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Out-of-hospital cardiac arrest (OHCA) is recognized as a global mortality challenge, and digital strategies could contribute to
increase the chance of survival. In this paper, we investigate if cardiopulmonary resuscitation (CPR) quality measurement using
smartphone video analysis in real-time is feasible for a range of conditions. With the use of a web-connected smartphone
application which utilizes the smartphone camera, we detect inactivity and chest compressions and measure chest compression
rate with real-time feedback to both the caller who performs chest compressions and over the web to the dispatcher who coaches
the caller on chest compressions. (e application estimates compression rate with 0.5 s update interval, time to first stable
compression rate (TFSCR), active compression time (TC), hands-off time (TWC), average compression rate (ACR), and total
number of compressions (NC). Four experiments were performed to test the accuracy of the calculated chest compression rate
under different conditions, and a fifth experiment was done to test the accuracy of the CPR summary parameters TFSCR, TC,
TWC, ACR, and NC. Average compression rate detection error was 2.7 compressions per minute (±5.0 cpm), the calculated chest
compression rate was within ±10 cpm in 98% (±5.5) of the time, and the average error of the summary CPR parameters was 4.5%
(±3.6). (e results show that real-time chest compression quality measurement by smartphone camera in simulated cardiac arrest
is feasible under the conditions tested.

1. Introduction

With a yearly number of out-of-hospital cardiac arrest
(OHCA) incidents around 370,000-740,000 in Europe alone,
and a low average survival rate of 7.6 % [1], OHCA is
recognized as a major mortality challenge [2]. (e time
from collapse to care is crucial and there is a high focus
on low response times of emergency medical services (EMS)
[3]. A majority of EMS treated OHCAs are witnessed [4],
and quality cardiopulmonary resuscitation (CPR), until
EMS arrives, can have positive effects on survival [5–7]. (e
witness is often in close relation with the patient and could
experience the situation as extremely stressful [8]. Studies
have shown that telephone-assisted CPR (T-CPR) has
a positive effect by getting more callers to start CPR and
coaching callers to provide quality CPR [9–11].

Furthermore, CPR feedback has been shown to improve
CPR quality [12–15]. Combining T-CPR with CPR feedback
may improve CPR quality and survival from OHCA.

In the recent statement from the America Heart Associ-
ation (AHA), the use of digital strategies to improve healthcare
in general and to document its effect is encouraged [16, 17].
Devices providing the bystander with CPR quality measure-
ment by utilizing an accelerometer to measure CPR metrics
are available [18–20]. A challenge with these devices is to get
the users to carry it with them at all times. Smartwatches has
a built-in accelerometer, and has been suggested as a tool for
measuring CPR metric [21–23]. However, a very small per-
centage of the population wears a smartwatch at all times. (e
smartphone, on the contrary, is a digital device most people
carry with them. In recent years, smartphone applications have
been developed for CPR quality measurement and to support
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learning [24, 25] and to help communicate the location of an
emergency [26]. In addition, there are publications describing
the use of the accelerometer in smartphones to measure CPR
metrics [25, 27–30]. Smartphone solutions utilizing the ac-
celerometer require the smartphone to be held on the patient’s
chest or strapped to the bystander’s arm while performing
CPR.(ese solutions may be more suited for training than for
actual emergencies since buttons causing phone connection
interruptions with the emergency unit can accidentally be
pressed when performing the compressions.

Our research group has earlier presented an application,
QCPR cam-app 1.0, utilizing the smartphone camera to
estimate the chest compression rate and provide feedback to
both the bystander and the dispatcher while the phone is
placed flat on the ground [31]. Besides from a small offline
study by Frisch et al. [32] we have found no other published
work or products that utilize the smartphone camera when
measuring compression rate. QCPR cam-app 1.0 demon-
strated accuracy issues when challenged with bystanders
having long loose hair and in cases of people moving around
the emergency scene. In this paper, we present test results of
QCPR cam-app 2.0, improved to handle this, but also to
provide more information by calculating a CPR summary
report after CPR has ended. (ese parameters can be used to
evaluate each session and to generate data that can be used
for dispatcher-caller quality improvement and research.

2. Materials and Methods

(e application, QCPR cam-app 2.0, captures CPR move-
ments utilizing the smartphone camera while the smart-
phone is placed flat on the ground next to the patient. From
the detected motions, the algorithm estimates the chest
compression rate and hands-off time and provides: (1) real-
time objective feedback to the bystander, (2) real-time ob-
jective feedback to the dispatcher during the emergency call,
and (3) a CPR summary report.

2.1. Illustration of Bystander and Dispatcher Use. An illus-
tration of the application in use can be seen in Figure 1(a), with
screenshots in Figure 1(b). By clicking the emergency button,
the application activates speaker mode, establishes telephone
connection with the dispatcher and sends GPS location and
real-time compression data to a web server available for the
dispatcher. (e bystander then places the smartphone at the
opposite side of the patient, see Figure 1(a).(e preview frames
from the front camera are shown to the bystander, allowing
him to position himself and to keep track of the ongoing
activity in the field of view of the camera (Figure 1(b)). A
speedometer is displayed next to the preview frame allowing
the bystander to keep track of the applied compression rate.

A live sequence example of the proposed web server
solution monitored by the dispatcher is shown in Figure 1(c).
A 20 seconds sliding window providing the development
and history of the compression rate in real-time is shown,
where different colors are used to make the interpretation
easier. Green dots correspond to compression rates in the
desired range of 100–120 cpm and yellow outside. Above the

graph, a circular color indicator provides information about
the certainty of the reported compression rates. If the de-
tections are carried out in low noise, the indicator is green,
but if high noise conditions are present, i.e., some cases of
long loose hair and from large disturbances, the indicator
shifts to yellow. (e bystander’s GPS location is provided to
the dispatcher, as seen in Figure 1(c).

2.2. Technical Description. QCPR cam-app 2.0 was designed
to handle the disturbance issues observed in QCPR cam-app
1.0, [31] and the technical description of the improvements are
presented in more detail in the appendix. In short; All the
estimations are performed on the smartphone, and the main
steps in detection of compression rate are illustrated in Fig-
ure 2. In step 1, difference frames, g(i, j), are generated by
thresholding the differences between subsequent input frames,
f(i, j), from the camera. A dynamic region of interest (ROI) is
established from the largest connected moving object and is
updated each half second by checking the activity in the blocks
around the ROI boundary. By using a dynamic ROI, we allow
others to move around in the emergency scene without dis-
turbing the detections. In step 2, we generate a signal, d(l),
from the activity in the ROI and for each half second, timestep
n, a short time Fourier transform (STFT) is performed on the
three last seconds of d(l). A sliding Hanning window is ap-
plied to d(l) prior to the STFT. In step 3, the power spectrum
density, Dn(ω), found from the STFT is studied and a decision
three is used to separate compression rates from noise. (e
decision three recognizes a system in the Dn(ω) for cases of
bystanders with long loose hair, thus solve the detection issues
observed inQCPR cam-app 1.0 [31] for these cases. If a CR(n)

is detected, it further undergoes some postprocessing steps,
indicated in step 4, Figure 2.(ese steps filter out and suppress
noise by performing smoothing and removing short detection
pauses caused by compression stops or disturbances. In step 5,
the detected and filtered compression rate, CRf(n) (cpm), is
displayed on the smartphone and sent to the web server and
displayed to the dispatcher, providing the real-time feedback to
both bystander and dispatcher.

2.3. CPR Summary Report. After completion of a caller
session, a set of CPR summary parameters are calculated by
QCPR cam-app 2.0. (e parameters, which are both shown
on the smartphone screen for the bystander and saved on the
web server for the dispatcher, are as follows:

(i) TFSCR (s): time from start of phone call to start of
first stable compression rate. A compression rate is
defined as stable if CRf(n)> 40 and |CRf(n)−
CRf(n− 1)|< 20 is true for at least 6 seconds.

(ii) TC (s): total active compression time. (e time
where CRf(n)> 0, for t(n)>TFSCR, and contin-
uously for more than 2 s.

(iii) TWC (s): time without compressions. TDPC-TC,
where TDPC (s) is the duration of the phone call.

(iv) ACR (min−1): average compression rate. An average
of all CRf(n)> 0, for t(n)>TFSCR, and continu-
ously for more than 2 s.
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(v) NC: total number of compressions. Estimated by:
ACR ∗ (TC/60).

2.4. Data Material and Evaluation Measures. All experi-
ments were performed on a Resusci Anne QCPR manikin.
�e QCPR cam-app 2.0 algorithm was implemented in
Android Studio and the experiments were performed with
a Sony Xperia Z5 Compact (Sony, Japan). A reference signal

for the compression rate was provided by an optical encoder
embedded in the Resusci Anne QCPR. A three-second long
sliding window frequency analysis was performed on the
signal each half second, providing the reference data,
CRtrue(n), with the same sample rate as the compression rate
detection, CRf(n), from the app.

To evaluate the results, di�erent measurements were
used: Average error (E), Performance (P), Relative error
parameter (REpar) and Bland Altman plots used to visualize

(a) (b)

(c)

Live session - CPR technology from Laerdal and University of Stavanger

Figure 1: (a) Illustration photo of the smartphone application in use in a simulated emergency situation. (b) Screenshots of the smartphone
application. Front page to the left and bystander feedback example to the right. (c) Screenshot of the web server available for the dispatcher.

Dynamic
ROI

finder

Sliding
hanning
window,

STFT

PSD model
(a) Noise
(b) Hair
(c) OK

After
processing

Dn(ω) CR(n)d(l)g(i,j)f(i,j) CRf(n)

Video frames Difference frames Difference signal Power spectral density

40–160 cpm

Output comp. rate

Figure 2: Simpli�ed block scheme of the proposed system for chest compression rate measurement. Image frames from the smartphone
front camera is used as input, and output is the detected compression rate, CRf(n).
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the agreement between data provided by QCPR cam-app 2.0
and the reference data provided by Resusci Anne QCPR
manikin. E is given in compressions per minute (cpm) and is
the average error of the sequence, defined as

E[cpm] �
1
N



N

n�0
CRf(n)−CRtrue(n)



, (1)

where N is the number of samples of the sequence. For se-
quences containing discontinuity in the reference data, i.e., 30 :
2 session, we allowed errors in a ±1 s interval around the
automatically detected discontinuities. (is reduced the in-
fluence of insignificant delays on the errormeasure.P is defined
as the percentage of time where |CRf(n)−CRtrue(n)|<Δ.
According to guidelines [33–35] the acceptable compression
rate is between 100 and 120 cpm, thusΔ� 10 (cpm) was chosen
as an acceptance criterion. REpar measures the performance of
the CPR summary parameters listed in Section 2.3. REpar is
given in percentage and defined as

REpar[%] �
ParD −ParR




ParR

100, (2)

where ParD is a CPR summary parameter estimated by the
app and ParR the corresponding CPR parameter found from
the reference signal. If the test contained more than one
sequence, the results are presented with mean and standard
deviations, i.e., μE(σE), μP(σP), and μREpar(σREpar), found
over the result values of the sequences.

Desired detection results provide a low Average error, E,

a low Relative error parameter, REpar, and a high Perfor-
mance, P.

2.5. Experiments. (e performance of the QCPR cam-app
2.0 was tested in various conditions that could occur in real
emergencies. (e experiments were divided into five dif-
ferent tests—Smartphone position test, Outdoor test, Dis-
turbance test, Random movement test, and CPR summary
report test. Altogether, this sums up to approximately 162
minutes of CPR. Specifications for the subtests included in
each test are listed in Table 1.

(e Smartphone position test included seven test per-
sons—two with short hair (SH), two with medium length
loose hair (MLLH) i.e., chin/shoulder length, and three with
long loose hair (LLH) i.e., chest length. Each of the test
persons performed 8 subtests carried out indoor.

(e result for subtest RateP1, Table 1, was presented in
Meinich-Bache et al. [36] to verify that QCPR cam-app 2.0 is
able to estimate correct compression rate for test objects
with various hair lengths and for different compression
rates, which were an issue in QCPR cam-app 1.0 [31].

(e subtest D1R110P1 included a person that walks
around and behind the bystander during CPR, leaning over
the patient, waving his arms, and thus causing disturbances.
(ese results were also presented in Meinich-Bache et al.
[36] to verify improvements of QCPR cam-app 2.0 over
QCPR cam-app 1.0 where sometimes disturbances could
take over the dynamic ROI [31]. (e results of subtests
RateP1 and D1R110P1 are repeated here for the reader to

experience all the various tests that QCPR cam-app 2.0 has
been exposed to.

Various other conditions were also tested in the
Smartphone position test. (ree camera positions were in-
cluded: next to shoulder (Pos.1), 20 cm away from shoulder
(Pos.2), and next to head (Pos.3). (e camera positions are
shown in Figure 3. 30 : 2 sessions were carried out for camera
positions Pos 1, subtest 30 : 2P1, and Pos 3, subtest 30:2P3.
Pos.3 was included to see if the algorithm provides false
detection when the bystander is still visible in the image
frame when performing rescue breaths. Since the bystander
is not visible in the image frame while performing rescue
breaths when the camera is positioned in Pos.2, this position
is not relevant for the 30:2 sessions and therefore not in-
cluded. Pos.2 is used to measure the algorithm’s ability to
detect when only a small part of the bystander is visible in the
image frame and used in subtests R100P2 and R150P2. (e
algorithm was also tested in low lighting conditions, 7 lux, in
subtest LightP1.

(e Outdoor test included three test persons, one with
each hair length; SH, MLLH, and LLH. (e detections were
carried out in cloudy (C) and sunny (S) weather, both with
and without noisy background (B) i.e., trees.

(e purpose of the Disturbance test was two-fold: (1) to
measure the algorithm’s ability to detect compression rate
when there is a large disturbance present i.e., another
moving person, and to (2) quantify the disturbance size
relative to the bystander performing the compressions when
the algorithm fails to detect due to too much noise. A second
Sony Xperia Z5 Compact (Sony, Japan) phone was used to
capture video recordings of the test, and the video is studied
offline to perform the quantification. (e bystander carried
out continuous compressions during the sequence. (e
disturbing personmoved around the patient, waving arms in
different frequencies, standing behind and over the by-
stander while waving arms, stepping over patient etc.

In the Random movement test, no CPR was performed
on the manikin and the purpose of the test was to measure
the algorithm’s resilience to false detections. (e random
movement included checking breathing and pulse of patient,
turning patient, unzipping jacket, walking around, waving
for help etc. (ree test persons were included.

(e CPR summary report test is an evaluation of the
session summary parameters. (e test included five different
test persons with different hair lengths and the following test
protocols:

(i) (e bystander sits next to patient with the smart-
phone in his hands. He/she presses the emergency
call button and places the smartphone flat on the
ground. For approximately 20 seconds, the by-
stander checks for patient’s pulse and respiration
before starting performing chest compressions.

(ii) Next, four intervals of 120-second continuous com-
pressions and 20-second pauses while checking for
respiration are followed.

(iii) (e total sequence time is approximately 580 s,
which is a typical response time for medical assis-
tance [37–40].
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�e CPR summary parameters evaluated are the pa-
rameters explained in Section 2.3: TFSCR, TC, TWC, ACR,
and NC.

3. Results

�e error measurement results of all �ve tests are summarized
in Table 2. �e average compression rate detection error, E,
was 2.7 compressions per minute (±5.0 cpm), the perfor-
mance, P, accepted detections in 98% (±5.5) of the time and
the relative error of the CPR summary parameters, REpar, were
4.5% (±3.6). In subtest R150P2 from the Smartphone position

test, the results reveal some weaknesses when only a small part
of the bystander is visible to the camera, the compression rate
is as high as 150 cpm and the person performing compression
hasMLLHor LLH. In the two sequences with poor results,P of
56.2% and 80.2%, the bystander is only present in 4.6% and
6.9% of the image frame and an example from the largest one
is shown in Figure 4(a). Figures 4(b)–4(d) also show examples
from the subtests: (B) low lighting conditions, LightP1, (C)
LLH in noisy outdoor conditions, OSBR110P1, and (D) the
smallest disturbance, occupying 3.4 times the size of the area
occupied by the bystander, that cause the algorithm to fail to
detect for a short period of time in D2R110P1.

Table 1: Detailed description of the subtests included in the 5 tests performed to bothmeasure the accuracy of QCPR cam-app 2.0’s ability to
detect the compression rate under various conditions and to evaluate the CPR summary parameters calculated after an ended session.

Subtest name Compression
rate (cpm)

Duration
(s)

Camera
position Lighting Measures

Smartphone position test (n � 7)

RateP126 Normal 60, 100,
120, 150 60 x 4 Pos.1 480 lux μE, μP

D1R110P126 Disturb. person 110 120 Pos.1 480 lux μE, μP
30:2P1 30:2 110 90 Pos.1 480 lux μE, μP
LightP1 Dimmed light 110 60 Pos.1 7 lux μE, μP
R100P2 Small part of image frame (position Change) 100 60 Pos.2 480 lux μE, μP
R150P2 Small part of image frame (position Change) 150 60 Pos.2 480 lux μE, μP
30:2P3 30:2 (position Change) 110 90 Pos.3 480 lux μE, μP
R100P3 Normal (position Change) 100 60 Pos.3 480 lux μE, μP
Outdoor test (n � 3)

OCBR110P1 Cloudy with noisy (threes) background 110 60 Pos.1 Cloudy
weather μE, μP

OCR110P1 Cloudy with no background 110 60 Pos.1 Cloudy
weather μE, μP

OSBR110P1 Sunny with noisy (threes) background 110 60 Pos.1 Sunny
weather μE, μP

OSR110P1 Sunny with no background 110 60 Pos.1 Sunny
weather μE, μP

Disturbance test (n � 1)

D2R110P1 Disturbing person 110 180 Pos.1 Normal
indoor μE, μP

Random movement test (n � 3)

Ran.MovP1 Random movements — 150 Pos.1 Normal
indoor μP

CPR summary report test (n � 5)

CPRsrR110P1 Compressions with pauses 110 580 Pos.1 Normal
indoor μREpar

R� rate; P� position; D� disturbance; O� outdoor; B�noisy background; C� cloudy; S� sunny; CPRsr�CPR summary report.

Pos. 1 Pos. 2 Pos. 3

Figure 3: Di�erent camera positions used in smartphone position test.
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(e Bland Altman plot in Figure 5 shows the agree-
ment between reference data and detection data for
Smartphone position test, Outdoor test, and the Distur-
bance test. Each analysis in all the test sequences are here

included. (e subtests with poorer results, 30:2P1,
R150P2, and 30:2P3, is marked with the colors red, yellow,
and purple, respectively. (e total number of samples in
the plot is 11718, and the number of samples with larger

Table 2: Detection results for all of the 5 tests included in the experiments.

μE(σE) (cpm) (0->) μP(σP) (%) (0–100) μREpar(σREpar) (%)
Smartphone position test (n � 7)
RateP126 1.3 (0.3) 99.7 (0.3) —
D1R110P126 1.8 (1.3) 99.5 (1.2) —
30:2P1 4.5 (3.8) 95.9 (3.7) —
LightP1 1.1 (0.3) 100 (0) —
R100P2 3.0 (3.4) 98.1 (3.7) —
R150P2 11.4 (14.9) 89.8 (16.4) —
30:2P3 3.3 (1.4) 96.0 (2.1) —
R100P3 1.1 (0.2) 99.9 (0.4) —
Outdoor test (n � 3)
OCBR110P1 1.7 (0.3) 100 (0) —
OCR110P1 1.5 (0.3) 100 (0) —
OSBR110P1 1.4 (0.4) 99.7 (0.5) —
OSR110P1 1.1 (0.4) 100 (0) —
Disturbance test (n � 1)
D2R110P1 5.8 96.0 —
Random movement test (n � 3)
Ran.MovP1 — 89.6 (2.5) —
CPR summary report test (n � 5)

CPRsrR110P1

TFSCR — 6.1 (3.3)
TC — 2.8 (2.6)
TWC — 10.0 (9.1)
ACR — 1.8 (1.2)
NC — 1.6 (1.0)

Total (all tests) 2.7 (5.0) 98.0 (5.5) 4.5 (3.6)
(e results are given in mean Average error, μE, mean Performance, μP, and mean Relative error parameter, μREpar. Standard deviations are shown in
parenthesis. R� rate; P� position; D� disturbance; O� outdoor; B� noisy background; C� cloudy; S� sunny; CPRsr�CPR summary report.

(a) (b)

(c) (d)

Figure 4: (a) Screenshot of a MLLH bystander’s position in image frame when algorithm provided poor detection results for compression
rate of 150 cpm, R150P2. (b) Screenshots of low lighting conditions, LightP1. (c) Screenshot of LLH and noisy outdoor background,
OSBR110P1. (d) Screenshot of the disturbance size when the algorithm failed to detect the compression rate in D2R110P1.
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deviation than ±10 cpm compared to reference data is 180
(1.53%).

In Figure 6 the Bland Altman plots show the agreement
between the summary parameters calculated from the de-
tection data and the summary parameters calculated from
the reference data in the CPR summary report test.

4. Discussion

�e results presented in this paper show that the camera in
a smartphone can be used to measure chest compression
rates and hands-o� times under various conditions with
good accuracy. Our proposed method allows for real-time
feedback to both the bystander and to a dispatcher in real
emergencies, which could improve CPR quality.

4.1. Challenges. Although the algorithm works well with only
a small part of the bystander being visible under low noise
situations, we discovered reduced accuracy in two of the
sequences where the bystander had long loose hair, com-
pressed with a very high rate and were visible only in a small
part of the image frame. In these sequences, the loose hair is
sometimes almost the only thing visible in the image frame
and QCPR cam-app 2 interprets this as compression in the
rate the visible hair is bouncing in.�ese two cases explain the
yellow samples, in R150P2, that caused disagreement in the
Bland Altman plot, Figure 5. To avoid these false detections
the bystander should position the smartphone such that most
of the head and shoulders are captured in the image frame.

We also experienced that repetitive random movements
during compression pauses could cause the algorithm to
detect a false stable-low compression rate causing QCPR
cam-app 2 to calculate a longer TC and a shorter TWC. It
could be observed that during compression pauses people
often bend towards and away from the patient in a sometime
very repetitive movement, and on a few occasion when the
bystander had long loose hair, these movements caused the
algorithm to interpret the movements as a stable but very
low compression rate lasting a minimum of 5 seconds.�ese
false stable-low compression rate detections did not occur in
the Random Movement Test when the test persons were
asked to perform all kinds of di�erent tasks that could be
carried out before compression starts. Deactivating the
dynamic rate range could solve this problem, but a conse-
quence of this would be that compressions rates below
70 cpm would not be detected.

�e samples that show disagreement between the de-
tections data and the reference data in Figure 5 for subtest 30 :
2P1 (red) and 30 : 2P3 (purple) occurs in the transitions
between compression and compression pauses when per-
forming 30:2 and do not signi�cantly a�ect the visual pre-
sentation of the detected signal that is shown to the dispatcher.

4.2. Further Work. �e proposed system allows the by-
stander to have both hands free with compression feedback
on the smartphone screen visible next to the patient which is
di�erent from accelerometer-based smartphone solutions
that require the smartphone to be held on the patient’s chest
or strapped to the bystander’s arm [24, 25, 27–30]. �is
advantage could make the proposed solution suited for real
emergencies where the phone is also used as a life line to the
emergency unit. Studies comparing the proposed solution
with the accelerometer-based solutions in simulated emer-
gencies should be considered.

Testing of QCPR cam-app 2.0 in simulated real emer-
gencies must be carried out in order to conclude if this
method could be suited for real emergencies. In addition,
studies with the aim of documenting the usability of the
application, safety of the method, and e�ectiveness on the
CPR quality also need to be carried out as suggested by
Rumsfeld et al. [16]. If QCPR cam-app 2.0 shows a well-
documented positive e�ect on the CPR quality, it may be
subject to appropriate medical device regulations and made
available for clinical use [41, 42].

�e detected and stored compression rate signal and the
CPR summary report provide further opportunity for
evaluation, debrie�ng and quality improvement of the
dispatcher-caller interaction. �e stored data and the visual
dispatcher feedback system can be used to provide con-
tinuing education in T-CPR for dispatchers, as AHA rec-
ommends in T-CPR guidelines [43]. In addition, these
measurements can provide the EMS arriving at the scene
with detailed information about the treatment the patient
has received. A feature which records audio and video will be
considered integrated in QCPR cam-app 2. A possible so-
lution could be to let the recordings be automatically
uploaded to a cloud storage when available bandwidth

40 60 80 100 120 140 160
Average of reference and detection data

–40

–20

0

20

40

60

80

100

120

D
iff

er
en

ce
 b

et
w

ee
n 

re
fe

re
nc

e a
nd

 d
et

ec
tio

n 
da

ta

+1.96 SD
–1.96 SD
Mean diff.
Zero

30:2P1
R150P2
30:2P3
Others
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would allow it. Still images, video, and audio could be made
available for the dispatcher and allow for a better un-
derstanding of the emergency situations. Audio recordings
may also be analyzed with respect to chest compression rate
and inactivity to further improve measurement accuracy
since most dispatcher protocols include prompting and
counting loud while compressing on the chest.

�e collected data could also be utilized in a machine
learning framework providing potential decision support in
future systems.

We are currently investigating camera-based methods for
measurement of compression depths [44]. In future work, we
will try to develop a robust depth algorithm that could be
implemented together with the proposed method. An
implementation of depth measurement would make this
solution a complete CPR quality measurement and feedback
device. Although the proposed solution’s main idea is to assist
laypersons in real emergencies, we have also developed
a training version of the solution called TCPR Link, available

onApp Store andGoogle Play [45, 46] in selected countries. As
AHA has announced, CPR feedback devices will also be re-
quired to use in all AHA CPR courses by February, 2019 [47].

Studies have also shown that both laypersons and
professionals could bene�t from objective feedback during
CPR. In a study presented by Abella et al. [48], the CPR-
certi�ed rescuers performed chest compression rates
<80 cpm in 36.9% of the CPR segments included in the study
and rates of 100± 10 cpm in only 31.4% of the segments,
clearly suggesting that CPR-certi�ed rescuers could also
bene�t from the proposed solution.

4.3. Study Limitations

(i) �e validity testing of the QCPR cam-app 2.0 was
assessed with a manikin in a simulated cardiac arrest.

(ii) �e QCPR cam-app 2.0 does not measure chest
compression depth.
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Figure 6: Bland Altman plots of the agreement between the summary parameters calculated from theQCPR cam-app 2.0 detection data and
the summary parameters calculated from the Resusci Anne manikin reference data in the CPR summary report test.
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(iii) (e bystanders used in the validity testing were
aware of CPR and the QCPR cam-app 2.

5. Conclusion

Real-time chest compression quality measurement by
smartphone camera is feasible for a range of bystanders,
compression rates, camera positions, and noise conditions.
(is technology may be used to measure and improve the
quality of telephone CPR and minimize hands-off times.

Appendix

Method

(is appendix provides a pseudocode description of method
for measurement of chest compression rate. More details can
be found in [31, 36]. (e application is called TCPR link and
is available on App Store [43] and Google Play [44].

Let the input, fl(i, j), represent video frames, l, where
(i, j) corresponds to row index i and column index j. Output
is the filtered compression rate measurement, CRf(n), for
each 0.5 sec analysis interval, n.

Input: fl(i, j), Output: CRf(n)

while receiving image frames do

Activity measurement:

(1) Generating difference frame:
for All pixels in frame do
if |fl(i, j)−fl−1(i, j)|< � ε then

gl(i, j)⟵0
else

gl(i, j)⟵fl(i, j)−fl−1(i, j)

end if
end for

(2) Dividing gl(i, j) into non-overlapping blocks and
finding the sum of change in region block, Rk over
the received frames, L, in the last half second:
SL

Rk
(n)⟵

 L
L− 1SRk

(m)⟵
 L
L− 1(i,j)∈Rk

|gm(i, j)|

(3) Marks the blocks with SL
Rk

(n)> than the average
block activity, S

L

R(n), with an indicator function,
IRk

(n):
if SL

Rk
(n)> S

L

R(n) then
IRk

(n)⟵1
else

IRk
(n)⟵0

end if
if ROIestablished � FALSE then

Establishing ROI

(4) Establishes a temporary ROI:
Rk ∈ T−ROIn  if

 n
m�n− 3IRk

(m)≥ 3
(5) Fills block-gaps in the temporary ROI:

Rk ∈ TF−ROIn  if Rk is a gap in a connected
object in T-ROI

(6) Choses the largest connected object, LCO, in the
TF-ROI: to be the established ROI.
Rk ∈ ROIn  if Rk ∈ TF−ROILCO,n 

ROIestablished � TRUE

end if
while ROIestablished � TRUE do for each half
second:

Activity signal from ROI

(7) Generate difference signal at time point, l:
d(l) � Rk∈ROIn

(i,j)∈Rk
g(i, j)

Frequency analysis

(8) STFTis performed on overlapping blocks of d(l), with
blocklength Lf corresponding to 3 sec., updated
every 0.5 sec. A sliding Hanning window is used
prior to the STFT.Ce PSD, Dn(w), is estimated by
the periodogram calculated from the STFT:
Dn(w) � 1/Lf|FM dhf(l) |2 l � (n− 1)Lf : nLf

where FM denotes M point FFT, and dhf(l)

denotes the Hanning filtered difference signal.

PSD modelling:

(9) Decision tree. Recognizes and handle cases of long
loose hair and separate compressions from noise.
Relevant frequency range is 40-160 (cpm):

Attributes found from Dn(w):
(1) Amplitude of the first significant peak, ap1(n),
(2) Amplitude of the second significant peak,

ap2(n),
(3) Frequency of the first significant peak, fp1(n),
(4) Frequency of the second significant peak,

fp2(n) and
(5) Mean amplitude hight of PSD, aPSD(n).

CR(n)⟵decisionTree(ap1(n), ap2(n), fp1(n),

fp2(n), aPSD(n),

Post processing

CRf(n) � CR(n)

(10) Short spike/drop removal:
if |CRf(n− 1)−CRf(n− 1− k)|<Tsd1 ∀k≤ 2
then
if |CR(n)−CRf(n− 1)|>Tsd2 then

CRf(n) � CR(n− 1)

i � i + 1
if i � 4 then

CRf(n− 3 : n) � CR(n− 3 : n)

i � 0
end if

else
i � 0

end if
end if

(11) Smoothing mean filter:
forj � 1 : 3 do

K � argmaxJ |CRf(n)−CRf(n− j)|<Tmf,

∀j≤ J

end for
CRf(n) � 

 K
k�0ak CRf(n− k)

where ak is the filter coefficients, 
K
k�0ak � 1

and aj � ai ∀ i, j.
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(12) Dynamic rate range:
CRdrr(n) � CRf(n);
if CRdrr(n)< 70 then

for j � 1 : 10 do
K � argmaxJ |CRdrr(n)−CRdrr(n− j)|<
Tdrr, ∀j≤ J

end for
if K�10 then

CRf(n− 10 : n) � CRdrr(n− 10 : n)

else
CRf(n) � 0

end if
end if

ROI update:

(13) Add and remove blocks in ROI:
if SL

boi
(n)> 0.5 · S

L

R(n) then
Rbo,i ∈ ROIn 

end if
if SL

bii
(n)< 0.5 · S

L

R(n) then
Rbi,i ∉ ROIn 

end if
where Rbo,i denote block i on the outside of the
ROIn boundary and Rbi,i denote block i inside the
ROIn

(14) Freq. analysis if ROI is divided into multiple areas:
if # of connected areas, AROI, ∈ ROIn > 1 then

for i � 1 : # of AROI do
Perform step 7, 8 and 9, and
if CRAROI,i(n) is in range of 40–160 cpm then

AROI,i ∈ ROIn 

else
AROI,i ∉ ROIn 

end if
end for

end if
if # of Rbi,i ∈ ROIn < 2 then

ROIestablished � FALSE

end if
end while

end while
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