool is the
iron-roughneck which is responsible for applying the make-up or
break-off torque when connecting or disconnecting drill-pipes. There
is also a special valve called Internal BOP (IBOP), which is used
to prevent drilling fluid from falling on the drill floor. Typically, the
Internal BOP must be closed under pipe connection and opened when
the fluid is being pumped into the well.

2.2 High-Level Drilling Operations

In the drilling domain terminology, drilling operations are often
described at a high level; the most common ones will be described
in this section.

Tripping-in and out

Tripping-in is the process of running the drill-string down to the
bottom of the well. It consists of lowering the drill-string until
a certain distance from the drill floor (about 1 meter above the
drill-floor).The power slips are then activated to keep the drill-string
in suspension (avoiding its fall into the well). After that the top-drive
is disconnected from the drill-string, and elevated to a certain distance
above the drill floor (usually about 31 meters). A new stand (3
connected drill-pipes) is then brought to the well center in order to
connect it to the drill-string. Connecting a stand to drill-string is
done using the Iron rough neck which responsible for applying the
necessary make-up torque. The top-drive is then connected to the
drill-string.

This process is repeated until the drill-bit reaches the bottom of
the well. On the other hand, tripping-out consists of pulling the
drill-string out of the well in a reversed process.

Reaming and Back-reaming

Reaming and back-reaming aim at smoothing the hole. These are
usually performed after a stand (three connected pipes) has been

2.2. HIGH-LEVEL DRILLING OPERATIONS 17

drilled, because a newly drilled hole is not necessarily as smooth
as it should be. Reaming consists of slowly lowering, rotating and
circulating fluid through the drill-string. While back-reaming consists
of the same operations, but with the drill-string being pulled out
rather than lowered into the well.

The Drilling Operation

Drilling as an operation can start when the drill-bit has reached the
bottom hole. The key parameters here are the weight on the drill-bit,
the rotational velocity and fluid flow-rate. These parameters have
to be tuned depending on the well depth, the drilling fluid in use,
the type of rock being drilled in, and of course the geo-pressure
prognosis (fracturing and collapse pressures). The progress in drilling
is reported in a parameter called rate of penetration (ROP).

Friction Testing

A good estimation of the well friction is important when determining
the well conditions. A too high friction may indicate that cuttings are
being accumulated in the well, which will not only require more torque
to rotate the drill-string, but also increases the risk of fracturing the
well. A friction test is usually done after reaming, and consists of
pulling the drill-string, followed by a rotation of the drill-bit when it
is slightly above the bottom hole.

Hole Cleaning

A high well friction is often due to an accumulation of cuttings
in the well. Circulating these cuttings out is done by applying
an appropriate flow-rate. It is sometimes necessary to change to
another fluid with different properties, e.g one that has better cutting
transport capability.

18 2 2. INTRODUCTION TO DRILLING

Reciprocating

Leaving the drill-string without any motion can lead to a so called
differential sticking. Differential sticking occurs when a relatively
large drill string surface stays in contact with the formation, and that
the pressure in the well is higher than the formation pressure. For
this reason the drill-string needs to be kept in motion to avoid a long
contact with the well wall. Reciprocation is usually done by applying
an upward and downward motion of about 5 meters combined with a
drill-string rotation with low frequency (about 60 rpm).

Surveys Receiving

Slightly above the drill-bit, there is a special tool called Measurement
While Drilling (MWD). MWD measurements concern down hole pa-
rameters only, such as directional information, formation evaluation,
down-hole pressure and temperature.

At regular intervals, MWD data is sent from the bottom hole to
the surface. The data is sent using mud pulses that are generated by
the MWD tools, which in turn are decoded at the surface. The rate
at which these data is sent depends on the equipment, and variates
from 20 to 1.5 bps [135].

In contrast to MWD data, surface data concern measurements
taken at the surface, and are thus available at a much higher
bandwidth at Mbps scales.

Other Considerations

Above we have introduced what we consider to be the most common
drilling operations. It is clear that these operations are performed
using different sequences of basic operations. In fact depending on
the needs, one could include other high-level operations by describing
their corresponding sequences. However, what we would like the
reader to retain from this section is that, based on the conditions of
the drilling site, the well, or user’s needs, sequences of basic operations
must be performed. One of the issues treated in this thesis is an
approach for expressing high-level operations using basic ones.

2.3. DRILLING AND SAFETY 19

2.3 Drilling and Safety

There is no doubt that the wells that need to be drilled will be more
and more challenging. One of the fundamental questions that the
drilling industry has to answer is how to deal with well complexity
without compromising safety?

According to a study conducted by Petroleum Safety Authority
of Norway on the causes of kick incidents [109, 102], up to 15% of
the kicks where caused by human errors, and 13% were due to poor
detection. The report also points to other causes, such as poor well
design, equipment failure, or organisational issues. However, these
causes are not relevant for our work and will not be discussed further.

Machine Incidents

Machine incidents [73, 26] refer to those incidents caused by a system
dysfunction or human mistakes when operating the rig. Here are some
examples:

1. When connecting a new pipe to the drill-string, the power slips
needs to be activated in order to prevent the drill-string from
falling into the well. So, if the power slips are released before
the top-drive is connected, the drill-string will fall.

2. Collision with the crown block when pulling the drill-string,
which can cause objects to fall on the drill-floor.

3. Starting the mud pump before the top-drive is connected, or
when the IBOP is open, will spill mud on the drill-floor and
may be dangerous for the drilling crew.

4. Rotating the drill-string when the power slips are activated,
or activating the power slips when rotating may cause serious
damages.

According to [73, 26] machine control related incidents are generally
due to lost concentration, or poor communication between the drilling
crew members. To reduce these types of incidents one could require
highly skilled drilling crews, but in this thesis we aim to show that
machine related incidents can be avoided by the control system.

20 2 2. INTRODUCTION TO DRILLING

Well Incidents

Well incidents [73, 26] are those undesired events which are related
to the well conditions. It is difficult to obtain a precise map of the
actions that could cause particular incidents, or which incidents are
followed by others. Nevertheless, we list some of the common well
incidents and their believed causes below:

1. Stuck pipe: This incident is probably the most common under
drilling operations. The drill-string is considered stuck when it
is no longer possible to rotate nor to elevate it. The drill-string
can get stuck for different reasons such as differential sticking,
poor hole cleaning, complex well trajectory etc.

2. Fracturing: This incident happens when the fluid pressure
exceeds the fracturing pressure. Fracturing the well has the
immediate consequence of fluid losses, i.e. fluid is pushed into
the rock. Fracturing the well can also cause a kick.

3. Hole collapse: This incident can be seen as the reverse process
of formation fracturing. A collapse happens when the fluid
pressure is less than the collapsing pressure. In this case,
the rock will fall into the well, usually causing a stuck-pipe.
Collapsing the well means that fluid can not be circulated any
more, and the risk of a kick increases dramatically as it becomes
harder to control the kick without fluid circulation.

4. Kick: This incident happens when fluids; gas or oil enter the
well and migrate to the surface. Handling a kick depends on the
volume of the influx, the drilling fluid in use, and also the surface
equipment. A common response is to increase the drilling fluid
rate or its weight in order to increase the well pressure and
eventually control the influx. If the influx is too important,
some rigs are equipped with a so called flare. In that case, the
gas is canalised from the annulus via the annular chock up to the
flare for burning. However as mentioned earlier, the last barrier
for a kick is the BOP and its failure could lead to catastrophic
scenarios.

5. Pack-off: This incidents happens when the drill-string is not
totally stuck but can not be totally pulled or rotated. It can
be due to a small well collapse, accumulation of cuttings, or

2.4. EXISTING SYSTEMS 21

simply an object that has fallen into the well. If a pack-off is
not handled correctly it can cause a formation fracturing or a
stuck-pipe.

It is difficult to determine exactly the causes of the above mentioned
events. Drilling teams usually use their experience and specialised
software tools in order to asses the well conditions, identify critical
situation, and eventually come up with remedial actions.

Obtaining a precise control of the well dynamics requires not only
precise physical well models, but also that these models are fast and
precise in their computations. Starting from sensory observations,
one would like to estimate the well states that actually reflect the
observations. In this thesis we assume that the well dynamic is
partially observed by sensory data, but we do not assume that sensory
data reflect the complete knowledge of the well state. For example,
we may be able to tell that a kick has occurred, but we may not be
able to tell which actions have caused it, and where at the well depth
the influx happened.

2.4 Existing Systems

In Chapter 1 we presented some of the state of the art systems. We
did that from a wide perspectives to give the reader an overview of the
research and industrial initiatives in the drilling control field. In this
section we rather focus on existing approaches that are most relevant
to this thesis.

The current state of affairs in the field of drilling control system
seems to be dominated by two main approaches. The first approach,
illustrated in Figure 2.2, strictly targets an automated control of
individual devices that constitute the rig machinery. Today, almost
every rig device is controlled by the driller from the drilling control
station. Consequently, the role of the human task has been moved
from a painful and dangerous job on the drill-floor to a machine
steering kind of work. The main problems with today’s drilling
control system are directly related to the machine steering skills,
the concentration and analytic abilities of the driller. The driller
is required to operate different machines, follow a drilling program,

22 2 2. INTRODUCTION TO DRILLING

C ontrols
W hat next ?

A ny problem s ?

D rilling

P lan

-

M
achine

C
ontroller

Figure 2.2: Common Drilling Control

and above all understand what is going on in the well. Note that
the well state could have an influence on the machine steering. For
example, when drilling a well with narrow pressure margins (pore and
fracturing pressures), it is vital to move the drill-string in a smooth
movement. A rapid drill-string movement causes pressure pulses that
can go above fracturing or below the pore pressure, and thus causing
a well incident. The second approach, called drill-by-wire, aims at

C ontrols

S ensor data

W hat next ?

A ny problem s ?

D rilling

P lan

-

M
achine

C
ontroller

S afe guards

C alculator

U pdates

Figure 2.3: State of the art Drilling Control Setup

relieving the driller from the concern of the well, enabling the driller
to keep all the focus on the rig machinery. This approach is based
on sensing the environment and providing continuous feedback to the
control systems, as illustrated in Figure 2.3. The feedback information
is usually in the form of safe guards, such as maximum axial velocity

2.4. EXISTING SYSTEMS 23

and maximum rotational speed.
The Drilltronics system [76, 77, 50] is an implementation of this

approach. Here, the control is still left to the driller, but the action
freedom is reduced when there is a risk of damaging the well or the
rig. Thermo-hydraulic and mechanical models are fed with sensory
data to obtain appropriate control safe guards that account for the
well state. Typically, the drill-string velocity, rotational velocity, and
the mud flow-rate are limited in order to avoid well incidents like
formation fluid influx, hole collapse, formation fracturing, cuttings
accumulations etc.

Even though the drill-by-wire approach solves a significant prob-
lem, drilling a well remains dangerous and costly, and does not
enhance machine control itself. Machine control can still be improved
in order to reduce the risk of machine incidents as mentioned in
Section 2.3.

24 2 2. INTRODUCTION TO DRILLING

Chapter 3

Enabling Autonomous
Drilling Control

In Chapter 2 we presented some existing drilling control systems. In
this chapter we discuss their limitations and suggest directions to
improve them.

3.1 Introduction

In Chapter 2, we presented a type of drilling systems called drilling
by wire [76, 77, 50]. The drilling by wire systems rely on models
that estimate the dynamics of the well and generate operational safe
guards and alarms.

The architecture of drilling by wire systems is composed of
different components that are organized in abstract layers as shown
in Figure 3.1. The figure shows two sets of components: machine
operability, and well surveillance.

In machine operability components we find the drilling control
station which is the Human Machine Interface (HMI) used by the
driller to issue control commands. These commands are sent to
different device controllers via the command interface. Typically,
the driller chooses a target flow-rate, which is then sent to the mud
pump controller via the command interface. The mud pump controller
perceives the target flow-rate as a reference point and attempts to

25

26 3 3. ENABLING AUTONOMOUS DRILLING CONTROL

obtain it.

Figure 3.1: Current system architecture

In well surveillance components, we find alarm systems, and safe
guard calculators. The role of alarm systems is to analyse sensor
readings and generate alarms when critical situations are identified.
A level below alarm systems, we find safe guards calculators, which
also use sensor readings but this time to communicate the operational
margins to different device controllers via the command interface.
For example, the maximum flow-rate, and maximum drill-string
velocity could be dynamically sent to the pump and the Draw-works
controllers.

The promising results obtained so far suggest an extension of the
drill by wire technology, to obtain safer and more autonomous drilling
control systems. This can be done by identifying well-related incidents
as they occur, and generate immediate or remedial actions rather than
just safe guards or alarms. For example, when a gas kick is identified,
the drilling fluid should be circulated down hole in order to increase
the pressure and eventually contain the kick. Using generic terms,
there is a need to move from an alarm system to an automatic reaction
to incidents.

3.2. SYSTEM COMPONENTS 27

Unfortunately, allowing a system to execute operations on the
machine control requires significant functional integration efforts.
Returning to the gas kick example above, circulating the drilling
fluid is only possible under some conditions, namely: the top-drive
is connected to the drill-string and that the IBOP is opened. Thus,
the top-drive has to be lowered to the drill-string, and attached to it,
followed by a deactivation of the IBOP before the mud pump can be
started.

In other words, even if we could anticipate well incidents, we
cannot automatically react to those incidents. This is because to
obtain the desired reaction we may need to execute a sequence
of intermediate actions. However, today’s drilling control systems
cannot provide such action sequences. More precisely, existing drilling
control systems lack control supervision.

In the supervisory control field [75, 56, 70], a control supervisor
is defined as an instance capable of limiting the actions on a given
system to only those permissible. In today’s drilling control systems,
the supervisor is the driller, and he/she is free to choose which
operations to perform. That is, the driller is the one who can enforce
the legal control of the system.

In addition, different incidents could require conflicting reactions,
and could occur at relatively the same time. For example, a gas
kick requires the circulation of drilling fluid, while a pack-off requires
stopping the mud pump. To cope with such conflicts we introduce a
safety process scheduler component which main task is to coordinate
safety reactions.

To summaries today’s drilling control systems we can say that they
lack both control supervision and automated reactivity to incidents.

3.2 System Components

To cope with the limitations of existing drilling control systems, we
introduce two components to the architecture: A command controller
and a safety process scheduler which are shown in Figure 3.2. We
place the command controller between the control station and the
command interface. This component will act as a supervisor and

28 3 3. ENABLING AUTONOMOUS DRILLING CONTROL

Figure 3.2: Extending the current architecture system

makes sure that the issued commands obey a certain legal behaviour.
On the other hand, we place the safety process scheduler as part of the
well surveillance components. This scheduler has the responsibility
of regulating safety reactions when incidents occur. The command
controller and the safety process scheduler are discussed in the
following sections.

3.2.1 Command Controller

The main purpose of the command controller is to reduce machine
related incidents. Because these incidents are mainly due to a poor
controllability of the drilling equipment, the rig piloting needs to be
both easier and safer.

The command controller aims to provide supervisory control to
the drilling control station. That is, based on the actual state of the
rig; it computes a set of permissible operations and provides them to
the drilling control station.

We argued in Chapter 1 that our system can be abstracted to
the DES paradigm. However, the complete drilling control system

3.2. SYSTEM COMPONENTS 29

is a combination of a continuous system part and a DES part. In
this thesis, we are primarily interested in the DES part, where the
command controller is its realization.

To clarify this point, the DES part of the system involves those
actions that the driller takes, which in turn are of two types: on/off
actions, and level actions. For example, the power-slips activation is
an on/off type, while the mud pump flow-rate, or drill-string rotation
are level types.

From a DES perspective, the task of the driller can be assimilated
to assigning values to different control variables. The problem
becomes to always ensure a legal assignment of those variables. One
can thus say that the driller’s task is to evolve the system from one
state to another by means of actions, which is the domain of DES.

To realize the command controller component we need a DES
model that captures the behaviour of the rig. It should also be
possible to verify that the provided model satisfies certain properties.
Questions that one would like to answer about a system are typically,
whether some particular states could be reached? Whether a deadlock
could occur? Is the system live? Is the system finite or infinite? etc.
One of the problems we address is on how to obtain such a model.

When choosing a DES modelling formalism we have to consider
two concepts: The formalism modelling power and its decision power.
The modelling power describes the ability of a given formalism to
capture the dynamics of systems. The more the formalism can model
the higher is its modelling power.

On the other hand, the decision power describes the ability of a
given formalism to determine the properties of its models. That is,
the easier it is to analyse models of a given formalism the higher is
its decision power.

In general, there is a common agreement in the research commu-
nity, that the higher the modelling power of a given formalism the
lower is its decision power, and vice versa [107].

There exists a plethora of DES modelling formalism each with dis-
tinct benefits and drawbacks with respect to modelling and decision
power [107, 99]. The chosen formalism must offer sufficient modelling
power for capturing the rig dynamics, and sufficient decision power
for deciding model properties of interest such as deadlock, live-lock,

30 3 3. ENABLING AUTONOMOUS DRILLING CONTROL

reversibility, liveness etc.
In the different DES formalisms we find Petri nets [108] particu-

larly interesting. First, because they seem to fit well to our modelling
needs, since they can explicitly represent the relations between actions
and variable assignments. Second, because the Petri net theory is
rich and is well studied in terms of decision and modelling powers.
However, our choice of using Petri nets will be discussed further in
Chapter 4.

Unfortunately, and to the best of our knowledge, none of the Petri
nets classes today offer at the same time, sufficient modelling and
decision power for our problem. We therefore propose a new class of
Petri nets that answers our needs of capturing the rig dynamics in a
DES model.

3.2.2 Safety Process Scheduler

The main purpose of the safety process scheduler is to reduce well
incidents.

In Chapter 1, we mentioned that we seek to obtain a separation of
concerns between what can be done with a rig, and what the well can
support. More precisely, we seek a separation between the control
of the rig and the control of the well. This claim is based on the
following observations:

1. The basic functioning of the drilling rig could be captured using
a DES formalism such as Petri nets.

2. The well dynamics are often hard to model using DES abstrac-
tions, as they require continuous system modelling. When the
phenomena is well understood, physical models can be used. On
the other hand, when the phenomena is not well understood,
machine learning techniques are more common [116].

3. The multi-disciplinary aspect of the drilling industry is such
that the actor realizing the machine control system is not
necessarily the one predicting well incidents. This means that
solutions for incident prediction and management must be
integrated with the control system.

In our approach, we gradually include entities that are capable of
detecting and reacting to incidents. We call such entities reactive

3.3. CHAPTER SUMMARY 31

processes. A reactive process observes the well state for a particular
incident, and has a goal to achieve when the incident occurs. For
example, a reactive process could observe the well state and trigger
when a kick occurs, while its goal could be to have the mud pump
at some given flow-rate. By including another reactive process for
handling well friction for example, or stuck pipe, we will enhance the
overall capability of the drilling control system.

The role of the process scheduler component is to coordinate
reactive processes. It provides a framework that allows the system
designer to compose with such processes, and cope with eventually
conflicting goals. We say that a process conflicts with another
when their goals conflict. For example, if one process requests
drill-string rotation, while another process requests the activation of
the power-slips, a conflict occurs, because it is not possible to have
both responses at the same time.

For identifying conflicting goals, we propose to associate every
goal with a set of rig states. For example, the goal of having the
mud pump running has many rig states that satisfy it. It could be
with or without drill-string rotation, and with or without drill-string
elevation etc.

Furthermore, applying basic set operations on the set of states,
allows us to determine the different relations between goals. Typically,
two goals conflict if they have no common states in their sets.
Likewise, two goals are equivalent when they share the same states.

Finally, the process scheduler exploits the knowledge about con-
flicting goals to decide which reactive process could immediately
obtain its goal and which should wait.

3.3 Chapter Summary

Existing drilling control systems lack supervisory control, and reac-
tion to incidents. In order to cope with those limitations we suggest to
include two components: a command controller, and a safety process
scheduler.

The command controller aims at enforcing a legal control of the
rig. It does that by computing a set of legal actions and provide them

32 3 3. ENABLING AUTONOMOUS DRILLING CONTROL

to the drilling control station.
The safety process scheduler provides a systematic approach for

handling well incidents. It coordinates the reactions of different
reactive processes, where each of them is responsible for handling a
specific incident.

We present the theoretical foundation of the command controller
in Chapter 5 and Chapter 6, while in Chapter 7 we present the theory
behind the safety process scheduler.

Part II

Theoretical Foundation

33

Chapter 4

Literature Review

This chapter gives an overview of the theoretical context. Based on
the objective of this thesis we present the related theoretical domain,
and choose a direction to follow.

4.1 Introduction

In the previous chapter we stressed out that wells could be highly
unpredictable, and that capturing a precise behaviour of the well
can be very difficult if not impossible. This fact leads us to the
hypothesis that we can not have a complete model that captures the
exact behaviour of the well, but we can have appropriate responses
to critical well behaviours. One can roughly say that we don’t know
which actions cause which incidents, but we may know what to do in
case of incidents.

As a remainder and from a drilling control perspective this thesis
proposes a theoretical framework with the following objectives:

1. A modelling approach for safe machine control.
2. A modelling approach for handling incidents.
3. A modelling approach for automated drilling program execu-

tion.
Obtaining the above mentioned objectives requires a look into dif-
ferent theoretical domains. We shall in this chapter consider the
following domains: Discrete Event Systems, Reactive Systems, Petri

35

36 4 4. LITERATURE REVIEW

nets, Process Algebra and Emergent Behaviour. These domains will
be shortly presented and related to our problem.

4.2 Discrete Event Systems

We have so far presented this research from a drilling automation
point of view. We shall now relate it to the Discrete Event Systems
(DES) paradigm. In DES we find two basic notions: the notion
of state, and the notion of event. The dynamic of a system is
encoded in the relation between the states via events, and is driven
by the occurrences of events [111]. Inspired by [56, 74] we explain
the application domain of DESs by contrasting them to continuous
systems.

Informally, continuous systems concern the modelling of contin-
uous behaviours expressed by continuous variables. Traditionally,
control theory has been concerned by providing models of the state
evolution over time, usually using difference or differential equations.
From an abstract point of view, given a variable v = yi at some initial
stage, and a final value v = yf , the problem is then to evolve v from
yi to yf . This concept is usually exploited in closed loop control,
which has also the problem of obtaining a discrete representation by
sampling v into values at discrete time intervals. The continuous
system paradigm is thus used to model a continuous behaviour and
provide a discrete representation of it.

DES are on the other hand discrete in their nature. For example
the transition from v = yi to vf is caused by the occurrence of
an event. For a DES model which contains a set of events Σ =
{e1, e2, ..., en}, the possible sequences of events that can occur define
the system language, and describe the overall dynamic of the DES
in question. When the system states are expressed using a set of
variables S = {v1, v2, ..., vm}, the occurrences of events capture the
transition between different value assignments of S.

When we regard the set of variables of S as control variables of
individual parts of a system, the picture becomes clear. We could
have a high level DES model acting as the logic control of the overall
system, and which issues commands to the low level controller that

4.3. SUPERVISORY CONTROL 37

uses continuous control equations for each individual control variable.
The high level is thus expressed in terms of events and states while
the low level is expressed in some differential equations. In this thesis
we are concerned by the high level part, which is usually formalised
in the supervisory control theory.

4.3 Supervisory Control

Supervisory control [111] proposes a framework for designing a control
components called supervisor that has the function of maintaining the
system dynamics within the legal behaviour. For a DES, the challenge
of obtaining a control supervisor is directly related to the possibilities
of analysing its DES model.

To understand the purpose of the supervisory control theory we
suggest a basic example. Consider a driver in a manual gear car,
he/she knows when to use the foot brakes, when to apply the clutch
to change gears, and when to use the hand brakes. In fact the driver
is taking actions which are translated into set-points and further sent
to the car engine. However, the driver is free to use the hand brakes
while driving 120 km/h in the high way. The role of a supervisor
would be to avoid such things from happening by simply disabling the
hand brakes when conditions do not allow it. A supervisor is correct
or not in terms of specifications. For example, one specification could
be that it should not be possible to use the hand brakes when the
car is in motion. Another specification would be to not use the gears
if the clutch is not applied. The supervisor in this case can be seen
as an encoding of the presumed correct behaviour of the system in
question.

Using the car example, the driller will operate the rig as the driver
drives the car. A supervisor contract in drilling control would be to
enforce a legal operability of the rig by means of the enabling and/or
disabling actions.

In the supervisory control theory the system in question is usually
seen as a language, originally represented using automata [111, 25].
Petri nets [108] were later on exploited to express a larger family of
systems [75, 56, 70]. Given that the original system has a language Lo,

38 4 4. LITERATURE REVIEW

a supervisory model defines a sub-language Ls ⊂ Lo which satisfies
the specified legal behaviour, that is, Ls is a sub-language of the
overall language Lo. The legal behaviour is also defined using two
methods, string avoidance and state avoidance [111, 70]. String
avoidance expresses the legal behaviour by means of events ordering
(strings). State avoidance is expressed in terms of which states should
be avoided.

Supervisory control problems are often presented as synthesis
problems: Given a plant model that exhibits an unsatisfactory
behaviour, and a set of specifications, modify the model in such a
way that the specifications are satisfied. The vision behind this idea
is to automatically generate controllers that satisfy the specifications.
Obviously, this means that the synthesized model is verifiable for
its specifications. The problem is that not all systems can be
captured in verifiable models. Some systems exhibit behaviours that
require models with a high descriptive power, which unfortunately is
associated with low decision power and thus hard to analyse.

We do not address the synthesis problems, but rather address the
model checking problem, which is as follows: Given a model and a set
of specifications, we have to answer whether the model satisfies the
specifications. The required DES model that needs to be captured
is the rig behaviour only. The behaviour in this case is an explicit
coordination model of the different rig equipments. We stress the
difference between coordinating the operations of a set of equipments
and their interaction with the outside environment. The first one aims
at providing a description of the different actions that can be taken,
and eventually the different sequences of some high level tasks. While
the second is governed by physical laws describing the behaviour of
the environment.

Modelling the interaction between the different rig equipments,
and also between the equipments and the well, means that we are
dealing with reactive systems, or more precisely reactive DES.

4.4. REACTIVE SYSTEMS 39

4.4 Reactive Systems

DES refer to systems which state changes are controlled by events.
A control supervisor aims at enforcing a certain behaviour on a
DES. Reactive systems [65] refer to systems that are composed of
several interacting subsystems. In the reactive system approach, the
behaviour of the overall system is a result of the behaviour of its
subsystems and the interaction between them.

The role of Reactive systems is not to produce or to reach any final
result, but rather to maintain an ongoing interaction between one or
several systems and their environment. This view of systems seems to
be widely accepted as witnessed by [3, 13, 66, 63]. Reactive systems
are per definition concurrent to each others, and the challenges are
related to the study and analysis of such concurrent systems. If
traditionally the correctness of a model was related to study of its
properties, the correctness of a reactive system adds to the picture
the interaction between the models.

The reactive system field of studies has been and still is an
active research area. The different programming languages such as
Esterel [14], Lustre [24], signal [51], statecharts [66, 67], Argos [93]
witness this work. The modelling of reactive systems finds its
foundation mainly in the Process Algebra theory CCS [95, 96],
CSP [69], π-calculus [97], Promela [71] and more. As for which
formalism one should adopt for a given system will be addressed in
the next section. In this section we point out the main idea behind
the reactive system approach in general, and how it fundamentally
applies or not to our problem.

The underlying model of a reactive system behaviour is a transi-
tion system [85], which is a model that captures the relation between
different states and the transitions that cause state changes. Provided
a transition system that describes the reactive system behaviour,
behavioural properties are specified using temporal logic [92, 110],
and verified on the behavioural model. This system abstraction is very
useful when applicable, but unfortunately its application is sometimes
difficult, in particular on the expression of the desired behaviour.

To be more precise, when a system is composed of several
interacting components, the reactive system abstraction seems to be

40 4 4. LITERATURE REVIEW

an appropriate approach. The problem however lies in the interaction
with the environment. It is for instance mentioned in [65] that the
interaction between a given process and its environment is similar
to the interaction between a process and another process, since the
environment itself can be seen as a parallel process. This claim seem
a little too simplistic. The goal of a behavioural model of, say, a
pressure valve, an elevator or a radiator is eventually used to provide
a real implementation. On the other hand the behavioural model
of the environment is in the best case a good approximation of the
actual physical phenomena, but the real environment often exhibits
a behaviour that the model did not account for.

The relation between drilling control and the reactive systems is to
view the rig as one system and the well as another system, such that
the overall systems is defined by both in interaction. An important
issue is on the assumption behind such systems, which states that a
behavioural model of each of the systems and its environment must be
provided. We can unfortunately not rely on this assumption, because
we know that an explicit behavioural model of the well is difficult to
obtain.

The well is thus assumed highly unpredictable, and when un-
desired well events occur, the rig should respond by performing or
inhibiting some actions. The unpredictably of the well reactions to rig
operations, makes it hard to tightly couple possible sensory reading to
control operations, as the analysis of the correctness of such a model
becomes almost impossible by model checking techniques.

On the other hand, the rig itself is composed of several interacting
components. These components combined do form a reactive system.
How to capture the rig behaviour in a model that can be checked is
a question that will be addressed. In fact, answering this question
means that we need to choose a modelling formalism that answers
our needs. We choose Petri nets, and the next section explains why.

4.5 Petri Nets

Petri nets stand for a generic name of a mathematical tool for the
modelling and the analysis of DES [25, 74, 99, 87, 75]. Petri nets

4.5. PETRI NETS 41

were first introduced by Carl Adam Petri [108] as a graphical tool
to cope with process concurrency and synchronization. They have
since been an active research field with significant theoretical results
and numerous applications. At first glance, Petri nets have the
particularity of capturing the behaviour of systems in an easy and
intuitive manner. But most importantly is the analysis techniques
they offer, as they provide a good compromise between modelling
and decision power [107]. These two aspects make of Petri nets an
excellent tool for engineers, because a system that can be captured in
a Petri net model, can as well be analysed using the Petri net theory.

The ability of Petri nets to model and formally verify prop-
erties of systems has been exploited in many application areas.
These are related to the modelling and simulation of biological
processes [113, 100, 27, 64, 122, 121, 68], or communication protocol
verification [39, 58]. We can also find application in work-flow
and business process management [133, 132, 131], or in industrial
manufacturing systems [34, 139, 60]. Petri nets are also used in
performance evaluation of systems [124]. Other forms of Petri nets,
called continuous Petri nets have been exploited to model and analyse
hybrid systems [30, 45, 6, 54]. These references are just few that
illustrate the broad applications of Petri nets. There is in fact a great
body of work related to theory and applications of Petri nets, with
more than 8500 bibliography entries according to [59]. However more
applications can be found in [59, 141].

Petri nets provide a way of expressing transition systems. They
are a tool for establishing relations between transitions and places.
Obtaining a Petri net model basically consists on defining places,
transitions, and links between these. From a modelling perspective,
they provide a much more compact model than the traditional
automata. The reason is that a designer is not requested to explicitly
enumerate all the states, and all transitions between states, but rather
express the relation between some places and some transitions.

4.5.1 Automata and Petri Nets

Both Automata and Place/Transition nets (P/T nets) can be used to
model DES. In Automata this is done by explicitly enumerating the

42 4 4. LITERATURE REVIEW

possible states and interconnect them with the possible transitions.
The effort required to design Automata is what constitutes their
main disadvantage, at least from a practical point of view. From
a theoretical point of view Automata have a very rich theory behind,
which is closely linked to graph theory, together they offer a number
of tools for systems analysis. An objective comparison between P/T
nets and Automata is proposed in [56, 25].

This comparison was based on some key criteria such as language
expressiveness, modular model building and decidability. The P/T
nets language is larger than Automata, meaning that Petri net can
model a larger set of systems than Automata do. This is mainly
due to the fact that P/T nets can express infinite systems. On
model-building, P/T nets are much more natural when it comes to
capturing the concurrency in DES, since this tend to become complex
in Automata. Automata are better than Petri nets on problem
decidability. This fact reflects the well known dilemma between
decidability and descriptive power. However, P/T nets provide a
sufficiently high decision power, as most problems of interest are
decidable on this class of nets, but often with high complexity. It
has been shown that the reachability problem for example requires at
least 2O(

√
n) space [44, 107, 103], but for average size P/T models this

complexity is often irrelevant.

4.5.2 Grafcets and Petri Nets

As mentioned earlier, fundamentally Petri nets are composed of
places, transitions and relations between these. Depending on the
system in question, one could give some concrete interpretations to
these elements. Some interpretations have in fact become standard
modelling tools such as grafcets [31, 32, 7] which further evolved to
the Sequence Function Chart (SFC) standard [88]. Inspired from the
1-safe class of Petri nets, an interpretation was given to places to
describe a particular step of the system, while transitions are used to
advance the system to another step.

Even though SFC are widely used, they have a limited modelling
power, compared to P/T nets. They manage to capture logical
condition but can not capture counters. That is, they can model

4.5. PETRI NETS 43

whether a variable is set or not, but they fail to model the actual
value of a given variable.

Another purely subjective difference is on the modelling technique,
where in Grafcet the designer is asked to think of the system in terms
of sequences of steps. This is not necessary the case in Petri nets, since
a model can be designed by focusing on the transitions and define
their pre-conditions and post-conditions. The sequentiality becomes
an emerged property, and not an explicitly modelled one.

However, modelling convenience is often the means by which
engineers choose their modelling formalisms. As we always seek more
elegant ways to model and handle problems, modelling convenience
is also important. Here, and to the best of our knowledge the choice
remains between Petri nets and Process Algebra languages.

4.5.3 Process Algebra and Petri Nets

As mentioned earlier Process Algebra languages such as CCS [95],π-
calculus [97] and CSP [69] are also very popular for modelling reactive
systems. They also propose different variations, which have their
strengths and weaknesses [46]. Fundamentally, CCS and CSP are the
ancestors of Process Algebra, while π-calculus inherits mostly CCS
and improves it [10].

What is important to retain in modelling a system using these
approaches is that a system is expressed by the actions it takes. The
questions that such a model answers are based on what sequences of
actions it can generate. In such case, Process Algebra languages are
quite elegant in modelling systems. On top of that, Process Algebra
are explicitly built on the notion that processes can be composed using
other processes, which provides a structured way of building systems
out of sub systems. The whole idea behind Process Algebra is to
combine and compose with processes that may also communicate with
each others, and verify that these systems satisfy some properties.

Petri nets can also view a system by means of the sequences of
strings it generates [62, 78]. Regarding a system from the language
it generates is to a large extent exploited in supervisory control with
Petri nets [56, 75] but they somehow fail in capturing the modularity
of systems. For example, a system A which is composed of B and C,

44 4 4. LITERATURE REVIEW

will result in a Petri net model tightly linking both, which is much
more decoupled in a Process Algebra model. In addition, Process
Algebra adopt the notion of communication between process in a
formal way, as it is clear upon which actions taken from a given process
that are communicated to the other [46].

There are however differences among the Process Algebras on their
view of communication. CSP for example operates on a broadcast
communication, such that when a process takes an action it is visible
to all the others. On CCS however, it is adopted a point to point
communication, such that an action taken by one process is visible
only to processes needing it.

Even though these modelling languages are different in their
semantics, they share the same view of systems. In these languages a
system is composed of several communicating processes, and processes
are composed using actions (atomic actions). The underlying model of
these Process Algebra are transition systems, where some are limited
to finite transition systems such as Promela [71], while others like
CCS, CSP and π-calculus can capture infinite transition systems. The
specifications are represented with temporal logic formula [110, 92].

Petri nets can also capture the communication between processes,
it is just more cumbersome. On the other hand Petri nets capture
another type of information, which is the explicitness of the states.
In Process Algebra a state contains information about which actions
lead to it, and what actions are possible from it. But in Petri nets
and in additions to that, it can also tell what a state consists of. If
a state is for example composed of set points variables, knowing the
values of these variables at a given state is sometimes important. In
fact this difference is our main justification of using Petri nets rather
than Process Algebra, because for us what ultimately counts is that
the right set points are assigned to the right variables.

Putting side by side Petri nets and Process Algebra is a large topic
that has partially been addressed in [37, 15, 57], and is beyond the
scope of this thesis.

4.5. PETRI NETS 45

4.5.4 Petri net Classes

After having justified the choice of using Petri nets, what remains is
to choose a class among the many Petri nets classes that fit best to
our needs for modelling the rig dynamics. The fact that we may need
to assign set-points such as flow-rates, or rotations with high precision
means that we are dealing with large granularity, which leads us to
the assumption of infinite systems.

A natural candidate is thus the P/T nets class. This class is
attractive because it provides a good compromise between modelling
and decision power. P/T nets is probably the most studied, and
can be seen as the border line of what can be modelled by Petri
nets and still maintain high decision power. The complexity of some
systems often requires large models, and it appears that this class
is not always convenient for designers, because large models tend to
become intractable. This issue calls for higher level models, that not
only capture a large family of systems but also keep their models
compact.

In high level Petri nets the most general class is Coloured Petri
nets (CPN) [138, 81, 80, 79]. What this class really offer, is no more
nor less than a better modelling convenience. Theoretically, CPN
do not increase the modelling power nor do they increase the decision
power of P/T nets [106]. In fact CPN are to P/T nets what high level
programming languages are to assembler. This means that complex
systems for P/T nets can be elegantly captured in CPN. It also means
that no real computational capabilities are gained using CPN.

This result roughly means that if a simple model can not be
captured with P/T nets, it can not be captured with CPN neither.
What is missing is a true extension that increases the modelling
power. That is, adding some basic capabilities so that one can design a
system which otherwise could not be designed. The capability we are
looking for is the ability to test for zero. The PTI nets class [4] (PTI)
does capture our modelling needs, but this class has been proven
Turing equivalent [61, 44]. The Turing equivalence of PTI nets makes
it difficult to claim the correctness of the model, since we cannot
determine the properties of that model.

The Turing equivalence of PTI nets also means that algorithms

46 4 4. LITERATURE REVIEW

which apply to P/T nets do not necessarily apply to PTI nets. In
particular the boundedness and the reachability problems, become
undecidable for PTI nets.

This dilemma gave us two choices, either we look into some other
formalisms, review the system from an abstraction so that we could
apply something else such as Process Algebra, or dig further into Petri
nets to find solutions. We have chosen to dig further into Petri nets.

Informally, we would like to express the following (v1 can be set
only if v2 is zero, and v2 can be set only if v1 is zero) where v1 and
v2 may be any large number.

Figure 4.1 illustrates this situation using a PTI net. This model
can be read as follows: t1 can fire as many times as desired to fill
as many tokens in v1, as long as v2 is empty. The transition t3 can
also fire as many times to fill v2 as long as v1 is empty. Despite
the simplicity of this model, there is no general algorithms that can
determine its properties (Boundedness, liveness, marking reachability
etc.).

Figure 4.1: Basic P/T net with inhibitors

The Turing equivalence of PTI nets is clearly very important, but
also frustrating. Because in reality, and as Figure 4.1 shows, it
is sometimes necessary to use inhibitory arcs, even for capturing a
simple behaviour. A strategy here could be to use inhibitory arcs in
some restrictive ways in order to obtain a good decision power. This
strategy was already used in [23].

An important conclusion from [23] is that, some restrictive use of

4.5. PETRI NETS 47

inhibitor arcs could maintain a high decision power. However, the
example shown in Figure 4.1 does not belong to the primitive PTI
class.

Our motivation in this thesis in terms of Petri nets is thus to
capture the dynamic behaviour of the rig, in a PTI net on which it
is possible to decide the reachability and the path problems. For
that, we define a class called Cohesive PTI nets (CPTI), on top
of which we define an even more restrictive class called Mutually
Inhibited Cohesive PTI nets (MICPTI). These classes are such that
they contain two basic structures, where a structure is a composition
of sub nets using places and transitions.

Those basic structures are inspired from real word control com-
ponents for describing on/off type of variables, and level variables, as
shown in Figure 4.2. The inhibitory arcs can only be applied cross
these structures. Figure 4.2 presents a simple model of a motor which
can be controlled using three variables: ON, OFF and Speed. Those
variables are modelled using Petri net places (circles). The model
captures the following behaviour: The transition Turn OFF will set
the place OFF only if the motor speed (place Speed) is set to zero.
Likewise, increasing the speed is possible only when the motor is not
OFF (Place OFF set to zero). Surprisingly, the MICPTI class of
nets enjoys very high decision power. We show how to generate the
coverablity graph of these classes, and how it allows us to decide the
reachability, boundedness and the path problems. We also show how
MICPTI nets elegantly captured the required rig dynamics.

Figure 4.2: An example MICPTI net

48 4 4. LITERATURE REVIEW

4.6 Emergent Behaviour

We already mentioned that we advocate a separation between the rig
as a system and the well as the environment. The rig system will be
modelled using a specific class of Petri nets which makes it possible
to analyze the system behaviour. The well dynamics will be sensed,
but in contrast to the rig, its state space can not be fully determined.
We suggest an approach that gradually evolves towards a controlled
behaviour of the well.

Emergent behaviour in robotics refers to the idea of obtaining
complex behaviours out of basic reflexes. This concept was studied
by Rodney Brooks in the so-called Subsumption architecture [19].
This approach is seen as an application to Behaviourism which was
introduced as a model of animal psychology [136].

In this theory, the activity of living beings is determined by a set of
elementary behaviours each of which is characterized by reactions to
stimuli from the environment, the overall behaviour is then composed
of the elementary ones. Applying behaviourism to robots leads to a
layered control based on the so-called subsumption architecture.

Typically, a robot could be built with the competence of never
hit an object, adding a new competence move around should include
never hit an object. The emerging behaviour will then bemove around
and never hit an object.

Even though a number of robots have been successfully developed
using this approach, it sometimes fails in handling unexpected
behaviours [12, 20]. In particular when competing modules are
involved.

In our approach, the gradually added competences can be regarded
as separated processes that focus on very specific aspects called
reactive processes. For example, a robot could have a reactive process
that is focused on avoiding collisions. If an object is too close, the
process orders the robot to stop. Another process would compute a
trajectory and order the robot to deviate its trajectory. By combining
these processes the behaviours move around and never hit an object
may be obtained.

The value that we would like to add is the ability to say something
about the added competences, whether they conflict or subsume the

4.6. EMERGENT BEHAVIOUR 49

existing ones.
Our approach is in line with the work proposed by [20, 21] about

Behavioural Oriented Design. In her work, she stressed out that
designing intelligent agents is done by establishing WHAT to do
WHEN, and HOW to do it. In our approach reactive processes are
defined by WHAT to doWHEN, where theWHAT defines the goal
of a reactive process, theWHEN defines its triggering condition. The
HOW to do it, is on the other hand determined by the system on
which a reactive process reacts.

For example, a process that requires the starting of the mud pump
may be conditioned by a suspected too low well pressure. As for how
to start the pump is limited by the state of the rig at the triggering
moment, which in turn dictates sequence of actions that needs to
taken for having the mud pump running.

Finally, the overall system could handle more incidents by adding
reactive processes, and ultimately reach a satisfactory autonomous
behaviour.

50 4 4. LITERATURE REVIEW

Chapter 5

Petri Nets

Petri nets include various classes, each having particular features.
This chapter gives a short introduction to Place/Transition nets. We
introduce concepts and definitions that are relevant for this work in
a fairly intuitive manner.

5.1 Introduction to Petri Nets

Petri net is a modelling notion with a strong mathematical underpin-
ning targeted at analysing discrete event systems [25, 74, 99, 87]. Petri
nets were first introduced by Carl Adam Petri [108] as a graphical tool
to cope with process concurrency and synchronization. They have
since been an active research field with significant theoretical results
and many applications.

A P/T net is a directed bipartite graph with two types of
nodes: places represented by circles and transitions represented by
rectangles. A place can only be connected to a transition and a
transition can only be connected to a place. The connection between
nodes is done using directed weighted arcs. A place may contain
tokens which are represented using a black dot. The tokens can flow
between different places by firing transitions. A transition can fire
if the number of tokens contained in all the places that have arcs
directed to it, is larger or equal to the weights of their corresponding
arcs. These places describe the pre-conditions for a transition to

51

52 5 5. PETRI NETS

fire. When a transition fires, it deposits as many tokens in its output
places as indicated by the output arc weights. The distribution of
tokens over the places is called a marking, or state.

Figure 5.1 shows a P/T net before firing the transition t2, and
after its firing. As the figure shows, the arc between p2 and t1 has a
weight of 4. Since p2 has only 3 tokens t1 can not fire. The transition
t2 can fire because both p1 and p2 contain enough tokens. When t2
fires, only one token is deposited in p3. Note that an arc with no
number marked on it has a weight of 1. In this thesis we do not

Before firing transition t2 After firing transition t2

Figure 5.1: An Example P/T net with weighted arcs

consider arc weights. The term P/T nets will refer to ordinary place
transition nets, i.e. P/T nets with arc weight equal to one.

Important questions can be answered about a P/T net [99, 61]
such as the existence or not of a deadlock situation. If deadlocks exist,
under which states could they occur? And how to get to those states?
Is the system bounded? That is, is it possible for some variables to
have arbitrarily large values? Is the system live? Is it possible to reach
a state in which a particular transition can fire? Is every transition
eventually firable? etc.

P/T nets seem to constitute a theoretical border line between
what can be, and what can not be analysed[107]. This is mainly
justified by that most of the questions about the behaviour of P/T
nets are decidable [44], but are of high complexity. As a rule of
thumb, solving P/T nets related problems usually requires 2(O

√
n).

This roughly means that for relatively small size P/T nets most of
the problems of interest are tractable.

5.1. INTRODUCTION TO PETRI NETS 53

The possibility to analyse P/T nets makes them to an ideal tool
for modelling DES in general [25, 74, 99, 87]. However, a system that
can not be modelled using P/T nets is little likely to be analysed by
means of model checking techniques. One could consider simulation
techniques in order to derive probable properties of a system, but this
is beyond the scope of our work.

The border line between decision and modelling power has fasci-
nated and still fascinates a number of researchers. Several extensions
have been proposed to enrich the modelling power of Petri nets.
Among these extensions we find Coloured Petri nets [138, 81, 79,
1](CPN). In CPN tokens are associated to colours, this makes it
possible to give to the tokens different interpretations. Hierarchical
object oriented Petri nets [72, 98] attempt to take advantage of
the object oriented programming paradigm. Timed Petri nets [112]
introduce the notion of time to model durations and delays, and are
usually used for performance evaluation of systems [124, 140]. A Petri
net using Coloured tokens, hierarchies, and timed transitions is called
High-Level Petri net [2, 134].

Continuous and hybrid Petri nets are also extensions made to
ordinary P/T nets in order to model continuous and hybrid sys-
tems [30, 45, 6, 54]. Another interesting form is found in synchronous
Petri net [30], a form that attempts to include sensory data into
transition firing rules.

In this thesis, we are particularly interested in ordinary P/T nets
extended with inhibitor arcs [4]. An inhibitor arc is a type of arc that
inhibits a transition from firing when the inhibiting place contains at
least one token.

The problem of extending P/T nets with inhibitor arcs will be
studied in the next Chapter. This chapter presents basic notions
and definitions; it can be viewed as an introduction to Chapter 6.
Section 5.2 provides an informal and a formal presentation of P/T
nets. Section 5.3 presents the analysis of Petri nets properties by
means of either the reachability or coverability graphs. Section 5.4
provides a short introduction to P/T nets extended with inhibitor
arcs, and finally Section 5.5 summarises this chapter.

54 5 5. PETRI NETS

5.2 Basic Definitions

This section provides definitions and illustrations of necessary con-
cepts regarding Petri nets. The provided definitions are inspired
mainly from [99, 107]. Different concepts will be introduced gradually,
supported with appropriate examples, which hopefully will make it
easier for the reader to understand.

Before proceeding to definitions, we would like to clarify a few
points that are related to the interpretations of tokens, places and
transitions. For a Petri net model capturing a given dynamics, it
is up the modeller to define what the places, transitions and tokens
represent, and how they relate to the designed system.

At the risk of repetition, in this thesis Petri nets places represent
variables that need to be assigned, tokens represent the values
assigned to those variables, while transitions represent the actions
taken for assigning the variables. We suggest a simple way to relate
these interpretations to real systems by viewing the transitions as
buttons on a given control panel. When a button is pushed a variables
will be assigned some values. These variables could be some control
variables, or some internally used ones, such as counters, or flags.

5.2.1 P/T Nets

We start by defining the P/T net; its elements and notations in
Definition 5.1, followed by an illustrative example (see Example 5.1).

Definition 5.1 (Formal definition of P/T nets).
P/T net is quadruple PT = (P, T, F,m0) where:
− P = {p1, p2, ..., pm} is a finite set of places.
− T = {t1, t2, ..., tn} is a finite set of transitions.
− F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation).
− m0 : P → {0, 1, 2, 3, ...} is the initial marking.
− P ∩ T = ∅ and P ∪ T 6= ∅.

Notation 5.1 (P/T nets notations).

− •t = input(t) denotes the set of pre-places of transition t.
− t• = output(t) denotes the set of post-places of transition t.

5.2. BASIC DEFINITIONS 55

− •p denotes the set of pre-transitions of place p.
− p• denotes the set of post-transitions of place p.
− m(p) denotes the number of tokens in a place p for a marking

m.

5.2.2 P/T net Example

This example illustrates the elements of Definition 5.1, using a
P/T net model of an espresso machine. Because ground coffee
deteriorates faster than coffee beans, the espresso machine allows
a beans grounding of a maximum amount that is sufficient for two
espressos, before an espresso is made.

Example 5.1. Figure 5.2 shows a P/T net model of the espresso
machine. The transition t1 stands for the grounding of coffee for one
espresso. The amount of grounded coffee is represented in the place
p2, where the number of tokens indicates the number of espressos that
can be served. The transition t2 fills the cup with one espresso at the
time by placing a token in the place p3, and removing one token from
the place p2. Making one espresso gives the possibility to ground for
another one. This is represented by the transition t3 which consumes
one token from p3 and deposits one token in p1. Using Definition 5.1
we can extract the information in Table 5.1.

Table 5.1: A P/T net definition example.

− P = {p1, p2, p3}.
− T = {t1, t2, t3}.
− F{(p1, t1), (t1, p2), (p2, t2), (t2, p3), (p3, t3), (t3, p1)}.
− •t1 = {p1},

•t2 = {p2},
•t3 = {p3}.

− t1
• = {p2}, t2

• = {p3}, t3
• = {p1}.

− •p1 = {t3},
•p2 = {t1},

•p3 = {t2}.
− p1

• = {t1},p2
• = {t2}, p3

• = {t3}.
− m0 = [2 0 0], where m0(p1) = 2, and m0(p2) = m0(p3) = 0.

56 5 5. PETRI NETS

Figure 5.2: P/T net model of an espresso machine

5.2.3 Transition Firing and Sequences

A P/T net is defined by its places, transitions, relations between
these, and an initial marking. The dynamic of the model is reflected
in the change of its markings, which in turn is caused by the firing
of transitions. In a P/T net (ordinary P/T net), a transition can fire
if all its input places contain at least one token. When a transition
fires, it removes one token from each of its input places, and adds
one token to each of its output places. The notion is formalised in
Definition 5.2.

Definition 5.2 (Transition Firing).
A transition t can fire in m iff: ∀p ∈• t,m(p) > 0. The set of
transitions that can fire in m is denoted enabled(m).

When t fires: ∀p ∈ t•, m(p) = m(p) + 1, and ∀p′ ∈• t,m(p′) =
m(p′)− 1.

We write fire(m, t) = m′ and read, firing t in a marking m
generates m′. We write ma[σ〉mb to denote a sequence of transition
from ma to mb. We write ma[Σ〉mb the set of transition sequences
from ma to mb. We write ma[σ〉 or L(ma) for the possible sequences
from ma. Consequently, L(m0) or m0[σ〉 denote the net’s possible
sequences of a net. The set R(m) denotes the reachable markings
from m. The set R(m0) denotes the reachable markings of a net.

5.3. P/T NETS PROBLEMS AND ANALYSIS 57

5.2.4 Transition Firing Example

This example illustrates the dynamics of the coffee machine (see
Figure 5.2 and Example 5.1) by means of transition firing rules from
Definition 5.2.

Example 5.2. Figure 5.3 shows the six states that the coffee machine
can be in. For example at m0(top left figure), the only enabled
transition is t1, and firing t1 from m0 leads to m1. From the
marking m1, it is possible to fire either t1 or t2 to reach m2 or m3

respectively. From m0, the sequence σa = 〈t1, t1, t2, t2〉 = 〈t
2
1, t

2
2〉 leads

to m5, and so does σb = 〈t1, t2, t1, t2〉, both sequences belong to the
set m0[Σ〉m5. Finally, the set of reachable markings is R(m) =
{m0, m1, m2, m3, m4, m5}. The sequences σa and σb illustrate two
ways of obtaining a double espresso (assuming that a double espresso
stands for two single ones).

5.3 P/T Nets Problems and Analysis

Petri nets analysis consists of methods for determining properties of
the modelled system. From the field of research we can identify the
following techniques for Petri net analysis: algebraic, reduction rules,
and state space exploration techniques. The two first ones can be
computationally very efficient, but are usually applicable to special
subclasses of P/T nets only [99].

The state space exploration technique can be divided into two
categories: Reachability, and Coverability analysis. Both methods
suffer from the state explosion problem [130], and are therefore limited
to relatively small models. Reachability analysis applies to finite
systems only (bounded nets), since it consists of enumerating all the
reachable markings, and the relation between these. On the other
hand, the coverablity analysis, applies to infinite systems (unbounded
nets), and consists of capturing an approximation of the state space
in a compact graph, called the coverability graph.

The algebraic, and structural techniques are beyond the scope of
this thesis. Recall that this chapter’s purpose is to introduce the
necessary concepts that will be used later in the thesis. We therefore

58 5 5. PETRI NETS

m0 = [2 0 0]
fire(m0, t1) = m1

m1 = [1 1 0]
fire(m1, t1) = m2

fire(m1, t2) = m3

m2 = [0 2 0]
fire(m2, t2) = m4

m3 = [1 0 1]
fire(m3, t1) = m4

fire(m3, t3) = m0

m4 = [0 1 1]
fire(m4, t2) = m5

fire(m4, t3) = m1

m5 = [0 0 2]
fire(m5, t3) = m3

Figure 5.3: Firing a sequence of transitions

focus on state space exploration, as it is the technique used to analyse
the class of nets that we shall present in the next chapter.

This section presents different Petri nets problems and shows how
they can or cannot be solved on the P/T nets, using either reachability
or coverablity analysis.

5.3.1 Reachability Graph

The reachability graph [99, 107, 128] is a graph where nodes represent
markings and edges represent transition. Starting from the initial
marking m0, the reachability graph is obtained by triggering all the
possible transition firings as defined in Definition 5.2, and keeping

5.3. P/T NETS PROBLEMS AND ANALYSIS 59

track of the generated markings. Algorithm 1 in Section 5.6 takes as
input a Petri net, and generates its corresponding reachability graph.

Figure 5.4 shows the reachability graph of the previously presented
P/T net of the espresso machine (see Figure 5.2). Furthermore, the
reachability graph in Figure 5.4 contains all the information provided
by Figure 5.3, because from a given marking it is possible to determine
which transitions could fire next, and which marking could be reached.
However, when the set of reachable markings is infinite, Algorithm 1

m0=[2 0 0]

m1=[1 1 0]

t1

m2=[0 2 0]

t1

m3=[1 0 1]

t2 m4=[0 1 1]

t2 t3

t1

t3

m5=[0 0 2]

t2

t3

Figure 5.4: Reachability graph corresponding to the P/T net of
Figure 5.2

will not terminate, and the generated reachablity graph will grow
infinitely large. In other words, the reachability graph is finite only
for bounded nets. A place p is bounded if it does not contain more
than k tokens in any reachable marking, likewise a net is bounded if all
its places are bounded. A formal definition is given in Definition 5.3.

Definition 5.3 (Boundedness).
A place p ∈ P is bounded iff: ∀m ∈ R(m0), ∃k ∈ N such that m(p) ≤
k. A P/T net is bounded iff: ∀p ∈ P , and ∀m ∈ R(m0), ∃k ∈ N such
that m(p) ≤ k.

60 5 5. PETRI NETS

5.3.2 Coverability Graph

The reachability graph can in theory be generated for any Petri net,
under the condition that the net is bounded. On the other hand, the
coverability graph applies to unbounded nets as well, but does not
seem to apply beyond the class of P/T nets.

Informally, an unbounded net is a net which has at least one place
that could contain an infinitely large number of tokens. This large
number is represented using the symbol ω. Furthermore, an extended
marking is a marking containing at least one ω symbol, and can be
viewed as a compact representation of an infinite set of markings. A
formal definition of extended markings is given in Definition 5.4.

Definition 5.4 (Extended Marking).
For any constant a ∈ N, ω + a = ω − a = ω, a < ω and ω ≤ ω.

The marking m is an extended marking iff: ∃p ∈ P such that
m(p) = ω.

Definition 5.5 (Covering).
A marking m′ covers m (m ≤ m′) iff: ∀p ∈ P,m(p) ≤ m′(p).

A marking m′ strictly covers m (m < m′) iff: ∀p ∈ P,m(p) ≤
m′(p) and m 6= m′.

Definition 5.6 (Coverability Graph).
Let G=(V,E) be a graph, where V is the set of markings and extended
markings, and E the set of edges connecting the markings.

For a net N, G constitutes a coverability graph iff:
∀m ∈ R(m0), ∃m

′ ∈ V such that m ≤ m′. This means that every
reachable marking m is either explicitly present in G or is covered by
some marking in G.

The algorithm used for generating the coverability graph originates
from [84] (Karp and Miller procedure). An attempt to optimise the
original version was proposed in [48], and later on proven incomplete
in [53, 49]. The coverability algorithm is also of particular interest in
this thesis, as it will be used as a basis for analysing the Petri net
class that will be presented in the next chapter.

The coverability graph is a finite representation of a possibly
infinite set of markings. The construction of the coverability graph

5.3. P/T NETS PROBLEMS AND ANALYSIS 61

is done in a similar manner as with the reachability graph, that is,
by enumerating every reachable marking. Running the coverability
graph algorithm(see Algorithm 2 in Section 5.6) on a bounded
P/T net generates the reachability graph, while running it on an
unbounded P/T net generates the coverability graph. The main
drawbacks with the coverability graph algorithm is that it is limited
to P/T nets only and that it uses a so-called acceleration function
which makes it run slower.

The acceleration function is responsible for inserting the special
symbol ω when there is evidence that a place can contain an
arbitrarily large number of tokens. Algorithm 2 works as follows:
Starting from the initial marking, the algorithm determines the next
marking to explore. Each marking passes through the acceleration
function for further processing. So, if the current marking m′ is such
that there exists a marking m′′ on the path from the initial marking
m0 to m′ and that m′′ < m′ then a ω can be inserted in each place p
where m′′(p) < m′(p).

5.3.3 Coverability Graph Example

This example shows how Algorithm 2 generates a reachability and a
coverability graph for a bounded and unbounded net respectively.

Example 5.3. For the sake of space, we use a slightly different P/T
net than the one proposed in Example 5.1. We consider that the
espresso machine can only ground for one espresso, rather than two
before an espresso is made (see Example 5.3). Figure 5.5 shows two
P/T nets of the espresso machine. The net at the left side is a bounded
net, and is very similar to the previous model in Figure 5.2. The
model at the right side includes an additional place p4, which acts as
a counter. Each time an espresso is made by firing the transition t2,
the number of tokens in p4 is incremented by one. The P/T net at the
top right side is thus unbounded. Algorithm 2 generates a reachability
graph when run on the top left net, and coverability graph when run
on the top right net.

62 5 5. PETRI NETS

Bounded P/T net Unbounded P/T net

Reachability Graph Coverability Graph

m0=[1 0 0]

m1=[0 1 0]

t1

m2=[0 0 1]

t2

t3

Figure 5.5: The coverability graph algorithm applied to bounded and
unbounded P/T nets

5.3.4 Boundedness Detection

Determining the boundedness of a given system or of some variables
in the system is sometimes desired. When designing a system, some
variables are expected be bounded, while others are not. For example,
in the espresso machine from Example 5.3, the place p4 (counter) is
meant be unbounded, while the place p2 is meant to be bounded.

When a system is modelled by a P/T net, the boundedness
property is decidable. Decidability is obtained by generating the
net’s coverability or reachability graph using Algorithm 2, and by
inspecting the graph’s nodes for the presence of ω. The presence of
ω in a marking indicates that its corresponding place is unbounded.
The absence of ω in any node indicates that the net is bounded, and
the graph is actually a reachability graph [99].

5.3. P/T NETS PROBLEMS AND ANALYSIS 63

5.3.5 Deadlock Detection

Firing transitions on a Petri net model evolves markings, some of these
markings could be deadlock markings. Deadlock markings are usually
undesired when modelling a system, but this needs not to be always
the case. In fact a model could be meant to describe a non terminating
process, while another could be meant to describe a terminating one.
Regardless of its use, determining deadlock markings is decidable for
P/T nets.

Informally, a deadlock describes a situation where no transitions
can fire any longer. Furthermore, a Petri net is deadlock free, if
none of its markings is deadlock. A formal definition is given in
Definition 5.7.

Definition 5.7 (Deadlock).
Let m0 be an initial marking of a Petri net N and let R(m0) the set
of reachable markings of N .

A marking mi ∈ R(m0) is a deadlock marking iff: enabled(mi) = ∅
N is deadlock free iff: ∀m ∈ R(m0), enabled(m) 6= ∅

Deadlocks can be detected by inspecting the reachability or the
coverability graph for markings (or extended markings) without any
outgoing edges. For example, all the graphs from Figure 5.5, and
Figure 5.4 correspond to deadlock free nets, because every reachable
marking has at least one outgoing edge.

Figure 5.6 shows a bounded P/T net and its corresponding
reachability graph. The markings m2 and m3 are both deadlock
markings, since they have no outgoing edges.

Figure 5.7 shows an unbounded P/T net and its corresponding
coverability graph. The marking m2 is deadlock, and so is the
extended marking m3. In this case, m3 represents infinitely many
deadlock markings. The reason of that is that the transition t1 in
Figure 5.7 can fire as often as needed until t2 fires which blocks to
whole dynamics, and no transition can fire anymore.

64 5 5. PETRI NETS

Bounded P/T net Reachability graph

m0=[2 0]

m1=[1 1]

t1

m2=[0 2]

t1

m3=[0 0]

t2

Figure 5.6: A bounded P/T net with deadlock markings: m2 and m3

Unbounded P/T net Coverability graph

Figure 5.7: An Unbounded P/T net with deadlock marking m2 and
deadlock extended marking m3

5.3.6 Marking and Sub-Marking Reachability

The marking reachability problem consists of determining whether a
given marking is reachable or not. The decidability of this problem
means that one can check whether some desirable or undesirable states
can be reached.
If a marking is specified by the token values of each place from the
set of places P , a sub-marking is only concerned by a subset P ′ ⊂ P .
The decidability of the sub-marking reachability problem means that
one can check whether some given state variables will ever be assigned
some given values.

Definition 5.8 gives a formal definition of the marking and
sub-marking reachability problems.

5.3. P/T NETS PROBLEMS AND ANALYSIS 65

Definition 5.8 (Reachability Problem).
Given a Petri net N with m0 as its initial marking and R(m0) as the
set of its reachable markings. Let P be the set of place of N , and
P ′ ⊂ P .
− The reachability problem of a marking m is: Does m ∈ R(m0)?
− The sub-marking reachability problem of m′ specified over P ′

is: Does there exist m ∈ R(m0), such that m(pi) = m′(pi),
∀pi ∈ P ′?

For a bounded Petri net, the marking and the sub-marking reach-
ability problems can be solved by inspecting the set of reachable
markings. A marking m is reachable if it belongs to the reachability
graph. For example, using the reachability graph of Figure 5.4, one
can ask whether it is possible to reach a marking m = [1 1 1]? The
answer is no, since no marking in the graph equals m for each place.

Obviously, the sub-marking reachability problem can also be
solved in a similar manner. More precisely, deciding the sub-marking
reachability is a special case of the marking reachability, because when
inspecting the reachability graph, we need to compare markings for a
subset only, rather than the complete set of places.

The sub-marking reachability problem solves a particularly inter-
esting situation. Consider the coffee machine model from Figure 5.2
and its reachability graph (see Figure 5.4). One could ask whether
it is possible to reach a marking where a single espresso is served,
which could be formulated using m(p3) = 1 with m3 = [1 0 1] and
m4 = [0 1 1] as answers.

For unbounded P/T nets the coverability graph does not provide
sufficient means for deciding the marking reachability. For a marking
m to be reachable, it has to be covered by a marking in the coverability
graph. This condition is necessary, but not sufficient for m to be
reachable. In other words, all reachable markings are covered by
some markings in the coverablity graph, but not all covered markings
are reachable.

The reason of the non sufficiency of the coverability graph for
deciding the marking reachability problem lies in the ω approximation
which hides some artefacts of not only on the actual reachable
markings, but also on the effect of transition firings. When for

66 5 5. PETRI NETS

example a given place of a net can only contain an odd number of
tokens, this information is hidden by ω. Likewise when a transition
consumes or deposits a token in some places, this information is also
lost by the relation ω + a = ω − a = ω from Definition 5.4.

For example, Figure 5.8 shows an unbounded P/T net and its
corresponding coverability graph. Now, consider that we want to
determine whether a marking m = [5 7] is reachable. By inspecting
the coverablity graph we can find thatm ≤ m1 (≤ from Definition5.4).
Even though m is covered by m1 it is not a reachable marking, the
P/T net from the figure is such that p1 and p2 always contain the
same number of tokens, which is not the case of m. Nevertheless, the

Unbounded P/T net Coverability graph

Figure 5.8: Coverability is a necessary but not sufficient condition for
marking reachability

reachability problem has been proven decidable[120, 94, 4]. So, even
if a Petri net can have unbounded places, i.e. an infinite number of
reachable markings, the reachability problem remains decidable.

5.3.7 Path

We have already mentioned that the main purpose of Petri nets is to
capture the dynamic of the studied system. Since the dynamic of a
system consists of transitions between states, a legitimate question to
ask is whether it is possible to find a sequence of transitions from one
state to another?

When the system dynamics is captured in graphs such as the
reachability or coverability graph, a sequence of transition can be

5.3. P/T NETS PROBLEMS AND ANALYSIS 67

referred as a path between two nodes on a graph.
In the case of bounded nets, we can generate a reachability graph.

Obviously, finding a path from a source to a destination marking can
be found using breadth-first or depth-first search on the reachability
graph.

In the case of unbounded P/T nets, we cannot generate a
reachability graph, but rather use the coverability graph. However,
the coverability graph does contain enough information do determine
the path between two markings. This is mainly due to ω which could
hide some information about the transition between markings.

5.3.8 Home Marking and Reversibility

For a model representing a given system, it is sometimes desirable to
check whether a given state can always be reached for any other state.
In Petri nets such a state is called a home marking. When the initial
marking of a Petri net is a home marking, then the net becomes a
reversible net. A formal definition is given in Definition 5.9.

Definition 5.9 (Reversibility and Home Marking).
Let N be a Petri net and m0 its initial marking:
− A marking m is a home marking iff: ∀m′ ∈ R(m0), m ∈ R(m′).
− N is reversible iff: ∀m ∈ R(m0), m0 ∈ R(m).

For a bounded Petri net, checking whether a marking m is a home
marking can be done by determining whether that there exists a
non empty path from every marking in the reachability graph to m.
Checking whether a net is reversible is equivalent to checking whether
the reachability graph is a strongly connected graph, which can be
effectively done by Tarjan’s Algorithm [126].

For example, the graph of Figure 5.4 has one strongly connected
component, which implies that the initial marking m0 is reachable
from any other marking, and thus m0 is a home marking, and that
the P/T net from Figure 5.2 is reversible.

For unbounded P/T nets, the coverability graph does not consti-
tute a tool for determining the reversibility and home markings. The
reasons for that have been mentioned earlier and can be reduced to

68 5 5. PETRI NETS

the facts that he coverability graph does not solve the reachability
and path problems(see Section 5.3.6).

5.3.9 Transition Liveness and Quasi-Liveness

For a Petri net representing a system, it is legitimate to ask whether
a given transition in the model could ever fire. If we view transitions
as actions taken by some agent, transition liveness will tell us whether
the agent will ever have a chance to trigger a given action.

Informally, a transition t is said to be quasi-live if it possible to
reach a marking where t can fire. A transition t is said to be live if
from any reachable marking, it is possible to reach another marking
where t can fire. Definition 5.10 gives a formal definition of transition
liveness and quasi-liveness.

Definition 5.10 (Liveness).
Let m0 be the initial marking of a net N , R(m0) the set of reachable
markings and L(m) the set of transition sequences from a marking m.
− A transition t is Quasi-Live iff: t ∈ L(m0).
− A transition t is Dead iff: t /∈ L(m0).
− A transition t is Live iff: ∀m ∈ R(m0), t ∈ L(m).

For bounded Petri nets, quasi-live and dead transitions can be verified
by inspecting the reachability graph. For a given transition t, if no
edge labelled with t can be found in the reachability graph we say
that t is dead, otherwise t is quasi-live.

A transition t is live if it is in a firing sequence from every reachable
marking. This can be done by considering each marking m of the
reachability graph, and starting breath-first search for a marking
which has t as an edge. Repeating this process for each transition
of the net will answer whether the net is live or not. Note that
transition liveness and net liveness are costly properties to verify,
because for each transition a search has to be initiated for every
reachable marking.

Figure 5.9 illustrates liveness, quasi-liveness and dead transitions.
In the reachability graph of Figure 5.9, we can see that t3 does not
appear as an edge in any of the reachable markings, so it is a dead
transition. The transition t4 can not be fired anymore if either of

5.3. P/T NETS PROBLEMS AND ANALYSIS 69

the markings m2 or m3 have been reached, t4 is thus quasi-live only.
Transitions t1 and t2 are live, because from every reachable marking
it is possible to move to a marking where t1 and t2 can fire. When

Bounded P/T net Reachability graph

m0=[1 0 1]

m1=[0 1 1]

t1

m2=[0 1 0]

t4t2

m3=[1 0 0]

t2 t1

Figure 5.9: Transition liveness and quasi-liveness

a net is reversible and each of its transitions are quasi-live we can
conclude that the net is live. The reason is rather simple: When a
net is reversible it means that from any marking it is possible to find a
sequence that leads to the initial marking. The quasi-liveness of each
transition means that from the initial marking all the transitions can
eventually fire. We can therefore conclude that each transition can
always fire again from any reachable marking, as it is sufficient to go
back to the initial marking (reversibility), and further to a marking
where the transition in question can fire (quasi-liveness).
For unbounded P/T nets, the quasi-live and dead transitions can be
checked in a similar way as with the bounded P/T net. That is, a
transition t is quasi-live if it appears at least once in some edge of the
coverability graph, otherwise t is dead.

However, the transition liveness and the net liveness cannot be
decided by means of the coverability graph, for the same reason as
for the marking reachability problem, due to the information hidden
by the symbol ω.

70 5 5. PETRI NETS

5.4 P/T Nets Extended With Inhibitor

Arcs

We have so far presented the P/T net class and shown how it can be
analysed by means of the reachability or coverability graphs. We shall
now give a short introduction to P/T nets extended with inhibitor arcs
(PTI). We will provide both informal and formal definitions of PTI
nets, and discuss their strength and limitations.

5.4.1 Definitions

P/T nets with inhibitor arcs (PTI) are like the P/T nets presented
so far, with one additional element called inhibitor arc.

Inhibitor arcs are types of arcs that can only connect places to
transitions. The places from which inhibitor arcs depart are called
inhibiting places, and the transitions to which the arcs lead are called
inhibited transitions. The transitions firing rule from Definition 5.2 is
modified in such a way that a transition can fire if all its input places
contain at least one token, and that all its inhibiting places contain
no token. A formal definition is given in Definition 5.11.

Definition 5.11 (Definition of PTI nets).
A PTI net is a tuple PTI = (PT, I) where:
− PT is P/T net from Definition 5.1.
− I ⊆ (P × T) is a set of inhibitor arcs, where a pair (p, t) ∈ I

describes an inhibitor arc from p to t.
− ◦t denotes the set of places inhibiting a transition t.
− p◦, denotes the set of transitions inhibited by a places p.
− A transition t can fire in m iff: ∀p ∈• t,m(p) > 0 and ∀p ∈◦ t

m(p) = 0.

Figure 5.10 shows an unbounded PTI net. Using Definition 5.11, we
have ◦t1 = {p2},

◦t3 = {p1}, p
◦
1 = {t3}, and p◦2 = {t1}. Meaning that

t1 can only fire if p2 has no tokens, and t3 can only fire if p1 has no
tokens.

5.4. P/T NETS EXTENDED WITH INHIBITOR ARCS 71

Figure 5.10: An unbounded P/T net with inhibitor arcs

5.4.2 Analysis

The added value by extending P/T nets with inhibitor arcs is the
ability to test for zero, which was lacking in P/T nets. With
inhibitor arcs, it becomes possible to model Turing machines [62].
Unfortunately, this result also means that for unbounded PTI nets
almost no property can be decided any more.

Obviously, for bounded nets all the analysis techniques that
were presented in Section 5.3 still hold. When a given PTI net is
known bounded, it is possible to generate a reachability graph using
Algorithm 1, and study the net’s properties by means of the generated
graph. In other words, Algorithm 1 is still applicable to bounded PTI
nets.

A PTI net can be bounded, if we associate to places a maximum
number of token, called place capacity [99]. In [117, 101] we used PTI
nets with capacity places to model the dynamics of a drilling control
system. Unfortunately, this approach leads to a lost precision, and
quickly suffers from the state explosion problem [130].

For unbounded PTI nets, Algorithm 2 which generates a cover-
ability graph does not apply any more. We are thus left without the
coverability analysis tools.

The reason that makes Algorithm 2 fails to generate the coverabil-
ity graph is the lost monotonicity property which binds the marking
ordering with transition firing. The monotonicity of P/T net is such
that if a transition can fire from a given marking it can also fire from

72 5 5. PETRI NETS

any larger marking. For PTI nets this property is no longer true.
For example, consider the PTI of Figure 5.10, from the initial

marking m0 = [0 0], both t1 and t3 can fire. Despite the fact that
triggering t1 leads to a larger marking m1 = [1 0], t3 can not fire from
m1, because of the inhibitor arc from p1 to t3.

Algorithm 2 exploits the monotonicity property of P/T nets when
inserting the ω in the acceleration function. Inspired by this idea,
we shall in the next chapter define a subclass of PTI nets on which
it is possible generate a coverability graph and study the model’s
properties. For instance, the PTI net of Figure 5.10 belongs to such
a subclass, and models a situation that P/T nets could not have
modelled. This will be studied and discussed in the next chapter.

5.5 Chapter Summary

This chapter has introduced the P/T net class, its analysis by means
of state space exploration, and its extension with inhibitor arcs.

In computer aided model checking, a system designer proposes
a model, and the computer checks whether the model satisfies the
defined properties. We have considered the following properties:
boundedness, deadlock, marking reachability, home marking, re-
versibility, quasi-liveness and liveness.

For any kind of bounded Petri net, even beyond the P/T net
class, the reachability graph represents the complete state space of
the model, and can thus be used to decide all the above mentioned
properties. Generating the reachability graph can be done by
Algorithm 1.

When a given Petri net is unbounded, Algorithm 1 does not
terminate, meaning that a reachability graph can only be generated
when we a priori know that the net is bounded. Since boundedness
is also a property that we wish to determine, we need an alternative
approach.

An alternative solution is to generate a coverability graph using
Algorithm 2, under the condition that the net in question belongs the
P/T net class. This algorithm generates a reachability graph if the net
in question is bounded, and a coverability graph if it is unbounded.

5.5. CHAPTER SUMMARY 73

Unfortunately, it runs slower, it is limited to P/T nets only, and not
all properties of interest can be decided by it.

Table 5.2 summarises which properties can be decided by means
of the state space analysis. All these properties are of interest for
the next chapter in which we shall present a subclass of PTI nets on
which these properties are decidable by coverability graph analysis.

Table 5.2: Deciding P/T net properties by means of reachability or
coverability graphs

Problems Unbounded Bounded
(Coverability) (Reachability)

Boundedness Decidable Undecidable
Deadlock Decidable Decidable
Marking reachability Undecidable Decidable
Sub marking reachability Undecidable Decidable
Path Undecidable Decidable
Home making Undecidable Decidable
Reversibility Undecidable Decidable
Quasi liveness Decidable Decidable
Liveness Undecidable Decidable

74 5 5. PETRI NETS

5.6 Algorithms

Algorithm 1 Finding the Reachability graph of a P/T net

1: Initialization:
2: (V,E, v0)← (m0, ∅, m0) {Initialize graph with m0 as its only vertex}

3: function ReachGraph(V,E, v0)
4: S : set← {m0} {S is a set filled with m0 at start}

5: while S 6= ∅
6: select m ∈ S {Choose an entry m from S}

7: S ← S\{m} {Remove the entry m from S}

8: for all t ∈ enabled(m)
9: m′ ← fire(t,m) { enable and fire from Def. 5.2}

10: if m′ /∈ V
11: V ← V ∪ {m′} {Add the next marking to the set of vertices}

12: S ← S ∪ {m′} {Add the next marking to the S}

13: E ← E ∪ {(m, t,m′)} {Connect m and m′ with an arc t }

14: return (V,E, v0) {Return the Reachability graph}

5.6. ALGORITHMS 75

Algorithm 2 Finding the Coverability graph of a P/T net

1: Initialization:
2: (V,E, v0)← (m0, ∅, m0) {Initialize graph with m0 as its only vertex}

3: function CovGraph(V,E, v0)
4: S : set← m0 {S is a set filled with m0 at start}

5: while S 6= ∅
6: select m ∈ S {Choose an entry m from S}

7: S ← S\{m} {Remove the entry m from S}

8: for all t ∈ enabled(m)
9: m′ ← fire(t,m) { enable and fire from Def. 5.2}

10: m′ ← Accelerate(m, t,m′, V, E)
11: if m′ /∈ V
12: V ← V ∪ {m′} {Add m′ to the set of vertices}

13: S ← S ∪ {m′} {Add the next marking to S}

14: E ← E ∪ {(m, t,m′)} {Connect m and m′ with an arc t }

15: return (V,E, v0) {Return the Coverability graph}

16: function Accelerate(m, t,m′, V, E)
17: for all m′′ ∈ V
18: if m′′ < m′ and m′′ ∈ m0[σ〉m
19: m′ ← m′ + (m′ −m′′)× ω {Where +,−, and × are vector

addition, vector substraction, and scalar multiplication respectively}

{ If m′ covers m′′ (see Def 5.4) and m′′ appears in the path from m0

to m, then insert ω in all places p m′(p) > m′′(p) }

20: return m′

76 5 5. PETRI NETS

Chapter 6

Place/Transition nets with
Inhibitor Arcs

Place/Transition nets (P/T nets) have shown to be a very useful
modelling tool, but they sometimes fail to model relatively simple
situations. For this reason, several extensions have been proposed to
improve their modelling power. Among these extensions we find P/T
nets extended with inhibitor arcs (PTI). The basic capability that
inhibitor arcs add to P/T nets is referred to as zero testing.

The problem caused by this extension was elegantly expressed by
James L. Peterson [107]:

In general, it seems that any extension which does not
allow zero testing will not actually increase the modelling
power (or decrease the decision power) of Petri nets but
merely result in another equivalent formulation of the
basic Petri net model. (Modelling convenience may be
increased.) At the same time, any extension which does
allow zero testing will increase the modelling power to the
level of Turing machines and decrease decision power to
zero. Thus Petri net extensions would seem to have few
practical advantages for analysis.

This chapter discusses the poor decision power of PTI nets, based
on which a sub-class of PTI nets is presented. We call this class
Cohesive Place/Transition nets with Inhibitor Arcs (CPTI), which

77

78 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

is such that inhibitor arcs are used in a restrictive way. This
class is then further restricted to a class called Mutually Inhibited
Cohesive Place/Transition nets with Inhibitor Arcs (MICPTI). We
show how the marking reachability, deadlock, reversibility, home
marking, quasi-liveness, liveness and path problems are all decidable
on MICPTI nets.

6.1 Introduction

Place/Transition nets with inhibitor arcs [4] (PTI) are extension to
P/T nets, and have already been introduced in Chapter 5. The very
fundamental ability that is added by inhibitor arcs is that an action
is not only conditioned by the presence of resources but could also be
conditioned by their absence.

Intuitively, in a P/T net, the presence of more tokens implies
the possibility of firing more transitions, because transition firings
are conditioned by the presence of tokens in some given places.
This property does not hold for PTI nets, because the presence of
tokens could also imply transition inhibiting rather than enabling.
The property that is lost by introducing inhibitor arcs is called the
monotonicity property of P/T nets [48, 53, 47, 5, 38], which to the
best of our knowledge, is what makes PTI nets so hard to analyse.

The PTI nets class was proven Turing Powerful [61, 44], thus
introducing inhibitory arcs leads to a formalism that can model any
system. A consequence of the Turing power of PTI nets, is that the
general coverability graph procedure [84] does not apply to PTI nets
(it will be discussed in Section 6.3), because if that were the case,
the termination problem would be decidable [61]. However, it is a
well-known fact that the termination problem is undecidable on a
Turing machine [129].

Despite the undecidability results of PTI nets, it remains possible
to find some sub-classes which can be analysed. In other words, it
seems possible to use inhibitor arcs in some restricted forms and
still have a high Decision Power. An example of such a class is
the primitive systems [23], also presented in Section 6.3. Following
a similar direction as with primitive systems, we propose another

6.2. TURING EQUIVALENCE 79

sub-class of PTI called Cohesive PTI (Section 6.4), in which it is
possible to compute a coverability graph (Section 6.6). The Cohesive
PTI class is then further restricted to what we call Mutually Inhibited
Cohesive PTI sub-class. The advantage of the latter is that its
coverability graph embeds sufficient information on the behaviour of
the net, so that it becomes possible to decide: Marking reachability,
deadlock, reversibility, home marking, quasi-liveness, liveness and
path problems (see Section 6.8).

But before we proceed to the next section, we shall emphasize the
need of using inhibitor arcs based on a concrete example from drilling.

Figure 6.1 shows a PTI net capturing a simple part of the rig
dynamics. The transitions t1 and t2 are responsible for increasing
and decreasing the drill-string rotational speed respectively. The
transitions t5 and t6 are responsible for increasing and decreasing
the drill-string downward speed. While t3 and t4 are responsible
for releasing and activating the power-slips. The rotational and
downward speeds can only be set if the power-slips are released.
Likewise the power-slips can only be activated if neither the rotational
nor the downward speeds are set. These constraints can unfortunately
not be captured without using inhibitor arcs.

The use of inhibitor arcs means that the proposed model cannot
be analysed within the actual Petri net theory. We shall therefore
suggest a sub-class of PTI nets, that satisfies our modelling needs,
and that is fully analysable.

6.2 Turing Equivalence

This section presents the Turing equivalence proof of PTI nets which
was first formulated in [61], and later on refined in [107]. Since we
shall use inhibitor arcs, we found it logical to show why they are
fundamentally so problematic. We do that by reproducing the Turing
equivalence proof as presented in [107].

The proof of Turing equivalence is based on the registry machine
of Shepherdson in [123]. A registry machine is an abstract machine
which has registers for storing arbitrarily large values. The main
result of [123] is that a registry machine which has the following

80 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

Figure 6.1: A PTI net modelling parts of a rig dynamics

instruction is Turing equivalent:
− Inc(n): Increment register n by 1.
− Dec(n): Decrement register n by 1, only if n 6= 0.
− Jump(n)(a): Jump to instruction a if register n = 0 otherwise

move to the next instruction.

(a) Inc(n) (b) Dec(n) (c) Jump(n)(a)

Figure 6.2: A representation of register machine instruction set using
PTI

These instructions can be represented using PTI as shown in Figure
6.2. To represent a program with the above instructions using PTI we
use n places to represent the set of registers Reg = {R1, R2, ..., Rn}.
For a program with k statements we use k+1 places to represent the

6.2. TURING EQUIVALENCE 81

Figure 6.3: A PTI net representing a program that adds R2 to R1,
with initial values R2 = 2 and R1 = 0.

statement’s position in the program, S = {s1, s2, ..., sk+1}. Finally,
each instruction in the program is represented by a transition. For
example, Figure 6.3 shows a program that adds the content of register
R2 to register R1 (it also uses an always zero register R3) using
the instructions of Algorithm 3. The point is that PTI net can

Algorithm 3 This program adds the content of register R2 to R1

1: S1: Jump(2)(5) {If R2 = 0 go to S5}

2: S2: Dec(2) {Substract 1 from R2 and move to S3}

3: S3: Inc(1) {Add 1 to R1 and move to S4}

4: S4: Jump(3)(1) {Go to instruction S1}

5: S5: Halt

simulate Shepherdson’s registry machine [123], and are therefore

82 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

Turing equivalent. Obviously, since problems like boundedness and
marking reachability can be used to determine program termination,
they must be undecidable for PTI nets.

6.3 Coverability Graph Problem

The Turing equivalence of PTI nets provides a general proof that no
general coverability graph procedure exists which can apply to any
PTI model. But, the proof does not give precise reasons as to which
properties are lost or introduced so that the analysis of PTI becomes
undecidable. This section investigates these reasons.

Since we are dealing with potentially infinite systems (unbounded
places), the reachability graph analysis does obviously not provide
a solution, because the procedure generating the reachability graph
will not terminate, see Section 5.3. We will therefore focus on the
generation of the coverability graph, a procedure which is directly
derived from the Karp and Miller Tree [84].

So, to find an explanation for why the coverability graph procedure
does not apply to PTI nets, we could start by finding out why the
algorithm applies to P/T nets. This question was studied in [5, 47,
38, 22] through the so-called Well Structured Transition Systems, or
WSTS for short.

WSTS define a general structure which was introduced mainly to
generalize the fundamental concepts behind the construction of the
coverability graph. From the perspective of WSTS, P/T transition
nets are transition systems which are equipped by an ordering relation
≤ over the set of reachable markings, and that the relation ≤ is
compatible with → (the transition relation between two markings).
The compatibility between ≤ and → is the so-called monotonicity
property. In the case of P/T nets we have a stronger form of
compatibility called strict compatibility. Note that strict compatibility
is such that, if m1 < m2 and m1 →

t m3 then there exist m2 →
t m4

such that m3 < m4.
In contrast to P/T nets, PTI nets do not satisfy the compatibility

requirement, that is why Algorithm 2 (see Section 5.3) which gener-
ates a coverability graph P/T nets can not be applied to PTI.

6.3. COVERABILITY GRAPH PROBLEM 83

Recall that in Algorithm 2, the monotonicity property is actually
exploited to decide the insertion of ω (Definition 5.4). Deciding when
to introduce the ω symbol is handled by the acceleration function.

Roughly, the coverability graph procedure works as follows: The
algorithm starts from an initial marking m0, and proceeds by
determining the possible successor markings. Each successor marking
is run through the acceleration procedure, for insertion or not of the
symbol ω. A consequence of the monotonicity property is that if
m1 < m2 and their exists a non empty sequence of transitions σ from
m1 to m2, then it is possible to repeat σ from m2 and reach an even
higher marking. When a marking has passed through the acceleration
function, it is either added to the graph (if not in the graph already)
or ignored. The procedure is repeated for every added marking in a
similar way as with m0.

Now, because the monotonicity property is lost for PTI nets,
the acceleration procedure does not work correctly any more. It is
incorrect in two possible ways:

1. The symbol ω is inserted for a place which is actually bounded.
2. The symbol ω is inserted too early, and the resulting graph is not

a coverability graph anymore, i.e not every reachable marking
is coverable

Figures 6.4 and 6.5 illustrate the above cases respectively. Consider
the PTI net in Figure 6.4a and its corresponding coverability graph
in Figure 6.4b, starting from m0 = [0 0 1]. The transition t1 is the
only enabled transition, removing 1 token from p3 and adding 1 token
to p1, we get a marking m1 = [1 0 0]. Since m0 is not comparable to
m1 the acceleration procedure does not insert any ω. Then, t1 can
not fire since p3 has no tokens, but t2 can fire, putting 1 token in
each of p2 and p3 leading to a marking m′

2 = [0 1 1] from which no
transition can fire any more. However, due to the fact that m0 < m′

2

the acceleration procedure generates m2 = [0 ω 1] which is clearly
wrong, since it indicates that p2 is unbounded while it is bounded.

Figure 6.5a and Figure 6.5b show the case where ω is inserted
too fast in m1 and m2, resulting in a coverability graph where p3 is
never filled with a token. However, from the initial marking m0 it is
possible to repeatedly fire 〈t1, t2, t3〉 and actually have an arbitrary
large number of tokens in p3. This case shows that not all reachable

84 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

markings of the PTI in 6.5a are covered by the coverability graph in
6.5b.

(a) (b)

Figure 6.4: The place p2 in 6.4a is bounded, but m2 in 6.4b has ω

(a) (b)

Figure 6.5: In 6.5a p3 is actually unbounded (repeating 〈t1, t2, t3〉),
but p3 is always 0 in the coverability graph 6.4b

However, a subclass of PTI nets called Primitive systems, intro-
duced by Busi in [23], shows that it is possible to use inhibitory arcs

6.4. COHESIVE PLACE/TRANSITION NETSWITH INHIBITORS85

in some restricted manner and still produce nets with high decision
power.

Primitive systems [23] are a subclass of P/T nets with inhibitory
arcs for which it is possible to construct a coverability graph, and
thus properties like boundedness of net, boundedness of a place, and
quasi-liveness of a transition become solvable. Primitive systems
handle the lost monotonicity property by imposing one constraint
on the net construction. In Primitive Systems an emptiness limit
is associated to each inhibiting place, in such a way that whenever
this limit is exceeded the corresponding place can not be emptied any
more.

Definition 6.1 (Definition of Primitive Systems).
A PTI net N is Primitive if we can compute the emptiness limit EL
such that: ∀p ∈ I ∀m ∈ R(m0), if m(p) > EL(p) then ∀m′ ∈ R(m),
m′(p) 6= 0.

Figure 6.6a shows a Primitive system where the place p1 can not be
emptied after its number of tokens exceeds 2. For clarity, from the
initial marking, if we fire t0 three times to deposit 3 tokens in p1, then
t1 can only fire once to remove one token from both p0 and p1 after
which its not possible to fire neither t0 nor t1, and thus p1 can not be
emptied any more. So, when the number of tokens in p1 exceeds 2 it
is not possible to empty p1 any more. Adding a transition t3 as shown
in Figure 6.6b makes the net non Primitive, because as long as there
are tokens in p1 these can be removed by t3. In this work we propose
another class of PTI nets called Cohesive PTI. Our hypothesis is that
it should be possible to determine the coverability graph if we know
how to insert the ω symbol in a correct manner, Cohesive PTI nets
offer this possibility, as demonstrated next.

6.4 Cohesive Place/Transition Nets with

Inhibitors

Cohesive Place/Transition Nets with Inhibitor arcs (CPTI) is first
of all a PTI net as defined earlier in Definition 5.11 with additional

86 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

(a) A Primitive system with
EL(P1)=2, redrawn from [23]

(b) Non Primitive system

Figure 6.6: An example of primitive system nets

model construction constrains. This section defines the CPTI class of
nets.

In a CPTI net only two structures are allowed. The first
one represents on/off type of actions, and is defined as a circular
elementary structure (ces). The other one represents level type of
actions, and is a flat elementary structure (fes). Both ces and fes
structures are defined in Definition 6.2. For example, turning on
or off the mud pump are on/off type of actions, while increasing or
decreasing the mud flow-rate are level type of actions. These two
elementary structures are shown in Figure 6.7.

Roughly speaking in fes type of structure only one place is
involved. It has exactly one input transition t1, one output transition
t2, and t1 6= t2. In addition the input transition t1 must have
no input places, and the output transition t2 must have no output
places. Figure 6.7a shows a flat elementary structure as defined by
Definition 6.2.

In a ces type of structure, exactly two places and two transitions
are involved. These are structured in a token conserving manner as
stated by Definition 6.2 and shown in Figure 6.7b.

Definition 6.2 (Elementary Structures).

6.4. COHESIVE PLACE/TRANSITION NETSWITH INHIBITORS87

Let places p, p′ ∈ P and t, t′ ∈ T , and let conda condb and condc be
three conditions where:
− conda = (•p = {t}) ∧ (p• = {t′}) ∧ (t 6= t′) ∧ (t• =• t′ = {p}).
− condb = t′• =• t = ∅.
− condc = (t′• =• t = {p′}) ∧ (•p′ = {t′}) ∧ (p′• = {t}).

A triple (p, t, t′) is fes iff: conda and condb hold, denoted condfes.
A quadruple is (p, p′, t, t′) is ces iff: conda and condc hold, denoted

condces.

(a) Flat elementary structure (b) Circular elementary struc-
ture

Figure 6.7: In fes only one place is used, while ces involves exactly
two places and two transitions in a token conserving manner

Furthermore, in a CPTI net the use of inhibitor arcs is only allowed
across elementary structures. That is, it should not be possible to
use inhibitor arcs between places and transitions belonging to the
same elementary structure. Figure 6.8 shows two nets, the one from
Figure 6.8a is CPTI while the other from Figure 6.8b is not because
of the inhibitor arc linking p2 to t2. This concept is formally defined
in Definition 6.3.

Definition 6.3 (Definition of CPTI nets).
Let ES = {es1, ..., esm} be the set of elementary structures of a net N .
Let Ti and Pi be the sets of transitions and places of esi respectively,
where:
− ∀p ∈ P, ∃esi ∈ ES such that p ∈ Pi.
− ∀t ∈ T, ∃esi ∈ ES such that t ∈ Ti.

88 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

(a) A Cohesive PTI (b) A None Cohesive PTI

Figure 6.8: The net in Fig 6.8a is a CPTI, while the net in Fig 6.8b is
not, because of the inhibitor arc from p2 to t2. Inhibitor arcs within
the same elementary structure are not allowed.

The net N is a CPTI net iff:
− ∀esi ∈ ES ∀p ∈ Pi either p◦ = ∅ or ∀t ∈ p◦, t /∈ Ti.

Algorithm 4 (Section 6.13) takes as input a PTI net and determines
whether the net is a CPTI net or not. The algorithm extracts all the
elementary structures and stores them in the variable ES, when a
structure that is neither ces nor fes is found, the algorithm returns
false. Once all the elementary structures are determined, it checks
whether inhibitor arcs violate Definition 6.3; i.e. no transition should
be inhibited by a place contained in the same structure.

6.5 Monotonicity of Cohesive PTI Nets

CPTI nets have already been defined in Section 6.4. This section
presents the monotonicity property of CPTI nets, which basically
defines the fundamental behaviour of CPTI nets. Since the mono-
tonicity of P/T nets is what allows the generation of coverability
graphs, we shall now identify what kind of monotonicity property
holds for CPTI nets. This property will be exploited later when we
propose an algorithm that generates a coverability graph for CPTI
nets.

The general behaviour of CPTI is dictated by its two basic
structures (ces and fes). From a given marking, firing a transition

6.5. MONOTONICITY OF COHESIVE PTI NETS 89

can give rise to a new marking in a limited and deterministic manner.
Intuitively, when firing a transition t in a fes structure, it either adds
one token to a place or removes one token from one place. A transition
t which is in a ces structure, removes one token from a place and adds
one token to another place. In either cases, the marking that emerges
from firing t can be anticipated based on what structure the transition
belongs to, as expressed by Property 6.1.

Property 6.1 (CPTI Dynamics).
Let N be a CPTI net. From any marking m, any enabled transition
t at m generates a new marking m′ in one the following ways:

1. m′ > m, and m′ equals m for all places except one; i.e. ∃!p ∈ P
such that ∀pi 6= p ∈ P m′(pi) = m(pi) and m

′(p) > m(p).
2. m′ < m, and m′ equals m for all places except one; i.e. ∃!p ∈ P

such that ∀pi 6= p ∈ P m′(pi) = m(pi) and m
′(p) < m(p).

3. m′ and m are not comparable; i.e. ∃pa, pb ∈ P where m′(pa) <
m(pa) and m

′(pb) > m(pb).
NB! See proof 6.1 in Section 6.12.

The introduction of inhibitory arcs causes the loss of the strict
monotonicity property in P/T nets (strict ordering is not compatible
with the transition relations). Recall that the strict monotonicity
in Petri net is that; if m1 < m2 and m1 →

t m3 then there exist
m2 →

t m4 such that m3 < m4; i.e. if a transition could fire from
a marking it can fire at any higher marking. This property is not
satisfied for CPTI.

Property 6.2.
CPTI nets are not strictly monotone.

NB! See proof 6.2 in Section 6.12.

The kind of monotonicity that is satisfied by CPTI is the following:
From a given m if by firing a transition t we can reach a marking m′ >
m, then it is possible to fire t fromm′, we call this for T-monotonicity.
In contrast to strict monotonicity, t can not fire from any m′ > m,
but only from those markings that are generated by t.

Definition 6.4 (Definition of T-monotonicity).
T-monotonicity is such that; if m1 < m2 and m1 →

t m2 then ∃m3,
such that m2 →

t m3 and m2 < m3.

90 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

Property 6.3.
Any CPTI net satisfies the T-monotonicity.

NB! See proof 6.3 in Section 6.12.

6.6 Cohesive PTI Coverability

In this section we show how to compute the coverability graph for
a CPTI net. Recall that in Section 6.3 we argued that the lost
monotonicity property of PTI had the consequence of either a too
early or an incorrect insertion of ω. The idea behind CPTI nets is
that there is no ambiguity in determining whether a place can contain
arbitrarily many tokens or not. In other words, CPTI nets enable a
correct insertion of ω.

A correct insertion of ω is done by taking advantage of Proper-
ties 6.1 and 6.3. This means that the constrained behaviour of CPTI
nets combined with their T-monotonicity allow a correct insertion
of ω. Algorithm 5 (Section 6.13) works very much like the one in
Algorithm 2, with a slightly different acceleration function.

Intuitively, when generating the reachability graph, that is an
exhaustive enumeration of all the possible markings, for each marking
m and its successor m′, we meet one of the cases of Property 6.1.
The elementary structure in Case 2 is fes, because only one place is
involved, combined with the fact that m′(p) < m(p) gives no reason
of acceleration (ω insertion). The resulting m′ has either been visited
earlier or will be considered as a new marking.

In Case 3 we are faced with ces, and by construction m′ is not
comparable to m. The acceleration can only take effect in Case 1
when operating on a fes. That is, from a marking m a transition t
has added a token in place p, based on the T-monotonicity transition
t can fire again.

Knowing that an inhibitor can not exist inside a given elementary
structure, and knowing that t can fill exactly one place, we can
conclude that t can fire again from m′ because an added token can
simply not inhibit t from firing again (but can inhibit other transitions
than t) leading to the successor marking of m′ by t. Thus, the
transition t can fire arbitrarily many times and ω can safely be

6.6. COHESIVE PTI COVERABILITY 91

inserted.
In Algorithm 5 the ω insertion is done in the acceleration function.

Figure 6.9 shows a CPTI net and its corresponding coverability.
Applying Algorithm 5 to the CPTI net of Figure 6.9 does the
following: It starts from the initial marking m0 where only t2 can
fire leading to m1. Because m0 and m1 are not comparable, no
acceleration takes effect. From m1, t1 can fire to go back to m0

with no acceleration taking effect either, but t3 leads to a marking
m2 = [0 1 1]. Since m2 > m1, the acceleration takes effect causing
m2(p3) = ω. From m2 we can fire t3 and t4, because ω + 1 = ω (see
Definition 5.4) no new node is generated by t3, but firing t1 leads to
m3 from which it is possible to fire t2 and go back to m2 or fire t4
and no node is generated(ω − 1 = ω). Note that under the execution
of Algorithm 5, if a generated node already exists it will be ignored.
To prove the finiteness and correctness of Algorithm 5 on CPTI nets,

(a) (b)

Figure 6.9: A CPTI net and its corresponding coverability graph

and inspired from [84, 23, 107] we use two lemmas: Koenig [86] and
a reformulation of Dickson’s lemma in the context of P/T nets [36].

Lemma 6.1 (Koenig’s Lemma).
If G is a connected graph with infinitely many vertices such that every
vertex has finite degree then G contains an infinitely long simple path;

92 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

i.e. a path with no repeated vertices. Consequently, if G is such that
every vertex has finite degree and G contains no infinite simple path,
than G is finite.

Lemma 6.2 (Dickson’s Lemma Reformulation).
For every infinite sequence of markings, there exists an infinite
subsequence that is increasing with respect to the ordering relation
≤.

Proposition 6.1 (Finiteness).
Finiteness For a CPTI net, Algorithm 5 computes a finite graph.

NB! See proof 6.4 in Section 6.12.

Corollary 6.1 (Termination).
For a CPTI net, Algorithm 5 terminates.

NB! See proof 6.4 in Section 6.12.

Proposition 6.2 (Correctness).
For a CPTI net Algorithm 5 computes a coverability graph.

NB! See proof 6.5 in Section 6.12.

Corollary 6.2.
Let G be a graph computed by Algorithm 5 for a CPTI net N . Every
reachable marking in a N is either explicitly present in a node of G
or covered by an extended marking (some node containing the symbol
ω) in G.

NB! See proof 6.5 in Section 6.12.

Proposition 6.3 (Reachability).
For a CPTI net, a marking m that is covered by an extended marking
is not necessary a reachable marking.

NB! See proof 6.6 in Section 6.12

6.7 Analysis of Cohesive PTI

We have so far presented CPTI nets, and proposed an algorithm
(Algorithm 5) that generate a coverability graph for them. This
section shows which model properties can be decided using the
coverability graph computed by Algorithm 5.

6.7. ANALYSIS OF COHESIVE PTI 93

We have already gone trough the exercise of deciding P/T nets
properties in Section 5.3. This section repeats that exercise for the
CPTI class of nets. The properties of interest are the following:
boundedness, deadlock, marking and sub-marking reachability, path,
home marking, transition liveness and quasi-liveness.

6.7.1 Boundedness

Recall that from Definition 5.3 a net is bounded if none of its places
can contain an arbitrarily large number of tokens. Consequently, if
one place can contain an arbitrary large number of tokens, the net
becomes unbounded.

Using the coverability graph, the existence of one extended
marking i.e., the presence of ω implies that the net is unbounded.
Note that if a CPTI net contains some fes type of structures does
not necessarily mean that the net is unbounded. Figure 6.10 shows
a bounded CPTI net, since its corresponding coverability graph
does not contain any ω symbol, despite the fact that place p1 and
transitions t1 and t2 constitute a fes.

On the other hand, Figure 6.11 shows an unbounded CPTI net and
its corresponding coverability graph. Notice that the only difference
between Figures 6.10a and 6.11a is the inhibitor arc between p5 and t4,
which is present only in Figure 6.10a. Boundedness is thus decidable
for CPTI nets as it is for P/T nets (Section 5.3).

6.7.2 Deadlock

A deadlock marking describes a situation in which no transition can
fire any more. From Definition 5.7, a marking of a net N is deadlock,
if the net’s corresponding reachability (or coverability) graph does not
contain any outgoing arcs. This fact also applies for CPTI nets.

Figure 6.12 shows a CPTI net and its corresponding coverability
graph. The marking m3 is a deadlock marking, because it has no
outgoing arc from it. The marking m3 describes in fact infinitely
many deadlock situations, which is explained as follows: From m0, t2
can fire to remove a token from p1 and insert one token in p2. The
firing of t2 leads to the marking m1, from which it is possible to fire t3

94 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

(a) (b)

Figure 6.10: Bounded CPTI net

as often as desired, but as soon as t1 is fired again, no transition can
fire any more, reaching a deadlock marking. Deadlock markings are
thus decidable for CPTI nets as they are for P/T nets (Section 5.3).

6.7.3 Marking and Sub-Marking Reachability

The marking and sub-marking reachability problems were presented
and analysed for P/T nets in Section 5.3. This analysis also holds
for CPTI nets. That is, for a bounded CPTI net these problems are
decidable by inspecting the reachability graph.

For unbounded nets these problems cannot be decided by means
of the coverability graph. To explain this undecidebility we refer to
Propostions 6.3 and Corollary 6.2, where for any marking m in a
coverability graph of a CPTI net the following holds:

1. If m is explicitly present in the coverability graph, then it is a
reachable marking. This can be checked by inspecting the graph
nodes.

2. If m is covered by some extended marking in the coverability
graph, then m can be either reachable or not.

3. If none of the above cases hold then m is not reachable.

6.7. ANALYSIS OF COHESIVE PTI 95

(a)

(b)

Figure 6.11: Unbounded CPTI net

96 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

(a) (b)

Figure 6.12: CPTI nets and deadlock markings

NB! This fact constitutes a motivation of Section 6.8 in which
a subclass of CPTI nets is introduced, such that the reachability
problem becomes decidable.

6.7.4 Path

Intuitively, the problem of determining a path between two reachable
markings of a CPTI net is a difficult problem to solve. First, because
the marking reachability cannot be solved by means of the coverability
graph. Second, even if we were ask to find a path between two marking
which are known reachable, the problem remains difficult.

To illustrate this problem we use Figure 6.13, which once again
represents a CPTI net with its corresponding coverability graph.
Now, consider that we want to find a path between two a priori
known reachable markings ma = [4 0 1 3] and mb = [3 1 0 2]. From
the Coverability graph of Figure 6.13b, ma is covered by m6 and mb

is covered by m7. However, finding a path from ma to mb can not be
reduced to finding a path from m6 to m7. From the marking ma, if we
apply t3 we will reach some marking m′

a = [4 1 0 3] from which we can
fire t2 once and reach m′′

a = [3 1 0 3], but to reduce the last coordinate
from the value 3 to 2 as specified by mb is not feasible neither from

6.7. ANALYSIS OF COHESIVE PTI 97

m7 nor from m6. In fact, in order to decrease the last coordinate we
have to be in some extended marking where it is possible to fire t6.

However, in order to fire t6 we need to completely empty p1. One
possible path from ma to mb could be σ such that:
σ = 〈t3, t

4
2, t6, t4, t

3
1, t3〉. Clearly Breadth first search does not

make much sense in this case, because the coverability graph masks
information about the marking connections. The complexity of the
path problem in addition to the reachability problem will be handled
in Section 6.8 with the so-called Mutually Inhibited CPTI.

6.7.5 Home Marking and Reversibility

For a given net, determining whether a marking can be reached
from any other marking is called a home marking, and when the
initial marking is a home marking, then the net becomes a reversible
net. These notions have already been introduced in Section 5.3 and
Definition 5.9.

The analysis for determining home markings and net reversibility
for P/T nets also holds for CPTI nets. That is, a marking m is a home
marking if there exists a path from any marking in the reachability
graph to m. A net is reversible if m0 is a home marking, which also is
satisfied by checking whether the reachability graph constitutes one
strongly connected component(Tarjan’s Algorithm [126]).

For unbounded CPTI nets, the coverability graph is not sufficient
to determine the home marking and reversibility properties. This is
due to the fact that the reachability and path problems can not be
solved by analysing the coverability graph.

6.7.6 Transition Liveness and Quasi-Liveness

A transition is said to be quasi-live if it can be made to fire once,
and it is called live if it can possibly fire from any reachable marking.
These notions have already been formalised in Definition 5.10.

For a CPTI net a transition t is quasi-live if it appears in some
arcs in the coverability graph. The quasi-liveness is thus decidable
for CPTI nets.

The liveness analysis for P/T nets (see Section 5.3) also holds for

98 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

(a)

(b)

Figure 6.13: The problem of finding a path between two markings
fromma = [4013] andmb = [3102], covered bym6 andm7 respectively

6.8. MUTUALLY INHIBITED COHESIVE PTI NETS 99

CPTI nets. That is, for bounded CPTI nets, transition liveness is
decidable by means of the reachability graph. While for unbounded
CPTI nets, the coverability graph is not sufficient for deciding
transition liveness.

6.8 Mutually Inhibited Cohesive PTI

Nets

In the previous section we defined the CPTI class of nets, and showed
which properties can be decided on it. We found out that the marking
reachability, path, home marking, reversibility and liveness are all
properties that cannot be decided using the coverability graph.

This section presents a subclass of CPTI nets, on which the
above mentioned properties become decidable by coverability graph
analysis. We call such a class for Mutually Inhibited Cohesive
Place/Transition Nets with Inhibitors (MICPTI nets).

In CPTI nets, a place p inhibiting a transition t cannot belong
to the same elementary structure (fes or ces), this also holds for
MICPTI nets. However MICPTI nets have an additional restriction
which states the following: A place p can only inhibit a transition
t which deposits tokens, and that each inhibited transition t should
deposit tokens in some place p′ which in turn inhibits a transition t′

that again deposits tokens in p. These transition restrictions happen
in a mutual relation, which is why we have chosen to call this class
Mutually Inhibited CPTI.

The main motivation behind this class of nets is that in addition to
the properties of CPTI nets, the reachability and the path problems
are solvable. From a fundamental point of view CPTI and MICPTI
are different with respect to the monotonicity properties they satisfy.
Recall that a CPTI satisfies the T − monotonicity (Property 6.3),
which states that from a given marking, if by firing a transition t we
can reach a larger marking, then t can fire again from the generated
marking.

In the case of MICPTI we have an even stronger monotonicity
(S−monotonicity), which says that from a given marking, if by firing
a transition t we can reach a larger marking, then t can fire from any

100 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

larger marking which comes after the firing of t. This means that after
firing t and if it is possible to fire another transition t′ which leads to an
even larger marking than t, t can also fire from the marking generated
by t′. Figure 6.14 shows a CPTI and its corresponding coverability
graph. We can notice that from m0, t1 can fire arbitrarily many times
as reflected in m1, however from m1, firing t3 leads to m3 > m1 but
the firability of t1 is lost, meaning that the S −monotonicity is not
satisfied.

(a) (b)

Figure 6.14: T − monotonicity is satisfied but not the S −
monotonicity

(a) (b)

Figure 6.15: The S −monotonicity is satisfied

Transforming the net of Figure 6.14 to a MICPTI net can be obtained
by adding an inhibitor arc from p1 to t3 as shown in Figure 6.15. Later

6.9. MONOTONICITY OF MUTUALLY INHIBITED CPTI 101

on in this section, we will show how the S −monotonicity allows us
to determine the path between two reachable markings.

Another effect of the restriction imposed by MICPTI is that
inhibitor arcs only involve transitions that fill some place. Meaning
that a transition which only removes tokens from a place without
depositing tokens in another place can not be inhibited. We shall
see that a consequence of this restriction allows us to solve the
reachability problem.

Formally, a MICPTI net is defined in Definition 6.5 as a CPTI
from Definition 6.3 with extra constraints on the use of inhibitor arcs:

Definition 6.5 (Definition of MICPTI nets).
A MICPTI net is a CPTI from Definition 6.3 where:
∀p ∈ P , t ∈ p◦ ⇒ ∃pi ∈ t•, ∃ti ∈ p◦i , p ∈ t•i , i.e. for a transition

t which is inhibited by p, t must output to a place pi which inhibits ti
which again outputs in p.

Algorithm 6 (Section 6.13) determines whether a PTI net is MICPTI
or not. The algorithm uses the function isCPTI(P, T, I) from
Algorithm 4, followed by a procedure to verify the constraints on
inhibitor arcs as defined in Definition 6.5.

6.9 Monotonicity of Mutually Inhibited

CPTI

Any CPTI net satisfies the T − monotonicity, as stated by Prop-
erty 6.3. The T − monotonicity is what makes it possible to apply
Algorithm 5 and generate a coverability graph for unbounded CPTI
nets.

MICPTI net constitute a subclass of CPTI nets which by definition
satisfy the T − monotonicity. In addition, MICPTI nets satisfy
another montonotonicity. We call it the S − monotonicity which
we define and discuss in this section.

Definition 6.6 (Definition of S-monotonicity).
A PTI net satisfies S −monotonicity if:

102 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

∀m1, m2, m1 6= m2, if m1 →
t1 m2 ∧ m1 < m2 ⇒ ∀m > m2,

∃m′ > m s.t m→t1 m′, i.e if from m1 we can fire t1 to reach m2 > m1

then t1 can fire from any marking larger than m2 and reach an even
higher marking.

Note that the difference between S − monotonicity and the mono-
tonicity of P/T nets is that for a P/T if a transition t can fire from
a marking m then t can fire from any marking m′ > m. While for a
MICPTI, if a transition t can fire from m it can fire from any marking
m′ > m under the condition that t has been fired to reach a marking
m′ > m.

Property 6.4.
Any MICPTI net satisfies the S-monotonicity.

NB! See proof 6.7 in Section 6.12.

Figure 6.16 shows the S − monotonicity of a MICPTI net. Notice
that from m1 firing t1 leads to m2 > m1 which according to S −
monotonicity means that t1 can fire from any marking larger than
m2, which includes m4. Likewise, with t5 because it can fire from m1

to m3 > m1 then we can conclude that it is also fireable from m4.

(a) (b)

Figure 6.16: MICPTI and S −monotonicity

6.10. ANALYSIS OF MUTUALLY INHIBITED CPTI 103

6.10 Analysis of Mutually Inhibited

CPTI

We have shown in Section 6.7 that for CPTI nets, boundedness,
deadlock freeness, and transition quasi-liveness are decidable using
the coverability graph. We have also shown that marking reachability,
finding a path, home marking, reversibility and liveness can not
be decided using the coverability graph. However, these properties
become decidable for MICPTI nets, and this section shows how they
can be determined.

6.10.1 Reachability in MICPTI

The marking reachability is stated as follows: Given a marking m and
a netN ism reachable (see Definition 5.8)? We have earlier mentioned
that for unbounded P/T nets this problem cannot be decided by
coverability graph analysis. This result also holds for CPTI nets,
as discussed in Section 6.7 and formalised in Proposition 6.3. In this
section we show that for a given MICPTI net, the coverability graph
contains sufficient information for deciding the marking reachability.

Recall that, when we discussed the marking reachability for CPTI
nets in Section 6.7, we arrived to the following result:

1. If m is explicitly present in the coverability graph, then it is a
reachable marking. This can be checked by inspecting the graph
nodes.

2. If m is covered by some extended marking in the coverability
graph, this does not necessarily imply that m is reachable.

3. If none of the above cases hold then m is not reachable.
For MICPTI nets the seconds case is different and states that if m is
covered by some extended marking in the coverability graph, then m
is reachable.

Informally, the reachability problem for MICPTI is decidable due
to following reasons:
− MICPTI nets uses only unweighted arcs (arc with weight one),

consequently the number of tokens in a place can either be
incremented or decremented by 1, and thus the symbol ω can

104 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

take any natural number.
− The fact that a transition can deposit or remove tokens from

exactly one place means that the ω’s inserted at different
coordinates of a marking are independent. That is, any ω could
be any natural number independently of the actual value of any
other ω.

− By construction, a transition that only removes tokens can not
be inhibited. That is, from any reachable marking and as long
as the place of concern contains tokens, it is possible to fire a
transition which removes tokens from that place.

Proposition 6.4 (Reachability).
For a MICPTI net, every marking m that is covered by an extended
marking is a reachable marking.

NB! See proof 6.8 in Section 6.12.

Consider the MICPTI net and its corresponding coverability graph
in Figure 6.16. Based on Proposition 6.4 we can conclude that m =
[3 0 1 5] is a reachable marking because it is covered by m4. While
m′ = [3 1 0 5] is not because it is neither covered by any extended
marking nor equal to any marking.

6.10.2 Path Problem for MICPTI

We have seen that for MICPTI nets, it is possible to determine
whether a marking is reachable or not. This means, that for a given
MICPTI net we can determine whether there exist a sequence of
transition firing that leads to a given marking. We will now show
how to obtain such a sequence of firing.

In general, the path problem for Petri nets as introduced in
Section 5.3 consists of the following: Given two markings ma and
mb, find a sequence of transition firing from ma to mb. When the
Petri net is bounded, and its dynamic is captured in a reachability
graph, the sequence of firings can be reduced to a path in the graph
starting from ma to mb.

We have also seen that for unbounded P/T nets, and for CPTI
nets the coverability graph does not embed sufficient information
to determine either the marking reachability nor the path between

6.10. ANALYSIS OF MUTUALLY INHIBITED CPTI 105

reachable markings. In Section 6.7.4 we presented an example
showing that finding a firing sequence between ma and mb cannot
be reduced to finding a path between two markings covering ma and
mb respectively.

The reason for that is that the coverability graph hides information
about the connection between markings, because the insertion of ω
causes edges with self loops (depart and arrive to the same marking),
and that these self loops hide the effects of transition firings. In the
case of MICPTI nets, and due to the extra constraints on the use of
inhibitor arcs, the effects of transition firings is more predictable, and
thus self loop edges could be exploited to encode more information.

Intuitively, we approach the path problem by generating a
so-called characteristic graph. This graph allows us to determine the
edges and nodes on the coverability graph that need to be visited.
We call such a path a characteristic path.

A characteristic path can be seen as a clue on which transitions
are involved, but does not tell how many time each transition has to
fire. This will be determined based on a simple difference between
the source and the destination marking. We start by presenting
the characteristic graph, and later on we show how to determine a
complete path.

Characteristic Graph

Figure 6.17 shows a MICPTI net, and its corresponding coverability
graph in Figure 6.18. Consider two markings ma = [0 0 1 2 4] and
mb = [0 0 1 0 4]. Using Proposition 6.4, we can determine that ma

and mb are reachable, since they are both covered by a marking in
the coverability graph, namely: m7 and m5 respectively. Further
more, moving from ma to mb can be obtained by firing t6 twice.
However there is no edge from m7 to m5 on the coverability graph,
and thus the fact that firing t6 a number of times eventually leads to
another marking in the coverability graph is hidden. What hides this
information is that t6 is encoded as a self-loop on m7, despite the fact
that its successive firing leads to m5.

The characteristic graph takes advantage of the above mentioned
fact, by removing all self-loops that could lead to other markings. The

106 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

Figure 6.17: MICPTI net and the path problem

nature of MICPTI nets makes this possible, because we can a priori
know which transition empties or fills which place. For example, using
the net of Figure 6.17, we can know that the triple (p4, t5, t6) is a fes.
We can also know that t5 adds tokens in p4, while t6 removes tokens
from it. Thus, for a marking m, where m(p4) = k, and in which t6
can fire, firing t6 k times leads to a marking m′, where m′(p4) = 0.

In practice this means that we can draw an edge between m7 and
m5 that is labelled t6, and read: Firing t6 from m7 eventually leads
to m5. Applying this idea to all the self loop edges of the coverability
graph from Figure 6.18 gives the characteristic graph of Figure 6.19.
This procedure is formalized in Algorithm 7 (Section 6.13).

Algorithm 7 starts by assigning the coverablility graph to the
characteristic graph. Only those edges that are self loops are
considered. Because these self loops only involve extended markings,
we have to distinguish between those transitions that deposit tokens,
and those that remove tokens. A new edge is then created between
the marking of concern and a certain marking in which the place p is
set to 0.

Finding a path

The characteristic graph provides a tool to determine which transition
could be fired in order to move from one marking to another. We shall
now exploit this graph to determine a path between two markings.

Consider again the two markings ma = [0 0 1 2 4] and mb =

6.10. ANALYSIS OF MUTUALLY INHIBITED CPTI 107

Figure 6.18: Coverability graph of MICPTI net from Fig 6.17

[0 0 1 0 4]. These are respectively covered by m7 and m5. Based
on the characteristic graph we can find out that moving from m7 to
m5, requires the firing of t6, but we don’t know how many times t6
needs to fire. The number of times t6 has to fire can be determined by
computing the vector subtraction mb −ma = msb−a = [0 0 0 (−2) 0].
The fact that msb−a(p4) = −2 ((−2) at the fourth coordinate) tells
us that two tokens have to be removed from p4. Since it is t6 which
removes tokens for p4, we conclude that t6 has to fire twice.

Of course the above mentioned example illustrate a very basic
case. We will now propose a four steps procedure for determining a
path between two markings. We start by a more illustrative example,
and later on formalise the four steps in an algorithm.

Consider that we want to find a path between two markings ma =
[0 0 1 2 4] and mc = [0 1 0 0 7].

Step 1: Subtraction

Subtracting ma from mc gives mc −ma = msc−a = [0 1 (−1) (−2) 3].

108 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

Figure 6.19: Characteristic graph of MICPTI net from Fig 6.17

6.10. ANALYSIS OF MUTUALLY INHIBITED CPTI 109

Step 2: Firing Plan

mc − ma is interpreted as follows: Having msc−a(p4) = −2 and
msc−a(p5) = 3 means that t6 and t7 have to fire twice and three
times respectively. However, msc−a(p2) = 1 and msc−a(p3) = −1 are
both caused by firing t4, but it does not mean that t4 has to fire twice.
This is because t6 and t7 belong to fes, while t4 belongs to a ces. In
a ces firing a transition has a double effect; it removes one token from
a place and adds one token into another. There is thus no need to
fire t4 twice. As a rule we state that for any two occurrences of a
transition t that belongs to a ces one occurrence is removed.

From the subtractionmc−ma, we obtain what we shall call a firing
plan (fp). For example, we write fpa⊲c for the firing plan between ma

and mc, where fpa⊲c = (t4, t
2
6, t

3
7), and read: Within the path from

ma to mc, t4 has to fire once, t6 has to fire twice and t7 has to fire
three times.

Step 3: Characteristic Path

The next step is to find a characteristic path from ma to mc, denoted
as cpath(ma, mc). Since the marking ma is covered by m7, and the
marking mc is covered by m2, we find a path from m7 to m2 and
denote it as path(m7, m2) = 〈t6, t4〉.

Note that t7 appears in fpa⊲c, but does not appear in
path(m7, m2). This is because t7 is represented as a self loop edge.

To obtain cpath(ma, mc), all the transitions that are present in
fpa⊲c, but not present in path(m7, m2) must be included, which is
the case for t7. Adding t7 to path(m7, m2) can be done by travelling
the path and checking whether there exist a marking with a self loop
edge labelled with t7. When such a marking is met, t7 must be inserted
in the path. We have thus, cpath(ma, mc) = 〈t7, t6, t4〉, because t7 is
already present at m7.

Step 4: The final Path

To finalise the path, each transition in the path is repeated for the
number of times assigned in the firing plan. The path between ma

and mc is then denoted as path(ma, mc) = 〈t
3
7, t

2
6, t4〉.

110 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

The Path Algorithm

The four steps for determining a path fromma to mb are formalised in
Algorithm 8 (Section 6.13). For the sake of convenience, the algorithm
has been divided in Algorithm 9 and Algorithm 10.

Correctness Analysis

Does Algorithm 8 compute a correct path for any problem instance?
Intuitively we wish to claim that the answer is yes, but unfortunately,
we fail to provide a formal proof. However an experimental approach
is possible.

More precisely, checking whether path(ma, mb) is a correct path,
can be verified by setting the MICPTI net atma, execute the sequence
of transitions in path(ma, mb) and verify if that sequence actually
leads to mb. We take advantage of this fact, and try to demonstrate
the correctness of Algorithm 8 by simulation.

We randomly generate 200 different MICPTI nets, using 5 num-
bers of fes and ces and 14 numbers of inhibitor arcs. For each net we
generate 1000 problem instances of finding a path from a source to
a destination marking. Each computed path by Algorithm 8 is then
executed on the MICPTI net in question and checked whether it is
correct. Note that the chosen size of nets is constrained by the state
explosion problem. However, the size of the simulated nets remains
representative to the size of nets that we target.

Moreover, we distinguish between those nets that generate one
strongly connected characteristic graph and those which do not. We
also keep a count on the number of times a characteristic path is
found.

The results are summarized in Table 6.1. We found out that each
time Algorithm 8 finds a path its was actually correct. Further more
each time a characteristic path was found a path was also found.
In addition we found a correlation between the strong connectivity
of the characteristic graphs and paths. When a characteristic graph
consists one strongly connected component, all the generated path
problems had a solution and the solutions were correct indeed. When
a characteristic graph consists of more than one strongly connected

6.10. ANALYSIS OF MUTUALLY INHIBITED CPTI 111

Table 6.1: MICPTI path experimental results

100 strongly connected characteristic graphs
Total sim Char path

found
Path found Path not found

100000 100000 100000 0
100 non strongly connected characteristic graphs

Total sim Char path
found

Path found Path not found

100000 82312 82312 17688

component, not all the generated path problems had a solution.
Furthermore, each time a solution was not found, it was because the
source and target markings were from two distinct strongly connected
components.

The results of Table 6.1 are clearly coherent. Strong connectivity
of the characteristic graphs implies that each marking is reachable
from any other. Even though a characteristic graph could represent
infinitely many markings, it strong connectivity seems sufficient for
claiming that finding a path between any two reachable markings can
be determined.

This hypothesis is further strengthened, when a characteristic
graph has more than one strongly connected component. Not found
paths are explained by the fact that there simply does not exist a
path between ma and mb. The problem here is that we have no way
to check if path actually exists when the algorithm does not find a
path.

To conclude, we wish to claim that there are good reasons for
believing that the path problem is decidable for MICPTI nets, and
Algorithm 8 provides an answer (Conjecture 6.1).

Conjecture 6.1 (Path).
For a MICPTI net and its corresponding characteristic graph. Find-
ing a path between two markings can be determined by Algorithm 8.

112 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

6.10.3 Home Marking and Reversibility

As a remainder from Section 5.3 and Definition 5.9, determining
whether a marking can be reached from any other marking is called a
home marking, and when the initial marking is a home marking, then
the net becomes a reversible net. The home marking and reversibility
properties are not decidable by means of coverability analysis for
CPTI nets, because their decidability depends on the decidability
of the reachability and the path problems.

However, based on the decidability of the marking reachability
from Proposition 6.4, and the path problem from Conjecture 6.1, the
home marking and reversibility become decidable for MICPTI nets.
Furthermore, these problems can be reduced to the analysis of the
characteristic graph.

For a MICPTI net, a marking m is a home marking if it is
reachable from any marking on the characteristic graph. If the
initial marking m0 is a home marking then the MICTPI net is
reversible. Finally, if the characteristic graph constitutes one strongly
connected component, then each marking is a home marking and the
net becomes reversible.

6.10.4 Transition Liveness and Quasi-Liveness

Recall that a transition is live if it can eventually fire from any
reachable marking, and that this problem is not decidable by means
of the coverability analysis for CPTI nets. However, it is decidable
for MICTPTI nets using the characteristic graph.

For a MICPTI net, a transition t is live, if from any marking on
the characteristic graph there exists a path in which t appears. As
stated earlier in Section 5.3, a quasi-live transition t in a reversible
net is live. If all transitions of a reversible net are quasi-live, then the
net is live.

6.10.5 An Example

In the introduction of this chapter we presented a PTI net capturing
part of the rig dynamics (see Figure 6.1). By means of the MICPTI

6.10. ANALYSIS OF MUTUALLY INHIBITED CPTI 113

nets and their analysis it becomes possible to study such a model.
The net of Figure 6.1 represents three interacting parts of the

drilling system: the power-slips, the top-drive, and the draw-works.
Activating the power-slips suspends the drill-string. Using the
top-drive the RPM can be increased and decreased, while using the
draw-works we can increase and decrease the drill-string downward
speed.

First, running Algorithm 6 on the net from Figure 6.1, we can
determine whether the net is an MICPTI net, which is the case indeed.
Furthermore, Algorithm 7 generates the net’s characteristic graph
as shown by Figure 6.20. Studying the characteristic graph we can

Figure 6.20: Characteristic graph of MICPTI net from Fig 6.1

determine the following general properties:
− The net is unbounded, because ω appears in some markings.
− Every transition is quasi-live, because every transition appears

as an edge on the characteristic graph.
− The net is reversible, because the characteristic graph consti-

tutes one strongly connected component.
− Since every transition is quasi-live and the net is reversible, then

every transition is live and thus the net is live.

114 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

One can also specify whether some undesired states can be reached.
For example, is it possible to have a state where both the power-slips
and the drill-string rotation are activated? This can easily be verified
by inspecting the characteristic graph for a marking in which p1 and
p2 are set at the same time.

The point with this example is that the MICPTI class makes it
possible to fully study such a model, something that was not possible
before its introduction.

6.11 Chapter Summary

This chapter presented the fundamental problem of using inhibitor
arcs. Their main advantage is their ability to capture system
dynamics that P/T nets fail to capture. However, the main drawback
of PTI nets is their Turing equivalence, which makes almost all
properties of interest undecidable.

Motivated by the need of modelling specific situations that require
inhibitor arcs, we moved further and explained why the coverability
graph algorithm (Algorithm 2) does not work for PTI nets. We
have then introduced a new class called CPTI nets. This class of
nets belongs to PTI nets, and has specific restrictions on the way
transitions and places are connected, and also on the way inhibitor
arcs are used. We have presented a coverability graph algorithm
(Algorithm 5) that apply for CPTI nets, shown why it actually works,
and which model properties could be decided by it. We have found out
that boundedness, quasi-liveness and deadlock freeness are decidable
for CPTI nets.

The main problem with CPTI net is that marking reachability
and finding path between two markings can not be solved using the
coverability graph, and thus liveness, home marking and reversibility
can not be decided neither. This limitations constitute a motivation
to introduce MICPTI nets which are subclass of CPTI nets with
a stronger restriction on the use of inhibitor arcs. As a result all
problems of interest become decidable.

6.12. PROOFS 115

6.12 Proofs

6.12.1 CPTI Proofs

proof 6.1. of Property 6.1
The proof follows from the definition of CPTI. A transition t belongs
to one and only one structure, and the allowed structures are either
ces or fes. In a fes, a transition either consumes or deposits tokens
(but not both) in one place, which obviously answers Case 1 and
Case 2. In ces a transition consumes and deposits one token from
two distinct places, which obviously leads to a marking which is not
comparable to its predecessor.

proof 6.2. of Property 6.2
Proof by counter example. Consider two flat structures fes1 and fes2.
The structure fes1 has transition t1 which fills a place p1, while fes2
has t2 which fills p2. Consider a marking m from which it is possible
to fire t1 and t2, by firing t2 we reach another marking m′ > m. If p2
has an inhibitor arc to t1, which is possible because t1 and p2 belong
to two different structures. Having a situation where t1 can not fire
any more, means that we have reached a marking m′ > m and that t1
can not fire from m′, a violation of the strict monotonicity property.
We conclude that the strict monotonicity does not hold for CPTI.

proof 6.3. of Property 6.3
We suppose that the T-monotonicity does not hold, that is, m1 →

t m2

with m1 < m2 and that ∄m3 such that m2 →
t m3 with m3 > m2 and

derive a contradiction. In words, we have that from a marking m1

it is possible to reach m2 > m1 by firing t, but we can not reach a
marking m3 > m2 by firing t again.

Based on CPTI definition, and Property 6.1 we have two struc-
tures fes and ces. In a ces structure it is not possible to have
m1 →

t m2 and m1 < m2, because in a ces each transition consumes
one token from one place and deposits one token in another place,
which means that a marking and its immediate successor are not
comparable (see Case 3 in Definition 6.1). In a fes structure it is
possible to have m1 →

t m2 with m1 < m2, and since t deposits one
token in one unique place p, and consumes no token from other places

116 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

we have then ∀pi 6= p ∈ P : m1(pi) = m2(pi) and m1(p) < m2(p). If
t can not fire from m2, it means that m2 has a token in a place that
inhibits t from firing, and that place must be p as it is the only one
involved. But by the definition of CPTI it is not possible to have an
inhibitor arc within the same structure, thus we reach a contradiction.

proof 6.4. of Proposition 6.1
By contradiction, we suppose that the computed graph of a CPTI
is infinite and derive a contradiction. Let G be an infinite graph,
computed by Algorithm 5. Because the number of transitions is
limited, G has necessary a finite degree.
According to Lemma 6.1, since G is infinite with a finite degree, it
must contain an infinitely long path with no repeated vertices.
Using Lemma 6.2 we have that every infinitely long path with no re-
peated vertices contains an infinitely long and increasing subsequence
with respect to the ordering relation ≤ between markings.
Let σ be such an infinitely increasing sequence in G, and let mi be any
marking in σ and mj its successor. We have then that mi ≤ mj. By
construction mi 6= mj, because Algorithm 5 does not process already
existing nodes, and thus mi < mj. According to Property 6.1, ∃!p such
that mi(p) 6= mj(p) and mi(p) < mj(p). Further more, Algorithm 5
is such that whenever mi(p) < mj(p) is encountered, the symbol ω
is inserted. Comparing mi and its successor mj in σ can only be
repeated for at most the number of places in the CPTI net. We have
then that at most, all the places contain the symbol ω beyond which the
case mi < mj can not occur any more. We reach a contraction, the
sequence σ is not an infinitely increasing sequence, and must thus be
finite. By applying Proposition 6.1 the graph G must be finite. Since
Algorithm 5 computes a finite graph, the algorithm terminates.

proof 6.5. of Proposition 6.2
The proof follows from the behavioural rules of Property 6.1 and T −
monotonicity in Property 6.3. Let m be a reachable marking and m′

its successor. The reachable marking m′ necessarily emerges from the
behavioural rules of Property 6.1. That is, m′ > m, m′ < m, or
m′ not comparable to m. The two latter cases are not accelerated by
Algorithm 5. The correctness of Proposition 6.2 is clearly conditioned
by the correctness of the acceleration function for the case m′ > m.

6.12. PROOFS 117

The acceleration can be incorrect in two ways:
1. ω was inserted in a place that is bounded.
2. Inserting ω can cause loss of information on the fireability of

some transitions. That is, at some stage of the computation ω
was inserted for a place p which hides the possibility that p could
contain no tokens and thus hides the fireability of a transition
which is inhibited by p.

We show that none of the above cases can occur. The first case is
guaranteed by the T −monotonicity of CPTI nets from Property 6.3
which has already been proven.

We suppose that the second case can occur and derive a contra-
diction:

Let G be a graph computed by Algorithm 5, and let m ∈ G be a
marking in G, and pi a place such that m(pi) = ω. The presence
of ω is by definition due to an acceleration, and the acceleration
clearly concerns only the basic flat structure. Recall that in a fes
structure there is only one place pi involved, one transition ta which
only deposits tokens and one transition tb which only removes tokens.
The existence of a reachable marking mg such that mg(pi) = 0 and
that mg is not contained in G (mg /∈ G), tells us that prior to the
ω insertion, pi contained at least one token, and that tb was not
enabled before ω was inserted. Based on the CPTI definition from
Definition 6.3, tb is not enabled for one reason; it is inhibited by a
place pj 6= pi. So, prior to the m(pi) = ω, pj could not be emptied,
because by emptying pj, tb would be enabled, and by successive firings
we end up with pi = 0, contradicting our assumption. Following the
same reasoning, not being able to empty pj means that it is inhibited
by some place pk that can not be emptied. Because emptying pk would
enable the transition that empties pj, and thus enable tb leading to
pi = 0, which again contradicts our assumption. So, we must have
pk 6= 0, pj 6= 0 and pi 6= 0, which means that it is simply not possible
to reach a marking where pi = 0, which contradicts our assumption.
Thus, for a CPTI net, the ω insertion done by Algorithm 5 does not
hide fireability of a transition, which completes the correctness of G,
and thus G is a coverability graph.

proof 6.6. By counter example (see Figure 6.21)

118 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

(a) (b)

Figure 6.21: Marking m = [1 0 1] is covered but not reachable

6.12.2 MICPTI Proofs

proof 6.7. of Property 6.4
We suppose that we have m1 →

t1 m2 and m1 < m2, and that ∃m3 >
m2 and ∄m3 →

t1 m4 i.e. from m1 we can fire t1 to reach m2 and
that there is a m3 > m2 from which we can not fire t1 and reach
some larger marking m4. We derive a contradiction. Obviously, we
have m1 < m3 because m1 < m2 and m2 < m3. Also obvious is
the fact that t1 is part of a fes structure with the effect of putting
tokens in exactly one place, let p denote this place. Since m3 > m1

we have m1(p) ≤ m3(p). Being able to fire t1 from m1 and not from
m3 means that m3 marks at least one place which inhibits t1 from
firing, and that this place is obviously filled by some transition t2, so
t2 has deposited a token in a place which inhibits t1. But according to
MICPTI definition, t1 should have deposited a token in a place which
inhibits t2, meaning that t2 could not fire from a marking where p
contains tokens, reaching a contradiction.

proof 6.8. of Proposition 6.4
By contradiction. We suppose that there exists a marking m which
is covered by an extended marking, but is not reachable, and derive
a contradiction. The marking m is clearly not equal to any explicit

6.12. PROOFS 119

marking in the Coverability Graph (CG), because it would turn it to a
reachable marking which contradicts our assumption. Let Mω be the
set of all extended markings, i.e. the markings containing at least one
ω symbol in their coordinates. For example, in Figure 6.16 we have
that Mω = {m2, m3, m4}. The fact that m is covered implies that there
exits a marking mc ∈ Mω such that m < mc. If m is not reachable it
means that at some place p, m(p) = k, where k is a natural number
and k is a value that ω does not take. Let Ω(p) be the set of all the
possible values that p can have at the extended marking mc.

Now, if m is not reachable it means that k 6∈ Ω(p). By construction
we have that a transition t which can cause an ω insertion deposits at
most one token at the time. That is, the interval between elements of
Ω(p) must be one. So again if m is not reachable it implies that ∀a ∈
Ω(p), a ∈ (k,∞), because otherwise m(p) would be in the interval
which would make it reachable. Again by construction the presence
of ω concerns fes structures only and in a fes structure of MICPTI
net, a transition t′ that removes tokens can not be inhibited, i.e. if
m(p) = k > 0, t′ can fire k times until m(p) = 0 or simply k = 0,
which means that ∀a ∈ Ω(p), a can be any nature number, and thus
Ω(p) contains all natural numbers, making m a reachable marking.
Thus we have reached a contradiction.

120 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

6.13 Algorithms

Algorithm 4 Determining whether a net is CPTI

1: Initialization:
2: ES ← ∅ {Set of Elementary Structures}

3: function isCPTI(P, T, I)
4: for all p ∈ P
5: if conda = false
6: return false

{conda, condfes and condces from Definition 6.2}

7: if condfes =true
8: t←• p
9: t′ ← p•

10: ES ← ES ∪ {(p, t, t′)}
11: P ← P − {p′}
12: else
13: if condces = true
14: t←• p
15: t′ ← p•

16: p′ ←• t
17: ES ← ES ∪ {(p, p′, t, t′)}
18: P ← P − {p, p′}
19: else
20: return false

{If t and p are in the same es and p inhibits t return false}

21: for all (p, t) ∈ I
22: for all es ∈ ES
23: if t ∈ es ∧ p ∈ es
24: return false
25: return true

6.13. ALGORITHMS 121

Algorithm 5 Finding the Coverability Graph of a CPTI net

1: Initialization:
2: (V,E, v0)← (m0, ∅, m0) {Initialize graph with m0 as its only vertex}

3: function CovGraph(V,E, v0)
4: S : set← {m0} {S is a set filled with m0 at start}

5: while S 6= ∅
6: select m ∈ S {Choose an entry m from S}

7: S ← S\{m} {Remove the entry m from S}

8: for all t ∈ enabled(m)
9: m′ ← fire(t,m) { enable and fire from Def. 5.2}

10: m′ ← Accelerate(m, t,m′, V, E)
11: if m′ /∈ V
12: V ← V ∪ {m′} {Add m′ to the set of vertices}

13: S ← S ∪ {m′} {Add the next marking to S }

14: E ← E ∪ {(m, t,m′)} {Connect m and m′ with an arc t }

15: return (V,E, v0) {Return the Coverability graph}

16: function Accelerate(m, t,m′, V, E)
17: if m < m′

18: m′ ← m′ + (m′ −m)× ω
{ If the successor marking m′ is strictly larger than its previous marking

m, then all the places in m′ which are larger than in m will contain ω }

19: return m′

Algorithm 6 Determining if a net is a MICPTI net

1: Initialization:
2: N ← PTI(P, T, I)

3: function isMICPTI(P, T, I)
4: cpti← isCPTI(P, T, I) {From Algorithm 4}

5: if cpti =false
6: return false
7: for all (p, t) ∈ I
8: cond← ∃pi ∈ t• ∧ ∃ti ∈ p◦i ∧ p ∈ t•i {From Def 6.5}

9: if cond 6= true
10: return false
11: return true

122 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

Algorithm 7 Finding Characteristic graph of a MICPTI net

1: Initialization:
2: (P, T, I) {MICPTI net }

3: (V,E) {The coverability graph }

4: function CharGraph(V,E, P, T, I)
5: for all e ∈ E
6: if e = (m, t,m) ∧ |•t| = 1
7: p←• t
8: m′ ← m
9: m′(p)← 0 {Replace ω by 0 for the place p}

10: E ← E ∪ (m, t,m′) {Connect m and m′ with t }

11: return (V,E) {Return the characteristic graph}

Algorithm 8 Finding a Path between two markings of a MICPTI
net

1: Initialization:
2: (P, T, I) {MICPTI net }

3: FES {Set of flat elementary structures }

4: CES {Set of circular elementary structures }

5: (V,E) {Characteristic graph }

6: function path(ma, mb, V, E, P, T, FES,CES)
7: fpa⊲b ← ∅ {Firing plan}

8: msb−a ← mb −ma {Step 1 subtraction}

9: firingP lan(P, T,msb−a, fpa⊲b) {Step 2 firing plan from Alg 9}

10: cpath← cpath(ma, mb, V, E, fpa⊲b) {Step 3 characteristic path

from Alg 10}

11: if cpath =⊥
12: return ⊥
13: path← finalPath(cpath, fpa⊲b) {Step 4 final path}

14: return path
15: function finalPath(cpath, fpa⊲b)
16: path← cpath
17: for tn ∈ fpa⊲b

18: find t ∈ path and replace it with tn.
19: return result

6.13. ALGORITHMS 123

Algorithm 9 Find Firing plan

1: function firingP lan(P, T,msb−a, fpa⊲b)
2: A← ∅ {A temporary set of transitions}

3: for all p ∈ P
4: s← msb−a(p)
5: if p ∈ FES
6: if s > 0
7: fpa⊲b ← fpa⊲b ∪ (•p)s {Add s times the transition filling p}

8: if s < 0
9: fpa⊲b ← fpa⊲b ∪ (p•)|s| {Add s times the transition emptying

p}

10: if p ∈ CES
11: if s < 0
12: if p• 6∈ A
13: A← A ∪ p•

14: fpa⊲b ← fpa⊲b ∪ (p•)|s| {Add the transition emptying p to

A and to the firing plan fpa⊲b}

15: else
16: if p• ∈ A
17: A← A\{p•} {Remove the transition emptying p from A,

because it has already been considered}

18: if s > 0
19: if p• 6∈ A
20: A← A ∪ •p
21: fpa⊲b ← fpa⊲b ∪ (•p)s {Add the transition filling p to A

and to the firing plan fpa⊲b}

22: else
23: if •p ∈ A
24: A← A\{•p} {Remove the transition filling p from A,

because it has already been considered}

124 6 6. PLACE/TRANSITION NETS WITH INHIBITOR ARCS

Algorithm 10 Find Characteristic path

1: function cpath(ma, mb, V, E, fpa⊲b)
2: cpath←⊥ {Will contain a sequence transition}

3: mca ← Cover(ma)
4: mcb ← Cover(mb)
5: mca[σ〉mcb ← ∅ {denotes sequence〈mi, tj〉}

6: if mca = mcb

7: mca[σ〉mcb ← {mca}
8: ∀t ∈ fpa⊲b

9: if (t,mca) /∈ mca[σ〉mcb

10: Insert (t,mca) in mca[σ〉mcb

11: else
12: mca[σ〉mcb ← BFS(mca, mcb) {Shortest path using

Breath-First-Search}

13: if mca[σ〉mcb 6=⊥
14: if ∃t ∈ fpa⊲b such that t 6∈ mca[σ〉mcb

15: find m in mca[σ〉mcb with self loop edge (m, t,m)
16: if ∄m ∈ mca[σ〉mcb

17: return ⊥
18: else
19: Insert (t,m) after m in mca[σ〉mcb

20: for t ∈ mca[σ〉mcb

21: cpath← cpath ∪ {t}
22: return cpath

Chapter 7

Reactive Processes

A reactive process is an entity that observes the environment and
reacts using the system. In the drilling context, the rig represents
the system, while the well represents the environment. In Chapters 5
and 6 we proposed a theory for modelling the system. In this chapter
we present a theory for modelling the interaction between the system
and the environment.

7.1 Introduction

In Chapter 4, we suggested a separation of concerns between the rig
and the well. However, a closed loop between the two exists, changes
in the one could cause changes in the other. Closing the loop will be
addressed in this chapter.

We will use the terms system and environment to emphasize that
our approach is not limited to the drilling domain only, but could also
apply to other fields that share the same fundamental assumptions.

Fundamentally, we address the cases where the state space of the
system can be explicitly captured in a DES model, and where the
environment cannot. Furthermore, we assume that the state space of
the system is captured in a Petri net model on which the path and
marking reachability problems are decidable.

Based on these assumptions, we model the influence of the
environment on the system using reactive processes. A reactive

125

126 7 7. REACTIVE PROCESSES

process is defined as a entity that senses, does some processing and
reacts in order to achieve a certain goal. Our hypothesis is that,
by combining an appropriate set of reactive processes, we are likely
to maintain a satisfactory interaction between the system and its
environment.

To illustrate our idea, consider a car to be the system, and the
weather as its environment. A reactive process could then be to reduce
the speed based on weather conditions. While another reactive process
could be to activate the windscreen wiper when its rains. Put simply,
a reactive process role is to link between what can be observed from
the environment and what can be done using the system.

The reactive process idea is related to the so-called Subsumption
architecture that was proposed by Brooks [19]. This approach when
applied to robots, leads to a layer control. The layers are organized as
software modules corresponding to different levels of competence and
new competences are added whenever required. Typically, a robot
could be build with the competence of never hit an object, adding
a new competence move around should include never hit an object.
The emerging behaviour will then be move around and never hit an
object.

Even though a number of robots have been successfully developed
using this approach, there is no strong guaranty on unexpected be-
haviour [12]. In particular when competing modules are involved. For
example, a module implementing the competence move around, could
conflict with another implementing stop when too close to a wall.
When the number of modules increases their interactions become
intractable, making it difficult to guarantee a correct behaviour.

In the Petri net framework, there have been attempts to model
the environment influence on the system. This was mainly done in
Synchronous Petri net [30] in which the environment behaviour is
coupled with the system by associating sensory data to transitions.
To use the robot example again, an object proximity condition could
be associated with a Petri net transition move, in such a way that
move can only be executed if no object is close enough to the robot.
The problem with this approach is that it becomes difficult, if not
impossible to verify the system properties any more. That is, if
we introduce uncontrolled conditions, and associate them with the

7.1. INTRODUCTION 127

transition firing, we loose the decision power, and thus the ability to
determine the legal set of states. More precisely, we can not tell
any more if a transition can ever fire, because we cannot always
know if some sensory values can ever be reached. To be able to
give such a guaranty we need precise models of both; the system and
the environment. In such case, the question is better addressed in the
reactive system framework [66]. However, we can not assume that the
environment behaviour is fully known, and even if that were the case
we can not assume that it is captured in a transition system (Petri
net or such). These assumptions are unfortunately central in reactive
systems, and will therefore not adopt that approach.

In our approach, the gradually added competences can be regarded
as reactive processes that focus on very specific aspects. For example,
a robot could have a reactive process that is focused on avoiding
collisions. If the robot gets too close to an object, a reactive process
must order it to stop. Another reactive process could compute a
new trajectory and order the robot to apply some parameters such
as speed and direction. By combining these processes, we can obtain
the competence move around and never hit an object.

The added value of our approach, is that we can systematically
study the added competences, whether they conflict or subsume the
existing ones. In our approach, the robot is considered as a system
which is deployed in some environment. Using our assumption that
the system dynamics is captured in a Petri net model, the robot
behaviour is then contained within a set of states. This means that
any requested action on the robot is per definition within the robots
legal states. One can thus associate a reactive process to a subset
of states that correspond to a certain goal. If we can know which
set of states are associated to which reactive process through its goal,
we can also determine which process conflicts or subsumes another.
Simple sets operations such as set-intersection and set-inclusion will
let us determine the relations between those processes.

Note that in agent-based-systems [116], the level of sensing and
processing is what usually define the agent, among which we find;
reflex agent, goal agent, intelligent agent, learning agent, fuzzy agent
and more. Agent based systems, mainly focus on agent’s capabilities,
while we focus on their reactivity on a common system. So, to avoid

128 7 7. REACTIVE PROCESSES

any confusion with agent-based-systems, we will use the term reactive
process rather then agent. In other words, how a reactive process takes
the decision to act is beyond the scope of this thesis. What interest
us is, once a reactive process acts, how it does it, and how to combine
several reactive processes taking actions on a common system.

7.2 Basic Notions

Figure 7.1: Reactive processes domain

Figure 7.1 gives an overview of our approach. As the figure shows,
a reactive process takes as input sensory readings. These inputs are
used by reactive processes to determine whether they must trigger
or not. When a reactive process triggers, it does it by notifying the
process scheduler which main task is to obtain the goal of the triggered
process. A goal describes a set of parameters that the controller
should apply on the machines. For a drilling rig, a goal could be to
have a certain flow-rate, or a drill-string elevation of a certain speed.
The process scheduler obtains a given goal by causing the controller
to execute intermediate actions for reaching a state that corresponds

7.2. BASIC NOTIONS 129

to the specified goal. When several reactive processes are involved,
determining which process should obtain its goal before another can
become complicated, and a systematic approach is needed.

To realize a process scheduler, we propose to first determine the
relation between different goals, and use that information as an input
for the scheduler as a constraint to respect, and also for optimizing
the scheduling. For example, consider that a reactive process proc1
has a goal g1. When proc1 triggers, the process scheduler computes a
sequence of actions that the controller needs to take in order to obtain
g1. When a proc2 with a goal g2 triggers, it becomes important for the
process scheduler to know whether there exists a state that satisfies
both goals, and if such a state exists how it can be reached? The
information needed by the process scheduler is the relation between
g1 and g2.

We associate a goal g with a subset of the system states which
we call Mg. The set of states that satisfy g1 and g2 are thus Mg1
and Mg2 respectively. Knowing Mg1 and Mg2 allows us to determine
whether g1 and g2 can be obtained at the same time or not. Typically,
having Mg1∩Mg2 = ∅ implies that g1 and g2 have no common states.
However, having Mg1 ∩Mg2 6= ∅ implies that there exist some states
that satisfy both goals. In this case, the process scheduler could take
advantage of that information and advance the system to some state
that satisfies the two goals rather than only one.

Determining the relation between goals requires the decidability
of the marking reachability. Determining the sequences of actions
to reach a certain state which satisfies a certain goal, requires the
decidability of the path problem. In [118, 119] we limited our selves
to bounded Petri net. In this chapter we will extend the approach
to include MICPTI class, since both of the marking reachability and
path problems are also decidable on it.

7.2.1 Goal

The input domain of a reactive process is defined by sensory variables,
while its output domain is defined by what the system can do. What
links a reactive process to a system is called a goal, which we define
as a subset of the system states.

130 7 7. REACTIVE PROCESSES

We denote the set of markings that satisfy a goal g for Mg (see
Definition 7.1). If a system reaches a marking (state) m ∈ Mg, we
say that the goal g is satisfied.

Definition 7.1 (Definition of goal).
Let a net N be a Petri net with a set of places P and R(m0) its
reachable markings. A goal g is such that g : Pg → N where Pg ⊆ P .
For Pg = {p1, p2, ...pi}, we write g = [m(p1) = k,m(p2) = l, ...m(pi) =
x], where k, l and x are number of tokens. A goal g is satisfied by a
marking m, iff ∀p ∈ Pg m(p) = g[m(p)]. Finally, the set of markings
that satisfy a goal g will be denoted Mg.

7.2.2 Relation Between Goals

(a) gaTINCgb ⇔Mga ⊆Mgb (b) gaPINCgb ⇔Mga ∩Mgb 6=
∅ ∧Mga 6= Mgb 6= ∅

(c) gaMINCgb ⇔Mga = Mgb (d) gaMEXgb ⇔ Mga ∩Mgb =
∅

Figure 7.2: The Four relations between goals

Intuitively a goal ga totally includes a goal gb, when achieving ga
implies achieving gb. A goal ga partially includes the goal gb when
some of the markings that satisfy ga also satisfy gb. Two goals ga
and gb are mutually inclusive when they totally include each others,
or simply achieving the one implies achieving the other. Finally two
goals are mutually exclusive when they can not be achieved at the
same time. Figure 7.2 summarises these relations.

7.3. REACTIVE PROCESSES AND BOUNDED NETS 131

Definition 7.2 (Total Inclusion).
Let Mga and Mgb be the sets of markings that satisfy the goals ga and
gb respectively as defined in Definition 7.1. A goal ga totally includes
gb (gaTINCgb), if Mga ⊆ Mgb. The function TINC(ga) defines the
set of goals that ga includes, i.e. ∀g, gaTINCg, then g ∈ TINC(ga).

Definition 7.3 (Partial Inclusion).
Let Mga and Mgb be the sets of markings that satisfy the goals ga
and gb respectively as defined in Definition 7.1. A goal ga partially
includes gb (gaPINCgb), if Mga ∩Mgb 6= ∅ ∧Mga 6= Mgb 6= ∅. The
function PINC(ga) defines the set of goals that ga partially includes,
i.e. ∀g, gaPINCg, then g ∈ PINC(ga).

Definition 7.4 (Mutual Inclusion).
Let Mga and Mgb be the sets of markings that satisfy the goals ga
and gb respectively as defined in Definition 7.1. A goal ga mutually
includes gb (gaMINCgb), if Mga = Mgb. The function MINC(ga)
defines the set of goals that ga has a mutually inclusion relation with,
i.e. ∀g, gaMINCg, then g ∈ MINC(ga).

Definition 7.5 (Mutual Exclusion).
Let Mga and Mgb be the sets of markings that satisfy the goals ga
and gb respectively as defined in Definition 7.1. A goal ga mutually
excludes gb (gaMEXgb), if Mga ∩Mgb = ∅. The function MEX(ga)
defines the set of goals that ga has a mutually exclusive relation with,
i.e. ∀g, gaMEXg, then g ∈MEX(ga).

7.3 Reactive Processes and Bounded

Nets

Determining the relations between goals depends on the nature of the
state space: finite or infinite space. In this section we focus on finite
space only, while the infinite space analysis will be treated in the next
section. We assume that we have at our disposal a reachability graph,
and use this graph to find out the relations between the different goals.

The existence of a reachability graph makes our approach almost
trivial, because for every specified goal g we can easily determine the

132 7 7. REACTIVE PROCESSES

set of states Mg that satisfy g. Determining Mg is no more but an
application of the sub-marking reachability on bounded Petri nets,
which was already addressed in Section 5.3.6. The relation between
different goals is then determined using basic operations on finite sets
such as set inclusion, equality and intersection.

7.3.1 Elevator Example

(a)

m=[p1 p2 p3 p4]

m 0=[0 1 0 3]

m 1=[1 0 0 3]

t3 t1

m 2=[1 0 1 2]

t2 t4

m 3=[0 1 1 2]

t1

m 4=[1 0 2 1]

t2 t3 t4

m 5=[0 1 2 1]

t1

m 6=[1 0 3 0]

t2 t3 t4

m 7=[0 1 3 0]

t1 t3

(b)

Figure 7.3: A Petri net model of an elevator and its corresponding
reachability graph

The Petri net model of Figure 7.3a captures the dynamic of an elevator
that operates in a four floors building. The elevator can move upwards
or downwards, and can have the door open or closed. Closing the door
turns the light on, while opening the door turns it off. The complete
set of states is contained in the reachability graph of Figure 7.3b.
We define five goals:g1, g2, g3, g4 and g5, and associate them to some
concrete processes, as follows:

7.3. REACTIVE PROCESSES AND BOUNDED NETS 133

− g1 = [m(p1) = 1] (light maintenance): Let g1 be the goal of a
light maintenance process. Combined with a photo sensor, the
process will trigger every period of time to check whether the
lamp is still working.

− g2 = [m(p2) = 0] (elevator disabling): Combined with a motion
sensor, and a fire sensor. The elevator disabling process will
trigger if there is a fire in the building and no person in the
elevator by keeping the door closed.

− g3 = [m(p3) = 0] (goods delivery): When the goods delivery
arrive to the building from the parking place, the elevator should
be at the 0th floor.

− g4 = [m(p2) = 1, m(p3) = 3] (VIP): When a helicopter
transporting a VIP lands at the roof of the building, the elevator
should be at the third floor with the door open.

− g5 = [m(p2) = 1] (air conditioning): When triggered the
elevator door stays opened for a period of time.

Based on Definition 7.1 and the Petri net’s reachability graph of
Figure 7.3b, we can extract the informations of Table 7.1. This table
shows the set of markings that satisfy each of the five goals. Using
those sets, we can determine the relations between different goals.
For example, the goal g1 totally includes g2 because Mg1 ⊆Mg2, and
since Mg2 ⊆ Mg1 as well we conclude that g1 and g2 are mutually
inclusive. Between g1 and g3 there is partial inclusion relation,
because Mg1 ∩ Mg3 = {m1} 6= Mg1 6= Mg3. Finally g1 and g4
are mutually exclusive because Mg1 ∩Mg4 = ∅.

7.3.2 Short Interpretation

To understand the impact of the information proposed by Table 7.1,
we need to consider the system from a designer point of view.
By defining a set of reactive processes, a system designer can
categorize the possible relations between those processes, which
also allows him/her to discover system properties that were not
explicitly designed. In the elevator example (Example 7.3.1), the
light maintenance process has a different purpose than the elevator
disabling process, but from a system state point of view, these two
processes are equivalent.

134 7 7. REACTIVE PROCESSES

Table 7.1: Relations between the Five goals

g1 = [m(p1) = 1]→Mg1 = {m1, m2, m4, m6}
g2 = [m(p2) = 0]→Mg2 = {m1, m2, m4, m6}
g3 = [m(p3) = 0]→Mg3 = {m0, m1}
g4 = [m(p2) = 1, m(p3) = 3]→ Mg4 = {m7}
g5 = [m(p2) = 1]→Mg5 = {m0, m3, m5, m7}

Goals Total
Inclusion

Partial
Inclusion

Mutual
Inclusion

Mutual
Exclusion

g1 g2 g3 g2 g4, g5
g2 g1 g3 g1 g4, g5
g3 g1, g2, g5 g4
g4 g5 g1, g2, g3
g5 g4, g3 g1, g2

On the other hand, conflicting processes are expressed using the
mutual exclusion property (MEX). For example, the system designer
could be pointed to resolve a conflict between the light maintenance,
elevator disabling, and goods delivery processes.

The relation between VIP and Air conditioning process describe
a total inclusion TINC relation, where achieving the goal of the VIP
process implies achieving the goal of the Air conditioning process, but
the opposite does not always hold. Finally, cases of partial inclusion
can be exploited to achieve several goals such as goods delivery and
air conditioning for example, where both are achieved in m0 (door
opened, 0th floor, and light off).

7.4 Reactive Processes And MICPTI

Nets

In the previous section we have shown how to model reactive processes
on top of bounded nets. In this section we show how to model them
on top of MICPTI nets. MICPTI nets were introduced in Chapter 6
as possibly unbounded nets which can be fully analysed by means of
their coverability and characteristic graphs.

7.4. REACTIVE PROCESSES AND MICPTI NETS 135

(a) MICPTI net

(b) Characteristic graph

Figure 7.4: Goals on MICPTI nets

136 7 7. REACTIVE PROCESSES

Representing reactive processes and their goals is done in a similar
manner as with bounded nets. However in an MICPTI net, a goal
g can have an infinite set of markings (Mg)that satisfy it. Thus,
determining the relations between reactive processes, require sets
operations (inclusion, intersection, equality) on infinite sets.

7.4.1 Determining Goals

Figure 7.4 shows a MICPTI net, its corresponding characteristic
graph and five goals. Every goal has a set of markings satisfying
it. Modelling a goal g on a MICPTI net is different from modelling
it on a bounded net in the way the set Mg is generated. As a
remainder, Definition 7.1 states that a marking m satisfies a goal
g if ∀p ∈ Pg, m(p) = g[m(p)]. This can easily be verified for an
explicit marking by checking the condition ∀p ∈ Pg, m(p) = g[m(p)],
which is not that obvious for extended markings. Recall that an
extended marking is a marking that contains at least one ω symbol.
We therefore need to determine the set of extended markings that
projects on a given goal, and extract from them those markings that
satisfy Definition 7.1. To clarify this point, we use Table 7.2 which
represents the markings that satisfy the five goals from Figure 7.4.

In Table 7.2 we write mi,j to denote that a marking mi projects
on the goal gj. For example, projecting the marking m7 = [0 0 1 ω ω]
on g1 = [m(p5) = 2] gives m7,1 = [001ω2]. In such a case, we say that
m7,1 satisfies g1. This idea is formalised in Algorithm 11 (Section 7.9)
which takes as input a characteristic graph CG, a goal g and outputs
a set of markings Mg (extended or not) that satisfies g. The main
algorithm is described in the function Satisfy(g, CG). This function
uses another function called Project(g,m) which takes a goal and a
marking as inputs, and outputs a projection m′ of m. The function
Project returns NIL if the projection is not possible.

7.4.2 Determining Relation Between Goals

The relations between goals as defined in Section 7.2.2 depend on two
set operators ⊆ and ∩ denoting subset and intersections respectively.
For two sets A and B, A = B if A ⊆ B and B ⊆ A. These

7.4. REACTIVE PROCESSES AND MICPTI NETS 137

Table 7.2: Set of markings satisfying the five goals of Figure 7.4

g1=[m(p5)=2]: Mg1

m2,1 = [0 1 0 0 2]
m5,1 = [0 0 1 0 2]
m7,1 = [0 0 1 ω 2]

g2=[m(p5)=6]: Mg2

m2,2 = [0 1 0 0 6]
m5,2 = [0 0 1 0 6]
m7,2 = [0 0 1 ω 6]

g3=[m(p4)=1]: Mg3

m4,3 = [0 0 1 1 0]
m6,3 = [ω 0 1 1 0]
m7,3 = [0 0 1 1 ω]

[m(p4)=1, m(p5)=3]: Mg4 m7,4 = [0 0 1 1 3]

g5=[m(p3)=1] : Mg5

m1,5 = [0 0 1 0 0]
m3,5 = [ω 0 1 0 0]
m4,5 = [0 0 1 ω 0]
m5,5 = [0 0 1 0 ω]
m6,5 = [ω 0 1 ω 0]
m7,5 = [0 0 1 ω ω]

set operations are trivial when the set of reachable markings can
be enumerated. In this section we are dealing with eventually
extended markings, and will therefore give special attention to how
the operators ⊆ and ∩ can be implemented.

Consider the goals g3 and g5 from Table 7.2, the set of markings
that satisfy each of them are Mg3 and Mg5 respectively. In order to
determine Mg3 ⊆ Mg5 we have to make sure that all the markings
that are in Mg3 are also present in Mg5. For example the marking
m4,3 = [0 0 1 1 0] is in Mg3, however it is also present in Mg5, because
there exists a marking in Mg5 that covers m4,3, for example m4,5.
The marking m4,5 = [0 0 1 ω 0] covers m4,3 because for each place p
m4,3(p) = m4,5(p) or m4,5(p) = ω.

Definition 7.6 (Marking Containment).
For a marking or an extended marking m, and a set M , we say that
M contains m, if ∃m′ ∈M, ∀p ∈ P s.t m(p) = m′(p) or m′(p) = ω.

Let Mga and Mgb be two sets of markings that satisfy ga and gb
respectively. We have Mga ⊆ Mgb if ∀m ∈ Mga, Mgb contains m as

138 7 7. REACTIVE PROCESSES

Table 7.3: Relations between the Five goals in MICPTI

Goals Total
Inclusion

Partial
Inclusion

Mutual
Inclusion

Mutual
Exclusion

g1 g3, g5 g2, g4
g2 g3, g5 g1, g4
g3 g5 g1, g2, g4
g4 g3, g5 g1, g2
g5 g1, g2, g4, g3

stated by Definition 7.6. Algorithm 12 (Section 7.9) takes two sets of
markings A and B and determines whether A ⊆ B.

In order to determine the intersection between two sets of mark-
ings A and B it is not sufficient to use Definition 7.6. The reason is
that in Definition 7.6 we are interested in knowing whether a marking
m ∈ A (extended marking or not) is totally contained or not in B.
However two extended markings m and m′ can be such that no one
covers the other but still share some markings that are covered by
both. For example m7,1 = [0 0 1 ω 2] and m7,3 = [0 0 1 1 ω], none
of them totally covers the other, but m = [0 0 1 1 2] is covered by
both. So, to determine A ∩ B we have to define a new function
which we call Match(ma, mb). A marking m = Match(ma, mb) when
∀p ∈ P , if ma(p) = ω or mb(p) = ω then m(p) = Min(ma(p), mb(p))
where Min stands for minimum. Otherwise ma(p) must equal mb(p).
Algorithm 13 (Section 7.9) computes the intersection of the sets
of markings. Note that the function Match(ma, mb) when applied
to explicit markings (without ω) computes whether ma = mb.
Algorithm 14 uses Algorithm 13 to compute the intersection of a set
of sets.

Going back to Figure 7.4 and Table 7.2, using Algorithms 12
and 13 we can determine the relations between goals as defined in
Sections 7.2.2. The relations between our five goals are summaries in
Table 7.3.

7.5. SCHEDULER PROBLEM 139

7.4.3 Feasible Path

Consider that the system state is m, and that m satisfies a goal g.
If a goal g′ is such that gTINCg′ or gMINCg′, it means that the
marking m also satisfies g′. In such a case, the system needs not to
change a state in order to obtain g′. On the other hand, if gMEXg′,
this implies that there is no marking m′ that satisfies both g and g′.
However, when gPINCg′ it implies that there is one or more markings
that can satisfy both goals, and if m is not among these markings,
the system needs to advance to some state which does satisfy both
goals.

We address this issue from a more general perspective, let Gm

be the set of goals that m satisfies. Given a goal g′ 6∈ Gm, is
it possible to reach a marking m′ such that Gm′ = Gm ∪ {g

′}?
Further more, in the path from m to m′ do all markings satisfy each
goal in Gm? To answer these questions, we introduce the function
feasiblepath(ga, Gm, m, (E, V)). This function computes a feasible
path from the marking m to some marking m′ ∈Mga where Mga are
those markings that satisfy g. The computed path is such that each
marking in it, satisfies each goal in Gm and that the final marking
satisfies g as well.

Algorithm 15 (Section 7.9) initiates a path P to NIL and the
set Mga to those markings that satisfy the goal ga. The sets of
markings satisfying each goal involved are collected in θ, and the set
I is computed using the cumulative intersection function over θ (see
Algorithm 14). For each marking ma ∈Mga the algorithm computes
a path P between the current marking m and the requested marking
ma. If the path P ⊆ θ, this means that each marking in the path
satisfies each goal involved. At last the path P is returned.

7.5 Scheduler Problem

Scheduling in general is a method by which processes are given access
to some shared resources in order to achieve a certain quality of
service [83]. Scheduling problems involve jobs that must be scheduled
on machines without violating certain constraints and still obtain a
quality of service.

140 7 7. REACTIVE PROCESSES

In most cases a job is characterised by its running time and has
to be scheduled for that time on one of the machines. In other cases,
restrictions about job orderings are added to the picture. Efficiently
scheduling a job is expressed by a so called objective function. Most
often this means that the total length of the schedule is minimised,
another objective function would be to minimize the waiting time or
maximise the resource utilisation.

In addition, scheduling problems can also be categorised based on
the process information that is available. Two types of algorithms
are to be distinguished : Off-line and on-line algorithms, where the
first assumes that all the arrival times and job length are known
before hand, while the latter releases the job length assumption. We
are concerned by on-line scheduling, as it is closer to our application
domain. We therefore need a scheduler that has to react on requests
with only partial knowledge about the involved processes.

What is known to the scheduler about a process is whether it has
triggered or not, its goal and eventually its priority level. The set
of constraints towards other processes are expressed by the relations
between their goals as described in the previous sections (eg. Table 7.2
and Table 7.1), and predefined priorities for every process. We assume
that the scheduler knows about those constraints, and is requested
to schedule processes as they trigger. Figure 7.5 shows the basic

Figure 7.5: Reactive Process Elements

elements of a Reactive Process. This has a goal that is expressed in
a set of states, a condition for triggering, and a condition for exiting.
Such a process runs continuously, and when its triggering condition is
satisfied, it requests the scheduler to satisfy its goal. The scheduler’s

7.6. SCHEDULING POLICIES 141

role is then to advance the system to a state that satisfies the triggered
process goal, without violating the predefined constraints. When
the exiting condition is satisfied, the reactive process requests the
scheduler to drop the corresponding goal. In other word, a reactive
process contract with the scheduler are notifications of triggering and
existing, while it is up to the scheduler to realize the goal, without
violating the relations to other process’ goals and priorities.

More precisely, the scheduler maintains two queues: A running
queue, and a waiting queue. When a process triggers, it is first added
to the waiting queue, and eventually moved to the running queue.
The scheduler has to make sure that all the processes in the running
queue are satisfied by the current system state. We will show how to
realize such a process scheduler.

7.6 Scheduling Policies

We consider two major cases; preemptive and nonpreemptive pro-
cesses. We start by nonpreemptive processes and propose a greedy
FIFO algorithm. A nonpreemptive process is such that once it
is scheduled it cannot be suspended until its exiting condition is
satisfied. In that case, a process proca is run as it triggers, unless
an already running process imposes a constraint on proca. For
example, gbMEXga, where ga and gb are goals of proca and procb
respectively. If a process can not run, it is added to the waiting
queue. Consequently, a process procc that triggers after proca and
which is not in conflict with procb can run before proca. In other
words, the FIFO policy is not always respected, and is sometimes
relaxed to reduce the total waiting time of processes.

For preemtive processes the picture is slightly different. The
process procc runs before proca until procb has finished, after which
procc is suspended (if in conflict with proca), and proca is run. Priority
processes work in a similar manner as with FIFO. The difference is
that a process with higher priority has the advantage over a process
with lower priority.

In both of FIFO and priority scheduling, whenever a process is
considered, and prior to inserting it to the running or waiting sets of

142 7 7. REACTIVE PROCESSES

processes, we have to determine if it is conflicting with the already
running processes. When a running process excludes (MEX) a newly
triggered process the latter is systematically added to the waiting
queue. If one running process includes the coming process (TINC),
the latter is systematically added to the running set. Otherwise
(PINC), we have to determine a feasible path from the system state
m to some state m′ that also satisfies the goal of the triggered process.
For this, we use Algorithm 15 which computes a feasible path based
on the already running processes and the current system marking.
The procedure which decides whether a waiting process w should run
or not is described in Algorithm 16 and is strategy independent, i.e.
both of FIFO and Priority scheduling rely on it.

Provided a set R of running processes, a temporary queue Qtmp

and a marking m, the process w is handled as follows:
− If ∃proc ∈ R. s.t w ∈MEX(proc), then enqueue w in Qtmp

− If ∃proc ∈ R. s.t w ∈ TINC(proc) ∨ w ∈ MINC(proc), then
add w to R

− If none of the above cases holds find a feasible path using
Algorithm 15, if such a path exists add w to R, otherwise
enqueue w in Qtmp.

7.6.1 Basic Scenario

We define a simple scenario in order to illustrate the different
scheduling algorithms. We use the model of Figure 7.3, and the goals
relations of Table 7.1. The scenario shown in Table 7.4 describes five
processes, their goals, triggering time and priorities respectively. In
this scenario, the triggering time represents the triggering condition.
For example, proc1 triggers after 7 steps (or some time unit), while
proc2 triggers after 20 steps etc.

7.6.2 First-In-First-Out

Algorithm 17 schedules the processes following a first arrived first
served policy combined with a greedy approach to minimize the
average waiting time. Whether the processes involved are preemptive
or not, plays a role and will be addressed separately in two distinct

7.6. SCHEDULING POLICIES 143

Table 7.4: An illustrative scheduling scenario

Process Goal Time of Trigger(steps) Priority

proc1 g1 7 0
proc2 g2 20 3
proc3 g3 13 1
proc4 g4 17 2
proc5 g5 10 1

Goals Total
Inclusion

Partial
Inclusion

Mutual
Inclusion

Mutual
Exclusion

g1 g2 g3 g2 g4, g5
g2 g1 g3 g1 g4, g5
g3 g1, g2, g5 g4
g4 g5 g1, g2, g3
g5 g4, g3 g1, g2

g1 = [m(p1) = 1]→Mg1 = {m1, m2, m4, m6}
g2 = [m(p2) = 0]→Mg2 = {m1, m2, m4, m6}
g3 = [m(p3) = 0]→Mg3 = {m0, m1}
g4 = [m(p2) = 1, m(p3 = 3)]→ Mg4 = {m7}
g5 = [m(p2 = 1)]→Mg5 = {m0, m3, m5, m7}

procedures NonPreemtiveFIFO and PreemptiveFIFO.

Non-preemptive

When a process w arrives to the waiting queue, the procedure
NonPreemtiveFIFO attempts to schedule it using the function Insert,
which in turn decided on whether w should run or wait. The process
w will wait if there is a running process proca that conflicts with
it. If a process procb that does not conflict with proca arrives to
the waiting queue the procedure adopts an optimistic approach an
run procb despite the fact that it arrived after w. When proca
has finished running, w will be reconsidered again, and checked for
conflicts against procb. If a conflict exists w will keep waiting, because
processes are nonpreemptive, and thus procb can not be suspended. If
no conflict exists w will run in parallel with procb.

144 7 7. REACTIVE PROCESSES

Figure 7.6 shows how the scenario of Table 7.4 is scheduled. The
vertical axis at the left is used for process identification, the right
vertical axis is used to show the current system marking, while the
horizontal axis describes the time steps. The process proc1 is the first
one that arrives and is immediately scheduled. The system marking
has to move to m1 because it satisfies g1 while m0 does not. When
proc5 arrives it has to wait, because proc1 and proc5 have mutually
exclusive goals (see Table 7.4). When proc3 arrives it is checked
against proc1, and since m1 satisfies both g1 and g3 no need of finding
a path, proc3 can thus run. The same reasoning applies also to proc2
when it arrives. For proc4, since there exist running processes that
excludes proc4 (proc1, proc3 prior to triggering proc2) it has to wait.
In fact proc4 and proc5 have to wait until proc2 finishes, only then
proc5 is chosen, and the system moves to m0. The process proc5 is
chosen simply because it has arrived before proc4. The last process in
the waiting queue is thus proc4, which can not start running before
proc5 has finished. The only marking that satisfies g5 and g4 is m7,
but as shown in the reachability graph of Figure 7.3 not all markings
from the path between m0 to m7 satisfy g5, and thus from m0 proc4
can not run in parallel with proc5.

Preemptive

Preemptive processes require a small modification in the algorithm, as
it guaranties that a waiting processes w that has triggered earlier than
all running processes, must run. This is done by temporally removing
the running processes that have triggered after w, and re-schedule
the waiting queue. Figure 7.7 shows how the scenario of Table 7.4 is
scheduled.

The first arriving process proc1 is immediately scheduled, and the
system moves to m1. The next arriving process is proc5 which has to
wait, because g1 mutually excludes g5 and that proc1 arrived earlier.
proc3 and proc1 are immediately scheduled, since they do not conflict
with each others nor with proc2. The process proc4 has to wait
until proc1 has finished. When proc1 finishes, the process proc5 is
reconsidered, and causes the suspending of proc2 because they are
mutually exclusive and that proc2 arrived after proc5. The process

7.6. SCHEDULING POLICIES 145

Figure 7.6: Scheduling example based on NonPreemptiveFIFO
procedure

proc3 keeps running though because their exist a marking (m0) and a
path that satisfy both proc3 and proc5. proc4 has to wait until proc5
has finished. Resuming proc2 occurs when proc4 has finished.

7.6.3 Priority

Algorithm 18 schedules the processes in such a way that higher
priority processes are served first. Whether the processes involved are
preemptive or not, play a role and will be looked separately in two dis-
tinct procedures NonPreemtivePriority and PreemptivePriority.
These algorithm work almost as with FIFO, the main differences are
in how the waiting queue is ordered and in the process suspending
criteria which uses priority rather than triggering time.

Non-preemptive

The key idea here is that the waiting processes are ordered according
to their priority. That is, when a waiting process w is considered, we

146 7 7. REACTIVE PROCESSES

Figure 7.7: Scheduling example based on PreemptiveFIFO proce-
dure

know that it has higher priority than the next one to be dequeued.
Figure 7.8 shows how the scenario of Table 7.4 is scheduled. The
first arriving process proc1 is immediately scheduled, and the system
moves to m1. The next arriving process is proc5 which has to wait,
because g1 excludes g5. Even if proc5 had a higher priority than proc1
it could not run, because processes are non-preemptive. Upon arrival
proc3 is immediately scheduled, since it does not conflict with proc1.
The process proc2 is immediately run because it does not conflict with
any running process. proc4 and proc5 have to wait until proc2 finishes
and this for three reasons, proc2 has a higher priority, the mutually
exclusive relation, and that the processes are non-preemptive. Even
if proc5 arrived before proc4, the latter is considered first, because
it has a higher priority. However, because proc4 includes proc5, the
latter can also run.

7.6. SCHEDULING POLICIES 147

Figure 7.8: Scheduling example based on NonPreemptivePriority
procedure

Preemptive

The fact that a process can be interrupted guaranties that higher
priority processes will immediately run. Figure 7.9 shows how the
scenario of Table 7.4 is scheduled. The first arriving process proc1
is immediately scheduled, and the system moves to m1. The next
arriving process proc5 causes the suspending of proc1 as it has a higher
priority and conflicts with proc1. When proc3 arrives it is run in
parallel with proc5, until proc4 triggers, and since proc4 has a higher
priority so far, it must run. The marking satisfying proc4 is m7 which
satisfies proc5 but not proc3, and proc3 is thus suspended. When
proc2 arrives it has to run immediately because it has the highest
priority. Because proc4 and proc5 conflict with proc2 they have to be
suspended, and because proc3 and proc1 do not conflict with proc2
they are resumed. When proc2 finished, proc4 is resumed and run in
parallel with proc5.

148 7 7. REACTIVE PROCESSES

Figure 7.9: Scheduling example based on PreemptivePriority proce-
dure

7.7 System Realisation

We want to show that systems can be realised using distinct reactive
processes. In fact, we want to reduce the task of designing such a
system to the task of composing with basic reactive processes. We
will demonstrate how such a system can be designed using a relatively
simple case, and yet rich in illustration.

In the introduction of this chapter we motivated an approach
that aims at realizing a reactive system, when the environment is
not fully mastered. We have further related our approach to the
so-called subsumption architecture. However, in the subsumption
architecture different modules of competences can have conflicting
goals. In our approach, modules of competences are represented
using reactive processes. Conflicting and none conflicting processes
are formally studied by means of four relations: mutual inclusion
(MINC), mutual exclusion (MEX), partial inclusion (PINC), and
total inclusion (TINC). Determining the relations between different
reactive processes is based on the assumption that the system in

7.7. SYSTEM REALISATION 149

question is either modelled using a bounded Petri net, or a MICPTI
net. The role of those Petri net models is to capture the logic control
of the system regardless of the environment, while the role of reactive
processes is to account for the environment and trigger actions on the
system.

A reactive process proci is defined using four parameters: a
triggering condition tci, an exiting conditions eci, a priority prioi and
a goal gi such that:
− If the triggering condition tci is present, then proci tries to

obtain gi.
− If the exiting condition eci is present, then proci does not need

to obtain gi.
− Higher priority processes must run before lower priority ones.

Figure 7.10 illustrates the basic components, where triggering pro-
cesses are handled by a Process Monitor which in turn is responsible
for invoking the process scheduler. Upon invocation the scheduler is
requested to produce a set of running processes R, a set of waiting
processes Q, and a path from the system current marking m to a
target marking m′ (Path(m,m′)). The produced path is a sequence of
commands that are executed by the Command Executor component.
The executed commands affect the system environment and reflect
in sensory data. Finally, the processes involved use sensory data to
determine whether they should notify the Process Monitor to exit or
trigger.

7.7.1 Case: Garbage Transport System

Consider a wheeled container that has a carrying capacity of 50 kg.
It can fill or empty garbage at some rate. The container moves
forward or backward on a horizontal axe of 30 meters by adjusting its
forward and backward speeds. The set-up is equipped with weight,
and position sensors (see Figure 7.11). We show how to make the
garbage container repetitively move garbage from the right side to
the discharging container using simple dedicated reactive processes.

150 7 7. REACTIVE PROCESSES

Figure 7.10: Waiting processes are set in Q and running in R, while
m is the system state. The scheduler generates Q′, R′ and also a path
from m to m′.

Figure 7.11: Garbage Machine Schematic

7.7.2 Petri net model

We start by capturing the dynamic behaviour of the transport
container (the system)regardless of its environment. Figure 7.12a
shows an MICPTI net representing the garbage transport system.
The commands that can be sent to the controller are encoded in Petri
net places. While Petri net transitions are used to change commands.

Moving the transport container forward is done by setting the
variable F-SPEED, while moving backward is done using the variable

7.7. SYSTEM REALISATION 151

B-SPEED. It is not possible to set F-SPEED if B-SPEED is set
and vis versa. Clearly, both speeds can not be set if the Brake is
applied (BRAKE-ON, BRAKE-OFF). The filling and emptying rates,
are controlled using the variables F-RATE and E-RATE respectively.
Before setting any of those two variables the brake has to be on.
Finally, it is not allowed to fill and empty at the same time. The
commands and their units are summarised in Table 7.5. We also use
four sensors, one for the position denoted pos and three others for
weights denoted w1, w2 and w3.
As the model of Figure 7.12a shows no assumption is taken about
the sensor data when representing the system. All what is considered
are the commands that the system can take. A representation of
the states is shown in the characteristic graph of Figure 7.13b. We
assimilate the system to an infinite system by letting the speeds and
the rates take any positive value.

Table 7.5: Garbage system commands and sensors definition

Control variable Unit Comment

F-SPEED dm/s Forward speed
B-SPEED dm/s Backward speed
F-RATE hg/s Filling rate
E-RATE hg/s Emptying rate
BRAKE-ON unit less Apply brake
BRAKE-OFF unit less Release brake

Sensor Variable Unit Comment

pos m Position sensor
w1 kg Discharge container weight
w2 kg Transport container weight
w3 kg Remaining garbage weight

7.7.3 Processes and goals

After having defined the basic control of the transport container, we
need do design a set of reactive processes. As mentioned earlier a
reactive process has a goal, triggering and exiting conditions, and a

152 7 7. REACTIVE PROCESSES

(a)

(b)

Figure 7.12: MICPTI net of garbage system and its characteristic

priority. In Table 7.6 nine processes are defined using three priority
levels. The convention is that the higher the priority is, the more
important is the process. The processes proc1 and proc3 are to be
seen as anti collision processes. The process proc1 triggers when
the position is almost 30 meters (maximum), and upon triggering

7.7. SYSTEM REALISATION 153

it aims at realising the goal g1, which sets the F-SPEED=0. The
process proc3 is associated with the g3 and triggers when the position
approaches 0 meters (the minimum). The processes proc2 and proc4
trigger to either move the transport container forward or backward.
Their associated goals g2 and g4 specify the required forward or
backward speeds respectively. The process proc5 triggers when the
job is done, upon triggering it applies the brake as specified by
g5. The processes proc6 and proc9 trigger to either empty or fill
the transport container, and are conditioned by the position of the
transport container and its weight. For proc9 the remaining weight is
used as a condition to trigger filling. The emptying rate is specified
by g6 which is set to 5 hg/s, while the filling rate is specified by g9
and is set to 4 hg/s. Finally, proc7 and proc8 trigger to interrupt the
emptying and the filling operations respectively.

7.7.4 Simulation result

In this simulation we run the nine processes defined above concur-
rently, and adopt a priority preemptive process scheduling strategy
(see Algorithm 18). The initial parameters are the following:
− The initial positions is zero m (pos = 0)
− The discharge weight is zero kg w1 = 0
− The transport weight is zero kg w2 = 0
− The remaining weight is 120 kg w3 = 120 kg

Figure 7.13a shows three plots. The first one describes which and
when a processes runs. The second shows position changes, and
the third shows the weight changes. We can clearly see that the
transport container moves between 0 and 30 m. Moving the container
from 0 to 30 meters is justified by the triggering of proc2, while the
backward movement is justified by the triggering of proc4. We can
also see that proc1 triggers when the position is almost 30 m, and that
proc3 triggers when the position is almost 0 m. As mentioned earlier
these processes act as collision prevention. The weight change is also
clearly correlated with the triggering of proc9 for filling and proc6 for
emptying the container.

These two processes are immediately followed by proc8 and proc7
to avoid that the container gets over filled, or emptied when its

154 7 7. REACTIVE PROCESSES

Table 7.6: Garbage system process definitions and goals relations

Proc. Goal Trigger cond. Exit cond. Pri.

proc1 g1 tc1 = pos > 29 ec1 6= tc1 2
proc2 g2 tc2 = pos < 29 ec2 6= tc2 1
proc3 g3 tc3 = pos < 1 ec3 6= tc3 2
proc4 g4 tc4 = pos > 1 ∧ w2 > 1 ec4 = pos < 1 1
proc5 g5 tc5 = w3 < 1∧ ec5 6= tc5 3

w2 < 1 ∧ 3 < pos < 10
proc6 g6 tc6 = pos < 1 ∧ w2 > 1 ec6 = w2 < 1 1
proc7 g7 tc7 = w2 < 1 ec7 6= tc7 2
proc8 g8 tc8 = w2 > 49 ec8 6= tc8 2
proc9 g9 tc9 = pos > 29 ec9 6= tc9 1

∧w2 < 49 ∧ w3 > 1

Goals
Tot
Inc.

Part Inc.
Mu
Inc.

Mu Exc.

g1[m(p1) = 0] g3, g4, g5, g6, g7, g8, g9 g2
g2[m(p1) = 3] g3,g7,g8 g1, g4, g5, g6, g9
g3[m(p2) = 0] g1, g2, g5, g6, g7, g8, g9 g4
g4[m(p2) = 2] g1,g7,g8 g2, g3, g5, g6, g9
g5[m(p6) = 1] g1, g3 g6, g7, g8, g9 g2, g4

g6[m(p4) = 5]
g1, g3,
g5, g8

g2, g4, g7, g9

g7[m(p4) = 0] g1, g2, g3, g4, g5, g8, g9 g6
g8[m(p3) = 0] g1, g2, g3, g4, g5, g6, g7 g9

g9[m(p3) = 4]
g1,g3,g5,
g7

g2, g4, g6, g8

is already empty. The process proc5 triggers at the end of the
simulation when all the garbage has been transported and discharged.
Figure 7.13 shows the commands changes over time. The target
commands are dotted curves marked with T in the legend, and the
current commands are solid lines plots marked with C. The target
commands are the result of the computed marking by the scheduling
algorithm, and the current describes the actual commands that are

7.8. CHAPTER SUMMARY 155

being executed. A target command is to be seen as a set point, while
the current command is the intermediate steps before reaching the
target set point. The guaranty that each command is legal is provided
by the scheduler. The scheduler in turn bases its calculation of the
target commands and their corresponding intermediate commands
on the MICPTI net results. In particular the solutions that MICPTI
provide for the path and reachability problems.

This experiment shows that it is possible to compose an un-
manned reactive system using separated processes, where each process
provides a specific competence. No global environment model was
require, but only partial models, such as stop when to close to end,
or fill when not yet filled etc.

7.8 Chapter summary

At the beginning of this chapter we advocated a modelling approach
that decouples the system from the environment in which it is
deployed, and re-couples again by designing proper processes for
specific tasks. We assumed that the system dynamic can be captured
in a Petri net model in which the path and reachability problems
are solvable. We have therefore used finite systems net and infinite
systems. The first provides an explicit reachability graph in which the
path problem is decidable, while the second is restrained to MICPTI.

These two types of nets give us the guaranty that the system
dynamics is captured and can thus be verified for correctness. The
same thing can not be said about the environment as we don’t dispose
a model that captures the complete environment dynamics. The idea
is to have fragments of models and find a way to combine these
fragments into a complete system. The responsibility of a reactive
process is to encapsulate partial models, observe key parameters
and trigger when conditions are present. The means by which a
process reacts is constrained by the Petri net model. We call the
process reaction a goal, which is specified over a set of places and
their corresponding values. Being able to determine which states
correspond to which goals gives us the possibility to identify eventual
conflicting goals, and thus eventual conflicting process reactions.

156 7 7. REACTIVE PROCESSES

(a) process executions and sensor readings changes

(b) commands changes

Figure 7.13: Simulation results

7.8. CHAPTER SUMMARY 157

We defined four types of goal relations: mutually exclusive,
mutually inclusive, partially inclusive and totally inclusive goals.
These relations are important when it comes to designing a process
scheduler. For clarity, given a system which is in some marking m,
when a reactive process proca associated to a goal ga triggers, the
scheduler has to determine a sequence of markings that leads to some
marking ma which satisfies the goal ga. When another process that
has a goal gb triggers, it becomes important to know which relation
binds ga and gb. This relation allows us to determine if there exists
a sequence of marking from ma to some marking mb that satisfies gb.
We called such a path a feasible path and proposed an algorithm for
it.

The scheduling problem we faced is categorised in the on-line
scheduling problems. The processes arrive over time, but the
scheduler does not know which process arrives next. We considered
preemptive and non preemptive processes, and proposed algorithms
based on two scheduling strategies: First-In-First-Out and priority
scheduling.

Finally we put the things together in an illustrative simulation
example, where nine processes where defined and run in parallel. The
experiment has shown that it is possible to obtain a satisfactory global
behaviour out of basic local behaviours. This notion is not new as
such, since it is a the heart of the subsumption architecture. However
the added value is on the structure we proposed when designing a
subsumption based system.

158 7 7. REACTIVE PROCESSES

7.9 Algorithms

Algorithm 11 A goal g, a marking m outputs m′ satisfies g

1: Initialization:
2: CG← (V,E) {Characteristic graph}

3: Mg ← ∅ {An empty set of markings satisfying g}

4: function Satisfy(g, CG)
5: for all m ∈ CG
6: m′ ← Project(g,m)
7: if m′ 6= NIL
8: Mg ←Mg ∪ {m′}
9: return Mg {Return the set of marking which satisfy g}

10: function Project(g,m)
11: m′ ← m
12: for all p ∈ Pg

13: if g[m(p)] 6= m′(p)
14: if m′(p) 6= ω
15: return NIL
16: else
17: m′(p)← g(p)
18: return m′ {Return the projection of m that matches g}

7.9. ALGORITHMS 159

Algorithm 12 Determine whether A ⊆ B A and B are sets of
markings

1: function Contains(A,B)
2: for all m ∈ A
3: for all m′ ∈ B
4: if Covers(m,m′) 6= TRUE
5: return FALSE
6: return TRUE
7: function Covers(m,m′)
8: for all p ∈ P
9: if m(p) 6= m′(p) ∧m′(p) 6= ω
10: return FALSE
11: return TRUE

Algorithm 13 Determine A∩B, where A and B are sets of markings

1: function Intersection(A,B)
2: I ← ∅ {Intersection}

3: for all ma ∈ A
4: for all mb ∈ B
5: m′ ← Match(ma, mb)
6: if m′ 6= NIL
7: I ← I ∪ {m′}
8: return I
9: function Match(ma, mb)
10: m′ ← NEW
11: for all p ∈ P
12: if ma(p) 6= mb(p) ∧ma(p) 6= ω ∧mb(p) 6= ω
13: return NIL
14: else
15: m′(p) = MIN(ma(p), mb(p))
16: return m′

160 7 7. REACTIVE PROCESSES

Algorithm 14 Determine
⋂

Θ, where Θ is a set of sets of markings

1: function CumIntersection(Θ)
2: CI ← ∅
3: if Θ = ∅
4: return CI
5: else
6: CI ← Θ[0] {CI takes the first set in Θ}

7: if length(Θ) > 1
8: for i = 1 to length (Θ)-1
9: CI ← Intersection(CI,Θ[i])
10: i← i+ 1
11: return CI

Algorithm 15 Feasible path between a goal g and a set of goals Gm

that are satisfied by a marking m

1: function feasiblepath(ga, Gm, m, (V,E))
2: P ← NIL
3: Mga ← Satisfy(ga, (V,E))
4: θ ← ∅
5: for all g ∈ Gm

6: θ← θ ∪ Satisfy(g, (V,E))
7: if θ = ∅
8: for all ma ∈Mga
9: P ← Path(m,ma, (V,E))
10: if P 6= NIL
11: break
12: else
13: I ← CumIntersection(θ)
14: for all ma ∈Mga
15: P ← Path(m,ma, (V,E))
16: if P 6= NIL ∧ P ⊆ I
17: break
18: return P

7.9. ALGORITHMS 161

Algorithm 16 Deciding whether a reactive process runs or waits

1: function Insert(w,R,Qtmp, m,G)
2: done← FALSE
3: for all r ∈ R
4: if w ∈MEX(r)
5: Qtmp.enqueue(w)
6: done← TRUE
7: break
8: if w ∈MINC(r) ∨ w ∈ TINC(r)
9: R← R ∪ {w}
10: done← TRUE
11: break
12: if done 6= TRUE
13: P ← feasiblepath(w,R,m,G)
14: if P 6= NIL
15: m← execute(P)
16: R← R ∪ {w}
17: else
18: Qtmp.enqueue(w)

162 7 7. REACTIVE PROCESSES

Algorithm 17 FIFO Scheduling Algorithms

1: function NonPreemptiveFIFO(Qw, R,m,G)
2: Qtmp ← ∅
3: while Qw 6= ∅
4: w ← Qw.dequeue()
5: Insert(w,R,Qtmp, m,G)
6: Qw ← Qtmp

7: function PreemptiveFIFO(Qw, R,m,G)
8: Qtmp ← ∅
9: while Qw 6= ∅
10: w ← Qw.dequeue()
11: for all p ∈ R
12: if w.trigger < p.trigger
13: R← R− {p}
14: Qw.Enqueue(p)
15: Insert(w,R,Qtmp, m,G)
16: Qw ← Qtmp

7.9. ALGORITHMS 163

Algorithm 18 Priority based Scheduling Algorithms

1: function NonPreemptivePriority(Qw, R,m,G)
2: Qtmp ← ∅
3: Qw ← Qw.prioritySort()
4: while Qw 6= ∅
5: w ← Qw.dequeue()
6: Insert(w,R,Qtmp, m,G)
7: Qw ← Qtmp

8: function PreemptivePriority(Qw, R,m,G)
9: Qtmp ← ∅
10: Qw ← Qw.prioritySort()
11: while Qw 6= ∅
12: w ← Qw.dequeue()
13: for all p ∈ R
14: if w.priorty() > p.priorty()
15: R← R− {p}
16: Qw.priorityEnqueue(p)
17: Insert(w,R,Qtmp, m,G)
18: Qw ← Qtmp

164 7 7. REACTIVE PROCESSES

Chapter 8

The Software Packages

In this chapter we present two software packages: A Petri nets
analysis package implementing the theory of Chapter 6, and a Goal
analysis package implementing the theory of Chapter 7.

8.1 Introduction

Today, there are 81 registered Petri net tools and software li-
braries [59], each with distinct benefits and drawbacks with respect
to their features and user friendliness. However, exiting tools do
not address the CPTI and MICPTI classes which were introduced
in Chapter 6, nor do they address the theory of Chapter 7.

For these reasons, we introduce two C# packages: One for the
analysis of CPTI, and MICPTI nets, and the other for the analysis
of goals. We will show using lines of code how to perform the
different analyses for determining the properties of nets like CPTI and
MICPTI. We also show how to specify goals and compute the four
relations from Chapter 7,i.e. Mutual Exclusion, Mutual Inclusion,
Total Inclusion and Partial Inclusion.

Figure 8.1 gives an overview of the architecture. The figure shows
a Petri net editor that is used to draw Petri net models. The features
of the editor are outside the scope of this thesis. However, among the
many Petri nets tools [59] we have chosen an editor called Platform
Independent Petri net Editor version 2.5 (PIPE) [18], which we found

165

166 8 8. THE SOFTWARE PACKAGES

Figure 8.1: An overview of the simulation tool

both stable and user friendly. Using PIPE one can draw and simulate
nets, allowing the user to have an idea about the expected behaviour
of the modelled net.

The Petri net model is then saved in the Petri net Mark-up
Language format (PNML) [16]. PNML is an XML based standard
kept by the Petri net community, to ease the interoperability between
different Petri net tools.

Using our Petri net Analysis package, it is possible to load Petri
nets in PNML and analyse them further. The main purpose of this
package is to analyse the CPTI and MICPTI types of nets from
Chapter 6. The use of this package will be addressed in Section 8.3
and Section 8.4.

The Goal Analysis package is build on top of the Petri net Analysis
package. The main purpose of the Goal Analysis package is to analyse
the goals of reactive processes from Chapter 7. We will show how this
package works in Section 8.5.

8.2. BASICS 167

8.2 Basics

In this section we show some basic code to make the user familiar
with our Petri net library.

Table 8.1 shows how to load a Petri net model from a PNML file.
Once the model loaded, it is stored in an instance of the class PN
(stands for Petri net). All the methods that we will use to analyse
a Petri net model are called from a PN object (instance of the class
PN).

For example, the actual marking of the Petri net model is obtained
by calling the property method petrinet.Marking. One can also
obtain all the enabled transitions from a given marking by calling
the petrinet.EnabledTransitions. Firing a transition is done by calling
the method Fire(Transition t). The user can also specify or keep a
marking and then set it as the nets current marking. This is done
using the method SetMarking(Marking m).

Table 8.2 shows a program for a random token game. This works
as follows: Starting from the initial marking, we repetitively choose a
randomly transition among the enabled ones and fire it. The program
stops only if a marking is reached from which no transition can fire
(a deadlock marking).

168 8 8. THE SOFTWARE PACKAGES

Table 8.1: Some basic methods from our Petri net library

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 pub l i c c l a s s BasicDemo
5 {
6 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
7 {
8 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;
9 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;

10 //Gett ing the cur r ent marking
11 Marking in t i ta lMark ing = pe t r i n e t . Marking ;
12 //Pr in t ing the cur r ent marking
13 i n t i t a lMark ing . p r in t () ;
14 //Enabled t r a n s i t i o n s from cur r ent marking
15 f o r ea ch (Trans i t i on t in p e t r i n e t . EnabledTrans i t ions)
16 {
17 Console . WriteLine (t .Name) ;
18 }
19 // F i r e the f i r s t enable t r an s i t i o n ,
20 //and pr in t the r e s u l t i n g marking
21 Lis t<Trans i t ion> enabledTrans =
22 pe t r i n e t . EnabledTrans i t ions ;
23 i f (enabledTrans != nu l l && enabledTrans . Count > 0)
24 {
25 Trans i t i on t r ans = pe t r i n e t . EnabledTrans i t ions [0] ;
26 pe t r i n e t . F i r e (t r ans) ;
27 pe t r i n e t . Marking . p r in t () ;
28 }
29 // s e t back the i n i t i a l marking
30 pe t r i n e t . SetMarking (in t i ta lMark ing) ;
31 pe t r i n e t . Marking . p r in t () ;
32 }
33 }

8.2. BASICS 169

Table 8.2: A random token game program

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Math ;
4 us ing Pet r ine tAna ly s i s ;
5 //Random Token Game
6 pub l i c c l a s s TokenGame
7 {
8 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
9 {

10 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;
11 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
12 Random randomNumber = new Random() ;
13 i n t count = pe t r i n e t . EnabledTrans i t ions . Count ;
14 whi le (count > 0)
15 {
16 // f i nd a random number l e s s than count
17 i n t random =randomNumber . Next (count) ;
18 Trans i t i on t=pe t r i n e t . EnabledTrans i t ions [random] ;
19 pe t r i n e t . F i r e (t) ;
20 count = pe t r i n e t . EnabledTrans i t ions . Count ;
21 }
22 Console . WriteLine (”Random Token Game Fin i shed : ”) ;
23 pe t r i n e t . Marking . p r in t () ;
24 }
25 }

170 8 8. THE SOFTWARE PACKAGES

8.3 Code For CPTI Analyses

In Chapter 6 we presented two classes of nets: The CPTI nets, and the
MICPTI nets. This section shows how to use our library to analyse
CPTI nets, whereas the MICPTI class will be addressed in Section 8.4.

CPTI nets are analysed by means of their coverability graphs,
however the Coverability graph algorithm 5 from Chapter 6 applies
to CPTI and MICPTI nets only. This means that before running
Algorithm 5 we have to make sure that the net in question is either
CPTI or MICPTI.

Table 8.3 shows how to check whether a Petri is CPTI using the
method isCPTI(), which returns a boolean value. To obtain the sets
of circular elementary structures (ces) and flate elementary structures
(fes), we call the methods FlateStrutures() and CircularStrutures()
respectively.

Table 8.3: A program for checking whether a net is CPTI

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 //CPTI Check?
5 pub l i c c l a s s CheckingCPTI
6 {
7 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
8 {
9 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;

10 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
11 bool i s c p t i=pe t r i n e t . isCPTI () ;
12 Console . WriteLine (”The net i s CPTI : ” + i s c p t i) ;
13 //Get the s e t s o f CES and FES
14 i f (i s c p t i)
15 {
16 Lis t<FES> S e t f e s = pe t r i n e t . F la t eSt ru tur e s () ;
17 Lis t<CES> Se t c e s = pe t r i n e t . C i r cu l a r S t r u tu r e s () ;
18 }
19 }
20 }

8.3. CODE FOR CPTI ANALYSES 171

8.3.1 Coverability Graph

To obtain the coverability graph of a CPTI net, we call the method
CPTI MICPTI Coverability Graph() which returns a list of mark-
ings as shown in Table 8.4. In our implementation, markings are also
nodes of graph. That is, a marking can have one or several successor
markings.

Finally, to visualize the coverability graph we use the Dot
language [52], which can be visualized using the Graphviz tool [40].
By calling the method Save(List< Marking > somegraph) a dot file
is generated, which in turn can be loaded using Graphviz.

8.3.2 Boundedness

A CPTI net is bounded if its coverability graph contains no extended
marking. When a CPTI net is unbounded, it means that there
exist one or several places that could contain infinitely many tokens.
Table 8.5 shows how to check the boundedness of a CPTI net and
how to obtain the set of unbounded places.

8.3.3 Deadlock

A marking is deadlock if no transition can fire from it. Table 8.6
shows how to get the set of deadlock markings.

8.3.4 Transition Liveness

For a CPTI net it is possible to determine whether a transition is
quasi-live or dead. A transition is dead if it is never enabled. A
transition is quasi-live if there exists a marking from which it can fire.
A transition which is not dead is necessarily quasi-live. Table 8.7
shows how to get the set of dead transitions.

172 8 8. THE SOFTWARE PACKAGES

Table 8.4: Getting the coverability graph of a CPTI net

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 pub l i c c l a s s CPTICoverabilityGraph
5 {
6 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
7 {
8 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;
9 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;

10 bool i s c p t i = pe t r i n e t . isCPTI () ;
11 i f (i s c p t i)
12 {
13 Lis t<Marking>cove rab i l i tyGraph=
14 pe t r i n e t . CPTI MICPTI Coverability Graph () ;
15 i f (c ove rab i l i tyGraph!= nu l l &&
16 cove rab i l i tyGraph . Count > 0)
17 {
18 Marking m = cove rab i l i tyGraph [0] ;
19 Lis t<Connection> l i n k s = m. Connections ;
20 f o r ea ch (Connection c in l i n k s)
21 {
22 Marking succe s so r o f m = c .To ;
23 }
24 }
25 pe t r i n e t . Save (coverab i l i tyGraph , ” . . . f i l e . dot ”) ;
26 } } }

8.3. CODE FOR CPTI ANALYSES 173

Table 8.5: A program for checking the boundedness of a CPTI net

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 //Boundedness check ing
5 pub l i c c l a s s CPTIBoundedness
6 {
7 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
8 {
9 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;

10 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
11 bool i s c p t i = pe t r i n e t . isCPTI () ;
12 i f (i s c p t i)
13 {
14 //Get the c o v e r a b i l i t y graph
15 Lis t<Marking> cove rab i l i tyGraph =
16 pe t r i n e t . CPTI MICPTI Coverability Graph () ;
17 // i s the net bounded?
18 bool bounded = pe t r i n e t . isBounded (cove rab i l i tyGraph) ;
19 // l i s t o f unbounded p l a c e s
20 Lis t<Place> unboundedPlaces =
21 pe t r i n e t . GetUnboundedPlaces (cove rab i l i tyGraph) ;
22 }
23 }
24 }

174 8 8. THE SOFTWARE PACKAGES

Table 8.6: A program for getting deadlock markings

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 //Deadlock check ing
5 pub l i c c l a s s CPTIDeadlock
6 {
7 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
8 {
9 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;

10 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
11 bool i s c p t i = pe t r i n e t . isCPTI () ;
12 i f (i s c p t i)
13 {
14 //Get the c o v e r a b i l i t y graph
15 Lis t<Marking> cove rab i l i tyGraph =
16 pe t r i n e t . CPTI MICPTI Coverability Graph () ;
17 // l i s t o f deadlock markings
18 Lis t<Marking> deadlocks =
19 pe t r i n e t . GetDeadlockMarkings (cove rab i l i tyGraph) ;
20 }
21 }
22 }

8.3. CODE FOR CPTI ANALYSES 175

Table 8.7: A program for getting dead transitions

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 //Dead t r a n s i t i o n s
5 pub l i c c l a s s Trans i t i onL ivene s s
6 {
7 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
8 {
9 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;

10 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
11 bool i s c p t i = pe t r i n e t . isCPTI () ;
12 i f (i s c p t i)
13 {
14 //Get the c o v e r a b i l i t y graph
15 Lis t<Marking> cove rab i l i tyGraph =
16 pe t r i n e t . CPTI MICPTI Coverability Graph () ;
17 // l i s t o f dead t r a n s i t i o n s
18 Lis t<Trans i t ion> deadTrans i t ion =
19 pe t r i n e t . GetDeadTrans it ions (cove rab i l i tyGraph) ;
20 }
21 }
22 }

176 8 8. THE SOFTWARE PACKAGES

8.4 Code For MICPTI Analyses

In Chapter 6, we defined MICPTI as a subclass of CPTI. This means
that the lines of code from Section 8.3 can also be used to analyse
MICPTI nets. However, we can determine additional properties for
MICPTI nets such as: Marking reachability, transition liveness (not
only quasi-liveness), reversibility of a net and finding paths from a
marking to another (see Table 8.8).

Table 8.8: A program for checking whether a net is MICPTI

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 //Checking i f a net i s MICPTI
5 pub l i c c l a s s CheckingMICPTI
6 {
7 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
8 {
9 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;

10 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
11 bool isMICPTI = pe t r i n e t . isMICPTI () ;
12 Console . WriteLine (”The net i s MICPTI : ” + isMICPTI) ;
13 i f (isMICPTI)
14 {
15 // MICPTI a n a l y s i s comes here . . .
16 }
17 }
18 }

8.4.1 Marking Reachability

We mentioned in Chapter 6 that it is possible to determine the
reachability of a marking for MICPTI nets. Table 8.9 shows how
to use our library to determine the marking reachability for MICPTI
nets.

8.4. CODE FOR MICPTI ANALYSES 177

Table 8.9: A program for checking the reachability of a marking

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Math ;
4 us ing Pet r ine tAna ly s i s ;
5 //Checking whether a marking i s r ea chab l e
6 pub l i c c l a s s MarkingReachabi l i ty
7 {
8 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
9 {

10 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;
11 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
12 bool isMICPTI = pe t r i n e t . isMICPTI () ;
13 Random random=new Random() ;
14 i f (isMICPTI)
15 {
16 Lis t<Marking>cove rab i l i tyGraph=
17 pe t r i n e t . CPTI MICPTI Coverability Graph () ;
18 // copying the net ’ s marking
19 Marking mToCheck = pe t r i n e t . Marking . Copy() ;
20 //modify the mToCheck with random va lue s
21 f o r (i n t i = 0 ; i < mToCheck . Counts . Length ; i++)
22 {
23 mToCheck . Counts [i] = random . Next () ;
24 }
25 //check i f mToCheck i s r ea chab l e
26 bool i sReachable =
27 pe t r i n e t . i sReachable (mToCheck , cove rab i l i tyGraph) ;
28 }
29 }
30 }

8.4.2 Characteristic Graph

In Chapter 6 Section 6.10, we introduced a so called characteristic
graph. This graph is generated from the coverabililty graph to encode
additional information about the connections between markings.

Table 8.10 shows how to obtain the characteristics graph of a given
coverability graph, which can also be saved, and later on visualized

178 8 8. THE SOFTWARE PACKAGES

using Graphviz (as shown previously in Table 8.4).

Table 8.10: A program for obtaining the characteristic graph

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 //Gett ing the Cha r a c t e r i s t i c Graph
5 pub l i c c l a s s CharGraphMICPTI
6 {
7 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
8 {
9 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;

10 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
11 bool isMICPTI = pe t r i n e t . isMICPTI () ;
12 i f (isMICPTI)
13 {
14 Lis t<Marking> cove rab i l i tyGraph =
15 pe t r i n e t . CPTI MICPTI Coverability Graph () ;
16 Lis t<Marking> cha ra c te r i s t i cGraph =
17 pe t r i n e t . GetCharacter i s t i cGraph (cove rab i l i tyGraph) ;
18 //Saving the Graph in the language dot
19 //Dot i s used by Graphviz to v i s u a l i z e graphs .
20 s t r i n g sav ingLocat ion = ” . . . f i l e . dot ” ;
21 pe t r i n e t . Save (cha ra c te r i s t i cGraph , sav ingLocat ion) ;
22 }
23 }
24 }

8.4.3 Reversibility

It is possible to check whether a MICPTI is reversible using its char-
acteristic graph. As discussed in Section 6.10, a net is reversible if its
characteristic graph constitutes one strongly connected component. A
consequence of the reversibility of a net is that a quasi-live transition
is guaranteed to be live. Table 8.11 shows how to determine the
reversibility of a MICPTI net.

8.4. CODE FOR MICPTI ANALYSES 179

Table 8.11: A program for checking whether a MICPTI net is
reversible

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s ;
4 //Checking whether a net i s r e v e r s i b l e
5 pub l i c c l a s s MICPTIReversible
6 {
7 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
8 {
9 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;

10 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
11 bool isMICPTI = pe t r i n e t . isMICPTI () ;
12 i f (isMICPTI)
13 {
14 Lis t<Marking> cove rab i l i tyGraph =
15 pe t r i n e t . CPTI MICPTI Coverability Graph () ;
16 Lis t<Marking> cha ra c te r i s t i cGraph =
17 pe t r i n e t . GetCharacter i st i cGraph (cove rab i l i tyGraph) ;
18 bool i sR e v e r s i b l e =
19 pe t r i n e t . I sRev e r s i b l e (cha ra c te r i s t i cGraph) ;
20 }
21 }
22 }

8.4.4 Finding Paths

In Section 6.10 we presented and algorithm for determining a sequence
of firings from one marking to another. The code in Table 8.12 chooses
two random reachable markings, and finds a path from the one to
other.

180 8 8. THE SOFTWARE PACKAGES

Table 8.12: A program for finding a path between two markings

1 us ing System ;
2 us ing Math ;
3 us ing System . Co l l e c t i o n s . Gener ic ;
4 us ing Pet r ine tAna ly s i s ;
5 //Find a path between two r ea chab l e markings
6 pub l i c c l a s s MICPTIPath
7 {
8 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
9 {

10 s t r i n g f i l e L o c a t i o n = ” . . \ \ yourModel . pnml” ;
11 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
12 bool isMICPTI = pe t r i n e t . isMICPTI () ;
13 i f (isMICPTI)
14 {
15 Lis t<Marking> cove rab i l i tyGraph =
16 pe t r i n e t . CPTI MICPTI Coverability Graph () ;
17 Marking s t a r t =
18 pe t r i n e t . GetRandomMarking (cove rab i l i tyGraph) ;
19 Marking de s t i n a t i o n =
20 pe t r i n e t . GetRandomMarking (cove rab i l i tyGraph) ;
21 Lis t<Trans i t ion> path=
22 pe t r i n e t . FindPath In MICPTI
23 (s ta r t , de s t ina t i on , cove rab i l i tyGraph) ;
24 }
25 }
26 }

8.5. CODE FOR GOAL ANALYSES 181

8.5 Code For Goal Analyses

The GoalAnalysis package implements the approach that was pre-
sented in Chapter 7. More precisely, using this package one can
determine four relations between goals: The mutual inclusion, mutual
exclusion, partial inclusion, and total inclusion.

To analyse the relation between different goals using this package,
one roughly needs to do following: Load a MICPTI net, specify a set
of goals, and call a method AnalyseGoals. To show how this can be
done we use the MICPTI net of Figure 8.2, which was used earlier in
Section 7.7.

Figure 8.2: MICPTI net of the garbage system from Section 7.7

1 us ing System ;
2 us ing System . Co l l e c t i o n s . Gener ic ;
3 us ing Pet r ine tAna ly s i s
4 us ing GoalAnalys is ;
5 pub l i c c l a s s Analys ingGoals
6 {
7 pub l i c s t a t i c vo id Main (s t r i n g [] a rgs)
8 {
9 s t r i n g f i l e L o c a t i o n = ” . . \ \ Figure7 . 1 2 . pnml” ;

182 8 8. THE SOFTWARE PACKAGES

10 PN pe t r i n e t = PNLoader .LoadPNML(f i l e L o c a t i o n) ;
11 Lis t<Goal> goa l s = new Lis t<Goal>() ;
12 // goa l name
13 Goal g1 = new Goal (”g1”) ;
14 Place p la c e=pe t r i n e t . GetPlace (”p1 F SPEED”) ;
15 g1 . Spec i fy (place , 0) ;
16 Goal g2 = new Goal (”g2”) ;
17 g2 . Spec i fy (place , 3) ;
18 Goal g3 = new Goal (”g3”) ;
19 p la ce=pe t r i n e t . GetPlace (”p2 B SPEED”) ;
20 g3 . Spec i fy (place , 0) ;
21 Goal g4 = new Goal (”g4”) ;
22 g4 . Spec i fy (place , 2) ;
23 Goal g5 = new Goal (”g5”) ;
24 p la ce = pe t r i n e t . GetPlace (”p6 BRAKE ON”) ;
25 g5 . Spec i fy (place , 1) ;
26 Goal g6 = new Goal (”g6”) ;
27 p la ce = pe t r i n e t . GetPlace (”p4 E RATE”) ;
28 g6 . Spec i fy (place , 5) ;
29 Goal g7 = new Goal (”g7”) ;
30 g7 . Spec i fy (place , 0) ;
31 Goal g8 = new Goal (”g8”) ;
32 p la ce = pe t r i n e t . GetPlace (”p3 F RATE”) ;
33 g8 . Spec i fy (place , 0) ;
34 Goal g9 = new Goal (”g9”) ;
35 p la ce = pe t r i n e t . GetPlace (”p3 F RATE”) ;
36 g9 . Spec i fy (place , 4) ;
37 goa l s . AddRange(new Goal [] { g1 , g2 , g3 , g4 , g5 , g6 , g7 , g8 , g9 }) ;
38

39 MICPTIGoalAnalyser ana ly s e r = new MICPTIGoalAnalyser () ;
40 ana ly s e r . AnalyseGoals (goa l s , p e t r i n e t) ;
41

42 //Resu l t s
43 f o r ea ch (Goal g in goa l s)
44 {
45 Lis t<Goal> mutualExclus ive=g .MEX ;
46 Lis t<Goal> mutua l Inc lu s i v e = g .MINC;
47 Lis t<Goal> p a r t i a l I n c l u s i v e = g .PINC ;
48 Lis t<Goal> t o t a l I n c l u s i v e = g .TINC ;
49 }
50 }
51 }

8.6. CHAPTER SUMMARY 183

8.6 Chapter Summary

In this chapter we presented two C# software packages: a Petri nets
Analysis and a Goal Analysis package. Those to packages implement
our developed theory from Chapter 6 and Chapter 7 receptively.

184 8 8. THE SOFTWARE PACKAGES

Part III

Application

185

Chapter 9

Drilling Control System

In Chapter 3, we mentioned two major limitations of existing drilling
control systems: They lack supervisory control, and fail to trigger
responses to incidents. To cope with those limitations we suggest two
additional components: a command controller, and a safety process
scheduler. This chapter shows how to realize those two components
using the theory from Chapters 5, 6 and 7.

9.1 Introduction

In Chapter 3 we suggested to improve existing drilling control
by adding two components: A command controller, and a safety
process scheduler as shown in Figure 9.1. The command controller
acts as a control supervisor to limit the driller’s actions to only
those permissible, while the safety process scheduler enables the
composition with reactive processes.

Realizing the command controller can be assimilated to the
supervisory control problem [25, 74]. This is done by imposing a
control supervisor to an already unsatisfactory rig control. In other
words, the rig offers a multitude of possibilities, but not all of them
should be allowed. Restricting the possibilities to only those that
satisfy the specifications is the responsibility of the supervisor. In
practice, the role of the command controller, is to make sure that any
control variable that is sent to the command interface is legal.

187

188 9 9. DRILLING CONTROL SYSTEM

Realizing the safety process scheduler takes its foundation from
chapter 7. Reactive processes observe the well dynamics through
sensory readings and generate appropriate responses when incidents
occur. The safety process scheduler needs to schedule those processes,
and interact with the command controller. We divide the rig

Figure 9.1: Two components

operability into two modes: A pipe handling mode and an operational
mode. In the pipe handling mode the driller’s main concerns is to
connect or disconnect a drill-pipe to the drill-string. While in the
operational mode, the operator is mainly concerned with drilling,
reaming, hole-cleaning, tripping-in, tripping out etc. That is, in
the operational mode the operations involved are those which could
influence the well state, which is not the case for the pipe handling
mode.

In addition, in the pipe handling mode the mud pump and
top-drive are not used, and the draw-works is used to position the
elevator (device used to hold the drill-pipe, or drill-string) either at
the top (crown block) or at bottom (drill-floor). This simplifies the
movement of the drill-string as we don’t need to model the complete
movement, but only use two discrete positions (top and bottom).

9.2. THE PIPE HANDLING MODE 189

On the other hand, the drill-string movement under the operational
system is modelled using velocity control, which means that the
drill-string head can be at any position between the crown-block and
the drill-floor. However, both modes need a command controller.

Assumptions

Control variables are assigned and sent to the different devices via
the command interface. We assume that those control variables will
be executed after a period of time. This means that individual rig
devices are not considered faulty. We call the whole set of control
variables assignments for the machine state.

We also assume the command controller is the only one that can
change the machine state. This is not the case for the well state,
which we assume can change at any time.

9.2 The Pipe Handling Mode

The Petri net model capturing the pipe handling mode uses five
drilling tools. To each tool we associate a set of places and transitions,
as shown in Table 9.1. The places will be interpreted as control
variables, and the transitions as the actions taken by a driller. In
addition we will use the following four places as internal variables:
− pipe at rack int: This place is used to describe that a drill-pipe

is actually at the star-racker.
− pipe at wc int: This place indicates whether a drill-pipe is

placed at the well center or not.
− string at bottom int: This place indicates whether the

drill-string is at the drill-floor level or not.
− string at top int: This place indicates whether the drill-string

is at a high position or not.
The complete model of pipe handling mode is illustrated in Figure 9.2.
As the figure shows the model is hard to read, we will therefore divide
it into five sub-models that are easier to understand.

190 9 9. DRILLING CONTROL SYSTEM

Table 9.1: Pipe handling events and control variables

Tools Places Transitions

Draw-works DW EL at top,
DW EL at bottom

DW string to top,
DW string to bottom,
DW EL to bottom,
DW EL to top

ELevator EL hold, EL release EL hold at bottom,
EL hold at top,
EL release at bottom,
EL release at top,
EL hold new pipe,
EL release pipe

Rack-arm RA at wc,
RA at rack,
RA hold, RA release

RA to wc,RA to rack,
RA hold pipe at wc,
RA hold pipe at rack,
RA release at wc,
RA release at rack,
RA move pipe to wc,
RA move pipe to rack

Iron-roughneck RN idle,
RN break off,
RN makeup

RN break off,
RN done break off,
RN makup,
RN done makeup

Power-Slips slips on , slips off slips on, slips off

9.2. THE PIPE HANDLING MODE 191

Figure 9.2: Pipe Handling model

192 9 9. DRILLING CONTROL SYSTEM

9.2.1 The Power-Slips

Recall that the power-slips are used to suspend the drill-string in order
to prevent its from falling into the well. The model in Figure 9.3
describes the power-slips dynamics. The transitions slips off and
slips on are used to set tokens in the places slips off and slips on .
Releasing the slips requires the following:
− The slips were on
− The elevator is not on a release mode (holding the drill-string)
− The drill-pipe is not at the well center.

Figure 9.3: Power-slips Petri net model

9.2.2 The Elevator

The elevator is used to hold either the drill-string or the drill-pipe,
when the top-drive is not connected. The Elevator model is shown in
Figure 9.4. The elevator can either hold or release using the places:
EL release and EL hold. However, in order to set tokens in those
places, other conditions must be satisfied. The transitions on the
net represent what can be done with the elevator and under which
conditions a transition can fire. For example, releasing the elevator at
the drill floor level (transition: EL release at bottom) requires that
the power-slips were activated.

9.2. THE PIPE HANDLING MODE 193

Figure 9.4: Elevator Petri net model

194 9 9. DRILLING CONTROL SYSTEM

9.2.3 The Draw-works

The draw-works is used to obtain the vertical movement of the
elevator. If the elevator is holding the drill-string then moving the
Elevator to a top or bottom position will also move the drill-string.
The elevator needs only to be at two positions: top or bottom.
All the intermediate positions are irrelevant in pipe handling mode.
When the elevator is holding the drill-string and moved upward or
downwards we simply update two internal places: string at top int or
string at bottom int (see Figure 9.5).

Figure 9.5: Draw-works Petri net model

9.2. THE PIPE HANDLING MODE 195

9.2.4 Rack Arm

The rack arm is used to bring or deposit drill-pipes from the
well-center to the star racker and vice versa. The model in Figure 9.6
shows the dynamics of the star racker arm. A typical sequence under
pipe connection would be to grip a new pipe from the star racker and
move it to the well-center. Before a pipe can be released, we have to
make sure that the elevator is holding that pipe, otherwise it will fall
on the drill-floor. When disconnecting a drill-pipe, the rack arm has
to grip the pipe at the well-center and move it back to the star racker.
There are eighth possible actions that a rack arm can perform, and
all of them are activated under specific conditions (see Figure 9.6)

Figure 9.6: Star Racker arm Petri net model

196 9 9. DRILLING CONTROL SYSTEM

9.2.5 Iron roughneck

The iron roughneck is used to apply the necessary make-up torque
to connect a drill-pipe to the drill-string, or break-off torque to
disconnect them from each others. The dynamics of the iron
roughneck is shown in Figure 9.7. When connecting a new pipe we
have to make sure that the pipe is at the well-center, is held by the
elevator and that the drill-string is at bottom position.

Figure 9.7: Iron-roughneck Petri net model

9.3 Analysing the Pipe Handling Model

The model in Figure 9.2 cannot be claimed correct unless it satisfies
some properties. We divide these properties in three categories:
General, state specific and transition specific.

9.3.1 General Properties

As there are 17 boolean variables in the pipe handling model, we
have a combinatorial space of 217 states. Using Algorithm 1 from

9.3. ANALYSING THE PIPE HANDLING MODEL 197

Section 5.3, we can obtain a reachability graph for the pipe handling
model. The graph contains 91 states, which is sufficient to describe
the legal behaviours.

The general properties of the pipe handling model are summarized
in Table 9.2. Deadlock states can easily be checked by inspecting the
reachability graph for states that do not contain any outgoing edges.
A transition which does not appear in any edge is considered dead.

If the reachability graph constitutes a strongly connected compo-
nent then the net is reversible. Checking for strongly connectedness
was explained in Section 5.3.

A net is live when each of its transitions are live. Recall that from
Section 5.3, a net that is quasi-live and reversible is also live. A net
is bounded if its reachability graph is finite, and a net is one-safe if
each place cannot contain more than one token.

The fact that the reachability graph algorithm terminates means
that the net is bounded. Checking whether a net is one-safe can be
done by inspecting the reachable markings. However, one-safeness
can be forced by requiring that a place cannot contain more than one
token.

Table 9.2: General properties of the pipe handling model

Property Description

Number of states 91 states
Dead lock states None
Dead transitions None
Reversible Yes
Bounded One-safe
Liveness Live net

9.3.2 State properties

State properties define the requirements that each state (marking)
should satisfy. For example, the places (variables) slips on and
slips off should never be equal. For that we need to specify a set
of rules and check that each reachable marking satisfies those rules.

198 9 9. DRILLING CONTROL SYSTEM

The rules in Table 9.3 are all satisfied by our model. However, when a
rule is not satisfied, the model must be refined. The point is that we
have a way to determine whether the captured behaviour satisfies our
requirements, and thus we have the possibility to represent a system
and check the correctness of that representation.

Table 9.3: State specific rules

Rule Formula

1 slips on 6= slips off
2 string at top int 6= string at bottom int
3 EL hold 6= EL release
4 DW EL at top 6= DW EL at bottom
5 RA at wc 6= RA at rack
6 RA hold 6= RA release
7 pipe at wc int 6= pipe at rack int
8 RN idel 6= RN break-off
9 RN idel 6= RN makeup
10 ¬(RN break off ∧ RN make up)
11 ¬(pipe at wc int ∧ string at top int)
12 ¬(DW EL at bottom∧ string at top int)
13 ¬(EL release ∧ slips off)

9.3.3 Transition properties

State properties answer which properties should be satisfied by the
reachable states. Transition properties address issues related to
state changes in order to force execution determinism. For example,
consider two markings m1 and m2. In m1 the places slips off and
EL release are set to 1 and 0 respectively, which means that the
elevator is holding the drill-string and that the slips are not activated.
In m2 the variables slips off and EL-release are set to 0 and 1,
respectively, i.e. the power-slips are activated and the elevator is
released. Both markings m1 and m2 satisfy rule 13 in Table 9.3.
However, moving from m1 to m2 must guarantee that power-slips are
activated before the elevator is released.

9.3. ANALYSING THE PIPE HANDLING MODEL 199

One way to do that is to ensure that only one control variable
is set at every state change. The places in the pipe handling model
represent two types of variables: internal and control variables. We
need to make sure that no transition in the reachability graph sets
more than one control variable.

9.3.4 Transition Labelling

So far we have focus on providing a Petri net model that captures the
legal system behaviours for Pipe handling.

A straightforward way to design a control panel is to consider the
transitions as control components (buttons). However, this is not
always true, since different transitions could set the same variables.
This means that it is not necessarily a one-to-one relation between a
control button and a Petri net transition. For example, both of the
transitions EL hold at top and EL hold at bottom remove one token
from EL release and set one token in EL hold. The difference is in the
condition enabling these transitions, this is why they are modelled as
two explicit transitions. However both transitions could be linked to
the same control button. In this case, the labels correspond to the
control buttons. We say that two transitions share the same label if
the following holds:
− They share the same non internal output place (control vari-

able).
− They are never enabled together.

The first condition is to make sure that they control the same
variables, while the second condition avoids ambiguities. Avoiding
ambiguities means that two transitions that can fire at the same
marking can not share the same label. Because from a given marking,
choosing a label gives no way to determine which Petri net transition
should fire.

Figure 9.8 shows a Petri net and its corresponding reachability
graph. The place named cv stand for control variables, while iv
stand for internal variables. The figure shows that t1 and t2 satisfy
the first condition, because they deposit tokens in the same control
variables. But the second condition is not satisfied between t1 and t2,
because there exists a marking m0 in which they are both enabled.

200 9 9. DRILLING CONTROL SYSTEM

(a)

m=[iv_1 iv_2 cv_1 cv_2]

m 0=[1 0 1 0]

m 1=[0 1 0 1]

t1

m 2=[0 1 1 0]

t2

t3

m 3=[1 0 0 1]

t4

t4 t3

t2

(b)

Figure 9.8: Ambiguity between t1 and t2, they can not share the same
label

(a)

m=[iv_1 iv_2 cv_1 cv_2]

m 0=[1 0 1 0]

m 1=[0 1 0 1]

t1

m 2=[0 1 1 0]

t3

m 3=[1 0 0 1]

t4

t4t3

t2

(b)

Figure 9.9: No ambiguity t1 and t2, they can share the same label

The transitions t1 and t2 can thus not share the same label. On the
other hand, Figure 9.9 shows that there is no ambiguity between t1
and t2 as they are never enabled together.

Applying this reasoning on the pipe handling model gives the
minimum set of labels that are necessary to control the system
dynamics. Finally, the minimum set of labels gives the set of control
buttons that the control panel should contain. Table 9.4 summarises
the transitions and their corresponding labels.

9.4. MODELLING THE OPERATIONAL MODE 201

Table 9.4: Mapping transitions to labels (Control components)

Transitions Labels Places

RA hold at rack,
RA hold wc

RA grip RA hold

RA move pipe to rack,
RA to rack

RA rack RA at rack

RA move pipe to wc,
RA to wc

RA well center RA at wc

RA release at rack,
RA release at wc

RA release RA release

DW string to bottom,
DW EL to bottom

DW bottom DW to bottom

DW EL string to top,
DW EL to top

DW top DW top

EL hold new pipe,
EL hold at bottom,
EL hold at top

EL hold EL hold

EL release pipe,
EL release at bottom,
EL release at top

EL release EL release

RN break off break off RN break off
RN makeup RN makeup RN makeup
RN done break off,
RN done makeup

RN to idle RN idle

slips off slips off slips off
slips on slips on slips on

9.4 Modelling the Operational Mode

In this section, we present the system model used to handle the
actual drilling, which we call the operational mode. In this mode, the
machine control imposes a significant influence on the well state. We
therefore need to operate the rig machinery with a higher precision. In
contrast to pipe handling, the operational model uses control variables
that can take large values. This means that the system cannot be

202 9 9. DRILLING CONTROL SYSTEM

modelled using one-safe Petri net, because not all the control variables
are of boolean types.

9.4.1 Using MICPTI nets

In Chapter 6 we proposed MICPTI nets, because P/T nets often fail
to capture relatively simple situations. Consider the top-drive, which
will rotate the drill-string only if the power-slips are not activated,
which in turn can only be activated if the drill-string is not rotating.
As simple as it may seem, this situation can not be modelled using
P/T nets. On the other hand, MICPTI nets capture quite elegantly
the above mentioned case, as shown in Figure 9.10.

Figure 9.10: Top-drive and power slips modelled using MICPTI

9.4.2 The Operational Model

The actions that a driller can possibly take are modelled as transi-
tions, while the control variables are modelled as places. Table 9.5
summarises the different places and transitions associated to different
tools.
The net in Figure 9.11 models the relations between places and
transitions for each individual tool, regardless of the interaction
between the different devices. We can clearly see that we are dealing
with two types of model structures: flat elementary structure and
circular elementary structure as defined in Section 6.4. The model in
Figure 9.12 relates the different structures according to the MICPTI
definition from Section 6.8.

9.5. OPERATIONAL MODEL ANALYSIS 203

Table 9.5: Places and transitions for the operational mode

Tools Places Transitions

Top-drive RPM, TD connect,
TD disconnect

TD increase RPM,
TD decrease RPM,
TD connect, TD disconnect

Draw-works DW downwards speed,
DW upwards speed

DW increase upwards speed,
DW decrease upwards speed,
DW increase downwards speed,
DW decrease downwards speed

Power-slips slips on , slips off slips on, slips off
Internal
BOP

close ibop, open ibop open ibop, close ibop

Mud
Pump

Flowrate Pump increase Flow,
Pump decrease Flow

9.5 Operational Model Analysis

9.5.1 General Properties

The fact that the model of Figure 9.12 uses places that can contain
large values makes the state space extremely large. Thus, analysing
the model by means of its reachability graph is not a feasible approach.
In order to analyse the model we assimilate it to an infinite system,
allowing places to be unbounded; they can contain an infinite number
of tokens.

Fortunately, in Chapter 6 we have developed the necessary tools
to analyse a MICPTI model. The general properties of our model are
summarised in Table 9.6. The properties are determined using the
coverability and characteristic graphs as explained in Section 6.10.

9.5.2 State Properties

As mentioned earlier, the general properties are necessary, but not
sufficient conditions for the correct behaviour of the system. Table 9.7
describes the additional requirements that the reachable states must
satisfy. Many of the rules are somehow explicitly satisfied by model

204 9 9. DRILLING CONTROL SYSTEM

Figure 9.11: Operational model for each tool

construction, but a systematic way of checking that the model satisfies
the requirements remains necessary. This is because some rules
are modelled explicitly, such as the switching between slips on and
slips off , where a token is taken from one place and deposited in
another. We can therefore say that rule 1 is satisfied by construction.

On the other hand, there are some rules that are not explicitly
modelled, but still are satisfied. For example, Rule 4 states that we
cannot have a flowrate while the top-drive is disconnected. Rule 4
is not explicitly modelled since there is no inhibitor arc from the
place TD disconnected to the transition increase flow rate, but model
checking reveals that the rule is satisfied.

9.5. OPERATIONAL MODEL ANALYSIS 205

Figure 9.12: Operational model relating the sub-models

9.5.3 Transition properties

These properties are explained in Section 9.3.3, and aim at forcing a
certain execution determinism. MICPTI nets guarantee by construc-
tion that no more than one set point can be generated by a transition.
It is the case because a transition in fes can only set or remove a token
from one place. While a transition in ces removes a token from one
place and deposits a token in another.

206 9 9. DRILLING CONTROL SYSTEM

Table 9.6: General properties of the operational model

Property Description

MICPTI class Yes
Nodes 22
Extended markings 17
Unbounded places DW downwards speed, RPM,

DW upwards speed, Flowrate,
Deadlock states None
Dead transitions None
Reversible Yes
Live Yes

Table 9.7: State specific rules

Rule Formula

1 slips on 6= slips off

2 TD connect 6= TD disconnect
3 open ibop 6= close ibop

4 ¬(Flowrate > 0 ∧ TD disconnect > 0)
5 ¬(Flowrate > 0 ∧ close ibop > 0)

6 ¬(RPM> 0 ∧ slips on > 0)
7 ¬(RPM > 0 ∧ TD disconnect> 0)

8 ¬(DW upwards speed > 0 ∧ DW downwards speed > 0)
9 ¬(DW upwards speed > 0 ∧ slips on > 0)

10 ¬(DW downwards speed > 0 ∧ slips on > 0)

9.5.4 Transition Labelling

In Section 9.3.4 we mentioned that two transitions share the same
label if the following hold:
− They share the same non internal output place (control vari-

able).
− They are never enabled together.

The model of Figure 9.12 contains no internal variables, that is all the
places correspond to control variables. The fact that in a MICPTI

9.6. ASSISTED CONTROL 207

net no two transitions can deposit tokens in the same place makes it
obvious that no two transitions can share the same label. Thus, the
operational model is such that there is a one-to-one mapping between
a transition and its label (control button).

9.6 Assisted Control

In previous sections we divided the system into two subsystems:
A pipe handling system and an operational system, where each
subsystem is captured in a dedicated Petri net model.

When operating the system in the operational mode the driller
may need to switch to the pipe handling mode and vice versa, we
therefore need to model the transition between these two modes. We
do that by introducing the variable mode such that:
− If mode = 0 the operational model of Figure 9.12 is the active

one.
− If mode = 1 the pipe handling model model of Figure 9.2 is the

active one.
The Figures 9.13 and 9.14 show a prototype implementation of
the drilling control panel under the operational mode and the pipe
handling mode respectively. The push buttons on the control panel
are mapped to the transitions of the Petri net models as explained
in Sections 9.3.4 and 9.5.4. This means that the enabling of a
push button is directly related to the enabling of its corresponding
Petri net transition. Likewise, pushing a button implies firing its
corresponding transition, which in turn leads to a new marking that
enables another set of transitions, and thus enable another set of
buttons. As Figure 9.13 shows, the initial state of the operational
mode (mode = 0) is such that it is only possible to connect the
top-drive or change to the pipe handling mode (mode = 1). The
initial state of the pipe handling mode is such that, the driller can
choose to move the elevator to the bottom position, cause the rack
arm to grip a pipe from the rack, move the rack arm to the well center,
or simply move back to the operational mode (see Figure 9.14).

A marking on the other hand is mapped to commands that are
further sent to the devices via the command interface. In order to

208 9 9. DRILLING CONTROL SYSTEM

map markings to commands we need to give interpretations of the
tokens. The mapping between command variables, places and their
respective token interpretation are summarized in Table 9.8.

Figure 9.13: Control panel in the initial state of the operational mode

9.6.1 Assisting Processes

We use the approach that was presented in Chapter 7 to model a set
of reactive processes. In Chapter 7 we suggested that a process has
a triggering condition, exiting condition, and a goal to obtain when
it triggers. To show how our approach can be applied to obtain an
assisted control of drilling operations, we shall define the following
reactive processes:
− Anti-Collision upwards (proc1): This process will trigger to

prevent the hook from hitting the Crow-block. It observes the
hook position and the hook velocity. When proc1 triggers it
aims at obtaining a goal g1 which in turn is specified by setting
the variable UPSPEED=0.

− Anti-Collision downwards(proc2): This process will trigger to
prevent the hook from hitting the drill-floor. It observes the

9.6. ASSISTED CONTROL 209

Figure 9.14: Control panel in the initial state of the pipe handling
mode

hook position and the hook velocity, and triggers by setting the
variable DOWNSPEED=0, which is specified by g2.

− Drill-bit reach bottom (proc3): This process will trigger to
prevent the drill-bit from hitting the bottom-hole. It observes
the bit depth value, the hook velocity, the rotation, and the
flow-rate and triggers by setting the variable DOWNSPEED=0,
specified by g3.

− Move to connection position proc4: This process triggers by
the driller when he/she pushes the pipe handling button of
Figure 9.13. Upon triggering proc4 sets the variable DOWN-
SPEED=0.5 m/s (g4) until the hook position is within a
distance of 0 to 1 meters from the drill floor or that the bit-depth
is within a distance of 0 to 1 from the total depth. This distance
is sufficient to switch to pipe handling mode.

− Set connection mode (proc5): This process triggers under
mode = 0. Upon triggering it sets the initial conditions of the
pipe handling mode (g5) and sets mode = 1.

− High standpipe pressure (pressure in the drill-string) proc6:

210 9 9. DRILLING CONTROL SYSTEM

Table 9.8: Commands and sensors

Command Place Interpretation

FLOWRATE Flowrate 10 l/min
UPSPEED DW upwards speed 0.01 m/s
DOWNSPEED DW downwards speed 0.01 m/s
RPM RPM 1 rotation/ min
SLIPS slips on ON/OFF
TDCONNECTED TD connect 1=ON / 0=OFF
ELHOLD EL hold 1=ON/ 0=OFF
DWTOP DW EL at top 1=ON / 0=OFF
IBOP open ibop 1=ON/ 0=OFF
RAGRIP RA hold 1=ON/ 0=OFF
RAWC RA at wc 1=ON/ 0=OFF
RNMAKEUP RN makeup 1=ON / 0=OFF
RNBREAKOFF RN break off 1=ON / 0=OFF
RNIDLE RN idle 1=ON/ 0=OFF

Sensors Units Comments

hpos m hook position
td m total depth
bd m bit depth
torque m.KN Torque
SPP bar Pressure in the drill-string
HKL tons hook load

This process triggers under mode = 0. Upon triggering proc6
sets the flow-rate to zero, which is specified by g6.

− High Torque (proc7): This process triggers under mode = 0.
Upon triggering proc7 sets the rotation to zero, specified by g7.

− Connect a new pipe proc8: This process triggers under mode =
1. Upon triggering proc8 realizes a pipe connection (g8),
which is obtained by finding a command in which the variable
RNMAKEUP=1.

− Move to operational mode (proc9): This process operates in
the pipe handling mode (mode = 1), and is triggered by the

9.6. ASSISTED CONTROL 211

driller, when he/she pushes the operational mode button. Upon
triggering it has to advance the pipe handling system to a state
in which it is possible to switch to the operational mode (g9).
The goals g9 is specified as the initial marking of the pipe
handling Petri net model.

The information about the processes of concern is summarised in
Table 9.9. The processes that have a priority level 2 can be seen as
safety processes, while those with priority 1 can be seen as non critical
and are usually triggered by the user. Possible conflicts between
different processes are studied using their respective goals. For
example, the processes proc2 and proc4 can not run in parallel because
their respective goals are mutually exclusive. This exclusion is due to
the fact that proc2 when triggered it will reduce the downward speed
to zero, while the proc4 will set it to 0.5 m/s.

On the other hand the processes proc2 and proc3 are mutually
inclusive, because both of their respective goals (g2 and g3) set the
downwards speed to zero. The difference between proc2 and proc3
is in their triggering conditions, as the first one prevents the hook
collision with drill-floor, while the second prevents the bit collision
with the rock (bottom-hole), however their reaction upon triggering
remains the same.

The idea is that by combining these processes the driller can
be assisted when operating the rig. Typically, if he/she pulls the
drill-string such that the hook reaches a position that is above 31
meters, proc1 triggers and immediately sets the upward speed to zero.
When the driller wishes to switch from the operational mode to the
pipe handling mode, it is sufficient to trigger proc4 which will lower
the hook until the appropriate hight above the drill-floor. When the
hook reaches a hight that is less than 1 meter above the drill-floor
proc2 will trigger, after which proc5 can trigger an cause the mode
change. However if the drill-bit is close enough to the bottom hole,
proc3 triggers to prevent bit collision with the rock.

9.6.2 Simulation results

In this simulation we consider that the drill-bit is at the depth of
2300 meters, the total depth of the well is 2400 meters, and the hook

212 9 9. DRILLING CONTROL SYSTEM

Table 9.9: Processes and goals in assisted control

Proc Goal Triggering. Exit Mo. Prior

proc1 g1
t1 = hpos > 31 ∧
UPSPEED 6= 0

t1 is false 0 2

proc2 g2
t2 = hpos < 1 ∧
DOWNSPEED 6= 0

t2 is false 0 2

proc3 g3

t3 = td − bd < 0.5 ∧
DOWNSPEED 6= 0 ∧
(FLOWRATE = 0 ∨
RPM = 0)

t3 is false 0 2

proc4 g4
t4 = pos > 1∧(td−bd) >
1

t4 is false 0 1

proc5 g5 t5 = hpos < 1 t5 is false 0 1
proc6 g6 t6 = SPP > 210 t6 is false 0 2

proc7 g7 t7 = torque > 20 t7 is false 0 2

proc8 g8
t8 = hpos < 30 ∧
RNMAKEUP = 0

t8 is false 1 1

proc9 g9
t9 = hpos > 30 ∧
RNMAKEUP = 1

t9 is false 1 1

Goals in operational mode
Goal TINC PINC MINC MEX

g1 g2, g3, g4, g5, g6, g7
g2 g3 g1, g5, g6, g7 g3 g4
g3 g2 g1, g5, g6, g7 g2 g4
g4 g1 g6, g7 g2, g3, g5
g5 g1, g2, g3, g6, g7 g4
g6 g1, g2, g3, g4, g5, g7
g7 g1, g2, g3, g4, g5, g6

Goals in pipe handling mode
Goal TINC PINC MINC MEX

g8 g9
g9 g8

position is at 30 meters above the drill-floor. The driller is required

9.6. ASSISTED CONTROL 213

to lower the drill-bit until it reaches the bottom of the well. In order
to do that, the driller has to connect three stands, as each stand has
a length of 30 meters.

Once the drill-bit reaches the bottom hole, the driller is required to
start the rotation, and the pump. This is usually done before drilling
to obtain a smooth start and avoid too high pressure pulses. After
starting the pump and the rotation, the driller increases these two
parameters to some predefined values, we use a minimum of 1500 m/l
for the flow-rate and 150 rpm for the string rotation, combined with a
downwards speed (0.3 to 0.4 m/s). Figure 9.15 and Figure 9.16 show
the state evolution under the operational mode and the pipe handling
mode respectively.

Steps 0 to 1300

In this interval we can see that the mode has changes three times,
corresponding to three stand connections. Prior to each mode change
we can see that the process proc4 was triggered. Recall that proc4 sets
the speed down to reach the appropriate position for a connection,
which is followed by proc2 to prevent the hook from hitting the
drill-floor. The process proc5 triggers to set the initial conditions
that are necessary before to the pipe handling mode.

When the mode is changed to 1 (pipe handling mode), the process
proc8 triggers followed by proc9. The first is responsible to find a
sequence of actions that leads to a stand connection, while the latter is
responsible to set the initial conditions for changing to the operational
mode, this time from 1 to 0. The above mentioned processes are
repeated until the bit-depth has reached the total depth.

Steps 1300 to 2400

In this interval the operations are handled manually by the driller.
First the rotation and the flow-rate are set to 60 rpm and 400 l/min
and further increased to 150 rpm and 1500 l/min with a downward
speed of 0.3 m/s. This stage corresponds to the actual drill, because
the bit-depth and the total depth increase until the hook reaches the
drill-floor, after which proc2 triggers to prevent a collision.

214 9 9. DRILLING CONTROL SYSTEM

Steps 2400 to 3500

After a stand have been drilled, it is often desired to smooth the
well walls, by applying a reduced rotation and flow-rate while moving
the drill string; first upwards and then downwards to perform a
back-reaming and reaming respectively. When the driller reduces
those two parameters, a sudden increase of the stand pipe pressure
(SPP) and the torque happens at about step 2600. These events cause
proc6 and proc7 to trigger, and set both the flow-rate and the rotation
to zero.

The driller then proceeds the operations by doing a back-reaming,
when the hook reaches a hight above 30 meters proc1 triggers to
prevent a collision with the crow block. The driller then triggers proc4
causing the drill-string to be lowered to the appropriate connection
position, followed with a pipe connection as explained earlier.

9.7 Autopilot

In assisted drilling, a driller remains the responsible for the right
execution of a drilling program. Talking about auto piloting a rig
implies an automated execution of a drilling program. So in addition
to supporting the driller with safety processes, we question our selves
on whether it is possible to encode a drilling program and run it for
the drilling.

We proceed by classifying the processes involved in two categories:
planned processes and unplanned processes.

9.7.1 Planned processes

A planned process has as any other process explained so far, a
triggering condition and an exiting condition. When the triggering
condition is satisfied the process triggers causing the system to reach
a state that satisfy it. When the exiting condition is satisfy the
process in question signals that its task is finished. The set of planned
processes is described in Table 9.10. As the Table shows, we have
added the following processes to the ones defined in the assisted
drilling section:

9.7. AUTOPILOT 215

Figure 9.15: Process triggers in assisted drilling scenario

216 9 9. DRILLING CONTROL SYSTEM

Figure 9.16: State evolution in pipe handling mode

− Initiate Drilling (proc10): This process when triggered it will
initiate the drilling parameters, by starting the rotation and
the mud flow-rate to some predefined set points specified by
the goal g10. In our case g10 sets the FLOWRATE=400 l/m

9.7. AUTOPILOT 217

and the rotation RPM=60. This process is sometimes called
gel-breaking or pump start up and aims at giving a smooth
start to drilling.

− Drilling (proc11): This process describes the actual drilling,
by setting the rotation, the mud flow-rate and the drill-string
velocity to some predefined set points specified by the goal
g11. This goal sets the FLOWRATE=1800 l/m, the rotation
to RPM=150, and DOWNSPEED=0.5 m/s. Normally the
drill-string speed is much lower, but we have chosen to use 0.5
m/s to accelerate the experiment somehow and thus avoid a too
large data set.

− Back-reaming (proc12): This process maintains a certain
flow-rate, rpm and an upward velocity. The point is to smooth
the well wall after having drilled a stand. Its goal is specified
by g12, which sets the FLOWRATE=1000 l/m, the rotation to
RPM=60, and UPSPEED=0.5 m/s. We apply a back-reaming
of the last 10 meters only.

− Reaming (proc13): This process is very similar to proc12, the
only difference is that it applies to the downward movement
expressed by g13 in which the variable DOWNSPEED=0.5 m/s.

We say that a process can execute when its triggering conditions are
satisfied and it preceding process has finished executing or skipped
execution. For example, in order to initiate the pipe handling mode
(proc5), we have to make sure that the hook is a the connection level
(proc4). If the hook is already at the connection level, the process
proc4 needs not to execute and is skipped. So a planned process can
either trigger, exit or skip execution.

When exiting or skipping a planned process is systematically
enqueued (becomes the last one in queue). More precisely a process
skips execution if its turn has come to execute, but its triggering
condition is not satisfied. For example if it is the turn of proc5 to
execute but the condition t5 is not satisfied (hpos < 1) then proc5
skips executing.

The idea is to organize these processes in such a way that the
overall program is satisfactory. This means that a process should be
preceded and followed by an appropriate process, and that each one
has satisfactory entering, and exiting conditions.

218 9 9. DRILLING CONTROL SYSTEM

Table 9.10: Planned processes definition

Proc Goal Trigger Exit Mo. Prior

proc4 g4
t4 = hpos > 1 ∧ (td −
bd) > 1

t4 is false 0 1

proc5 g5 t5 = hpos < 1 t5 is false 0 1

proc8 g8
t8 = hpos < 30 ∧
RNMAKEUP = 0

t8 is false 1 1

proc9 g9
t9 = hpos > 30 ∧
RNMAKEUP = 1

t9 is false 1 1

proc10 g10

t10 = (hpos + bd) > td ∧
(FLOWRATE 6= 400 ∨
RPM 6= 60)

t10 is false 0 1

proc11 g11
t11 = (hpos + bd) > td ∧
hpos > 1

t11 is false 0 1

proc12 g12 t12 = hpos < 10 t12 is false 0 1

proc13 g13 t13 = hpos > 1 t13 is false 0 1

9.7.2 Unplanned processes

If planned process describe what the driller wants to do, unplanned
processes describe what he/she wants to avoid. When executing a
drilling program, unexpected events may happen, and the program
should be interrupted for the time required to cope with the problem.

We say that an unplanned process my trigger at any time during
the drilling program execution. Unplanned processes have higher
priorities than the planned ones, so that their triggering suspends
the execution of a planned process if necessary. These processes are
summarized in Table 9.11

9.7.3 Drilling Program Scenario

Now that we have defined the required processes we will illustrate how
a basic drilling program could be written. In this scenario we consider
that the hook position is 10 meters above the drill floor, the bit-depth
is at 2300 meters, while the total depth is at 2305 meters. This
means that the drill-string can be lower 5 meters so the bit reaches

9.7. AUTOPILOT 219

Table 9.11: Unplanned processes definition

Proc Goal Trigger Exit Mo. Prior

proc1 g1
t1 = hpos > 31 ∧
UPSPEED 6= 0

t1 is false 0 2

proc2 g2
t2 = hpos < 1 ∧
DOWNSPEED 6= 0

t2 is false 0 2

proc3 g3

t3 = td − bd < 0.5 ∧
DOWNSPEED 6= 0 ∧
(FLOWRATE = 0 ∨
RPM = 0)

t3 is false 0 2

proc6 g6 t6 = SPP > 210 t6 is false 0 2
proc7 g7 t7 = torque > 20 t7 is false 0 2

the bottom hole, and that 5 other meters can be drilled, before a new
stand can be connected.

A typical part of a drilling program would be to drill a stand,
do back-reaming, reaming, go to pipe handling mode, connect a new
stand, go back to the operational mode, and repeat the procedure.
However, if an exception happens, it should be handled. A drilling
program is thus a set of processes set in sequence combined with a
set of unplanned processes that can trigger at any time. The planned
sequence of planned processes is expressed as follows:

1. proc4 (Go to connection position)
2. proc5 (Go to pipe handling mode)
3. proc8 (Connect a new stand)
4. proc9 (Go to the operational mode)
5. proc10 (Initialise drilling)
6. proc11 (Drill)
7. proc12 (Back-ream)
8. proc13 (Ream)
9. Repeat

220 9 9. DRILLING CONTROL SYSTEM

9.7.4 Simulation Results

We simulate the above described scenario and the results are shown
in Figure 9.17 and Figure 9.18 for the operational mode and the pipe
handling mode respectively.

Steps 0 to 3000

The first process that triggers is the planned process proc4 requesting
a pipe connection by setting the downwards speed to 0.5 m/s. After
some steps proc3 triggers to avoid collision of the drill-bit with bottom
hole. This means that no connection is possible yet. The succeeding
planned processes proc5, proc8 and proc9 will not have their triggering
conditions satisfied and thus will systematically skip their turn. The
next process that have its triggering condition satisfied is proc10
(initiate drilling), causing a flow-rate=400 l/min and a rotation of
60 rpm. After initiating the drilling parameters proc11 triggers and
the flow-rate is increased to 1800 l/min, the rotation to 150 rpm
and the downwards speed to 0.5 m/s. After drilling a stand, proc2
triggers to prevent collision between the hook and the drill-floor. The
process proc12 triggers after to do a back reaming followed by proc13
for reaming, and proc2 to avoid collision with the drill-floor.

Steps 3000 to 7000

This interval starts by proc5 to change the mode to pipe handling
mode. and is followed by the planned sequence: proc8, proc9, proc10
and proc11 before the proc2 triggers to avoid a collision with the
drill-floor. After that, proc12 for back reaming and proc13 for reaming
trigger, which again is interrupted by proc2.

Steps 7000 to 9000

Because the condition for pipe connection are already satisfied proc4
is skipped and proc5 triggers for changing to connection mode. After
that the planned sequence is executed until proc11 (drilling). Due to
a sudden increase of the torque stand pipe pressure proc6 trigger to

9.8. CHAPTER SUMMARY 221

reduce the flow-rate to zero. The process proc7 triggers to stop the
rotation because it observes a high torque.

9.8 Chapter Summary

In this chapter we have applied the theory presented in Part II, to
model a drilling control system. We have divided the system into
two subsystems: A pipe handling and an operational system. The
behaviour of each subsystem is captured in a dedicated Petri net
model.

The pipe handling system was modelled using 1-safe Petri nets
with inhibitory arcs, and its properties studied using the reachability
analysis. The operational model was model using MICPTI nets which
we defined and studied in Chapter 6.

Model checking analysis indicate that the presented models are
correct, because they satisfy both the general and specific system
requirements. The general requirements apply to systems in gen-
eral where properties like deadlock freeness, transition liveness and
reversibility are highly desired.

In the specific properties we made sure that each reachable state
satisfies predefined requirements expressed in terms of rules (see
Tables 9.3 and 9.7). The states properties make sure that the
reachable states are legal, while the transition properties are to ensure
that state changes happen in a deterministic manner.

Transition labelling is a concept that we used in order to map
several transitions to a common label. There can be several
transitions that control the same set point, but are enabled under
different conditions. From a human machine interaction (HMI) there
is no point of duplicating control components (e.g control button)
if not necessary. In practice, the transition labels define the control
components of the operator’s control station.

We also presented how to obtain an assisted control of the rig
using reactive processes. We defined nine reactive processes with
varying priorities. We simulated a drilling scenario and observed the
triggering of those reactive processes. The simulation shows that our
approach can be used to assist a driller when operating a rig, by

222 9 9. DRILLING CONTROL SYSTEM

Figure 9.17: Process triggers in automated drilling scenario

9.8. CHAPTER SUMMARY 223

Figure 9.18: State evolution in pipe handling mode

automatically triggering actions for avoiding incidents.
We pushed the assisted control one step a head towards the idea

of auto pilot. Using 13 reactive processes we have shown how to
represent a plan and run it, even when it could be interrupted.

224 9 9. DRILLING CONTROL SYSTEM

We divided the reactive processes in two categories: planned and
unplanned. Unplanned processes can trigger any time and eventually
suspend some ongoing actions or generate others.

Planned processes are organised in a queue, before a processes
can trigger its antecedent must have finished running. In addition, a
planned process could skip execution when its triggering condition is
not satisfied.

We have shown that an appropriate combination of reactive
processes could lead to a satisfactory emergent behaviour of the
overall system. More precisely, we have managed to represent a
tripping sequence, combined with a repetition of a stand connection
and drilling even with the presence of incidents.

Part IV

Conclusions

225

Chapter 10

Conclusions and Further
Work

This thesis aimed at proposing an approach for advancing existing
drilling control system a step towards the autonomous drilling vision.

Main Contributions

The main contribution of this thesis was a theoretical framework for
improving today’s drilling control systems. Existing systems lack
supervisory control and the ability to handle incidents. Those two
limitations are the main motivation of this thesis.

We viewed the drilling control system as a combination of two
entities in interaction. From one side, we have a rig which is the tool
by which a well is drilled, and drilling problems are handled. From
another side, we have a well which dynamics is influenced by the rig,
but is not totally controlled by it.

Tightly coupling the rig with the well dynamics is probably the
main tendency in the drilling control industry. However, this coupling
has a fundamental problem: If we cannot fully control the well
dynamics, it will only be more difficult to control the rig dynamics.
This idea was presented in Chapter 4 concluding by that a separation
of concerns between the well and the rig is necessary if we want to
verify the correctness of the system.

227

228 10 10. CONCLUSIONS AND FURTHER WORK

Our first problem was to address the control of the rig dynamics.
We categorised the rig as a DES and suggested an approach for
modelling its behaviour. Because a rig is a critical system we wanted
to make sure that its behaviour always satisfies the specifications. In
other words, we needed a modelling formalism that has; sufficient
modelling, and decision power.

After a literature study we found out that Petri nets could be
a good candidate for modelling the rig dynamics, but not without
problems. We found it necessary to use P/T nets extended with
inhibitor arcs (PTI nets), but this type of arcs cause significant
problems, because they reduce drastically the decision power, and
thus no system properties could be checked.

We therefore proposed a class of PTI nets that uses inhibitor
arcs in a restrictive manner such that it preserves a high decision
power. We have first presented the CPTI class, and have shown how
to compute its coverability. We have also shown how to determine
properties such as deadlock or boundedness. We later on presented
a subclass of CPTI called MICPTI nets on which it is possible to
determine most of the properties of interst using a combination of the
net’s coverability and characteristic graphs. Finally we have shown
that the MICPTI class elegantly captures parts of the rig dynamics.
This class was studied in Chapter 6.

The next problem that we faced is to enable automated responses
to well incidents. For that, we introduced the concept of reactive
processes modelled on top of Petri nets. A reactive process observes
some key parameters, and triggers when some conditions are satisfied.
Once a reactive process triggers it aims at achieving a goal. In our
approach we associated each reactive process’ goal with a set of states
and used that association to systematically study the interactions
between those processes.

Typically, two reactive processes could share a common goal, or
have conflicting goals. When the number of processes increases it
becomes difficult to understand the interaction between them, and a
formal method is required. This has been addressed in Chapter 7.

Finally, we have applied the proposed theory to model a drilling
control system and supported it with reactive processes for handling
incidents. Furthermore, we have extended the reactive process

229

concept to represent a portion of a drilling plan, and have shown how
such a plan could be executed even with the presence of incidents. As
a result, we have demonstrated that a careful combination of different
reactive processes could lead to an autonomous emergent behaviour.

Direction for Future Research

Each of the addressed problems could potentially be improved. This
section suggests directions for future work that are relevant for three
topics: Petri nets, reactive processes, and drilling control systems.

Petri nets

The class of PTI nets presented in Chapter 6 could probably be
enlarged, and eventually defined differently. In our work we found in
the Well-Structured-Transition-Systems (WSTS) [47] theory plausible
explanations about why PTI nets are fundamentally problematic.
Inspired by WSTS, we have managed to restrict the use of inhibitor
arcs in such a way that the T−monotonicity and S−monotonicity are
satisfied. However, it would be interesting to find other restrictions
or even some mother classes for the MICPTI and CPTI nets and
eventually enlarge their modelling power.

From a practical side, we have used a Petri net tool called
PIPE [18]. Our use of that tool was mainly to draw nets and have
a quick understanding of their dynamics. It could be interesting to
include our defined classes and their analysis to that tool. Another
tool called GPenSIM [33] is less graphical but is more general and
could also benefit from such an extension.

Reactive processes

The reactive processes were defined through a triggering condition,
an exiting condition and a goal. The goal could be specified more
flexibly using some operators such as <, >, ≤, rather than just =.

We have so far studied the interaction between reactive processes
through the states associated to goals. However no knowledge on

230 10 10. CONCLUSIONS AND FURTHER WORK

the expected effect on the environment has been encoded. Such an
encoding could help finding correlations between reactive processes.

Typically, a process proc1 that triggers to lift the drill-string
has an immediate effect of increasing the hook position. Another
process proc2 that triggers when the hook position has reached a
certain height, should in principle always trigger after proc1. That is,
triggering proc2 is the consequence of triggering proc1. Identifying
those correlations could help a better anticipation of the overall
system behaviour.

Drilling Control Systems

There already exists a simulator of the well dynamics [43], where
given some inputs the simulator generates synthetic sensor data.
However the drilling control domain is missing a simulator for actually
improving the control it self.

A good initiative would be to propose an open architecture of
drilling control systems. Such an architecture should be agreed on
with some industrials in order to provide a realistic simulator. The
main benefits of taking this initiative would to bring open drilling
control problems closer to researchers, who would focus on the actual
problems rather than take their own assumptions,

Furthermore, benchmarks could be defined on specific problems:
typically, realizing control supervision, identifying critical situations,
determine actions to critical situations, autonomous execution of
drilling plans etc. In other words, the work done in this thesis could
be concretely compared to others methods, if benchmarks existed.

List of Publications

10.1 Relevant

1. N. Saadallah, Hein Meling, and B. Daireaux. A simple machine
in a complex environment: A petri net approach. In Intelligent
Engineering Systems (INES), 2011 15th IEEE International
Conference on, pages 387 –392, june 2011. doi: 10.1109/INES.
2011.5954778

2. N. Saadallah, H. Meling, and B. Daireaux. Modeling a drilling
control system, as a discrete-event-system. In Communications,
Computing and Control Applications (CCCA), 2011 Interna-
tional Conference on, pages 1 –5, march 2011. doi: 10.1109/
CCCA.2011.6031461

3. Nejm Saadallah and Benoit Daireaux. A goal based approach
on top of Petri nets. In International Workshop on Petri Nets
and Software Engineering (PNSE2011) (Poster)

10.2 Less Relevant

1. A. Riid and N. Saadallah. Unsupervised learning of well drilling
operations: Fuzzy rule-based approach. In Intelligent Engineer-
ing Systems (INES), 2012 IEEE 16th International Conference
on, pages 375 –380, june 2012. doi: 10.1109/INES.2012.6249862

2. Benoit Daireaux Nejm Saadallah. Drilling control system
modelling approach. In IADC World Drilling 2011 Conference
and Exhibition, Copenhagen, 2011

231

232 10 10. LIST OF PUBLICATIONS

Bibliography

[1] Book review: Coloured petri nets: Basic concepts,
analysis methods and practical use (volume 1) by kurt
jensen: (springer-verlag, 1992). SIGOPS Oper. Syst.
Rev., 28(1):1–2, January 1994. ISSN 0163-5980. URL
http://dl.acm.org/citation.cfm?id=164853.871713.
Reviewer-Nutt, Gary J.

[2] Van Der Aalst. The application of petri nets to workflow
management, 1998.

[3] Luca Aceto, Anna Ingolfsdottir, Kim Guldstrand Larsen, and
Jiri Srba. Reactive Systems: Modelling, Specification and
Verification. Cambridge University Press, New York, NY, USA,
2007. ISBN 0521875463.

[4] Tilak Agerwala and Mike Flynn. Comments on capabilities, lim-
itations and correctness of petri nets. ACM Sigarch Computer
Architecture News, 2:81–86, 1973. doi: 10.1145/633642.803973.

[5] Alain and Finkel. Reduction and covering of infinite reachability
trees. Information and Computation, 89(2):144 – 179, 1990.
ISSN 0890-5401. doi: 10.1016/0890-5401(90)90009-7.

[6] Hassane Alla and Rene David. A modelling and analysis tool
for discrete events systems: continuous petri net. Performance
Evaluation, 33(3):175 – 199, 1998. ISSN 0166-5316.

[7] Charles Andre and Marie-Agnes Peraldi. Grafcet and syn-
chronous languages.

233

http://dl.acm.org/citation.cfm?id=164853.871713

234 BIBLIOGRAPHY

[8] Seabed Rig A/S. URL http://www.seabedrig.com/.

[9] J.J. Azar and G.R. Samuel. Drilling Engineering. Pen-
nWell Corporation, 2007. ISBN 9781593700720. URL
http://books.google.no/books?id=eseViO982VgC.

[10] J. C. M. Baeten. A brief history of process algebra. Theor.
Comput. Sci., 335(2-3):131–146, May 2005. ISSN 0304-3975.
doi: 10.1016/j.tcs.2004.07.036.

[11] R. Baker and University of Texas at Austin. Petroleum
Extension Service. A Primer of Oilwell Drilling: A Ba-
sic Text of Oil and Gas Drilling. Petroleum Extension
Service, Continuing & Extended Education, University of
Texas at Austin, 2001. ISBN 9780886981945. URL
http://books.google.no/books?id=-LGqQgAACAAJ.

[12] J. Bellingham and T. Consi. State configured layered control.
Proc. of the IARP 1st Workshop on: Mobile Robots for Subsea
environments, page 7580, 1990.

[13] Gerard Berry. Proof, language, and interaction. chapter The
foundations of Esterel, pages 425–454. MIT Press, Cambridge,
MA, USA, 2000. ISBN 0-262-16188-5.

[14] Gerard Berry and Georges Gonthier. The esterel synchronous
programming language: design, semantics, implementation.
Sci. Comput. Program., 19(2):87–152, November 1992. ISSN
0167-6423.

[15] Eike Best, Raymond R. Devillers, and Maciej Koutny. Petri
nets, process algebras and concurrent programming lan-
guages. In Lectures on Petri Nets II: Applications, Ad-
vances in Petri Nets, the volumes are based on the Ad-
vanced Course on Petri Nets, pages 1–84, London, UK,
UK, 1998. Springer-Verlag. ISBN 3-540-65307-4. URL
http://dl.acm.org/citation.cfm?id=647445.727064.

[16] Jonathan Billington, Søren Christensen, Kees van Hee, Ekkart
Kindler, Olaf Kummer, Laure Petrucci, Reinier Post, Christian

http://www.seabedrig.com/
http://books.google.no/books?id=eseViO982VgC
http://books.google.no/books?id=-LGqQgAACAAJ
http://dl.acm.org/citation.cfm?id=647445.727064

BIBLIOGRAPHY 235

Stehno, and Michael Weber. The Petri Net Markup Language:
Concepts, Technology, and Tools. In Applications and Theory
of Petri Nets 2003: 24th International Conference, pages
1023–1024, Eindhoven, The Netherlands, June 2003. URL
http://www.springerlink.com/content/rp1dqtlmqr5q665b.

[17] Erhan Isevcan Bjarne Bennetzen, John Fuller. Extended reach
wells. Oilfield Review, 22(3), 2010.

[18] Pere Bonet, Catalina Llado, Ramon Puijaner, and William
Knottenbelt. Pipe v2.5.: a petri net tool for performance
modelling. In 23rd Latin American Conference on Informatics,
October 2007.

[19] Rodney A. Brooks. A robust layered control system for a mobile
robot. 1985.

[20] Joanna J. Bryson. Intelligence by design: Principles of modular-
ity and coordination for engineering complex adaptive agents.
June 2001. AI Technical Report 2001-003.

[21] Joanna J. Bryson. Action selection and individuation in agent
based modelling. pages 317–330, 2003.

[22] H. K. Buning, T. Lettman, and E. W. Mayr. Projections of
vector addition system reachability sets are semilinear. 1988.

[23] Nadia Busi. Analysis issues in petri nets with inhibitor
arcs. Theor. Comput. Sci., 275:127–177, March 2002. ISSN
0304-3975. doi: 10.1016/S0304-3975(01)00127-X. URL
http://dl.acm.org/citation.cfm?id=570571.570576.

[24] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a
declarative language for real-time programming. In Proceedings
of the 14th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, POPL ’87, pages 178–188, New
York, NY, USA, 1987. ACM. ISBN 0-89791-215-2. doi:
10.1145/41625.41641.

http://www.springerlink.com/content/rp1dqtlmqr5q665b
http://dl.acm.org/citation.cfm?id=570571.570576

236 BIBLIOGRAPHY

[25] Christos G. Cassandras and Stephane Lafortune. Introduction
to discrete event systems. 2006.

[26] Daireaux Benoit Drilling Cayeux Eric and Norway Well Mod-
eling Group, International Research Institute of Stavanger.
From machine control to drilling control. In Instrumentation
and Measurement Technology Conference (I2MTC), 2012 IEEE
International.

[27] Claudine Chaouiya, Elisabeth Remy, and Denis Thieffry. Petri
net modelling of biological regulatory networks. J. of Discrete
Algorithms, 6(2):165–177, June 2008. ISSN 1570-8667.

[28] Creative Commons. Attribution 3.0 unported. URL
http://creativecommons.org/licenses/by/3.0/deed.en.

[29] Greg Conran. Horizontal and complex-trajectory wells. The
Journal of Petroleum Technology, November 2009.

[30] R. David and H. Alla. Discrete, Continuous, And Hybrid Petri
Nets. Springer, 2005. ISBN 9783540224808.

[31] Rene David. Grafcet: a powerful tool for specification of logic
controllers.

[32] Rene David and Hassane Alla. Petri Nets and Grafcet: Tools for
Modelling Discrete Event Systems. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992. ISBN 013327537X.

[33] Reggie Davidrajuh. Modeling and Simulation of Discrete Event
Systems with Petri Nets: A Hands-On Approach with GPen-
SIM. VDM Verlag, Saarbrücken, Germany, Germany,
2009. ISBN 3639195663, 9783639195668.

[34] A.A. Desrochers, R.Y. Al-Jaar, and IEEE Control Systems
Society. Applications of petri nets in manufacturing systems:
modeling, control, and performance analysis. IEEE Press, 1995.
ISBN 9780879422950.

http://creativecommons.org/licenses/by/3.0/deed.en

BIBLIOGRAPHY 237

[35] S. Devereux. Drilling Technology in Nontech-
nical Language. PennWell nontechnical series.
PennWell, 1999. ISBN 9780878147625. URL
http://books.google.no/books?id=cYFx8n-1mdMC.

[36] Leonard Eugene Dickson. Finiteness of the odd
perfect and primitive abundant numbers with n distinct
prime factors. American Journal of Mathematics,
35(4):pp. 413–422, 1913. ISSN 00029327. URL
http://www.jstor.org/stable/2370405.

[37] S. Donatelli, M. Ribaudo, and J. Hillston. A compari-
son of performance evaluation process algebra and general-
ized stochastic petri nets. In Proceedings of the Sixth In-
ternational Workshop on Petri Nets and Performance Mod-
els, PNPM ’95, pages 158–, Washington, DC, USA, 1995.
IEEE Computer Society. ISBN 0-8186-7210-2. URL
http://dl.acm.org/citation.cfm?id=826033.826775.

[38] Catherine Dufourd, Alain Finkel, and Ph. Schnoebelen. Reset
nets between decidability and undecidability. pages 103–115,
1998.

[39] Hartmut Ehrig, Wolfgang Reisig, Grzegorz Rozenberg,
and Herbert Weber, editors. Petri Net Technology for
Communication-Based Systems - Advances in Petri Nets, vol-
ume 2472 of Lecture Notes in Computer Science, 2003. Springer.
ISBN 3-540-20538-1.

[40] John Ellson, Emden R. Gansner, Eleftherios Koutsofios,
Stephen C. North, and Gordon Woodhull. Graphviz - Open
Source Graph Drawing Tools. Graph Drawing, pages 483–484,
2001.

[41] Erik Dvergsnes Eric cayeux, Benoit Daireaux. Automation of
drawworks and topdrive management to minimize swab/surge
and poor-downhole-condition effect. In IADC/SPE Drillng
Conference and Exhibition, New Orleans, Louisiana, USA, 2-4
February 2010.

http://books.google.no/books?id=cYFx8n-1mdMC
http://www.jstor.org/stable/2370405
http://dl.acm.org/citation.cfm?id=826033.826775

238 BIBLIOGRAPHY

[42] Erik Dvergsnes Eric cayeux, Benoit Daireaux. Automation of
mud-pump management: Application to drilling operations in
the north sea. SPE Drilling and Completion, 26, Nr 1:41–51,
2011.

[43] Erik Wolden Dvergsnes Amare Leulseged IRIS Bjrn Torstein
Bruun Statoil Mike Herbert ConocoPhillips Eric Cayeux,
Benoit Daireaux. Advanced drilling simulation environment for
testing new drilling automation techniques. 2012. IADC/SPE
Drilling Conference and Exhibition, 2012.

[44] Javier Esparza and Mogens Nielsen. Decidability issues for petri
nets - a survey. 1994.

[45] Angela Di Febbraro and Nicola Sacco. On modelling urban
transportation networks via hybrid petri nets. Control Engi-
neering Practice, 12(10):1225 – 1239, 2004.

[46] Colin Fidge. A comparative introduction to csp, ccs and
lotos. Technical report, Software Verification Research Centre
Department of Computer Science The University of Queensland
Queensland 4072, Australia, 1994.

[47] Alain Finkel. A generalization of the procedure of karp and
miller to well structured transition systems. pages 499–508,
1987.

[48] Alain Finkel. The minimal coverability graph for petri
nets. In Papers from the 12th International Confer-
ence on Applications and Theory of Petri Nets: Ad-
vances in Petri Nets 1993, pages 210–243, London, UK,
UK, 1993. Springer-Verlag. ISBN 3-540-56689-9. URL
http://dl.acm.org/citation.cfm?id=647738.735634.

[49] Alain Finkel, Gilles Geeraerts, Jean-François Raskin, and Lau-
rent Van Begin. A counter-example the minimal coverability
tree algorithm. Technical Report 535, Université Libre de
Bruxelles, Belgium, 2005.

http://dl.acm.org/citation.cfm?id=647738.735634

BIBLIOGRAPHY 239

[50] E.W. Dvergsnes J.E. Gravdal F.P. Iversen, E. Cayeux, NOV;
A. Torsvoll E.H. Vefring, Intl. Research Inst. of Stavanger
(IRIS); B. Mykletun, Statoil; S. Omdal, and Eni Agip SpA
A. Merlo. Monitoring and control of drilling utilizing con-
tinuously updated process models. In IADC/SPE Drilling
Conference, 21-23 February 2006, Miami, Florida, USA, 2006.

[51] Abdoulaye Gamati. Designing Embedded Systems with the
SIGNAL Programming Language - Synchronous, Reactive Spec-
ification. Springer, 2010. ISBN 978-1-4419-0940-4.

[52] Emden Gansner, Eleftherios Koutsofios, and Stephen
North. Drawing graphs with dot, January 2006. URL
http://www.graphviz.org/Documentation/dotguide.pdf.

[53] Gilles Geeraerts, Jean-François Raskin, and Laurent Van Be-
gin. On the efficient computation of the minimal coverabil-
ity set for petri nets. In Proceedings of the 5th interna-
tional conference on Automated technology for verification and
analysis, ATVA’07, pages 98–113, Berlin, Heidelberg, 2007.
Springer-Verlag. ISBN 3-540-75595-0, 978-3-540-75595-1. URL
http://dl.acm.org/citation.cfm?id=1779046.1779057.

[54] Latefa Ghomri and Hassane Alla. Modeling and analysis using
hybrid petri nets. Nonlinear Analysis: Hybrid Systems, 1(2):
141 – 153, 2007.

[55] D. Gielen, J. Podkański, International Energy Agency, Or-
ganisation for Economic Co-operation, and Development.
Prospects For Co2 Capture And Storage. Energy Technology
Analysis. OECD/IEA, 2004. ISBN 9789264108813. URL
http://books.google.no/books?id=tDg9TtI3xQsC.

[56] Alessandro Giua. Petri Nets as Discrete Event Models for Su-
pervisory Control. PhD thesis, Rensselaer Polytechnic Institute
(Troy, New York), 1992.

[57] Ursula Goltz. On representing ccs programs by finite petri
nets. In Proceedings of the Mathematical Foundations of

http://www.graphviz.org/Documentation/dotguide.pdf
http://dl.acm.org/citation.cfm?id=1779046.1779057
http://books.google.no/books?id=tDg9TtI3xQsC

240 BIBLIOGRAPHY

Computer Science 1988, MFCS ’88, pages 339–350, London,
UK, UK, 1988. Springer-Verlag. ISBN 3-540-50110-X. URL
http://dl.acm.org/citation.cfm?id=645718.665801.

[58] Steven Gordon and Jonathan Billington. Modelling the wap
transaction service using coloured petri nets. In Proceedings
of the First International Conference on Mobile Data Access,
LNCS 1748, pages 16–17. Springer-Verlag. ISBN, 1999.

[59] T. G. I. Group. Petri Nets World: Online Services for
the International Petri Net Community. Technical report,
University of Hamburg, 2007.

[60] Tianlong Gu and Parisa A. Bahri. A survey of petri net
applications in batch processes. Comput. Ind., 47(1):99–111,
January 2002. ISSN 0166-3615.

[61] M. Hack. Analysis of production schemata by petri nets.
Technical report, Cambridge, MA, USA, 1972.

[62] M. Hack. Petri net language. Technical report, Cambridge,
MA, USA, 1976.

[63] Nicolas Halbwachs. Synchronous Programming of Reactive
Systems. Springer-Verlag, Berlin, Heidelberg, 2010. ISBN
1441951334, 9781441951335.

[64] Simon Hardy and Pierre N. Robillard. Pn: Modeling and simu-
lation of molecular biology systems using petri nets: modeling
goals of various approaches. J Bioinform Comput Biol, 2004:
2–4, 2004.

[65] D. Harel and A. Pnueli. On the development of reactive systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.
ISBN 0-387-15181-8.

[66] David Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, 1987.

http://dl.acm.org/citation.cfm?id=645718.665801

BIBLIOGRAPHY 241

[67] David Harel. On visual formalisms. Commun. ACM, 31(5):
514–530, 1988.

[68] Monika Heiner, David Gilbert, and Robin Donaldson. Petri
nets for systems and synthetic biology. In SFM, pages 215–264,
2008.

[69] C. A. R. Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666–677, August 1978. ISSN 0001-0782. doi: 10.
1145/359576.359585.

[70] L. E. Holloway, B. H. Krogh, and A. Giua. A Survey
of Petri Net Methods for Controlled Discrete EventSystems.
Discrete Event Dynamic Systems, 7(2):151–190, April 1997.
ISSN 0924-6703. doi: 10.1023/A:1008271916548. URL
http://dx.doi.org/10.1023/A:1008271916548.

[71] Gerard Holzmann. Spin model checker, the: primer and
reference manual. Addison-Wesley Professional, first edition,
2003. ISBN 0-321-22862-6.

[72] J. Hong and D. Bae. HOONets: Hierarchical Object-Oriented
Petri Nets for System Modeling and Analysis, 1998. URL
http://citeseer.ist.psu.edu/hong98hoonets.html.

[73] Sigve Hovda, Henrik Wolter, Glenn-Ole Kaasa, and Tor Stein
Olberg. Potential of ultra high-speed drill string telemetry in
future improvements of the drilling process control. In IAD-
C/SPE Asia Pacific Drilling Technology Conf. and Exhibition,
2008.

[74] B. Hrz and M. C. Zhou. Modeling and Control of Discrete-event
Dynamic Systems: with Petri Nets and Other Tools. Springer
Publishing Company, Incorporated, 1st edition, 2007. ISBN
184628872X, 9781846288722.

[75] Marian V. Iordache and Panos J. Antsaklis. Supervisory Control
of Concurrent Systems: A Petri Net Structural Approach.
Birkhauser, 2006. ISBN 0817643575.

http://dx.doi.org/10.1023/A:1008271916548
http://citeseer.ist.psu.edu/hong98hoonets.html

242 BIBLIOGRAPHY

[76] Fionn Iversen, Eric Cayeux, Erik Wolden Dvergsnes, Ragna
Ervik, Morten Welmer, and Mohsen Karimi Balov. Offshore
field test of a new system for model integrated closed-loop
drilling control. SPE Drilling and Completion, 24:518–530,
2009.

[77] F.P. Iversen, E. Cayeux, E.W. Dvergsnes, J.E. Gravdal, E.H.
Vefring, B. Mykletun, A. Torsvoll, S. Omdal, and A. Merlo.
Monitoring and control of drilling utilizing continuously up-
dated process models. In IADC/SPE Drilling Conf., 2006.

[78] M. Jantzen. Language theory of petri nets. In Ad-
vances in Petri nets 1986, part I on Petri nets: central
models and their properties, pages 397–412, London, UK,
UK, 1987. Springer-Verlag. ISBN 0-387-17905-4. URL
http://dl.acm.org/citation.cfm?id=28641.28655.

[79] K. Jensen. An introduction to the practical use of coloured
petri nets. Lecture Notes in Computer Science: Lectures on
Petri Nets II: Applications, 1492, 1998.

[80] Kurt Jensen. High level petri nets. In Pagnoni, A. and
Rozenberg, G., editors, Informatik-Fachberichte 66: Applica-
tion and Theory of Petri Nets — Selected Papers from the
Third European Workshop on Application and Theory of Petri
Nets, Varenna, Italy, September 27–30, 1982, pages 166–180.
Springer-Verlag.

[81] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured
petri nets and CPN tools for modelling and validation of
concurrent systems. International Journal on Software Tools
for Technology Transfer (STTT), 2007.

[82] P. T. Laney K. K. Bloomfield. Estimating well costs for
enhanced geothermal system applications. Technical report,
Idaho National Laboratory, August 2005.

[83] David Karger, Cliff Stein, and Joel Wein. Scheduling algo-
rithms, 1997.

http://dl.acm.org/citation.cfm?id=28641.28655

BIBLIOGRAPHY 243

[84] R. M. Karp and R. E. Miller. Parallel program schemata.
Journal of Computer and system Sciences, 1969.

[85] Robert M. Keller. Formal verification of parallel programs.
Commun. ACM, 19(7):371–384, July 1976. ISSN 0001-0782.
doi: 10.1145/360248.360251.

[86] Dënes Koenig. Theory of finite and infinite graphs. Birkhauser
Boston Inc., Cambridge, MA, USA, 1990. ISBN 0-8176-3389-8.

[87] Vedran Kordic, editor. Petri Net, Theory and Applications.
I-Tech Education and Publishing, 2007.

[88] R.W. Lewis and Institution of Electrical Engineers. Pro-
gramming Industrial Control Systems Using Iec 1131-3.
IEE Control Engineering Series. Institution of Electri-
cal Engineers, 1998. ISBN 9780852969502. URL
http://books.google.no/books?id=sc-g9k6dPzMC.

[89] J.W.Jenner L.J.Ayling and Maris International Ltd
J.M.Neffgen. Seabed located drilling rig - itf pioneer project.
Offshore Technology Conference, 5 May-8 May 2003, Houston,
Texas, May 2003.

[90] West Drilling Products AS Helge Krohn West Drilling Prod-
ucts AS Mads Grinrd, SPE. Continuous motion rig. a detailed
study of a 750 ton capacity , 3600 m/hr trip speed rig. In
SPE/IADC Drilling Conference and Exhibition, 1-3 March
2011, Amsterdam, The Netherlands, 2011.

[91] Well System Technology A/S Mads Grinrod, SPE. Continuous
motion rig: A step change in drilling equipment. In IADC/SPE
Drilling Conference and Exhibition, 2-4 February 2010, New
Orleans, Louisiana, USA, 2010.

[92] Zohar Manna and Amir Pnueli. The temporal logic of reactive
and concurrent systems. Springer-Verlag New York, Inc., New
York, NY, USA, 1992. ISBN 0-387-97664-7.

http://books.google.no/books?id=sc-g9k6dPzMC

244 BIBLIOGRAPHY

[93] F. Maraninchi and Y. Remond. Argos: an automaton-based
synchronous language. Computer Languages, (27):61–92, 2001.

[94] Ernst W. Mayr. Persistence of vector replacement systems is
decidable. pages 309–318, 1981.

[95] R. Milner. A Calculus of Communicating Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982.
ISBN 0387102353.

[96] Robin Milner. Calculi for synchrony and asynchrony * part i .
synchrony. Science, 25(3):267–310, 1983.

[97] Robin Milner. Communicating and mobile systems: the pi
calculus. Cambridge University Press, New York, NY, USA,
1999. ISBN 0-521-65869-1.

[98] Toshiyuki Miyamoto and Sadatoshi Kumagai. A sur-
vey of object-oriented petri nets and analysis meth-
ods. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., E88-A:2964–2971, November 2005. ISSN 0916-8508.
doi: http://dx.doi.org/10.1093/ietfec/e88-a.11.2964. URL
http://dx.doi.org/10.1093/ietfec/e88-a.11.2964.

[99] Tadao Murata. Petri nets: Properties, analysis and applica-
tions. pages 541–580, April 1989.

[100] M. Nagasaki, A. Doi, H. Matsuno, and S. Miyano. A versatile
petri net based architecture for modeling and simulation of com-
plex biological processes. Genome informatics. International
Conference on Genome Informatics, 15(1):180–197, 2004.

[101] Benoit Daireaux Nejm Saadallah. Drilling control system
modelling approach. In IADC World Drilling 2011 Conference
and Exhibition, Copenhagen, 2011.

[102] Petroleum Safety Authority Norway. Risk level in norwegian
petroleum activities development trends 2011 - the norwegian
shelf. Technical Report 47, 2011.

http://dx.doi.org/10.1093/ietfec/e88-a.11.2964

BIBLIOGRAPHY 245

[103] Yale University. Dept. of Computer Science and R.J. Lipton.
The Reachability Problem Requires Exponential Space. Re-
search report (Yale University. Dept. of Computer Science).
Department of Computer Science, Yale University, 1976. URL
http://books.google.no/books?id=7iSbGwAACAAJ.

[104] Jens Ingvald Ornaes. Closed-loop control for decision-making
applications in remote operations. In IADC/SPE Drilling
Conference and Exhibition, 2-4 February 2010, New Orleans,
Louisiana, USA, 2010.

[105] Posc Caesar Association (PCA). ”rcn/nfr project :autoconrig.
URL https://www.posccaesar.org/wiki/IOHN/AutoConRig.

[106] James L. Peterson. A note on colored petri nets. Information
Processing Letters, Vol.11, No.1, 11:40–43, 1980.

[107] James Lyle Peterson. Petri Net Theory and the Modeling of
Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1981. ISBN 0136619835.

[108] Carl Adam Petri. Communication with automata. 1966.

[109] Petroleumstilsynet. Risikoniv i petroleumsvirksomheten hove-
drapport, utviklingstrekk 2011, norsk sokkel. Technical Report
261, 2011.

[110] Amir Pnueli. The temporal logic of programs. In Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science, SFCS ’77, pages 46–57, Washington, DC, USA, 1977.
IEEE Computer Society.

[111] P. Ramadge and W. Wonham. Supervisory Control
of a Class of Discrete Event Processes. Siam
J. Control and Optimization, 25(1), 1987. URL
http://locus.siam.org/SICON/volume-25/art_0325013.html.

[112] C. Ramchandani. Analysis of asynchronous concurrent systems
by timed petri nets. Technical report, Cambridge, MA, USA,
1974.

http://books.google.no/books?id=7iSbGwAACAAJ
https://www.posccaesar.org/wiki/IOHN/AutoConRig
http://locus.siam.org/SICON/volume-25/art_0325013.html

246 BIBLIOGRAPHY

[113] Venkatramana N. Reddy, Michael N. Liebman, and Michael L.
Mavrovouniotis. Qualitative analysis of biochemical reaction
systems. Computers in Biology and Medicine, 26(1):9 – 24,
1996. ISSN 0010-4825. doi: 10.1016/0010-4825(95)00042-9.

[114] A. Riid and N. Saadallah. Unsupervised learning of well
drilling operations: Fuzzy rule-based approach. In Intelligent
Engineering Systems (INES), 2012 IEEE 16th International
Conference on, pages 375 –380, june 2012. doi: 10.1109/INES.
2012.6249862.

[115] George W. Halsey Rolv Rommetveit, Knut S. Bjorkevoll, Hitec
Products Drilling; Mike Herbert ConocoPhillips; Ove Sandve
First Interactive; Erling Fjr, SINTEF Petroleum Research;
Sven Inge Odegaard, and Aker Kvaerner Maritime Hydraulics
Bjarne Larsen. e-drilling: A system for real-time drilling simu-
lation, 3d visualization and control. Digital Energy Conference
and Exhibition, 11-12 April 2007, Houston, Texas, U.S.A.,
2007.

[116] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Pearson Education, 2003. ISBN 0137903952.
URL http://portal.acm.org/citation.cfm?id=773294.

[117] N. Saadallah, H. Meling, and B. Daireaux. Modeling a drilling
control system, as a discrete-event-system. In Communications,
Computing and Control Applications (CCCA), 2011 Interna-
tional Conference on, pages 1 –5, march 2011. doi: 10.1109/
CCCA.2011.6031461.

[118] N. Saadallah, Hein Meling, and B. Daireaux. A simple machine
in a complex environment: A petri net approach. In Intelligent
Engineering Systems (INES), 2011 15th IEEE International
Conference on, pages 387 –392, june 2011. doi: 10.1109/INES.
2011.5954778.

[119] Nejm Saadallah and Benoit Daireaux. A goal based approach
on top of Petri nets. In International Workshop on Petri Nets
and Software Engineering (PNSE2011).

http://portal.acm.org/citation.cfm?id=773294

BIBLIOGRAPHY 247

[120] George S. Sacerdote and Richard L. Tenney. The decidability
of the reachability problem for vector addition systems (prelim-
inary version). In STOC’77, pages 61–76, 1977.

[121] Andrea Sackmann, Monika Heiner, and Ina Koch. Application
of petri net based analysis techniques to signal transduction
pathways. BMC Bioinformatics, 7:482, 2006.

[122] Andrea Sackmann, Dorota Formanowicz, Piotr Formanowicz,
Ina Koch, and Jacek Blazewicz. An analysis of the petri
net based model of the human body iron homeostasis process.
Computational Biology and Chemistry, 31(1):1–10, 2007.

[123] J. C. Shepherdson and H. E. Sturgis. Computability of recursive
functions. J. ACM, 10:217–255, April 1963. ISSN 0004-5411.
doi: http://doi.acm.org/10.1145/321160.321170.

[124] J. Sifakis. Use of petri nets for performance evaluation. Acta
Cybernetica, 4(2):185–202, 1979.

[125] Erlend skarsaune. Strike forces exploration rig closure.

[126] Robert Tarjan. Depth-First Search and Linear Graph Algo-
rithms. SIAM Journal on Computing, 1(2):146–160, 1972.

[127] Jefferson W. Tester, Brian J. Anderson, Anthony S. Batchelor,
David D. Blackwell, Ronald DiPippo, Elisabeth M. Drake,
John Garnish, Bill Livesay, Michal C. Moore, Kenneth Nichols,
Susan Petty, M. Nafi Toksoz, Ralph W. Veatch, Roy Baria,
Chad Augustine, Enda Murphy, Petru Negraru, and Maria
Richards. The future of geothermal energy; impact of enhanced
geothermal systems egs on the united states in the 21st century.
Technical Report INL/EXT-06-11746, Idaho National Labora-
tory, November 2006.

[128] Alexey Tovchigrechko. Efficient symbolic analysis of bounded
Petri nets using Interval Decision Diagrams. PhD thesis, BTU
Cottbus, Dep. of CS, October 2008.

248 BIBLIOGRAPHY

[129] A. M. Turing. On Computable Numbers, with an application
to the Entscheidungsproblem. Proc. London Math. Soc., 2(42):
230–265, 1936.

[130] Antti Valmari. The state explosion problem. In Lectures on
Petri Nets I: Basic Models, Advances in Petri Nets, the volumes
are based on the Advanced Course on Petri Nets, pages 429–528,
London, UK, UK, 1998. Springer-Verlag. ISBN 3-540-65306-6.
URL http://dl.acm.org/citation.cfm?id=647444.727054.

[131] Wil M. P. van der Aalst. The application of petri nets to
workflow management. Journal of Circuits, Systems, and
Computers, 8(1):21–66, 1998.

[132] Wil M. P. van der Aalst. Workflow verification: Finding
control-flow errors using petri-net-based techniques. In Business
Process Management, pages 161–183, 2000.

[133] Wil M. P. van der Aalst. Making work flow: On the application
of petri nets to business process management. In ICATPN,
pages 1–22, 2002.

[134] W.M.P. van der Aalst. Putting high-level petri nets to work
in industry. Computers in Industry, 25(1):45 – 54, 1994. ISSN
0166-3615. doi: 10.1016/0166-3615(94)90031-0.

[135] Ingolf Wassermann and Aravindh Kaniappan. How high-speed
telemetry affects the drilling process. JPT, 61(6), 2009.

[136] John B. Watson. Psychology as the behaviorist views
it. Psychological Review, 20:158–177, 1913. URL
http://psychclassics.yorku.ca/Watson/views.htm.

[137] Wikipedia. Drilling rig. URL
http://en.wikipedia.org/wiki/Drilling_rig.

[138] C. R. Zervos. Coloured Petri Nets: their properties and
applications. PhD thesis, University of Michigan, 1977.

http://dl.acm.org/citation.cfm?id=647444.727054
http://psychclassics.yorku.ca/Watson/views.htm
http://en.wikipedia.org/wiki/Drilling_rig

BIBLIOGRAPHY 249

[139] M.C. Zhou and K. Venkatesh. Modeling, Simulation, and Con-
trol of Flexible Manufacturing Systems: A Petri Net Approach.
Series in Intelligent Control and Intelligent Automation. World
Scientific, 1999. ISBN 9789810230296.

[140] M.C. Zhou and K. Venkatesh. Modeling, Simulation, and
Control of Flexible Manufacturing Systems: A Petri Net Ap-
proach. Series in Intelligent Control and Intelligent Automa-
tion. World Scientific, 1999. ISBN 9789810230296. URL
http://books.google.no/books?id=KQlXHGAQtCIC.

[141] R. Zurawski and MengChu Zhou. Petri nets and industrial
applications: A tutorial. Industrial Electronics, IEEE Trans-
actions on, 41(6):567–583, December 1994.

http://books.google.no/books?id=KQlXHGAQtCIC

	Abstract
	Symbols And Abbreviations
	I Overview of Research
	Introduction
	Motivation
	Objectives
	Safe Machine Control
	Safe Well Control
	Plan Execution

	Contributions
	Outline

	Introduction to Drilling
	The Basics of Drilling
	High-Level Drilling Operations
	Drilling and Safety
	Existing Systems

	Enabling Autonomous Drilling Control
	Introduction
	System Components
	Command Controller
	Safety Process Scheduler

	Chapter Summary

	II Theoretical Foundation
	Literature Review
	Introduction
	Discrete Event Systems
	Supervisory Control
	Reactive Systems
	Petri Nets
	Automata and Petri Nets
	Grafcets and Petri Nets
	Process Algebra and Petri Nets
	Petri net Classes

	Emergent Behaviour

	Petri Nets
	Introduction to Petri Nets
	Basic Definitions
	P/T Nets
	P/T net Example
	Transition Firing and Sequences
	Transition Firing Example

	P/T Nets Problems and Analysis
	Reachability Graph
	Coverability Graph
	Coverability Graph Example
	Boundedness Detection
	Deadlock Detection
	Marking and Sub-Marking Reachability
	Path
	Home Marking and Reversibility
	Transition Liveness and Quasi-Liveness

	P/T Nets Extended With Inhibitor Arcs
	Definitions
	Analysis

	Chapter Summary
	Algorithms

	Place/Transition nets with Inhibitor Arcs
	Introduction
	Turing Equivalence
	Coverability Graph Problem
	Cohesive Place/Transition Nets with Inhibitors
	Monotonicity of Cohesive PTI Nets
	Cohesive PTI Coverability
	Analysis of Cohesive PTI
	Boundedness
	Deadlock
	Marking and Sub-Marking Reachability
	Path
	Home Marking and Reversibility
	Transition Liveness and Quasi-Liveness

	Mutually Inhibited Cohesive PTI Nets
	Monotonicity of Mutually Inhibited CPTI
	Analysis of Mutually Inhibited CPTI
	Reachability in MICPTI
	Path Problem for MICPTI
	Home Marking and Reversibility
	Transition Liveness and Quasi-Liveness
	An Example

	Chapter Summary
	Proofs
	CPTI Proofs
	MICPTI Proofs

	Algorithms

	Reactive Processes
	Introduction
	Basic Notions
	Goal
	Relation Between Goals

	Reactive Processes and Bounded Nets
	Elevator Example
	Short Interpretation

	Reactive Processes And MICPTI Nets
	Determining Goals
	Determining Relation Between Goals
	Feasible Path

	Scheduler Problem
	Scheduling Policies
	Basic Scenario
	First-In-First-Out
	Priority

	System Realisation
	Case: Garbage Transport System
	Petri net model
	Processes and goals
	Simulation result

	Chapter summary
	Algorithms

	The Software Packages
	Introduction
	Basics
	Code For CPTI Analyses
	Coverability Graph
	Boundedness
	Deadlock
	Transition Liveness

	Code For MICPTI Analyses
	Marking Reachability
	Characteristic Graph
	Reversibility
	Finding Paths

	Code For Goal Analyses
	Chapter Summary

	III Application
	Drilling Control System
	Introduction
	The Pipe Handling Mode
	The Power-Slips
	The Elevator
	The Draw-works
	Rack Arm
	Iron roughneck

	Analysing the Pipe Handling Model
	General Properties
	State properties
	Transition properties
	Transition Labelling

	Modelling the Operational Mode
	Using MICPTI nets
	The Operational Model

	Operational Model Analysis
	General Properties
	State Properties
	Transition properties
	Transition Labelling

	Assisted Control
	Assisting Processes
	Simulation results

	Autopilot
	Planned processes
	Unplanned processes
	Drilling Program Scenario
	Simulation Results

	Chapter Summary

	IV Conclusions
	Conclusions and Further Work
	List of Publications
	Relevant
	Less Relevant

