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Abstract 
 
Shale gas reservoirs are mainly characterized by their low matrix permeability, ranging from 
sub-nanodarcies to tens of microdarcies, which makes the economic production of these 
reservoirs rare without needing artificial stimulation. However, developments within two major 
technologies, horizontal drilling and hydraulic fracturing, have made the production more 
viable and shale gas reservoirs have attracted a lot of interest from around the world. Because 
of their abundance, shale gas reserves can provide part of the solution to the world’s growing 
energy demands. In conventional reservoirs, Darcy’s law is typically used to model the gas 
flow. However, gas flow in shale gas reservoirs is more complicated than in conventional 
reservoir because of many coupled processes such as gas adsorption and desorption, a large gas 
slippage effect (Klinkenberg effect), strong rock/fluid interactions and geomechanical effects. 
The impact on flow behaviour from these mechanisms is currently not well understood and 
although there are a few shale gas simulators available, they do not comprehensively involve 
all of these mechanisms. 
In this thesis, an investigation of geomechanical effects and other controlling parameters for 
shale gas production is undertaken using a mathematical 1D+1D shale gas flow model. The 
model was provided by Berawala et al. (2018) and has been extended to include geomechanical 
effects. Geomechanical effects can be included into reservoir modelling by treating porosity 
and permeability of the formation is stress-dependent properties. Since the incorporation of 
geomechanical effects changed the scaling of the model, the new scaling approach has also 
been part of the thesis work. The model involves a high-permeable fracture extending from a 
well perforation through symmetrically surrounding shale matrix with low permeability. A 
sensitivity analysis is performed where geomechanical effects are varied in addition to varying 
other reservoir properties such as the fracture size, fracture shape, fracture spacing and initial 
reservoir pressure. Input parameters from literature data are applied. The simulation results are 
interpreted with and without using the dimensionless numbers 𝛼  and 𝛽 . The value of can 
express 𝛼𝛽 the residence time of gas in the fracture compared to in the matrix. Therefore, if 
𝛼𝛽 ≪ 1 it is expected that fracture properties have little impact on gas recovery. 
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Nomenclature 
 
Roman: 

𝑎& = Adsorbed gas, kg/m( 
𝑎)*+ = Max capacity adsorbed gas, kg/m( 
â& = Adsorbed gas, Pa 
â)*+  = Max capacity adsorbed gas, Pa 
𝑏 = Fracture half-width, m 
𝑏. = Average fracture half-width, m 
𝑏)*+  = Max half width (at well), m 
𝑏)/0  = Min half width (at end of fracture), m 
𝑏& = Inverse gas volume factor, - 
ℎ = Fracture height, m 
𝐾 = Absolute permeability, m3 
𝑃& = Gas pressure, Pa 
𝑃5 = Langmuir half capacity pressure, Pa 
𝑇 = Temperature, K 
𝑉 = Volume, m( 

 
Greek: 
 𝜂) =  Matrix porosity-stress-dependence factor, 𝑃𝑎9: 

𝜇& = Gas viscosity, 𝑃𝑎	𝑠 
𝜌& = Density, kg/m( 
𝜌&B  = Surface gas density, kg/m( 
𝜎)D   =  Mean effective stress, 𝑃𝑎 
𝜏 = Time scale of diffusion, s 
𝜙 = Porosity, - 

 ΨH  =  Fracture permeability-stress-dependence factor, 𝑃𝑎9: 
ΨI  =  Matrix permeability-stress-dependence factor, 𝑃𝑎9: 

 
Indices: 

𝑎𝑡𝑚 = Atmospheric conditions 
𝑓 = Fracture 
𝑖𝑛𝑖𝑡 = Initial conditions 
𝑚 = Matrix 
𝑤𝑒𝑙𝑙 = Well conditions 
 
 

Abbreviations: 
 

GOIP = Gas originally in place, kg 
GCIP =  Gas currently in place, kg 
TOC = Total Organic Content 

 
 
 
 



1. Introduction 
 
1.1 Shale Gas Reservoirs 
 
1.1.1 General Background 
 
Unconventional reservoirs can be classified as hydrocarbon-bearing formations in which 
economic production rates cannot be achieved without artificial stimulation. Shale gas, coalbed 
methane, tight sandstones and methane hydrates are all examples of such unconventional 
resources (Passey et al. 2010). The matrix permeability in shale gas reservoirs is very low and 
the existing natural fractures are usually not enough for attaining economic production rates. 
However, in recent years the interest in shale gas has increased dramatically because of the 
development of hydraulic fracturing technology. This technology, combined with horizontal 
drilling, makes economic production of shale gas possible. Moreover, since shale gas reservoirs 
are abundantly available throughout the world, they can provide part of the solution to the 
world’s growing energy demands in the coming decades (Swami and Settari, 2012). 
 
1.1.2 Characteristics of Shale Gas Reservoirs 
 
Shale gas reservoirs are organic-rich shale formations which serve as both reservoir and source 
rock at the same time and can contain gas in adsorbed form in addition to free gas which is 
normally found in conventional reservoirs (Yu and Sepehrnoori, 2014). The term shale has been 
used to describe a wide variety of rocks that are mainly composed of extremely fine-grained 
particles that are typically less than 4 microns in diameter. Shales can therefore be classified as 
mudstones and exhibit a wide range of constituents (clay, quartz, feldspar, heavy minerals, etc.). 
A large variability in matrix lithology is observed when comparing shale formations found 
worldwide (Passey et al. 2010). The adsorbed gas found in shale gas reservoirs mainly lies on 
the surface of the shale matrix and in the organic matter (i.e. kerogen), while the free gas mainly 
lies in natural fractures (Yu and Sepehrnoori, 2014). The amount of adsorbed gas can be 20-
80% of total gas reserves (Curtis 2002; Wu et al. 2014) and is dependent on the adsorption 
capacity of a shale, which is related to factors such as total organic content (TOC) and the 
specific surface area of nanopores (Wang et al. 2017). Nanoscale natural fractures act as 
pathways that can transport free gas and connect the low-permeability shale matrix (Wang et 
al. 2017). 
 
The matrix usually has extremely low permeability that ranges from sub-nanodarcies to tens of 
microdarcies and varies depending on the shale type (Wang and Reed, 2009). At depths typical 
for oil and gas reservoirs, the porosity of shale formations ranges from 2 to 15% (Curtis, 2002). 
There are mainly two types of pores present in the matrix: nano-scale pores and micro-scale 
pores (Wang and Reed, 2009). The constituents that make up the pore structures in shale gas 
reservoirs can be divided into four types: organic material with high porosity, inorganic material 
that often has a high clay mineral content, natural fractures, and hydraulic fractures (Wang et 
al. 2017). Loucks et al. (2009) observed three main modes of nanopores occurrences in shale 
formations: within grains of organic material as intraparticle pores, between organic material 
patches (kerogen packets) as intraparticle pores, and in fine-grained matrix not associated with 
organic material. The use of high resolution scanning-electron microscopy (SEM) has 
suggested that there exists a separate porosity system contained mainly inside the organic matter 
of shales (Klimentidis et al. 2010; Loucks et al. 2009; Ambrose et al. 2012; Sondergeld et al. 



2010). It appears that as much as 50% of the original volume of organic matter may consist of 
these pores in some shales. This means that the pore volume within organic matter may be a 
significant fraction of the entire porosity in some shale gas reservoirs. Figure 1 shows an SEM 
photomicrograph of a fine-grained sandstone and compares it with the scale at which porosity 
is observed in organic matter in a Barnett organic-rich shale rock (Passey et al. 2010). These 
pore spaces range in size from 5 to 1,000 nanometers and are thought to have been formed when 
oil and gas was generated (Wang and Reed, 2009). 
 

 
Figure 1 (Passey et. al. 2010): SEM photomicrograph of a fine-grained sandstone (left), and comparison of 
scale with porosity observed in organic matter in a Barnett organic-rich shale rock (right). The scale bar for 
the sandstone is 50 microns and for the organic matter inset image the scale bar is 500 nanometers. 

 
1.1.3 Production of Shale Gas Reservoirs 
 
Significant progress has been made in producing natural gas from unconventional reservoirs 
such as shales and tight gas formations in recent years. However, the estimated gas recovery 
from these reservoirs is still very low, estimated at 10 to 30 % of the gas in place. Gas flow in 
shale gas reservoirs is very complicated due to many coupled processes, such as gas 
adsorption/desorption, non-Darcy flow, strong rock/fluid interactions, a large Klinkenberg 
effect (Klinkenberg, 1941), and geomechanical effects. In addition, these processes coexist with 
complex flow geometry and multiscaled heterogeneity. The complicated flow behaviour 
impacts production and ultimate gas recovery in ways that are currently not well understood 
(Yu et al. 2014). The adsorbed gas is mostly produced in the latter stages of production when a 
considerable amount of free gas has been depleted and the well undergoes boundary dominated 
flow (Mengal and Wattenbarger, 2011). In early stage of production, when the pressure is high, 
the contribution from adsorbed gas to overall gas recovery is therefore usually insignificant (Yu 
and Sepehrnoori, 2014). 
 
By combining horizontal drilling with hydraulic fracturing, a large and highly fractured network 
can be created in shale formations. Horizontal wellbores are drilled in the direction of minimum 
stress and multiple transverse hydraulic fractures are created in an attempt to maximize the total 
stimulated reservoir volume (Yu and Sepehrnoori, 2014). Figure 2 shows an illustration of 
these two processes. The hydraulic fracturing process commonly uses a slurry of surfactants, 
corrosives, and aggregates to induce and maintain the fractures. After the stimulation pressure 
has been relieved, the aggregates are pinned by closure stresses and “prop” the fractures open, 



which is why they are commonly referred to as proppants (Hellmann et al. 2014). Sustaining 
high fracture conductivity in propped hydraulic fractures is an important aspect of production 
in shale gas reservoirs. This can be challenging because of several effects that lead to reduced 
fracture conductivity such as proppant fines generation and migration (Pope et al. 2009), 
proppant diagenesis (LaFollette and Carman, 2010) also termed proppant scaling, proppant 
embedment in softer rock and proppant crushing in harder rock (Fan et al. 2010). 
Geomechanical effects, in the form of stress-dependence in hydraulic fractures, can also result 
in reduced permeability. All these effects increase with production as the drawdown pressure 
is decreased and may result in significantly lowered overall gas recovery in many shale gas 
reservoirs (Yu and Sepehrnoori, 2014). 
 
 

 
 
Figure 2: Illustration of horizontal drilling into a shale gas reservoir accompanied by hydraulic fracturing 
to maximize the total stimulated reservoir volume. 

 
1.1.4 Modelling of Shale Gas Reservoirs 
 
When it comes to predicting and evaluating well performance of shale gas reservoirs, reservoir 
modelling is the preferred method (Yu and Sepehrnoori, 2014). Shale gas reservoirs are difficult 
to accurately model because of features such as complicated flow regimes, gas adsorption and 
desorption, surface diffusion, and stress dependence which all affect the gas-flow- and 
production processes. When traditional models and simulators designed for conventional 
reservoirs are used to predict the gas originally in place (GOIP) of shale gas reservoirs, the 
volume occupied by the adsorbed gas is usually overlooked, and as a result the volume of free 
gas is significantly overestimated (Wang et al. 2017). Although there are a few shale gas 
reservoir simulators available, they do not comprehensively involve all of these important 
mechanisms (Cipolla et al. 2010; Kelkar and Atiq 2010; Yang et al. 2013; Guo et al. 2014; Wu 
et al. 2014). Very few studies have been carried out addressing the critical issues of how to 
accurately model fractured unconventional gas reservoirs and how to select the best approach 
for modelling a given shale gas formation. Model development is therefore an area that needs 
to be given more attention in order to improve this understanding. This can be achieved through 
coming up with new conceptual models and in-depth modelling studies of laboratory to field-
scale applications (Yu et al. 2014). 



1.2 Geomechanics in the Petroleum Industry 
 
Geomechanics is the study of how soils and rocks deform, sometimes to failure, in response to 
changes of stress, pressure, temperature and other environmental parameters. Although 
geomechanics and its application to the petroleum industry was mostly ignored in earlier times, 
it has gained increasing interest over the last 30 years. It can be applied across all scales and to 
almost all aspects of petroleum extraction, from exploration to production and abandonment. 
Reservoir stimulation in the form of hydraulic fracturing was one of the first applications in the 
oil field to use geomechanics methods and is still a major development area. At the reservoir 
scale, geomechanics can help to model fluid movement and predict how fluid injection or 
removal effects the reservoir performance by changing important parameters like permeability, 
fluid pressure and in-situ rock stresses. In this way, geomechanics can be applied to make life-
of-reservoir decisions such as placing and completing of new wells, enhancing and sustaining 
production, minimizing risk and making new investments. A major area where consideration 
of geomechanics effects is needed is in oil and gas production from shales, because mechanical 
anisotropy – the variation of mechanical properties with orientation – plays a vital role (Cook, 
2015). 
 
1.3 Scope of Project 
 
A simplistic numerical modelling approach of a 1D+1D combined fracture-matrix model that 
characterizes fracture-matrix interactions is presented. The model is an extension of the work 
by Berawala et al. (2018), which was a continuation of other previous works such as Berawala 
et al. (2017) and Andersen et al. (2014, 2015). The new contributions to the previously 
constructed model is the incorporation of geomechanical effects and new scaling of 
dimensionless numbers, which was needed as a result of this incorporation. This means that the 
stress-dependence of porosity and permeability, which was previously ignored, has been taken 
into account. The model consists of a high-permeability fracture with length LS extending out 
from a well perforation which is surrounded symmetrically on both sides by low-permeability 
shale matrix with length LT. The width of the fracture is defined as 2b(y) and can vary as a 
function of distance from the well which depicts a real-field scenario. The system is solved 
numerically using an operator splitting approach, see Appendix B). The new model aims to 
address the following questions: (i) How do geomechanical effects impact gas recovery in shale 
gas reservoirs? (ii) How is pressure, porosity and permeability affected by geomechanical 
effects? (iii) How do reservoir characteristics like fracture size, fracture shape, fracture spacing, 
and initial reservoir pressure affect gas recovery when geomechanical effects are included, and 
(iv) which geomechanical effects are most significant? These questions are answered by 
analysing the model behaviour in terms of gas recovery, parameterized using literature data and 
by analysing 2D plots of pressure, porosity and permeability distributions in the reservoir. A 
sensitivity analysis is performed to investigate the significance of different geomechanical 
effects when reservoir conditions are varied, and the results are interpreted. Finally, the model 
behaviour is interpreted using the dimensionless number derived from the new scaling approach.  
 
 
 
 
 



1.4 Outline of Thesis 
 
The rest of the thesis is as follows: All of chapter 2 consists of literature review and is divided 
into three subchapters. Subchapter 2.1 reviews the different mechanisms taking place in shale 
gas reservoirs which make the gas flow in these reservoirs difficult to accurately model. 
Subchapter 2.2 presents geomechanical effects in shale gas reservoir reported in the literature. 
Subchapter 2.3 presents different approaches to modelling geomechanical effects in shale gas 
reservoirs. The approach for incorporating geomechanics used in this model is presented in here. 
Chapter 3 describes the mathematical model. The 1D+1D mathematical model is derived from 
basic laws well known in the petroleum literature. The equations used for incorporating 
geomechanical effects and the incorporation into the model is summarized. It is shown how the 
new model is scaled to derive new dimensionless numbers 𝛼 and 𝛽 which characterize the 
system. In chapter 4 the simulation results obtained from the model are presented and 
observations are described. In chapter 5 the results are discussed, and the behaviour of the 
model is interpreted using dimensionless numbers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Literature Review 
 

2.1 Mechanisms in Shale Gas Reservoirs 
 
Darcy’s law (Darcy, 1856) for single phase gas flow is given by: 

(1)  𝑄 =
𝐾𝐴
𝜇&

ΔP
𝐿  

where 𝑄 is the volumetric flow rate, 𝐴 is the cross-sectional area, 𝐾 is the permeability of the 
porous media, 𝜇& is the gas viscosity, Δ𝑃 is the pressure drop across the porous media and L is 
the length of the porous media. For one-directional flow (say, parallel to the x-axis), the 
equation can be written in the following differential form: 

(2)  𝑣 =
𝑄
𝐴 = 	−

𝐾
𝜇&
𝜕𝑃
𝜕𝑥 

where 𝑣 is a superficial flow velocity and 𝜕𝑃/𝜕𝑥 is the pressure gradient in the x-direction. The 
negative sign in (2) indicates that the pressure drop is in the direction of flow (Peaceman, 1977). 
Darcy’s law is typically used to describe gas flow in conventional reservoirs. However, 
comprehensive reviews of the flow mechanisms in shale gas reservoirs suggest that the gas flow 
may not be accurately described using the traditional Darcy’s law (Blasingame, 2008; Moradis 
et al. 2010). Mechanisms such as gas slippage (Klinkenberg effect) and Knudsen diffusion can 
result in non-Darcy flow behaviour in the reservoir by affecting the apparent gas permeability 
(Wang and Marongiu-Porcu, 2015). Other mechanisms will also impact the gas flow such as 
gas adsorption and desorption, surface diffusion, and geomechanical effects (Wu et al. 2014). 
A review of these important flow mechanisms in shale gas reservoirs are given in the following 
subchapters. 
 
2.1.1 The Klinkenberg or Gas-Slippage Effect 
 
In conventional reservoirs, where Darcy’s law is used to model pressure-driven viscous flow, 
the fluid velocity at the pore walls is assumed to be zero. This is a good assumption in pores 
where the radius is in the range of 1 to 100 micrometres, because fluids flow as a continuous 
medium (Wang and Marongiu-Porcu, 2015). However, in shale gas reservoirs there are many 
nanosized pores where gas molecules strike against the pore walls and tend to slip instead of 
having zero velocity (Sherman, 1969). The gas-slippage effect, also referred to as the 
Klinkenberg effect, was first identified by Klinkenberg (1941) when he was studying rarefied 
gas flowing at various pressures. Through observation he discovered that the actual gas flow 
rate was consistently larger than the gas flow rate predicted with Darcy’s law. To correct this 
error, he suggested that the apparent permeability be adjusted by a slippage factor (Wang and 
Marongiu-Porcu, 2015). If existing, the Klinkenberg effect will increase the gas permeability 
and productivity in a shale formation. Wang and Reed (2009) showed that the gas permeability 
in Marcellus shale increased from 19.6 microdarcies at 1000 psi to 54 microdarcies at 80 psi 
because of the strong Klinkenberg effect. Although this effect is maximized in low-pressure 
regions, it is expected to be significant in shale gas reservoirs even under high-pressure 
conditions (Wu et al. 2014). In order to incorporate the Klinkenberg effect into reservoir models 
the absolute permeability of gas can be modified as a function of gas pressure (e.g., Wu et al. 
1998): 

(3)  𝑘& = 𝑘e f1 +
𝑏
𝑃&
h 



Where 𝑘e  is constant, absolute gas permeability under very large pressure (in which the 
Klinkenberg effect is minimized), and 𝑏 is the Klinkenberg beta factor. The beta factor can be 
determined from laboratory as either a constant or as a pressure-dependent function. A table-
lookup approach can also be applied to account for the Klinkenberg effect, where the apparent 
gas permeability is treated as a function of pressure (Wu et al. 2014). 
 
2.1.2 Knudsen diffusion 
 
In the nanopore structures of shale gas reservoirs there can exist flow regimes other than the 
well-understood continuum regime, such as slip-, transition-, and free molecular flow regimes. 
Knudsen diffusion is a type of diffusion that occurs when the gas molecules collide with the 
pore walls more frequently than with each other. The Knudsen number is a dimensionless 
parameter than can measure the degree of Knudsen diffusion and be used to differentiate 
between flow regimes in conduits at micro- and nanoscale (Wang and Marongiu-Porcu, 2015). 
The Knudsen number is defined as the ratio of the molecular mean free path length, 𝜆, and the 
characteristic length of the channel, which in the case of shale gas reservoirs is the effective 
pore radius, 𝑟 (Knudsen, 1909): 

(4)  𝐾0 =
𝜆
𝑟 

The mean free path can be calculated from the relation in Civan et al. (2011): 

(5)  𝜆 =
𝜇&
𝑃
k𝜋𝑅𝑇
2𝑀  

where 𝜇& is the gas viscosity, 𝑇 is the reservoir temperature, 𝑃 is the reservoir pressure, 𝑀 is 
the gas average molecular weight, and 𝑅 is the universal gas constant. By including the real-
gas Z-factor, one can substitute the mean free path into (4), which gives: 

(6)  𝐾0 = 	
𝜇&𝑍
𝑃𝑟

k𝜋𝑅𝑇
2𝑀  

  
Feil! Fant ikke referansekilden. shows how Knudsen number ranges are used to classify the 
different flow regimes that can occur in shale gas reservoirs. The Knudsen number in most 
shale gas reservoirs lies between 109( and 1, which means that the most likely flow regimes 
are the slip- and transition flow regimes (Ziarani and Aguilera, 2011). In order to incorporate 
Knudsen diffusion into reservoir models, the apparent permeability can be represented in the 
following general way: 

(7)  𝑘* = 𝑘e𝑓(𝐾0) 
where 𝑘e  is the intrinsic permeability of the porous medium, which is defined as the 
permeability for a viscous, nonreacting ideal liquid, and 𝑓(𝐾0) is the correlation term that 
relates the matrix apparent permeability and intrinsic permeability (Wang and Marongiu-Porcu, 
2015). Different models have been developed that quantify the relationship between intrinsic 
permeability and the nanopore structure in porous media (Beskok and Karniadakis, 1999; 
Aguilera 2002). Using the relation presented in Beskok and Karniadakis (1999), the intrinsic 
permeability can be derived from: 

(8)  𝑘e =
𝑟3

8
 

 
where 𝑟 is the radius of a capillary tube which means that 𝑘e is only related to the nanopore 
geometry. The correlation terms that relates the intrinsic and apparent permeability can be 



derived from laboratory experiments (Wang and Marongiu-Porcu, 2015). Sakhaee-Pour and 
Bryant (2012) proposed a first-order permeability model in the slip regime: 

(9)  𝑓(𝐾0) = 1 + 5𝐾0 
accompanied by a polynomial permeability model in the transition regime: 

(10)  𝑓(𝐾0) = 0.8453 + 5.4576𝐾0 + 0.1633𝐾03 
 
Table 1 (Roy et al. 2003): How fluid flow regimes can be defined by ranges of the Knudsen number, 𝑲𝒏. 

 
 
 
2.1.3 Gas Adsorption and Desorption 
 
There are mainly two isotherms used for modelling gas adsorption and desorption in shale gas 
reservoirs. Although recent investigations have observed that some shales obey the BET 
isotherm (Zhang and Yang 2012; Alnoaimi and Kovscek 2013; Yu et al. 2014), the Langmuir 
isotherm is in most publications to date to describe gas adsorption in shale gas reservoirs (Lu 
et al. 1995; Mengal and Wattenbarger 2011; Shabro et al. 2011; Dong et al. 2012; Haghshenas 
et al. 2013). The BET (Brunauer et al. 1938) isotherm is used to describe multilayer adsorption, 
while the Langmuir isotherm (Langmuir, 1918) indicates that the gas molecules obey 
monolayer adsorption. Accurate modelling of the adsorption isotherm is crucial for shale gas 
reservoir development because different isotherms represent different gas adsorption capacities 
and desorption processes which affect the gas production (Wang et al. 2017). When the 
Langmuir isotherm is applied, the amount of adsorbed gas on a solid surface is given by the 
Langmuir equation which characterizes the desorption process as a function of pressure at 
constant temperature: 

(11)  𝐺B = f
𝑉5𝑃&
𝑃& + 𝑃5

h 

where 𝐺B  is the gas content, 𝑉5  is the Langmuir volume which represents the maximum storage 
capacity volume of gas, 𝑃5 is the Langmuir pressure and 𝑃& is the pressure in the formation. As 
gas is produced through production wells in the reservoir, pressure decreases, and more 
adsorbed gas is released from the solid to the free gas phase in the pressure-lowering region. 
The Langmuir volume is a function of TOC and thermal maturity of the shale. The Langmuir 
pressure is defined as the pressure at which 50% of the gas is desorbed. The Langmuir 
modelling approach is based on the assumption that there exists an instantaneous equilibrium 
between pressure changes and the amount of adsorbed gas. This means that there is no transient-
time lag between changes in pressure and the corresponding adsorption and desorption 
responses (Yu et al. 2014). Gao et al. (1994) reported that this instantaneous equilibrium 
assumption is reasonable because of the ultra-low permeabilities in shales which leads to very 
low flow rate through the kerogenic media within shales. The Langmuir isotherm is often 
determined in laboratory by using core samples (Yu and Sepehrnoori, 2014). 
 
2.1.4 Surface Diffusion 
 
Some experts have reported that the adsorbed gas layer in the organic matter is capable of 
transport in the form of surface diffusion under the gradient of concentration or chemical 
potential (Fathi and Akkutlu, 2013; Wu et al. 2015). However, there are conflicting arguments 



in the literature concerning the adsorbed gas transport (Wasaki and Akkutlu 2014). Xiong et al. 
(2012) reported that surface diffusion will be dependent on the value of surface diffusivity, 
which is not well known and probably more important at low pressure in pores smaller than 5 
nanometers. Similarly, Sigal (2013) proposed that adsorbed-layer diffusional transport requires 
large values of the diffusion constant and may then only be a second mechanism for the gas 
transport. Fathi and Akkutlu (2013) modelled surface diffusion after the lattice Boltzmann 
method which indicates that the adsorbed gas can be mobile under reservoir conditions. Some 
researchers also simply treat the adsorbed phase as immobile (Cui et la. 2009; Sakhaee-Pour 
and Bryant 2012). 
 
2.1.5 Geomechanical Effects 
 
The effect that geomechanics have on oil and gas production in conventional reservoirs is 
generally small. It has therefore been widely overlooked in practice. However, in 
unconventional shale gas reservoirs these effects can be relatively large due to nanosized pores 
and microfractures, and have to be considered, in general (Wu et al. 2014). Studies have shown 
that the permeability in shales is pressure dependent and decreases when the effective stress, or 
confining pressure is increased (Soeder, 1988; Bustin et al. 2008; Wang and Reed, 2009). The 
effect from confining pressure on permeability is caused by a reduction in porosity. The degree 
of permeability reduction taking place with increased confining pressure in shales is reportedly 
much higher than in consolidated sandstones or carbonates (Wu et al. 2014). The stress-
dependence of hydraulic fractures in shale gas reservoir have been discussed in the literature, 
whilst the stress-dependence of matrix pores and natural fractures have been mostly ignored. 
However, these effects will affect the gas flow regimes in the reservoir by changing the pores 
sizes and should be taken into account (Wang et al. 2017).  
 
 

2.2 Geomechanical Effects in Shale Gas Reservoirs 
 
Wu et al. (2014) presented model-application examples illustrating the effect that stress-
dependent matrix permeability had on gas production for a horizontal well with a 10-stage 
hydraulic fracture-system in an extremely tight, uniformly porous and/or fractured reservoir. 
When they investigated the effect of stress-dependent matrix permeability, a table-lookup 
approach was implemented where input data from Figure 3 was used to describe the 
relationship between effective stress and matrix permeability. The figure shows how the gas 
permeabilities in different shales decrease when the effective stress, or confining pressure, is 
increased. 
 



 
Figure 3 (Soeder, 1988; Wang and Reed, 2009): Effect of confining pressure, or effective stress, on gas 
permeability in different shales. The gas permeability in Muskwa shale is most sensitive to changes in 
effective stress, decreasing to around 1/20 of its original value when the effective stress is increased from 
1600 psi to 4800 psi. 

 
The effect from geomechanics on cumulative gas production was illustrated by Wu et al. (2014), 
as shown in Figure 4. It was observed that the geomechanics effect has a large impact on 
cumulative gas production and the impact increases with time. This impact on gas production 
comes from the reduction in formation permeability that occurs when the pore pressure declines 
and the confining pressure, or effective stress, is increased (Wu et al. 2014). 
 

 
Figure 4 (Wu et al. 2014): Cumulative gas production vs. time with and without geomechanics. 
Geomechanical effects are shown to have a large impact on cumulative gas production and the impact 
increases with time. 

 
The effect of stress-dependent matrix permeability on gas production was also investigated by 
Wang et al. (2017). They studied the effect on the Barnett shale, Marcellus shale no. 1 and 
Marcellus shale no. 2. Figure 5 is taken from Wang et al. (2017) and shows the impact the 



matrix permeability-stress-dependence factor, Ψ, has on gas production. One can observe that 
the cumulative gas production is decreased as the matrix permeability-stress-dependence factor 
is increased for all three shales. Noticeably, the reduction is largest for the Marcellus shale no. 
1 which is explained by the fact that the density of fractures in Marcellus shale no. 1 is the 
lowest. This means that for Marcellus shale no. 1 matrix permeability is more essential for 
production and the reduction of matrix permeability has a more significant impact on gas 
production (Wang et al. 2017). 
 

 
Figure 5 (Wang et al. 2017): Influences of stress-dependent matrix permeability on cumulative gas 
production for the Barnett shale (left), Marcellus shale no. 1 (middle) and Marcellus shale no. 2 (right). The 
effect is largest for Marcellus shale no. 1 because the density of fractures in the Marcellus shale no. 1 is 
lowest (fracture spacing is largest). 

 
Yu and Sepehrnoori (2014) studied the effect that stress-dependent hydraulic fractures have on 
gas production. CMG modelling was used to model gas flow in two shale gas reservoirs. One 
of these reservoirs was in Barnett shale while the other was in Marcellus shale. To account for 
the stress-dependence of the hydraulic fractures a specific compaction table was integrated into 
the CMG simulator. They reported that after 4.5 years of production there was a 4.8% decrease 
in total gas production for the Barnett shale, and after 30 years of production the decrease was 
1.8% for the Barnett shale and 23.3% for the Marcellus shale. Stress-dependent hydraulic 
fractures were seen to have a larger effect during early times of production than for late times 
of production and the effect was largest for the Marcellus shale. The Barnett- and Marcellus 
shale in the study were categorized as stiff and medium shales, respectively, according to their 
static Young’s modulus. Yu and Sepehrnoori (2014) concluded, based on these results, that in 
formations with low Young’s modulus the stress-dependence of hydraulic fractures plays a 
significant role on gas production and should be considered in modelling of shale gas reservoirs. 
Additionally, they concluded that in formations with high Young’s modulus the stress-
dependence of hydraulic fractures might be ignored when modelling shale gas reservoirs. 
 
 

2.3 Modelling Geomechanics in Shale Gas Reservoirs 
 
2.3.1 Stress-Dependent Matrix 
 
In the approach proposed by Yu et al. (2014), the effective porosity and permeability of rock 
are also assumed to correlate with the mean effective stress (𝜎′)), defined as: 

(12)  𝜎′) = 𝜎)(𝑥, 𝑦, 𝑧, 𝑃) − 𝛼𝑃 
where 𝛼 is the Biot constant and the initial distribution of effective stress is: 



 

(13)  𝜎)(𝑥, 𝑦, 𝑧, 𝑃) =
𝜎+(𝑥, 𝑦, 𝑧, 𝑃) + 𝜎�(𝑥, 𝑦, 𝑧, 𝑃) + 𝜎�(𝑥, 𝑦, 𝑧, 𝑃)

3  
 
where 𝜎+, 𝜎�, and 𝜎� are total stress in the x-, y-, and z-direction, respectively. The effective 
porosity and intrinsic permeability of rock are then assumed to correlate with the mean effective 
stress only: 

(14)  
𝜙 = 𝜙(𝜎′)) 

 
𝐾 = 𝐾(𝜎D)) 

 
There are many correlations that have been used to represent the relation between matrix 
porosity and effective stress (Davies and Davies, 1999; Rutqvist et al. 2002; Winterfeld and 
Wu, 2011). The most commonly used correlation is the one presented by Rutqvist et al. (2002): 

(15)  𝜙)�𝑃&� = 𝜙� + (𝜙. − 𝜙�)𝑒9����
�  

This means that the initial matrix porosity can be given by: 
(16)  𝜙/) = 𝜙� + (𝜙. − 𝜙�)𝑒9����,�

�
 

where 𝜙(𝑃&)  is the porosity considering stress sensitivity, 𝜙�  is the high-effective-stress 
porosity, 𝜙. is the porosity at effective mean stress 𝜎) = 0, 𝜙/) is the matrix porosity at initial 
reservoir conditions, 𝜂) is the matrix porosity-stress-dependence factor in 𝑃𝑎9: and 𝜎) is the 
mean effective stress in 𝑃𝑎. Rutqvist et al. (2002) also presented an associated function for 
permeability in terms of porosity: 

(17)  𝐾 = 𝐾.𝑒
�� ���

9:� 
where 𝑐 is a parameter. The applicability of this approach requires that the initial distribution 
of effective stress is predetermined as a function of spatial coordinates and pressure fields, as 
in (13). Since the changes in effective stress are mainly caused by changes in reservoir pressure, 
the stress distribution can be estimated analytically, numerically, or from field measurements. 
The approach can be significantly simplified by assuming that the in-situ total stress in the 
reservoir as nearly constant, or a function of spatial coordinates and fluid pressure only during 
production (Yu et al. 2014). Another closely related approach to incorporating stress-dependent 
matrix pores was presented by Wang et al. (2017). The mean effective stress in this approach 
is mainly related to the vertical overburden load and reservoir pressure (Raghavan and Chin, 
2004): 

(18)  𝜎′) = 	𝜎),����𝜎��,�� − 𝑃& 
Similarly, the initial mean effective stress can be expressed as: 

(19)  𝜎′),/ = 𝜎),����𝜎��,�� − 𝑃/0/�  
where 𝜎),���  is the total mean stress pressure and 𝜎��,� is the vertical overburden load. This 
approach assumes that the total mean stress pressure, 𝜎),���, is a function of 𝜎��,� and is nearly 
a constant value for the system studied. The approach also assumes that the effective porosity 
and permeability of rock correlate with the mean effective stress only, as in (14)(14), and that 
the stress-dependent porosity can be expressed by (15)(15). By substituting (18) and (19) into 
(15)(15) and (16)(16) for 𝜎) and 𝜎),/ , respectively, we obtain the matrix porosity as a function 
of reservoir pressure: 

(20)  𝜙�𝑃&� = 𝜙� + (𝜙/) − 𝜙�)𝑒9��(�����9��) 
Instead of using (17) as the expression of stress-dependent permeability, the function presented 
by Raghavan and Chin (2004) can be used: 



(21)  𝐾)�𝑃&� = 𝐾.)𝑒9�����  
where 𝐾.)  is the matrix permeability at effective mean stress 𝜎)D = 0  and ΨI  is the 
permeability-stress-dependence factor for the matrix in 𝑃𝑎9: . This correlation is in good 
agreement with experimental data in studies on gas permeability in shales by Soeder (1988), 
Bustin et al. (2008), and Wang and Reed (2009). Similarly, the initial permeability of the matrix 
is then given by: 

(22)  𝐾/) = 𝐾.)𝑒9����,�
�

 
Treating (21) and (22) as we treated (15) and (16), by substituting in (18) and (19) for 𝜎)D  and 
𝜎),/D , respectively, we obtain the absolute permeability of the matrix pores as a function of 
reservoir pressure: 

(23)  𝐾)�𝑃&� = 𝐾/)𝑒9��(�����9��) 
An alternative way of incorporating the stress-dependence of matrix pores is to use a table-
lookup approach for the correlations of porosity and permeability as functions of mean effective 
stress. The functions will then have to be determined from laboratory studies for a given shale 
gas reservoir (Yu et al. 2014). 
 
2.3.2 Stress-Dependent Hydraulic Fractures 
 
The conductivities of both propped and unpropped hydraulic fractures have been shown in 
experimental results to decrease with the increase of closure stress (Franquet et al. 2011; 
Alrahami and Sundberg, 2012; Kamenov et al. 2013; Warpinski et al. 2013). The closure stress, 
or confining pressure, is referred to as the difference between the minimum horizontal stress 
and the pore pressure in the fracture. The fracture conductivity can be defined in reservoir 
modelling as the product of fracture width and permeability: 

(24)  𝐹� = 𝑤�𝐾� 
where 𝐹� is fracture conductivity, 𝑤� is fracture width, and 𝐾� is fracture permeability (Yu and 
Sepehrnoori, 2014). Wang et al. (2017) incorporated stress-dependent fracture permeability 
into their modelling to account for the reduction in hydraulic fracture conductivity. According 
to experimental results (Kamenov et al. 2013; Yu and Sepehrnoori 2013), the relationship 
between effective permeability and reservoir pressure in hydraulic fractures can be expressed 
by: 

(25)  𝐾��𝑃&� = 𝐾.
�𝑒9��	�´�  

where 𝐾. is the fracture permeability at effective mean stress 𝜎) = 0, Ψ� is the permeability-
stress-dependence factor for the hydraulic fracture in 𝑃𝑎9: and 𝐾��𝑃&� is the permeability of 
the hydraulic fracture considering the stress-dependence effect. Similarly, the initial 
permeability of the hydraulic fracture can be given by: 

(26)  𝐾/
� = 𝐾.

�𝑒9��	�´�,� 
By again handling (25) and (26) as (15) and (16) was handled earlier, we can express the 
permeability in the hydraulic fracture as a function of reservoir pressure: 

(27)  𝐾��𝑃&� = 𝐾/
�𝑒9��������9��� 

Another way of capturing the stress-dependent hydraulic fracture conductivity is to integrate a 
specific compaction table into the simulator. The compaction table feature can be assigned to 
cells describing hydraulic fractures and account for the reduction in fracture conductivity as the 
closure stress is increased during production. Figure 6 shows laboratory data published by 
Alrahami and Sundberg (2012) describing the effect that closure stress has on the propped 
hydraulic fracture conductivity in stiff, medium and soft shales. These data can be applied to 



account for reduced fracture conductivity in different shales. Large reductions in fracture 
conductivity is associated with soft shales that have a low static Young’s modulus. Table ?? 
shows how shales can be categorized as stiff, medium, or soft depending on the value of their 
static Young`s modulus. 
 

 
Figure 6 (Alramahi and Sundberg, 2012): The effect that closure stress has on propped hydraulic fracture 
conductivity in shales categorized as stiff, medium and soft. The data are normalized to the fracture 
conductivity measured at a closure pressure of 3.45 MPa. 

 
 
 
 
 
Table 2 (Yu and Sepehrnoori, 2014): How shales are categorized as stiff, medium, or soft depending on the 
value of their static Young’s modulus. 

 
 
 
 
 
 
 
 
 
 
 
 
 



3. Mathematical Model 
 
The derivation of this model follows the derivation presented in Berawala et al. (2018). The 
contribution to this extended model is the incorporation of geomechanical effects on the 
formation of the shale gas reservoir. These effects are included by treating matrix and fracture 
properties that were previously considered as constant, as stress-dependent properties. 
 
3.1 Assumptions 
 
A simplified model is proposed that can represent important aspects of shale gas production. 
The main assumptions on the fracture and matrix domains are: 
 

• A single hydraulic fracture of length 𝐿�  drains gas from symmetrically surrounding 
shale matrix of length LT. 

• Variable fracture width 2𝑏(𝑦) is considered as a function of distance 𝑦 from the well. 
• The matrix symmetrically surrounds the fracture and the system is repetitive (has 

equally spaced fractures) so that there is a no-flow boundary at x = LT  (the matrix 
half-length). 

• Pressure driven diffusion flow is the main driving force for gas flow from the matrix to 
the fracture and from fracture to the well. 

• In the matrix gas only flows in the direction perpendicular to the fracture (the x-
direction) and in the fracture gas only flow in the direction of the fracture (the y-
direction). 

• Single-phase flow of gas is considered so it is assumed that the reservoir is a dry gas or 
that it contains insignificant amount of water. 

• Desorption of gas is pressure dependent which is defined by the Langmuir isotherm. 
• The composition and flow properties of free and desorbed gas are the same. 
• The gas is ideal and has constant viscosity 𝜇&. 
• The model is considered to be horizontal with a constant height ℎ. 

 

3.2 Geometry 
 
A hydraulic fracture extends perpendicularly out from a horizontally drilled well. The positive 
y-axis is defined along the fracture and pointing away from the well perforation. The length of 
the fracture is LS and the fracture has a width, 2b(y), which can vary with distance y from the 
well perforation. An illustration of the system geometry is given in Figure 7. The matrix 
surrounding the fracture is assumed to behave symmetrically. We obtain a no-flow boundary at 
x = LT (the matrix half-length) by assuming that the given system is repetitive (has equally 
spaced fractures). We can therefore account for production from both sides by only solving the 
equations for one side of the system. In the following we only study the matrix located on the 
right side of the fracture (0 < x < LT). The fracture and matrix domains are given by: 
 

(28)  Ω� = {(𝑥, 𝑦) :	− 2𝑏(𝑦) < 𝑥 < 0; 0 < 𝑦 < 𝐿�} 
Ω) = {(𝑥, 𝑦):−2𝑏(𝑦) − 𝐿+ < 𝑥 < −2𝑏(𝑦); 	0 < 𝑥 < 𝐿+; 0 < 𝑦 < 𝐿�} 



 

 
Figure 7 (Berawala et al. 2018): System geometry. A fracture with variable width extends from the well 
perforation with length 𝑳𝒚. The symmetrically surrounding shale matrix has a total length of 2𝑳𝒙. 

 

3.3 Modelling Approach 
 
3.3.1 Mass Conservation Equations 
Consider that shale gas in free and adsorbed form is contained inside a domain Ω which has a 
volume 𝑉. Because of flow in and out of the interface 𝛿Ω with area 𝐴, the mass of gas in the 
porous media volume changes as expressed by the mass balance equation (LeVeque, 2002): 

(29)  𝜕
𝜕�
© �𝜙𝜌& + (1 − 𝜙)𝑎&�𝑑𝑉
«

= 	−© �𝜌&𝒖�	×	𝒏𝑑𝐴
«

 

where 𝜙 is porosity, 𝜌&(𝑃&) is gas density, 𝑎& is adsorbed gas (mass per solid volume), 𝒖 is the 
Darcy mass flux vector, 𝒏 is the unit normal vector pointing out of Ω, and 𝑃& is the gas pressure. 
 
Fracture domain 
The gas adsorption in the fracture is considered negligible, thus 𝑎&

� = 0. The fracture width, 
denoted 2𝑏(𝑦), can vary with the distance from the well. The fracture height, denoted h, is 
constant. Consider a volume 𝑉 = ∫ 2𝑏(𝑦)� ℎ𝑑𝑦. From (29) we get: 

(30)  

𝜕
𝜕�
	© 𝜙𝜌&2𝑏(𝑦)

�®¯�3

�9¯�3

ℎ𝑑𝑦	

≈ �𝜌&𝑢��9¯�3
2𝑏

�9¯�3
ℎ − �𝜌&𝑢��®¯�3

2𝑏
�®¯�3

ℎ

+ �𝜌&𝑢�+²93�,�	Δ𝑦ℎ −	�𝜌&𝑢�+².,�	Δ𝑦ℎ 
When we divide (30) by Δ𝑦ℎ and let Δ𝑦 à 0, we get: 

(31)  𝜕��𝜙𝜌&2𝑏� = 	−𝜕��𝜌&𝑢2𝑏� + �𝜌&𝑢�+²93�,� − �𝜌&𝑢�+².,� 
Since the fracture is surrounded symmetrically by matrix on both sides the contribution from 
the two source terms is identical, i.e.: 

(32)  �𝜌&𝑢�+²93�,� = −�𝜌&𝑢�+².,� 
and we obtain: 

(33)  ∂´�ϕρ·b� = 	− ∂S�ρ·ub� − �ρ·u�T².,S 



 
Matrix domain 
In the matrix it is assumed that the pressure gradient directs all flow in the x-direction (towards 
the fracture) and flow in the y-direction is ignored. Letting the volume be defined as 𝑉 =
Δ𝑥Δ𝑦ℎ and letting �𝜌&𝑢�	×	𝑗 = 0, where 𝑗 is the unit vector in y-direction, we get from (29): 

(34)  
𝜕
𝜕�
© © �𝜙𝜌& + (1 − 𝜙)𝑎&�𝑑𝑥𝑑𝑦ℎ = �𝜌&𝑢�+9¯+3 	,�

�®¯�3

�9¯�3

+®¯+3

+9¯+3

Δ𝑦ℎ

− �𝜌&𝑢�+®¯+3 	,�
Δ𝑦ℎ 

Dividing by Δ𝑥Δ𝑦ℎ and letting Δ𝑥, Δ𝑦 à 0 gives: 
(35)  ∂´�ϕρ· + (1 − ϕ)a·� = 	− ∂T(ρ·u) 

 
3.3.2 Darcy’s law 
The flux vector 𝒖 is assumed to be related to pressure through Darcy’s law (2): 

(36)  𝒖	 = −f
𝐾
𝜇&
h∇𝑃& 

where the gas viscosity, 𝜇&, is considered independent of gas pressure and thus constant. 
 
3.3.3 Density-Pressure Relations 
The inverse gas volume factor, 𝑏&, is introduced using the real gas law: 

(37)  𝜌&�𝑃&� = 𝑏&(𝑃&)𝜌&B  𝑏&�𝑃&� =
¼½��

¾����¼��½��
	𝑃& 

 
Assuming that the gas is ideal (𝑍 = 1) it is observed that: 

(38)  𝜌&�𝑃&� = 𝜌&B𝑏&D 𝑃&  𝑏&D =
¼½��

¼��½��
 

where 𝑏&D  is the inverse volume factor differentiated with respect to pressure which is seen to 
be constant and has the unit of inverse pressure. 
 
3.3.4 Shale Gas Adsorption 
The conserved property 𝜙𝜌& + (1 − 𝜙)𝑎& can be expressed as: 
 

(39)  
𝜙𝜌& + (1 − 𝜙)𝑎& = 𝜙𝜌&B𝑏&D 𝑃& + (1 − 𝜙)𝑎&

= 	𝜙𝜌&B𝑏&D f𝑃& + f
(1 − 𝜙)
𝜙𝜌&B𝑏&D

h 𝑎&h = 	𝜙𝜌&B𝑏&D �𝑃& + â&� 

where we have defined that: 

(40)  â& = f
1 − 𝜙
𝜙𝜌&B𝑏&D

h𝑎& 

The pressure dependency of â& is related through the Langmuir adsorption relation (11): 

(41)  â&�𝑃&� = â)*+ f
𝑃&

𝑃& + 𝑃5
h 

where we have defined the gas content 𝐺B  as â&�𝑃&�, and the Langmuir volume 𝑉5  as: 

(42)  â)*+ = f
(1 − 𝜙)
𝜙𝜌&𝑏&D

h𝑎)*+ 

 



Note that â&, â)*+  and 𝑃5 all have the unit of pressure. 
 
3.3.5 Stress-dependent Formation 
For the incorporation of stress dependent formation, we first assume that the effective stress is 
mainly related to the vertical overburden load and reservoir pressure, as in (18) presented by 
Raghavan and Chin, 2004: 

(43)  𝜎)D = 	𝜎),����𝜎��,�� − 𝑃& 
Similarly, the initial mean effective stress can be expressed as in (19): 

(44)  𝜎),/D = 𝜎),����𝜎��,�� − 𝑃/0/� 
where 𝜎),���  is the total mean stress pressure and 𝜎��,� is the vertical overburden load. This 
approach assumes that the total mean stress pressure, 𝜎),���, is a function of 𝜎��,� and is nearly 
a constant value for the system studied. The stress-dependence of porosity in the matrix is then 
incorporated through use of (43) and (44)(44), combined with (15) and (16), which gives: 

(45)  𝜙�𝑃&� = 𝜙� + (𝜙/) − 𝜙�)𝑒9��(�����9��) 
Similarly, stress dependent matrix permeability is incorporated using (43) and (44)(44), 
combined with (21) and (22), which gives: 

(46)  𝐾�𝑃&� = 𝐾.𝑒9��������9��� 
Finally, in the same manner, the stress dependent fracture permeability is incorporated using 
(43) and (44)(44), combined with (25) and (26), and we obtain: 

(47)  𝐾��𝑃&� = 𝐾/
�𝑒9��������9��� 

 
3.3.6 Initial and Boundary Conditions 
 
At initial conditions (𝑡 = 0) the fracture and matrix have the same pressure, 𝑃/0/�. The adsorbed 
gas in the matrix is in equilibrium with this initial pressure: 

(48)  𝑃&(𝑡 = 0) = 𝑃/0/�          â&(𝑡 = 0) = â)*+ ¿
�����

�����®�À
Á 

The perforation is defined at 𝑦 = 0 and has a known pressure, 𝑃ÂÃÄÄ: 
(49)  𝑃&

�(𝑦 = 0) = 𝑃ÂÃÄÄ          (𝑥	ϵ	ΩH) 
There is pressure and mass flux continuity across the fracture-matrix boundary: 

(50)  𝑃&½T².Æ = 𝑃&½T².Ç          �𝜌&𝑢�+².Æ = �𝜌&𝑢�+².Ç 
The fracture is closed (or has negligible production) from the matrix in the y-direction. 
Similarly, the matrix has no flow at its outer boundary, due to symmetry: 

(51)  𝛿�𝑃&½S²ÈÉ = 0          δTP·½S²ÈË = 0 
 
3.3.7 Summary of Model 
By substituting (36)-(42) in (33) and (35) we can summarize the system for gas flow in the 
fracture-matrix system: 

(52)  
							𝜕��𝑏𝑃&𝜙�� = f

1
𝜇&
h 𝜕��𝑃&𝑏(𝑦)𝐾�𝛿�𝑃&�

+ f
𝐾)

𝜇&
h�𝑃&𝛿+𝑃&�+².	,�											�𝑥, 𝑦	ϵ	Ω

H� 

 

(53)  𝜕� ¿𝜙)�𝑃& + â&�Á = � :
Ì�
� 𝜕+�𝑃&𝐾)𝜕+𝑃&�          (𝑥, 𝑦	ϵ	ΩI) 



 

(54)  â& = 	 â)*+ f
𝑃&

𝑃& + 𝑃5
h 

These flow equations must be solved together with the initial and boundary conditions (48)-
(51). 
 
3.3.8 Scaling and Reduced 1D+1D Model 
The system can now be scaled by introducing the following dimensionless variables: 

(55)  
𝑃′ = �ÍÎÏÏ	9��
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5Ð
	        𝑥′ = +
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         â′& =
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(56)  𝜙′ = � �
�ÔÎ�

�         𝐾′ = � Õ
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where the pressure change and average pressure during production is defined as: 
(57)  Δ𝑃 = 𝑃ÂÃÄÄ − 𝑃/0/� < 0          𝑃*�� =

:
3
(𝑃ÂÃÄÄ + 𝑃/0/�) 

and the reference porosity and permeability are defined as: 

(58)  𝜙�Ã� = ¿:
3
Á �𝜙(𝑃/0/�) + 𝜙(𝑃ÂÃÄÄ)�         �𝐾�Ã�� = Ö 3
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Ø�ÙÍÎÏÏ�

�
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The average width of the fracture is 2𝑏. so that the relation to the area of the fracture is given 
by  2𝑏.𝐿� = 	∫ 2𝑏(𝑦)𝑑𝑦5Ð

�². . 𝐷′ is scaled by the average pressure because it represents the part 
of the gas diffusion coefficient resulting from the absolute pressure. The scaled variables 
given in (55)(55) have coordinates that obey 0 ≤ 𝑥D, 𝑦D ≤ 1.The scaled pressure 𝑃′ takes an 
initial value of 1 and decreases to 0 as the well pressure is reached. The scaled porosity and 
permeability values obtained from (56) combined with (58) are representative values that 
control the production rate and time scale. They will have coordinates that take initial values 
above 1 and final values below 1 when geomechanical effects are considered. To get the 
average scaled porosity and permeability the following formulas have been used: 

(59)  𝜙′*�&) =
∑ ∑ 𝜙′)0Ñ
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By applying the previous equations (52) and (53) we can define two natural time scales: 𝜏� , 
representing the diffusion of gas from the fracture to the well, and 𝜏), representing the diffusion 
of free gas and adsorbed gas from the matrix to the fracture. The time scales are given as follows: 

(61)  𝜏� = Ö
𝜇&𝜙�Ã�

� 𝐿�3

𝐾�Ã�
� 𝑃*��

Ú													𝜏) = Ö
𝜇&�𝜕Þ𝐺��Ã�𝐿+

3

𝑃*��𝐾�Ã�)
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where: 

(62)  (𝜕Þ𝐺)�Ã� = 	
𝐺(𝑃.) − 𝐺(𝑃ÂÃÄÄ)

𝑃. − 𝑃ÂÃÄÄ
 

and: 

(63)  𝐺 = 𝜙) Ö𝑃& + â)*+ f
𝑃&

𝑃& + 𝑃5
hÚ 



In the following we scale time with respect to the fracture diffusion time scale: 

(64)  𝑡′ =
𝑡
𝜏� 

After scaling, the gas flow transport system given by (52) and (53) can be expressed in the 
following form: 

(65)  𝑏′𝜕��(𝑃′𝜙′�) = 𝜕��𝐷′𝑏′𝐾D
�𝜕��𝑃′� + 𝛼𝛽�𝐷′𝐾D

)𝜕+�𝑃′�+�².,��	  
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(66)  𝜕��𝐺′ = 𝛼𝜕+�𝐷′𝐾D)𝜕+𝑃′�     (𝑥D, 𝑦D𝜖	Ω)) 

All constant terms have been collected in two dimensionless numbers: 

(67)  𝛼 =
𝜏�
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and: 

(68)  𝛽 = Ö
(𝜕�𝐺)�Ã�𝐿+
𝜙�Ã�
� 𝑏�

Ú 

𝛼 represents the ratio of the time scales involved in gas diffusion from the fracture and gas 
diffusion from the matrix, including desorption, respectively. 𝛽 denotes the capacity ration of 
the matrix relative to the fracture. Finally, the initial and boundary conditions in scaled terms 
become: 

(69)  𝑃′(𝑡D = 0) = 1,     âD&(𝑡D = 0) = âD)*+
�����

�����®�À
 

 
(70)  𝑃D(𝑦′ = 0) = 0         𝜕��𝑃D½S�²: = 0            �𝑥′, 𝑦′	ϵ	ΩH� 

 
(71)  𝜕+�𝑃′½T�²: = 0          (𝑥D, 𝑦D	ϵ	ΩI) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Simulation Results 
 
 
In this chapter the behaviour of the model will be investigated by considering its sensitivity to 
different input parameters. Since this model has introduced geomechanical effects into a 
previously existing model, the main focus of the investigation is on how geomechanical effects 
influence the matrix and fracture properties and gas recovery profiles. In order to investigate 
controlling parameters on gas recovery, other input parameters will also be varied concurrently 
with varying the geomechanical effects. An operator splitting approach is used for solving the 
system, similar to that described in Andersen et al. (2014, 2015), see Appendix B). This entails 
that we alternate between solving for flow in the y-direction (fracture diffusion) and in the x-
direction (fracture-matrix diffusion and desorption). In order to switch sufficiently frequent 
between the two solvers, the operator spitting time step was selected at least 300 times lower 
than the time scale of fracture diffusion 𝜏�. The numerical solution procedure is described in 
detail in Appendix C).  The y-axis was discretised into 20 equal cells 𝑛� and the (positive) x-
axis was discretised into 30 equal cells 𝑛+ in addition to the fracture cell. In the following, the 
gas recovery factor 𝑅𝐹 is reported as the produced fraction of the mass initially in the reservoir: 

(72)  𝑅𝐹 = 1 −
𝐺𝐶𝐼𝑃
𝐺𝑂𝐼𝑃 = 1 −

𝐺𝐶𝐼𝑃
𝐺𝑂𝐼𝑃(𝑃/0/�)

 

Additionally, the obtainable gas recovery factor 𝑅𝐹��  is reported, defined as the produced 
fraction of the mass that could be produced if the reservoir pressure was lowered uniformly 
from 𝑃/0/� to 𝑃ÂÃÄÄ: 

(73)  𝑅𝐹�� =
𝑅𝐹
𝑅𝐹	e

=
𝐺𝐶𝐼𝑃(𝑃/0/�) − 𝐺𝐶𝐼𝑃

𝐺𝐶𝐼𝑃(𝑃/0/�) − 𝐺𝐶𝐼𝑃(𝑃ÂÃÄÄ)
 

where the recovery factor 𝑅𝐹e is defined as the gas recovery when the reservoir pressure has 
been lowered uniformly from 𝑃/0/� to 𝑃ÂÃÄÄ: 

(74)  𝑅𝐹e = 	1 −
𝐺𝐶𝐼𝑃(𝑃ÂÃÄÄ)

𝐺𝑂𝐼𝑃 = 1 −
𝐺𝐶𝐼𝑃(𝑃ÂÃÄÄ)
𝐺𝑂𝐼𝑃(𝑃/0/�)

 

 

4.1 Model Input 
 
The input parameters used in the simulation cases, unless otherwise is stated, are held constant 
and equal to the values listed in Table 3. The Langmuir isotherm parameters are representative 
of Marcellus shale and were taken from Yu et al. (2016). Almost all the remaining input 
parameter values are taken from Berawala et al. (2018). The only exception is the high-
effective-stress porosity, 𝜙�, which is taken from Wang et al. (2017). 
 
 



Table 3: Input parameters used in simulation cases (1 Yu et al. 2016, 2 Berawala et al. 2018, 3 Wang et al. 
2017). 

 
 
Although the fracture in most simulation cases is assumed to have a constant width, we will 
also consider cases where the fracture shape varies. In these cases, the fracture width 𝑏(𝑦) will 
decrease linearly with distance 𝑦 from the well and be defined by three parameters; the length 
𝐿�, the average half-width 𝑏., and the max-to-min width ratio ��½Ñ

����
: 
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where 𝑏)*+  is the fracture width at 𝑦 = 𝐿� (end of fracture) and 𝑏)/0  is the fracture width at 
𝑦 = 0 (closest to the well) (see Figure 7). Three geomechanical parameters will determine the 
effects from geomechanics on the matrix porosity and matrix and fracture permeability; the 
matrix porosity-stress-dependence factor, 𝜂), the matrix permeability-stress-dependence factor, 
Ψ) , and the fracture permeability-stress-dependence factor, Ψ� . The values given to the 
geomechanical parameters will be varied during the sensitivity analysis and are specified at the 
start of every subchapter. 
 
 
 



4.2 Previous Model Findings 
 
In the previous model, from which this model is extended to include geomechanical effects, 
some of the following findings were made. For that model, Berawala et al. (2018) presented the 
scaled pressure distribution 𝑃′(𝑥D, 𝑦D) and mass fraction of adsorbed gas relative to total mass 
â����

â����®��
 at different stages of recovery, as shown in Figure 8. They found that pressure declines 

quickly in the fracture at production start, followed by pressure decline in the surrounding 
matrix. This causes gas to desorb out of the kerogen into the pore space and flow towards the 
fracture. The gas was observed to flow comparably towards the fracture although production 
was somewhat higher near the well since this was where the pressure gradients were sharpest. 
A key observation made by Berawala et al. (2018) is that the adsorbed mass fraction increased 
towards the fracture region (𝑥 ≈ 0) at a given time and also increased with time. This behavior 
was explained mathematically by using the Langmuir isotherm (see (41)): 

(76)  â&�𝑃&�
â&�𝑃&� + 𝑃&

=
â)*+

â)*+ + 𝑃5 + 𝑃&
 

From (76) it can be clearly seen that the fraction of adsorbed mass will increase when the 
pressure is reduced which explains the observed increase towards the fracture and with time 
(Berawala et al. 2018). 
 
 

 
Figure 8 (Berawala et al. 2018): Distribution of scaled pressure (top) and adsorbed mass fraction (bottom) 
for the reference case at 15% (left), 50% (middle) and 85% (right) obtainable recovery 𝑹𝑭𝒐𝒃 .The input 
parameters used were the same as those shown in Table 3 (excluding the high-effective-stress porosity).  

 

4.3 Sensitivity Analysis 
 
4.3.1 Demonstration of Geomechanical Effects 
 
To demonstrate the effect of geomechanics on the model behaviour we use the four cases 
defined in Table 4. In these four cases the geomechanical parameters, or stress-dependence 
factors, 𝜂), Ψ) and Ψ� are varied. In the ‘no geomechanics’ case there are no geomechanical 



effects considered and thus all three parameters 𝜂), Ψ) and Ψ� are equal to zero. The 
Marcellus shale 1, Marcellus shale 2 and Barnett shale cases, have geomechanical parameters 
𝜂), Ψ) and Ψ� equal to the values used in simulation by Wang et al. (2017) when studying 
these three shales. All the other input parameters are kept constant and equal to the value 
given in Table 3. 
 
Table 4: Four cases defined by the values given to the geomechanical parameters 𝜼𝒎, 𝚿𝒎 and 𝚿𝒇 (1 Wang 
et al. 2017). 

 
 
Figure 9 shows the gas recovery 𝑅𝐹 for up to 500 days for the cases listed in Table 4. We 
observe that the Marcellus shale 1, Marcellus shale 2 and Barnett shale cases all have lower gas 
recovery than the ‘no geomechanics’ case. For the Marcellus shale 1 and Marcellus shale 2 
cases the gas recovery after 500 days is 1.74% and 5.33% lower, respectively. The difference 
is largest for the Barnett shale case, where gas recovery is 11.12% lower than the case with no 
geomechanics after 500 days of production.  
 

 
Figure 9: Effect of geomechanics on gas recovery RF for the four cases defined in Table 5. The 
geomechanical effects have largest impact in the Barnett shale case, resulting in a 11.12% decrease in gas 
recovery after 500 days of production. 

When making observations in the next three figures (Figure 10, Figure 11 and Figure 12) it is 
important to explain why the initial values of scaled average porosity and -permeability in the 
four cases are different. This does not mean that the initial absolute porosity and permeability 
of the formation have been changed from case to case. The difference in initial values comes 
from the definitions of the reference values 𝜙�Ã�  and 𝐾�Ã�  (see (58)) which makes them 
dependent on the geomechanical parameters 𝜂), Ψ) and Ψ� as well as pressure 𝑃&. As a result, 



the scaled porosity and permeability will start at different values depending on how much they 
are changed during production. Figure 10 shows how the scaled average matrix porosity is 
affected in the ‘no geomechanics’ case, the Marcellus shale 1 case, the Marcellus shale 2 case, 
and the Barnett shale case. The reduction in scaled average matrix porosity is seen to correlate 
with the size the matrix porosity-stress-dependence factor 𝜂) . However, even though the 
Marcellus shale 1 and Marcellus shale 2 cases have the same value of 𝜂), there is a slightly 
larger reduction in the Marcellus shale 1 case.  
 

 
Figure 10: Effect of geomechanics on scaled average matrix porosity in the ‘no geomechanics’ case, the 
Marcellus shale 1 case, the Marcellus shale 2 case, and the Barnett shale case defined in Table 4. 

Figure 11 shows how the scaled average matrix permeability is affected in the four cases. The 
same trends are observed as for the porosity. The Marcellus shale 1 case shows a slightly larger 
reduction in scaled average matrix permeability than the Marcellus shale 2 case when they are 
given the same value of Ψ). The scaled average fracture permeability is shown in Figure 12. 
To better illustrate the differences between the four cases, the y-axis has been chosen so that 
the initial values for the Marcellus shale 2 and Barnett shale case lie beyond the y-axis. The 
Barnett shale case has the highest reduction in scaled average fracture permeability, from 
8.5870 to 0.6731. 



 
Figure 11: Effect of geomechanics on scaled average matrix permeability in the ‘no geomechanics’ case, 
the Marcellus shale 1 case, the Marcellus shale 2 case, and the Barnett shale case defined in Table 4. 

 

 
Figure 12: Effect of geomechanics on scaled average fracture permeability in the ‘no geomechanics’ case, 
the Marcellus shale 1 case, the Marcellus shale 2 case, and the Barnett shale case defined in Table 4. The 
initial values for Marcellus shale 2 and Barnett shale lie beyond the y-axis and are 4.0666 and 8.5870, 
respectively. 

Figure 13 compares the scaled pressure distribution for the ‘no geomechanics’ case, the 
Marcellus shale 2 case, and the Barnett shale case at 15%, 50% and 85% of obtainable recovery 
𝑅𝐹�� . To reach 15% obtainable recovery it takes the ‘no geomechanics’ case 6 days, the 
Marcellus shale 2 case 7 days, and the Barnett shale case 8 days. The difference in number of 
days needed to reach the same obtainable recovery increases with the obtainable recovery and 
is largest at 85%. To reach 85% obtainable recovery it takes the ‘no geomechanics’ case 194 
days, the Marcellus shale 2 case 301 days, and the Barnett shale case 447 days. The pressure 
declines quickly in the fracture and is followed by gradual pressure decline in the surrounding 
matrix for all three cases. However, for the cases where geomechanical effects are considered, 



the Marcellus shale 2 case and Barnett shale case, the pressure declines faster in the areas closer 
to the well (closer to 𝑦 = 0) than in the areas further away from the well. This trend is most 
visible at 85% obtainable recovery. 
 

 
Figure 13: Distribution of scaled pressure for the ‘no geomechanics’ case (left), Marcellus shale 2 case 
(middle), and Barnett shale case (right) at 15% (top), 50% (middle) and 85% (bottom) of obtainable recovery 
𝑹𝑭𝒐𝒃. 

Figure 14 compares the scaled porosity distribution for the ‘no geomechanics’ case, the 
Marcellus shale 2 case, and the Barnett shale case at 15%, 50% and 85% of obtainable recovery 
𝑅𝐹��. In the ‘no geomechanics’ case the scaled porosity is equal to 1 in both fracture and matrix 
and does not change during production. In the Marcellus shale 2 and Barnett shale case the 
scaled fracture porosity is equal to 1 at all obtainable recoveries because the fracture porosity 
is not considered to be stress-dependent. The scaled porosity in the matrix for the Marcellus 
shale 2 case and Barnett shale case is seen to decline faster in the areas closer to the well (closer 
to 𝑦 = 0) than the areas further away from the well, most visibly at 50% obtainable recovery. 
Note that even though the initial scaled porosity in the Marcellus shale 2 case and Barnett shale 
case is higher than in the ‘no geomechanics’ case this does not mean that the initial absolute 



porosity of the matrix is higher. The higher values come from the definition of the reference 
porosity  𝜙�Ã�  (see (58)) which makes the initial scaled porosity dependent on the matrix 
porosity-stress-dependence factor 𝜂) and pressure 𝑃&. 
 

 
Figure 14: Distribution of scaled porosity for the ‘no geomechanics’ case (left), Marcellus shale 2 case 
(middle), and Barnett shale case (right) at 15% (top), 50% (middle) and 85% (bottom) of obtainable recovery 
𝑹𝑭𝒐𝒃. In the Marcellus shale 2 and Barnett shale cases, the matrix porosity is seen to decline faster in the 
areas closer to the well (closer to 𝒚 = 𝟎) than in the areas further away from the well. 

 
Figure 15 compares the scaled permeability distribution for the ‘no geomechanics’ case, the 
Marcellus shale 2 case, and the Barnett shale case at 15%, 50% and 85% of obtainable recovery 
𝑅𝐹��. In the ‘no geomechanics’ case the scaled permeability is equal to 1 in all areas of the 
reservoir and does not change during production. In the Marcellus shale 2 case the decrease in 
matrix permeability is too small to be captured by the colourbar-scale and similarly in the 
Barnett shale case there is only an observable decrease in scaled permeability at 15% obtainable 
recovery, from around 1.4 to around 1.0. The scaled permeability in the fracture for the 
Marcellus shale 2 case and Barnett shale case is seen to decline faster closer to the well (closer 
to 𝑦 = 0) than further away from the well. Again, note that even though the initial scaled 
permeabilities in the Marcellus shale 2 case and Barnett shale case are higher than in the ‘no 
geomechanics’ case this does not mean that the initial absolute permeability is higher. The 
higher values come from the definition of the reference permeability  𝐾�Ã� (see (58)) which 



makes the initial scaled permeability dependent on the permeability-stress-dependence factors 
Ψ), Ψ� and pressure 𝑃&. 
 

 
Figure 15: Distribution of scaled permeability for the ‘no geomechanics’ case (left), Marcellus shale 2 case 
(middle), and Barnett shale case (right) at 15% (top), 50% (middle) and 85% (bottom) of obtainable recovery 
𝑹𝑭𝒐𝒃. 

 
4.3.2 Role of Fracture Size and Geomechanical Effects 
 
In this section we will investigate the effect that fracture size and individual geomechanical 
effects have on the gas recovery 𝑅𝐹. To achieve this, five new cases are defined in Table 5 in 
which some geomechanical parameters are ignored while other are considered. In case 1 only 
the stress-dependent fracture permeability (Ψ�) is included. Case 2 is a case where only stress-
dependent matrix permeability (Ψ)) is included. In case 3 both Ψ� and Ψ) are included while 
stress-dependent matrix porosity is ignored. Lastly, case 4 is a case where all three 
geomechanical effects are considered (𝜂), Ψ� and Ψ)). For each of the five cases there are 



two different fracture sizes compared where the average fracture width (𝑏.) is changed from 
0.05 m to 0.009 m. All other input parameters are kept constant and equal to the values given 
in Table 3. 
 
Table 5: Five cases defined by the values given to the geomechanical parameters  𝜼𝒎, 𝚿𝒎 and 𝚿𝒇.  

 
 
Figure 16 shows the gas recovery 𝑅𝐹 for up to 500 days for all the cases with varied fracture 
size and geomechanical effects. When comparing cases with the same values of geomechanical 
parameters (same colours), gas recovery is consistently higher for cases where the average 
fracture width is high, given by 𝑏. = 0.05 m. At this larger fracture size, the gas recovery 
profiles for Case 1 and Case 2 are similar, both resulting in approximately 4.01% lower 
recovery than the ‘no geomechanics’ case after 500 days. However, for the smaller fracture size 
(𝑏. = 0.009 m) the gas recovery profiles for Case 1 and Case 2 are no longer similar. Case 1 
now results in a decrease in recovery of around 13.81% while Case 2 results in a decrease of 
around 3.66% compared to the ‘no geomechanics’ case. 
 

 
Figure 16: Effect of fracture size (𝒃𝟎) and geomechanical effects (𝜼𝒎, 𝚿𝒇 and 𝚿𝒎) on gas recovery 𝑹𝑭.  

 
 
 



4.3.3 Role of Fracture Shape and Geomechanical Effects 
 
In this section we will investigate the effect that fracture shape and individual geomechanical 
effects have on the gas recovery 𝑅𝐹. For representing varying geomechanical effects the five 
cases defined in Table 5 are used. For each of the five cases there are two different fracture 
shapes considered by changing the ��½Ñ

����
 ratio is from 1 to 10. A  ��½Ñ

����
 ratio of 1 indicates that 

the fracture has uniform width along the y-axis whereas a ratio of 10 indicates that the fracture 
is 10 times narrower at 𝑦 = 𝐿� compared to at 𝑦 = 0. The average fracture width 𝑏. = 0.02 m 
for all cases. All other input parameters are kept constant and equal to the values given in Table 
3. To investigate how fracture shape and geomechanical effects impact on gas recovery at a 
smaller fracture size there will be similar comparisons made where the average fracture width 
𝑏. = 0.009 m for all cases. All other input parameters are kept constant and equal to the values 
given in Table 3. Figure 17 shows the gas recovery 𝑅𝐹 for up to 500 days for the cases with 
varied fracture shape and geomechanical effects when the average fracture width 𝑏. is 0.02 m. 
We observe that the cases with the same geomechanical parameters (same colours) are very 
similar for both ��½Ñ

����
= 1 and ��½Ñ

����
= 10. For the ‘no geomechanics’ case and Case 2 it takes 

slightly longer time to reach the same recovery when fracture shape is given by ��½Ñ
����

= 10. For 
Case 1, Case 3 and Case 4 this is reversed, it takes slightly longer time to reach the same 
recovery when fracture shape is given by ��½Ñ

����
= 1.  

 

 
Figure 17: Effect of fracture shape and geomechanical effects on gas recovery 𝑹𝑭 when the average 
fracture width 𝒃𝟎  is 0.02 m. The fracture shape is varied by changing the 𝒃𝒎𝒂𝒙

𝒃𝒎𝒊𝒏
 ratio from 1 to 10 and 

geomechanical effects are varied as defined in Table 5. 

 
Figure 18 shows the gas recovery 𝑅𝐹 for up to 500 days for the cases with varied fracture shape 
and geomechanical effects when the average fracture width 𝑏. is 0.009 m. Similar trends are 
observed as in Figure 17. However, it is seen that the recovery for the ‘no geomechanics’ case 



and Case 2 is slightly more affected by fracture shape when the average fracture width is lower 
(𝑏. = 0.009 m). 
 

 
Figure 18: Effect of fracture shape and geomechanical effects on gas recovery RF when the average 
fracture width 𝒃𝟎  is 0.009 m. The fracture shape is varied by changing the 𝒃𝒎𝒂𝒙

𝒃𝒎𝒊𝒏
 ratio from 1 to 10 and 

geomechanical effects are varied as defined in Table 5. 

 
4.3.4 Role of Fracture Spacing and Geomechanical Effects 
 
In this section we will investigate the effect that fracture spacing and individual geomechanical 
effects have on the gas recovery 𝑅𝐹. For representing varying geomechanical effects the five 
cases defined in Table 5 are used. For each of the five cases there are three different fracture 
spacings considered by changing the matrix half-length (𝐿+) from 7 m to 15 m and 35 m. All 
other input parameters are kept constant and equal to the values given in Table 3. Figure 19 
shows the gas recovery 𝑅𝐹 for up to 500 days for the cases with varied fracture spacing and 
geomechanical effects. When comparing the cases where only matrix permeability is 
considered stress-dependent (Case 2’s, black curves) to the ‘no geomechanics’ cases (green 
curves) the difference between them are seen to increase as fracture spacing increases. At 𝐿+ =
7  m, case 2 results in a decrease of around 0.01% in gas recovery compared to the ‘no 
geomechanics’ case. At 𝐿+ = 15  m, case 2 results in a decrease of around 1.48% in gas 
recovery compared to the ‘no geomechanics’ case. And at 𝐿+ = 35 m, case 2 results in a 
decrease of around 5.71% in gas recovery compared to the ‘no geomechanics’ case. 
 
 



 
Figure 19: Effect of fracture spacing and geomechanical effects on gas recovery 𝑹𝑭. The fracture spacing 
is varied by changing the average matrix half-length 𝑳𝒙 from 7 m to 15 m and 35 m and geomechanical 
effects are varied as defined in Table 5. 

 
4.3.5 Role of Initial Reservoir Pressure and Geomechanical Effects 
 
In this section we will investigate the effect that initial reservoir pressure and individual 
geomechanical effects have on the gas recovery 𝑅𝐹. For representing varying geomechanical 
effects the five cases defined in Table 5 are used. For each of the five cases there are two 
different initial reservoir pressures considered by changing 𝑃/0/� from 300 bar to 700 bar. All 
other input parameters are kept constant and equal to the values given in Table 3. Figure 20 
shows the gas recovery 𝑅𝐹 for up to 500 days for the cases with varied initial reservoir pressure 
and geomechanical effects. It shows that the effects from geomechanics on gas recovery are 
larger, in general, for an initial reservoir pressure 𝑃/0/� = 700 bar than for 𝑃/0/� = 300 bar. 
Other comparisons made from this figure may not be accurately made because when 𝑃/0/� is 
changed this will also change the amount of adsorbed and free gas originally in place in the 
matrix, see Appendix A). 



 
Figure 20: Effect of initial reservoir pressure and geomechanical effects on gas recovery RF. The initial 
reservoir pressure is varied from 𝑷𝒊𝒏𝒊𝒕 = 𝟑𝟎𝟎	𝒃𝒂𝒓 to 𝑷𝒊𝒏𝒊𝒕 = 𝟕𝟎𝟎	𝒃𝒂𝒓 and geomechanical effects are varied 
as defined in Table 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Discussion 
 

5.1 Interpretation of Results 
 
In the previous chapter and particularly in section 4.3.1 we saw results demonstrating the effect 
that geomechanics have on scaled recovery and properties like pressure, porosity and 
permeability. Increasing the stress-dependence factors 𝜂) , Ψ)  and Ψ�  resulted in larger 
reductions in gas recovery. The scaled average matrix porosity and scaled average matrix 
permeability in the Marcellus shale 1 case was affected slightly more than in the Marcellus 
shale 2 case even though they had the same values of  𝜂)  and Ψ) . This indicates that the 
fracture permeability-stress-dependence factor Ψ�  will influence the impact of these two 
properties. This can be explained by the scaled permeability distribution plots in Figure 15 
where we observed that the fracture permeability decreases faster in the areas closer to the well 
perforation which will affect matrix properties. In Figure 13 we make similar observations for 
the scaled pressure distribution plots. This shows that the fracture permeability reduction and 
pressure reduction in the reservoir are affecting each other through coupled processes. The 
scaled matrix porosity and matrix permeability are also part of this coupling, indicated by 
Figure 14. These three figures indicate that stress-dependent matrix porosity, stress-dependent 
matrix permeability and stress-dependent fracture permeability all cause a delayed pressure 
reduction in the areas further away from the well perforation. Therefore, the geomechanical 
effects reduce the driving force of gas production from the matrix to the fracture, and from the 
fracture to the well by creating local pressure buildups in regions furthest away from the well 
perforation. 
 
When investigating the effect of changing fracture size with geomechanical effects a key 
observation was made in Figure 16. The fracture permeability reduction had the most impact 
on gas recovery out of all the geomechanical effects. This indicates that the stress-dependence 
of fracture permeability becomes more important at smaller average fracture width and the gas 
recovery will be more sensitive to Ψ�. When the effect of fracture shape and geomechanical 
effects was investigated, very similar gas recoveries were seen in Figure 17, indicating that the 
fracture shape has low impact on gas recovery. However, when making the same investigation 
at a lower fracture size (𝑏. = 0.009 m) in Figure 18, the gas recovery for Case 2 became more 
sensitive to fracture shape. This tells us that at lower fracture sizes, and when the stress-
dependence of matrix permeability is high, the fracture shape has more significant impact on 
gas recovery. In Figure 19 the impact on gas recovery from varying fracture spacing and 
geomechanical effects is shown. We found that for longer fracture spacing (𝐿+ = 35 m) the gas 
recovery is more sensitive to the stress-dependent matrix permeability, resulting in a 5.71% 
decrease in recovery, compared to a 0.01% decrease at 𝐿+ = 7  m. This observation is in 
agreement with findings made by Wang et al. (2017) which were illustrated in Figure 5. 
Similarly, they found that Marcellus shale no. 1 was most sensitive to changes in matrix 
permeability-stress-dependence factor and based it on the fact that it was the case with lowest 
fracture density (largest fracture spacing). Finally, in Figure 20 we observed that the impact 
from geomechanics is largest at higher initial reservoir pressure 𝑃/0/�. This comes from the fact 
that the porosity and permeability can be considered functions of effective stress. A larger initial 
reservoir pressure results in higher effective stress in the formation as the pressure declines 
towards the bottom hole well pressure 𝑃ÂÃÄÄ. 
 



5.2 Interpretation of Results using Dimensionless Numbers 
 
The effect that geomechanics and other reservoir properties have on gas recovery has been 
demonstrated. In the following the model behaviour is interpreted by using the scaled model  
(64) and (65). If we assume that in a uniform fracture there is an initial scaled pressure is 𝑃D =
1 which diffuses towards zero, the time required for this process will be approximately 𝜏� . 
Similarly, the time required for diffusing free and adsorbed gas out of the matrix from 𝑃D = 1 
to 𝑃D = 0 will be reflected by the time scale 𝜏), given that the open boundary to the fracture 
has scaled pressure equal to zero. To be produced, all the gas from the matrix has to flow 
through the fracture. This process will at minimum require a time of (𝛽 + 1)𝜏�  where the factor 
(𝛽 + 1) signifies that there is 𝛽 times as much gas in the matrix as in the fracture in addition to 
the fracture volume. If the time (𝛽 + 1)𝜏�  is significant compared to the time 𝜏) the diffusion 
of gas from the matrix may be delayed. Noting that 𝛽 ≫ 1 we introduce the ratio 𝜔 of these 
times as: 

(77)  𝜔 =
(𝛽 + 1)𝜏�

𝜏) ≈ 𝛼𝛽 =	
𝐿�3𝐾�Ã�)

𝐿+𝑏.𝐾�Ã�
� 	 

If 𝜔 ≪ 1 it means that the gas has negligible residence time in the fracture and gas flow is 
completely controlled by the time scale of diffusion from the matrix. We can therefore expect 
a unique behaviour for cases where 𝜔 ≪ 1 when plotting recovery vs. time scaled against 𝜏). 
As 𝜔 becomes larger the residence time of gas in the fracture becomes more significant and 
delays the gas diffusion process. According to (77) the only parameters affecting this process 
under the stated assumptions are the reference permeabilities (𝐾�Ã�) and 𝐾�Ã�

� ), the fracture 
spacing (2𝐿+), the fracture half-width (𝑏.) and the fracture length (𝐿�).  
 
5.2.1 Systematic Variations of Alpha and Beta 
 
In this section, 20 simulation cases of gas recovery will be presented and interpreted according 
to the dimensionless number 𝜔 = 𝛼β. Input parameters have been varied in simulation cases 
so that the product 𝛼β  is equal to 109( , 1093 , 109:  and 10. . For each of the 𝛼β  values 
constant parameters appearing in 𝛼 and β have been varied, such as fracture spacing (2𝐿+), 
fracture half-width (𝑏.) and fracture length (𝐿�). Parameters that vary spatially and during the 
recovery process, such as matrix and fracture permeabilities, are represented by reference 
values in 𝛼 and β (𝐾�Ã�) 	𝑎𝑛𝑑	𝐾�Ã�

� ). For every case, unless stated otherwise, geomechanics are 
considered by using the stress-dependence factors for the Barnett shale case listed in Table 4.  
Three special scenarios are considered: 1) No geomechanics considered (all three stress-
dependence factors, 𝜂), Ψ) and Ψ� are equal to zero); 2) High fracture-width ratio (��½Ñ

����
=

10); 3)  High initial reservoir pressure 𝑃/0/� = 700 bar compared to the reference case 𝑃/0/� =
344.7 bar. The resulting 20 simulation cases are presented in terms of gas recovery vs. time in 
Figure 21 (top left). It is seen that the recovery profiles are very different for all cases and they 
span a wide range in the time scale. In Figure 21 (bottom) the same simulations are presented 
in terms of obtainable recovery RFÿ!  vs. time scaled against τI . We observe that when 
comparing the cases with geomechanics, where only constant parameters appearing in 𝛼 and β 
have been varied (indicated by full lines), to the cases where there are no geomechanics 
considered (indicated by dashed lines) the curves group well at  𝛼β = 109( and 𝛼β = 1093. 
Naturally, there is a slightly higher recovery obtained for the cases without geomechanics. 



At 𝛼β = 109: and 𝛼β = 1 the widest green curve and widest yellow curves vary significantly 
from the rest of the curves with the same value of 𝛼β. This indicates that the fracture properties 
have become more important for recovery and the effect from geomechanics is significant.  
At the low values of 𝛼β the residence time of gas in the fracture is insignificant compared to 
the matrix and the recovery will only depend on matrix properties. The effect from 
geomechanics are not as large for these low values. This is also why the cases where the fracture 
shape is varied using ��½Ñ

����
= 10 (indicated by dotted lines) show similar curves in Figure 21 

(bottom). Cases where the initial reservoir pressure has been increased (indicated by dash-
dotted lines) show similar curves for low values of 𝛼β . Only at 𝛼β = 1  is the difference 
significant, and the obtainable recovery is observed to be much higher up until around  �

#�
=

1.6. 
 



 
Figure 21: Absolute (top left) and scaled (bottom) gas recovery for 20 cases where 𝝎 = 𝜶𝜷 is constant for 
the values: 𝟏𝟎9𝟑, 𝟏𝟎9𝟐, 𝟏𝟎9𝟏 and 𝟏𝟎𝟎. Parameters 𝛂, 𝛃, 𝐛𝐦𝐚𝐱/𝐛𝐦𝐢𝐧, 𝐊𝐫𝐞𝐟𝐟  and 𝐊𝐫𝐞𝐟𝐦  are varied in the 20 cases. 
Any unspecified parameter is given in Table 3. 
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Appendix 
A) Initial and Current Gas in Place 

 
From (29) we see that the mass concentration of gas (mass per volume) is related by a constant 
factor to the pressure formulation. This factor can be used to evaluate the recovery of gas: 

(1)  𝐺𝑂𝐼𝑃 = 	©𝜙𝜌& + (1 − 𝜙)𝑎&𝑑𝑉	ê56768
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This equation must be evaluated over the two sides of matrix. First consider the free gas: 
(2)  𝜌&�𝑃&,.� = 𝜌&B𝑏´&𝑃/0/� 

The pore volume of free gas is: 
(3)  �2𝑏.𝐿��𝜙� + �2𝐿+𝐿��𝜙) 

Now consider the adsorbed gas: 

(4)  𝑎&(𝑃/0/�) = 𝑎)*+ �
𝑃/0/�

𝑃/0/� + 𝑃5
� 

The bulk volume of the matrix, where adsorbed gas is located, is given by: 
(5)  �2𝐿+𝐿�� 

Adding the various contribution, the gas originally in place is: 
(6)  𝐺𝑂𝐼𝑃 = :�2𝑏.𝐿��𝜙� + �2𝐿+𝐿��𝜙);𝜌&(𝑃/0/�) + �2𝐿+𝐿��𝑎&(𝑃/0/�) 

where 𝑏. is the average fracture width. Since height is not accounted for, GIP will actually 
have unit of mass per height, but a unit height can be assumed. 



 
The gas currently in place (GCIP) is the sum of the adsorbed gas in the matrix (mass1), the free 
gas in the fracture (mass2) and the free gas in the matrix (mass3). It can be calculated as follows: 
 

(7)  

𝑚𝑎𝑠𝑠1 = 2© © (1 − 𝜙))𝑎& ¿𝑃&(𝑥, 𝑦)Á 𝑑𝑥𝑑𝑦
�²5Ð

�².

+²5Ñ

+².

= 2< < (1 − 𝜙))𝑎& ¿𝑃&(𝑥/, 𝑦/)Á Δ𝑥Δ𝑦

Ý²0Ð

Ý².

/²0Ñ

/².

 

Note that the expression is only integrated over the right side of the fracture and then multiplied 
by 2 to account for the matrix located on the left side. 
 

(8)  

𝑚𝑎𝑠𝑠2 = ©𝜙𝜌&𝑑𝑉
9

= © © 𝜙𝜌&𝑑𝑥𝑑𝑦
�²5Ð

�².

+².

+²93�(�)

= 	© © 𝜙�𝜌&B𝑏´&𝑃&(𝑥, 𝑦)𝑑𝑥𝑑𝑦
�²5Ð

�².

+².

+²93�(�)

= < 𝜙�𝜌&B𝑏´&P·�y=�2b�y=�Δ𝑦

Ý²0Ð

Ý²:

	 

Note that 2𝑏(𝑦Ý) is the average width of cell nr j. 
 

(9)  

𝑚𝑎𝑠𝑠3 = ©𝜙𝜌&𝑑𝑉
9

	

= 2© © 𝜙𝜌&𝑑𝑥𝑑𝑦
�²5Ð

�².

+²5Ñ

+².

= 	2© © 𝜙)𝜌&B𝑏´&𝑃&(𝑥, 𝑦)𝑑𝑥𝑑𝑦
�²5Ð

�².

+²5Ñ

+².

= 2 < 𝜙)𝜌&B𝑏´&P·(i, j)ΔxΔ𝑦

Ý²0Ð

Ý²:

	 

The GCIP is then: 
(10)  𝐺𝐶𝐼𝑃 = 𝑚𝑎𝑠𝑠1 + 𝑚𝑎𝑠𝑠2 + 𝑚𝑎𝑠𝑠3 

 
B) Operator splitting 

 
The scaled transport system (65) and (66) is solved using an operator splitting approach 
similar to that presented in Berawala et al. 2018, Andersen et al. (2014; 2015) and Andersen 
et al. (2016). The coupled system is split into the two following subsystems (the ´notation has 
been dropped): 
 

a. Fracture diffusion. Flow in the y-direction.  
 
Set 𝜕+𝑃 = 0 and 𝜕�â& = 0: 
 



𝑏(𝑦)𝜕�(𝑃𝜙�) = 𝜕��𝐷𝑏𝐾�𝜕�𝑃�   �𝑥, 𝑦	ϵ	ΩH� 
 
𝜕�𝐺 = 0     (𝑥, 𝑦	𝜖Ω)) 
 

b. Fracture-matrix diffusion and desorption. Flow in the -direction. 
 
Here we have no flow in the y-direction, so we set 𝜕�𝑃 = 0. 
 
𝑏(𝑦)𝜕�(𝑃𝜙�) = 𝛼𝛽(𝐷𝐾)𝜕+𝑃)+².,�   �𝑥, 𝑦	ϵ	ΩH� 
 
𝜕�𝐺 = 𝛼𝜕+(𝐷𝐾)𝜕+𝑃)     (𝑥, 𝑦	𝜖Ω)) 
 
This system is further split into two subsystems where we 1) only consider diffusion with 
adsorbed mass held fixed and 2) equilibrate adsorbed mass with pressure in the matrix. 
 
We apply the Strang splitting approach so that that system a is solved during the time Δ𝑡/2, 
then system b is solved during the time Δ𝑡 before system a is solved for time Δ𝑡/2 again. The 
splitting step, Δ𝑡, must be selected sufficiently small to allow the different systems to 
participate frequently enough to provide relevant information in each others solution 
procedure. 
 
Fracture-matrix diffusion. With no desorption we set 𝜕�â& = 0 and solve the diffusion 
system: 
𝑏(𝑦)𝜕�(𝑃𝜙�) = 𝛼𝛽(𝐷𝐾)𝜕+𝑃)+².,� �𝑥, 𝑦	ϵ	ΩH� 
 
𝜕�𝐺 = 𝛼𝜕+(𝐷𝐾)𝜕+𝑃) (𝑥, 𝑦	𝜖Ω)) 
 
Desorption. No flow in x-direction or y-direction, so we set 𝜕+𝑃 = 0 and 𝜕�𝑃 = 0. 
 
𝑏𝜕�(𝑃) = 0    �𝑥, 𝑦	ϵ	ΩH� 
 
𝜕�𝐺 = 0    (𝑥, 𝑦	𝜖Ω)) 
 
This means that we have no flow, but locally we adjust 𝑃,	â(𝑃) and 𝜙) to be in equilibrium. 
The conserved property is:  

𝐺 = 𝜙)�𝑃& + â&� 
Since pressure has been diffused without changes to â&, the pressure and â& are not in 
equilibrium and require adjustment. At equilibrium we have an adjusted pressure 𝑃Ã@  and 
corresponding adsorbed content â&(𝑃Ã@) which must add up to the same amount G: 

𝐺 = 𝜙) Ö𝑃Ã@ + â)*+ f
𝑃Ã@

𝑃Ã@ + 𝑃5
hÚ 

This can be written: 
𝜙)𝑃Ã@3 + (𝜙)𝑃5 + 𝜙)â)*+ − 𝐺)𝑃Ã@ − 𝐺𝑃5 = 0 

 
This is a quadratic formula which gives: 

𝑃Ã@ =
−(𝜙)𝑃5 + 𝜙)â)*+ − 𝐺) ±B(𝜙)𝑃5 + 𝜙)â)*+ − 𝐺)3 + 4𝜙)𝐺𝑃5

2𝜙)  



This value is then scaled and returned from the adsorption-correction.  
 

C) Discretization 
 
Assume the y-axis is discretized into j = 1:𝑁� cells and the matrix (not including the fracture) 
into i = 1:𝑁+ cells. 
 

a. Fracture diffusion. We only consider the fracture, no changes in the matrix. 
 

𝑏(𝑦)𝜕�(𝑃𝜙�) = 𝜕��𝐷𝑏(𝑦)𝐾�𝜕�𝑃�											�𝑥, 𝑦	ϵ	ΩH� 
 
The scaled (half) width 𝑏(𝑦) varies generally, but for a given cell j 𝑏Ý  is constant. The 
conserved property is 𝑃, which integrated over the grid cell gives: 
 
�D(�D

�Ç×�D
�,�Ç×9�D

��D
�,�)

¯�
= 		

�E�(�)Õ�FÐ��DÇ×G
9�E�(�)Õ�FÐ��DÆ×G
¯�

									�𝑥, 𝑦	ϵ	ΩH�   
This scheme will conserve mass regardless of flux. The flux is selected as: 

�𝐷𝑏(𝑦)𝐾�𝜕�𝑃�Ý®:3
=
𝐷Ý®: + 𝐷Ý

2
𝑏Ý®: + 𝑏Ý

2
𝐾Ý®:
� + 𝐾Ý

�

2
𝑃Ý®: − 𝑃Ý
Δ𝑦  

If we assume that the porosity is constant over the time step and can be calculated using the 
pressure at the previous time step, we get: 

𝑏Ý𝜙Ý
�,0(𝑃Ý0®: − 𝑃Ý0)

Δ𝑡 = 		
�𝐷𝑏(𝑦)𝐾�𝜕�𝑃�Ý®:3

− �𝐷𝑏(𝑦)𝐾�𝜕�𝑃�Ý9:3
Δ𝑦  

And then: 
 

𝑃Ý0®: = 		
Δ𝑡	�𝐷𝑏(𝑦)𝐾�𝜕�𝑃�Ý®:3

− �𝐷𝑏(𝑦)𝐾�𝜕�𝑃�Ý9:3
b=	𝜙Ý

�,0Δ𝑦
+ 𝑃Ý0 

 
b. Fracture-matrix diffusion. With no desorption we set 𝜕�â& = 0 and solve the diffusion 

system: 
 
𝑏(𝑦)𝜕�(𝑃𝜙�) = 𝛼𝛽(𝐷𝐾)𝜕+𝑃)+².,�   �𝑥, 𝑦	ϵ	ΩH� 
 
𝜕�𝐺 = 𝛼𝜕+(𝐷𝐾)𝜕+𝑃)     (𝑥, 𝑦	𝜖Ω)) 
 
For the central cells in the matrix we have: 
 

𝑃/0®:𝜙/
),0®: − 𝑃/0𝜙/

),0

Δ𝑡 = 𝛼
(𝐷𝐾)𝜕+𝑃)/®:/3 − (𝐷𝐾)𝜕+𝑃)/9:/3

Δ𝑥  
 
At the fracture-matrix interface we have: 
 

𝑏Ý
𝑃.0®:𝜙.

�,0®: − 𝑃.0𝜙.
�,0

Δ𝑡 = 𝛼𝛽(𝐷𝐾)𝜕+𝑃)/²:3,Ý
								�𝑥, 𝑦	ϵ	ΩH� 

 
 



𝑃/0®:𝜙/
),0®: − 𝑃/0𝜙/

),0

Δ𝑡 = 𝛼
(𝐷𝐾)𝜕+𝑃)/²(3,Ý

− (𝐷𝐾)𝜕+𝑃)/²:3,Ý
Δ𝑥 										(𝑥, 𝑦	𝜖Ω)) 

 
The fracture-matrix flux term is evaluated by: 
 

(𝐷𝐾)𝜕+𝑃)/²:3,Ý
=
𝐷.®𝐷:
2

𝐾.) + 𝐾:)

2
𝑃: − 𝑃.

¿Δ𝑥2 Á	
 

The pressure gradient assumes the fracture pressure is given at the interface and not at the 
fracture center. 
 


