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ABSTRACT 

Economic feasibility of any field development largely depends upon its reservoir storage and flow capacity. 

Porosity, saturation and permeability are important parameters to determine the type and volume of 

hydrocarbons in place and to estimate recoverable reserves. They are also key parameters in planning, 

modelling and development of a reservoir.     

The porosity and saturation of the reservoir can be determined with reasonable certainty through 

interpretation of petrophysical logs or through analysis of physical core samples. Permeability evaluation 

is challenging, because the definition and the scale of this measurement varies across its sources. Well logs 

provide an empirically derived absolute value, cores provide both scalar (Kair) and vector (Kv, Kh, vertical 

and horizontal) permeabilities, while the reservoir volume investigated by a well test is quite large as 

compared to logs or cores. Hence, porosity, saturation and permeability are often compared between its 

sources, and calibrated as needed. While logs based interpretation is a fast interpretation technique, getting 

core results can take significant time. Also, not all wells are cored, or sometimes core samples are too small 

to carry out the analysis, leading to a missing link between core-log integration.  To improve some of the 

inaccuracies and limitations, ‘digital image analysis’ on core or on drill cuttings ‘thin sections’ can be a 

useful technique in estimating reservoir properties. Digital image analysis can provide porosity, pore size 

distribution, flow path tortuosity (permeability), irreducible water saturation and mineralogy of the samples. 

Pore space area and perimeter is also determined and can be used in studying chemical reactions in the pore 

wall area for improved oil recovery.  

This research work aims to develop novel automated digital image analysis methods for Petrophysical 

Evaluation, and thus overcomes some of the limitations with regards to objectivity and repeatability of 

traditional manual techniques. To analyze porosity of thin section images, a threshold value on pixels 

intensity histogram is required to separate pores response from the matrix. A set of rules have been 

developed to remove human subjectivity in selecting this threshold value. Correlations have been applied 

for permeability and tortuosity evaluation to understand reservoir flow potential.  

Petrographic thin section samples of reservoir rocks from 7128/6-1 well in the Barents Sea are studied. The 

thin section images are digitalized and analyzed using MatLab functions. Petrophysical properties, namely 

porosity, permeability and irreducible water saturation are quantified. In addition, some features of the pore 

space are quantified, including area, perimeter, major & minor axis of the pore area and orientation of the 

pores. The results from digital image analysis are compared against results from conventional core analysis 

to establish validity and limitations of thin section image interpretation technique.  

  



 

 

 

ACKNOWLEDGEMENT 

I would like to express my highest gratitude to my supervisors, Mr. Anders Nermoen, Mr. Pål Østebø 

Andersen, Mr. Paul Henry Nadeau and Mr. Ivar Austvoll. Without their guidance, supervision and 

discussions this work would not have been possible. There had been several occasions when I lost hope 

that I will not be able to make it, but it was so amazing that they showed great patience, provided support 

and encouragement that kept me going. To my every delay, they responded promptly so I can deliver 

milestones in due time. 

I am thankful for their time, as we had scheduled weekly meeting. Specially to Mr. Pål for scheduling and 

hosting project meetings in a dedicated meeting room, and for his positive critics to improve work quality. 

To Mr. Anders for hours of discussion and showing patience to guide me through MatLab basics in the 

beginning of thesis work. To Mr. Ivar for his expert opinions on digital image processing. And to Mr. Paul 

who based on his years of experience added technical depth to this work.      

I am simply impressed with the professionalism and attitude of my supervisors towards their students. They 

know how to pave way for their students to complete their studies successfully and with best possible 

grades.   

Last but not least, I am thankful to my family and friends. Whenever I told them I am delayed, they only 

said, no worries you can do it.  

 

 



 

 

 

Table of Contents 

 

1 INTRODUCTION .................................................................................................................... 1 

1.1 Background ......................................................................................................................... 2 

1.2 Objectives ........................................................................................................................... 2 

2 THEORY ................................................................................................................................... 3 

2.1 The thin section sample ...................................................................................................... 3 

2.2 A digital image .................................................................................................................... 4 

2.3 Porosity ............................................................................................................................... 5 

2.3.1 Porosity from well logs ............................................................................................. 5 

2.3.2 Porosity from cores ................................................................................................... 7 

2.3.3 Porosity from digital image analysis......................................................................... 8 

2.4 Porosity partitioning............................................................................................................ 9 

2.4.1 Porosity partitioning in context of image analysis .................................................. 10 

2.5 Permeability ...................................................................................................................... 12 

2.5.1 Permeability from logs ............................................................................................ 13 

2.5.2 Permeability from cores .......................................................................................... 14 

2.5.3 Permeability from digital image analysis ............................................................... 15 

2.6 Saturation and irreducible water saturation ...................................................................... 18 

2.6.1 Irreducible water saturation from NMR logs .......................................................... 18 

2.6.2 Irreducible water saturation from cores .................................................................. 19 

2.6.3 Irreducible water saturation from digital image analysis ........................................ 19 

3 METHODOLOGY ................................................................................................................. 20 

3.1 Digital image analysis ....................................................................................................... 20 

3.1.1 Main script .............................................................................................................. 20 

3.1.2 Slide color test......................................................................................................... 21 

3.1.3 Thin section test Rc ................................................................................................. 21 

3.1.4 Thin section test Rc auto ......................................................................................... 25 

3.1.5 ImClusters Kmean .................................................................................................. 25 

3.1.6 ImAnalysis .............................................................................................................. 28 

4 RESULTS ................................................................................................................................ 29 

4.1 Porosity from image analysis ............................................................................................ 29 



 

 

 

4.1.1 Manual threshold method ....................................................................................... 30 

4.1.2 Auto threshold method ............................................................................................ 31 

4.1.3 K-means clustering method .................................................................................... 33 

4.1.4 Clusters predicted threshold method ....................................................................... 34 

4.2 Permeability from image analysis ..................................................................................... 37 

4.3 Irreducible water saturation .............................................................................................. 38 

5 DISCUSSION ......................................................................................................................... 39 

5.1 Porosity ............................................................................................................................. 39 

5.2 Permeability ...................................................................................................................... 41 

6 CONCLUSION ....................................................................................................................... 43 

7 WAY FORWARD .................................................................................................................. 44 

REFERENCES ............................................................................................................................ 46 

APPENDICES ............................................................................................................................. 48 

Appendix-A: Conferences representation ................................................................................ 48 

Appendix-B: MatLab scripts .................................................................................................... 50 

Appendix-C: Optical microscopy scans of thin section samples ............................................. 62 

Appendix-D: Core analysis report (7128/6-1 well).................................................................. 69 



 

1 

 

1 INTRODUCTION 

Petrophysical properties like porosity, saturation and permeability characterizes success of an exploration 

well. These properties are either evaluated through formation evaluation logs or through laboratory 

measurements on core samples. Porosity and saturation are important inputs to evaluate hydrocarbon-in-

place while permeability defines if these hydrocarbon reserves will be able to flow. Significance of these 

properties can also be judged from the fact that operators continue to acquire formation evaluation data in 

development wells to reduce uncertainties in geological and reservoir models. 

Formation evaluation logs like neutron, density, sonic and nuclear-magnetic-resonance logs are used to 

evaluate formation porosity. Saturation is derived from resistivity log and interpreted porosity data. Logs 

based formation evaluation results are generally validated and calibrated against laboratory core 

measurements. This is especially true for permeability, where a porosity-permeability relation is derived 

from core measurements and applied on porosity log to get permeability profile. However, core data is 

usually acquired for exploration and appraisal wells only which represent a small number as compared to 

number of development wells. Formation evaluation of development wells highly relies on petrophysical 

logs and on core-log models established in early phase of field life.  

A general industry practice is to regard core measurements as ground truth. However, there can be un-

certainties associated with core measurements especially when laboratory conditions are ignored under 

which core measurements were made. For example, if logs based total porosity consistently read higher 

than core porosity, then there is a possibility of core samples not dried enough at given temperature, and 

measured porosity is effective instead of total porosity [Crain’s handbook]. Similarly, porosity from logs is 

derived based on mathematical models needing analyst input of formation properties e.g. sandstone matrix 

density of 2.65g/cc and oil density of 0.8g/cc may not be true to estimate porosity from a density log in an 

oil bearing sandstone reservoir. For logs based formation evaluation, porosity is an input to saturation and 

permeability equations. Uncertainty in porosity analysis will result uncertainty in estimates of saturation 

and permeability as well.  

There are certain factors that control above mentioned petrophysical properties of a reservoir; pore and 

grain size distribution, mineralogy, sorting, diagenesis, irreducible saturation, relative permeability and 

asphaltenes deposition etc. Characterizing these controlling factors require advanced logging and special 

analysis on core data (SCAL), yet some of these properties require alternate interpretation techniques. 

‘Digital image analysis of thin sections’ is presented as this alternate technique. Diagenesis is usually 

studied on core thin section samples to identify features like chlorite coating on quartz grains that tend to 

preserve porosity, or quartz overgrowth that reduces porosity [Guojun, 2011; Saadi, 2017]. Asphaltene 

deposition can be characterized through thin sections which severely impedes reservoir permeability 

[Mishra, 2012]. Porosity, mineralogy, pore size distribution, sorting and permeability can also be analyzed 

through digital image analysis of thin sections [Lawrence, 2017; Varfolomeev, 2016].  

Thin section samples can either be prepared from cores or from drill cuttings, where later is available for 

all drilled wells. Estimate of petrophysical properties from thin section can be studied together with core 

and log data to reduce uncertainties. Especially for the wells where core data is not available, thin section 

analysis can improve logs based interpretation.  

The focus of current year research work is to estimate petrophysical properties (porosity, permeability and 

saturation) from thin section samples. Digital images used were obtained from ‘optical microscopy’ 

scanning with pixel resolution of approx. 25 𝜇m which is significantly lower than e.g. SEM images 

(scanning electron microscopy). 
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1.1 Background 

Zerabruk (2017) and Fens, T. W. (2000) studied digital images of thin section samples obtained from optical 

microscopy scanning. Their work primarily focused on estimating porosity from these samples and used 

Kozeny-Carman capillary model to estimate permeability. Both researchers used similar methodology 

where digital image was segmented into its red, green and blue components, and a threshold (cutoff) was 

applied on red component of the image to extract pore space from matrix. Porosity and permeability from 

thin sections was compared against core data.  

Fens, T. W. (2000) did not achieve one-to-one correlation between thin section and core porosity and had 

to regress data for best fit. The limitation of his work was that good fit was achieved with regression and 

by knowing the ground truth from core data. Same set of regression may not be applicable for other samples.   

Zerabruk (2017) in his work relied on visual analysis and manual shifting of thresholds to extract porosity, 

which showed a good correlation with core porosity. Limitation of their work was tedious adjustment of 

thresholds and the subjectivity to pick threshold values. Permeability correlation from porosity was poorly 

established. 

 

1.2 Objectives 

Main objectives of the current study are; 

• Overcome limitations of previous work i.e. improve predictive power of thin section image analysis 

as an independent interpretation for petrophysical properties  

• Develop and improve digital image analysis tool at University of Stavanger (UiS) 

• Automate process of selecting threshold values 

• Study an alternate technique to determine porosity from thin section samples 

• Improve permeability correlation 

• Suggest future development 

  



 

3 

 

2 THEORY 

Porosity, permeability and saturation are important reservoir rock properties that are used in determination 

of hydrocarbon volume in place and recoverable reserves. There are different means to measure these 

properties, some are direct methods while others are indirect and uses correlations and model based 

calculations.  

Core measurements such as Helium porosity, Dean-Stark saturation tests and Gas permeability (𝐾𝑎𝑖𝑟 or 

𝐾𝑔𝑎𝑠) are examples of direct measurement techniques, while interpretation based on petrophysical well log 

data determine these properties indirectly. Usually properties from well logs and core tests are calibrated 

or validated against each other, and any differences are analyzed to understand uncertainties associated with 

each measurement.  

To reduce some of these differences, an additional source of petrophysical properties can be ‘digital image 

analysis’ on ‘core thin sections’. From literature review and methods developed in current study, digital 

image analysis can estimate total porosity, effective porosity, absolute permeability, irreducible water 

saturation, mineralogy and pore size distribution [Varfolomeev, 2016; Fens, 2000, Heilbronner, 2014]. The 

potential of this technique, when properly trained from empirical tools, is to derive capillary pressure and 

relative permeability profiles [Brooks, 1964; Ramakrishnan, 1994; Glorioso, 2003]. 

In the current study, we have focused on determining porosity (total & effective), absolute permeability and 

irreducible water saturation. Historical thin section image analysis techniques have determined porosity 

from manual thresholding [Fens, 2000; Zerabruk, 2017], which was somewhat subjective, so automated 

thresholding and clustering techniques are introduced in current study. Absolute permeability was estimated 

with Kozeny-Carman correlation [Carman, 1937; Dvorkin 2009], and Timur-Coates [Coates, 1973] 

correlation is newly introduced. Irreducible water saturation is simply derived from total and effective 

porosity. Hence, determination of these properties from digital image analysis of thin section can be termed 

as an indirect method.  

We first define thin section sample and digital image before looking into definitions of petrophysical 

properties; porosity, permeability and saturation, and how they are traditionally determined from logs and 

cores, and with image analysis.          

 

2.1 The thin section sample 

A thin section sample is a thin slice of rock mounted onto a glass surface. The dimensions of the samples 

are approximately 1 inch in diameter and 30 𝜇m (micron) thick. The rock sample is first cleaned to remove 

residue of drilling fluids and mounted onto a glass slide, it is then grinded and polished to the desired 

thickness. Prior to grinding and polishing procedures, sample is filled with blue color epoxy so the grains 

remain intact. The benefit of using blue epoxy is that it usually does not occur in rocks and occupies the 

pore space within the grains, hence, detection of blue color allows analysis of sample porosity. The 

technique, however, is limited by the grain size, as grains smaller than 30 𝜇m in diameter will be trapped 

in thin section, and a pixel resolving this grain will consist of blue color epoxy and the grain itself. 

A thin section sample is a physical sample and need to be digitized so an appropriate software can be used 

to study digital images. Samples used in the current study are taken from [Zerabruk, 2017] work and are 

the digitized images from 7128/6-1 well in Barents Sea. Canon 9000F Mark-II scanner was used to scan 

the samples. The scanned image has resolution of about 25 𝜇m/pixel. This procedure of scanning and 
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digitizing the image is called ‘optical microscopy’ and is of lower resolution as compared to digital images 

obtained from ‘scanning electron microscopy’. The advantage of the former is that it is a fast technique to 

obtain digital images and a disadvantage that pore sizes less than 25 𝜇m cannot be quantitatively resolved 

with optical microscopy.  

 

Figure 2.1: Scanned digital image of six thin section samples for the well 7128/6-1 with depth reference. Diameter of 

each sample is 1 inch 

 

2.2 A digital image 

Digital images are made of elements called pixels, which are the building blocks of an image. The size of 

an image is determined by the dimensions of pixel array, organized as array.  The image width is the number 

of columns (M), and the image height is the number of rows (N) in the array.  Thus, the pixel array is a 

matrix of M columns x N rows [excerpt modified from ImageJ webpage]. 

Image size specifically describes the number of pixels within a digital image.  The real-world representation 

of a digital image requires one additional factor called resolution, which is the spatial scale of the image 

pixels.  For example, an image of 2200x1600 pixels with a resolution of 200 pixels per inch (ppi) would be 

a real-world image size of 11"x8".   

Having defined the number of pixels, MxN, only provides a rectangular shape to an image.  One more 

parameter, intensity, is needed to truly define an image.  Each pixel has its own intensity value, or 

brightness.  If all the pixels have the same value, the image will be a uniform shade; all black, white, gray, 

or some other shade.  Black and white images only have intensity from the darkest gray (black) to lightest 

gray (white).  Color images, on the other hand, have intensity from the darkest and lightest of three different 

colors, Red, Green, and Blue.  The various mixtures of these color intensities produce a color image.  Thus, 

the two most basic types of digital images, B&W and Color, are known as grayscale and RGB images.   

In addition to the intensity type of each pixel, the range of intensity values also varies.   Intensity values in 

digital images are defined by bits.  A bit is binary and only has two possible values, 0 or 1.  An 8-bit 

intensity range has 256 possible values (2# of bits), 0 to 255.  For a 1-bit, or binary image, 21 = 2 possible 
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values and for an 8-bit image, 28 = 256 possible values.  Thin section digital images used in current study 

are 8-bit images hence, have pixel intensity range of 0 to 255. 

 

2.3 Porosity 

The volume fraction of void spaces, i.e. non-rock space, divided by the total volume of sample is defined 

as porosity. Consider a solid rock sample filled with liquid, liquid can only occupy the empty (pore) space 

within that sample. The volume occupied by fluid over total (bulk) volume is equivalent to total porosity 

of the sample. 

 
Porosity (Ф) =  

Pore volume

Bulk volume
=  

𝑉𝑝

𝑉𝑏
 

(2-1) 

From equation (2-1), unit of porosity is in fraction or in percentage. In Figure 2.2, the term solid grains is 

interchangeably used with rock matrix.  

 

Figure 2.2: Rock sample illustrating definition of porosity, where empty pore space within the solid grains (matrix) 

is filled with blue colored liquid [Schlumberger technical course] 

 

2.3.1 Porosity from well logs 

There are four log measurements that determine porosity namely, density log, neutron porosity log, sonic 

log and nuclear magnetic resonance (NMR) log. Density, neutron and sonic logs are bulk measurements 

with matrix effect in it which shall be determined from external means or assumed to get porosity from 

these logs. While NMR is a matrix independent porosity log. 

Bulk density log (𝜌𝑏) measurement is discussed, while neutron and sonic logs use similar equations to 

determine porosity. The density log works by Compton scattering and photoelectric effects that occur when 

gamma-rays from the source interact with the electrons of the elements present in the formation. By 

measuring returning number of gamma rays and their energy levels at a given distance from the source, the 

electron density of the formation is predicted. Bulk density of the formation is determined from electron 

density.  

Equation (2-2), shows the components of a bulk density log, where a bulk rock sample of unit volume is 

investigated by a density log, then the term (1 − Ф𝑡𝑜𝑡𝑎𝑙) is volume fraction occupied by matrix and (Ф) is 
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volume fraction occupied by fluids. (𝜌𝑚𝑎𝑡𝑟𝑖𝑥) is density of solid grains (also known as matrix density) and 

(𝜌𝑓𝑙𝑢𝑖𝑑) is fluid density occupying the pore space. 

 𝜌𝑏 =  (1 − Ф𝑡𝑜𝑡𝑎𝑙) 𝜌𝑚𝑎𝑡𝑟𝑖𝑥 + Ф𝑡𝑜𝑡𝑎𝑙 𝜌𝑓𝑙𝑢𝑖𝑑 (2-2) 

 Equation (2-2), can be re-arranged for porosity; 

 Ф𝑡𝑜𝑡𝑎𝑙 =  
𝜌𝑚𝑎𝑡𝑟𝑖𝑥 − 𝜌𝑏 

𝜌𝑚𝑎𝑡𝑟𝑖𝑥 − 𝜌𝑓𝑙𝑢𝑖𝑑
 (2-3) 

Consider a clean sandstone rock sample comprising of quartz grains only (𝜌𝑞𝑢𝑎𝑟𝑡𝑧 = 2.65 g/cc) filled with 

water (of 𝜌𝑤𝑎𝑡𝑒𝑟= 1.0g/cc), the total porosity of this sample can be determined by using equation (2-2) 

given the bulk density (𝜌𝑏) measurement.  

However, rocks seldom consist of single mineral and an analyst need to calculate or assume matrix density 

from other means to get 𝜌𝑚𝑎𝑡𝑟𝑖𝑥. Same for 𝜌𝑓𝑙𝑢𝑖𝑑, where fluid filling the pore space may be a mix of oil 

and water, or gas. Oil density typically varies from 0.6-0.9 g/cc depending upon its composition, pressure 

and temperature, while the water density is a function of the amount of salts dissolved in it. The gas density 

is special in a sense that equation (2-3) requires an apparent gas density response instead of actual gas 

density. All these unknowns add uncertainty to determination of total porosity from simply a bulk density 

log. 

For neutron porosity, formation is bombarded with high energy neutrons. These neutrons collide with the 

atomic nuclei of the elements present in the formation. The incident neutrons through in-elastic and elastic 

scattering loose energy, some get absorbed into the formation while others make their way back to two 

neutron detectors (a near detector and a far detector provided on neutron tool). Transforms are used to 

convert near-to-far ratio of receiving neutrons into a neutron porosity log. 

 𝑁𝑒𝑢𝑙𝑜𝑔 =  (1 − Ф𝑡𝑜𝑡𝑎𝑙) ∗ 𝑁𝑒𝑢𝑚𝑎𝑡𝑟𝑖𝑥 + Ф𝑡𝑜𝑡𝑎𝑙 ∗ 𝑁𝑒𝑢𝑓𝑙𝑢𝑖𝑑 (2-4) 

Where 𝑁𝑒𝑢𝑙𝑜𝑔, 𝑁𝑒𝑢𝑚𝑎𝑡𝑟𝑖𝑥 and 𝑁𝑒𝑢𝑓𝑙𝑢𝑖𝑑 are neutron log porosity, matrix response of neutron and fluid 

neutron response respectively.  

 

Further on, the sonic compressional slowness porosity is estimated via; 

 ∆𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑎𝑙 =  (1 − Ф𝑡𝑜𝑡𝑎𝑙) ∗ ∆𝑇𝑚𝑎𝑡𝑟𝑖𝑥 + Ф𝑡𝑜𝑡𝑎𝑙 ∗ ∆𝑇𝑓𝑙𝑢𝑖𝑑 (2-5) 

Where 𝛥𝑇 is transit time in 𝜇s/ft or in any other units of slowness (1/velocity). 𝛥𝑇𝑚𝑎𝑡𝑟𝑖𝑥 and 𝛥𝑇𝑓𝑙𝑢𝑖𝑑 are 

matrix and fluid transit times. 

Usually final total porosity from well logs in an oil and water bearing reservoirs is an average of density 

and neutron porosity. In case of gas reservoirs, it can be estimated as 2/3rd of density porosity and 1/3rd of 

neutron porosity. 
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2.3.2 Porosity from cores 

Porosity from cores may be determined on whole core sample, on full diameter or on core plugs. The 

volume investigated to determine porosity on each sample is different (Figure 2.3). For example, dimension 

of whole core can be 2 feet in length and diameter of 1.75 – 5.25 inch, full diameter sample is of shorter 

length about 6 inches, and core plug has dimension of 1 – 1.5 inch in diameter and 1 – 2 inch in length. 

Usually core plugs porosity is referenced and compared against petrophysical logs as they capture about 

the same level of sample heterogeneity as well logs. Whole core analysis is used for low porosity reservoirs.   

 

Figure 2.3: Core samples description for porosity analysis 

As discussed in previous section, bulk volume of a reservoir rock (𝑉𝑏) is sum of pore volume (𝑉𝑝) and grain 

volume (𝑉𝑔).  

 𝑉𝑏 =  𝑉𝑔 + 𝑉𝑝 (2-6) 

There are different laboratory methods that solve equation (2-6) to get 𝑉𝑝 (i.e. porosity) in a semi-direct 

way. We will only discuss helium porosity (Boyle’s law method) as this was the core porosity data available 

in current study. 

The sample is placed in a rubber sleeve holder that has no void space around the periphery of the core and 

on the ends. Such a holder is called the Hassler holder, or a hydrostatic load cell. Helium or one of its 

substitutes is injected into the core plug through the end stem.  

   

Figure 2.4: Boyle’s law apparatus for determining porosity [Crain’s handbook] 
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Pore volume (𝑉𝑝) or porosity is determined through the set of equations as given below; 

 
𝑉2 =  

𝑃1𝑉1

𝑃2
 

(2-7) 

 𝑉2 =  𝑉1 + 𝑉𝑝 (2-8) 

 𝑉𝑝 =  𝑉2 − 𝑉1 (2-9) 

Where 𝑃1, 𝑉1 is pressure, volume of cell-1 at initial condition, 𝑃2, 𝑉2 is pressure, volume of cell-2 after 

opening the valve, and 𝑉𝑝 is pore volume of core plug i.e. porosity. 

Porosity from core will be total porosity if the core sample used is full dried with no residues of original 

fluid. If core has not been fully dried (humidity dried only), then 𝑉𝑝 will be less than total porosity by an 

amount equivalent to native residues left in the sample.  

 

2.3.3 Porosity from digital image analysis 

A digital image comprises of pixels, which are the building blocks of an image. Hence, a pixel can be 

defined as the smallest unit of a digital image. Core thin section scanned images used in current study were 

typical cropped at 800x800 pixels (MxN pixel array, section 2.2) and for some small size images at 780x780 

pixels, hence total number of pixels in a sample ranged from 608,400 to 640,000 pixels.  

 

 

Figure 2.5: Core thin section samples (a) a generic image taken from literature [Schlumberger technical course] (b) 

an example of thin section image used in current study 

Through image segmentation techniques that will be discussed in detail under section 3, it is possible to 

extract regions associated with blue epoxy only, i.e. pore space. Number of pixels residing in pore space 

are cumulated and divided by total number of pixels to get image porosity. The definition of porosity from 

image analysis is somewhat similar to equation (2-1) but written in pixels term.   

 
Ф𝑖𝑚𝑎𝑔𝑒 =  

∑ pixels in pore space

Total number of pixels
 

(2-10) 

From Figure 2.5, sample (b) was scanned with optical microscopy technique while sample (a) was scanned 

with electron microscopy. The accuracy of porosity from image analysis is dependent upon its pixels 

resolution. Samples analyzed in current study have pixel resolution of about 25 𝜇m, which means pore sizes 
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greater than 25 𝜇m are accurately quantified with this technique and a different interpretation technique 

was used to quantify porosity associated with pore sizes less than 25 𝜇m. 

 

2.4 Porosity partitioning 

Porosity has several terminologies with each having different meaning. Porosity may be defined as primary 

or secondary porosity, total or effective porosity, micro-meso-macro porosity, or isolated porosity etc. Such 

differences shall be kept in mind while documenting porosity results.  

 

 Figure 2.6: Components of total porosity, and sensitivity of each measurement to different components of porosity 

(modified from Eslinger, 1988) 

In this study, core helium porosity and image analysis porosity are being compared. For core data, the 

drying conditions were not mentioned [appendix-D]. It is therefore assumed that the porosity estimated by 

image analysis has to be compared to what is inferred to be total porosity. 

From Figure 2.6, total pore volume is sum of constituent pores of different sizes, with clay bound pore 

system being the smallest in size. 

 Ф𝑡𝑜𝑡𝑎𝑙 =  Ф𝑐𝑙𝑎𝑦 𝑏𝑜𝑢𝑛𝑑 + Ф𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑏𝑜𝑢𝑛𝑑 + Ф𝑙𝑎𝑟𝑔𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑟𝑒𝑠 + Ф𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑝𝑜𝑟𝑒𝑠 (2-11) 

In Petrophysics terminology, effective porosity is non-clay porosity; 

 Ф𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒,𝑝𝑒𝑡𝑟𝑜𝑝ℎ𝑦𝑖𝑐𝑠 =  Ф𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑏𝑜𝑢𝑛𝑑 + Ф𝑙𝑎𝑟𝑔𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑟𝑒𝑠 + Ф𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑝𝑜𝑟𝑒𝑠 (2-12) 

While a Reservoir engineer may define only the inter-connected porosity as effective porosity. Clay bound 

and capillary bound pore system is usually considered as non-connected pores, they do not contribute to 

formation permeability. In Petrophysics term such porosity is equivalent to free fluid porosity.  
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 Ф𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒,𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 =  Ф𝑙𝑎𝑟𝑔𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑟𝑒𝑠 = Ф𝑓𝑟𝑒𝑒 𝑓𝑙𝑢𝑖𝑑 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦   (2-13) 

Isolated porosity if connected will significantly contribute to reservoir permeability, and can be added to 

equation (2-13). Isolated porosity sometimes also referred as secondary porosity and is usually observed in 

carbonate reservoirs as vugs and fractures. Sandstones are also known to contain fractured porosity but not 

the vuggy porosity.  

Porosity can also be defined in terms of pore sizes as micro, meso and macro pores. 

 

 

Figure 2.7: Pore size and grain size definitions (modified from Wentworth, 1922). Optical microscopy pixel resolution 

sensitivity to pore size 

Core thin section samples used in current study were scanned with optical microscopy having pixel 

resolution of 25 𝜇m. From Figure 2.7, for clastic reservoirs it can be inferred that digital image analysis can 

quantify intergranular porosity of medium-sized silt grains (~16 𝜇m) to coarse grained sands. However, 

substantial porosity may be residing in pore sizes less than 25 𝜇m, i.e. sub-resolution pores. Such sub-

resolution pores were visually observe-able on thin section images but with a mixed response of clay-silt 

matrix and porosity. A subjective adjustment factor was used to extract matrix effect from sub-resolution 

pores, details are discussed in section 2.4.1.  

 

2.4.1 Porosity partitioning in context of image analysis 

In current study, sub-resolution pores are defined as ‘Micro Pores’ and pore sizes greater than 25 𝜇m are 

defined as ‘Macro Pores’. Hence, terminology of micro and macro pores porosity in context of image 

analysis (scanned with optical microscopy) is used differently than their actual geological definitions.  

 Ф𝑖𝑚𝑎𝑔𝑒 = 𝐴 ∗ Ф𝑚𝑖𝑐𝑟𝑜 + Ф𝑚𝑎𝑐𝑟𝑜 = Ф𝑡𝑜𝑡𝑎𝑙   (2-14) 

 

Where ‘A’ in equation (2-14) stands for adjustment factor (between 0 and 1) to remove matrix effect from 

sub-resolution pores, as a pixel representing pore size of less than 25 𝜇m may consist of both a grain and a 

pore. Ф𝑚𝑖𝑐𝑟𝑜 is micro pores porosity, and Ф𝑚𝑎𝑐𝑟𝑜 is macro pores porosity. 
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Figure 2.8: Modified definitions of Micro and Macro porosity in context of image analysis 

 

Micro pores: pore sizes below the pixel resolution of optical scanning microscopy, hence contain matrix 

effect in it. An adjustment factor (A) must be used to remove this effect i.e. micro porosity shall be reduced 

by some fraction. Pore size less than 25 𝜇m. 

Macro pores: these are the pores that are fully resolved at resolution of optical microscopy. No adjustment 

factor is required. Pore size greater than 25 𝜇m. 

The following two equations define the micro porosity (Ф𝑚𝑖𝑐𝑟𝑜) and macro porosity (Ф𝑚𝑎𝑐𝑟𝑜) from image 

analysis presented in the current study; 

 

 
Ф𝑚𝑖𝑐𝑟𝑜 =

∑ pixels in micro pores

total number of pixels
 

(2-15) 

 

 
Ф𝑚𝑎𝑐𝑟𝑜 =

∑ pixels in macro pores

total number of pixels
 

(2-16) 

 

The blue color epoxy used to fill the pore space, physically is one homogeneous color. But due to pixel 

resolution limitation of optical microscopy, pores (> 25 𝜇m) appear bluer as compared to pore sizes < 25 

𝜇m, and defines color based definition of macro and micro pores respectively as shown in Figure 2.9.    
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Figure 2.9: (a) original cropped image is segmented into micro pores (b, light blue) and macro pores (c, dark blue), 

(d&e) represents binarized images of micro and macro pores respectively. These binary images are used to calculate 

porosity from respective micro and macro pores 

 

2.5 Permeability 

Permeability is the dynamic property of reservoir rock and measures ease at which a fluid can flow through 

a rock. Darcy law (Darcy, 1856) states that flow rate of a single-phase fluid through a porous media is 

proportional to permeability of the rock and effective pressure gradient, and is inversely proportional to 

fluid viscosity. Permeability has units of milli-Darcy (mD). 

Permeability is function of connectivity of pores, pore throats and grain size. For clastic reservoir, a general 

assumption is; bigger the pore size  bigger the grains and pore throats. This assumption may not be true 

for carbonate reservoirs as their matrix framework is usually not granular.  

 

Figure 2.10: Schematic illustration of flow path (a) high porosity with big grain sizes providing less tortuous path to 

flow (b) less porosity with smaller grains providing more tortuous path to flow. Permeability of sample (a) will be 

better than sample (b) 

A reservoir may contain significant quantity of hydrocarbons, but if pores are not connected with each 

other, hydrocarbons will not flow. Permeability is an important reservoir property influencing recoverable 

reserves. 
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Permeability is classified into absolute permeability (𝐾𝑎𝑏𝑠), effective permeability (𝐾𝑒𝑓𝑓) and as relative 

permeability (𝐾𝑟𝑜, 𝐾𝑟𝑔, 𝐾𝑟𝑤), where; 

Absolute permeability: is a physical property of reservoir rock when it is saturated with only one fluid. 

Effective permeability: ability of a fluid to follow in the presence of another fluid. For example, oil flowing 

in presence of water. Effective permeability is less than absolute permeability.  

Relative permeability: ratio of effective permeability of a specific fluid to absolute permeability. Relative 

permeability profiles of two fluids is expressed as function of saturation. Since, relative permeability is a 

ratio, it is unitless.  

 

2.5.1 Permeability from logs 

Petrophysical logs are generally permeability indicators, because permeability is a dynamic property while 

well logs are static data. Except for sonic Stoneley mobility [Ahmed, 1991] where sonic Stoneley waves 

does move near-wellbore fluids. Permeability from logs is usually a correlation based function of porosity. 

One common practice is to plot core porosity-permeability data from individual routine core analysis tests, 

and regress it to establish permeability as a function of porosity through the reservoir. Since, porosity is 

determined through logs, correlation is applied on this porosity to get ‘absolute permeability’ estimates 

from logs.   

 

Figure 2.11: (a) developing permeability correlation as a function of porosity from core data (b) applying it on log 

porosity to get permeability curve [Crain’s handbook] 

 

Over the years, several correlations have been developed to determine permeability from logs and most of 

them are function of porosity e.g. Coates equation and Wyllie-Rose method. Some correlations are suited 

for clastic reservoirs, while others for carbonate reservoirs or for fracture permeability. One such correlation 

discussed here is geochemical algorithm [Herron, 1987] which is suitable for clastic reservoirs; 

 𝐾𝑎𝑖𝑟 =  10𝑃𝑒𝑟𝑚𝐸𝑥𝑝 (2-17) 
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 𝑃𝑒𝑟𝑚𝐸𝑥𝑝 =  4.4 + 3log10(Ф𝑡𝑜𝑡𝑎𝑙) − 2log10(1 − Ф𝑡𝑜𝑡𝑎𝑙)

+ ∑((𝑃𝑟𝑚𝐹𝑎𝑐)(𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡))𝑖

𝑛

𝑖=1

 

(2-18) 

Where 𝑃𝑟𝑚𝐹𝑎𝑐 is permeability factor that is a constant for each mineral and can be tuned to get better 

match of log based permeability with core gas or air permeability.  

 

2.5.2 Permeability from cores 

Dry gas (air, N2 or He) permeability from cores is determined from Darcy Law; 

 
𝑄 =  

−𝐾𝐴∆𝑃

𝜇𝐿
 

(2-19) 

Where 𝑄 is flow rate, 𝐾 is permeability, ∆𝑃 (P1-P2) is pressure drop, 𝐿 is path length and 𝜇 is dynamic 

viscosity. 

A clean dried core plug is placed inside a sample holder, and dry gas is flowed through core plug at several 

flow rates. Inlet and outlet pressures are recorded. Fluid flow velocity (𝑄 𝐴⁄ ) is plotted vs (∆𝑃 𝐿⁄ ). At low 

flow rates, data exhibit a straight line with slope (𝐾 𝜇⁄ ).  

 

Figure 2.12: Schematic illustration of dry gas permeability from core plugs [Crain’s handbook] 

 

Core plugs gas permeability (Kgas) is ‘absolute permeability’ and is comparable for dry gas bearing 

reservoirs. For oil or water bearing reservoirs, Klinkenberg correction is applied to core gas permeability 

to correct for gas slippage effect. Klinkenberg correction provides equivalent liquid permeability (Kel), 

which is also an ‘absolute permeability’. Kel is less than Kgas. Permeability from core plugs is measured in 

both horizontal (Kh) and vertical (Kv) directions. 
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2.5.3 Permeability from digital image analysis 

Pore space in thin section image is filled with blue epoxy i.e. only one fluid is saturating the pore space. 

Hence, permeability from thin section is interpreted as ‘absolute permeability’. Permeability from thin 

section is derived in similar fashion as for the logs where correlations are used as a function of porosity. It 

is believed such correlations are suitable when porosity is granular, and the assumption that pore size 

distribution is proportional to grain size distribution Figure 2.8. 

Two correlations are studied; 

1- Kozeny-Carman permeability model 

2- Timur-Coates permeability, adapted from NMR bound and free fluid porosity 

 

2.5.3.1 Kozeny-Carman permeability 

Josef Kozeny and Philip C. Carman [Carman, 1937; Dvorkin 2009] developed a correlation that express 

permeability as a function of porosity and specific surface area. The model is based on flow through 

capillary tubes, rock with connected pores is represented by a sample with cross-sectional area ‘A’ and 

length ‘L’ consisting of ‘n’ number of capillary tubes of microscopic length ‘l’ and radius ‘r’. 

 

Figure 2.13: capillary bundle model, (a) straight tubes with l = L, (b) tubes with tortuous path l > L 

When pressure difference ∆𝑃 is applied across the model, the fluid flow (𝑄) of viscosity (𝜇) through each 

individual capillary tube of length (𝑙) is given by Poiseuille’s law [Dullien, 1979]; 

 
𝑄 =  

𝜋𝑟4∆𝑃

8𝜇𝑙
 

(2-20) 

Similarly, flow through a single capillary tube in a medium of cross-sectional area (𝐴) is expressed by 

Darcy Law as;  

 
𝑄 =  

𝐾𝐴∆𝑃

𝜇𝐿
 

(2-21) 

Comparing equations (2-20) and (2-21), and re-arranging to solve for permeability (𝐾); 
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𝐾 =  

𝜋𝑟4

8𝐴

𝐿

𝑙
 

(2-22) 

However, porous media does not represent straight flow path where 𝑙 > 𝐿 as depicted in Figure 2.13 (b), a 

tortuosity factor (𝜏 = 𝑙 𝐿⁄ ) is defined which is the length of the flow path over the length of permeable 

medium. 

 
𝐾 =  

𝜋𝑟4

8𝐴

1

𝜏
 

(2-23) 

In context of thin sections, a more useful form of equation would be that can relate permeability to porosity 

and other properties like pore specific surface area [Srisuttiyakorn, 2015]. These are the properties we can 

determine from image analysis.  

Porosity is written as; 

 
Ф =  

𝜋𝑟2𝑙

𝐴𝐿
=  

𝜋𝑟2𝜏

𝐴
 

(2-24) 

Specific surface area (S) is the ratio of pore surface area per unit volume and is written as; 

 
𝑆 =  

2𝜋𝑟𝑙

𝐴𝐿
=  

2𝜋𝑟𝜏

𝐴
 

(2-25) 

Equation (2-25) is re-arranged; 

 
𝑆 =  

2

𝑟

𝜋𝑟2𝜏

𝐴
=  

2Ф

𝑟
 

(2-26) 

   

 
𝑟 =  

2Ф

𝑆
 

(2-27) 

Substituting equations (2-24) and (2-27) in (2-23); 

 
𝐾 =  

𝜋𝑟2𝜏

𝐴
 

𝑟2

8𝜏2
=  Ф

(2Ф)2

8𝜏2𝑆2
=  

Ф3

2𝜏2𝑆2
 

(2-28) 

The general form of Kozeny-Carman equation to determine permeability from thin section images is given 

as;  

 
𝐾𝐾𝑜𝑧𝑒𝑛𝑦−𝐶𝑎𝑟𝑚𝑎𝑛 =

(Ф𝑡𝑜𝑡𝑎𝑙)3

𝐶𝑜 ∗ 𝑆𝑥
 

(2-29) 

 

Where 𝐶𝑜 is Kozeny-Carman constant and is approximately 5 [Carman, 1937; Zerabruk, 2017], the specific 

surface area exponent ‘𝑥’ as shown in above derivation is 2, but this value can be adjusted to achieve a 

better correlation between image based permeability and the ‘ground truth’ derived from direct 

measurements such as core permeability.  
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Modifications to above form of the equation (2-29) has been discussed in literature [Dvorkin, 2009; 

Srisuttiyakorn, 2015] but are not implemented in current thesis work. 

Specific surface area or surface to volume ratio is approximated by the ratio of pore perimeter to pore area. 

Perimeter and area of each pore (i) are outputs of ‘ImAnalysis’ script [section 3.1.6].  

 
𝑆𝑖 =

Pore Perimeter

Pore Area
 

(2-30) 

The specific area of the analyzed sample is approximated as the average specific area of all pores. 

 
𝑆 =  

1

𝑁
∑ 𝑆𝑖 

(2-31) 

 

Unit of specific area is [1/pixel] and is converted into units of [1/m] by knowing that 1 pixel = 25 𝜇m 

[section, 2.1]. 

Hence, dimension of permeability from equation (2-29) will be [m2] and is converted to [mD] unit by using 

conversion factor of 1m2 = 1.01 x 1015 mDarcy.  

 

2.5.3.2 Timur-Coates permeability  

Timur-Coates permeability equation is correlation based and determined experimentally by comparing 

NMR (nuclear magnetic resonance) permeability estimate against core permeability. This correlation 

relates permeability to total porosity and to the ratio of pores that will contribute to permeability to the pores 

that will not contribute to permeability [Coates, 1973; Allen, 2000].  

 
𝐾𝑇𝑖𝑚𝑢𝑟−𝐶𝑜𝑎𝑡𝑒𝑠 = 10000 (𝑎(Ф𝑡𝑜𝑡𝑎𝑙)𝑏 ∗ (

Ф𝑓𝑟𝑒𝑒 𝑓𝑙𝑢𝑖𝑑 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦

Ф𝑏𝑜𝑢𝑛𝑑 𝑓𝑙𝑢𝑖𝑑 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦
)

𝑐

) 
(2-32) 

Where 𝑎, 𝑏 and 𝑐 are constants with default values of 1, 4 and 2 respectively. 

Equation (2-32) can be used to estimate permeability from image analysis based on the assumption that free 

fluid porosity is related to macro pores and bound fluid porosity to micro pores. In context of image analysis, 

equation (2-32) is re-written as; 

 
𝐾𝑇𝑖𝑚𝑢𝑟−𝐶𝑜𝑎𝑡𝑒𝑠 = 10000 (𝑎(Ф𝑡𝑜𝑡𝑎𝑙)𝑏 ∗ (

Ф𝑚𝑎𝑐𝑟𝑜

Ф𝑚𝑖𝑐𝑟𝑜
)

𝑐

) 
(2-33) 

The equation outputs permeability in units of mD. 
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2.6 Saturation and irreducible water saturation 

Saturation is defined as pore volume occupied by a fluid. In case of an oil bearing water wet reservoir, there 

will be a portion of pore space occupied by water and the rest by oil. Water saturation (𝑆𝑤) can be defined 

as; 

 
𝑆𝑤 =  

Pore volume occupied by water

Pore volume
=

𝑉𝑤

Ф
 

(2-34) 

If porosity term in the denominator is total porosity then saturation is total water saturation (𝑆𝑤𝑡), and if 

effective porosity is used then it will be effective water saturation (𝑆𝑤𝑒). For water wet reservoirs, 𝑆𝑤𝑒 is 

less than 𝑆𝑤𝑡. Unit of saturation is either expressed in fraction or as percentage. Hence, oil saturation (𝑆𝑜) 

will be 1 – 𝑆𝑤. 

Total and effective water saturation was not available for the studied data. However, it was possible to 

estimate irreducible water saturation (𝑆𝑤𝑖𝑟𝑟) from digital image analysis. Hence, a brief description of 

methods that can estimate 𝑆𝑤𝑖𝑟𝑟 is mentioned here. 

Irreducible water saturation can be defined as critical saturation below which water will not flow.  

 

2.6.1 Irreducible water saturation from NMR logs 

Only nuclear magnetic resonance (NMR) log can estimate 𝑆𝑤𝑖𝑟𝑟. It assumes that bound fluid porosity will 

not contribute to flow. Based on experimental data and observations over datasets in several fields, NMR 

porosity in sandstone reservoirs can be partitioned into bound and free fluid porosity by using transverse 

time (T2) cutoff of 33 𝑚s, and for carbonates it is about 120 𝑚s. For a water wet reservoir, bound fluid 

porosity is pore volume occupied by water that will not flow and is equivalent to 𝑆𝑤𝑖𝑟𝑟. 

 

Figure 2.14: NMR definition of bound and free fluid porosity for irreducible water saturation 

 

 
𝑆𝑤𝑡𝑖𝑟𝑟,𝑁𝑀𝑅 =  

Bound fluid porosity

Total porosity
 

(2-35) 
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Caution shall be taken as the term in the denominator shall be total porosity. NMR porosity is equivalent 

to total porosity in oil and water bearing reservoirs. But for gas and very light oil bearing reservoirs, NMR 

porosity needs correction for hydrogen index effect to give total porosity. 

Correlations can also be developed based on core data or from logs as function of porosity and permeability 

[Herron, 1987] to estimate irreducible water saturation. 

 𝑆𝑤𝑡𝑖𝑟𝑟,𝑙𝑜𝑔 =  0.25(4.4log10(Ф𝑡𝑜𝑡𝑎𝑙) − log10(𝐾𝑙𝑜𝑔) + 6.7) (2-36) 

 

2.6.2 Irreducible water saturation from cores 

For an oil bearing reservoir drilled with oil-based-mud (OBM) at irreducible water saturation. The volume 

of water collected with Dean-Stark experiment will be irreducible water volume.  

𝑆𝑤𝑖𝑟𝑟 from core is determined with special-core-analysis (SCAL) experiments; centrifuge or mercury-

injection capillary pressure and through relative permeability profiles.  

 

Figure 2.15: Special core analysis (a) irreducible water saturation from capillary pressure data (b) from relative 

permeability profile 

 

2.6.3 Irreducible water saturation from digital image analysis 

𝑆𝑤𝑖𝑟𝑟 from image analysis is derived the same way as in equation (2-35). From figures Figure 2.8 and 

Figure 2.14, micro porosity from image analysis is equivalent to NMR bound fluid porosity. 

 
𝑆𝑤𝑡𝑖𝑟𝑟,𝑖𝑚𝑎𝑔𝑒 =  

Ф𝑚𝑖𝑐𝑟𝑜

Ф𝑡𝑜𝑡𝑎𝑙
 

(2-37) 
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3 METHODOLOGY 

 

3.1 Digital image analysis 

Digital images were studied using Matlab R2017b software and six different codes were developed for 

image preparation, segmentation, petrophysical properties extraction and for morphological analysis of 

pore space. The purpose of each script is briefly mentioned below while the code details are included in 

appendix-B. The scripts focus on finding optimum technique(s) that can extract porosity from thin section 

image. A manual thresholding technique on pixel intensity histogram is discussed first, and due to 

subjective nature of picking these threshold values, automatic clustering technique is introduced.    

1. Main script 

2. Slide color test 

3. Thin section test Rc 

4. Thin section test Rc auto 

5. ImClusters Kmean 

6. ImAnalysis  

 

3.1.1 Main script 

The script crops the thin section digital image into 800x800 pixels dimension square array. It also calls out 

the scripts (2-to-6) mentioned above. While most of the samples were cropped at 800x800, but there were 

some scanned samples with trimmed dimensions and were cropped at reduced pixel dimensions e.g. 

780x780. 

 

Figure 3.1: (a) represents the 1 inch diameter thin section digital image and 800x800 pixels dimension blue square 

that was used to crop the image (b) cropped image, dimension of the thin section image is reduced to 0.7 inch after 

cropping 
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3.1.2 Slide color test 

Slide color test script is mainly an initial visual analysis of the cropped image, it segments the image into 

red-green-blue (RGB) space and luminosity-chromaticity (Lab) space. Any color image is basically a 

combination of three colors red, green and blue mixed in different proportions [Heilbronner, 2014]. Hence, 

by segmenting the image into these three basic colors and analyzing the pixel intensity histogram of each 

color component, different features residing in an image can be extracted. In Lab space, ‘L’ stands for 

luminosity and features the brightness or light emitted by an image, ‘a’ is chromaticity layer indicating 

where colors fall along the red-green axis, ‘b’ is also chromaticity layer indicating where colors fall along 

blue-yellow axis. All of the color information resides in ‘a’ and ‘b’ layers.  

In Figure 3.2, it can be visualized that blue epoxy stands out on the red component of the segmented image. 

Inverted R component (Rc) in Figure 3.2 is inverse (complement) of red component and the bright features 

appearing on its image are associated with blue epoxy. The pixel intensity histogram (scale 0-255) of each 

image is also displayed and by thresholding (cut-off) the histogram, feature of desired interest can be 

extracted. It was observed from analysis of several samples that blue epoxy can be properly captured by 

thresholding the inverted red component of the segmented image, in our case the lack of red intensity (low 

number, i.e. high number when inverted) implies the presence of blue color, hence epoxy placed in pores. 

Matlab scripts where thresholds were used to capture sample porosity, only the inverted red component of 

the image was used. 

 

3.1.3 Thin section test Rc    

This script uses the pixel intensity histogram of red component complement (Rc) to extract blue epoxy 

feature residing in pore space. As can be seen from Figure 3.2, not all part of the pixel intensity histogram 

represents the pore space, instead histogram is representation of the entire image in its respective color 

space. Hence, a threshold (or cut-off) is needed on intensity histogram to extract the desired feature.  

Figure 3.4 shows simplified workflow of the script, the analysis starts from the cropped original image, 

which is then segmented into RGB space and only the red component (inverted, Rc) was analyzed 

appropriate to capture pore space (b). A threshold was applied on pixel intensity histogram such that pixels 

representing the pore space resides between threshold value and scale maximum value of 255 pixels (c). To 

quality control the results of captured pores a red boundary is marked around the captured pores (e). A 

binary image (d) is also created which is used to quantify porosity from pixels count in white region of the 

binarized image.  

The image has a pixel resolution of 25 𝜇m/pixel, hence pore sizes greater than 25 𝜇m can be quantified 

with a single threshold. But there can be significant number of pores with size less than 25 𝜇m contributing 

to porosity. It was analyzed that a second threshold was needed to capture these sub-resolution pores, and 

micro pores required a qualitative adjustment factor to separate matrix effect from these sub-resolution 

pores. An adjustment factor of 0.4 was used in Zerabruk et al. work. Details of the two thresholds and 

associated porosity definitions are discussed under sections 2.4.1 and 3.1.5.  
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Figure 3.2: image segmentation into red-green-blue (RGB) space 
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Figure 3.3: image segmentation into luminosity-chromaticity (Lab) space 
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Figure 3.4: Thin section test Rc workflow to capture pore space by using inverted red component of thin section image 
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3.1.4 Thin section test Rc auto 

Thresholding pixels histogram to capture pore space is a manual technique where threshold value is adjusted 

until analyst is visually satisfied that all pores have been captured correctly. The workflow is qualitative in 

a sense that resolution of optical microscopy is not sufficient to settle on one threshold value.  

It was desired in this project to aim at removing subjectivity from picking the threshold values and automate 

the process. To automatically identify threshold values, a curve (Fourier order 3) was fit to pixel intensity 

histogram and its second order derivative was used to suggest threshold values.  

Figure 3.5 (a) shows the 3rd order Fourier fit on pixel intensity histogram of inverted red component. Then 

2nd order derivative of this fit was used to identify inflexion points (b) as potential threshold values to 

capture both visualize able and sub-resolution pores. This approach was applied on several samples and it 

was analyzed that suggested auto-threshold values did not capture all the pores which led to under 

estimation of porosity when compared against core helium porosity. The results and short comings of this 

approach are discussed under section 4.1.2.   

 

Figure 3.5: Fourier fit and its 2nd derivative analysis to suggest threshold values 

 

3.1.5 ImClusters Kmean 

One main objective of current year thesis work was to automate process of extracting pore space. After the 

short comings of auto-thresholding technique, data partitioning technique like k-means clustering was 

analyzed. In Figure 3.6, the function k-means partitions ‘n’ observations into ‘k’ number of mutually 

exclusive clusters and returns clusters indices assigned to each observation. It is an iterative process and 

partitioning is achieved in a way that data points within a cluster are as close to each other as possible and 

as distant from data points in other clusters. Each cluster is characterized by its centroid or center point. 

There are five different distance measuring techniques in Matlab; sqeuclidean, cityblock, cosine etc.   

Number of clusters and centroids initialization need to be defined initially. After analyzing several samples 

and based on resolution limitation of optical microscopy it was concluded that three number of samples 

were sufficient to reliably extract blue feature of the image, Figure 3.7. Choosing number of clusters greater 

than 3 deteriorated cluster associated with blue color and under-estimated porosity. ‘Kmeans++’ algorithm 

[MathWorks documentation] was used for centroids initialization and ‘Euclidean distance’ was used for 

distance minimization to partition clusters. To avoid local minima, initialization was repeated three times.  



 

26 

 

 

Figure 3.6: K-means logic to partition data points into clusters based on minimizing data points distance from cluster 

centroid 

While clustering, analysis can be performed on any color space, RGB, Lab or HSV. It was analyzed for the 

studied thin section samples that Lab scale (Lab) clustering best resolved blue epoxy to capture pore space. 

In Lab scale, color information lies in ‘a’ and ‘b’ segments of the image, this color information was used 

to capture blue color epoxy associated with pore space, cluster#2 Figure 3.7. However, it can be observed 

from the captured cluster#2 image that intensity of blue color is not the same across all pores. Pore sizes 

greater than pixel resolution of the image (macro pores) appear bluer as compared to sub-resolution pores 

(micro pores) which includes matrix effect in it.  

 

Figure 3.7: K-means clustering to partition cropped thin section image into three clusters 
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‘L’ luminosity was used to further segment blue color into dark blue easily visualize-able pores and light 

blue sub-resolution pores, Figure 3.8. Like manual thresholding technique, an adjustment factor was 

required to take out matrix effect from sub-resolution pores. After analyzing all the samples, an adjustment 

factor of 0.8 was found suitable to capture porosity of small pores [section 4.1.3]. 

 

Figure 3.8: Using luminosity ‘L’ component to further partitioning the captured blue epoxy into dark and light blue 

For comparison and quality control purpose, pixel intensity of captured pores from K-means clustering was 

plotted on inverted red component histogram. It served two purposes;  

1. To predict threshold values if it is required to capture porosity by using the thresholding technique.  

2. It highlights how pixel intensity associated with blue epoxy (pores) is distributed over the pixel 

intensity histogram of the entire image.  

From Figure 3.9, it can be analyzed that it will be difficult to interpret sub-resolution pores by using manual 

thresholding technique which would capture significant portion of matrix and a very subjective adjustment 

factor will be required to remove matrix effect.  

 

Figure 3.9: (a) pixel intensity distribution of cluster associated with blue color on inverted red component of the 

original cropped image. (b) quality control of captured pores using k-means clustering, where green boundary is used 

to capture sub-resolution pores and red boundary for visible pores 
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3.1.6 ImAnalysis 

This script uses ‘regionprops’ built-in function of Matlab to identify physical features of each pore; 

1- Pore area: actual number of pixels in the region 

2- Center of pore space in x, y coordinate: center of mass of the region 

3- Major and minor axis: major and minor axis of the ellipse, it is length in units of pixels 

4- Perimeter of each pore: distance around the boundary of the region 

5- Orientation: angle between the x-axis and the major axis of the ellipse 

6- Eccentricity: is the ratio of the distance between the foci of the ellipse and its major axis length. An 

ellipse whose eccentricity is 0 is a circle, and value of 1 is a line segment   

Pore area can be used to establish pore size distribution, sphericity of the pore can be estimated from specific 

surface area (equation (2-30)). Pore specific surface area is an input to Kozeny-Carman permeability 

equation (2-29). We did not explore other applications of these morphological properties in current study. 
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4 RESULTS 

Thin section samples from NPD database for the well 7128/6-1from Barents Sea that were drilled from 

11.08.1991 to 08.11.1991 by Conoco Norway Inc. are analyzed. Oil shows were encountered in some 

formations penetrated by the well, but the field was not developed. More information about the well can be 

found on NPD website, facts page. These samples cover the range of rock types as carbonates, sandstone 

and fractured shales. The scanned images of all thin section samples are presented in appendix-C. Selected 

26 samples were chosen for porosity and permeability analysis, as the physical quality of remaining samples 

was considered not good enough.  

Sample 

ID 

Sample 

Depth 

(m) 

Groups Formation Lithology 

1 1630.10 Tempelfjorden Røye  Carbonate 

2 1637.81 Carbonate 
3 1643.88 Carbonate 
4 1891.90 Gipsdalen Ørn Carbonate 
5 1896.70 Carbonate 
6 1902.72 Carbonate 
7 1904.75 Carbonate 
8 1913.49 Carbonate 
9 1916.15 Carbonate 
10 1930.44 Carbonate 
11 1945.28 Carbonate 
12 1947.94 Carbonate 
13 1952.04 Clastic 

14 1957.66 Carbonate 
15 1964.40 Carbonate 
16 1971.63 Carbonate 
17 1975.63 Carbonate 
18 2000.70 Carbonate 
19 2006.47 Carbonate 
20 2015.03 Carbonate 
21 2019.03 Carbonate 
22 2044.52 Carbonate 
23 2046.03 Carbonate 
24 2109.34 Falk Clastic 

25 2128.82 Clastic 

26 2243.39 Billefjorden Tettegras Clastic 
Table 4-1: thin section samples lithostratigraphy and lithology 

 

4.1 Porosity from image analysis 

Porosity is analyzed by using methods discussed under [section 3]; 

(1) Manual threshold method 

(2) Auto-threshold method 
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(3) K-means clustering method 

(4) Clusters predicted threshold method  

 

4.1.1 Manual threshold method 

It is the same method as used in [Zerabruk, 2017] work where thresholds were used on pixel intensity 

histogram of the inverted red component (Rc). The threshold values were manually picked and adjusted 

until analyst is visually satisfied that all pores have been captured correctly. The results of this method are 

included as a reference, to compare validity and goodness of the results from newly developed techniques 

in current year’s thesis work. 

Two thresholds were chosen, one to capture porosity of macro pores that are fully resolved at pixel 

resolution of optical microscopy and a second level threshold to capture sub-resolution micro pores. Total 

porosity is the sum of micro and macro porosity. Micro porosity in Zerabruk, 2017 work was adjusted by 

the factor (𝐴 = 0.4) to exclude matrix effect from micro pores. 

 Ф𝑡𝑜𝑡𝑎𝑙 = 𝐴 ∗ Ф𝑚𝑖𝑐𝑟𝑜 + Ф𝑚𝑎𝑐𝑟𝑜 (4-1) 

Conventional core analysis data used for comparison is included in [appendix-D]. 

 

  

Figure 4.1: Comparison of image based total porosity using manual threshold with core helium porosity 
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Sample 

ID 

Sample 

Depth 

(m) 

Micro pores 

cut-off 

Macro pores 

cut-off 

Micro 

porosity 

(fraction) 

Macro 

porosity 

(fraction) 

Total 

porosity 

(fraction) 

1 1630.10 90 105 0.043 0.132 0.175 

2 1637.81 110 140 0.013 0.094 0.107 

3 1643.88 140 170 0.045 0.062 0.107 

4 1891.90 140 170 0.064 0.210 0.274 

5 1896.70 140 170 0.084 0.105 0.189 

6 1902.72 150 175 0.068 0.164 0.232 

7 1904.75 160 175 0.092 0.142 0.234 

8 1913.49 140 170 0.078 0.120 0.198 

9 1916.15 200 210 0.039 0.214 0.253 

10 1930.44 150 170 0.100 0.198 0.298 

11 1945.28 150 180 0.088 0.178 0.266 

12 1947.94 130 160 0.011 0.045 0.056 

13 1952.04 190 210 0.011 0.057 0.068 

14 1957.66 110 150 0.061 0.074 0.135 

15 1964.40 160 200 0.025 0.186 0.211 

16 1971.63 110 150 0.058 0.135 0.193 

17 1975.63 130 175 0.049 0.132 0.181 

18 2000.70 150 170 0.031 0.126 0.157 

19 2006.47 130 160 0.050 0.051 0.101 

20 2015.03 110 150 0.018 0.077 0.095 

21 2019.03 150 175 0.053 0.108 0.161 

22 2044.52 210 230 0.062 0.110 0.172 

23 2046.03 220 230 0.072 0.137 0.209 

24 2109.34 110 150 0.072 0.096 0.168 

25 2128.82 190 210 0.014 0.049 0.063 

26 2243.39 200 220 0.019 0.020 0.039 
Table 4-2: Image porosity analysis by using two levels manual threshold method  

 

4.1.2 Auto threshold method 

Manual thresholding technique required back-and-forth threshold adjustment and workflow was analyzed 

as tedious and subjective. It can be difficult to judge where to stop macro and micro pores cut-off. Hence, 

it was desired to automate this process. The methodology used to predict auto threshold values for micro 

and macro process was discussed under [section 3.1.4]. 

For most of the samples, auto threshold method under estimated the total porosity. In Table 4-2, no 

adjustment factor was applied on micro pores, as use of such factor will further reduce total porosity. Auto 

threshold predictions were discarded for any further analysis, and it was required to consider alternate 

automatic method. 
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Sample 

ID 

Sample 

Depth 

(m) 

Micro pores 

cut-off 

Macro pores 

cut-off 

Micro 

porosity 

(fraction) 

Macro 

porosity 

(fraction) 

Total 

porosity 

(fraction) 

1 1630.10 107 181 0.110 0.015 0.124 

2 1637.81 107 209 0.115 0.044 0.159 

3 1643.88 155 205 0.059 0.035 0.094 

4 1891.90 166 222 0.151 0.076 0.227 

5 1896.70 189 220 0.039 0.014 0.053 

6 1902.72 185 232 0.099 0.026 0.125 

7 1904.75 177 229 0.114 0.022 0.136 

8 1913.49 157 205 0.027 0.058 0.085 

9 1916.15 197 221 0.222 0.132 0.354 

10 1930.44 166 230 0.219 0.016 0.234 

11 1945.28 171 225 0.186 0.038 0.224 

12 1947.94 129 215 0.054 0.018 0.073 

13 1952.04 125 192 0.128 0.082 0.210 

14 1957.66 166 223 0.039 0.014 0.053 

15 1964.40 158 212 0.081 0.170 0.251 

16 1971.63 148 207 0.064 0.094 0.158 

17 1975.63 167 221 0.078 0.068 0.146 

18 2000.70 147 189 0.135 0.086 0.221 

19 2006.47 179 227 0.024 0.004 0.028 

20 2015.03 146 217 0.035 0.045 0.080 

21 2019.03 130 218 0.414 0.034 0.448 

22 2044.52 197 236 0.320 0.073 0.393 

23 2046.03 231 249 0.114 0.014 0.128 

24 2109.34 142 224 0.114 0.007 0.121 

25 2128.82 177 203 0.048 0.061 0.110 

26 2243.39 146 212 0.221 0.062 0.283 
Table 4-3: Image porosity analysis by using two levels auto threshold method 

 

Figure 4.2: Comparison of image based total porosity using auto threshold with core helium porosity 
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4.1.3 K-means clustering method 

The automatic method analyzed in current study to estimate porosity is K-means clustering. Three clusters 

were used and the cluster associated with blue color (epoxy) was further analyzed to estimate porosity. 

Micro and macro porosity was differentiated based on luminosity (L) of the blue color, where light blue 

represents micro pores and dark blue as macro pores.  

 

 

Figure 4.3: Comparison of image based total porosity using K-means clustering with core helium porosity 

 

Like manual threshold method, an adjustment factor was required for micro porosity to remove matrix 

effect. For the analyzed samples, factor of 0.8 was required in equation (2-14) to achieve a good correlation 

between image derived porosity and core porosity. Samples 22 & 23 were discarded in Figure 4.3, as the 

color of the samples itself was blue, hence porosity was over-estimated with clustering technique. It points 

to the limitation of clustering technique, where blue color shall only be present in pore space. 

Sample 

ID 

Sample Depth 

(m) 

Micro porosity 

(Adj. factor = 0.8) 

Macro porosity 

 

Total porosity 

 

1 1630.10 0.077 0.041 0.118 

2 1637.81 0.033 0.070 0.103 

3 1643.88 0.108 0.064 0.172 

4 1891.90 0.061 0.149 0.210 

5 1896.70 0.096 0.102 0.198 

6 1902.72 0.103 0.136 0.239 

7 1904.75 0.107 0.120 0.227 

8 1913.49 0.074 0.087 0.161 

9 1916.15 0.107 0.171 0.278 

10 1930.44 0.160 0.104 0.264 

11 1945.28 0.118 0.141 0.259 

12 1947.94 0.028 0.041 0.069 
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13 1952.04 0.050 0.106 0.156 

14 1957.66 0.033 0.056 0.088 

15 1964.40 0.080 0.124 0.205 

16 1971.63 0.058 0.113 0.172 

17 1975.63 0.049 0.114 0.162 

18 2000.70 0.068 0.102 0.170 

19 2006.47 0.050 0.042 0.092 

20 2015.03 0.023 0.060 0.083 

21 2019.03 0.084 0.092 0.176 

22 2044.52 0.203 0.235 0.438 

23 2046.03 0.129 0.254 0.383 

24 2109.34 0.043 0.119 0.162 

25 2128.82 0.029 0.108 0.137 

26 2243.39 0.022 0.158 0.180 
Table 4-4: Image porosity analysis by using K-means clustering method 

 

4.1.4 Clusters predicted threshold method 

As shown in Figure 4.4, pixels intensity associated with light and dark color clusters can be plotted over 

intensity histogram of inverted red component. Such plotting can be used to predict threshold values for 

micro and macro pores.  

 

  

Figure 4.4: Thresholds prediction from K-means clustering method 

 

Cut-off for macro pores is picked at the value where black color distribution starts to deviate from intensity 

histogram, and micro pore cut-off is picked on the left edge of the green distribution.  
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Sample 

ID 

Sample 

Depth 

(m) 

Micro pores 

cut-off 

Macro pores 

cut-off 

Micro 

porosity 

(fraction) 

Macro 

porosity 

(fraction) 

Total 

porosity 

(fraction) 

1 1630.10 86 152 0.054 0.025 0.079 

2 1637.81 112 156 0.021 0.078 0.099 

3 1643.88 118 161 0.099 0.078 0.178 

4 1891.90 141 200 0.071 0.131 0.201 

5 1896.70 127 166 0.115 0.124 0.240 

6 1902.72 139 178 0.099 0.152 0.251 

7 1904.75 144 177 0.105 0.136 0.241 

8 1913.49 142 175 0.055 0.110 0.165 

9 1916.15 166 234 0.234 0.058 0.292 

10 1930.44 146 174 0.118 0.170 0.288 

11 1945.28 139 194 0.116 0.127 0.243 

12 1947.94 116 140 0.011 0.060 0.071 

13 1952.04 119 165 0.039 0.120 0.159 

14 1957.66 121 161 0.028 0.059 0.086 

15 1964.40 151 203 0.029 0.181 0.210 

16 1971.63 116 166 0.036 0.132 0.168 

17 1975.63 133 182 0.038 0.121 0.160 

18 2000.70 136 175 0.057 0.114 0.171 

19 2006.47 125 166 0.044 0.042 0.086 

20 2015.03 126 150 0.008 0.075 0.082 

21 2019.03 140 179 0.070 0.098 0.168 

22 2044.52 144 245 0.318 0.031 0.348 

23 2046.03 158 250 0.349 0.012 0.361 

24 2109.34 110 156 0.063 0.082 0.145 

25 2128.82 140 186 0.040 0.092 0.131 

26 2243.39 160 235 0.078 0.013 0.091 
Table 4-5: Image porosity analysis by using Clusters predicted threshold method, micro porosity with tapering 

function 

 

Micro porosity in Table 4-5 between the two threshold values was determined using a tapering function 

instead of an adjustment factor. A tapering function was used to match pixel intensity profile (curvature) of 

micro pores from clustering technique, Figure 4.4. The tapering function used is given in equation (4-2), 

value of n used in current analysis is 1.5, but can be changed by the analyst in Matlab script provided in 

appendix-B.  

 

 
Фmicro =  (

(Pixel value − Micro pores threshold)

(Macro pores threshold − Micro pores threshold)
)

n

 
(4-2) 

 

Adjustment factor approach was also analyzed with value of 0.3. Its results are presented in Table 4-6. 
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Sample 

ID 

Sample 

Depth 

(m) 

Micro pores 

cut-off 

Macro pores 

cut-off 

Micro 

porosity 

(fraction) 

Macro 

porosity 

(fraction) 

Total 

porosity 

(fraction) 

1 1630.10 86 152 0.078 0.025 0.103 

2 1637.81 112 156 0.020 0.078 0.098 

3 1643.88 118 161 0.112 0.078 0.190 

4 1891.90 141 200 0.071 0.131 0.201 

5 1896.70 127 166 0.103 0.124 0.228 

6 1902.72 139 178 0.090 0.152 0.242 

7 1904.75 144 177 0.099 0.136 0.235 

8 1913.49 142 175 0.057 0.110 0.167 

9 1916.15 166 234 0.233 0.058 0.291 

10 1930.44 146 174 0.106 0.170 0.277 

11 1945.28 139 194 0.126 0.127 0.253 

12 1947.94 116 140 0.009 0.060 0.069 

13 1952.04 119 165 0.033 0.120 0.153 

14 1957.66 121 161 0.028 0.059 0.087 

15 1964.40 151 203 0.027 0.181 0.208 

16 1971.63 116 166 0.040 0.132 0.172 

17 1975.63 133 182 0.037 0.121 0.158 

18 2000.70 136 175 0.055 0.114 0.168 

19 2006.47 125 166 0.059 0.042 0.101 

20 2015.03 126 150 0.006 0.075 0.081 

21 2019.03 140 179 0.072 0.098 0.170 

22 2044.52 144 245 0.256 0.031 0.287 

23 2046.03 158 250 0.269 0.012 0.281 

24 2109.34 110 156 0.058 0.082 0.140 

25 2128.82 140 186 0.030 0.092 0.122 

26 2243.39 160 235 0.067 0.013 0.079 
Table 4-6: Image porosity analysis by using Clusters predicted threshold method, micro porosity with adjustment 

factor of 0.3 

 

 

 

 

 

 

 

Figure 4.5: Comparison of image based total porosity using Clusters predicted thresholds method with core helium 

porosity, (a) matrix effect from micro porosity is removed by using tapering function, (b) matrix effect from micro 

pores is removed by using adjustment factor of 0.3 

(a) (b) 
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In sections 4.1.3 and 4.1.4, it has been demonstrated that process of porosity determination from thin section 

images can be automated. The results are as good if not better as manual threshold method, however the 

subjectivity of manually picking threshold values is removed. 

 

4.2 Permeability from image analysis 

Permeability (absolute) was analyzed with Kozeny-Carman and Timur-Coates permeability correlations as 

established under [section 2.5.3]. The correlations were applied on porosity results from K-means clustering 

method but can be applied on porosity data of other methods as well. 

In Figure 4.6, permeability from image analysis is compared against core Klinkenberg permeability (Kel). 

Default values of constants and exponents in equations (2-29) and (2-33) were tuned to achieve better R2 

values. In Kozeny-Carman equation (2-29), constant 𝐶𝑜 default value is 5, and exponent ‘𝑥’ value for 

specific surface area is 2. Value of 2.34 was used for ‘𝑥’ in crossplot below and is close to default value of 

2. For Timur-Coates permeability equation (2-33), pre-multiplier ‘a’ value of 1.4 was used instead of 1, 

while exponents ‘b’ and ‘c’ were kept at their default values. 

 

 

 

 

 

 

 

Figure 4.6: Absolute permeability estimate from thin section image analysis using Timur-Coates and Kozeny-Carman 

permeability correlations. Porosity data of K-means clustering method was used 
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ID Depth Porosity 

K-means 

Core Horizontal 

Perm 

Thin Section Samples 

KTimur-Coates KKozeny-Carman 

Kgas Kel S S Perm 

(m) (fraction) (mD) (mD) (mD) (1/pixel) (1/m) (mD) 

1 1630.10 0.118 4.81 4.00 0.78 0.761 34575 8.00 

2 1637.81 0.103 29.00 26.30 6.84 0.761 34588 5.22 

3 1643.88 0.172 12.90 11.30 4.39 0.797 36225 22.07 

4 1891.90 0.210 6.51 5.57 164.31 0.784 35646 41.82 

5 1896.70 0.198 3.51 2.87 24.29 0.770 34992 36.60 

6 1902.72 0.239 51.25 47.40 79.05 0.752 34185 68.03 

7 1904.75 0.227 56.35 52.05 46.27 0.776 35270 53.83 

8 1913.49 0.161 23.15 21.14 12.74 0.762 34622 20.12 

9 1916.15 0.278 63.85 59.25 215.02 0.934 42469 64.13 

10 1930.44 0.264 34.75 31.70 28.72 0.787 35782 82.00 

11 1945.28 0.259 117.80 111.20 90.22 0.801 36389 74.66 

12 1947.94 0.069 0.54 0.42 0.65 0.778 35350 1.51 

13 1952.04 0.156 58.20 54.05 37.10 0.766 34831 18.16 

14 1957.66 0.088 4.36 3.65 2.46 0.768 34913 3.25 

15 1964.40 0.205 79.10 74.15 58.31 0.800 36378 36.78 

16 1971.63 0.172 662.00 641.50 46.03 0.742 33713 25.99 

17 1975.63 0.162 399.00 384.00 53.13 0.752 34171 21.27 

18 2000.70 0.170 29.15 26.45 25.85 0.761 34581 23.63 

19 2006.47 0.092 3.73 3.05 0.72 0.781 35484 3.60 

20 2015.03 0.083 6.44 5.55 4.39 0.689 31300 3.47 

21 2019.03 0.176 54.85 50.55 16.19 0.786 35739 24.25 

24 2109.34 0.162 0.87 0.68 73.17 0.815 37061 17.34 

25 2128.82 0.137 0.25 0.19 69.09 0.743 33792 13.05 

26 2243.39 0.180 0.89 0.70 763.27 0.784 35627 26.26 
Table 4-7: Absolute permeability estimates of thin section samples by using Kozeny-Carman and Timur-Coates 

permeability correlations 

 

4.3 Irreducible water saturation 

Comparison of irreducible water saturation between thin sections and core was not performed as this data 

was not available in core report.  

Irreducible water saturation from thin section can be calculated from micro porosity and image total 

porosity numbers populated in tables 4-4 to 4-6 and using the equation (2-37). 
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5 DISCUSSION  

 

5.1 Porosity 

Porosity from image analysis was compared against core helium porosity to validate goodness of porosity 

prediction from image analysis. However, uncertainties associated with both measurements shall be 

considered as well.  

• Porosity from image analysis is limited to pixels resolution of optical microscopy and represents a 

very small section of the rock sample. Core helium porosity is determined on 1-inch cylindrical 

plug while the dimensions of thin section sample is only 35 𝜇m thick with diameter of 1-inch. The 

volume investigated is different.  

• Depths where thin section samples were taken are not at the same depth as core plugs for helium 

porosity analysis. 

• Core-plugs drying condition was not documented, hence there is uncertainty if core helium porosity 

is total porosity or effective porosity or in between. For example, drying at 60 °C can leave 

significant amount of clay bound water within core plug sample, and helium porosity will be closer 

to effective porosity. 

• Most of the analyzed samples are carbonates, core helium porosity can miss porosity associated 

with isolated pores whereas such pores are captured in image analysis. For samples where image 

porosity is over-estimated as compared to core porosity may be the result of vugs porosity.  

• Studied scanned samples with optical microscopy had pixel resolution of 25 𝜇m. Pore sizes greater 

than 25 𝜇m (macro pores) were correctly resolved but there was significant quantity of sub-

resolution pores (micro pores) with mixed response of pore and matrix. A subjective adjustment 

factor was used to take out this matrix effect from micro-pores. This single value of adjustment 

factor was determined while comparing image porosity against core helium porosity for all 

samples. This factor has varied between 0.3 – 0.8 depending upon the chosen methodology. The 

suggested value(s) may have worked for the analyzed samples of current study and can differ in 

other environments.  

• Thin section samples were globally cropped with a window of 800x800 pixels. However, as is 

always the case with geological material – heterogeneity can be seen at all scales. As exemplified 

in Figure 5.1 in which heterogeneity can be seen also within the 1 inch sample. This effect is 

analyzed by cropping the figure at 400x400 pixels, i.e. in four equal images, the image porosity 

results for each image will change. This technique can be used to estimate the accuracy of the 

porosity estimate. 

Thin section samples and core plugs were not at the same depth, then it is not known to which core sample 

depth thin section porosity shall be compared with. Average core porosity was calculated based on plug 

depth one above and one below the thin section sample depth.  

Sample-ID #3 in Table 5-1 shows that core helium porosity changed by 0.15 pu within depth interval of 

0.3m only. This explains heterogenous nature of the reservoir rock, and porosity difference between core 
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and thin section image analysis can be the result of this heterogeneity. From Figure 5.1, it can be concluded 

that image analysis porosity for all samples is within the uncertainty band of core porosity. 

ID Sample type Depth 

(m) 

Helium 

porosity 

Average 

Helium 

porosity 

Image 

analysis 

porosity 

Standard 

deviation 

Helium 

porosity 

3 Core plug 1643.7 0.195    

Thin section sample 1643.88  0.120 0.172 0.107 

Core plug 1644.0 0.044    

       

5 Core plug 1896.5 0.183    

Thin section sample 1896.7  0.1895 0.189 0.009 

Core plug 1896.75 0.196    
Table 5-1: Examples demonstrating standard deviation on core helium porosity, image porosity is taken from K-

means clustering method 

 

 

Figure 5.1: Uncertainty in porosity comparison when thin section samples depths and core plugs depths are different 

 

Uncertainty can also be analyzed for porosity from thin section image analysis. Thin section scanned image 

was cropped at window size of 800x800 pixels as shown in Figure 5.2. But the same image can be locally 

cropped at any window size e.g. 400x400 pixels. Porosity of individual locally cropped regions can be 

compared against the porosity answer of globally cropped image.   

The analysis of Figure 5.3 gives standard deviation of 0.074 pu on image derived porosity. It demonstrates 

that for heterogenous samples, porosity from image analysis or from core plugs are within the error range 

of each other. Uncertainty analysis on image derived porosity is demonstrated only for one sample (#3), 

Matlab code was not developed in current year’s work that can analyze standard deviation of image derived 

porosity for all samples. 
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Figure 5.2: Sample ID 3; definitions of global and local cropping (a) is defined as global cropped region with window 

size of 800x800 pixels, (b) showing heterogeneity across thin section sample, (c) cropping windows can be defined as 

400x400 or of any other size 

 

Figure 5.3: Sample ID 3; Effect of global and local cropping on image derived porosity (K-means clustering method) 

 

5.2 Permeability 

From Figure 4.6, samples 4, 5, 24, 25 and 26 are outliers, do not fall on x=y line, and their permeability is 

over-estimated from both permeability correlations. The observed scatter and loose correlation (low R2 

value) can be due to the reasons; 

• Thin section sample depths were not same as core plug depths, and average permeability value was 

used based on core depth one above and one below the thin section sample depth. It is already seen 

in porosity comparison cross-plot Figure 5.1, that there is an associated uncertainty when thin 

section and core sample depths are not same.   

• Both correlations relate porosity to permeability and will conclude some permeability value if there 

is porosity, they cannot predict connectedness of the pores. There can be porosity in reservoir rock 

due to isolated pores (e.g. isolated vugs) with no permeability.  

• Uncertainty in porosity will be transferred to permeability, as permeability correlations used are 

function of porosity. 

• Data scatter was also observed when core porosity and permeability were plotted against each other, 

Figure 5.4. It indicates for some samples a different set of constants and exponents is required to 

achieve a better fit. But such practice will lose the predictive power of permeability estimate from 
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thin section samples as we will be imposing a match and will need to know ground truth 

permeability values.    

• It is believed that estimate of permeability from porosity will show a better correlation if it is inter-

granular porosity like in sandstone reservoirs. Samples studied in current work are mainly 

carbonate and heterogenous samples, which could explain to some extent scatter observed on 

permeability crossplots. 

  

Figure 5.4: Core plugs porosity-permeability plot 

Ideally, permeability correlations and tuning of constants and exponents used in respective equations shall 

be studied and concluded from samples taken from conventional reservoirs like simple / homogeneous 

sandstone and carbonate reservoirs, sandstone reservoirs with high feldspar content, chalk reservoirs, 

vuggy-carbonate reservoirs. Samples studied in current study are from Barents Sea with complex 

mineralogy, this information was not available to make firm conclusions about data scatter and outliers. 

However, poro-perm relationship from thin section image analysis showed an acceptable correlation when 

compared with [Ehrenberg, 2005] global database for sandstone and carbonate reservoirs, Figure 5.5. 

 

Figure 5.5: Thin section poro-perm results comparison with global sandstone & carbonate reservoirs poro-perm 

database [Ehrenberg, 2005]. x&y axis scales are exactly matched in the overlay 
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6 CONCLUSION 

K-means clustering is presented as an alternate technique to evaluate porosity from thin section images. 

Previously established methods had element of subjectivity in it where threshold on pixel intensity 

histogram had to be manually adjusted till analyst is visually satisfied that pore space is properly captured. 

This visual analysis was challenging, as optically scanned images used in the current study had pixel 

resolution of 25 𝜇m/pixel and there were significant number of pores with size less than the pixel resolution. 

In another study, regression equations were used to achieve good correlation of petrophysical properties 

between image analysis and routine core analysis data. These adjustments and regression lost the predictive 

power of image analysis. Clustering is demonstrated as an automatic technique where analyst only need to 

define number of clusters. For optical scanned images used in the current study, three number of clusters 

were analyzed as optimum to extract pore space from the matrix. 

Thin sections image porosity using clustering technique showed good match with core helium porosity, 

with the additional benefit that workflow is now automated. Moreover, clusters can predict threshold values 

if it is desired to do image interpretation with thresholding technique. Uncertainty analysis on 

heterogeneous samples showed that core and thin section porosities were within the standard deviation of 

each other.   

In the current study, porosity is the main petrophysical property determined from thin section images. 

Permeability was estimated as a function of porosity, and it also showed acceptable match with core 

permeability. Some scatter on permeability correlation was observed which could be explained that 

permeability is a dynamic property and we tried to estimate it from 2D image. Nevertheless, the 

interpretation is useful to identify permeable layers.  

The predictive power of clustering based thin section image analysis is encouraging, as it can be applied on 

vastly available drill cuttings as a secondary means of porosity and permeability data. And for the wells 

where conventional core data is not available or possible, petrophysical properties can be determined from 

thin section images for its integration with well logs interpretation to reduce uncertainties.  

Some limitations to thin section image analysis were also observed. For optically scanned images, pore 

sizes less than 25 𝜇m had a mixed response of matrix and porosity. A subjective but a single adjustment 

factor was required to remove matrix effect from such pores for all analyzed samples. This is equally 

applicable for both clustering and manual thresholding techniques. Clustering, analyzes porosity from pore 

filling blue epoxy i.e. a blue cluster, it was observed that clustering over-estimates porosity if blue color is 

also present as a matrix color. Such a situation will be equally challenging for manual thresholding and 

hence, can be concluded as a general limitation of thin section image analysis.    
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7 WAY FORWARD 

Certain petrophysical and geological properties like porosity, pore size distribution, grain size distribution, 

mineralogy, asphaltene deposition and diagenetic processes can be quantified or analyzed on thin section 

samples but other properties like permeability, capillary pressure and relative permeability profiles have to 

rely on empirical correlations. Some thoughts and ideas that were discussed but not implemented during 

the course of the current study are briefly mentioned here. 

Pore size distribution 

The image analysis script outputs morphological properties of captured pores. One such property is area of 

each pore size with units in pixel2. Knowing the pixel resolution (e.g. 25 𝜇m in this study), area is converted 

to 𝜇m2
 or mm2, which can be plotted as pore area distribution or to derive pore size distribution.  

Three samples are presented from current study, visually the samples look very different but the pore 

distribution (mm2) did not show contrasting differences. Pore size distribution may be correct and 

representative of the samples, but this property was not studied in detail. There was also a discussion if we 

shall use a variable bin size or same bin size for all samples. Probably micro pores and macro pores shall 

be plotted separate series. In Figure 7.1, pores were not corrected for matrix effect which may be the cause 

of suppressing the representative distribution profile.  

 

Figure 7.1: Pore distribution in mm2 from thin section image analysis, logarithmically spaced equal sized bins 

Capillary pressure 

Capillary pressure profile can be derived from pore size distribution the same way as is done from NMR 

T2 distribution [Glorioso, 2003], Figure 7.2. 
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Figure 7.2: Deriving pseudo capillary pressure curve from NMR T2 distribution [Glorioso, 2003] 

 

Image pre-processing 

Image pre-processing techniques were not studied, which may help improve accuracy of porosity results 

and to even quantify mineralogy from optical microscopy scanned thin section images [Heilbronner, 2014]. 

Samples from conventional reservoirs 

Thin section samples used in the current study were from Barent Sea well with complex / heterogenous 

mineralogy, only oil shows were reported, limited core data and with no well logs interpretation. It is 

suggested to study thin sections from prolific and conventional type reservoirs like relatively clean 

sandstone reservoirs, clastic reservoirs with high feldspar content, chalk, limestone and dolomite reservoirs. 

So, the constants used in empirical correlations and adjustment factors can be better calibrated and 

generalized specific to lithology types.  

Wells with routine and special core analysis, and with advanced petrophysical logs like NMR and elemental 

capture spectroscopy will make it a better integrated study while comparing thin section petrophysical 

properties.  

Equinor seems to have a specialized thin section department, may be a future study in coordination with 

industry. It will also allow access to more data and information. 
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APPENDICES 

Appendix-A: Conferences representation 
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Appendix-B: MatLab scripts 

Main script 

% mainScript.m 
% Objective: To call all functions from one single script 

  
%% 
clc 
clear all                 % clear workspace 
close all                  

  
%% Read the image & crop  
[FileName,PathName] = uigetfile({'*.jpg';'*.tif';},'Select the image'); 

  
if FileName ==0 
    return; 
end 
ImageData = imread(strcat(PathName,FileName)); 
[X, Y, ~] = size(ImageData); 
if (X > Y) 
    ImageData = imrotate(ImageData,90); 
end 
figure, imshow(ImageData); 
h = imrect(gca,[900, 200, 799, 799]); 
position = wait(h); 
Im = imcrop(ImageData, position); 

  
figure(1),  
imshow(Im) 
title('Cropped image from original') 

  
%% select the required function 
% Select 7 (Exit) after running a function so you can see its results in 

workspace 
i = 1;   % To keep the while loop true 
while(i) 
    fprintf('------------------------------------------\n') 
    disp('Select the function and press enter') 
    disp('1. Slide Color Test') 
    disp('2. Thin Section Test') 
    disp('3. Thin Section Test Rc') 
    disp('4. Fourier Threshold') 
    disp('5. Thin Section Test Rc_Auto') 
    disp('6. Image K-means Clustering') 
    disp('7. Exit') 
    fprintf('Select the function and press enter :'); 
    select = input(''); 
    switch (select) 
        case 1 
            disp('Calling slide Color Test function'); 
            [Lint,aint,bint,R,G,B] = SlideColorTest(Im,1); 

             
        case 2 
            disp('Calling Thin Section Test function'); 
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            [BW,bintc,thr] = ThinSectionTest(Im,1); 
            disp('Image Analysis function'); 
            fprintf('Enter Minimum Area : '); 
            minArea = input(''); 
            R = ImAnalysis(BW, minArea); 

             
        case 3 
            disp('Calling Thin Section Test Rc function'); 
            [BW,Rc,thr,M1,N1] = ThinSectionTestRc(Im,1); 
            disp('Image Analysis function'); 
            fprintf('Enter Minimum Area : '); 
            minArea = input(''); 
            R = ImAnalysis(BW, minArea); 

         
        case 4 
            disp('Calling Fourier Threshold'); 
            [finalThX,finalThY] = fourierThreshold(Im,1); 

          
        case 5 
            disp('Calling Thin Section Test Rc Auto function'); 
            

[BW_macro,BW_micro,BW,thr_macro,thr_total,PHIT,PHI_Micro,PHI_Micro_UnCal,PHI_

Macro,PHIT_UnCal] = ThinSectionTestRc_Auto(Im,1); 
            disp('Image Analysis function'); 
            fprintf('Enter Minimum Area : '); 
            minArea = input(''); 
            R = ImAnalysis(BW, minArea); 

                      
        case 6 
            disp('Calling Image K-means Clustering'); 
            [PHI_Macro, PHI_Micro, PHIT_UnCal, PHIT, BW] = 

ImClusters_Kmean(Im,1); 
            disp('Image Analysis function'); 
            fprintf('Enter Minimum Area : '); 
            minArea = input(''); 
            R = ImAnalysis(BW, minArea); 

         
        case 7 
            i = 0;   % To end the while loop (false) 
            disp('The program ends'); 
        otherwise  
            disp('Please enter a valid number'); 
    end 

     
    if (select == 7) 
        break; 
    else 
        S = input('Do you want to do another test, Y/N [Y]:','s'); 
        if (S == 'N') || (S =='n') 
            i = 0; 
            disp('The program ends'); 
        end 
    end 
end 
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Slide color test 

function [Lint,aint,bint,R,G,B] = SlideColorTest(Im,figno) 
% Objective: To observe sensitivity of blue epoxy on RGB and Lab scale 
% Slide Color Test 
Ilab = rgb2lab(Im); 
[M1,N1,~] = size(Im); 
L = reshape(Ilab(:,:,1),M1,N1); 
a = reshape(Ilab(:,:,2),M1,N1); 
b = reshape(Ilab(:,:,3),M1,N1); 
% 
R = reshape(Im(:,:,1),M1,N1); 
G = reshape(Im(:,:,2),M1,N1); 
B = reshape(Im(:,:,3),M1,N1); 
% Invert red component image such that blue areas are white 
Rc = imcomplement(R); 
% Enhance blue component image by histogram equalization 
Lg = mat2gray(L); 
ag = mat2gray(a); 
bg = mat2gray(b); 
% 
Lint = im2uint8(Lg); 
aint = im2uint8(ag); 
bint = im2uint8(bg); 
figure(figno), clf, imshow(Im), title('Color Image'); 
figure(figno+1), clf 
subplot(4,2,1), imshow(R), title('Red component'); 
subplot(4,2,2), imhist(R), title('Red histogram'); 
subplot(4,2,3), imshow(Rc), title('Inverted R'); 
subplot(4,2,4), imhist(Rc), title('Red inverted histogram'); 
subplot(4,2,5), imshow(G), title('Green component'); 
subplot(4,2,6), imhist(G), title('Green histogram'); 
subplot(4,2,7), imshow(B), title('Blue component'); 
subplot(4,2,8), imhist(B), title('Blue histogram'); 
% 
figure(figno+2), clf 
subplot(3,2,1), imshow(Lint), title('Luminance'); 
subplot(3,2,2), imhist(Lint), title('L histogram'); 
subplot(3,2,3), imshow(aint), title('a color component'); 
subplot(3,2,4), imhist(aint), title('a histogram'); 
subplot(3,2,5), imshow(bint), title('b color component'); 
subplot(3,2,6), imhist(bint), title('b histogram'); 
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Thin section test Rc 

function [BW,Rc,thr,M1,N1] = ThinSectionTestRc(Im,figno) 
% Objective: Uses manual threshold method [Zerabruk 2017] on inverted R 
% component 
% Detailed explanation goes here 
[M1,N1,~] = size(Im); 
R = reshape(Im(:,:,1),M1,N1); 
Rc = imcomplement(R); 
figure(figno), clf, imhist(Rc), title('Rc histogram'); 
figure(figno+1), clf, imshow (Rc) 
%str1a = ['M = ' strM ' and N = ' strN]; 
str1 = 'Find and chose a threshold'; 
disp(str1); 
%disp(str1b); pause; 
str2 = 'Give a value for the threshold (0 - 255) : '; 
disp(str2); 
thr = input(' = '); 
BW = imbinarize(Rc,thr/255); 
figure(figno+2), clf, imshow(BW); 
mask = uint8(~BW); 
Imt(:,:,1) = Im(:,:,1).*mask; 
Imt(:,:,2) = Im(:,:,2).*mask; 
Imt(:,:,3) = Im(:,:,3).*mask; 
figure(figno+3), clf, imshow(Imt); 
; 
% 
[B,~] = bwboundaries(BW,'noholes'); 
figure(figno+3), clf, imshow(Im) 
hold on 
for k = 1:length(B) 
boundary = B{k}; 
plot(boundary(:,2), boundary(:,1), 'r', 'LineWidth', 1) 
end 
hold off 
end 
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Fourier threshold  

function [dZ1,dZ2] = fourierThreshold(Im,figno); 
% Objective: Purpose of the script is to suggest Micro and Macro threshold 
% values based on Fourier fit to intensity histogrem of inverted red 
% component. This technique did not work well, as for some samples it fails 
% to suggest threshold values and analyst has to interpret inflexion points 
% by themself 

  
[M1,N1,~] = size(Im); 
R = reshape(Im(:,:,1),M1,N1); 
Rc = imcomplement(R); 
figure(figno), clf, imhist(Rc); 
hold on 
[Freq,Int] = imhist(Rc); 
%plot(Int,Freq); 
%hold on 

  
% defining the range to fit the curve 
[maxFreq, indexInt] = max(Freq); 
IntVal = Int(indexInt); 
Freq_Filt = Freq((IntVal+10):(252)); 
Int_Filt = Int((IntVal+10):(252)); 

  
% sine curve fit solution 
S = fit(Int_Filt,Freq_Filt,'fourier3'); 
Z = S(Int_Filt);              % finding values of Freq w.r.t Int based on 

sine curve fit 
plot(Int_Filt,Z, 'r', 'LineWidth', 2, 'DisplayName', 'Fourier Fit'); 
legend ('show') 
legend ('boxoff') 
hold off 

  
% taking first and second derivatives to evaluate threshold values for 
% Micro and Macro pores 
dZ1 = diff(Z);%./diff(Int_Filt); 
figure(figno+1),  
dZ2 = diff(dZ1);%./diff(Int_Filt(2:end)); 

  
plot(Int_Filt(3:end), dZ2, 'r', 'DisplayName', 'Fourier Fit 2nd Derivative'); 
legend ('Location', 'North') 
%title ('2nd Derivative') 

  
% finding rate of change  
j=1; 
for i = 1 : length(dZ2)-2 

     
    x = dZ2(i); 
    y = dZ2(i + 1); 
    z = dZ2(i + 2); 

     
    if (x > y && y > z) 
    elseif (x < y && y < z) 
    else 
       changingIndex(j,1) = i + 1; 
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       j=j+1; 
    end 
end 

  
% if no rate of change found in curve than j should be 1 and no threshold 
% found 
if (j==1) 
    h = msgbox('No Threshold Detected'); 
    return; 
end 
thresholdsX = Int_Filt(changingIndex) + 2; 
thresholdsY = dZ2(changingIndex); 
[val, ~] = max(dZ2); 

  
ind = find(thresholdsY > val / 2); % finding any change less than 50 percent 

of maxima 
thresholdsX(ind)=[]; 
thresholdsY(ind)=[]; 
if (isempty(thresholdsY)) 
    h = msgbox('No Threshold Detected'); 
    return; 
end 
% if more than two thresholds take the first and last peak 
% finding length of thresholds 
if (length(thresholdsX)>2) 
    finalThX(1,1) = thresholdsX(1,1); 
    finalThY(1,1) = thresholdsY(1,1); 
    finalThX(1,2) = thresholdsX(end,1); 
    finalThY(1,2) = thresholdsY(end,1); 
else 
    finalThX = thresholdsX; 
    finalThY = thresholdsY; 
end 

  
hold on, plot(finalThX, finalThY, 'r *', 'MarkerSize',12, 'DisplayName', 

'Theshold values' );  
legend ('Location', 'North') 
legend ('boxoff') 
hold off 

  
end 
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Thin section test Rc auto 

function 

[BW_macro,BW_micro,BW,thr_macro,thr_total,PHIT,PHI_Micro,PHI_Micro_UnCal,PHI_

Macro,PHIT_UnCal] = ThinSectionTestRc_Auto(Im,figno) 
% Objective: Use auto threshold values either from Fourier Threshold script 
% or based on K-means clustering suggested threshold 
% For K-means clustering suggested threshold analyst has to read threshold 
% values by themself from intensity histogram plot of micro and macro pores 
% on inverted red component plot 
% Micro porosity and PHIT answer is using tapering function to exclude 
% matrix effect from micro pores 
% 
% Detailed explanation goes here 
[M1,N1,~] = size(Im); 
R = reshape(Im(:,:,1),M1,N1); 
Rc = imcomplement(R); 
figure(figno), clf, imhist(Rc), title('Rc histogram'); 

  
% finding thresholds to exculde matrix  
str_macro = 'Give a value for the Macro Pores threshold (0 - 255):'; 
disp(str_macro); 
thr_macro = input(' = '); 
BW_macro = imbinarize(Rc,thr_macro/255); 
str_total = 'Give a value for All Pores threshold (0 - Macro Pores 

threshold):'; 
disp(str_total); 
thr_total = input(' = '); 
BW = imbinarize (Rc, thr_total/255); 
BW_micro = BW - BW_macro; 

  
% Uncalibrated total porosity, micro pores has matrix effect in it 
PHIT_UnCal = sum(BW(:))/(M1*N1); 
% Macro pore porosity 
PHI_Macro = sum(BW_macro(:))/(M1*N1); 

  
PHI_Micro_UnCal = PHIT_UnCal - PHI_Macro; 

  
% marking boundaries for the captured Micro and Macro pores 
[B_micro] = bwboundaries(BW_micro); 
[B_macro] = bwboundaries(BW_macro); 
figure(figno+1), imshow(Im), title('Micro-Macro Map'); 
hold on 
for k = 1:length(B_micro) 
    boundary = B_micro{k}; 
    plot (boundary(:,2),boundary(:,1),'g','LineWidth',1) 
end 
hold on 
for k = 1:length(B_macro) 
    boundary = B_macro{k}; 
    plot (boundary(:,2),boundary(:,1),'r','LineWidth',1) 
end 
hold off 

  
% Linear normalization function for Micro pores porosity 
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Rc_double = double(Rc); 

  
% Value of n need to be defined by the analyst, tapering function 
n = 1.5; 
for ii = 1:N1 
    for jj = 1:M1 
        if BW_micro(ii,jj) == 1 
            BW_micro_norm(ii,jj) = ((Rc_double(ii,jj)-thr_total)/(thr_macro-

thr_total))^n; 
        else 
        end 
    end 
end 
PHI_Micro = sum(BW_micro_norm(:))/(M1*N1); 

  

% Total porosity 
PHIT = PHI_Micro + PHI_Macro; 

  



 

58 

 

ImClusters K-mean 

function [PHI_Macro, PHI_Micro, PHIT_UnCal, PHIT, 

BW]=ImClusters_Kmean(Im,figno); 
% Objective: No user input, script is using 3 clusters 
% Output PHIT is using adjustment factor of 0.8 to remove matrix effect 
% from Micro pores 

  
%Example from Matlab helpfile, color-based segmentation using K-means 

clustering 
%Step: Convert Image from RGB Color Space to L*a*b* Color Space 
%The L*a*b* space consists of a luminosity layer 'L*',  
%chromaticity-layer 'a*' indicating where color falls along the red-green 

axis,  
%and chromaticity-layer 'b*' indicating where the color falls along the blue-

yellow axis. 
%All of the color information is in the 'a*' and 'b*' layers.  
cform = makecform('srgb2lab'); 
Ilab = applycform(Im,cform); 

  
%Step: Classify the Colors in 'a*b*' Space Using K-Means Clustering 
%Since the color information exists in the 'a*b*' space, the objects are 

pixels 
%with 'a*' and 'b*' values. Use kmeans to cluster the objects into three 

clusters  
%using the Euclidean distance metric. 
ab = double(Ilab(:,:,2:3)); 
[M1,N1,~] = size(Im); 
ab = reshape(ab,M1*N1,2); 

  
% nColors control number of clusters 
nColors = 3; 
%repeat the clustering 3 times to avoid local minima 
[cluster_idx, cluster_center] = 

kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); 

  
%Step: Label Every Pixel in the Image Using the Results from KMEANS 
%For every object in the input, kmeans returns an index corresponding to a 

cluster.  
%Label every pixel in the image with its cluster_index. 
pixel_labels = reshape(cluster_idx,M1,N1); 

  
%Step: Create Images that Segment the Image by Color 
%using pixel labels the objects can be separated by color, resulting in 
%three images 
segmented_images = cell(1,nColors); 
rgb_label = repmat(pixel_labels,[1 1 3]); 
for k = 1:nColors 
    color = Im; 
    color(rgb_label~=k) = 0; 
    segmented_images{k} = color; 
end 

  
figure, clf 
subplot(2,3,1), imshow(Im), title('Original cropped image'); 
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subplot(2,3,2), imshow(pixel_labels,[]), title('Image labeled by cluster 

index'); 
subplot(2,3,4), imshow(segmented_images{1}), title('Objects in cluster 1'); 
subplot(2,3,5), imshow(segmented_images{2}), title('Objects in cluster 2'); 
subplot(2,3,6), imshow(segmented_images{3}), title('Objects in cluster 3'); 

  

  
%Step: Segment Macro and Micro in separate images 
%we have an assumption that bluishness of the color determines our 
%confiendence on captured pores. Hence, we can separate more blue (Macro) 

high 
%confidence pores from less blue (Micro) low confidence pores 
%dark blue from light blue can be separated using the 'L*' layer in the  
%L*a*b* color space. 
mean_cluster_value = mean(cluster_center,2); 
[tmp,idx] = sort(mean_cluster_value); 
blue_cluster_num = idx(1); 
L = Ilab(:,:,1); 
blue_idx = find(pixel_labels == blue_cluster_num); 
L_blue=L(blue_idx); 
Is_blue = imbinarize(L_blue); 

  
Macro_labels = repmat(uint8(0),[M1, N1]); 
Macro_labels(blue_idx(Is_blue==false)) = 1; 
Macro_pores = repmat(Macro_labels,[1 1 3]); 
Macro_blue = Im; 
Macro_blue(Macro_pores~=1) = 0; 
BW_macro = imbinarize(reshape(Macro_blue(:,:,3),M1,N1)); 

  
Micro_labels = repmat(uint8(0),[M1,N1]); 
Micro_labels(blue_idx(Is_blue==true)) = 1; 
Micro_pores = repmat(Micro_labels,[1 1 3]); 
Micro_blue = Im; 
Micro_blue(Micro_pores~=1) = 0; 
BW_micro = imbinarize(reshape(Micro_blue(:,:,3),M1,N1)); 

  
MicMac_labels = repmat(uint8(0),[M1, N1]); 
MicMac_labels(blue_idx) = 1; 
MicMac_pores = repmat(MicMac_labels,[1 1 3]); 
MicMac_blue = Im; 
MicMac_blue(MicMac_pores~=1) = 0; 
BW = imbinarize(reshape(MicMac_blue(:,:,3),M1,N1)); 

  
figure, clf 
subplot(1,2,1), imshow(Micro_blue), title('Light Blue'); 
subplot(1,2,2), imshow(Macro_blue), title('Dark Blue'); 

  
% marking boundaries for the captured Micro and Macro pores 
[B_micro] = bwboundaries(BW_micro); 
[B_macro] = bwboundaries(BW_macro); 
figure, imshow(Im), title('Micro-Macro Map'); 
hold on 
for k = 1:length(B_micro) 
    boundary = B_micro{k}; 
    plot (boundary(:,2),boundary(:,1),'g','LineWidth',1) 
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end 
hold on 
for k = 1:length(B_macro) 
    boundary = B_macro{k}; 
    plot (boundary(:,2),boundary(:,1),'r','LineWidth',1) 
end 
hold off 

  
Rc_Im = imcomplement(reshape(Im(:,:,1),M1,N1)); 
figure, imshow(Rc_Im); 
hold on 
for k = 1:length(B_micro) 
    boundary = B_micro{k}; 
    plot (boundary(:,2),boundary(:,1),'g','LineWidth',1) 
end 
hold on 
for k = 1:length(B_macro) 
    boundary = B_macro{k}; 
    plot (boundary(:,2),boundary(:,1),'b','LineWidth',1) 
end 
hold off 

  
Rc_Macro = imcomplement(reshape(Macro_blue(:,:,1),M1,N1)); 
Rc_Micro = imcomplement(reshape(Micro_blue(:,:,1),M1,N1)); 
Rc_MicMac = imcomplement(reshape(MicMac_blue(:,:,1),M1,N1)); 
[Freq_Macro,Int_Macro] = imhist(Rc_Macro); 
[Freq_Micro,Int_Micro] = imhist(Rc_Micro); 
[Freq_MicMac,Int_MicMac] = imhist(Rc_MicMac); 

  

  

figure, imhist(Rc_Im); 
hold on 
plot (Int_Macro(1:end-1),Freq_Macro(1:end-1), 'r', 'LineWidth', 2); 
plot (Int_Micro(1:end-1),Freq_Micro(1:end-1), 'g', 'LineWidth', 2); 
plot (Int_MicMac(1:end-1),Freq_MicMac(1:end-1), 'k', 'LineWidth', 1); 
hold off 

  

  
PHI_Micro = sum(BW_micro(:))/(M1*N1); 
PHI_Macro = sum(BW_macro(:))/(M1*N1); 

  
% PHIT_UnCal has matrix effect in it from micro pores 
PHIT_UnCal = sum(BW(:))/(M1*N1); 

  

% Define adjustment factor (Adj) to take out matrix effect from micro pores 
Adj = 0.8; 
PHIT = 0.8*PHI_Micro + PHI_Macro; 

  
end 
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ImAnalysis 

function R = ImAnalysis(BW,Amin) 
% Objective: Morphological properties of captured pores 
% R = ImAnalysis(Imroi,thr,Amin) finds a binary image of 
% Imroi : intensity image region 
% thr : threshold 
% and finds the properties of the regions in the complementary binary image 
% Only regions with area larger than 
% Amin : minimum area 
% are included in the results. The results are written to a data structure 
% R 
% R.BW is the binary image used 
% R.P is the property matrix of size [K,8] where 
% K is the number of regions 
% 8 is the number of properties 
% BW = im2bw(Imroi,thr); % ROI threshold 
R.BW = BW; 
% 
% Properties found 
sA = 'Area'; 
sC = 'Centroid'; 
sL1 = 'MajorAxisLength'; 
sL2 = 'MinorAxisLength'; 
sE = 'Eccentricity'; 
sO = 'Orientation'; 
sP = 'Perimeter'; 
% 
s = regionprops(BW,sA,sL1,sL2,sC,sP,sO,sE); 
% 
% Preparing the output property matrix 
K = size(s,1); % Number of regions found 
Prop = zeros(K,8); 
for k = 1:K 
    A = s(k).Area; 
    C = s(k).Centroid; 
    x = C(1); y = C(2); 
    L1 = s(k).MajorAxisLength; 
    L2 = s(k).MinorAxisLength; 
    P = s(k).Perimeter; 
    O = s(k).Orientation; 
    E = s(k).Eccentricity; 
    prow = [A x y L1 L2 P E O]; 
    Prop(k,:) = prow; 
end 
% Area  
A = Prop(:,1); % Area vector 
[~,I] = sort(A); % Sorting according to area size 
I = flipud(I); % Largest first 
Props = Prop(I,:); 
I = Props(:,1) > Amin; % Finds rows with area larger than Amin 
Props = Props(I,:); % Removes rows with smaller areas 
% 
R.P = Props; 
R.Numobj = K; 
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Appendix-C: Optical microscopy scans of thin section samples 

All samples scans for the well 7128/6-1 are included here, but only 26 samples were used in the current 

study. 
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Appendix-D: Core analysis report (7128/6-1 well) 
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