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Abstract

The groundwater flow through a porous media is well-researched to extend
the basic knowledge in both academia and industry, specially the oil industry.
The Boussinesq equation represents a water height of fluid spreads into the
semi-infinite medium for unsteady flow. Property of this flow represents a
groundwater flow after a high water period or after a breakthrough of a
dam around a reservoir. The fluid is drained out as an intense pulse at the
boundary and flow through the porous medium by gravity-driven motion.
In this studying, the Boussinesq equation is re-produced from Barenblatt et
al. (1999) [1]. The analytical and numerical analysis is used to solve this
equation for a homogeneous porous medium. In the real life, we do not always
have the homogeneous porous medium. A system fissures is counted into the
Boussinesq equation and applies a basic of a ”double-porosity” model for
a stratified heterogeneous porous medium. The model is a system of two
equations: one for water level in fissurized porous blocks and one for water
level in system cracks. These equations are only solved with numerically
because they are very complicated when we solve with analytically. For
comparison, a purely porous blocks is obtained under same conditions with
fissurized porous blocks. This demonstrates how the fissures influence on
the groundwater flow in stratified heterogeneous porous media, increasing of
the speed and the penetration of the fluid into the medium. At first stage,
the groundwater flow is rapid breakthrough at the boundary into the porous
media via a system cracks; and at later stage, the fissures is supported by
the fluid in fissurized porous blocks.
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1 Introduction

Flow in porous media is a subject that has been researched during over
last decades extensively. Understanding this basic knowledge, we can solve
problems that happen on subsurface and improve the oil industry. One of the
reasons is the invention of the computer and advances information technology.
A mathematical model which is derived from the physics and a massive
resources gathering from the ground and sea, can simulate on a computer.
This helps us to understand the complicated physical processes and combine
the different resources more effectively.

In a homogeneous porous media, the water height of the ground-
water flow h(x, t) (figure 2A) is described by Boussinesq in 1903 [2]. The
flow motion is gravity-driven by the converted mass of the fluid. A source
for the mass is from a pulse breakthrough at the boundary in a very short
time interval t = τ (figure 1). After that, the Boussinesq equation represents

Figure 1: A sketch represents an intense pulse at the boundary in a short
time interval t = τ ∈ [−1, 0]. From the initial moment t = −1, groundwater
flow increases rapidly to maximum water level h = h0 and decreases to the
initial distribution at t = 0.

at groundwater flow extents the fluid into the porous media at large times
t = T � τ . Analysis and numeric computations of the model show that an
asymptotic solution of groundwater mound is lower with time and the front
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penetrates further into the porous media.
The aim of this studying is how the groundwater flow in a stratified

heterogeneous media varies from a homogeneous porous media with the same
intense pulse at the boundary. Groundwater flow in which one of these
medium moves faster and larger in mass of fluid. Stratified porous medium
behavior is two different media that are involved in the flow process: a higher
permeability medium that produces fluid extension and a lower permeability
medium that recharges the higher permeability medium [3].

A mathematical model of the ’double’ porous medium is ’double-
porosity’ model, which is derived from Barenblatt et al. (1960 & 1990) [4], [5].
The model needs to take into an exchange flow from fissurized porous blocks
and a system cracks. There are two water level for fissurized porous blocks
hB(x, t) and a system cracks hC(x, t) (figure 2B). These system equations are
simulated in dimensionless form. The numerical results are compared with a
purely porous blocks under same conditions to answer the questions above.
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Outline

Chapter 2: Flow in homogeneous porous media. In this chapter,
we go through the basics of flow in a porous media. We go through some
background of the physics, and then derive the Boussinesq equation for water
level for a homogeneous porous medium. The topic of fractures is more or less
left out from the discussions in this chapter. The analytical solution of the
Boussinesq equation was derived from different references. The Boussinesq
equation is solved here by analytically and numerically. The problem is
simulated by developing a matlab code. The results are given in figures show
that the different water height of saturated region with different time.

Chapter 3: Flow in stratified heterogeneous porous media. Here,
we discuss the effects of adding fissures to a porous media. We reproduce the
double-porosity model for the fissurized porous medium from [1]. The model
is only solved numerically from a matlab code. The results is compared to
the homogeneous porous media and see how the fissures effects on the flow
in porous media.

Chapter 4: Comparison on the results in purely and fissurized
porous medium A purely porous blocks is computed under same condi-
tions with fissurized porous blocks in chapter 3. At the same time, the mass
of fluid and front position of groundwater flow in purely porous blocks is
less than fissurized porous blocks. Addition, ’dipole moment’, which is an
’energy’ of the flow, mass of the fluid and front position of groundwater flow
in fissurized porous blocks and cracks are also compared here.

Chapter 5: Summary and conclusion A summary of problems, input
and output parameters are showed here to get an overview of all computa-
tional. A conclusion is also obtained from this studying.
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2 Flow in homogeneous porous media

2.1 Model problem

The problem of the model mainly indicates a water level of saturated part
for unsteady flow. A groundwater flow through a porous media supported
by impermeable horizontal bottom and on the side by a vertical plane. The
property of problem is groundwater flow in a river bank or channel bank
after a short flood or after the breakthrough of a dam separating a channel
or river from a reservoir of liquid waste. Dimensions of the flow are in positive
x-direction along the bottom with origin x = 0 at the vertical plane and in
y-direction as a height y = h(x, t) (figure 2). At negative x-direction x < 0, a
water reservoir is located. The horizontal extent of the stratum is considered
to be semi-infinite: 0 ≤ x < ∞. Thus, the flow will never reach at the
second boundary at ∞ and the front position will be discussed to see how
far it moves into porous medium.

At time t = −τ , the fluid level at x = 0 begins to increase rapidly
to maximum height h0 and decrease to initial distribution when t = 0. The
boundary condition takes the form

h(0, t) = h0f(θ), θ = t/τ. (1)

The h0 is a constant with the dimension of height, τ is a dimension of time.
The f(θ) is a dimensionless function of its dimensionless argument, and is
zero for θ = −1 and θ < 0, and nonnegative at −1 < θ < 0. The function
f(θ) was assumed to have a piecewise linear shape [1] that is defined in figures
8, 19 :

f(θ) =
θ + 1

θ∗ + 1
, − 1 < θ < θ∗ < 0; (2)

f(θ) =
θ

θ∗
, θ∗ < θ < 0; (3)

where θ∗ a constant dimensionless time that function f(θ) is maximum.
Initially, the porous media is assumed to be empty. The initial

condition is in the form

h(x,−τ) ≡ 0, 0 ≤ x <∞. (4)

In fact, the interval τ is a very short time. The groundwater flow
happens as a very intense pulse at the boundary. In large times, t = T � τ ,
i.e. θ � 1 and f(θ) is not needed. The flow is considered gently sloping at
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Figure 2: Groundwater dome extension in porous medium (A) and in fissur-
ized porous medium (B) [1]. The hB and hC are the water levels in porous
blocks and cracks.
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large times. The water height is described by the Boussinesq equation (see
refs. [2] [6] [7] [4]):

∂h

∂t
= κ

∂2h2

∂x2
, (5)

where the coefficient κ = ρgk
2mµ

is assumed a constant for a homogeneous
porous medium, with µ the dynamic viscosity of the fluid, ρ the fluid den-
sity, k the permeability of porous medium and m its porosity. The initial-
boundary values of the problem are:

h(x, 0) = hi(x), 0 < x <∞;

h(0, t) = h(∞, t) = 0, t > 0.
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2.2 Derive the Boussinesq equation

2.2.1 The physical model: Darcy’s law

Fluid can flow through a porous media because a material has a porosity like
sand is an example. The porosity is usually 40% in sandstone, while oil sands
are in a range 10-20%. The flow is linearly driven by an applied pressure
gradient and an inversely proportional to the viscosity. This is known as
Darcy’s law and was determined experimentally by Henry Darcy in 1856.
The volumetric flow rate per unit area for a one-dimensional geometry is in
the form:

Q = −kA
µ

dp

dx
. (6)

The permeability k is the resistance of the porous media. A practical unit
for permeability is the darcy (D), or more commonly the millidarcy (mD)
(1darcy = 10−12m2) [8]. For larger k, the smaller pressure gradient is needed
to drive a given flow. For a homogeneous material, cracks here are considered
very small fraction of this area. The greater pressure gradient increases the
discharge rate per unit area, u. The discharge or the flux is referred as Darcy
velocity, but it is not an actual velocity of the fluid [9]. This velocity is the
average velocity per unit area. The discharge is in the form:

u = −k
µ

dp

dx
. (7)

In confined aquifer with a horizontal upper and lower boundary,
the fluid is considered as an one-dimensional flow. That means the whole flow
have an average velocity, density and other properties over a cross-section.
The flow may be driven by an applied pressure gradient or the prescribed
motion of the one of the cross-sections or maybe both [9]. Forces act on a layer
of the fluid need to be balance to get a uniform flow as a single streamtube
bounded by two streamlines the upper and lower boundaries (figure 3, (a)).
The fluid moves with velocity u in the x-direction on the upper boundary
with thickness h and the lower boundary is motionless. A uniform flow
has a hydraulic head to balance the forces on the layer and the pressure
drop in horizontal length. This head is the height of the fluid required to
hydrostatically provide the applied pressure difference, H ≡ p1−p0

ρg
[9]. The

horizontal velocity u = u(y) varies only with the vertical coordinate in figure
3, (b). The hydraulic head of the flow in horizontal direction depends on
x-direction, h(x), a hydrostatic pressure distribution in the form

dp

dx
= ρg

dh

dx
. (8)
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Figure 3: The force balance on a layer of fluid with an applied pressure
gradient (a) and a profile of velocity (b) [9].

The Darcy velocity in the groundwater flow now can be in the form

u = −kρg
µ

dh

dx
. (9)

In unconfined aquifer, the water height is the height of the saturated-
water region from a impermeable horizontal lower boundary to a phreatic
surface as the upper boundary. A groundwater flow in unconfined aquifer
is usually a two-dimensional flow with equipotential surfaces φ(x, y). The
hydraulic head can not be used here. We need to assume the flow as an one-
dimensional flow by using Dupuit approximation (figure 4). The phreatic
surface in the Dupuit approximation is assumed as a parabola. The approxi-
mation is based from the results of the observation that in most groundwater
flow, the slope of the phreatic surface is very small dh/dx � 1 [9]. At ev-
ery point P along the phreatic surface, the specific discharge is given by the
Darcy’s law:

us = −kρg
µ

dφ

ds
= −kρg

µ

dy

ds
= −kρg

µ
sinθ. (10)

As θ (slope) is very small, Dupuit suggested that sinθ = dy/ds = dh/ds can
be replaced by tanθ = dh/dx [7]. The assumption of a gently sloping flow in
Dupuit approximation is equivalent to assuming that vertical cross-sections
are equipotential surfaces on which h = φ = constant and the flow essentially
horizontal [7]. Thus, the Dupuit approximations lead to the specific discharge
expressed by:

ux = −kρg
µ

dh

dx
. (11)
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The total rate of fluid flow is

Qx = uxh(x) = −kρg
µ
h
dh

dx
. (12)

Figure 4: The Dupuit approximation [7].
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Figure 5: Conservation of mass of fluid through an element of an unconfined
aquifer [9].

2.2.2 Unsteady flow

For unsteady flow, a flow rate through the aquifer varies with the time t. We
assume the validity of Dupuit approximation and consider one-dimensional
flow through an element of the unconfined aquifer from x to x+δx (figure 5).
The fluid is assumed incompressible (density is a constant). Conservation of
mass of the fluid is needed.

The net rate of outflow through the element is

u(x+ δx, t)h(x+ δx, t)− u(x, t)h(x, t) ≈ ∂

∂x
(uh)δx. (13)

The height of the free surface changes because the inflow is not
equal to the outflow. The change in the volume of the fluid in the element is

φ[h(t+ δt, x)− h(t, x)] ≈ φ
∂h

∂t
δxδt, (14)

where φ the porosity in the matrix that the fluid fills it.
Conservation of mass of fluid needs that the net outflow of the

element in time δt equals the decrease in fluid volume in the element so we
get

φ
∂h

∂t
+

∂

∂x
(uh) = 0. (15)
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Substitution of the Darcy velocity from equation 9 yields

∂h

∂t
=
kρg

µφ

∂

∂x
(h
∂h

∂x
). (16)

∂h

∂t
=
kρg

2µφ

∂2h2

∂x2
. (17)

This is the nonlinear diffusion equation is referred to as the Boussinesq equa-
tion [9].
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2.3 Input parameters

A porous medium consists of a matrix and pores, which the fluid can flow
through. The distribution of pores are usually irregular and different at each
point. It is very difficult to describe a mathematical model for a porous
medium. Properties such as velocity, porosity, density, etc., will be defined
over a representative elementary volume (REV) to get average values [7].
Both matrix and pores are contained in the REV, which is determined large
enough such that the volume average is representative for the centroid [10].

Figure 6: The scale of the representative elementary volume [10].

There are several important properties of the matrix and fluid that
must be defined. Naturally, all the properties are functions depending on the
pressure and the temperature.

The density of the fluid, ρ, is the mass over volume, and has units
kg/m3.

Viscosity is a property of the fluid and measures the resistance to
flow. For large viscosity, the fluid is a thicker liquid. In practice, we use the
dynamic viscosity and has units kg/(m · s) = Pa · s = 10P (poise). There are
density and viscosity of some common fluids in table 1 [10].

Gravitational acceleration, g, indicates the intensity of a gravita-
tional field (m/s2). At the surface of the earth, the g is about 9.8m/s2 [11].

16



Material ρ[kg/m3] µ[103Pa · s]
Air 1.205 0.02

Propane 1.882 0.11
Water 998 1.002

Table 1: Typical density ρ, and viscosity µ for a few common substances at
atmospheric pressure and 20◦C.

The matrix properties are porosity m and permeability k of some
common materials in the figure 7.

Figure 7: The porosity and permeability of some materials [10].
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2.4 Numerical modeling for homogeneous porous medium

2.4.1 Discrete scheme of the model

The Boussinesq equation 17 that we derive above is a nonlinear equation. The
parameters are dependent on the pressure. To solve this nonlinear problem
is very difficult to use the Fourier method. The model is derived using a
finite difference approximation of the initial-boundary values problem. The
two-point boundary here is one from origin and one from infinite because the
porous medium is assumed to extend very large and the front will never reach
the second boundary. The way to derive the scheme is that the derivatives
are replaced by finite differences by approximation for both the space and
time derivatives.

Consider a discretization of the spatial domain x ∈ [0, L] into N+1
cells. This gives the grid points {xi}N+1

i=1 , where xi is the center of the cell
Ii = [xi−1/2, xi+1/2]. The length of each cell is 4x = xi+1/2− xi−1/2. All cells
are same of the length.

A discretization of time is also considered of the time interval t ∈
[0, T ] into Ntime steps with the same length, where T the total time length.
The time steps is represented by time {tk}Ntimek=1 , where each time step has a
length 4t = tk+1 − tk.

A discrete scheme of the problem 5 with an explicit discretization
in time then takes the following form

hn+1
i − hni
4t

= κ
(∂xh

2)ni+1/2 − (∂xh
2)ni−1/2

4x
, i = 1, ..., N + 1, (18)

where (∂xh
2)ni+1/2 ≈ (∂xh

2)(xi+1/2, t) for t ∈ [tk, tk+1]. A discrete of ∂xh
2 at

the interior part of the domain is considered

(∂xh
2)ni+1/2 =

(h2)ni+1 − (h2)ni
4x

, i = 2, ..., N. (19)

The numerical scheme of the interior part continues with the approximation

hn+1
i − hni
4t

= κ
(h2)ni+1 − 2(h2)ni + (h2)ni−1

(4x)2
. (20)

This corresponds to

hn+1
i = hni + s[(h2)ni+1 − 2(h2)ni + (h2)ni−1], s = κ

4t
(4x)2

. (21)

The numerical model is solved by an explicit method, where differ-
ent equations are algebraic equations. The differential operators are replaced

18



by algebraic approximation. This means explicit difference equations have
the problem with the stability. The parameter, s = 4t

(4x)2 , should be less than

0.5 to ensure stability for the discrete scheme [12]. This stability parameter
will be investigated for such methods restrictions on time steps length and
the space length to get the stabilized scheme.

The first cell and the last cell, the boundary conditions are em-
ployed which give the following value

h(1, k) = h(N + 1, k) = 0. (22)

The initial state is also followed by the scheme

h1i = h0i + s[(h2)0i+1 − 2(h2)0i + (h2)0i−1], (23)

where h(:, t = 0) the initial condition at large times.

The discrete scheme 21 is also an approximation in a short interval
time t = τ ∈ [−1, 0] at the boundary x = 0. The water distribution at the
initial t = 0 for large times case is found by simulating this first. The initial
and boundary conditions of this initial problem are the following by

h(1, k) = f(k), k < 1/4t+ 1,

h(1, k) = 0, k ≥ 1/4t+ 1,

h(N + 1, k) = 0,

h(i, 1) = 0.

The dimensionless function f(θ) is defined clearly before the initial
problem can be solved numerically. The procedure of the numerical solution
is given in the following section.
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2.4.2 Numerical solution

The model considers a length of porous media L = 100 with N = 500 cells
with the length 4x = L

N
= 100

500
= 0.20. The total time is T = 2000 and a

short time interval τ = 1.0 is considered at the boundary. The purpose of the
large total time and the large length of the porous blocks is that the flow can
not reach the boundary at infinity, so the front of groundwater mound can
be investigated in different times. With the time steps is Ntime = 200000,
the length time steps is 4t = T/Ntime = 0.01. Because of the ”frozen”
coefficient κ = 0.20, the numerical model is observed by different time steps
to get the stability condition s = κ 4t

(4x)2 = 0.20 0.01
0.202

= 0.05.

At first, the function f(θ) is defined with the maximum water level
h0 = 10.00 and θ∗ = −0.80, so the profile of the water level at the boundary
takes as the figure 8. The maximum water level h0 reaches at θ∗ and decreases
to the initial distribution, which is assumed to be zero at time t = −τ and
t = 0.

Figure 8: Profile of the water height at the boundary from t = −1.00 to t = 0
with θ∗ = −0.80.

Secondly, the initial state is solved by numerical scheme 23 with
two-point boundary: one at the origin x = 0 and one at infinite, which the
total length is considered very large L = 100.00. The left boundary is defined

20



from the profile water height at the boundary above. The initial distribution
at t = −τ is zero. The result of this scheme is the water height of groundwater
flow at time t = 0, i.e after a small time τ = 1.00, or the initial distribution
of the discrete model. The figure 9 shows that the groundwater flow with
an intense pulse at the boundary now becomes the initial distribution in the
porous blocks. This happens in a very short time after a breakthrough of the
dam. The water height is less than half of the maximum of the pulse and
begin to extend further in the porous medium.

Figure 9: Profile of the initial height distribution t = 0.

The numerical model 21 is simulated to get the water height after
t = 0. A results of the numerical solution is plotted in figure 10. All of the
water levels are less than the initial distribution and the positions of the front
of groundwater flow go further at large times. The mass of the groundwater
mound looks the same in smaller times (t < 10.00), but it is very difficult to
see a constant in large times from t = 10.00. The dipole moment at t = 0 is
also obtained a constant, Q = 6.67, by following equation

Q =
N+1∑
i=1

x(i)hi(i)4x. (24)
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The dipole moment indicates an energy that groundwater flow needs to move
through the porous medium. This energy is at the maximum initially and is
not changed with time that the numerical solution has a stability estimate
[12]. This will be proofed in the next section.

Figure 10: The water height of the groundwater flow using numerically.
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2.5 Analytical analysis of the model

2.5.1 The analytical solution from references

Before the model can be calculated by analytically, the conditions need to
be clearly. The groundwater flow, which happens from a very intense pulse
in the model problem continues with a large times. At the boundary, the
function f(θ) is not needed. Thus, the boundary conditions are in the forms

h(0, t) = 0,

h(∞, t) = 0.

This is why the fluid mound extends further into the porous medium
at every time t > 0 [13]. After a short time τ , a porous medium has the ini-
tial water height distribution hi(x) at t = 0. The fluid level at the boundary
is zero for t > 0. Therefore, the initial condition takes form [13]

h(x, 0) = hi(x), 0 < x <∞. (25)

The model with these conditions was solved by Barenblatt and
Zel’dovich in 1957 [14]. The conditions indicate that the water level h van-
ishes at origin x = 0 and at the front of the groundwater mount x = xf (t)
[15]. Dipole moment Q was also defined from [14] by the following equation

Q(t) =

∫
0

∞
xh(x, t)dx. (26)

The dipole moment Q of the initial water height distribution at t = 0 is
defined by

Q(t = 0) =

∫
0

∞
xh(x, 0)dx =

∫
0

∞
xhi(x)dx. (27)

We integral the dipole moment with time

d

dt
Q(t) =

d

dt

∫
0

∞
xh(x, t)dx =

∫
0

∞
xκ
∂2h2

∂x2
= κ[x(

h

2

∂h

∂x
)− h]

∞

0
= κh(0, t).

(28)
Since the fluid stops to drain out at the boundary x = 0, so the volume per
unit width of the fluid is conserved. Thus, the dipole moment is a constant
and equals to Q(t = 0) at arbitrary time t > 0.

d

dt
Q(t) =

d

dt

∫
0

∞
xh(x, t)dx = 0. (29)

At every motion of the fluid, the constancy of the dipole moment
indicates that the model can find a self-similar solution for the motion [15].
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Here, the similar scalings are used, which is developed by Barenblatt and
Zeldovich in 1957 [14] based on equations were 5 and 26. The similarity
arguments indicate that [15]

h ∼ x2

κt
(30)

Q ∼ x2h (31)

The height h is eliminated so that the scale of the length of the flow yields

x ∼ (κQt)
1
4 . (32)

Following these scalings, we get the self-similar solution in the form

h = (
Q

κt
)

1
4

φ(γ), γ =
x

(κQt)

1
4
. (33)

The front of the groundwater flow here is xf = γ0(κQt)
1
4 [14]. The function

φ(γ) is obtained by substituting 33 into equations 5 and 26, yields an ordinary
differential equation for φ(γ) [14] and yields

d2φ2

dγ2
+
γ

2

dφ

dγ
+
φ

2
= 0, (34)∫

0

∞
γφ(γ)dγ = 1. (35)

The boundary conditions now become

φ(0) = 0, (36)

φ(γ0) = 0. (37)

Multiplying the equation 34 by γ, integrating by parts, and applying the first
boundary condition 36 yields [15]

γ
dφ

dγ
− φ

2
+

1

4
γ2 = 0. (38)

This is a first-order differential equation in φ. The equation is continued with
a further integration and by applying the second condition 37, the function
φ is obtained

φ(γ) =
γ20
12

(
γ

γ0
)
1
2
[1− (

γ

γ0
)
3
2
], 0 ≤ γ ≤ γ0;

φ(γ) = 0, γ ≥ γ0.
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Substituting the solution of φ into the equation 35, it gives γ0 = 2 4
√

5. Let
introduce the variable ζ = γ

γ0
, so the function φ(γ) is now in the form

φ(ζ) =

√
5

3
ζ

1
2 [1− ζ

3
2 ], 0 ≤ ζ ≤ 1; (39)

φ(ζ) = 0, ζ ≥ 1. (40)

2.5.2 The exact analytical solution

The continuous problem of the Boussinesq equation 5 for a homogenous
porous media is plotted by using the exact analytical solution 41.

h = (
Q

κt
)

1
4

φ(ζ), ζ =
x

xf
. (41)

The position of the front equals to

xf (t) = 2(5κQt)
1
4 .

Function φ(ζ) is obtained in equations 39, 40. Dipole moment is Q = 6.67,
which is defined from the numerical solution. The results in figure 11 show
the exact solution of the model. The maximum water level is the initial
distribution and decreases when time is larger. The front of the groundwater
flow does not reach at h = 0 seen clearly at small times. The water level
reaches h = 0 when function φ(ζ) is zero at ζ = x

xf
≥ 1. But x

xf
does not

exact 1 and φ is equivalent to zero, so the water level is just near zero at the
front of flow or h ≡ 0. Thus, the exact analytical solution is obtained (figure
11) from the following equations

h = (
Q

κt
)

1
4

φ(ζ), ζ =
x

xf
,

φ(ζ) =

√
5

3
ζ

1
2 [1− ζ

3
2 ], 0 ≤ ζ ≤ 1;

h ≡ 0, ζ ≥ 1.
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Figure 11: The water height of the groundwater flow using analytically. The
water height at the initial t = 0 is computed by numerically.
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2.6 More investigation about solutions

Firstly, the maximum height h0 affects on the smooth of the both solution.
The solutions are solved with the same length x ∈ [0, 100] and T ∈ [0, 2000],
so the stability parameter keeps the same s = 0.05. The model is only change
the h0 = 1.00. From the figures 12 and 13, changing the maximum water
level , several oscillations appear in both solutions.

Figure 12: The analytical solution with h0 = 1.00.

Secondly, the stability parameter is smaller in comparison with the
condition s ≤ 1/2, but how the maximum its can be to get good results. The
reason is the large time and space are used here. If changing the parameter
s = 0.10, the number of cells is also changed to N = 5000, and the time
steps is the same. The memory of the observed computer can not handle
such large cells.

The time steps now is changed to Ntime = 100000 and the length
of time steps is 4t = 0.02. The stability parameter s = 0.20.02

0.22
= 0.10. The

grids points x(i) become a nonrepresentable number (NaN) and the process
stops to run the model.

The stability parameter is changed to s = 0.06, that means the
time steps changes to Ntime = 166667 and the length is 4t = T/Ntime =
2000/166667 = 0.01. The grids points x(i) still become a nonrepresentable
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Figure 13: The numerical solution with h0 = 1.00.

number (NaN). Therefore, the stability parameter should be less than 0.05
to simulate the model.
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2.7 Comparison the results

The model problem for homogeneous porous medium has both a continuous
solution and a discrete solution from explicit method. The groundwater
flow at t = 0 between the solutions has to be equal because they are both
simulated during a short time −1 ≤ t ≤ 0. From the figures 10 and 11,
the front xf (t) of the groundwater flow are show in the table 2. The front
positions of the numerically go faster than the analytically at time t < 10.00.

Time Analysis Numeric
t=0 2.60 2.60

t=1.00 3.23 3.60
t=2.00 3.90 4.20
t=3.00 4.24 4.60
t=4.00 4.60 4.80

Table 2: The front xf (t) of the groundwater flow.

Results from the analytical and numerical solutions above are plot-
ted together in the same figure for comparison. The figure 14 represents the
results of the water levels at time, which is less than t = 10.00. The analysis
solutions (blue circle line) are higher than the numerical solutions (red line).
At time is equal t = 10.00, the two lines is almost match together in figure
15. When times are larger than t = 10.00, both solutions are equal and lie
in the same lines.
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Figure 14: The water levels from analysis solution (blue circle line) and
numerical solution (red line) at times less than t = 10.00.
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Figure 15: The water levels from analysis solution (blue circle line)and nu-
merical solution (red line) with times from t = 10.0.
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3 Flow in stratified heterogeneous porous me-

dia

In this section, a stratified heterogeneous porous medium is considered (κ is
not a constant). A fluid flows through two porous mediums separated by a
slightly permeable intervening layer in figure 16 [4]. This problem is known
as flow in stratified porous medium or in a ’double’ porous medium in which
the majority of the permeability is provided by fractures while the majority
of storage is provided by porous blocks [3]. A double-porosity medium can be
in a multilayer system (figure 16) or in a natural fracture system (a fissurized
reservoir in figure 17).

Figure 16: An example of a fluid flow in a stratified heterogeneous porous
medium [9]. A flow goes through two porous medium with permeabilities
k1, k2.

The reason for studying fractured media is that a number of large
oil fields are confined to fractured reservoirs [4]. There is widely a uniform
rock was deformed to fractured rock in nature. These fractures caused by
tectonic stresses, or a chemical process when water dissolved the rock matrix
[4]. The degree of fractures may be different in rocks. When we look at a large
scale, the fracture is assumed that it does not exist. This homogeneous rock
is easier to calculate a fluid flow through a natural rock. A lot of results of
theoretical and laboratory investigation of unsteady flow with data for strata
under natural conditions obtain that calculating flow through a homogeneous
porous media is not enough [5].

In this studying, a porous media with a system of fissures, which
are small natural fractures is considered regular to some extent (on the right
of figure 17). An exchange flow, which moves from porous blocks and cracks,
is assumed as a steady flow. A ’double-porosity’ model in fissured rocks was
described by Barenblatt & Zheltov in 1960 [5] and by Barenblatt et al. in
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1990 [4]. By combining with the Boussinesq equation, a system equations
for water level of fissurized porous blocks and system cracks are described
and simulated from computational experiment by numerically. The results
are compared with the results in an ordinary porous medium that show how
the fissures influence the flow in a heterogeneous porous media.
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3.1 Continuum approach

A fractured rocks usually consists of a system of irregular shape and arrange-
ment of porous blocks and separated by fissures. The data characteristics is
taken from the cores are incomplete on fractures system. In the left figure 17,
there represents two porous system in the naturally fractured rocks: a ma-
trix blocks with high storage capacity and low permeability and a system of
fracture with high permeability and low storage capacity. The flow between
systems happens separately and an interporosity flow takes place between
them. The interporosity flow is based on the theory of seepage that the solid
matrix of a porous medium is impermeable and the fluid move within them
[4]. The fractures here play the role of pores and the blocks play the role of
grains in the right figure 17. An analysis of flow in porous blocks between a
regular system of cracks is the flow with a continuum approach [4].

An applied of continuum approach is used for a complexity of nat-
urally fractured networks. Some average characteristics (porosity, perme-
ability, pressure, seepage velocity, etc.) of the flow and medium take over a
scale which is large compared to the dimensions of the individual blocks [16].
The formulation of physical laws is based on these mean characteristics of a
system of cracks in fractured rocks.

Figure 17: A continuum model approach from naturally fractured reservoir
[10].
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3.2 Fracture model

3.2.1 The exchange flow

The fracture geometry The specific characteristic of the fissures is that
the crack can be viewed as a narrow gap, a length along the two parallel plates
and a constant width of aperture, which is perpendicular to the length are
two dimensions that are several orders of magnitude higher than the third
(figure 18) [4]. The length of the cracks is much wider than pores and the
volume of a system of cracks is a small part in comparison with pores [1].
The porous blocks are considered with dimensions H height, W width and L
length [17] in figure 18. The fissure is also defined between the blocks as the
fracture centre plane. The flow in fissures is assumed a laminar flow between
two parallel impermeable blocks and follows the hydraulic Darcy velocity in
equation 9 on the basic of two dimensional analysis of each fissure.

Figure 18: Fracture geometry [17].

The different flows in two porous system have separate water heights
for blocks hB = hB(x, t) and for cracks hC = hC(x, t). At the boundary be-
tween the blocks and the system cracks, the process of transfer of fluid from
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the blocks and the system cracks takes place under a smooth change of pres-
sures: an initial pressure p0 in the porous blocks and a pressure p1 < p0 when
the groundwater flow breakthrough at the boundary. The pressure difference
p0 − p1 takes place in the porous blocks with the length L and the system
of cracks with the length of the reservoir l � L. Thus, the pressure drop of
the porous blocks (p0− p1)/L is bigger than the pressure drop of the system
cracks (p0 − p1)/l and follows that the exchange flow happens between the
porous blocks and system cracks [4]. This exchange flow will appear after
a transient flow. To approach the continuum model, the transient flow is
considered with a short time interval, τ , at the boundary. So, the exchange
flow is assumed a quasi-steady flow from the initial distribution (t ≥ 0) and
independent of time explicit.

If we use the discrete fracture model, i.e., each fissure is modelled
explicitly. In fact, the system of fissures here is a small part in the field and
it is impossible to get the detail information about the field geometry and
fractures characteristics. That is why we use the length of the reservoir to
get the average parameters of the system cracks. These models are based
on an approximation by only several fissures significance and the system are
treated as non-homogeneous medium [10].

The exchange flow is derived from the total discharge q per unit
width through a vertical cross-section of the porous blocks for steady state
by following equation

q = u(x)h(x) = −kBρg
µ

h
dh

dx
. (42)

The mass conservation requires the total discharge q is constant;
the same amount of fluid should cross each surface per unit time. Integrating
between x = 0 and a distance of the length of the blocks x = L, which is
large in comparison with the pore size d but small in comparison with the
size of the reservoir l (d� L� l) [4] we obtained

qdx = −kBρg
µ

hdh

q

∫ x=L

x′=0

dx′ = −kBρg
µ

∫ hC

h′=hB

h′dh′

q = −kBρg
µ2L

(h2B − h2C).

This equation is known as the Dupuit-Forchheimer discharge formula [7].
The exchange flow from the system fissures and the porous blocks

is based on the equation above and has the following form

q = −α(h2B − h2C), (43)
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where α = kBρg
µ2L

is an exchange coefficient and is assumed to be constant.

3.2.2 Double-porosity model

Based on an applied continuum approach, a principle of mass conservation
is used here to derived a continuity equation. The state of conservation of
mass is:

change of mass + net outflow of a volume = change of mass due
to sources/sinks [10].

In mathematical terms, the mass conservation yields

m
∂h

∂t
+

∂

∂x
(uh) = q. (44)

Substituting the equations 7 and 43, the double-porosity model yields

m
∂hB
∂t

= κBm
∂2

∂x2
h2B − α(h2B − h2C), (45)

mε
∂hC
∂t

= κCmε
∂2

∂x2
h2C + α(h2B − h2C), (46)

where ε is the ratio of the cracks porosity, relative to a volume of cracks, to
the porosity of the porous blocks. The coefficients κB and κC are the same
form as the equation 5 of the Boussinesq equation

κB =
ρgkB
2mµ

,

κC =
ρgkC
2mεµ

,

where kB the permeability of the porous blocks and kC the permeability of
the system of cracks. The ratio ε is very small, ε� 1, so the κB � κC .

The initial and boundary conditions The conditions are the same as
the model problem of a very intense pulse. At the boundary, the groundwater
flow increases rapid to maximum level h0 and decreases to initial distribution,
which is assumed to zero, at a short time interval τ . The boundary condition
is in the form

hB(0, t) = hC(0, t) = h0f(
t

τ
). (47)

The function f(θ) ≡ 0 at θ > 0, f(−1) = f(0) = 0 and f(θ) > 0 at
−1 < θ < 0 [1]. The initial condition is assumed

hB(x,−τ) = hC(x,−τ) ≡ 0, 0 ≤ x <∞. (48)
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From this condition, the dome extension has a finite speed and the boundary
at infinity is added

hB(∞, t) = hC(∞, t) ≡ 0. (49)

Dipole moment We consider the groundwater flow with t ≥ 0. The pur-
pose of this is that we obtain a constancy of the dipole moment and follows a
conservation of mass of fluid. The models, which are based on the Boussinesq
equation are validly to calculate the water level of the saturated-region in an
unconfined aquifer through a fissurized porous medium. The equation 45, 46
are divided by porosity, m,

∂hB
∂t

= κB
∂2

∂x2
h2B −

α

m
(h2B − h2C), (50)

ε
∂hC
∂t

= κCε
∂2

∂x2
h2C +

α

m
(h2B − h2C). (51)

The dipole moment in the case of the system of equations 50-51 and together
with the conditions 47, 48, 49 has an integral of the same dipole moment
type [1]

Q(t = 0) =

∫ ∞
0

x[hB(x, t) + εhC(x, t)]dx. (52)

This integral is derived with d/dt, added the equations 50 and 51, multiplied
with x and integrated from x = 0 to x =∞. The second terms in the system
equations 50-51 vanish because the exchange flow does not happen at the
time that an intense pulse breakthrough a dam. So, we obtain

d

dt
Q(t) =

d

dt

∫ ∞
0

xhB(x, t)dx+
d

dt

∫ ∞
0

xεhC(x, t)dx

=

∫ ∞
0

xκB
∂2

∂x2
h2Bdx+

∫ ∞
0

xκC
∂2

∂x2
h2Cdx

= κB[x(
hB
2

∂hB
∂x

)− hB]
∞

0
+ κC [x(

hC
2

∂hC
∂x

)− hC ]
∞

0

= κBhB(0, t) + κChC(0, t).

When t ≥ 0, the boundary and initial conditions yield

hB(0, t) = hC(0, t) = 0, (53)

hB(x, 0) = hiB(x), (54)

hC(x, 0) = hiC(x). (55)
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The groundwater flow stops to drain out at the boundaries. Thus, the dipole
moment is a constant and equals the dipole moment at initial distribution.

Q(t) = Q(t = 0) =

∫ ∞
0

x[hB(x, 0) + εhC(x, 0)]dx,

=

∫ ∞
0

x[hiB(x) + εhiC(x)]dx.
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3.3 Numerical experiment

3.3.1 Dimensionless variables

The system equation are simplified by introducing dimensionless variables.
Dimensionless time is θ = t

τ
. Definition dimensionless time by

∂
∂t

= ∂t yields

∂t =
∂θ

∂t
∂θ =

1

τ
∂θ. (56)

The water levels of the porous blocks and the system cracks are
HB = hB

h0
and HC = hC

h0
. Adding to the basic system equations, we calculate

the dimensionless position and the dimensionless exchange coefficient. From
the first equation for the porous blocks yields

h0
τ
∂θHB = κBh

2
0∂

2
xxH

2
B −

αh20
m

(H2
B −H2

C),

∂θHB = κBh0τ∂
2
xxH

2
B −

h0τα

m
(H2

B −H2
C).

The second equation for the system cracks yields

h0
τ
∂θHC = κCh

2
0∂

2
xxH

2
C −

αh20
mε

(H2
B −H2

C),

∂θHC = κCh0τ∂
2
xxH

2
C −

h0τα

mε
(H2

B −H2
C).

The dimensionless positions are differences in two equations be-
cause of the coefficients κB and κC .

∂2ξξ = κBh0τ∂
2
xx,

∂2ξξ = κCh0τ∂
2
xx.

These correspond to

κB∂
2
xx =

1

h0τ
∂2ξξ,

κC∂
2
xx =

1

h0τ
∂2ξξ.

Elimination the κC in the second equation above yields

κB
κC
∂2xx =

1

κCτh0
∂2ξξ,

∂2xx =
1

κCτh0
∂2ξξ.
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So, the dimensionless position is in the form

∂2xx =
∂ξ2

∂x2
∂2ξξ =

1

κCτh0
∂2ξξ,

ξ =
x√
κCτh0

.

The exchange coefficient α now has a dimensionless form, β,

β =
ατh0
m

. (57)

We can reduce the basic system of equations into a convenient
dimensionless form:

∂θHB =
κB
κC
∂2ξξH

2
B − β(H2

B −H2
C), (58)

∂θHC = ∂2ξξH
2
C +

β

ε
(H2

B −H2
C). (59)

The boundary and initial conditions are also in the dimensionless
form

HB(0, θ) = HC(0, θ) = f(θ), (60)

HB(ξ,−1) = HC(ξ,−1) ≡ 0, (61)

HB(∞, θ) = HC(∞, θ) = 0. (62)

The function f(θ) here is also the dimensionless function, f(θ) ≡ 0 at θ ≥ 0.
The system equations 58-59 are considered with semi-infinite 0 ≤ ξ <∞ and
time θ > −1. The total dipole moment is also simplified in dimensionless
form, M , ∫ ∞

0

√
κCτh0ξh0(HB + εHC)

√
κCτh0dξ = Q,

M =
Q

κCτh20
=

∫ ∞
0

ξ(HB + εHC)dξ.
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3.3.2 Discrete schemes

A system of equations 58 and 59 is consider with the spatial domain ξ ∈ [0, L]
and θ ∈ [0, T ]. The N + 1 cells are also used in the fissures-porous blocks
with the same length4ξ = ξi+1/2−ξi−1/2. This gives the grid points {ξi}N+1

i=1 ,
where ξi is the center of the cell Ii = [ξi−1/2, ξi+1/2]. The time steps Ntime
and the length of each time step 4θ = θk+1 − θk are considered the same as
with the homogeneous porous medium case. The time steps is represented
by time {tk}Ntimek=1 .

The solution of the system equations are approximated by the
schemes

(HB)n+1
i − (HB)ni
4θ

=
κB
κC

(H2
B)ni+1 − 2(H2

B)ni + (H2
B)ni−1

(4ξ)2
− β[(H2

B)ni − (H2
C)ni ],

(63)

(HC)n+1
i − (HC)ni
4θ

=
(H2

C)ni+1 − 2(H2
C)ni + (H2

C)ni−1

(4ξ)2
− β

ε
[(H2

B)ni − (H2
C)ni ].

(64)

These correspond to

(HB)n+1
i = sB[(H2

B)ni+1 − 2(H2
B)ni + (H2

B)ni−1]−4θβ[(H2
B)ni − (H2

C)ni ], (65)

(HC)n+1
i = sC [(H2

C)ni+1 − 2(H2
C)ni + (H2

C)ni−1]−
4θβ
ε

[(H2
B)ni − (H2

C)ni ], (66)

where i = 2, ..., N , sB = κB
κC

4θ
(4ξ)2 and sC = 4θ

(4ξ)2 .

The first cell i = 1 and the last cell i = N + 1 are the boundary
value

HB(1, k) = HC(1, k) = 0,

HB(N + 1, k) = HC(N + 1, k) = 0.

The initial states of the scheme are followed by equations

(HB)1i =
κB
κC
sB[(H2

B)0i+1 − 2(H2
B)0i + (H2

B)0i−1]−4θβ[(H2
B)0i − (H2

C)0i ], (67)

(HC)1i = sC [(H2
C)0i+1 − 2(H2

C)0i + (H2
C)0i−1]−

4θβ
ε

[(H2
B)0i − (H2

C)0i ], (68)

where H2
B(·, 0), H2

C(·, 0) are the initial distributions of the porous blocks and
the system fissures.
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3.4 Model results

3.4.1 Procedure of the computational

The discrete schemes 65-66 are simulated with dimensionless space ξ ∈ [0, 10]
and dimensionless time θ ∈ [0, 2000] and a short interval dimensionless time
θ ∈ [−1, 0] before time goes to zero at the boundary ξ = 0. The number of
cells is N + 1 = 501.

The porous blocks discrete scheme 65 has a frozen coefficient that
κB
κC

= 10−4 is considered, so the parameters of the discrete equations are
sB � sC ,

sB =
κB
κC

4θ
(4x)2

= 10−4
0.01

0.022
= 2.5 · 10−3,

sC =
4θ

(4x)2
= 25.

The values of the parameters β = 10−2 and ε = 10−4 are taken in
computational.

The procedure of computational experiment begins with the same
as the homogeneous porous medium. Firstly, the intense pulse of porous
blocks at the boundary is obtained from the dimensionless function f(θ)
when time is less than zero. In this moment,the exchange flow does not
appear between two embedded porous media. The relationship between the
porosity of the porous blocks and system cracks is the ratio ε, so the pulse
of the system cracks is also defined such as

HC(0, t < 0) = εHB(0, t < 0). (69)

Next, the initial state (θ < 0) is computed with the same form
explicit schemes 65-66 with the boundary profile and the initial data is equiv-
alent to zero.

The initial water level of porous blocks and system cracks are up-
dated at θ = 0 . Thus, the numerical schemes 65-66 are simulated to get the
results for porous blocks and system cracks.
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3.4.2 Numerical modelling results

A profile of water level at the boundary is defined using function f(θ) with
θ∗ = −0.80 in figure 19. The maximum of dimensionless water level reaches
H = 1.00 at constant dimensionless time θ∗ = −0.80. The initial distribution
at θ = −1 is assumed to zero.

Figure 19: Profile of the water height at the boundary from θ = −1.00 to
θ = 0 with θ∗ = −0.80.

Following the procedure, the initial distribution for large times
case at θ = 0 is defined as the figures 20 and 21 for fissurized porous blocks
and system cracks. In these figures, the relation between the water levels of
porous blocks and system cracks are the ratio of two porosity ε = 10−4. The
initial distribution in purely porous blocks is also defined in figure 22, the
height is lower than in the fractured porous blocks and the position of front
is shorter than in the system cracks.

After that, the discrete schemes 65-66 are computed and show the
results in figures 23, 24 and 25. The water levels of porous blocks HB(x, θ)
(dash line) and system cracks HC(x, θ) (solid line) are distributed for time
θ = 10.00, θ = 100.00 and θ = 1000.00. The water level of the porous blocks
is higher than the system cracks, but the front position of system cracks goes
faster than the front of porous blocks to extent into the media.
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Figure 20: The initial distribution at θ = 0 in fissurized porous blocks.
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Figure 21: The initial distribution at θ = 0 in system cracks.
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Figure 22: The initial distribution at θ = 0 in purely porous blocks.
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Figure 23: The water level in fissurized porous blocks and cracks at t = 10.00.
The water level hB(x, t = 10.00) (red dash line) is higher than the water level
hC(x, t = 10.00) (blue line), but system cracks extension is faster.
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Figure 24: The water level in fissurized porous blocks and cracks at t =
100.00. With increasing time, the heights are lower and the extensions are
further.

49



Figure 25: The water level in purely porous blocks, fissurized porous blocks
and cracks at t = 1000.00. The mass of fluid and the front position of flow
in purely porous blocks are less than in fissurized porous blocks.
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Checking of the results The front of groundwater mound, which is ob-
served from time t = 10.00 in figure 23 will be checked with the theory to get
a accuracy of the numerical method. At the initial distribution, θ = θ0 = 0,
the flow has the front at ξf = ξf0. The distribution of groundwater levels
near ξ = ξf0 are assumed as a steady one after a short time interval near
θ = 0. The dimensionless velocity of the fluid tongue extension is considered
as a constant and has the rate [1]

V =
dξf
dθ

=
ξf − ξf0
θ − θ0

=
ξf − ξf0

θ
= constant. (70)

The functions of water height near the front are in the forms [1]

HB = HB(ζ),

HC = HC(ζ),

ζ = ξ − V (θ − θ0)− ξf0.

When ζ is near zero, the front is ξ = ξf = ξf0 +V (θ− θ0). Equations 65 and
66 are returned to the same functions of ζ as the forms

d

dζ

dζ

dθ
HB =

κB
κC

d2

dζ2
dζ2

dξ2
H2
B − β(H2

B −H2
C),

d

dζ

dζ

dθ
HC =

d2

dζ2
dζ2

dξ2
H2
C +

β

ε
(H2

B −H2
C).

Derivation of dζ
dθ

and dζ2

dξ2
are calculated such as

dζ

dθ
=
d(ξ − V (θ − θ0)− ξf0)

dθ
= −V,

dζ2

dξ2
=
d(ξ − V (θ − θ0)− ξf0)2

dξ2
=
dξ2

dξ2
= 1.

Now, the equations 65 and 66 are in the following forms

V
d

dζ
HB +

κB
κC

d2

dζ2
H2
B − β(H2

B −H2
C) = 0, (71)

V
d

dζ
HC +

d2

dζ2
H2
C +

β

ε
(H2

B −H2
C) = 0. (72)

The terms κB
κC

d2

dζ2
H2
B and βH2

B in equation 71 can be neglected. So, the
equation takes the form
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V
d

dζ
HB + βH2

C = 0. (73)

From the reference [1], the behavior of the function HC(ζ) is a linear one near
ζ = 0, HC(ζ) = −Aζ, where A is a certain positive constant. The function
of HB(ζ) is computed from equation 73,

V
d

dζ
HB + βA2ζ2 = 0,∫

V dHB = −
∫
βA2ζ2dζ,

V HB = −βA
2

3
ζ3,

HB = −βA
2

3V
ζ3,

HB =
β

3AV
H3
C ,

H
1/3
B = (

β

3AV
)1/3HC .

Therefore, near ζ = 0, i.e. ξ = ξf , the proportional of H
1/3
B to HC is in the

form H
1/3
B = (β/3AV )1/3HC .

In the figure 26 and 27, the water heights in fissurized porous blocks
and system cracks are plotted in the same scale in x-direction. The water
heights have a linear shape at the front xf (t) and the proportional between
them is

H
1/3
B ∝ HC ,

10−15/3 ∝ 10−6.

With β = 10−2 and A = 10−4 are assumed, the dimensionless velocity of the
front is V = 2.00 · 10−3. This velocity is used to calculate the front of the
flow in fissurized porous medium in the next section.

(
β

3AV
)1/3 =

H
1/3
B

HC

=
(5.20 · 10−15)

1/3

0.68 · 10−6
= 25.48,

β

3AV
= 16542.40,

V =
10−2

3 · 10−4 · 16542.40
= 2.00 · 10−3.
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Figure 26: The water level near the front in fissurized porous blocks at
t = 10.00.
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Figure 27: The water level near the front in system cracks at t = 10.00.

4 Comparison on the results in purely and

fissurized porous blocks

When the homogeneous and heterogeneous porous medium is compared,
the properties are changed because the REV are larger to get the different
models from the figure 6. Therefore, the coefficient in the model of homo-
geneous porous medium is smaller than in heterogeneous porous medium,
κp = κB/2 = 0.20/2 = 0.10.
The model for purely porous medium is

∂θHp =
κp
κC
∂2ξξH

2
p − βH2

B. (74)

The discrete scheme is in the form

(Hp)
n+1
i =

κp
κC
sB[(H2

p )ni+1 − 2(H2
p )ni + (H2

p )ni−1]−4θβ(H2
B)ni . (75)

The initial distribution has the scheme equation

(Hp)
1
i =

κp
κC
sB[(H2

p )0i+1 − 2(H2
p )0i + (H2

p )0i−1]−4θβ(H2
B)0i . (76)
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The numerical scheme is simulated and compared in the figure 25
at time t = 1000.00. The mass of fluid in purely porous blocks without the
system cracks is smaller than fissurized porous blocks. The front does not
move further as in fissurized porous blocks.

The figure 28 represents a large dipole moment is concentrated in
porous blocks. The maximum heigh t breakthrough boundary is h0 at a short
time interval θ = 1.00. The dipole moment is calculated from that height is
a maximum energy and this energy is conserved such as the dipole moment
is a constant. Dipole moment of system cracks also has a maximum energy
at boundary, but it decreases in transient flow at short time interval θ = 1.00
and comes to a constant from θ = 0.

Figure 28: The dipole moment Q in fissurized porous blocks and cracks. A
major part of dipole moment is contained in fissurized porous blocks.

The bulk fluid mass is defined from density of water, ρ = 997kg/m3,
multiply by dipole moment Q, which is assumed to a volumetric flow rate
per unit width. The result in figure 29 represents the total mass of fluid in
porous blocks and system cracks. The mass of fluid in porous blocks is a
major part of the fluid in fissurized porous medium.

The front position xf (θ) is represented in figure 30. The front of
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Figure 29: The bulk mass of the fluid movement. A major part of mass
concentrates in fissurized porous blocks.

groundwater flow in fissurized porous medium is calculated by

xfissuref (θ) = xf0 + [V (θ − θ0)]
√
κCh0τ , (77)

where V = 2.00 · 10−3, xf0 = 34.00 at the initial θ0 = 0 and the height
h0 = 10.00. The groundwater dome extension in purely porous medium is
computed from the following equation

xpurelyf (θ) = [2(5κpQpθ)
1/4]

√
κCh0τ . (78)

The groundwater mound reaches boundary x∗(t) when hB(x∗, t) = hC(x∗, t).
The function x∗(t) is the extension of the zone where water level in porous
blocks is higher than in system cracks [1] and is computed by different dipole
moment in porous blocks and in system cracks by the following equation

x∗f (θ) = [2(5κB(QB −QC)θ)1/4]
√
κCh0τ . (79)

The groundwater fronts are plotted in figure 30. The results indicate that the
front position in fissurized porous blocks extends faster than in purely porous
blocks. The boundary x∗(t) is nearly same with the front in homogeneous
porous blocks.
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Figure 30: The front positions of the groundwater flow. The front of flow
in fissurized porous medium (dash line) extents faster than in purely porous
medium (blue line). The boundary at x∗(t) (dot line) is closer with the front
in purely porous medium.
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5 Summary and conclusion

The problem of the flow in porous medium is considered in two models: one
in homogeneous porous blocks and one in fissurized porous blocks with a
system cracks. The boundary and initial values are different with time −t
and +t. When time is negative [−τ, 0], a short time interval t = τ , the
groundwater flow is an intense pulse at the boundary x = 0 that is used to
obtained the initial distribution at large positive times t = T . The models
have the initial distribution and the boundary is zero at x = 0 and at infinite
because the length of porous medium is considered semi-infinite.

The models are simulated at large times, so the groundwater flow
has form as the mound with water height of saturated region and the front of
the flow indicates extension into porous medium. The mathematical models
is computed with the input parameters in table 3. The purely porous blocks
is computed under the same conditions with the fissurized porous blocks for
comparison.

Input Homogeneous Porous blocks Cracks Purely Porous blocks
κ 0.20 0.20 2000 0.10

Length, L 100.00 10.00 10.00 10.00
Time, T 2000 2000 2000 2000

τ 1.00 1.00 1.00 1.00
Cells, N + 1 501 501 501 501

Table 3: The input parameters.

The output parameters are the water level in figures 23-25, dipole
moment Q in table 4 and the front of the groundwater mound in figure 30.
The water height decrease with larger times at all cases. The dipole moment
is a constant from time is zero. The constancy dipole moment gives a self-
similar solution for exact analytically and a stability estimation for numerical
solution. The front position indicates that a penetration of flow in stratified
heterogeneous medium is more than in homogeneous porous medium because
a system fissures supports the groundwater flow near the front.

Output Homogeneous Porous blocks Cracks Purely Porous blocks
Q 6.67 3.33 · 10−5 1.19 · 10−8 1.67 · 10−5

Table 4: Dipole moment from computational.

The results from the mathematical models proposed above in this
studying give us the following conclusions.
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• The flow in porous medium is affected by the fissures dramatically. The
mass of fluid of the groundwater breakthrough the boundary is larger
such as the height and speed of penetration of the fluid.

• The water distribution in porous blocks and system cracks has two re-
gions: one near the boundary is blocks-dominated, where the water
level in porous blocks is larger then in system cracks, and a fissures-
dominated region near the front where the water level in system cracks
is larger than in porous blocks. This conclusion is same with the con-
clusion from Barenblatt et al. (1999) [1].

• The concept of the exchange flow between porous blocks and fissures
at any fixed place is at first the fissures feed the porous blocks when
the groundwater enters the medium. Secondly, the porous blocks start
to feed the fissures to support the water level of saturated part of the
medium via the fissures. This is an explanation for a double porous
medium behavior that the fluid is produced into well by a higher perme-
ability medium (or a system fissures) and a lower permeability medium
(or porous blocks) recharges for a higher permeability medium.

• A major part of the mass of fluid enters the medium is concentrated
in the porous blocks. The fissures affect largely on the penetration of
the fluid into the medium. When computing of the contamination, the
fissures have to take into account to correct the evolution in fissurized
rocks.
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List of Symbols

A a positive constant
α exchange coefficient
β dimensionless exchange coefficient
ε ratio of system cracks porosity and porosity of

porous blocks
g acceleration of gravity
h water level of homogeneous porous blocks
h0 maximum water level
HB dimensionless water level of porous blocks
HC dimensionless water level of system cracks
k permeability of homogeneous porous blocks
kB permeability of fissurized-porous blocks
kC permeability of system cracks
κ coefficient of the Boussinesq equation for ho-

mogeneous porous blocks
κB coefficient of the Boussinesq equation for

porous blocks
κC coefficient of the Boussinesq equation for sys-

tem cracks
κp coefficient of the Boussinesq equation for

purely porous blocks
L length of porous medium
M dimensionless dipole moment of fissurized

porous blocks
m porosity of porous blocks
µ viscosity of fluid
Q dipole moment of homogeneous porous blocks
QB dipole moment of porous blocks
QC dipole moment of system cracks
ρ density of fluid
T total time
t time
τ short time interval at the boundary
θ dimensionless time
θ0 short dimensionless time interval near a steady

flow
V dimensionless velocity of fluid tongue exten-

sion
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x position
xf front position of groundwater mound
ξ dimensionless position
ξf dimensionless front position
ξf0 dimensionless front position near a steady flow

at short dimensionless time θ0

x, xf , t, L, h, h0, HB, HC , ξ, ξf ,ξf0, θ, κ, κB, κC , κp, ρ, m, g, µ,
k,kB, kC , Q, QB, QC , M , A, V , α, β, ε, T , τ , θ0
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Appendix A: MATLAB code for the homoge-

neous porous medium

Note: The code for the homogeneous porous medium is completed in coop-
eration with YangYang Qiao, who is the Research Fellow at University of
Stavanger.

clear;
% The model for homogenous porous medium
%Define function f(theta)
thetastar = −0.3; % a constant dimensionless time
deltat = 0.01;
theta0 = −1 : deltat : 0 ; % time theta0=[-1,0]
h0 = 10;

for i = 1 : (1/deltat+ 1) %time loop
if theta0(i) < thetastar
f(i) = h0 ∗ (theta0(i) + 1)/(thetastar + 1) ;
else
f(i) = h0 ∗ theta0(i)/thetastar ;
end
end

plot(theta0,f)
title(’Profile h at boundary’)
xlabel(’t’)
ylabel(’h’)
pause

%—————grid——————————-
L = 100.; % Length of the wire
T = 2000.; % Total time
Ntime = T ∗ 100; % Number of time steps
dt = T/Ntime;
N = 500; % Number of cells
dx = L/N ;
kappa = 2e− 05 ∗ 10000;
b = dt/(dx ∗ dx);
s = b ∗ kappa % Stability parameter for explicit method
——————————————————-
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% Water level at the boundary H(0,theta)= f(theta)

for k = 1 : Ntime+ 1 %time loop
%left boundary at x=0
if k < (1/deltat+ 1)
u(1, k) = f(k);
else
u(1, k) = 0;
end
u(N + 1, k) = 0.;
time(k) = (k − 1) ∗ dt− 1; %define real time
end

—————————————————–
% Define initial data using explicit method
% Numerical scheme for short time interval

for k = 1 : 1/deltat % Time Loop
for i = 2 : N % Space Loop
u(i, k+ 1) = u(i, k) + s∗ (u(i− 1, k).2 +u(i+ 1, k).2− 2.∗u(i, k).2);
end
end
————————————————————-
%define dipole moment Q at time t=0
Q = 0;

for i = 1 : N + 1 %Space loop
x(i) = (i− 1) ∗ dx;%define real position x
Q = Q+ (x(i) ∗ u(i, 1/deltat+ 1) ∗ dx);
U(i, 1) = u(i, 1/deltat+ 1); % Update initial state
end

plot(x,u(:,1/deltat+1))
title(’Profile h at initial’)
xlabel(’x’)
ylabel(’h’)
axis([0 100 0 10])
pause
%———-Analytical solution————————
zeta0 = 2.99;
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for k = 1/deltat+ 2 : Ntime
xf(k) = (Q ∗ coeff ∗ (time(k) + 1))(1/4) ∗ zeta0;
record(k) = ceil(xf(k)/dx);
end
——————————————————–
for k=1/deltat+2:Ntime
for i=1:record(k)
zeta(i,k)=x(i)/xf(k);
if zeta(i,k)¡=zeta0
Phi(i, k) = (50.5/3) ∗ zeta(i, k)0.5 ∗ (1− zeta(i, k)1.5);
else
Phi(i, k) = 0;
end
h(i, k) = ((Q/(coeff ∗ (time(k) + 1)))0.5) ∗ Phi(i, k);
end
end
%——————Plot the exact anaytical results—————
y1=102; y2=202; y3=302; y4=402;
K1=1002; K2=2002; K3=3002; K4=4002;
figure(1)
plot(x,u(:,1/deltat+1),x(1:record(y1)),h(1:record(y1),y1)
,x(1:record(y2)),h(1:record(y2),y2),x(1:record(y3)),h(1:record(y3),y3)
,x(1:record(y4)),h(1:record(y4),y4),x(1:record(K1)),h(1:record(K1),K1)
,x(1:record(K2)),h(1:record(K2),K2),x(1:record(K3)),h(1:record(K3),K3)
,x(1:record(K4)),h(1:record(K4),K4))
title(’Analytical solution for homogeneous porous media’)
xlabel(’x’)
ylabel(’h’)
axis([0 10 0 4])
legend(’t=0’,’t=10’,’t=20’,’t=30’,’t=40’,’t=100’,
’t=200’,’t=300’,’t=400’)

% ————–NUMERICAL SCHEME—————————–
for k=1:Ntime
for i=2:N;
U(i, k+1) = U(i, k)+s∗(U(i−1, k).2+U(i+1, k).2−2.∗U(i, k).2);
end
U(1, k) = 0;
U(N + 1, k) = 0.;
end
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%————–Plot the numerical result———————-
figure(2)
plot (x,U(:,1),x,U(:,y1),x,U(:,y2),x,U(:,y3) ,x,U(:,y4),
x,U(:,K1),x,U(:,K2),x,U(:,K3),x,U(:,K4))
title(’Numerical solution for homogeneous porous media’)
xlabel(’x’)
ylabel(’h’)
axis([0 10 0 4]) legend(’t=0’,’t=10’,’t=20’,’t=30’,’t=40’,
’t=100’,’t=200’,’t=300’,’t=400’)
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Appendix B: MATLAB code for the heteroge-

neous porous medium

clear;
%the model for heteregenous porous medium
%Define dimensionless function f(theta)
thetastar= -0.8; %a constant dimensionless time
deltat=0.01;
theta=-1:deltat:0 ; % dimensionless time interval θ = [−1, 0]

for i=1:(1/deltat+1)
if theta(i) < thetastar
f(i) = (theta(i)+1)/(thetastar+1);
else
f(i) = theta(i)/thetastar ;
end
end

plot(theta,f)
title(’Profile H at boundary’)
xlabel(’t’)
ylabel(’H’)

%——grids of modelling—————————
L = 10.; % Length of the wire
T =2000.; % Total time
Ntime = T*100; % Number of time steps
dt = T/Ntime;
N=500; %Number of cells
dx = L/N;
%—————-input parameters———————————–
kappaB = 0.2; % coefficient of porous blocks
kappaC=2000; % coefficient of cracks
kappa=kappaB/2; % coefficient of purely porous blocks
b = dt/(dx*dx);
sB=b*(kappaB/kappaC) % parameter of porous blocks
sC= dt/(dx*dx) % parameter of system cracks
s=b*(kappa/kappaC) % parameter of purely porous blocks
beta=1e-02; % the exchange coeff epsilon=1e-04; % the ratio of

two porosity =mc/mb
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pause
%————–Boundary condition———————–

% Water level at the boundary H(0,theta)= f(theta)
for k=1:Ntime+1 %time loop

%left boundary at x=0
if k < (1/deltat+ 1)
hb(1,k) = f(k);

u(1,k) = f(k);

else

hb(1,k) =0 ; u(1,k) =0 ;
end
hb(N+1,k) = 0.;
time(k) = (k-1)*dt-1; %define real time

u(N+1,k) = 0.;
end
hc = hb ∗ epsilon; % Define initial state hc(t¡0)
u=hb; % Define initial state for homogeneous porous blocks
h0=10;

for i=1:N+1
x(i) = (i−1)∗dx∗sqrt(h0∗kappaC); %define real position x (h0=10, tau=1)
end

%———————-Initial state——————–
for k=1:1/deltat % Time Loop
for i=2:N % Space Loop
% the discrete scheme for a short time interval tau=1
hb(i, k + 1) = hb(i, k) + sB ∗ (hb(i − 1, k).2 + hb(i + 1, k).2 − 2. ∗

hb(i, k).2)− dt ∗ (hb(i, k).2 − hc(i, k).2) ∗ beta;
hc(i, k + 1) = hc(i, k) + sC ∗ (hc(i − 1, k).2 + hc(i + 1, k).2 − 2. ∗

hc(i, k).2) + dt ∗ (hb(i, k).2 − hc(i, k).2) ∗ (beta/epsilon);
u(i, k+1) = u(i, k)+s∗(u(i−1, k).2 +u(i+1, k).2−2.∗u(i, k).2)−

dt ∗ (hb(i, k).2) ∗ (beta);
end
end

Qb=0; Qc=0; Q=0; Qhomo=0;
for i = 1:N+1 %Space loop

72



%define dipole moment Q at time t=0
Q = Q+ (x(i)∗ (hb(i, 1/deltat+ 1) + epsilon∗hc(i, 1/deltat+ 1))∗

dx/sqrt(h0 ∗ kappaC));

Qb = Qb+ (x(i) ∗ hb(i, 1/deltat+ 1) ∗ dx/sqrt(h0 ∗ kappaC));

Qc = Qc+(x(i)∗epsilon∗hc(i, 1/deltat+1)∗dx/sqrt(h0∗kappaC));

Qhomo = Qhomo+(x(i)∗u(i, 1/deltat+1)∗dx/sqrt(h0∗kappaC));

U(i, 1) = u(i, 1/deltat + 1); % Update the initial state of homo-
porous blocks

HB(i, 1) = hb(i, 1/deltat+ 1); % Update the initial state of porous
blocks

HC(i, 1) = hc(i, 1/deltat + 1); % Update the initial of the system
cracks

end

plot(x,U(:,1) )
title(’Profile purely H at initial’)
xlabel(’x’)
ylabel(’H’)
axis ([0 10 0 1])

pause
plot(x,HB(:, 1) )

title(’ProfileHBat initial’)
xlabel(’x’)
ylabel(’H’)
axis ([0 10 0 1])

pause
plot(x,HC(:, 1))

title(’Profile HCat initial’)
xlabel(’x’)
ylabel(’H’)
axis ([0 10 0 0.001])

pause
%%%%%%%%%%%%%%
% the numerical schemes %
%%%%%%%%%%%%%%

for k=1:Ntime % Time Loop
for i=2:N % Space Loop
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HB(i, k + 1) = HB(i, k) + sB ∗ (HB(i − 1, k).2 + HB(i + 1, k).2 −
2. ∗HB(i, k).2)− dt ∗ (HB(i, k).2 −HC(i, k).2) ∗ beta;

HC(i, k + 1) = HC(i, k) + sC ∗ (HC(i − 1, k).2 + HC(i + 1, k).2 −
2. ∗HC(i, k).2) + dt ∗ (HB(i, k).2 −HC(i, k).2) ∗ (beta/epsilon);

U(i, k+1) = U(i, k)+s∗(U(i−1, k).2+U(i+1, k).2−2.∗U(i, k).2)−
dt ∗ (HB(i, k).2) ∗ beta;

end

HB(1, k) = 0;
HB(N + 1, k) = 0;
HC(1, k) = 0;
HC(N + 1, k) = 0;
U(1, k) = 0;
U(N + 1, k) = 0.;
end

%—————–dipole moment—————————

density=997; %kg/m3

qtime=-1:dt:T;
qstarb=-0.95;

for q=1:Ntime+1
if qtime(q) < qstarb
qb(q) = (Qb+ f(q) ∗ x(i) ∗ dx)/(kappaC ∗ h02);
else
qb(q) = Qb;
end
massb(q) = Qb ∗ density;
end

qstarc = 0;

for q = 1 : Ntime+ 1
ifqtime(q) < qstarc
qc(q) = (Qc+ epsilon ∗ f(q) ∗ x(i) ∗ dx)/(kappaC);
else
qc(q) = Qc;
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end
massc(q) = Qc ∗ density;
end

figure(1)
semilogy(time,qb,’- -’,time,qc)
grid on
title(’Dipole moment’)
xlabel(’Θ’)
ylabel(’Q’)
legend(’porous blocks’,’cracks’)
axis([-1 10 10(−12) 10(−4)])

figure(2)
semilogy(time,massc, time,massb,’- -’)
grid on
title(’Fluid mass’)
xlabel(’Θ’)
ylabel(’Mass’)
legend(’cracks’,’porous blocks’)
axis ([0 1000 10(−6) 10(−1)])

pause

% front position %

%purely porous blocks

for k = 1 : Ntime+ 1
xfpure(k) = 2 ∗ (5 ∗Qhomo ∗ time(k))(1/4);
xf
∗(k) = 2 ∗ (5 ∗ (Qb−Qc) ∗ time(k))(1/4);

end

% Fissurized porous blocks
xf0 = 34.0; % front at initial t=0
V = 2 ∗ 1e− 03; % dimensionless velocity of the front

for k = 1 : Ntime+ 1
xffrac(k) = xf0 + V ∗ time(k) ∗ sqrt(h0 ∗ kappaC);

end
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figure(3)
semilogy(time,xfpure,time,xffrac,’- -’,time,xf

∗,’:’)
title(’Front position xf (t)’)
xlabel(’Θ’)
ylabel(’x’)
legend(’purely porous blocks’,’Fissurized porous blocks’,’xf

∗’)
axis ([0 1000 10(−2) 10(2)])

pause

%———–plot the results———————–
K1=1002; K2=10002; K3=100002;

figure(1)
plot(x,HC(:,K1),x,HB(:,K1),’- -’)
title(’Numerical solution at t=10’)
xlabel(’x’)
ylabel(’H’)
axis ([0 10 0 0.01])
legend(’cracks’,’porous blocks’)

figure(2)
plot(x,HC(:,K2),x,HB(:,K2),’- -’)
title(’Numerical solution at t=100’)
xlabel(’x’)
ylabel(’H’)
axis([0 10 0 0.01])
legend(’cracks’,’porous blocks’)

figure(3)
plot(x,U(:,K3),’.-.’,x,HC(:,K3),x,HB(:,K3),’- -’)
title(’Numerical solution at t=1000’)
xlabel(’x’)
ylabel(’H’)
axis([0 10 0 0.01])
legend(’purely porous blocks’,’cracks’,’porous blocks’)
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