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Introduction

This thesis will be concerned with di↵erent questions related to the theorem
of Poncelet.

Poncelet‘s Theorem. Let C1 and C2 be two real conics, with C1 in-
side C2. Suppose there is an n-sided polygon inscribed in C2 and circum-
scribed about C1. This means that we have a closed polygon where the
n sides L0, L1, ..., Ln�1 are tangents to the inner circle and the vertices
P0 = Ln�1

T
L0, P1 = L0

T
L1, ..., Pn�1 = Ln�2

T
Ln�1 are points on the

outer circle. Then for any other point of C2, there exists an n-sided poly-
gon, inscribed in C2 and circumscribed about C1, which has this point for
one of its vertices [8, p.1].

We will use most of our time studying this theorem for smooth conics C1

and C2 in general position in complex projective plane.

This theorem has kept a lot of mathematicians busy in di↵erent periods
of human history. New ideas in geometry and other fields of mathematics
have during the years been used to find new proofs. It also has a long pre-
history that we will study in chapter 1. Here we will also look into how
Poncelet contributed to the development of projective geometry.

To understand how it is possible to prove Poncelet’s theorem, we first need
to study conics in projective plane. Our treatment will mainly be of complex
projective conics, but we will also take a look at the real ones. We will see
what the projective plane is, and how this environment is a great advantage
when working with conics. Thereafter we discuss whether a proof in complex
projective plane will imply that the theorem holds in the real projective case.

Understanding a modern proof will also require a lot more than the theory
of conics. We will take a journey through interesting ideas and theorems,
starting with the concept of divisors. This is needed to state the theorem
of Riemann-Roch which we will need several times on our way. Hurwitz
formula will also play an important role in the proof that we will use most
of our time learning about. This formula will make it possible to show that
the curve that Poncelet described is a curve of genus 1, an elliptic curve.
The group structure of an elliptic curve will be important for the modern
proof that we concentrate on. This latter proof was done by Gri�ths and
Harris in 1977. After all the tools we need are presented, we are ready to
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explain the proof of this reformulation of the theorem:

If ⌘n has a fixed point for some positive integer n, then ⌘n is the iden-
tity map on E.
Here E is the Poncelet curve and ⌘ a Poncelet map which is composition of
two involutions of E.

After this, we will present a proof in real projective plane that was done
recently by Halbeisen and Hungerbuhler. Since it uses Pascal’s theorem, we
will take some time to look at that first.

At the end we remind ourselves that this theorem is not only belonging
to a great history book. Mathematicians of today work on generalisations
and related problems.
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1 Historical background

In this chapter we will look at the prehistory of Poncelet’s theorem and how
Poncelet contributed to the developement of projective geometry. Most of
the material is taken from [2], [3] and [16].

1.1 Early history of the theorem

1.1.1 Triangles

One can debate what is the ”prehistory” of this great theorem and what
lead Poncelet to think about it. Even in prison he could not get his mind of
this problem. Learning about mathematicians interested in geometry before
him, it is natural to look at works on triangles and circles. Given two circles,
one inside the other, when is it possible to draw a triangle inscribed in the
outer circle and circumscribed about the inner.

Theorem 1.1. Given a circle C1 with radius r inside a circle C2 with
radius R. Denote by d the distance between their centers. Then there exists
a triangle inscribed in C2 and circumscribed about C1 if and only if

d2 = R2 � 2rR

Before a presentation of di↵erent men working on this, we take time for
a proof.

figure 1.1. [3, p. 65].
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Proof. Given a triangle ABC, a circumscribed circle with center O and an
inscribed circle with center I. Like in the picture above, the midpoints of
the arc AB, D1 and D2, are marked out. E is the projection of I onto BC.
We have that: \D1BI = \D1BA + 1

2B. \D1BA = \D1CA, which means
that \D1BI = \BID1 and so |D1I| =|D1B|. We also see D1D2B ⇠ ICE,

which means |D1D2|
|D1B| = |IC|

|IE| so that 2Rr =|IC|·|D1B| =|IC|·|ID1|. This is
minus the power of I with respect to the circumscribed circle and the same
as R2 � d2 if |OI| = d.

For the other direction, given d2 = R2 � 2rR. Let C1 be a circle inside
the circle C2 and M1 and M2 their centers. Let C be one of the intersection
points of the line M1M2 and the circle C2. Make a tangent to the inner
circle C1 that is at the same time perpendicular to M1M2. Let A and B be
the names of the intersections of C2 and this tangent line. And let D be
the name of M1M2 \ AB. We then have the following relation between the
length of line segments:

|CD| = R+ r + d

|AD|2 = R2 � (r + d)2

|AC|2 = 2R(R+ r + d).

Let x be the distance fromM1 to the lineAC. The trianglesADC andM1EC
are similar, so we get 2Rx2 = (R+ d)2(R� r� d). Using d2 = R2 � 2rR we
end up with x2 = r2. Then we know that AC and BC are tangent to C1,
and we have found the triangle that we wanted [3, p. 65].

Like we will soon see, quite a few mathematicians within a period of
about hundred years starting from early eighteen century, studied this prob-
lem. Some of them also considered the relation between the sides x, y, z of
such a triangle. This suggests that if one such triangle exists, it will not
be the only one. It is possible to look at R and r as functions of x, y, z :
R = R(x, y, z) and r = r(x, y, z). The distance d = (R2�2rR)

1
2 will be fixed

if R and r is fixed. Since we have two conditions and three variables, the
functions for R and r leave one degree of freedom for the values of x, y and
z. Each of the possible triangles is congruent to an interscribed one between
our two circles.

1.1.2 ”Chapple-Euler”-formula

The formula d2 = R2 � 2rR was given by William Chapple in an article in
1746, thereof the name ”Chapple’s formula”. Apparently, not a lot of people
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read his article though. As we will soon see, this formula was also discovered
by others. There is one thing that distinguishes Chapple’s work from most
of the others working on the same problem. It seems that he assumes that
if this relation is valid for two circles, the triangle will not depend on any
special starting point. He did not prove this.

The formula is also known as ”Euler-Chapple”-formula. Euler wrote a paper
in 1765, among others treating special points of a triangle. Two such points
are the center of the inscribed and the center of the circumscribed circles.
In his paper he included the formula for the distance between these:

d2 =
(xyz)2

16A2
� xyz

x+ y + z

x, y, z are the sides of the triangle. Since Euler did not express the distance
d by the relation between R and r, some have the opinion that his name
should not be glued to the formula.

Nicolas Fuss also proved the formula in 1797, and his article was read by far
more people than in Chapple’s case. So for a while, he was known as the
person to first discover this relation. He also studied inscribed and circum-
scribed 5-,6-,7- and 8-gons, but did not in these cases find a general relation
between d, r, R.

Mathematicians who still had not read about this formula, continued to
find d2 = R2 � 2rR. One of them was Lhuillier in 1810. He was one of the
first to explicitly point out the existence of closure in these cases. [2, p. 296].

Poncelet proved the closure theorem and it was published in 1822. Talk-
ing about the formula d2 = R2 � 2rR, Poncelet did not write anything
about the relation of his closure theorem with this. Jacobi was the first to
comment on that.

Steiner (1827) gave formulas on relation between d, r, R for n-gons in the
case n=4,5,6 and 8. He did not give proofs or discussed closure property [2,
p. 297].

1.2 The development of Projective geometry

We will now look at the development of projective geometry and how Pon-
celet tackled intersection points that are imaginary. In the Euclidean geom-
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etry we have 5 postulates [5, p. 4]:

1. A straight line may be drawn from any point to any other point.

2. A finite straight line may be extended continuously in a straight line.

3. A circle may be described with any center and any radius.

4. All right angles are equal to one another.

5. If a straight line meets two other lines so as to make the two interior
angles on one side of it together less than two right angles, the other
straight lines, if extended indefinitely, will meet on that side on which
the angles are less than two right angles.

In projective geometry, also parallel lines meet.

1.2.1 Perspective and central projection

The end of the 1700-century was dominated by analytical methods in math-
ematics and science. Not too many had an interest in descriptive geometry.
Some exceptions were the french mathematician Monge and his students
Poncelet, Brianchon and Chasles who started to develop what we today
know as projective geometry.

In the world of art, creating a realistic perspective in paintings, occupied
quite some people from the renaissance and onward. Albrecht Durer (1471-
1528) was a German artist who was seriously devoted to recreate the three
dimensional world into two dimensions helped by a central projection. The
idea is a canvas between the artist and the object of interest. The illusion
of that object still being there when removed is made by the rays of light
from points on the object, intersecting the canvas, to the eye of the artist
(the projection center).

We will take time for an analytic formulation of this [16, p. 322]. Start
by a point x̃ for the artists eye and a vector a which represents the shortest
distance from x̃ to the canvas. We want to project the real object (point)
x onto the plane (the picture), so we want to find the coordinates (u1, u2)
there. Expressing the plane by the orthogonal vectors h and g, which are
also orthogonal to a, we write for the horizontal h = a ⇥ (0, 0, 1)> and
g = h⇥ a. h and g are normalised.
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h =
1p

a12 + a22

2

4
a2
�a1
0

3

5

.

g =
1p

(a12 + a22)(a12 + a22 + a32)

2

4
�a1a3
�a2a3
a21 + a22

3

5

The vector from x̃ to (u1, u2) we call w, w = �(x � x̃). Since w � a is
orthogonal to a, that gives us �.

hw � a, ai = 0 ) � =
ha, ai

hx� x̃, ai

Then we can compute u1 = w · h and u2 = w · g.

figure 1.2. [16, p. 322]

Drawing an object on a canvas by a central projection will result in
the following. Given two points A and B on the three dimensional object.
Imagine moving A on the line AB until infinity. Then the line from the
projection centre to ”the A moving to infinity” will be closer and closer to
a parallel line of the AB we started with. The point of intersection of this
parallel line with the canvas is called the vanishing point of this direction.
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All lines that are parallel to AB on the object will meet in the same vanishing
point on the canvas. It contributes to the illusion that the painting has three
dimensions since it mimics the phenomenon in real world that parallel lines
appear to meet in a point very far from where you stand.

1.2.2 Poncelet’s principal of central projection.

History tells that Poncelet particularly enjoyed the studies under Monge.
After his studies he joined the military forces in Napoleon’s invasion of Rus-
sia. He got a lot of time to contemplate the lectures of Monge, staying two
years in prison during the war. There by the river Volga, important thinking
on projective geometry were unfolding. Transforming figures into simpler
form by central projection, he managed to prove old and new theorems. In
the following we will take a look at some of his results. We look for a (cen-
tral) projection that maps a perspective image in a Cartesian plane to the
given image. Two of his main concepts were ”principle of continuity” and
”ideal chords”. The analytic approach he used in the early days of his career
was no longer apparent. From now on he approached geometrical questions
in a purely synthetic manner.

Lemma 1.2. Principal lemma on perspective. Let OPQ be an arbitrary
triangle and U be an arbitrary ”unit point” inside OPQ. Then there exists
a central projection which maps the line PQ to infinity and for which P and
Q are the vanishing points of a pair of orthogonal axes centered at O0, the
image of O. The image U 0 of U is a unit point i.e. O0U 0 is the diagonal of
a square with sides on the axes O0P 0 and O0Q0 [16, p. 324].
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figure 1.3. [16, p. 324]

Proof. To find the center of projection, C, let us first set that we want it to
be in the same horizontal plane as the line PQ, the triangle PQO is placed
vertical. We choose a point U in our triangle that in the projection will be
the diagonal of a unit square. Draw OU and call its intersection with PQ
R. Now our projection of OPRQ shall lie in a plane parallel to CPQ. P 0, Q0

and R0 will be points at infinity. C must be constructed so that PCQ is a
right angle (see picture below), and P 0O0Q0 is thereby a right angle. C must
lie on a circle that has QP as diagonal to make this happen. Now we need
only one more restriction to choose C. PCR must be constructed to be 45�,
if the point U 0 shall have the same distance from the axis and thereby be a
unit point in a Cartesian grid. Now our center of projection is determined.
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figure 1.4. [16, p. 324]

We will in the following study how Poncelet proved di↵erent theorems.
Let us first state one of them to discuss some obstacles that he met.

Theorem 1.3. Projection theorem. Any pair D1, D2 of conics in a (real)
plane V is the projective image of a pair of circles [2, p. 298].

Let us first make some comments on how Poncelet approached this.
Starting with two ellipses D1 and D2 in a plane V in the real space, he
tried to find a point C (center of projection) and plane W in that space,
so that V ! W is a perspective projection through C that maps both the
ellipses to circles. Poncelet showed how this can be done when D1 and D2

have at most two points of intersection. He constructed a line d in V by
endpoints R1 and R2, found the midpoint Q on it, and drew the line CQ .
CQ was drawn in the plane perpendicular to d. The length of CQ is then
r = 1

2 |R1R2|. K is the circle with center Q and radius r. Still we have not
explained where the points R1 and R2 comes from, but we soon will. They
are points with complex values that are translated and given meaning in the
real plane. Poncelet proved that any point C on the circle K that is not in
the original plane V, and any plane W (parallel to the plane determined by
C and d), can be the center (C) and plane (W) of the desired projection.

If D1, D2 intersect in more than two points, the value of r (radius of K)
is imaginary and we do not have a real center C for the projection. Imag-
inary centers of projection were not in his mind, but he moved forward in
his work focusing on the two points R1 and R2. When the number of in-
tersection points exceeds two, R1 and R2 and the other intersection points
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are the same. After realizing that, he looked at R1 and R2 as somehow
also representing the two other intersection points when they were miss-
ing. He called R1R2 the ”common chord” of the two ellipses. Finally, out
of prison, he found out others had been debating reliability of among oth-
ers infinitely distant points, negative quantities and calculations with

p
�1

while he was away. Equipped with the constructions ”ideal chords” and
”principle of continuity” his commitment to a synthetic approach turned
into a theory where geometry in real space should take into account results
using imaginary quantities but spared for analytic method.

1.2.3 What is an ideal chord?

Instead of adding complex points to the plane, Poncelet invented ”ideal
chords”. These chords were used when a conic and a line do not intersect
in the real plane.

If the line L and the conic C do intersect in 2 points in the real plane,
then we have a chord between these two points. Call these points P1 and
P2. Let M be the conjugate diameter of C with respect to L and call its
intersection points with the conic O1 and O2. Q is the intersection between
M and L. The two diameters L and M are conjugate if the midpoints of
chords parallel to L lie on M. The tangent of O1 and O2 are parallel to L
and vice versa. From this we have the relation |QP1|2 = �|O1Q||O2Q| for
some constant �.

If the line L and the conic C do not intersect in the real plane, the two
endpoints of the ideal chord, R1 and R2, are found in the following way. Let
M be the conjugate diameter of C with respect to L and name L\M = Q2.
Make parallel lines to L that intersect C in 2 points. Choose one of these
parallels, and call its intersection points with C : P1 and P2. Now we have
the information we need to find � in the relation |QP1|2 = �|O1Q||O2Q|. We
use it to find the line segment Q2R1. |Q2R1|2 = �|O1Q||O2Q|.

This can be translated to two complex points Ti = S + / � iD. Since
T1 and T2 are conjugate, their midpoint S is real and the distance D is real.
We have R1 = S +D,R2 = S �D. Poncelet was able to show that for any
pair of conics (real), there are two ”common chords” I1I2 and I3I4 which
will be real or ideal chords to both conics. I1, I2, I3, I4 correspond to the four
real or complex intersection points of the conics. Poncelet also introduced
the term ”circular points” to cover that two imaginary points lie at the line
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at infinity. All circles pass through this line. He knew that the chords and
their endpoints could lie here [2, p. 301].

1.2.4 What kind of principle is the principle of continuity?

The main point of this principle is that when a figure in the plane is contin-
uously deformed such that some data and theorems from the figures remain,
the properties of the figures remain as well, even when sign changes or cer-
tain magnitudes vanish. These changes will also be predictable (for example
when two conics have two points of intersection, but have four after trans-
formation). How he used this principle will be demonstrated by the proofs
of the next theorems. We can see how it is used in the end of the next proof
to conclude that it holds in general.

Theorem 1.4. Let D be a conic and d a straight line. Then D and d are
the projective images of a circle and the line at infinity [2, p. 302].

Proof. The conic D lies in the plane V and is embedded in the real space E.
Let us first look at the case were d does not intersect the conic. By theory
of conic sections we can find a point C that is the center of the projection
and a plane W such that from the point C one can project the conic D onto
a circle in W, and also the plane through C and d is parallel to W. The line
d will thereby be projected to the line at infinity. A point C and a plan W
cannot be found in E if d intersects D. But Poncelet argued that generality
follows from the principle of continuity.

Here we have our first example of how Poncelet used the principle of
continuity to generalise his proofs. It is maybe the best way to try to
understand what is meant by this principle. We will also comment this
proof with a picture and a remark that links it directly to the construction
in the principal lemma on perspective, that we proved above.

15



figure 1.5. [16, p. 325]

The polar line to the arbitrary point P at d meet d in Q. We have the
point O which is the intersection of the polars of P and Q, and the point U
which is the intersection point of their tangents. From here we can apply
lemma 1.2, principal lemma on perspective, to obtain tangents that restrict
this conic to the form of a circle.

Poncelet used his insights to find new proofs of geometrical relations, like
for example in this proof of Pascal’s theorem.

Theorem 1.5. Let P1P2P3P4P5P6 be a hexagon inscribed in a conic. Then
the intersection points K = P1P2\P4P5, L = P2P3\P5P6,M = P3P4\P6P1

of opposite sides are collinear [16, p. 327].

Proof. Map the line through K,L to infinity by (1.2) above. This projection
turns the ellipse into a circle and makes the two pairs of opposite sides
parallel so that the arcs P2P3P4 and P5P6P1 are of same length. Then the
angle at P3 equals that of P6, and the third pair of opposite sides will be
parallel as well. M is also mapped to a point at the line at infinity and we
are done.

We see again that the principle of continuity is needed to make the proof
work in the case when the line containing K,L,M passes through the conic
in Pascal’s theorem.

In a similar manner Poncelet proved Brianchon’s theorem, the projective
dual of Pascal’s theorem.

16



Theorem 1.6. Let Q1Q2Q3Q4Q5Q6 be a hexagon circumscribing a conic.
Then the three diagonals joining pairs of opposite vertices are concurrent
[16, p. 327].

Proof. Label the points where the edges of the hexagon are tangent to the
conic P1, P2, P3, P4, P5, P6. Now we have the same situation as in Pascal’s
theorem and we make the same projection. Now the triangles PiQiPi+1 are
isosceles. Two opposite triangles have parallel basis. Their altitudes are
concurrent. They all meet in the circle center.

Now we will see how Poncelet proved that two conics are the projective
image of a pair of circles. The proof is made for two circles that intersects in
at most two real points. If the conics have more than two real intersection
points, the center of projection would be imaginary. Poncelet said that one
can consider two conics to be the projective image of two circles also in this
case [2, p. 299].

Theorem 1.7. Let C1 and C2 be two conics. Then the pair C1, C2 is the
projective image of a pair of circles [2, p. 303].

Proof. If the number of real intersection points of C1 and C2 are at most two,
they also have an ”ideal common chord” along a line d. The endpoints of
the chord, R1 and R2, represents imaginary intersection points. We then use
(1.3) to map the conic C1 to a circle C1⇤ and d to d0 at infinity. The points
where d0 intersects C1⇤ will also lie on C2⇤ (the image of C2). Those points
are the so called circular ones, and this shows C2⇤ must also be a circle.
If C1 and C2 have four real intersection points the principle of continuity
ensures that this theorem will still be valid.

Poncelet’s first proof of his closure theorem was analytic. Later he made
a new proof using his synthetic geometry constructions. His results are true
even though parts of his arguments relied on informal ideas such as the
principle of continuity.
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2 Conics in the projective plane.

In this chapter we will first look at the projective n-space and at some
algebraic curves in the projective plane. In particular we study conics. After
we have looked at conics in general, we look at intersections between a line
and a conic and intersection of two conics in complex projective plane and
then in real projective plane. Most of the results are from [8].

2.1 Projective n-space

We will soon see that working in projective rather that a�ne plane has a lot
of advantages for our purpose. Parabolas, hyperbolas and ellipses are not
distinct conics in the projective plane. Also, if K is an algebraically closed
field, two curves in Pn

K of degree m and n intersects in mn points, counted
with multiplicities.

Definition 2.1. The projective n-space over K is the set of equivalence
classes of points Pn

K = (Kn+1\0)/ ⇠, where (x0, ..., xn) ⇠ (y0, ..., yn) if
(x0, ..., xn) = �(y0, ..., yn), for some � 2 K \ {0} .

In other words, Pn
K is the collection of the 1-dimensional linear subspaces

of the vector space Kn+1. For a point (x0, ..., xn) in a�ne space An+1
K , its

equivalence class is denoted (x0 : ... : xn). The coordinates x0, .., xn are
called the homogeneous coordinates of that point.

An
K is embedded inKn+1 by the injective map f : An

K ! Pn, (x1, ..., xn) 7!
(1 : x1 : ... : xn). U0 = {(x0 : · · · : xn)|x0 6= 0}. The inverse is then
f�1 : U0 ! An, (x0 : ... : xn) 7! (x1

x0
, ..., xn

x0
). The points at infinity are

those which are not in U0. They are of the form (0 : x1 : ... : xn). After this
extension we have a meeting point also for parallel lines, which lies at infinity.

In this text we will consider lines, conics and cubics in P2. They are al-
gebraic curves, which are the set of points x = (x0 : x1 : x2) satisfying
P (x) = 0 for a homogeneous polynomial, of degree one, two and three re-
spectively.

Definition 2.2. A polynomial is homogeneous if every monomial term has
the same total degree, that is, if the sum of the exponents in every monomial
is the same. The degree of the homogeneous polynomial is the total degree
of any of its monomials. An equation is homogeneous if every non-zero
monomial has the same total degree [9, p. 27].
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We will show by an example why it is necessary to work with homoge-
neous polynomials. Given the polynomial F (x0, x1) = x1 � x20. f(1, 1) = 0
but f(2, 2) 6= 0 even if (1 : 1) ⇠ (2 : 2). This problem is solved by
a homogenization of the polynomial: F (x0, x1, x2) = x1x2 � x20. Now
f(2, 4, 1) = 0 and also f(�2,�4,�) = 0 for any � since f(�2,�4,�) gives
�4 · �� (�2)2 = �2(4� 4) = 0.

Definition 2.3. For a set S of homogeneous polynomials in K [x0, ..., xn] ,

V (S) := {x 2 Pn : f(x) = 0 for all f 2 S}

is the projective zero locus of S in Pn. Subsets of Pn that are of this form
are called projective varieties [10, p. 49].

In projective n-space there is a one-to-one correspondence between points
and hyperplanes. We write Pn⇤ and call this set the dual projective space.
For a point (a0 : ... : an), the dual is the zero set of the linear equation
a0x0 + ...+ anxn = 0, xi 2 Pn. By

The principle of duality we have that to each theorem in projective
geometry, there corresponds a dual theorem in which line and point, pass
through and lie on, intersection point of two lines and line connecting two
points, concurrent and collinear, polar and pole and points on conics and
lines tangent to conics are interchanged [16, p. 339].

We consider maps from P2 to P2. They are called projectivities, and map
lines to lines.

Definition 2.4. For a 3⇥3 matrix A with detA 6= 0, and x a homogeneous
coordinate vector in P2,

T (x) = Ax

is called a projectivity of P2, or a projective transformation of the plane [16,
p. 338].

These invertible matrices form the general linear group and give the set
of projective transformations its group structure.

Like we said, a projectivity is a mapping of lines to lines. Let us see what
the induced projectivity on P2⇤ looks like.

A line in P2
C will be, la = {(x0 : x1 : x2) : a0x0 + a1x1 + a2x2 = 0},

ai 2 C, not all can be zero.
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Theorem 2.5. The projectivity y = Ax maps the line la to lb, where b =
(AT )�1a. Thus the projectivity y = Ax on P2 induces the projectivity
b = (AT )�1a on P2⇤ [8, p. 20].

Proof. a·x = 0 is the equation of the line la. The transformation a·A�1y = 0
is the same as (AT )�1a · y = 0. So la will be mapped to lb by y = Ax.

2.2 Conics and their structure

A homogeneous polynomial of degree two in three variables has the general
form Q(x0, x1, x2) = ax20 + bx0x1 + cx21 + dx0x2 + ex1x2 + fx22. The corre-
sponding curve is called a conic, C = {x 2 P2 | Q(x0, x1, x2) = 0}.

Note that Q(x) =
P

aijxixj can be expressed in matrix notation: Q =
xTAx, where A 6= 0 is a symmetric 3⇥ 3 matrix.

A projective transformation x = Tx0 transforms Q = xTAx into

(x0)TA0x0 = 0,

where A0 = T
T
AT. Ellipses, parabolas and hyperbolas are no longer pre-

served.

A real symmetric matrix A has a basis of orthogonal eigenvectors and real
eigenvalues, so there exist a non-singular matrix T such that T TAT = diag
(�1,�2,�3), �i 2 {0,±1}. We have the following classification of conics in
the real projective plane.

(�1,�2,�3) Equation conic
(0, 0, 0) 0 = 0 projective plane
(1, 0, 0) x21 = 0 (double) line
(1,1,0) x21 + x22 = 0 point
(1,�1, 0) x21 � x22 = 0 two crossing lines
(1, 1, 1) x21 + x22 + x23 = 0 empty set
(1, 1,�1) x21 + x22 � x23 = 0 circle

Table 2.1 [16, p. 341]

In P2
C, rank is the only invariant modulo a projective transformation. x21 +

x22 + x23 = 0 is the proper conic, x21 + x22 = 0 two lines crossing and x21 = 0
one double line.
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Definition 2.6. A conic with equation xTAx = 0 is called non-degenerate
if A is non-singular, and it is called degenerate if A is singular [8, p. 31].

Up to a linear change of coordinates there exist in R2 exactly 3 non-
degenerate conics; parabolas, ellipses and hyperbolas. In C2 we have only 2.
Here ellipses and hyperbolas are not distinct. When in P2 all non-degenerate
conics are projectively equivalent.

Non-degenerate conics are also called smooth. For every point there is a
tangent line. So we can determine whether a conic is smooth or not in a
point by looking at the partial derivatives of the curve at this point.

Definition 2.7. Let a 2 �, where � is the algebraic curve in P2 with equa-
tion P (x) = 0. The curve � is non-singular at a if the partial derivatives
Pi(a), 1 6 i 6 3, are not all 0. In this case the tangent line to � at a is
defined to be the line with equation

P3
i=1 Pi(a)xi = 0 [8, p. 26].

If an algebraic curve has no singular points, it is called smooth. Being
smooth is an important property of a conic. In the following we sometimes
want a projectively transformed version of some conic. Therefore we would
like to know if a non-singular point on a curve is mapped to a non-singular
point.

Theorem 2.8. Let the projectivity y = Ax map the algebraic curve � in P2

to �̃. Then �̃ is an algebraic curve in P2. The projectivity maps non-singular
points of � to non-singular points of �̃ and tangent lines of � to tangent lines
of �̃ [8, p. 28].

Proof. �̃ can be expressed as = Q(y) := P (By) = 0, B = A�1 when � has
equation P (x). P is a homogeneous polynomial in x = (x0 : x1 : x2) and
so is Q. Also deg Q = deg P . So �̃ is an algebraic curve in P2. rP (a) :=
(P1(a), P2(a), P3(a)) 6= 0 for a simple point a 2 �. For b = Aa 2 �̃ we have
by the chain rule rQ(b) = B0(rP (a)) = (AT )�1(rP (a)). rQ(b) 6= 0 since
rP (a) 6= 0 and (AT )�1 is non-singular. b is a simple point of �̃.
Let � have the tangent l at a, and �̃ have the tangent l0 at b. Then l can be
expressed by rP (a) · x = 0 and l0 by rQ(b) · y = (AT )�1(rP (a)) · y = 0.
From this, and theorem 2.5, we can see that y = Ax maps l to l0.

Theorem 2.9. A conic is non-degenerate if and only if it consists only of
non-singular points [8, p. 32].

Proof. We have the partial derivatives �Q
�xi

= 2
P3

j=1 aijxj for the conic C

with equation Q(x) = x0Ax. If �Q
�xi

(x) = 0 for 1  i  3 and x 6= 0 we have
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a singular point, and �Q
�xi

= 0 is equal to Ax = 0. C contains no singular
points if A is non-singular, because then x = 0 is the only solution.
In the case when A is singular, Ax = 0 has non-zero solutions which corre-
sponds to singular points.

2.3 Conics in P2
C

By Bezout’s theorem, that we will soon state, a line in P2
C intersects a conic

in two points counting multiplicities. Also, we have that through any point
x in P2

C there are two distinct lines tangent to a smooth conic C, except
when x is in C and we have one tangent.

Theorem 2.10. A line in P2
C intersects a smooth conic in two distinct

points, except when the line is a tangent to the conic and intersects the
conic only in the point of tangency [8, p. 34].

Proof. Let Q(x) = ax20 + bx0x1 + cx21 + x2L = 0, where L is a linear form in
x0, x1, x2 which after a projective change of coordinates has equation x2 = 0
and C the smooth conic with equation Q(x) = 0. Q is irreducible since it
is smooth. Q(x0, x1, 0) = ax20 + bx0x1 + cx21 = 0 is satisfied by the points
(x0 : x1 : x2) in l \ C. Q(x0, x1, 0) factors into two linear forms. We have
either

Q(x0, x1, 0) = (↵x0 + �x1)
2, where (↵,�) 6= (0, 0) (2.1)

or

Q(x0, x1, 0) = (↵x0 + �x1)(�x0 + �x1), where ↵� � �� 6= 0 (2.2)

In the case of (2.1), then (�� : ↵ : 0) is the one point in (l \ C). We get
@Q
@x0

= @Q
@x1

= 0 when di↵erentiating Q at (�� : ↵ : 0), which means that l
is tangent to C at this point. In the other case, di↵erentiating at the two
points of (l \ C), (�� : ↵ : 0), (�� : � : 0) we will get @Q

@x0
= (↵(↵� � ��)

and @Q
@x1

= �(↵� � ��). l is not tangent to C at (�� : ↵ : 0), since the two
derivatives are not both zero. The same is true for (�� : � : 0).

Since in projective geometry points and lines are interchangeable objects,
we have that tangents to a conic are a dual conic. We have as the dual of
(2.10) that through any point x in P2

C there are two distinct lines tangent
to a smooth conic C except when x is in C, in which case there is only one
such line.

22



We will now look at how two conics in P2
C intersect.

Bezout’s Theorem Let F = 0, G = 0 be two curves in P2
K, where F

and G are homogeneous polynomials without a common factor and where K
is an algebraically closed field. Then the number of intersections of the two
curves equals deg F · deg G, provided one counts multiplicities [8, p. 43].

figure 2.1 [8, p. 52]

The picture above illustrates the di↵erent possibilities we have with re-
spect to intersection of two conics in P2

C. This classification can be done
by looking at the degenerated conics of a pencil. The degenerate conics in
{C,D} are given in the table below (2.1). We will therefore first define a
conic pencil.

Definition 2.11. Let C(x) and D(x) be two non-proportional quadratic
forms in x = (x0 : x1 : x2). The set of conics �C(x) + µD(x) = 0, where �
and µ are arbitrary numbers not both 0, is called the conic pencil generated
by the conics C(x) = 0 and D(x) = 0. The conic pencil is denoted {C,D}
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[8, p. 53].

The base points of the pencil are the points of intersection of C1 = 0
and D1 = 0. We have between one and four such, by Bezout’s theorem.
In the following we consider conic pencils in which there exists at least one
non-degenerate conic.

Theorem 2.12. A non-degenerated pencil contains at least one and at most
three degenerate conics [8, p. 55].

Proof. �(x0Cx) + x0Dx = x0(�C + D) = 0 is the equation of the conics of
the pencil generated by C and D, C smooth so that

��C
�� 6= 0. This conic

is degenerate if
���C +D

�� = 0 That is a cubic equation in � with leading
coe�cient

��C
�� 6= 0, so it has between one and three distinct roots.

In the table below C � D = {(pi,mi), i  j  k}, where p1, ..., pk are
the points of C \ D, C,D two distinct smooth conics, and m1, ...,mk the
multiplicities of these points. lab is the line joining the a and b, ta is the
tangent at a to C and D, l1 [ l2 the union of those two lines and 2l is the
line l counted twice.

type C �D degenerate conics in
{C,D}

I (a, 1), (b, 1), (c, 1), (d, 1) lab [ lcd, lab [ lcd, lab [ lcd
II (a, 2), (b, 1), (c, 1) lab [ lac, ta [ lbc
III (a, 2), (b, 2) ta [ tb, 2lab
IV (a,3),(b,1) lab [ ta
V (a, 4) 2ta

Table 2.1 [8, p. 56]

In the proof of Poncelet’s theorem that we will later look at, the two
conics are in general position. That is, they intersect in four di↵erent points
like illustrated as type number 1 above.

2.4 Conics in P2
R

Turning towards conics in P2
R, of main interest will be those issues that are

relevant in the modern proof of Poncelet’s theorem that we will soon focus
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on. We first look at how a line intersects a conic in P2
R and from where in

P2
R it is possible to draw a tangent. Thereafter intersection points for two

real projective conics are discussed.

Above (2.10) we showed that a line in P2
C intersects a smooth conic in two

distinct points, except when the line is a tangent to the conic and intersects
the conic only in the point of tangency. In P2

R we also have the possibility
that a line may not intersect the conic at all.

We assumed above that l has the equation x3 = 0 and looked atQ(x0, x1, 0) =
ax20 + bx0x1 + cx21 = 0 which is satisfied by the points (x0 : x1 : x2) in l \C.
Since we cannot have that both x0 and x1 are 0, the points are of the form
(x0 : 1 : 0). Like we know, the equation ax20 + bx0 + c = 0 gives us three
possibilities when solved over real numbers, depending on the discriminant
b2� 4ac, when a 6= 0. This corresponds to the number of intersection points
that the line will have with the conic. If D < 0 there are none, if D = 0
there is 1 and if D > 0 there are 2 intersection points.

In P2
R it is also not true that from every point that does not lie on a conic

there are exactly two tangent lines to the conic from this point. If the point
lies inside the conic, there is no way to construct a tangent to the conic form
this point.

We will now look at how two conics in P2
R intersects. Like in P2

C we can
in P2

R have the situation that two conics intersect in 1, 2, 3 or 4 points. But
unlike in P2

C, we might have that the conics do not intersect at all.

figure 2.2.

In the following we will study conics in general position. What are two
conics in general position in real projective plane like?

For two real projective conics that intersect in four distinct points we can
have the following: They might intersect in 4 real points, 2 real and 2 imag-
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inary points or in 4 imaginary points.

figure 2.3.

In the two first cases it will be possible to draw a tangent to C1 from
points on C2, as long as the points of C2 are not inside those of C1. In
the last situation we need to make sure that if the conics are nested, C2

is not inside C1, but the other way around. The three possibilities of type
1 intersections of two smooth conics in P2

R is represented by Levy into the
categories 1, 1a and 1b [4, p. 7].

orbit f0 g0 real im
1 x2 � y2 x2 � z2 1111
1a x2 + y2 + z2 xz 1111
1b x2 + y2 � z2 xz 11 11

Table 2.2 [4, p. 7]

2.5 Formulation of Poncelet’s Theorem

We will state Poncelet’s Theorem for conics in real and complex projective
plane, but first we define what a polygon that is interscribed between two
conics, C1 and C2, is.

Definition 2.13. Let p21 , ..., p2n be points on C2 such that all the lines
joining the pair of points (p21 , p22), (p22 , p23), ..., (p2n , p21) are tangent to C1.
The tangent lines (p2i , p2i+1) are the edges of a polygon that is inscribed in
C2 and circumscribed about C1. A vertex of the polygon is the point p2i on
C2 where two edges meet.

This definition corresponds to the construction of a Poncelet polygon in
the language we will use in the next chapter. Let p1 be a point on C1 and p2
a point on C2, so that the line lp1p2 is tangent to C1. This tangent intersect
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C2 also in p02. Give the name ◆1 to the action of interchanging between the
two pair of points (p1, p2) and (p1, p02). From any point p2 on C2, there are
two tangent lines to C1, one to the point p1 and one to the point p01. Give
the name ◆2 to the action of interchanging between the two pair of points
(p1, p2) and (p01, p2). Applying ◆2 � ◆1 will take an element (p1, p2) to (p01, p

0
2).

We call this composition ⌘. If we after applying ⌘ a finite number of times
are back at our starting point, we have a closed polygon.

In the introduction we stated a version of Poncelet’s theorem where C1

is inside C2.

Poncelet’s Theorem for real conics Let C1 and C2 be two real con-
ics, with C1 inside C2. Suppose there is an n-sided polygon inscribed in C2

and circumscribed about C1. Then for any other point of C2, there exists
an n-sided polygon, inscribed in C2 and circumscribed about C1, which has
this point for one of its vertices [8, p.1].

The proof of Poncelet’s theorem done by Gri�ths and Harris concerns two
conics in P2

C in general position.

Poncelet’s Theorem for complex conics Let C1 and C2 be two complex
conics in general position. If there is an n-sided polygon inscribed in C2

and circumscribed about C1. Then for any other point of C2, there exists
an n-sided polygon, inscribed in C2 and circumscribed about C1, which has
this point for one of its vertices.

Does this implies that the theorem holds for two real conics in the pro-
jective plane?

Remark Poncelet’s Theorem for complex conics implies Poncelet’s The-
orem for real conics.

Given two real conics, C1 inside C2, for which there exists an interscribed
polygon. The two conics are a real part of two complex conics and the real
polygon is a real part of a complex polygon. The two real conics are in
general position. So we are in the same situation as that of the conditions
from the proof done in complex projective plane. Will there then exist a
real polygon for any real point on C2, that have this point as a vertex?

The points on the real part of the complex conic C2 is a subset of the
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points on the complex conic, and will therefore by Poncelet’s theorem for
complex conics also be vertices of interscribed polygons, if we can also be
sure that the edges exist and are real parts of tangents to C1.

For a tangent to C1 from one point of C2 to exist over real numbers, we
must have that the point of C2 lies outside of C1. This is true for all points
of C2 in our situation.

Like we have seen, a line and a conic over the real numbers meet in one
point if the algebraic expression for C \ l1 over the real numbers gives us
D = 0. This corresponds to the algebraic formulation of the same line and
the same conic meeting in exactly one point over the complex numbers.

If we have a closed n-sided polygon interscribed between two real conics,
C1 inside C2, then Poncelet’s theorem for complex conics gives us that we
have infinitely many such n-sided polygons, with one of the points of C2 as
one of its vertices, interscribed between the two real conics.

We can argue in the same manner for the situation where the two con-
ics have 4 imaginary intersection points but are not nested. For the cases
where the two real conics have either 4 real or 2 real and 2 imaginary inter-
section points, we can modify to say that Poncelet’s theorem for complex
conics implies Poncelet’s theorem for real conics for all points on C2 that lie
outside of C1.
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3 Algebrogeometric reformulation of Poncelet’s The-

orem

Now we will approach the proof of Poncelet‘s theorem by Gri�ths and Har-
ris. We have so far studied conics in complex projective plane. Two such
will intersect in four points. We will now reformulate the theorem. In the
following two chapters we study the theory that is needed to understand it.

We will now use a model to label the points that we need and then give
a definition of our curve E.

figure 3.1

Definition 3.1. E = {(p1, p2) 2 C1 ⇥ C2 : lp1p2 is tangent to C1}

E is an algebraic curve with surjective maps to the two conics:

'1 : E ! C1, (p1, p2) 7! p1

'2 : E ! C2, (p1, p2) 7! p2

The preimages of these maps:

'�1
1 ({p1}) = {(p1, p2), (p1, p02)}

'�1
2 ({p2}) = {(p1, p2), (p01, p2)}

29



has 2 points, but with 4 exceptions. For these exceptions the preimage
contains only 1 element. 4 is the number of intersection points and 4 is the
number of common tangents to two circles in general position. Elsewhere '
is a 2 : 1 map, E is a two-sheeted cover of P1.

We have the involutions ◆1 of '1 on E and ◆2 of '2 on E. They interchange
the two elements of the preimages of '.

◆1 : E ! E (p1, p2) 7! (p1, p
0
2)

◆2 : E ! E (p1, p2) 7! (p01, p2)

◆1 � ◆1 = id

◆2 � ◆2 = id

We call the composition of these two involutions ⌘ : E ! E

In the following we will study the proof of this reformulation of Poncelet’s
theorem:

Theorem 3.2. If ⌘n has a fixed point for some positive integer n, then ⌘n

is the identity map on E.

This is equivalent to the Poncelet’s Theorem above. Applying ⌘ one time
will correspond to

⌘(p1, p2) = (◆2 � ◆1)(p1, p2) = ◆2(p1, p
0
2) = (p01, p

0
2).

If we have, for some n, that ⌘n(p1, p2) = (p1, p2), we are back at our starting
point after n iterations of ⌘. The aim of the proof will be to show that having
⌘n(p1, p2) = (p1, p2) is not dependent on the choice of starting point.
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4 Divisors on a curve

After giving a definition of the group operation and choosing a zero, the
group structure on an elliptic curve can be described by adding points on
the curve. The group structure on elliptic curves can also be described by di-
visors. To do so we need to understand what divisors on irreducible smooth
projective curves are. We will use the map between addition of points on
an elliptic curve and addition of divisors on an elliptic curve in the proof of
Poncelet’s theorem.

Even though we need Hurwitz formula to know that the Poncelet corre-
spondence is an elliptic curve, we state it a bit later. Hurwitz formula is a
corollary of a theorem that compares special divisors on curves.

Also to be able to use the Riemann-Roch theorem, we must know what
a divisor is. It is a statement that involves, among other things, the degree
of a divisor on a curve. In this text we use Riemann-Roch to prove a the-
orem about involutions on elliptic curves which will be important for the
modern proof of Poncelet’s theorem.

4.1 Divisor classes

Definition 4.1. A divisor on an irreducible smooth projective curve X, is
a formal sum D = k1p1 + ...+ knpn where p1, ..., pn are distinct points of X
and k1, ..., kn integer coe�cients for some n 2 N.

The number degD := k1 + ...+ kn 2 Z is the degree of a divisor D.

A divisor D = k1p1 + ... + knpn is called e↵ective, written D � 0, if ki � 0
for all i = 1, ..., n. [10, p. 113].

Expanding to look at rational functions, we will see the non-e↵ective
divisors.

DivX, the divisors of X is an Abelian group. Addition of the coe�cients of
the points of X gives a group of maps: DivX ! Z.

Soon we will be looking at a divisor of a curve where the components are
the intersection points between a curve X and the zero set of a polynomial
f 2 S(X), were S(X) := k(x0, ..., xn)/I(X) is the homogeneous coordinate
ring of X.
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First we will include the definitions of a rational function on a projective
curve X and of vp, the valuation of a function at a point.

Definition 4.2. A rational function ' = g
h on a projective curve X is a

function ' : X ! k where f, g 2 S(X) are homogeneous polynomials of
same degree.

The set of rational functions on X is denoted k(X). A rational function
is regular at a point p if there is a representation ' = g

h with h(p) 6= 0.

Definition 4.3. For every function g 2 OX,p regular at p, the valuation or
multiplicity of g at p is given by

vp(g) := max{k | g 2 mk
p.}

wheremp = {g 2 OX,p | g(p) = 0} is the maximal ideal of the local ringOX,p.

A function g vanishes at p if and only if vp(g) � 1. For every rational
function f 6= 0 2 k(X) the multiplicity of f at p is defined by

vp(f) := vp(g)� vp(h),

where f = g/h for some g, h 2 OX,p. If vp(f) > 0, then one says that f has
a zero of order vp(f) in P. If vp(f) < 0, then one says that f has a pole of
order �vp(f) in P. [14, p. 169].

We also have that
vp(fg) = vp(f) + vp(g)

for all p 2 X. In particular, we have div(fg) = divf + divg in DivX [10, p.
114].

What is then a divisor of a non-zero homogeneous polynomial f?

Definition 4.4. Let X ⇢ Pn be an irreducible smooth curve. For a non-zero
homogeneous polynomial f 2 S(X) the divisor of f it is defined to be

divf := ⌃
p2VX (f)

vp(f) · p 2 DivX.

VX(f) is the set of points for which f is zero on X. Then we will have that
the degree of the divisor of f is equal to degX · degf. [10, p. 114].
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As an example, if we have a projective curve C of degree d in P2
C and a

line L, the sum C \ L = ⌃kipi is a divisor of degree d on C. By considering
all such lines and the divisors they give rise to on C, we obtain a linear
system on C [12, p.129].

Above we defined what a rational function on a curve is. We also need
to define what a divisor of a rational function is:

Definition 4.5. The divisor of the rational function ' = g
h is defined to be

div' = ⌃
p2VX (g)[VX (h)

vp(') · p = divg � divh.

[10, p. 114].

The following will be useful.

Lemma 4.6. For ' = g
h , div' has degree 0.

Proof. deg div' = deg(divg� divh) = deg divg� deg divh = degX · degg�
degX · degh = 0

We have just seen that divisors of rational functions have degree 0.
Adding a divisor of degree 0 to any divisor D will not a↵ect the degree
of D.

Definition 4.7. A divisor on an irreducible smooth projective curve X is
called principal if it is the divisor of a (non-zero) rational function. PrinX
is the notation for the set of all principal divisors.

The quotient PicX := DivX/PrinX is called the Picard group or group
of divisor classes on X. And Pic0X := Div0X/PrinX [10, p. 115].

Two divisors D and D0 of a curve X are linearly equivalent if D0 =
D + divf, where f is a rational function on X.

Next comes a lemma on the non-triviality of the Picard group of a smooth
cubic curve in P2. We use it later when we prove that there is a bijective
map that takes a point a on a elliptic curve E to a divisor a� a0 in Pic0E.

Proposition 4.8. Let X ⇢ P2 be a smooth cubic curve. Then for all
distinct a, b 2 X we have a � b 6= 0 in Pic0X, that is there is no non-zero
rational function ' on X with div' = a� b [10, p. 118].
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4.2 Riemann-Roch Theorem

For the last step of the proof of Poncelet’s Theorem, we need a result (5.4)
concerning an involution of a map from an elliptic curve to P1 which relies
on the Riemann-Roch theorem. We will not prove Riemann-Roch, but we
want to understand the components of the formula, so that we can use it.
We will also need the concept of a base point free linear system. So we in-
clude some definitions and propositions that will reveal for us the meaning
of this concept. Not all proofs are included, but can be found in [14].

Riemann-Roch theorem states the connection between the degree of a divi-
sor of a curve, the dimension of the vector space of rational functions on the
curve that are linearly equivalent to e↵ective divisors and the genus of the
curve. The genus can be described as the number of ”holes” in the surface
being the topological space of the curve.

Curves can be classified by their genus. The Riemann-Roch theorem is of-
ten used to compute the dimension of the vector space we mentioned above.
So first we need to know what number the genus is. For a non-singular
curve of degree d in P2

C it can be computed by the following formula:
�d�1

2

�

[10, p. 111]. So a line or conic will have genus 0 and a cubic will have genus 1.

Above we looked at divisors of curves. Two divisors D and D0 of a curve X
are linearly equivalent if D0 = D+divf, where f is a rational function on X.
Every divisor together with the linearly equivalent ones that are e↵ective,
defines a complete linear system.

Definition 4.9. A divisor D defines a complete linear system

|D| := {D0 � 0 | D0 ⇠ D}

Soon we will see that this complete linear system corresponds to the
points of projective space.

Let us first give a name to the collection of all rational functions on a curve
C that give rise to linearly equivalent e↵ective divisors.

Definition 4.10. Given a divisor D.

L(D) := {0 6= f 2 k(C) | divf � �D} [ {0}.

L(D) is a vector space. Its dimension is denoted l(D).
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Before our next result on the equivalence of |D| and P(L(D)), we need
the following theorem:

Theorem 4.11. If V is an irreducible projective variety defined over an
algebraically closed field k, then every regular function on V is constant,
that is O(V ) ⇠= k [14, p. 78].

We can now move on to an important map.

Proposition 4.12. There is a bijection between the complete linear system
|D| and the projective space P(L(D)). [14, p. 185].

Proof. Consider the map

P(L(D)) ! |D|, f 7! Df ,

where Df := divf +D, 0 6= f 2 L(D). divf = div(�f),� 2 k⇤. By definition
Df � 0 and Df ⇠ D, so the map is well defined. The map is injective
because two rational functions f, g with divf = divg would give rise to an
everywhere regular function f/g which has to be a constant by (4.11) and
f = �g. We see that the map is surjective supposing D0 � 0, D0 ⇠ D
and letting f be a rational function with divf = �D + D0. Since D0 � 0,
f 2 L(D).

We will soon consider subspaces of complete linear systems.

Definition 4.13. A linear system on a curve C is a projective subspace of
a complete linear system |D| [14, p. 186].

Like mentioned above, we will also need the definition of a base point
free linear system.

Definition 4.14. Given a linear system # contained in |D|. A point P 2 C
is called a base point in the linear system # if # = # \ |D�P | [14, p. 186].

In other words # is base point free if 8 P 2 C 9 B 2 # : P /2 B

We just showed (4.9) that there is a bijection between a complete linear
system and projective space P(L(D)). Because of this we can study maps
defined by a complete linear system.

'D : C ! P(L(D)), P 7! HD = {s 2 L(D) : s(x) = 0}.

'(P ) are hyperplanes in projective space. C \ H are divisors on C. If
C is not contained in a hyperplane, these divisors D = Z(s) = {x 2 X :
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s(x) = 0} are e↵ective. For s1, s2 2 L(D), s1(x)
s2(x)

is a rational function. This

means that z(s1) ⇠ z(s2). This collection of hyperplane sections is a base
point free linear system if there is no point P that is contained in all the
divisors of the linear system.

The Riemann-Roch theorem also involves the canonical divisor, denoted
K below. It is a unique divisor class of every curve given by class of di↵er-
ential form.

Now we will state the Riemann-Roch Theorem.

Theorem 4.15. Let D be a divisor on a curve X of genus g. Then

l(D)� l(K �D) = deg D + 1� g.

4.3 Hurwitz formula

We are in the following restricting our attention to the cases where char(k)=0.
Before we are ready to state Hurwitz formula which concerns a morphism
f : X ! Y , we need to define the ramification index eP for a point P 2 X.

Definition 4.16. Let Q = f(P ), let t 2 OQ be a local parameter at Q,
consider t as an element of Op via the natural map f ] : OQ ! OP and
define eP = vP (t), where vP is the valuation associated to the ring OP . If
eP > 1 we say that f is ramified at P, and that Q is a branch point of f. If
eP = 1, we say that f is unramified at P [12, p. 299].

Theorem 4.17. Let f : X ! Y be a morphism of curves. Let n = deg f.
Then

2g(X)� 2 = n(2g(Y )� 2) + ⌃P2X(eP � 1)

[12, p. 301].

Corollary 4.18. Let f : X ! Y be a 2:1 map with ramification being
points which have only one element in their fiber. Let t be the number of
ramification points. Then

2g(X) = 4g(Y )� 2 + t

We also observe that if we use Riemann-Roch for D = 0 we get that
l(K) = g. Using that and letting D = K, we see again from Riemann-Roch
that degK = 2g � 2. Then we can see that Hurwitz formula is comparing
canonical divisors. n is the degree of the morphism and the last part of the
formula, +⌃P2X(eP � 1) is measuring the e↵ect of the points of exception.
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5 Elliptic curves

An elliptic curve is a curve of genus 1.

5.1 E is isomorphic to a curve on Weierstrass form.

Proposition 5.1. Let E be an elliptic curve over k, with char k 6= 0, and
let P0 2 E be a given point. Then E is isomorphic to a cubic curve of the
form

y2 = x(x� 1)(x� �)

for some � 2 k and the point P0 goes to infinity (0, 1, 0) on the y-axis [12,
p. 319].

Proof. By the linear system |3P0|, E is embedded in P2. Consider the vector
spaces

k ✓ L(2P0) ✓ L(3P0) ✓ ...

By Riemann-Roch we have

dim L(nP0) = n

for n > 0. Now choose x 2 L(2P0) and y 2 L(3P0) so that 1, x and 1, x, y
respectively are the basis for the spaces. 1, x, y, x2, xy, x3, y2 are then in
L(6P0). They are not linearly independent, since dim L(6P0) = 6. x3 and y2

have a 6-fold pole at P0, and therefore have non-zero coe�cients. For some
ai 2 k we have

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

On the left side we replace y by

y0 = y +
1

2
(a1x+ a3)

The new equation can be written as y2 = (x � a)(x � b)(x � c), and by a
linear change of x we have y2 = x(x� 1)(x� �). x and y have a pole at P0.
So P0 goes to (0, 1, 0), the point at infinity.
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5.2 Geometric construction of group law on an elliptic curve

We will look at how we by a geometrical approach can define addition of
points on an elliptic curve and show that the construction is a group un-
der this operation. Consider a cubic curve from the description above. We
draw a line through two points P,Q on the curve. It will intersect the curve
in one more point, or one of the points will be an intersection of multi-
plicity 2 of the cubic curve and the line. Let us call the third intersection
point PQ. The reflection of PQ about the x-axis is defined to be P � Q.
y2z = x3 + axz2 + bz3 is the homogenized version of our equation. Acting
in P2, reflecting about the x-axis can be viewed as drawing the line from
one point through O = (0 : 1 : 0) and end up in the third intersection point
with the cubic. So we can look at it as ”applying O”, or joining a point by
another with a line: P �Q = O(PQ). We will now see that the addition of
points in this manner defines a commutative group.

P � Q = Q � P. There is only one line that contains both P and Q si-
multaneously.

Take any point R on the cubic. Draw a line through R and O and call
the last intersection point RO. To find R�O we need to take RO and ”re-
flect in about the x-axis”, or ”apply” O. O(RO) = R�O = O�R = R. So
O is the identity element.

To find the inverse of a point R, draw a line through R and O to obtain RO.
What would be R � RO in this situation? The third point of intersection
between the line through R and RO with the cubic is O. Reflecting O by
the x-axis, we get O again. So R�RO = RO �O = O. So R and RO, the
points reflecting each other by the x-axis are inverses.

Associativity, P � (Q�R) = (P �Q)�R, takes a bit more to show. Here
we will sketch a geometric proof from [6, p. 48] using the Cayley-Bacharach
theorem: Let X1, X2 ⇢ P2 be cubic plane curves meeting in nine points
p1, ..., p9. If X ⇢ P2 is any cubic containing p1, ..., p8, then X contains p9 as
well [7, p. 301] (proof in last chapter).

We are now ready to show that the associative property holds in this
construction. Start by a degenerated conic (P,Q)[(QR,Q�R)[(R,P�Q)
and another one (Q,R) [ (PQ,P �Q) [ (P,Q�R). y2 = 4x3 + ax+ b and
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the two curves just described, have the eight point: P,Q,R, PQ,QR,Q �
P,Q�R,O in common. They will then by Cayley-Bacharach theorem also
have a ninth point in common, that is P (Q�R) = (P �Q)R.

5.3 E ' Pic0(E)

We have already mentioned that the addition of points on an elliptic curve,
with a choice of zero and addition as described above is isomorphic to the
divisor class containing divisors of degree 0 together with the operation
of addition. Above the zero of the geometric construction was the point
(0 : 1 : 0). We could have chosen any random point on the curve. In our
proof below we call it a0.

Proposition 5.2. Let E ⇢ P2 be an elliptic curve, and let a0 2 X be a
point. Then the map � : E ! Pic0E, a 7! a� a0 is a bijection that maps
+E to +Pic0E [10, p. 120].

Proof. The map is well defined since deg(a � a0) = 0. If for a, b 2 X,
�(a) = �(b), then a� a0 = b� a0 and so a� b = 0 2 Pic0E. Since there is
no non-zero rational function ' on X with div' = a� b, a = b. The map is
injective.

D = a1 + ... + am � b1 � ... � bm is an arbitrary element of Pic0E. First
we look at the situation m � 2. A line through the points a1, a2, a1a2 (in
accordance with our notation above a1, a2 are two points on E and a1a2
is the third intersection point of the line through a1 and a2 and the curve
E) has the divisor: a1 + a2 + a1a2. And let b1 + b2 + b1b2 be the divi-
sor of the homogeneous linear polynomial that intersect E in b1, b2, b1b2.
a1 + a2 + a1a2 � b1 � b2 � b1b2 is then the divisor of the quotients of the
above linear polynomials. Since this quotient is a rational function, the di-
visor is zero in Pic0E. Substituting into our arbitrary element of Pic0E, we
get D = b1b2 + a3 + ... + am � a1a2 � b3 � ... � bm 2 Pic0E. Continue to
reduce the number of points in D, we will eventually reach m = 1. That
is the same as to say that for some a1, b1 2 X, D = a1 � b1. In Pic0E
we also have a0 + a1 + a0a1 � b1 � a0a1 � b1(a0a1) = 0. Because of that
D = a1 � b1 = b1(a0a1) � a0 2 Pic0E. Then we are ready to conclude that
� is surjective, since D = �(b1(a0a1)).
Addition is preserved by this map. That 3 points on E are collinear means
that their sum is in |3P0|. |3P0| was the system giving the embedding of E
to P2. This is the same as saying that the sum of the images of the points
in Pic0(E) is zero.
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We can also prove proposition 5.2 by the Riemann-Roch theorem [12, p.
297].

We must show that for any divisor D of degree 0, there exists a unique
point a 2 X such that D ⇠ a� a0. By Riemann-Roch we get

l(D + a0)� l(K �D � a0) = 1 + 1� 1.

Deg K = 0 and so deg(K �D � a0) = �1. Then l(K �D � a0) = 0 which
gives l(D+a0) = 1. That is the same as to say that dim |D+a0| = 0, which
means we have a unique e↵ective divisor linearly equivalent to D+a0. That
must be a point, a, since the degree of the divisor is 1. So there is a unique
point a ⇠ D + a0, that is D ⇠ a� a0.

We have now seen that the points on E are isomorphic to elements of
Pic0(E). For 2 points p, q 2 E consider the linear system |p + q| on E.
It is base point free and by Riemann-Roch it has dimension 1. This linear
system therefore defines a morphism ' : E ! P1 of degree 2. Every 2:1
map from E to P1 is given by a linear system of degree 2. The lemma below
will be used in the proof of Poncelet’s theorem. First we define a covering
involution.

Definition 5.3. Given a 2:1 map ' : X ! Y. A covering involution of ' on
X interchanges the two elements in the fibers of '.

Lemma 5.4. If ' : E ! P1 is a 2:1 covering map, and ◆ : E ! E the
covering involution of ' on E, then 9r 2 E, such that ◆(x) = r� x, 8x 2 E.

Proof. Since ' is 2:1 it is defined by a system of degree 2. A general element
of this system is of the form |p + q| with p, q being two points of a chosen
fiber. ◆ interchanges the two points in the fibers of ', so ◆(p) = q. Also for
any x 2 E, x+ ◆(x) is a fiber of '. So x+ ◆(x) 2|p+ q|, which is the same as
to say x+◆(x) ⇠ p+q. Then we have the required form: ◆(x) ⇠ p+q�x.

5.4 A synthetic construction of the group law on E

We will also take time for a synthetic construction of the group law on E
[15, p. 60]. By using the labeling below:
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figure 5.1

The trajectory of tangents can be described as p ! pC � (pD � p) =
p+(pC �pD). If n(pC �pD) = 0 then we are back at our starting point after
n steps.

figure 5.2

Start with two circles C and D that, for simplicity, intersects in two real
points, O and M (figure below). Let O be the zero of the group law on E.
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We will not prove here that this construction, with this choice of zero, fulfil
the group axioms of a commutative group.

figure 5.3

Draw from the point A on C the two tangents to D, AA0 and AA00.
They share a point at C and will be negatives to each other since from the
choice of zero, we have pC = 0 + 0 = 0. Then let a = AA0 and similarly
b = BB0. a � b and b � a will be negatives of each other and therefore
share a point at C, let us call it D. The following construction will give
us this D. Find the intersection point X of AB and A0B0. Mark out the
\XMO. Copy it to \XOD. Here we have our point D, which is the point
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on C which corresponds to a � b and b � a. a � b and pD � (a � b) =
pD � a � (�b) have a common endpoint on D. We can find pD � a and
�b, by using the transformation described above, we can construct their
di↵erence, their common endpoint at C. a� b is the point D with the line
through (pD � a)� (�b).
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6 Proof of Poncelet‘s Theorem

We can now pass to the proof of Poncelet’s theorem. For that we keep
the notation from section 3. We have the map '1 which is a double cover
branched in 4 points, the intersection points of the two conics. Hence by
corollary 4.18 with t = 4 we get

2g(E) = 4g(P1)� 2 + 4

g(E) = 1.

E is an elliptic curve.

figure 6.1

To see that E is a curve without singularities, we need to pay special
attention to the points of intersection of C1 and C2. When (p1, p2) /2 C1 \
C2, (p1, p2) 7! p1 is a 2:1 map from E to C. For the points (p1, p2) 2 C1\C2,
there is a 2:1 map from (p1, p2) to one of the conics. So for every point
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(p1, p2) 2 E, E ! P1 is a 2:1 map and therefore smooth.

We are now ready to show the proof of the following reformulation of Pon-
celet‘s theorem:

If ⌘n has a fixed point for some positive integer n, then ⌘n is the identity
map on E.

Proof. We have defined ◆1 and ◆2 and the maps '1 and '2. ◆1 is the covering
involution of '1 on E and ◆2 is the covering involution of '2 on E. By lemma
5.4, for a covering involution of ' on E, there exists a point r 2 E so that
we for any x 2 E have that ◆(x) = r � x.

For our ◆1, ◆2, let ◆1 = r1 � x and ◆2 = r2 � x.

Then the composition ◆2 � ◆1 will result in:

⌘(x) = (◆2 � ◆1)(x) = ◆2(r1 � x) = r2 � (r1 � x) = x+ (r2 � r1)

and
⌘n(x) = x+ n(r2 � r1)

Let x be the point (p1, p2) 2 E. If we have that after n iterations of ⌘,
we are back at our starting point (p1, p2) :

⌘n(p1, p2) = (p1, p2)

then
n(r2 � r1) = 0.

Since n(r2 � r1) being 0 does not depend on the starting point, the proof is
finished.
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7 A proof by Pascal’s Theorem

In his book about Poncelet’s theorem, Leopold Flatto writes that among all
the proofs of this theorem, none are elementary. This statement has inspired
someone to try to find one. Lorenz Halbeisen and Norbert Hungerbuhler
present in their paper a proof which relies on Pascal’s theorem in the pro-
jective plane. The material in this section is from [7] and [11].

Before we look at their proof, we will take some time for Pascal’s Theo-
rem.

Pascal’s Theorem. Let lab be the line joining the points a and b. Any
six points 1,...,6 lie on a conic if and only if

l12 \ l45

l23 \ l56

l34 \ l61

are collinear.

7.1 Cayley-Bacharach Theorem

Pascal’s theorem has several forms. In the following we will include a proof
of a theorem that covers all the variations of it.

In our section on the history of projective geometry, we looked at how Pon-
celet used his principal of central projection to prove Pascal’s theorem. We
now use the Cayley-Bacharach theorem to give a formal proof. We will
study the proof of Chasles’s theorem together with a proposition concerning
the necessary and su�cient conditions for the set of points for it to im-
pose independent conditions on the curves in question. We first study this
proposition. For a set of points ⌦ = {p1, ..., pn}, we want to know if they
impose independent conditions on a curve. For a polynomial f, substitute
the coordinates of a point pi 2 ⌦ for the variables of f. Then f vanishing
at pi is a linear condition on the coe�cients of f. Doing the same for all
pi 2 ⌦, we want to know if we have n linearly independent conditions or
not. ⌦ = {p1, ..., pn} ⇢ P2 impose l conditions on curves of degree d if in

P(
d+2
2 ) the subspace of those containing ⌦ has codimension l.
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Proposition 7.1. Let ⌦ = {p1, ..., pn} ⇢ P2 be any collection of n  2d+2
distinct points. The points of ⌦ fail to impose independent conditions on
curves of degree d if and only if either i) d+2 of the points of ⌦ are collinear
or ii) n = 2d+ 2 and ⌦ is contained in a conic [7, p. 302].

Proof. Let us first show that in the situation where either d+2 of the points
of ⌦ are collinear or n = 2d + 2 and ⌦ is contained in a conic, then the
points of ⌦ fail to impose independent conditions on curves of degree d.
i) If a line L contains d+2 of the pi 2 ⌦, a degree d curve containing ⌦ must
by Bezout’s theorem contain L. Calculating the codimension of the curves
of degree d that contains L, we get:

�d+2
2

�
�
�(d�1)+2

2

�
= d+ 1. We have the

other n � (d + 2) points, and that is the maximal number of independent
conditions they can contribute with. So n� (d+ 2) + d+ 1 = n� 1 is then
the highest number of conditions ⌦ can impose.
ii) If a conic C contains ⌦, a degree d curve containing ⌦ must by Bezout’s
theorem contain C. Calculating the codimension of the curves of degree d
that contains C, we get:

�d+2
2

�
�
�(d�2)+2

2

�
= 2d+1. That is then the highest

number of conditions ⌦ can impose in this case. Since the condition for ii)
is n = 2d+2, ⌦ fails to impose independent conditions on curves of degree d.

For the other direction we use induction for the degree and the number
of points. We first observe that when d = 1 and ⌦ consists of 4 or less
points, the proposition holds. This set of points fail to impose independent
conditions on lines if and only if i) n = d+ 2 = 3 and the points lies on the
same line, or ii) n = 4.

Now we look at, for any d, the situation n  d+ 1. That a set of points fail
to impose independent conditions, may be expressed equally as the situation
that any plane degree d curve containing n�1 of the n points, contain them
all. So now we show that, in the case when we have d+1 points or less, and
therefore not d + 2 collinear points, the d + 1 points do not fail to impose
independent conditions on the curve of degree d. We use a curve of degree
d that contain every pi but one, by taking the union of lines through all pi,
i = 1, ..., n � 1. Then we choose a curve of degree d � n + 1, which has the
only restriction that it is not containing the last point of ⌦. Then the points
do not fail to impose independent conditions on curves of degree d.

When n > d + 1 we can first think of the case when d + 1 points of ⌦
lie on a line L1. Call this set of d+ 1 points ⇥. The set ⌦ \⇥  d+ 1. Now
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we can reformulate our question and claim: ⌦ \ ⇥ do not impose indepen-
dent conditions on d � 1�degree curves. If they did, we could also find a
d � 1-degree curve X containing all points of ⌦ \ ⇥ unless one. The union
of X with the line would be a degree d curve containing all points of ⌦ but
one. With the assumptions that we made, ⌦ \⇥ consists of d+ 1 points on
a line L2. Then we have that i) either L1 contains d+ 2 of the points ii) or
n = 2d+ 2 and all are contained in the conic L1 \ L2.
Consider a line, l containing 3 or more points of ⌦. The n� l points left, fail
to impose independent conditions on d� 1- degree curves and must consist
of at least d+ 1 collinear points.

What is left to prove is the situation when ⌦ contains no three points that
are collinear. Choose a set ⌥ = {p1, p2, p3} of any three points from ⌦. If
(⌦ \⌥)[ {pi}, for any i, impose independent conditions on curves of degree
d�1, then we can find a d�1-degree curve X that contain ⌦\⌥ but not pi.
Let Ljk be a line joining pj and pk. X [ Ljk is a degree d curve containing
all but one of the points from ⌦. We can continue by thinking (⌦\⌥)[{pi}
will not impose independent conditions on degree d-1 curves. (⌦ \⌥)[ {pi}
cannot contain d+ 1 points on the same line. By induction n = 2d+ 2. For
every i, (⌦ \⌥) [ {pi} lies on a conic Xi. We are finished if d = 2. If d � 3,
⌦ \⌥ contains five or more points where no three of them lies on the same
line. There can then be not more than one conic containing ⌦, so all Xi are
the same and then contain ⌦.

Theorem 7.2. (Chasles) Let X1, X2 ⇢ P2 be cubic plane curves meeting
in nine points p1, ..., p9. If X ⇢ P2 is any cubic containing p1, ..., p8, then X
contains p9 as well [7, p. 301].

Proof. Let us consider the set of m distinct points � = {p1, ..., pm} ⇢ P2 and
the vector space of polynomials of degree d on P2. We shall give the name
l to the number of conditions that � imposes on polynomials of degree d.
Then l is defined equivalent as above to be the codimension of the degree d
polynomials that vanish on p1, ..., pm. Cubics in P2 live in a 10-dimensional
vector space. Let F1, F2 be the equations of X1, X2. These two equations,
vanishing on �, spans a 2-dimensional subspace of the vector space of poly-
nomials of degree 3 in P2 of polynomials vanishing on �. The 9 points cannot
impose independent conditions.

We will show that if a cubic X contains exactly 8 points from � =
{p1, ..., p9}, then, on a cubic, this set of 8 points and � imposes the same
number of conditions. By Bezout’s theorem we have that two curves of de-
gree 3 cannot meet in more than 9 points unless they have a component in
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common. So by assumption the situation that X1, X2 would have multiple
components is already not an option. F1, F2 has no repeated factors. From
the proposition above we have seen the only condition for our eight points,
remembering that they come from intersection of two cubics, to fail to im-
pose independent conditions on curves of degree 3 is i) either that 5 of the
points are collinear or ii) n = 8 and the all the points are contained in a
conic.
i) In this case, the points on that line, if it existed, would have to be con-
tained in both X1 and X2. We already assumed that they have no compo-
nents in common, so it cannot be that 5 points lie on the same line.
ii) If all the 8 points were lying on a conic, then both X1 and X2 would have
to contain a component of this conic. Like above, that would have contra-
dicted our assumption. So the 8 points impose independent conditions on
our curve of degree 3.

Now Pascal’s theorem will follow from the above.
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figure 7.1

Proof. This is a construction where the cubic which consists of the three
lines l12, l34 and l56 and the other cubic which consists of the lines l16, l23
and l45 have the points lying on the circle in our picture in common. By
Bezout’s theorem they also have three more points in common, call them
a, b, c. These three points must lie on a line, since the conic containing the
six points together with a line passing through any two of the points a, b, c
is a cubic that shares 8 points with our first two cubics.
For the other direction, we also use Chasles’s theorem. We have that the 3
points a = l34 \ l61, b = l12 \ l45 and c = l23 \ l56 are collinear and we have
a conic through 1, ..., 5. The point 6 is not on the line, so it must be on this
conic.

A reformulation of Pascal‘s theorem that we will use several times is
Carnot’s theorem.
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Carnot’s Theorem. Any six points 1,...,6 lie on a conic if and only if

l(l12\l34)(l45\l61)

l25

l36

are concurrent.

We also have Brianchon’s theorem, which is equivalent to Pascal’s, by ex-
changing points by lines. Also, by exchanging points with lines in Carnot’s
theorem we get its dual, we can call it Carnot’s⇤ theorem. All of these vari-
ations is covered by the proof of Cayley-Bacharach.

7.2 Triangles

Halbeisen and Hungerbuhler first demonstrate their approach in the special
case where the polygon is a triangle. The below result is needed.

Theorem 7.3. If two triangles are inscribed in a conic and the two triangles
do not have a common vertex, then the sides of the triangles are tangent to
a conic [11, p.3].

Proof. The triangles a1a2a3 and b1b2b3 are both inscribed in C2. They share
no vertexes. To find the three collinear intersection points by which we can
apply Pascal‘s theorem, consider the following points:

I := la1�a2 \ lb1�b2

X := la2�b3 \ lb2�a3

I 0 := la3�a1 \ lb3�b1
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figure 7.2

Then again label:
a1 := 1

a2 := 2

a3 := 6

b1 := 4

b2 := 5

b3 := 3

The three intersection points:

l12 \ l45

l23 \ l56

l34 \ l61

are by Pascal‘s theorem collinear, so I, X and I’ are collinear.

Now the proof continues in the same fashion with labeling of edges to make
use of Carnot‘s theorem.

la1a2 := l2

la2a3 := l1

la3a1 := l6

lb1b2 := l5

lb2b3 := l4
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lb3b1 := l3

These six sides are tangent to another conic C, by Carnot’s, i↵

l(l1\l2)(l3\l4) \ l(l4\l5)(l6\l1)

l2 \ l5

l3 \ l6

lie on the same line. That is equivalent to collinearity of the points X, I and
I’. Like just pointed out above, this again is the same as saying that the
points a1, a2, a3, b1, b2 and b3 are lying on a conic.

From this we get Poncelet’s theorem for the case of triangles as a corol-
lary.

Poncelet‘s Theorem for triangles Let C1 and C2 be smooth conics which
neither meet nor intersect. Suppose there is a triangle a1a2a3 inscribed in
C2 and circumscribed about C1. Then for any point b1 of C2, there exists
a triangle b1b2b3 which is also inscribed in C2 and circumscribed about C1

[11, p.6].

Proof. Given the above situation and that the point b1 is not equal to any
of the points a1, a2 or a3. b2 and b3 are chosen so that lb1b2 and lb1b3 are
tangents to C1. Now five of the six sides of the two triangles must be tangent
to C1. From theorem (7.3) above we also have that since the two triangles
do not have a common vertex, the sides of the triangles must be tangent to
some conic. This must be our C1 since five tangents given already define the
conic. So we can conclude that b1b2b3 is also circumscribed about C1.

7.3 The case of a n-sided polygon interscribed between two

conics

We start with the situation as above, only now we have a n-gon with sides
a1, ..., an. The question is, if we make another (n � 1)�polygonal chain
starting in a point b1 6= ai, will lbnb1 be tangent to C1?

We will now need the following result.

Lemma 7.4. For n � 4, the three intersection points

I := la1a2 \ lb1b2
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X := la2bn�1 \ lb2an�1

I 0 := lan�1an \ lbn�1bn

are collinear [Hal, p. 7].

Proof. We first consider how our starting point will be like depending on
whether n is odd or even. If n is even, k = n

2 . We set:

I := la1a2 \ lb1b2 = lak�1ak \ lbk�1bk := l2 \ l5

I 0 := lan�1an \ lbn�1bn = lak+1ak+2 \ lbk+1bk+2
:= l6 \ l3

X := la2bn�1 \ lb2an�1 = lakbk+1
\ lbkak+1

= l(l2\l1)(l4\l3) \ l(l5\l4)(l1\l6),

where lakak+1 := l1, lbk�bk+1
:= l4

We then have that I �X � I 0 are collinear by Carnot’s⇤ theorem. When n
is odd, k = n+1

2 , we have:

I := la1a2 \ lb1b2 = lak�1ak \ lbk�1bk := l12 \ l45

X := la2bn�1 \ lb2an�1 = lak�1bk+1
\ lbk�1ak+1

:= l16 \ l43

I 0 := lan�1an \ lbn�1bn = lakak+1 \ lbkbk+1
:= l23 \ l56

And here, the collinearity of I �X � I 0 is given by Pascal’s theorem.

There are two steps that need to be proven. Five points, Ip�1, Ip, X, Iq, Iq+1,
are identified. It is required that 2  p < q  an�1. The first thing that
needs to be shown is:

Lemma 7.5. If Ip �X � Iq are collinear, then so will Ip�1 �X � Iq+1. The
five points of consideration are:

Ip�1 := lap�1ap \ lbp�1bp

Ip := lapap+1 \ lbpbp+1

Iq := laq�1aq \ lbq�1bp

Iq+1 := laqaq+1 \ lbqbq+1

X := lapbq \ lbpaq
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Proof. X is defined as the intersection of the lines � = lapbq and ↵ = lbpaq .
The three points Ip �X � Iq lie on one line, �, that is given in the claim.
So ↵,�, � meet in X.
Label the lines that meet in Ip, l2 and l3 and the lines that meet in Iq, l6
and l5. Let l1 be the line that intersects l6 in aq. And let l4 be the line
that intersects l3 in bp. Then let ✏ be the line l(l2\l1)(l4\l5). We will have that
↵, �, " are concurrent by Brianchon‘s theorem.
Now label the lines that meet in the point Ip�1, l1 and l6 and label the
lines through Iq+1, l3 and l4. The line through Ip�1 and Iq+1 is called �.
The line l(l2\l3)(l6\l5) has the name ✏. We can conclude, again thanks to
Brianchon‘s theorem, that �, �, � meet in one point. Then we can state that
Ip�1�X � Iq+1 are collinear, since both ↵,�, " and ↵,�, � meet in X in the
above construction.

Now we have one more claim to prove before proceeding to the proof of
Poncelet. In addition to the points Ip�1, X, Iq+1 above, now also consider
X 0 := l(ap�1bq+1)\(bp�1aq+1) What we want to show is:

Lemma 7.6. If Ip�1 � X � Iq+1 are collinear, then also Ip�1 � X ‘ � Iq+1

will be so.

Proof. The collinearity of Ip�1 �X � Iq+1 is given. Let l12 \ l45 be the lines
that meet in Ip�1. Also ap = 2, aq = 6, bp = 5, bq = 3. J is the point l16 \ l43
and X = l23 \ l56. This situation is exactly as described in the theorem of
Pascal, and we can conclude that Ip�1 �X � J are collinear.

The next move is to again label the points. J = l12 \ l45. aq = 2
and bq = 5. Her we include the points X 0 and Iq+1. Iq+1 = l23 \ l56 and
X 0 = l16 \ l43. Again collinearity of tree points is the result by Pascal‘s
theorem, this time X 0 � J � Iq+1. By this we have what is needed to prove
that Ip�1�X ‘�Iq+1 are collinear. Our last step gives that X ‘ is on J�Iq+1

and our two previous steps shows that Ip�1 � J � Iq+1 lies on the same
line.

So far we have shown that if Ip � X � Iq are collinear, then so will
Ip�1�X�Iq+1 and if Ip�1�X�Iq+1 are collinear, then also Ip�1�X ‘�Iq+1

will be. Together this gives us the collinearity of I �X � I ‘.

Is lbnb1 also tangent to C1? That is the big question which will prove
Poncelet’s theorem if the answer is yes.
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Proof.
I := la1a2 \ lb1b2

X := la2bn�1 \ lb2an�1

I 0 := lan�1an \ lbn�1bn

J := lan�1a1 \ lbn�1b1

X 0 := lanb1 \ lbna1

The three first points are the same as earlier in the text, and we have shown
in lemma (7.4) that they are collinear.

If we manage to show that I �X ‘ � I ‘ are collinear, Carnot⇤ will give that
all six lines, 1 = lana1 , 2 = lan�1an , 3 = lb1b2 , 4 = lbnb1 , 5 = lbn�1bn , 6 = la1a2 ,
are tangent to some conic C. C and C1 must be the same conic and we will
know that lbn�b1 is tangent to C1, since five tangents determines a conic.

Since we already know by lemma (7.4) that I�X�I 0 lies on the same line,
if we were able to show the same for I�X�J , we would obtain collinearity
for I �X � J � I 0 and if also I 0 � J �X 0 are so, the conclusion would be
that I �X 0 � I 0 are collinear. This will be in reach by labeling our points
first in the following way: a1 = 1, a2 = 2, an�1 = 6, b1 = 4, b2 = 5, bn�1 = 3
and

I = l12 \ l45

X = l23 \ l56

J = l16 \ l34

Then I � X � J are collinear by the theorem of Pascal. In a similar
manner, by the labeling below:
an�1 = 1, an = 2, a1 = 6, bn�1 = 4, bn = 5, b1 = 3 and

I 0 = l12 \ l45

X 0 = l23 \ l56

J = l16 \ l34

again by Pascal‘s theorem, we will get the wanted collinearity of I 0�J�
X 0.

And then we can conclude that lbnb1 is also a tangent to C1, whereby it
is showed that if we have one n-sided polygon inscribed in C2 and circum-
scribed about C1, we can start at any point of C2 and obtain the same.
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8 New generations will be inspired by Poncelet’s

Theorem.

From the days of Poncelet and until today, his work has led people to ask
new questions. We will end this text by mentioning only a few examples.

One related problem that was posed by Jakob Steiner (1796-1863) is the
following: For two circles, C inside D, if it is possible to ”fill” the space
between C and D by circles, Wi, for which all have exactly one point in
common with both C and D, and exactly one point in common with Wi�1

and Wi+1, then this will happen for any choice of first circle Wi.

As a mechanical system, billiards in an ellipse is also related to Pon-
celet’s theorem. Start with a point moving from one point of the interior
of an ellipse to another point of the interior of that ellipse, and continuing
doing so obeying the laws of reflection. Every line segment of this route will
be tangent to another ellipse which is confocal to the one we started with.
This was recently used to prove the existence of all knots in any elliptic
cylinder billiard.

A follow up question to Poncelet’s theorem that has been studied is: What
is the condition that makes it possible to have a n-polygon interscribed be-
tween two given conics? Cayley found an analytic answer to this question
in 1853. Almost 100 years later Lebesgue explained this conditions using
projective geometry and algebra. A modern proof is given by Gri�ths and
Harris (1987) [6, p. 3].

Gri�ths and Harris are two of the mathematicians that have worked on
the generalizing of Poncelet’s theorem and related problems to higher di-
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mensions and other curves called Poncelet curves. This is still an area of
active research.

In this text we have looked at some parts of the long history of Poncelet’s
theorem. It has not only inspired a lot of people to find new proofs and
solve interesting related problems in the past, it still is. Today researchers
in di↵erent areas of mathematics study its generalisations.
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