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Abstract

Estimating a high resolution image of the subsurface has been always a

challenge in the oilfield exploration. With advances in computational power,

Full Waveform Inversion (FWI) has been proven as an efficient imaging tool

of the subsurface since the first paper of Tarantola A. (1984). FWI consist basi-

cally of two major steps: Forward modeling and backward propagation of data

residuals. Modelling of the seismic wave-field requires a numerical solution of

the partial differential equations like finite difference method, finite element

method and spectral elment method. In this research, We implement finite

difference method for modeling the seismic data. The used seismic model-

ing methodology is described in details in chapter 2. Numerical optimization

methods like quasi-Newton, Conjugate gradient and Steepest Descent have

been used for fitting the synthetics with data to improve the accuracy of the

solution (Chapter 3).

We implemented the method using a real recorded seismic data from the

Blackfoot oilfield in Alberta, Canada. The major challenge we faced in this

research is to provide an accurate initial model to optimize better results. We

applied FWI on the borehole seismic data and a new model was estimated

from the borehole seismic data to be used as a starting model for inverting

surface data. Chapter 4 shows, in details, the inversion of borehole seismic

data while inversion of surface seismic data is described, in details, in chapter

5. This methodology helps to provide an accurate solution and better results.

The resultant velocity models obtained from the application FWI on surface

seismic data were used for Elastic Reverse Time Migration (ERTM) on the 2D

seismic section and it was capable of developing a clearer image.

ii



Acknowledgement

I would like to express my sincere gratitude to my supervisor Professor Wiktor

Waldemar Weibull for encouraging me to express my ideas through this project. I

will be always grateful for the perfect opportunity that Prof.Weibull gave me to work

in this project that brought countless number of discussions that shaped my knowl-

edge in Geophysics and developed my skills. Also, I am thankful to Prof. Weibull for

the time and great help to find solutions for the challenges we faced in this project

and the guidance in presenting the work at conferences.

I am grateful to University of Stavanger for giving me this amazing study opportu-

nity and experience and for enabling the facilities to finish this thesis. And many

thanks to my study colleagues for the the scientific discussions and the friendly

atmosphere.

Also i would like to thank Khan Academy, edX, Quora and StackOverflow as they

are making the knowledge available for everyone. Using these platforms, I was

able to mitigate the challenges i meet and it helped me to expand my knowledge

in programming, inverse theory and numerical optimization.

I’d like to thank UNINETT Sigma2 for making Abel, Fram and Stallo clusters avail-

able for us as it saved us the time of very expensive processes and many thanks to

the support team for the great help.

I’d like to thank my friends Amr, Farid, Hisham, Ali, Ashraf And Amro for the great

time we had during the last two years.

Finally I want to thank my family for the patience, encouragement and support.

iii



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Basic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Surface Seismic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.2 Borehole Seismic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Numerical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Finite Difference method (FD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Model boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Non Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Steepest Descent Method . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Step Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Conjugate Gradient (CG) . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.5 Quasi Newton (Q-N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Case Study: Borehole Seismic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Multiscale Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Case Study: Surface Seismic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Elastic FWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.2 Elastic Reverse Time Migration . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Waves in Elastic media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iv



A.1 Waves propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.2 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.3 Isotropic Elastic symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B Elastic Reverse Time Migration (ERTM) . . . . . . . . . . . . . . . . . . . . . . . . 75

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

D.1 3D Elastic Full Waveform Inversion . . . . . . . . . . . . . . . . . . . . . . . . 80

D.2 2D Elastic Full Waveform Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 81

D.3 Reverse Time Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

v



List of Figures

1.1 Conventional division of inverse and forward problem (Sneider, 1998) 1

1.2 Used workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Location map of the study area in southern Alberta, Canada. From

(Wood & Hopkins, 1992) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Stratigraphic column for the Cretaceous sequence (Wood and Hop-

kins, 1992) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Surface and borehole survey design (Stewart, et. al.,1998)) . . . . . . . . 7

1.6 Blackfoot survey fold coverage (Stewart, et. al.,1996) . . . . . . . . . . . . 7

1.7 Survey shots and receivers depth (Zhang, et. al.,1996) . . . . . . . . . . . 8

1.8 VSP Raw vertical and horizontal components of a shot at 115 m offset

from the well with receiver tool at 850 m depth (Stewart, et. al.,1998) 9

2.1 Effect of spacing on the stability of modeling. ∆t /∆x is selected to

satisfy the stability condition, CFL satisfy initial conditions at t = 0

must have a numerical domain of dependence (DOD) larger than the

analytical DOD (Mitchell & Griffiths, 1980) to avoid unstable FD so-

lutions. Bottom left shows that numerical domain of dependence is

wider than the analytical domain which is not the case in the bottom

right, From (Schuster, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Finite Difference of PML scheme on 2D (Herrata & Weglein 2013) . . 13

2.3 Amoco model propagating Wavefield using Finite difference model-

ing (Source code from Madagascar repository (Irons, 2014)) . . . . . . . 14

3.1 Effect of non-lineaity on the misfit (S(m)), Having many local minima

is challenging for optimizer to find the solution (Sneider, 1998) . . . . 16

3.2 Effect of choosing initial model on the convergence, Note the model

1 will make it easier for the optimizer to find the solution (Sen &

Stoffa, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 The effect of using low frequency on the optimization convergence.

Inversion of the high frequency components will results in many

local minima (red circles). Gradient optimization will get stuck in a

local minima before it reach the global minimum, from (Schuster,

2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Gradient optimization gets stuck in the local minimum on the left

along the objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



3.5 Misfit contours (after from Hjorteland, 1999). Search directions us-

ing SD method are orthogonal to one another and the step size gets

smaller and smaller. The eigenvalues here represents elliptical func-

tion and this leads less accurate approximate and will slow down the

convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Too small step size that leads to slow convergence, however it found

the optimal solution but with very slow convergence(left); and too

large step size leads to divergence(right). (Boyd & Vandenberghe, 2004) 24

3.7 Backtracking line search (Note: x in figure refers to the model), Armijo

condition is fulfilled when t < t0. (Boyd & Vandenberghe, 2004) . . . . 24

3.8 Comparison between Steepest Descent, Conjugate Gradient and New-

ton method, from (Schuster, 2015). . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 The windowing strategy: Macro window from (Warner, et al. 2013)

and Micro-Macro windowing from (AlTheyab & Dutta, 2014) of rolling

offset strategy. After (Schuster, 2015) . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Estimated Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 1D linear models a)P-wave velocity b)S-wave velocity . . . . . . . . . . . . 31

4.4 Comparison between vertical component: a)Seismic data and b)Computed

synthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Comparison between x-horizontal component (Hx): a)Seismic data

and b)Computed synthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Comparison between y-horizontal component (Hy): a)Seismic data

and b)Computed synthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Subset of vertical component: a)Seismic data and b)Computed syn-

thetics for depth between 600m and 1200m, Note the recording of

P-waves and S-waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.8 Subset of horizontal (Hx) component: a)Seismic data and b)Computed

synthetics for depth between 600m and 1200m . . . . . . . . . . . . . . . 36

4.9 Subset of horizontal (Hy) component: a)Seismic data and b)Computed

synthetics for depth between 600m and 1200m . . . . . . . . . . . . . . . . 37

4.10 Seismic data residual for the Vertical component . . . . . . . . . . . . . . 38

4.11 Seismic data residual for the x-horizontal(Hx) component . . . . . . . 39

4.12 Seismic data residual for the y-horizontal(Hy) component . . . . . . . 39

4.13 Updated velocity models a)P-wave velocity and b)S-wave velocity . . 40

4.14 Accumulated Velocity perturbations a)Vp and b)Vs . . . . . . . . . . . . . 41

4.15 Depth slice at 900m of Accumulation of velocity updates a)Vp and

b)Vs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



4.16 Comparison between updated velocity (blue), initial velocity (red)

and sonic log velocity (purple) a)Vp, and b)Vs. Notice that the sonic

logs were recorded at limited depths in the well (PCP Blackfoot 12-

16-23-23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Initial models from VSP updated models used for inverting surface

seismic data:a)Vp and c)Vs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Subset (7 shot gathers) of the surface recorded seismic data a)Vertical

component and b)Radial component . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Subset (7 shot gathers) of the surface seismic synthetics using 1D

linearly increasing velocity model as initial model a)Vertical compo-

nent and b)Radial component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Subset (7 shot gathers) of the surface seismic synthetics using the

VSP updated model as initial model a)Vertical component and b)Radial

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Single shot gather of surface recorded seismic data a)Vertical com-

ponent and b)Radial component . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Single shot gather of surface seismic synthetics using 1D linear model

as initial model a)Vertical component and b)Radial component . . . . 51

5.7 Single shot gather of surface seismic synthetics using the VSP up-

dated model as initial model a)Vertical component and b)Radial

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 Data residuals using initial linear model a)Vertical component and

b)Radial component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.9 Data residuals using VSP updated model a)Vertical component and

b)Radial component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.10 FWI updated models after using linearly increasing velocity model

as initial model after 20 iterations: a)Vp and b)Vs using LBFGS Opti-

mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.11 FWI updated models after using the updated VSP model as initial

model after 20 iterations: a)Vp and b)Vs using L-BFGS Optimization 56

5.12 Accumulated FWI perturbations using the linearly increasing veloc-

ity model as initial model : a)Vp and b)Vs using L-BFGS Optimization 57

5.13 Accumulated FWI perturbations using the linearly increasing veloc-

ity model as initial model: a)Vp and b)Vs using Conjugate Gradient

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.14 Accumulated FWI perturbations using the linearly increasing veloc-

ity model as initial model: a)Vp and b)Vs using Steepest Descent . . 59

viii



5.15 Accumulated FWI perturbations after 20 iterations using VSP up-

dated model as initial model: a)Vp and b)Vs using L-BFGS optimiza-

tion method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.16 P-wave RTM image using linear model as initial model. . . . . . . . . . . 61

5.17 S-wave RTM image using linear model as initial model. . . . . . . . . . 62

5.18 P-wave RTM image using VSP updated model as initial model. . . . . 62

5.19 S-wave RTM image using VSP updated model as initial model. Notice

that the reflectors are better focused . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 One dimensional model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.1 Simple reflector reconstruction using RTM (Zhou, 2014). . . . . . . . . . 77

C.1 Migration, data kernel, the associated wavepaths and resolution limit(after

Huang & Schuster, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

D.1 Sample of 3D EFWI Configuration File . . . . . . . . . . . . . . . . . . . . . . 80

D.2 Sample of 2D EFWI Configuration File . . . . . . . . . . . . . . . . . . . . . . . 81

D.3 Sample of 2D ERTM Configuration File . . . . . . . . . . . . . . . . . . . . . 82

ix



1 Introduction

1.1 Background

In the inverse problem, we aim to build a model from measurements. On the other

hand, the forward problem is used to forecast measurements from a set of phys-

ical parameters. Simply, the forward problem is finding the appropriate physical

formulation that allows predicting the measurements to an acceptable accuracy

given a set of physical parameters.

Figure 1.1: Conventional division of inverse and forward problem (Sneider, 1998)

1.2 Objectives

The purpose of this thesis is to implement Elastic Full Waveform Inversion (EFWI)

on surface and borehole seismic data (VSP). We are looking to show how the accu-

racy of the initial model will maximize the potential of FWI and help obtain accurate

results. Two initial models are used here: the first is a model linearly increasing in

depth and the second is inverted VSP model. The updated models are used as an

input for Elastic Reverse Time Migration (ERTM) for a better imaging of seismic

data.

1.3 Basic Theory

FWI is a way to estimate an accurate model of the subsurface. It is an numerical

optimization problem which aims to estimate a model that is close to reality by

fitting the computed synthetics to the seismic data. FWI utilizes all content of

the waveform, the amplitude and phase from the data. Having rich content of

information is useful and challenging at the same time because that would make
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the problem more complicated. Finding a solution for the complicated non-linear

relationship between the model and the data is not an easy task as the gradient

optimizer might get stuck in local minima and a slight change in the initial velocity

value will result in a cycle skipping problem.

Full-waveform inversion (FWI) has been used as a major tool for high resolution

imaging since the first paper of (Tarantola, 1984). It uses all measured events such

as diving waves, critical reflections and multiples to develop an earth model out

of these data. In this paper, We use elastic FWI to simultaneously estimate P-wave

and S-wave velocities from real field data. FWI consist basically of two major steps:

Forward modeling and backward propagation of data residuals. Modelling of the

seismic wave-field requires a solution of the partial differential equations. Velocity

models obtained through FWI were promising as they show the complexities of

channels in the shallow part.

The elastodynamic equation can be expressed in the compact form as

M (x )
d 2u (x , t )

d t 2
= K (x )u (x , t ) + s (x , t ) (1.1)

Where M and K are mass and stiffness matrices (Marfurt, 1984), s (x , t ) is the seis-

mic source and u (x , t ) is the elastic wavefield which represents horizontal and

vertical particle velocities. The seismic wavefield u (x , t ) is related to the seismic

source s (x , t ) by the impedance matrix I (x , t )

I (x , t )u (x , t ) = s (x , t ) (1.2)

The misfit is the difference between the recorded and calculated data at each re-

ceiver positions. So, the application of the reduction operator R on the modeled

wave-field u results in dc a l (m ).

dc a l =R u (1.3)

The main objective here is to reduce the misfit∆d .

∆d = do b s −dc a l (m ) (1.4)

2



The least-squares formulation of this problem is to find a model that minimizes

the objective function (Tarantola, 1987b). By taking the L2-Norm of misfit∆d .

f (m ) =
1

2
∆d †∆d =

1

2

Nr
∑

r=1

Ns
∑

s=1

∫ tma x

0

d t |dc a l (X r , t ; X s )−do b s (X r , t ; X s |2 (1.5)

Where † is adjoint operator of the matrix, Nr and Ns are number of receivers and

sources. That leads to the perturbation model ∆m which is added later to the

previous model and it results in a new updated model as shown in Figure 1.2.

m =mo +∆m (1.6)

∆m =−
�

∂ 2 f (mo )
∂m 2

�−1
∂ f (mo )
∂m

=−H −1∇ f (m ) (1.7)

∇ f (m ) =
∂ f (mo )
∂m

(1.8)

H =
∂ 2 f (mo )
∂m 2

=
∂ 2 f (mo )
∂m j∂mi

(1.9)

Where∇ f (m ) and H are the gradient and hessian matrix. Misfit decreases along

the conjugate gradient direction using Conjugate-gradient (Mora, 1987; Tarantola,

1987. Approximate evaluations of the hessian H or it’s inverse (step length) is com-

puted using quasi-Newton method like BFGS which take into account information

from gradient∇ f (m ) to find an approximation of the inverse hessian through iter-

ations (See Chapter.3).

1.4 Workflow

This research can be subdivided into two major steps. The first step in this project is

to invert the borehole seismic to get an accurate model of the subsurface since the

borehole seismic data provides better constrains for vertical variations in velocities.

The second step is to use the updated models resulting from the borehole seismic

data inversion as a starting point for application of FWI on the surface seismic data,

as explained in Figure 1.2, and to compare the quality of these results relative to

3



the results obtained using an initial model linearly increasing with depth..

Figure 1.2: Used workflow

1.5 Dataset

The used data in this research is the Blackfoot 3C-3D data. The Blackfoot field is

a series of stratigraphic traps in the western canadian basin in south central Alberta

(Figure 1.3). The primary target in this field is the Glauconitic Sands (Depth=1550m)

which is a fill valleys were incised channel filled with porous cemented sand and

shale into the regional Lower Manneville Group. Stratigrahpic column of the cre-

taceous sequence in the Blackfoot oilfield is shown in Figure 1.4. The porosity in

this sandstone is around 18% and it has cumulative production of more than 200

4



MMbbls1 oil and 400 BCF gas (Miller etal., 1995).

Figure 1.3: Location map of the study area in southern Alberta, Canada. From
(Wood & Hopkins, 1992)

1.5.1 Surface Seismic

Acquiring Blackfoot 3D multicomponent seismic survey was sponsored by a group

of Calgary based exploration companies and was planned and conducted by CREWES

consortium and VectorSeis in 1990s hoping to identify channels and better char-

acterize the reservoir in the field. Survey design is shown in figure 1.5. Sources

are oriented North-South and receivers are East-West oriented. The Blackfoot data

acquisition parameters are summarized in table 1.1. Figure 1.6 shows the fold cov-

erage of the seismic survey.

1Millions of Barrels
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Figure 1.4: Stratigraphic column for the Cretaceous sequence (Wood and Hopkins,
1992)

1.5.2 Borehole Seismic

The 3D VSP was recorded at the same time as the surface 3D seismic in the PCP

Blackfoot 12-16-23-23 well (Gulati, et al., 1998). The Blackfoot VSP survey shooting

covers 2.5 km in the east-west direction and 2.6 km in the north-south direction.

The experiment was acquired using 431 dynamite shot points on 12 north-south

shooting lines with line spacing 210 m and shot interval of 60 m (Figure 1.7).

The data was recorded for 4 seconds with a sampling rate of 1 ms. Figure 1.8 shows

the recorded data for vertical and radial components (East and North). An impor-

tant phenomena of the borehole data is that the vertical component is well coupled

compared to the radial components.
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Figure 1.5: Surface and borehole survey design (Stewart, et. al.,1998))

Figure 1.6: Blackfoot survey fold coverage (Stewart, et. al.,1996)
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Energy source dynamite
Source pattern single hole, 4 kg @ 18 m

Sampling 2 msec
Number of channels 2070 channels, 690 channels per geophone component

Record length 2.0 seconds for vertical, 3.0 sec for horizontal
Receiver interval 60 m
Source interval 60 m

Source-line spacing 210m
Receiver-line spacing 255m

Spread fixed

Table 1.1: Field data acquisition Parameters for the Blackfoot survey

Figure 1.7: Survey shots and receivers depth (Zhang, et. al.,1996)
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Figure 1.8: VSP Raw vertical and horizontal components of a shot at 115 m offset
from the well with receiver tool at 850 m depth (Stewart, et. al.,1998)
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2 Numerical Modeling

2.1 Background

The forward problem is dedicated to the estimation of seismic wavefields taking

into account medium properties. Acoustic formulation is based on that wave prop-

agation is defined by P-wave velocity Vp and density ρ while in the elastic formu-

lation, S-wave velocity Vs is included. Other parameters can be included in case

of anistropic modeling (Thomsen, 1986). Models described by these parameters

are called vertically transverse isotropic (VTI) models. But with such kind of com-

plexities, it will be very hard to model all properties as it’s computationally very

intensive and strongly non-unique to estimate. So, the strategy is to simplify the

problem as possible using an isotropic model.

Many methods can be used for modeling seismic data. Some of these methods

are very simple and do not need huge computational power like ray tracing which

model the ray paths of waves based on the Snell’s law. Other methods are more

complicated, more accurate and more expensive like finite difference methods

(Virieux, 1986; Levander, 1988), finite-element methods(Marfurt, 1984; Min, et

al.,2003), finite-volume methods (Brossier, et al., 2008) and pseudo-spectral meth-

ods (Danecek & Seriani, 2008). We will focus out attention on the finite difference

methods as it is the method that is implemented here since it’s easy to implement

and does not require the inversion of a very large impedance matrix.

2.2 Finite Difference method (FD)

Seismic waves verify partial differential equations (PDE) locally. So, one way of

reconstructing the seismic wavefield u is FD by PDE discretization of the wavefield

ui with respect to time t and cartesian coordinates x,y and z. FD replaces the

continuous partial derivatives by discrete approximations. So, the partial derivative

of the discrecritized wavefield ui with respect to x is approximated in the simple

form from the centered FD with three nodes (second-order stencil) as follows:

∂ u n
i

∂ x
=

u n
i+1−u n

i−1

2∆x
+O (∆x 2) (2.1)
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Truncation error O (∆x n ) which depends on the spacing ∆x and the order of the

approximation n . Accurate approximations can be obtained through the use of

polynomials bases. Taylor series polynomial form the basis for more accurate so-

lutions of PDE. Second-order central FD of taylor series (Bednar, 2013) is given by:

u (x +∆x )−2u (x ) +u (x −∆x )
∆x 2

=
∂ 2u

∂ 2m
+
[∂ 4u

∂ x 4

∆x 2

4!
+
∂ 6u

∂ x 6

∆x 4

6!
+O (∆x 2) (2.2)

Similarly, higher order FD can be estimated for given integer n . It can be shown in

the general form as:

u (x +k∆x ) +u (x −k∆x )
∆x 2

= u (x ) +k 2 ∂
2u

∂ x 2

∆x 2

2!
+k 4 [∂

4u

∂ x 4

∆x 4

4!

+k 6 ∂
6u

∂ x 6

∆x 4

6!
+k 8 ∂

8u

∂ x 8

∆x 8

8!
+O (∆x n ) (2.3)

If we chose to use eighth order scheme, the propagator will be nine grid nodes

wide in each direction and eight volumes in memory for each step for n = −4,+4

which makes the solution very expensive in many cases. All waveform styles (for

example, refractions, free-surface, and peg-leg multiples) are possible in this set-

ting since these propagators synthesize full waveform data. Efficiency might be

improved using smaller time and space sampling (Staggered Grid). So it means

that the variables are not defined at the same node as in case of the collocated grid

(Virieux, 1984 & 1986; Levander, 1988). However, size of the grid is still the same as

the traditional equally spaced grid. So, staggering does not change the overall size

of the problem. Using the higher order difference formulas (equation 2.3) solution

for the system (equation A.19)

u (x + ∆x
2 ) +u (x − ∆x

2 )
2

= u (x ) +
1

4

∂ 2u

∂ x 2

∆x 2

2!
+

1
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∂ 4u

∂ x 4

∆x 4

4!
(2.4)

2.3 Stability

"Small errors in the measurement data may lead to indefinitely large errors in the

solutions" (Kabanikhin, 2008). When the solution is not stable, it will produce very

large numbers that exceed numerical accuracy, i.e. dipping interfaces will appear
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as stair-steps, where the edge of each step acts as a strong diffractor. A higher-order

FD solutions requires 5 points per wavelength in a homogeneous medium (Levan-

der, 1989) and 10-15 points per wavelength in case of heterogeneous medium. In

other words, the ratio∆t /∆x < 1
c where c is the actual velocity as shown in Figure

2.1 which known as Courant-Friedrichs-Lewy stability condition (CFL).

Figure 2.1: Effect of spacing on the stability of modeling. ∆t /∆x is selected to sat-
isfy the stability condition, CFL satisfy initial conditions at t = 0 must
have a numerical domain of dependence (DOD) larger than the ana-
lytical DOD (Mitchell & Griffiths, 1980) to avoid unstable FD solutions.
Bottom left shows that numerical domain of dependence is wider than
the analytical domain which is not the case in the bottom right, From
(Schuster, 2015)

2.4 Model boundary

If the boundary condition is free, strong reflections will occur on the sides that

interfere with the desired modeled waves. Absorbing silent boundary (Sponge

boundaries) is needed to be applied to the edges of the model to transmit waves and

not to reflect back inside. There are two popular methods are used to handle the

free surface effect: sponge boundary conditions (Cerjan, et al., 1985) and perfectly

12



matched layers (PML) approach (Berenger, 1994; Chew & Liu, 1996; Festa & Vilotte,

2005).

Figure 2.2: Finite Difference of PML scheme on 2D (Herrata & Weglein 2013)

PML is absorbing layers that are padded at the edges of the numerical model.

The PML model can be easily formulated through equation splitting procedure.

Each wavefield equation (Equation A.19) is split into perpendicular and parallel

components based on spatial derivative separation and adding damping term to

the perpendicular term (Hastings, et al., 1996; Collino & Tsogka, 2001). For instance,

splitting and application of PML on the first equation on the x direction in the

system (equation A.19) will result in the following equation.

∂ v1

∂ t
+d (x )v1 =

1

ρ

∂ τ11

∂ x1

∂ v1

∂ t
=

1

ρ
(
∂ τ12

∂ x2
+
∂ τ13

∂ x3
) (2.5)

An example of damping term is from the work of (Marcinkovich & Olsen, 2013)

using Vs is dma x = log( 1
R )

t Vs
nh while R is theoretical reflection coefficient, h is PML

thickness, n is model spacing and t is tuning parameter(3:4). The damping is from

0 inside the model to maximum value at the edge (Collino & Tsogka, 2001).
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(a)

(b)

(c)

(d)

Figure 2.3: Amoco model propagating Wavefield using Finite difference modeling
(Source code from Madagascar repository (Irons, 2014))
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3 Inverse Problem

The Inverse problem can be generally defined as inverting for the model m from

the recorded data d .

d = Lm (3.1)

where L is the forward modeling operator which is non-linear operator in the case

in question. Having a non accurate starting model will give non-accurate wavefield

calculation which will give unacceptable solution.

3.1 Non Linearity

If we assume that problem is simplified linear as shown in Figure 3.1.a, the solution

will be very simple also. For instance, inverting the velocity taking into account

that velocity increases linearly with depth, but the real case is not really well-posed.

Lots of information and noises are included in the seismic data, which represents

inconsistent system of equations, that make finding a solution for the inverse prob-

lem that justify these details very challenging and expensive. The wavefield rep-

resentation is obtained that is the sum of of a term that depends linearly on the

perturbation in the medium parameters plus a term that depends non-linearly on

those parameters (Bleistein, 2000). Ill-posed problem doesn’t have a unique solu-

tion so, it has many possible solutions. Many models can explain the data equally

well or the solution is unstable "i.e. arbitrarily small errors in the measurements

may lead to indefinitely large errors in the solutions (Kabanikhin, 200)". The rem-

edy to this is to start with a model mo close to the actual model and linearize as

possible the relationship between the data and model, so the data can be inverted

with acceptable convergence (Fletcher, 1980; Meyer, et al., 2004). One example

of how to do this, is by using borehole data to create a good initial model at the

vicinity of the well. Borehole seismic data is usually easier to invert than surface

seismic data, since it is dominated by one way propagation, instead of two way as

in short offset surface seismic data. Figure 3.2 shows that, in a non-linear problem,

a sufficient initial model is needed. Model 1 will help to find the solution easier

than models 2 and 3.
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Figure 3.1: Effect of non-linearity results in having many local minima which is
challenging for gradient optimizer to find the solution (Sneider, 1998)

Figure 3.2: Effect of choosing initial model on the convergence, Note the model 1
will make it easier for the optimizer to find the solution (Sen & Stoffa,
2013)
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Another solution for a complicated inverse problem is by using Low Frequencies

as shown in figure 3.3. In the thesis, Low pass filter of 7.5 hrz was used on borehole

and surface data.

Considering a discretized velocity model in the jn direction denoted as m j and

Figure 3.3: The effect of using low frequency on the optimization convergence.
Inversion of the high frequency components will results in many local
minima (red circles). Gradient optimization will get stuck in a local
minima before it reach the global minimum, from (Schuster, 2017).

discretized data in the in direction denoted as di . The linearization starts with

expanding the data di to first order Taylor series about initial model mo close to

the true model.

di (m )≈ di (mo ) +
∑

j

[
∂ d j (m )

∂m j
]|mo
δm j (3.2)
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model perturbationδm =m−mo . Equation.3.2 can be rearranged to the following

linear form.

δdi (m ) =
∑

j

[
∂ d j (m )

∂m j
]|mo
δm j (3.3)

And in the general matrix notation as

δd (m ) = Lδm (3.4)

and data residuals δdi = [di (m )−di (mo )] is related to the model purturbation δm

by the Jacobian matrix L (Fréchet derivative). i.e. raypath length li j in the jn cell

for the in ray for travel time tomography in the simplest case.

li j =
∂ di (mo )
∂m j

(3.5)

So, We seek the model that best minimizes the objective function ε ,using adjoint-

state method (Plessix, 2006), which is the sum of norm of data residual taken to the

p power and the penalty term.

ε=
1

p
||Lδm −δd ||p +ηg (m ) (3.6)

Where g (m ) is the penalty function and η is small scalar that decides the tradeoff

between reducing the penalty function at the expense of an increased value of the

objective function. Many methods of regularization (i.e. Levenberg-Marquardt

or Tikhonov) can be used to replace ill-posed problem with a well-posed problem

to make the solution becomes closer to the priori. In our case, Total Variation

regularization (TV) has been applied to resolve sharp interfaces while edges or

discontinuities are preserved (Rudin et al., 1992). TV regularization is based on the

principle that noisy data have higher level of total variations that is needed to be

reduced (smoothed). TV regularization uses L1 norm of the gradient of objective

function (second term in Equation 3.6) while η is the tradeoff parameter to be set

that controls how much smoothing is performed to determines the relative balance

of two terms of the equation.
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3.2 Numerical Optimization

One way of dealing with the non-linearity challenge is to linearize the solution

about background model mo (Tarantola, 1987) using approximations like Taylor

expansion and fitting the model to the data by minimizing the residual as expressed

in Equation 1.5, or in other words, obtain an estimate of the least-squares solution

f (m ∗)while m ∗ is the optimal solution. This is usually included regularization to

penalize the models. Gradient optimization searches locally downhill and stops

at the first local minimum which is cost wise way of convergence compared to the

global optimization 2 methods. However, Gradient methods might get stuck in

local minimum (Figure 3.4).

Figure 3.4: Gradient optimization gets stuck in the local minimum on the left along
the objective function

3.2.1 Newton Method

Considering that the function f (m ) is differentiable with respect to model param-

eters and has unique global minimum. The gradient∇ f (m ) is a vector containing

the partial derivatives of the misfit function with respect to each model parameter.

The negative of the gradient points to the steepest descent direction of f (m ) at

some particular point mo .

∇ f (m ) =
�

∂ f
∂m1

∂ f
∂m2

. . . ∂ f
∂mn

�

(3.7)

2Global optimization is to find m ∗ all over the model space and it avoids getting stuck in local
minima. i.e. simulated annealing algorithms (Sen & Stoffa, 1992) and (Sen & Stoffa, 1995). However,
this way is very expensive which make it an impractical solution for this case. In General, FWI is
essentially a local optimization problem
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And the curvature is quantified by the second derivative or Hessian 3 of the function

f (m ) .

Hi j = [∇∇T f (m )]i j =
∂ 2 f (m )
∂mi∂m j

=















∂ 2 f
∂m 2

1

∂ 2 f
∂m1∂m2

. . . ∂ 2 f
∂m1∂mn

∂ 2 f
∂m2∂m1

∂ 2 f
∂m 2

2
. . . ∂ 2 f

∂m2∂mn

...
...

...
...

∂ 2 f
∂mn∂m1

∂ 2 f
∂mn∂m2

. . . ∂ 2 f
∂m 2

n















(3.8)

The misfit is the difference between the recorded and calculated data at each re-

ceiver positions. So, the application of the reduction operator R on the modeled

wave-field u results in dc a l (m ).

dc a l =R u (3.9)

The goal here is to reduce the misfit∆d .

∆d = do b s −dc a l (m ) (3.10)

The least-squares formulation of this problem is to find a model that minimizes

the objective function (Tarantola, 1987b). By taking the L2-Norm of misfit∆d .

f (m ) =
1

2
∆d †∆d =

1

2

Nr
∑

r=1

Ns
∑

s=1

∫ tma x

0

d t |dc a l (X r , t ; X s )−do b s (X r , t ; X s |2 (3.11)

Where † is adjoint operator of the matrix, Nr and Ns are number of receivers and

sources.That leads to the perturbation model∆m which is later added to the pre-

vious model results in a new updated model.

m =mo +∆m (3.12)

In the framework of the Born approximation, we assume that the updated model

can be written as the sum of the starting model mo plus a perturbation model(∆m).

Taking the second order Taylor Lagrange Theorem of f (m )will give the expression:

3Hessian matrix is symmetric matrix with all positive eigenvalues (PSD) which make it invertable.
It’s symmetric since the order of differentiation does not matter for second order derivative
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f (m ) = E (mo+∆m ) = f (mo )+G T∆m+
1

2
∆m T∇∇T f (mo )∆m+O ||∆m ||3 (3.13)

While G is the gradient.

f (mo+∆m ) = f (mo )+
N
∑

i=1

∂ f (mo )
∂mi

∆mi+
1

2

N
∑

i=1

N
∑

j=1

∂ 2 f (mo )
∂mi∂m j

∆mi∆m j+O ||∆m ||3

(3.14)

While O ||∆m ||3 is error term and N is number of element in the model m . Truncat-

ing the last equation after the third term gives the quadratic model approximation

(Linear). The error term is zero when the misfit function is a quadratic function of

the model m . In FWI, since the relationship between the data and the model is non-

linear so the inversion will take several iterations to converge reach the minimum.

At the k − t h iteration, the misfit function is differentiated as follows:

∂ f (m )
∂mk

=
∂ f (mo )
∂mk

+
1

2

N
∑

i=1

N
∑

j=1

∂ 2 f (mo )
∂mi∂m j

∆miδk i+
1

2

N
∑

i=1

N
∑

j=1

∂ 2 f (mo )
∂mi∂m j

∆miδk j (3.15)

∂ f (m )
∂mk

=
∂ f (mo )
∂mk

+
N
∑

j=1

∂ 2 f (mo )
∂m j∂mk

∆m j , k = 1, 2, ..., N (3.16)

Equation 3.16 can be easily expressed in

∂ f (m )
∂m

=
∂ f (mo )
∂m

+
∂ 2 f (mo )
∂m 2

∆m (3.17)

If m is reduced to the minimum point of f (m ), then G = 0 which leads to the these

linear system of equations. In other words, if m is evaluated at the minimum point

of f (m ) so equation 3.17 reduced to the following.

∆m =−
�

∂ 2 f (mo )
∂m 2

�−1
∂ f (mo )
∂m

=−H −1G (3.18)
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G =∇ fm =
∂ f (mo )
∂m

(3.19)

Therefore, with a starting model mo , gradient optimization method can solve equa-

tion 3.17 for∆m to minimizes the objective function f (m ).

H =
∂ 2 f (mo )
∂m 2

=
∂ 2 f (mo )
∂m j∂mi

(3.20)

It’s clear that Newton method 4 uses linear second order quadratic approximation

which means that it takes into account the first and second order derivative.

Gradient descent optimization is hessian free5. Gradient descent method searches

for function minima based on the information of first order derivative. Newton

method uses LU decomposition to find a solution trying to find where the deriva-

tive is zero. But, this solution is too expensive, iterative solution of m k
i by scaled

gradients sum is advised to save computation needs.

m k+1
i =m k

i −
∑

β k
i j G k

j (3.21)

while β k
i j is scaling of gradients (i.e. step length in steepest descent β k

i j = δi jα
k

where αk is the step length at the k − t h iterate). Then, quadratic approximation

can be extended to higher order when the problem is more complicated.

m k+1
i =m k

i −α(H
k )−1G k (3.22)

Where α is the scalar step length that is equal to one for a quadratic objective func-

tion and is be determined at each iteration for non-quadratic functions.

3.2.2 Steepest Descent Method

Steepest descent (SD) optimization, as shown in Figure 3.5, search iteratively along

the negative gradient −∇ f (m k ). SD is computationally inexpensive because the

hessian inverse is not needed, but it can suffer from slow convergence with ill-

4Newton method for simple 1D mathematical problem is xt+1 = xt −
f
′
(xt )

f ′′ (xt )
5For a velocity model associated with 3D seismic needs 1000 ∗ 1000 ∗ 1000 = 109 gridpoints of

unknown velocities, so H calculation will require the storage and computation of 1018 elements.
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conditioned hessians because it does not take into account information about the

curvature. From Equation 3.22, Assuming the identity 6 hessian matrix is used, SD

equation can be expressed as:

m k+1 =m k −αG k (3.23)

While α is the the step length. The misfit function needs to be circular in order to

approximate the Hessian to identity matrix. It means that the condition number

θ = l a r g e s t e i g e n v a l ue
s ma l l e s t e i g e n v a l ue =

λma x
λmi n
≈ 1.

Figure 3.5: Misfit contours (after from Hjorteland, 1999). Search directions using
SD method are orthogonal to one another and the step size gets smaller
and smaller. The eigenvalues here represents elliptical function and
this leads less accurate approximate and will slow down the conver-
gence

3.2.3 Step Length

Having a fixed too large or too small 7 step size α will not give acceptable conver-

gence (Figure 3.6). Convergence analysis will give a better idea which one is right.

To compute α in the SD equation 3.23, there are several line search algorithms:

6Identity matrix is where diagonal elements are ones and other elements are zeros, Approximat-
ing identity hessian is when Hessian is diagonally dominant.

7Nocedal & Wright (1999) proposed a trust region for optimal model m k +α∆m and restrict
step size with radius r centered at m k such that ||α∆m ||< r . This restriction might be helpful for
non-linear objective function that the gradient and curvature estimate might only be appropriate
near m
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Figure 3.6: Too small step size that leads to slow convergence, however it found
the optimal solution but with very slow convergence(left); and too large
step size leads to divergence(right). (Boyd & Vandenberghe, 2004)

exact and numerical line search. We will focus here on numerical line search.

arg min f (m k −α∆m ) (3.24)

Backtrack line search: it adaptively choose the step length and repeatedly shrinks

α by a factor t in each iteration, starting from 1 at first, until the Armijo condition

is fulfilled to make sure step size is not exaggerated as shown in Figure 3.7. Armijo

condition checks whether step from the current position to the next position re-

duces the objective function or not.

Figure 3.7: Backtracking line search (Note: x in figure refers to the model), Armijo
condition is fulfilled when t < t0. (Boyd & Vandenberghe, 2004)
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f (m +α∆m )≤ f (m ) +αt1∇ f (m )T∆m (3.25)

Pairing this equation with the curvature condition (expression 3.26), to ensure that

the slope has to be reduced in an acceptable way, forms the Wolfe conditions.

−∆m T∇ f (m +α∆m )≤−t2∆m T∇ f (m ) (3.26)

While 0< t1 < t2 < 1, Modifying the curvature condition gives:

|∆m T∇ f (m +α∆m )| ≤ t2|∆m T∇ f (m )| (3.27)

The combination of 3.25 and 3.27 is the Strong Wolfe conditions.

3.2.4 Conjugate Gradient (CG)

Conjugate gradient CG and quasi-Newton methods don’t need to calculate inverse

of the hessian. CG searches along mutually conjugate directions pointing towards

the misfit bullseye. Taking the FD approximation for the second derivative of the

function gives.

d 2 f (m )
d m 2

∆m =
d f (m +∆m )

d m
−

d f (m )
d m

(3.28)

that can be rephrased as:

H (m k+1−m k ) = g k+1− g k (3.29)

Equation 3.29 is the quasi-Newton (QN) formula which relates the hessian to the

difference between the misfit gradients over the two iterations. In CG,an initial

search direction guess is determined based on SD based on the concept that previ-

ous iteration direction d k−1 and it’s associated gradient g k is perpendicular to each

other. The direction to misfit minimum is on the plane spanned by d k−1 and g k . So,

the new iteration gradient g k+1 is perpendicular to any vector on the local plane,

contains local minimum, between d k−1 and g k while d k is the conjugate direction
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of d k−1 as illustrated in Figure 3.8.

g k⊥d k−1 (3.30)

g k+1⊥d k−1 (3.31)

Polak-Ribiere CG method can be explained in the following (Gill, et al., 1981; No-

cedal & Wright, 1999)

m k+1 =m k +αk d k (3.32)

d k+1 = g k+1+βd k (3.33)

d k+1 = g k+1+βd k (3.34)

where β is a scaler value to ensure conjugacy between d k and d k−1.

3.2.5 Quasi Newton (Q-N)

Q-N methods are used to save the cost since only first derivatives are computed

and the hessian is estimated based on the computation of gradient. Equation 1.7

can be rephrased as

m k+1 =m k −H −1
k ∇ fm (3.35)

While k is the iteration and Hk is the previous iteration hessian and it can be the

initial matrix estimate if it’s equal to H0 and α is the step length computed by line

search. The matrix is updated by requiring that the updated hessian satisfy the

Secant conditions which means quasi-Newton relation is valid for the updated

hessian due to the fact that hessian matrix is invertable or, in other words, is PSD.

m 1−m 0 =H −1
1 (∇E 1

m −∇E 0
m ) (3.36)
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Figure 3.8: Comparison between Steepest Descent, Conjugate Gradient and New-
ton method, from (Schuster, 2015).
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Taking into consideration that Hk+1 satisfies the Secant conditions and it is a sym-

metric matrix, a solution can be found that gives the next expression (Schuster,

2015) which the BFGS solution. To find the optimal solution m ∗, it must follows

these two conditions ∇ f (m ∗) = 0 and symmetric positive definite(SPD) hessian

matrix∆x T∇∇T f (m ∗)∆x > 0 (Kelly, 1999).

Hk+1 =Hk +
∆∇E k

m (∆∇E k
m )

T

(∆m k )T (∆∇Em )k
−

Hk∆m (∆m )T Hk

(∆m )T Hk∆m
(3.37)

While∆∇E k
m is the difference between the two gradients, and∆m is the difference

the two models. Limited-memory BFGS (L-BFGS) was used here as it enables faster

convergence and to reduce the cost since it doesn’t save the matrices (Nocedal &

Wright, 1999) but only save the model and gradient differences. The non-linear

conjugate gradient and limited memory quasi-Newton methods can offer consid-

erable speedup compared to the steepest descent method for FWI (Mora, 1987,

1989; Zhou, et al., 1995, 1997; Pratt, et al., 1998; Plessix, 2006; Plessix, et al., 2010;

Métivier, et al., 2012).
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4 Case Study: Borehole Seismic Data

4.1 Multiscale Approach

We will start with application of Elastic FWI on VSP seismic data. Multiscale ap-

proach was applied by gradually open the offset and time windows of the data until

the whole data is inverted without cycle-skipping (Al–Yaqoobi & Warner, 2013).

Multiscale method aims to invert the near source-receiver offset traces to find the

velocity model that predicts data with no cycle-skipping due to poor initial model.

For this data, the used multiscale strategy is based on the macro window as shown

in figure 4.1.

Figure 4.1: The windowing strategy: Macro window from (Warner, et al. 2013) and
Micro-Macro windowing from (AlTheyab & Dutta, 2014) of rolling offset
strategy. After (Schuster, 2015)
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4.2 Results

Wavelet extraction (Figure 4.2) is based on the concept that it’s the wavelet that

should have been used if L2 difference between observed and synthetic is to be

minimized. Low Pass filter of 7.5 hrz was applied to the wavelet and the data. FWI

updates were muted for the very shallow part of the model to reduce the effect

of non-accurate free surface. The used initial models (Figure 4.3) for FWI is a 1D

linear layered model which was built on the basis of the matching travel time ray

tracing with the real travel times (Gulati, Stewart & Parkin, 1998). Modeling of seis-

mic data is by using Finite Difference with 8 stencils (see FWI configuration file in

Appendix D). Quasi-Newton (L-BFGS) optimization algorithm was used here with

a line search based on the Wolfe condition.

Figure 4.2: Estimated Wavelet

Figures 4.4, 4.5 and 4.6 show a comparison between the whole dataset and synthet-

ics for vertical and radial components. Figures 4.7, 4.8, 4.9 show subset of the data

and synthetics and it’s clear that synthetics show a good matching with the data

for P-wave (recorded around 1sec) and S-wave events (recorded around 1.5sec).
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(a)

(b)

Figure 4.3: 1D linear models a)P-wave velocity b)S-wave velocity
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(a)

(b)

Figure 4.4: Comparison between vertical component: a)Seismic data and
b)Computed synthetics
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(a)

(b)

Figure 4.5: Comparison between x-horizontal component (Hx): a)Seismic data
and b)Computed synthetics
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(a)

(b)

Figure 4.6: Comparison between y-horizontal component (Hy): a)Seismic data
and b)Computed synthetics
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(a)

(b)

Figure 4.7: Subset of vertical component:a)Seismic data and b)Computed synthet-
ics for depth between 600m and 1200m, Note the recording of P-waves
and S-waves 35
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(a)

(b)

Figure 4.8: Subset of horizontal (Hx) component: a)Seismic data and b)Computed
synthetics for depth between 600m and 1200m

36



(a)

(b)

Figure 4.9: Subset of horizontal (Hy) component: a)Seismic data and b)Computed
synthetics for depth between 600m and 1200m
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The data waveform residuals are shown in figures 4.10, 4.11, 4.12 after 5 iter-

ations for each multiscale step. It shows that vertical and x-horizontal compo-

nent(Hx) residuals were reduced compared to the y-horizontal component(Hy).

Figure 4.10: Seismic data residual for the Vertical component

Figures 4.13 shows the updated P-wave and S-wave velocity models. The velocity

updates were limited to the location of the PCP Blackfoot 12-16-23-23 well. To fur-

ther understand more details about the velocity updates, the initial velocity models

were subtracted from updated models. Figure 4.14 shows the accumulations of up-

dates over 5 iterations for each step in the multiscale approach. Also, It shows

strong positive update for Vp and Vs which might be attributed to the cement cas-

ing of the well that causes exaggeration is P-wave and S-wave velocities. Figure 4.15

shows a depth slice at 900m of the perturbations accumulation. 1D velocity model

was extracted from the updated model at the well location to be compared with

sonic log, shown in Figure 4.16, and it shows very minor change in S-wave velocity

from the initial model at the well depth interval.
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Figure 4.11: Seismic data residual for the x-horizontal(Hx) component

Figure 4.12: Seismic data residual for the y-horizontal(Hy) component
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(a)

(b)

Figure 4.13: Updated velocity models a)P-wave velocity and b)S-wave velocity
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(a)

(b)

Figure 4.14: Accumulated Velocity perturbations a)Vp and b)Vs
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(a)

(b)

Figure 4.15: Depth slice at 900m of Accumulation of velocity updates a)Vp and
b)Vs
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(a)

(b)

Figure 4.16: Comparison between updated velocity (blue), initial velocity (red) and
sonic log velocity (purple) a)Vp, and b)Vs. Notice that the sonic logs
were recorded at limited depths in the well (PCP Blackfoot 12-16-23-
23) 43



5 Case Study: Surface Seismic Data

5.1 Results

5.1.1 Elastic FWI

The second major step in this research is applying the FWI on seismic surface data

using the 1D linear model as initial model (Figures 4.3) and using the updated VSP

model as initial model (Figure 5.1). Since the VSP updated models show match-

ing with the sonic logs at the well location and better constraints in the vertical

variations in velocities, the model updates were windowed to the well location and

extended back into the 2D domain prior to FWI. The methodology was applied

on extracted North-South section from the 3D data (60 shot gathers). A subset of

the 2D section (7 shot gathers) for the 2D North-South section are shown in figure

5.2. The used wavelet is the same wavelet used for inverting VSP events, shown

in Figure 4.1, since the VSP and surface seismic data acquisition shared the same

source wavelet.

Different strategies were applied on the data to estimate the best results. Using Low

Pass filter of 10 hrz and 7.5 depends on the how fast the convergence is at each mul-

tiscale step. Also, changing the initial model sampling from fine (25m) to coarse

(50m) depends on the speed of convergence at each multiscale step. However, the

results shown here is by using A low pass filter with a high cut of 7.5 Hz on the data

and the wavelet to enable a faster convergence.

Also, muting of very shallow FWI updates were applied helped to mitigate the inac-

curacy in modeling of the free surface and topography. The velocities were gradu-

ally increases according to topography as shown in Figures 4.3 and 5.1.

Different optimization algorithms, i.e. L-BFGS, steepest descent and conjugate

gradient, were used here using line search based on Wolfe and Armijo conditions.

Reducing the objective function was very challenging task in this data. L-BFGS

using line search based on Wolfe condition tends to make the convergence faster

that results in reducing the misfit in a way faster than the steepest descent and con-

jugate gradient. Five iterations were used for each multiscale-step by increasing

the depth of 100m at each step.
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(a)

(b)

Figure 5.1: Initial models from VSP updated models used for inverting surface seis-
mic data:a)Vp and c)Vs
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(a)

(b)

Figure 5.2: Subset (7 shot gathers) of the surface recorded seismic data a)Vertical
component and b)Radial component
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Figure 5.3 shows the computed synthetics using the 1D linear velocity model

as initial model while Figure 5.4 show the synthetics using the VSP updated model.

For more details, we took the far left shot gather in figure 5.2, 5.3, 5.4 to make the

comparison. The shot gather shown in figure 5.5 is the recorded data while the

shot gathers are shown in figures 5.6 and 5.7 show the synthetics. Data residuals

are shown in figures 5.8 and 5.9. It’s clear from the figures that data residuals were

reduced in the radial component using the VSP updated model as initial model

compared to the residuals that used the linearly increasing velocity model as initial

model. For the vertical component, the residual doesn’t change much using the

two different models. On the other hand, the radial component residuals show

reductions which means that the resultant model is more accurate.

Figure 5.10 shows an updated velocity models using the 1D linear model as ini-

tial model for FWI using L-BFGS method for optimization. It is clear that the model

was not updated enough to build the subsurface geology compared to the models

in Figure 5.11. The first was just able to add perturbations just in the shallow part

of the model. On the other hand, Figure 5.11 shows stronger velocity updates in

deeper section. Figures 5.12, 5.13, 5.14 and 5.15 show the velocity Updates for dif-

ferent optimization methods to show perturbations over iterations.

Accumulations of updates are calculated by the difference between the initial mod-

els and updated models. L-BFGS is shown in figure 5.12 using linear initial model

it was able to update the very shallow part for P-wave velocity model and it shows

relatively stronger updates for S-wave velocity model in the shallow part. Figures

5.13 and 5.14 show weaker updates for conjugate gradient and steepest descent.

On the other hand, Figure 5.15 shows much stronger in the shallow and deeper

sections and it shows geological layerings specially in the areas with higher cover-

age in the middle of the section for both P-wave and S-wave velocity. It means that

the gradient optimizer was able to converge faster and estimate a more accurate

model as the initial model is more close to reality.
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(a)

(b)

Figure 5.3: Subset (7 shot gathers) of the surface seismic synthetics using 1D lin-
early increasing velocity model as initial model a)Vertical component
and b)Radial component
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(a)

(b)

Figure 5.4: Subset (7 shot gathers) of the surface seismic synthetics using the VSP
updated model as initial model a)Vertical component and b)Radial
component
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(a)

(b)

Figure 5.5: Single shot gather of surface recorded seismic data a)Vertical compo-
nent and b)Radial component
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(a)

(b)

Figure 5.6: Single shot gather of surface seismic synthetics using 1D linear model
as initial model a)Vertical component and b)Radial component
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(a)

(b)

Figure 5.7: Single shot gather of surface seismic synthetics using the VSP updated
model as initial model a)Vertical component and b)Radial component
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(a)

(b)

Figure 5.8: Data residuals using initial linear model a)Vertical component and
b)Radial component
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(a)

(b)

Figure 5.9: Data residuals using VSP updated model a)Vertical component and
b)Radial component
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(a)

(b)

Figure 5.10: FWI updated models after using linearly increasing velocity model as
initial model after 20 iterations: a)Vp and b)Vs using LBFGS Optimiza-
tion 55



(a)

(b)

Figure 5.11: FWI updated models after using the updated VSP model as initial
model after 20 iterations: a)Vp and b)Vs using L-BFGS Optimization
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(a)

(b)

Figure 5.12: Accumulated FWI perturbations using the linearly increasing velocity
model as initial model : a)Vp and b)Vs using L-BFGS Optimization
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(a)

(b)

Figure 5.13: Accumulated FWI perturbations using the linearly increasing veloc-
ity model as initial model: a)Vp and b)Vs using Conjugate Gradient
Optimization 58



(a)

(b)

Figure 5.14: Accumulated FWI perturbations using the linearly increasing velocity
model as initial model: a)Vp and b)Vs using Steepest Descent
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(a)

(b)

Figure 5.15: Accumulated FWI perturbations after 20 iterations using VSP updated
model as initial model: a)Vp and b)Vs using L-BFGS optimization
method 60



5.1.2 Elastic Reverse Time Migration

Elastic Reverse Time Migration (ERTM) was used to to check the accuracy the re-

sultant models and compare the images based on the quality of the images. The

updated models, either from using linear initial models (Figure 5.10) or VSP up-

dated models using L-BFGS optimization (Figure 5.11), were used for application

of ERTM on the 2D seismic section. The used Imaging condition (IC) is based

on (Sava & Fomel, 2006; Yan & Sava, 2008) Extended Elastic IC (See Appendix B).

Figures 5.16 and 5.17 show the P-wave and S-wave RTM image using the updated

velocity model that resulted from application of FWI using linear 1D model as ini-

tial model. On the other hand, Figures 5.18 and 5.19 show the P-wave and S-wave

using the updated models from application of FWI using VSP updated models as

starting point. The resultant images (Figures 5.18 and 5.19) were more clear, as

indicates by arrows in the figures, and that indicates that the VSP updated models

help the FWI to optimize better results.

Figure 5.16: P-wave RTM image using linear model as initial model.
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Figure 5.17: S-wave RTM image using linear model as initial model.

Figure 5.18: P-wave RTM image using VSP updated model as initial model.
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Figure 5.19: S-wave RTM image using VSP updated model as initial model. Notice
that the reflectors are better focused
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6 Conclusion

This study shows an application of elastic FWI to Blackfoot multicomponent VSP

and surface data from Western Canadian Basin. FWI simultaneously updates the

P-wave and S-wave velocity models in order to match the observed data. This FWI

study faced many challenges that mainly result from the computation limitations,

non-linearity of inverse problem, inadequate initial model and poor wavelet esti-

mate.

Application of FWI on the VSP data gives an accurate model which can be used

as starting point for many methods from estimating rock physical properties and

inversion of surface data. Having more accurate initial velocity model results in

synthetics that is closer to the real data. Also, it helps to improve the resolution of

migrated seismic section.

Cutting high frequency was a robust idea to reduce the effect of cycle-skipping. Also,

using a multiscale approach was very helpful to reduce the inaccuracy in shallow

model and to enable further updating the deeper section. Different optimization

methods like steepest descant, conjugate gradient and qausi-Newton were used.

In this work, the quasi-Newton method was the best choice for optimization as it

tends to save computational power and speed up convergence.

Application of Elastic FWI on the whole 3D volume is a very expensive process to

apply, however, 3D FWI provides a better constrains on the velocity models as the

3D volume has higher fold and angle coverage than the extracted 2D line.

Through this project, we wanted to keep the method as simple as possible and

avoid using highly complicated method to save the computation cost. However, it

might be helpful to include further details to the model. The elastic media was as-

sumed to be isotropic. But considering the anisotropy in this case might be helpful

for accurate modeling the synthetics to estimate better results. Also implementing

the absorption of amplitudes could be helpful however modeling of amplitudes

and anisotropy needs a huge computation cost as it will make the solution more

complicated.

The finite difference, with perfectly matching layer (PML) condition, was able to

compute accurate synthetics. However, using spectral element and finite element

might be helpful to more accurately model the topography and free surface.
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Appendix A Waves in Elastic media

A.1 Waves propagation

Describing particle movement is accomplished using two fundamental laws, New-

ton’s second law of motion and and Hooke’s Law. The mathematical derivation in

this setting is based on 1D acoustic model (horizontal movements of particles).

Figure A.1: One dimensional model.

Newton’s law, force equals mass m times acceleration, is expressed in the fol-

lowing expression, while the acceleration is the rate of velocity change.

τ(x , t ) =m
v (x , t +∆t )− v (x , t )

∆t
(A.1)

While τ is the stress or force per unit area.

τ(x , t ) =m
u (x , t +∆t )−2u (x , t ) +u (x , t −∆t )− v (x , t )

∆t 2
(A.2)

While v is the change in particle position u over time vi =
∂ ui
∂ t .

τ(x , t ) =τ(x +h , t )−τ(x −h , t ) = k
u (x +h , t )−u (x , t )

h
+k

u (x , t )−u (x −h , t )
h

(A.3)

τ(x +h , t )−τ(x −h , t )
h

=ρ
u (x , t +∆t )−2u (x , t ) +u (x , t −∆t )

∆t 2
(A.4)

∂ τ

∂ x
=ρ

∂ 2u

∂ t 2
(A.5)

Equation A.5 is the first order partial-differential equation relating second order

change in time to a first order change in force per unit area (stress). Stepping up to
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the simple isotropic elastic models, equation A.5 can be written in the the following

form in 3D with 9 stresses τi j .

∂ 2ui

∂ t 2
=

1

ρ

3
∑

j=1

∂ τi j

∂ x j
(A.6)

Since Hook’s law relates τi j to ui .

τi j =
∑

m ,n

ci j mn Emn (A.7)

Then, equation A.6 can be expressed as the follwoing complex system (i=1,2,3) of

anistropic equations of motion.

∂ 2ui

∂ t 2
=
∑

m ,n , j

ci j mn

ρ

∂ 2um

∂ xn∂ x j
(A.8)

A.2 Anisotropy

Relationship between the stress τ and strain u for polar anisotropic media can be

expressed as the following while z-axes as the symmetry axis.
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(A.9)

while c is the stiffness tensor

Vp =
√

√c33

ρ
(A.10)

Vs =
√

√c44

ρ
(A.11)

And the measure of anisotropy in the simplest form can be expressed in the follow-

ing form (Thomsen parameters).
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ε =
c11− c33

2c33
(A.12)

γ=
c66− c44

2c44
(A.13)

δ=
1

2

(c13+ c44)2− (c33− c44)2

c33(c33− c44)
(A.14)

A.3 Isotropic Elastic symmetry

If the subsurface is assumed isotropic, the elastic constants reduced to two param-

eters, the Lamé parameters, which depend on Vp and the Vs . the c can be reduced

to

c =

























λ+2µ λ λ 0 0 0

λ λ+2µ λ 0 0 0

λ λ λ+2µ 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

























(A.15)

Vp =

√

√λ+2µ

ρ
(A.16)

Vs =
√

√µ

ρ
(A.17)

Given the matrix (equation A.15) and hooke’s law (equation A.8):
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∂ 2u1

∂ t 2
=

1

ρ
(
∂ τ11

∂ x1
+
∂ τ12

∂ x2
+
∂ τ13

∂ x3
)

∂ 2u2

∂ t 2
=

1

ρ
(
∂ τ21

∂ x1
+
∂ τ22

∂ x2
+
∂ τ23

∂ x3
)

∂ 2u3

∂ t 2
=

1

ρ
(
∂ τ31

∂ x1
+
∂ τ22

∂ x2
+
∂ τ33

∂ x3
)

τ11 =
λ+2µ

ρ

∂ u1

∂ x1
+
λ

ρ

∂ u2

∂ x2
+
λ

ρ

∂ u3

∂ x3

τ12 =
µ

ρ
(
∂ u1

∂ x2
+
∂ u2

∂ x1
)

τ13 =
µ

ρ
(
∂ u1

∂ x3
+
∂ u3

∂ x1
)

τ22 =
λ

ρ

∂ u1

∂ x1
+
λ+2µ

ρ

∂ u2

∂ x2
+
λ

ρ

∂ u3

∂ x3

τ23 =
µ

ρ
(
∂ u3

∂ x2
+
∂ u2

∂ x3
)

τ33 =
λ

ρ

∂ u1

∂ x1
+
λ

ρ

∂ u2

∂ x2
+
λ+2µ

ρ

∂ u3

∂ x3
(A.18)

Taking the partial derivatives of stress-strain terms gives the Velocity-stress system

of equations in 3D.

∂ v1

∂ t
=

1

ρ
(
∂ τ11

∂ x1
+
∂ τ12

∂ x2
+
∂ τ13

∂ x3
)

∂ v2

∂ t
=

1

ρ
(
∂ τ21

∂ x1
+
∂ τ22

∂ x2
+
∂ τ23

∂ x3
)

∂ v3

∂ t
=

1

ρ
(
∂ τ31

∂ x1
+
∂ τ22

∂ x2
+
∂ τ33

∂ x3
)

∂ τ11

∂ t
=
λ+2µ

ρ

∂ v1

∂ x1
+
λ

ρ

∂ v2

∂ x2
+
λ

ρ

∂ v3

∂ x3

∂ τ12

∂ t
=
µ

ρ
(
∂ v1

∂ x2
+
∂ v2

∂ x1
)

∂ τ13

∂ t
=
µ

ρ
(
∂ v1

∂ x3
+
∂ v3

∂ x1
)

∂ τ22

∂ t
=
λ

ρ

∂ v1

∂ x1
+
λ+2µ

ρ

∂ v2

∂ x2
+
λ

ρ

∂ v3

∂ x3

∂ τ23

∂ t
=
µ

ρ
(
∂ v3

∂ x2
+
∂ v2

∂ x3
)

∂ τ33

∂ t
=
λ

ρ

∂ v1

∂ x1
+
λ

ρ

∂ v2

∂ x2
+
λ+2µ

ρ

∂ v3

∂ x3
(A.19)
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Other kind of data can be modeled based on it’s complexity.

• Vertical Transverse Isotropy (VTI): Where waves exhibit a symmetry around

the vertical or depth axis like shale or thin bed behaviour. VTI is abit more

complicated than the elastic isotropic case.

• Polar Isotropy Symmetry (TTI): Where the symmetry axis is tilted. due to the

tectonic stresses, relative to the vertical axis orthogonal to the dip or rock in

the simple case, Symmetry can be estimated by rotating the tensor ci j mn of

VTI model.

• Orthorhombic Isotropy Symmetry: which is more realistic case. It has three

mutually orthogonal planes of symmetry result from combination of sedime-

nation transversely isotropic media (TI) and further effect of Tectonic forces

that cause fractures result in another transversely isotropic media (TI) with

a symmetry axis parallel to the stress direction and usually normal to the

sedimentation TI (Song & Alkhalifah, 2013).
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Appendix B Elastic Reverse Time Migration (ERTM)

B.1 Introduction

Reflectors exist at points in the ground where the first arrival of downgoing wave

is time coincident with the upgoing wave (Claerbout, 1971). RTM can be sepa-

rated into two parts: wavefield reconstruction by elastic wave equation using the

recorded vector data as boundary conditions followed by application of an imaging

condition (IC) from (Yan & Sava, 2008). Elastic wave equation for isotropic elastic

media (Aki & Richards, 2002) given by:

ρ
∂ 2u

∂ 2
= f + (λ+2µ)∇(∇.u )−µ∇×∇×u (B.1)

Where u is vector displacement wavefield and f is body source force. The proce-

dure is to reverse the recorded data in time, use the reversed data as sources along

the recording surface to propagate the wavefields and apply the IC at zero time.

Many literature have been published to study IC (Claerbout, 1971; McMechan,

1983; Baysal et al., 1983; Whitmore, 1983; Biondi & Chan, 2002) using zero-lag cross

correlation or deconvolution of source and receiver (Back extrapolated) acoustic

wavefields to map strong imaging energies. For Elastic RTM,(Yan & Sava, 2008)

used wavefield decomposition using Helmholtz decomposition to separate the

components prior to applying the ICs.

u =∇φ+∇×ψ (B.2)

P =∇.u =∇2φ (B.3)

S =∇×u =−∇2ψ (B.4)

Where φ and ψ is the scaler and vector potential of extrapolated wavefield u . φ

andψ are obtained by applying div and curl of the wavefield u . For the isotropic

elastic case(Jiang, Bancroft & Lines, 2012), simply imagining a simple point reflec-

tor, using Lamé parameter and density as modeling parameters and taking the

cross correlation of source wavefield S (x1, x3, t ) and receiver wavefield R (x1, x3, t ),
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one can have four ICs. Various ICs can be a simple approximation for reflection

coefficients (RC) for various components.

IV V (x1, x3) =
∑

t

SV (x1, x3, t )RV (x1, x2, t )

IV H (x1, x3) =
∑

t

SV (x1, x3, t )RH (x1, x2, t )

IH V (x1, x3) =
∑

t

SH (x1, x3, t )RV (x1, x2, t )

IH H (x1, x3) =
∑

t

SH (x1, x3, t )RH (x1, x2, t ) (B.5)

But that doesn’t correct for the effects of source nearby strong and weak energy. It’s

supposed that the source energy is very strong in the vertical component (strong

source effect) of downgoing waves and horizontal component is very weak near the

source(weak source effect). So, source normalized cross-correlation IC should be

applied to eliminate source undesirable effects (Du, et al., 2012; Jiang, Bancroft

& Lines, 2012; Whitmore and Lines, 1986; Kaelin & Guitton, 2006). Taking the

above IC equations and divide it by sum of the zero lag autocorrelation of source

components wavefield. And the result image, i.e. shot gather, can be estimated by

stacking all the product of cross correlations snapshots.

IV V (x1, x3) =

∑

t SV (x1, x3, t )RV (x1, x2, t )
∑

t (S
2
V (x1, x3, t +S 2

H (x1, x3, t ))

(IV H (x1, x3) =

∑

t SV (x1, x3, t )RH (x1, x2, t )
∑

t S 2
V (x1, x3, t ) +S 2

H (x1, x3, t ))

IH V (x1, x3) =

∑

t SH (x1, x3, t )RV (x1, x2, t )
∑

t (S
2
V (x1, x3, t ) +S 2

H (x1, x3, t ))

IH H (x1, x3) =

∑

t SH (x1, x3, t )RH (x1, x2, t )
∑

t (S
2
V (x1, x3, t ) +S 2

H (x1, x3, t ))
(B.6)
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Figure B.1: Simple reflector reconstruction using RTM (Zhou, 2014).

Following the work of (Ibrahim & Weibull, 2017) using (Sava & Fomel, 2006; Yan,

& Sava, 2008 ) extended elastic IC. The ICs, in the compact form, are:

I CP P =

∫

CP Si i (x , t )R j j (x , t )d t

I CP S =

∫

(CSSi j (x , t )Ri j (x , t )d t −CP Si i (x , t )R j j (x , t )d t ) (B.7)

Where CP =V 4
p and CS =V 4

s are scaling factors
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Appendix C Resolution

Understanding the spatial resolution is crucial part to optimize the use of FWI.

In travel time tomography, fresnel zone maximum width is proportional to
p
λL

whereλ is the dominant wavelength and L is the source-receiver distance (Spetzler

& Snieder, 2004). Considering a trace d (g |s ), where g is the geophone and s is the

source, δd (g |s ) is given by the Born equation (Huang & Schuster, 2014):

δd (g |s ) =ω2

∫

Ω

G (g |y )∆mG (y |s ) d y 2 (C.1)

δd (g |s ) = d (g |s )mo d −d (g |s )o b s (C.2)

Where G (g ) and G (s ) is the Green’s function for the background model which is

decomposed to direct and reflection (Figure C.1),∆m (x ) is perturbation model,ω

is the angular frequency and Ω defines the integration points in the region that is

being updated (yellow ray-path regions in figure C.1). The misfit gradient given by

the adjoint modeling equation:

∆m =ω2

∫

D

G (g |x )∗δd (g |s )∗G (x |s )d xg d xs (C.3)

While D is points of integration along sources and receivers. Combining the two

equations gives:

∆m mi g =ω4

∫

Ω

migration kernel
︷ ︸︸ ︷

G (g |x )∗G (x |s )∗d xg d xs

∫

D

data kernel
︷ ︸︸ ︷

G (g |y )G (y |s )∆m d y 2 (C.4)

The gradient of misfit is also the migration of residuals. The migration kernel, Fig-

ure C.1, is to smear residuals along the yellow regions. For instance, migration

kernel updates the low-wavenumber (high-wavenumber) portion of the velocity

model (Mora P., 1989) if the model is to updated by smearing the residual along the

rabbit ears (Figure C.1.b and c).
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Figure C.1: Migration, data kernel, the associated wavepaths and resolution
limit(after Huang & Schuster, 2014)
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Appendix D Configuration Files

D.1 3D Elastic Full Waveform Inversion

Figure D.1: Sample of 3D EFWI Configuration File
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D.2 2D Elastic Full Waveform Inversion

Figure D.2: Sample of 2D EFWI Configuration File
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D.3 Reverse Time Migration

Figure D.3: Sample of 2D ERTM Configuration File
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