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We use the Polyakov-loop extended two-flavor quark-meson model as a low-energy effective model for
QCD to study the phase diagram in the μI–T plane where μI is the isospin chemical potential. In particular,
we focus on the Bose condensation of charged pions. At T ¼ 0, the onset of pion condensation is at
μI ¼ 1

2
mπ in accordance with exact results. The phase transition to a Bose-condensed phase is of second

order for all values of μI and in the Oð2Þ universality class. The chiral critical line joins the critical line for
pion condensation at a point whose position depends on the Polyakov-loop potential and the sigma mass.
For larger values of μI these curves are on top of each other. The deconfinement line enters smoothly the
phase with the broken Oð2Þ symmetry. We compare our results with recent lattice simulations and find
overall good agreement.
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I. INTRODUCTION

The phases of QCD as functions of the baryon chemical
potential μB or the quark chemical potential μ ¼ 1

3
μB,

and temperature T have been studied in detail since the
first phase diagram was proposed more than forty years
ago [1–3]. At vanishing baryon chemical potential, it is
possible to perform lattice simulations to calculate the
thermodynamic functions and the transition temperature
associated with chiral symmetry restoration and deconfine-
ment. For physical quark masses and two flavors, the
transition is a crossover at a temperature of approximately
155 MeV [4–7].
At nonzero baryon chemical potential, however,

Monte Carlo simulations are hampered by the so-called
sign problem, namely that the fermion determinant
becomes complex. Being complex, the usual interpreta-
tion of it as part of a probability distribution can no longer
be upheld. The sign problem in QCD at finite baryon
density has spurred the interest in QCD-like theories free
of this problem. This includes QCD with quarks in the

adjoint representation [8], two-color QCD [9], QCD at
finite isospin μI [10], and QCD in a magnetic field B [11].
These theories are all interesting in their own right; QCD
at finite isospin and QCD in a magnetic field are also
relevant for compact stars. In addition, the application of
Monte-Carlo methods allows a direct test of various
model approaches in the cases mentioned above. Such
a confrontation of model calculations with lattice
simulations of QCD in a magnetic field has been very
fruitful in understanding their strengths and limitations
[12,13].
Lattice simulations of QCD at finite isospin have been

performed in e.g., Refs. [14–18] with particular emphasis
on Bose condensation of charged pions for isospin chemi-
cal potentials above the zero-temperature critical value
μcI ¼ 1

2
mπ . Chiral perturbation theory (ChPT) [10,19–22],

which is a model-independent low-energy theory for QCD
valid at low densities has been used to study pion
condensation. ChPT predicts a second-order transition,
which is in agreement with lattice simulations. There have
also been a number of other approaches and model
calculations studying various aspects of the QCD phase
diagram at finite isospin density, including the resonance
gas model [23], random matrix models [24], the Nambu-
Jona-Lasinio (NJL) model [25–37], the quark-meson (QM)
model [38–41],1 and effective theory at asymptotically high
isospin [42].
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Finally, we mention that one expects another phase
transition at large isospin chemical potential. In pertur-
bation theory, one-gluon exchange gives rise to an
effective attractive interaction between u and d̄ quarks
leading to the formation of Cooper pairs [10]. The
transition from a Bose-Einstein condensate (BEC) to a
Bardeen-Cooper-Schrieffer (BCS) state is expected to be
an analytical crossover as the symmetry-breaking pattern
is the same.
As pointed out in Ref. [38], there is a mapping of the

quark-meson model at finite isospin and the corresponding
two-color quark-meson-diquark model at finite baryon
chemical potential. The neutral pion π0 is replaced by an
isovector triplet π. The charged pions π� are replaced by a
diquark-antidiquark pair Δ and Δ�, which instead of being
coupled to μI is now coupled to a baryon chemical potential
μB.

2 Since the gauge groups SUð2Þ and SUð3Þ are
fundamentally different, this mapping is valid for the
matter sector; once we couple the QM model to the
Polyakov loop, this identification is lost.
In the present paper, we study the QCD phase diagram at

finite temperature and isospin density using the PQM
model. The main conclusions of our work are
(1) The second order transition to a BEC state. The

transition is in theOð2Þ universality class. At T ¼ 0,
the transition is exactly at μI ¼ 1

2
mπ .

(2) The BEC and chiral transition lines meet at a point
ðμmeet

I ; TmeetÞ and coincide for larger isospin chemi-
cal potentials μI.

(3) The deconfinement and chiral transition lines
coincide in the noncondensed phase for a logarith-
mic Polyakov-loop potential and a sufficiently low
sigma mass.

(4) The deconfinement line penetrates smoothly into the
symmetry-broken phase.

These results are in agreement with the recent lattice
simulations of Refs. [16–18].
The paper is organized as follows. In Sec. II, we briefly

discuss the quark-meson model and in Sec. III we calculate
the effective potential in the mean-field approximation. In
Sec. IV, we discuss the coupling to the Polyakov loop,
while in Sec. V, we present the phase diagram in the μI–T
plane and compare it to recent lattice results. In
Appendix A, we list a few integrals needed in the
calculations, while Appendix B provides the reader with
some details of how the parameters of the quark-meson
model are determined.

II. QUARK-MESON MODEL

The Lagrangian of the two-flavor quark-meson model in
Minkowski space is

L ¼ 1

2
½ð∂μσÞð∂μσÞ þ ð∂μπ3Þð∂μπ3Þ�

þ ð∂μ þ 2iμIδ0μÞπþð∂μ − 2iμIδ
μ
0Þπ−

−
1

2
m2ðσ2 þ π23 þ 2πþπ−Þ − λ

24
ðσ2 þ π23 þ 2πþπ−Þ2

þ hσ þ ψ̄ ½i∂ þ μfγ
0 − gðσ þ iγ5τ · πÞ�ψ ; ð1Þ

where ψ is a color Nc-plet, a four-component Dirac spinor
as well as a flavor doublet

ψ ¼
�
u

d

�
; ð2Þ

and μf ¼ diagðμu; μdÞ, where μu and μd, are the quark
chemical potentials, μI is the isospin chemical potential,
τi (i ¼ 1, 2, 3) are the Pauli matrices in flavor space,
π ¼ ðπ1; π2; π3Þ, and π� ¼ 1ffiffi

2
p ðπ1 � iπ2Þ.

Apart from the global SUðNcÞ symmetry, the Lagrangian
(1) has a Uð1ÞB × SUð2ÞL × SUð2ÞR symmetry for h ¼ 0
and a Uð1ÞB × SUð2ÞV symmetry for h ≠ 0. When
μu ≠ μd, this symmetry is reduced to Uð1ÞB ×Uð1ÞI3L ×
Uð1ÞI3R for h ¼ 0 and Uð1ÞB × Uð1ÞI3 for h ≠ 0.
The number density associated with a chemical potential

μA is

nA ¼ −
∂V
∂μA ; ð3Þ

where V is the effective potential. The baryon and isospin
densities can be expressed in terms of the quark densities nu
and nd as

nB ¼ 1

3
ðnu þ ndÞ; ð4Þ

nI ¼ nu − nd: ð5Þ
Equations (4) and (5) together with the chain rule can be
used to derive relations among the baryon and isospin
chemical potentials and the quark chemical potentials.
We have

nI ¼ −
∂V
∂μI

¼ −
�∂V
∂μu −

∂V
∂μd

�

¼ −
�∂μu
∂μI

∂V
∂μu þ

∂μd
∂μI

∂V
∂μd

�
: ð6Þ

This yields

∂μu
∂μI ¼ −

∂μd
∂μI ¼ 1: ð7Þ

Similarly, we find ∂μu∂μB ¼
∂μd∂μB ¼ 1

3
. From this, we find the

following relations among the chemical potentials2The diquarks are the baryons of two-color QCD.
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μu ¼
1

3
μB þ μI; ð8Þ

μd ¼
1

3
μB − μI: ð9Þ

Introducing the quark chemical potential μ ¼ 1
3
μB and

inverting the relations (8)–(9), we find

μ ¼ 1

2
ðμu þ μdÞ; ð10Þ

μI ¼
1

2
ðμu − μdÞ: ð11Þ

III. EFFECTIVE POTENTIAL

The expectation values of the fields are written as

σ ¼ ϕ0; π1 ¼ π0; ð12Þ

where ϕ0 and π0 are constant in space. The former is the
usual chiral condensate, while the latter represents a
homogeneous pion condensate. A pion condensate breaks
the UI3Lð1Þ ×UI3Rð1Þ symmetry to UI3Vð1Þ or the UI3ð1Þ
symmetry. IntroducingΔ ¼ gϕ0 and ρ ¼ gπ0, the tree-level
potential in Euclidean space can be written as

V0 ¼
1

2

m2

g2
Δ2 þ 1

2

m2 − 4μ2I
g2

ρ2

þ λ

24g4
ðΔ2 þ ρ2Þ2 − h

g
Δ: ð13Þ

Expressing the parameters in Eq. (1) in terms of the sigma
massmσ, the pion massmπ, the pion decay constant fπ , and
the constituent quark mass mq, we find

m2 ¼ −
1

2
ðm2

σ − 3m2
πÞ; λ ¼ 3

ðm2
σ −m2

πÞ
f2π

; ð14Þ

g2 ¼ m2
q

f2π
; h ¼ m2

πfπ: ð15Þ

Inserting these relations into (13), we can write the tree-
level potential as

V0 ¼ −
1

4
f2πðm2

σ − 3m2
πÞ
Δ2 þ ρ2

m2
q

− 2μ2I f
2
π
ρ2

m2
q

þ 1

8
f2πðm2

σ −m2
πÞ
ðΔ2 þ ρ2Þ2

m4
q

−m2
πf2π

Δ
mq

: ð16Þ

The quark energies can be read off from the zeros of the
determinant of the Dirac operator. One finds

Eu ¼ Eð−μIÞ; Ed ¼ EðμIÞ; ð17Þ

Eū ¼ EðμIÞ; Ed̄ ¼ Eð−μIÞ; ð18Þ

where we have defined

EðμIÞ ¼
h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ Δ2

q
þ μI

�2 þ ρ2
i1
2

: ð19Þ

Note that the quark energies explicitly depend on μI . In the
following we choose μI > 0, but similar results are
obtained for μI < 0.
The one-loop contribution to the effective potential at

T ¼ μB ¼ 0 is

V1 ¼ −Nc

Z
p
ðEu þ Ed þ Eū þ Ed̄Þ; ð20Þ

where the integral is in d ¼ 3 − 2ϵ dimensions (See
Appendix A). The integral in Eq. (20) is ultraviolet
divergent and in order to isolate the divergences, we need
to expand the energies in powers of μI to the appropriate
order. This yields

Vdiv ¼ −4Nc

Z
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2 þ ρ2

q
þ μ2Iρ

2

2ðp2 þ Δ2 þ ρ2Þ32
�

¼ 4Nc

ð4πÞ2
�

eγEΛ2

Δ2 þ ρ2

�
ϵ

× ½ðΔ2 þ ρ2Þ2Γð−2þ ϵÞ − 2μ2Iρ
2ΓðϵÞ�: ð21Þ

The remainder Vfin is finite and reads

Vfin ¼ V1 − Vdiv: ð22Þ

Note that Vfin can be evaluated directly in d ¼ 3 dimen-
sions. In the present case, Vfin must be evaluated numeri-
cally. Using the expressions for the integrals listed in
Appendix A, we can write the unrenormalized one-loop
effective potential V ¼ V0 þ V1 as

V ¼ 1

2

m2

g2
Δ2 þ 1

2

m2 − 4μ2I
g2

ρ2 þ λ

24g4
ðΔ2 þ ρ2Þ2 − h

g
Δ

þ 2Nc

ð4πÞ2
�

Λ2

Δ2 þ ρ2

�
ϵ
�
ðΔ2 þ ρ2Þ2

�
1

ϵ
þ 3

2

�
− 4μ2Iρ

2
1

ϵ

�

þ Vfin þOðϵÞ; ð23Þ

which contains poles in ϵ. These poles are removed
by mass and coupling constant renormalization. In the
MS scheme this is achieved by making the substitu-
tions m2 → Zm2m2, λ → Zλλ, g2 → Zg2g

2, and h → Zhh,
where
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Zm2 ¼ 1þ 4Ncg2

ð4πÞ2ϵ ; Zλ ¼ 1þ 8Nc

ð4πÞ2ϵ
�
g2 − 6

g4

λ

�
; Zg2 ¼ 1þ 4Ncg2

ð4πÞ2ϵ ; Zh ¼ 1þ 2Ncg2

ð4πÞ2ϵ ; ð24Þ

The renormalized one-loop effective potential then reads

V1−loop ¼
1

2

m2

MS

g2
MS

Δ2 þ 1

2

m2

MS
− 4μ2I

g2
MS

ρ2 þ λMS

24g4
MS

ðΔ2 þ ρ2Þ2 − hMS

gMS

Δ

þ 2Nc

ð4πÞ2
	
½ðΔ2 þ ρ2Þ2 − 4μ2Iρ

2� log
�

Λ2

Δ2 þ ρ2

�
þ 3

2
ðΔ2 þ ρ2Þ2



þ Vfin; ð25Þ

where the subscript MS indicates that the parameters are running with the renormalization scale Λ. Using Zg2 in

Eq. (24) and the wavefunction renormalization factor Zϕ ¼ 1 − 4Ncg2

ð4πÞ2ϵ, it is seen that the fields Δ and ρ do not run. In

Appendix B, we discuss how one can express the parameters in the MS scheme in terms of physical masses and
couplings. Using Eqs. (B14)–(B17), the final expression for the one-loop effective potential in the large-Nc limit
becomes

V1−loop ¼
3

4
m2

πf2π

	
1 −

4m2
qNc

ð4πÞ2f2π
m2

πF0ðm2
πÞ


Δ2 þ ρ2

m2
q

−
1

4
m2

σf2π

	
1þ 4m2

qNc

ð4πÞ2f2π

��
1 −

4m2
q

m2
σ

�
Fðm2

σÞ þ
4m2

q

m2
σ
− Fðm2

πÞ −m2
πF0ðm2

πÞ
�


Δ2 þ ρ2

m2
q

− 2μ2I f
2
π

	
1 −

4m2
qNc

ð4πÞ2f2π

�
log

Δ2 þ ρ2

m2
q

þ Fðm2
πÞ þm2

πF0ðm2
πÞ
�


ρ2

m2
q

þ 1

8
m2

σf2π

	
1 −

4m2
qNc

ð4πÞ2f2π

�
4m2

q

m2
σ

�
log

Δ2 þ ρ2

m2
q

−
3

2

�
−
�
1 −

4m2
q

m2
σ

�
Fðm2

σÞ þ Fðm2
πÞ þm2

πF0ðm2
πÞ
�
 ðΔ2 þ ρ2Þ2

m4
q

−
1

8
m2

πf2π

�
1 −

4m2
qNc

ð4πÞ2f2π
m2

πF0ðm2
πÞ
� ðΔ2 þ ρ2Þ2

m4
q

−m2
πf2π

�
1 −

4m2
qNc

ð4πÞ2f2π
m2

πF0ðm2
πÞ
�
Δ
mq

þ Vfin: ð26Þ

The finite-temperature part of the one-loop effective potential at μB ¼ 0 is

VT ¼ −2NcT
Z
p
flog½1þ e−βEu � þ log½1þ e−βEd � þ log½1þ e−βEū � þ log½1þ e−βEd̄ �g: ð27Þ

The complete one-loop effective potential in the QM
model in the large-Nc limit is then the sum of Eqs. (26) and
(27). Note that Eq. (27) vanishes at T ¼ 0 and that the only
μI-dependence of V1−loop is line three of Eq. (26).

IV. COUPLING TO THE POLYAKOV LOOP

In a pure gauge theory, the Polyakov loop is an order
parameter for deconfinement, as first discussed in
Refs. [43,44]. In QCD with dynamical quarks, it is an
approximate order parameter. This is analogous to the
quark condensate which is an exact order parameter for
chiral symmetry for massless quark but only an approxi-
mate order parameter for massive quarks. The Polyakov
loop is defined as the trace of the thermal Wilson line,
where the thermal Wilson line L is given by

LðxÞ ¼ P exp

�
i
Z

β

0

dτA4ðx; τÞ
�
; ð28Þ

where A4 ¼ iA0 is the temporal component of the gauge
field in Euclidean space, A0 ¼ taAa

0 , ta ¼ 1
2
λa are the

generators of SUð3Þc gauge group, λa are the Gell-Mann
matrices, and P denotes path ordering. The background
field A4 in the Polyakov gauge is

A4 ¼ t3A3
4 þ t8A8

4; ð29Þ

where A3
4 and A8

4 are time independent fields. Substituting
Eq. (29) into Eq. (28), the Wilson line becomes
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L ¼

0
B@

eiðϕ1þϕ2Þ 0 0

0 eið−ϕ1þϕ2Þ 0

0 0 e−2iϕ2

1
CA; ð30Þ

where we have defined ϕ1 ¼ 1
2
βA3

4 and ϕ2 ¼ 1

2
ffiffi
3

p βA8
4.

Introducing the Polyakov loop variables3

Φ ¼ 1

Nc
TrL; Φ̄ ¼ 1

Nc
TrL†; ð31Þ

the finite-temperature fermion contribution can then be
written as

VT ¼ −2T
Z

d3p
ð2πÞ3 fTr log½1þ 3ðΦþ Φ̄e−βEuÞe−βEu

þ e−3βEu � þTr log½1þ 3ðΦ̄þΦe−βEūÞe−βEū þ e−3βEū �
þTr log½1þ 3ðΦþ Φ̄e−βEdÞe−βEd þ e−3βEd �
þTr log½1þ 3ðΦ̄þΦe−βEd̄Þe−βEd̄ þ e−3βEd̄ �g: ð32Þ

Equation (32) reduces to Eq. (27) upon setting
Φ ¼ Φ̄ ¼ 1, i.e., we obtain the finite-temperature part of
the effective potential in the quark-meson model.
The Polyakov loop has now been coupled to the quark

sector of the model; we next need to include the contri-
bution to the free energy density from the gauge sector.
This is a phenomenological potential, which is a function of
Φ and Φ̄, and is required to reproduce the pressure for pure-
glue QCD calculated on the lattice for temperatures around
the transition temperature. There are several potentials on
the market [45–48] with similar properties. We will first be
using the polynomial potential of Ref. [45]

U
T4

¼ −
1

2
b2ΦΦ̄ −

1

6
b3ðΦ3 þ Φ̄3Þ þ 1

4
b4ðΦΦ̄Þ2; ð33Þ

where the constants are

b2 ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

; ð34Þ

b3 ¼
3

4
; ð35Þ

b3 ¼
30

4
; ð36Þ

with a0 ¼ 6.75, a1 ¼ −1.95, a2 ¼ 2.625, and a3 ¼ −7.44.
We will also use the logarithmic Polyakov-loop potential

of Ref. [46]

U
T4

¼ −
1

2
aΦΦ̄þ b log½1 − 6ΦΦ̄þ 4ðΦ3 þ Φ̄3Þ

− 3ðΦΦ̄Þ2�; ð37Þ

with

a ¼ 3.51 − 2.47

�
T0

T

�
þ 15.2

�
T0

T

�
2

; ð38Þ

b ¼ −1.75
�
T0

T

�
3

: ð39Þ

The temperature T0 is defined by

T0ðNf; μIÞ ¼ Tτe−1=ðα0bðμIÞÞ; ð40Þ

where we have modeled the μI-dependence in the sameway
as the μB-dependence in [47]

bðμIÞ ¼
1

6π
ð11Nc − 2NfÞ − bμI

μ2I
T2
τ
: ð41Þ

The parameter Tτ ¼ 1.77 GeV and α0 ¼ 0.304 are deter-
mined such that the transition temperature for pure glue at
μI ¼ 0 is T0 ¼ 270 MeV [49]. The curvature of the
deconfinement transition in μI direction is governed by
bμI , which is chosen as

bμI ¼
16

π
Nf: ð42Þ

The full thermodynamic potential is now given by the sum
of Eqs. (26), (32), and Eq. (33) or (37) respectively. From
Eqs. (17) and (18), it is easy to see that Eq. (32) is real, thus
there is no sign problem at μB ¼ 0. We also note that
Eqs. (32), (33) and (37) vanish in the limit T → 0 and the
PQM model therefore reduces to the QM model.
In Fig. 1, we show the normalized chiral condensate Δ

mq
(blue lines) and the expectation value of the Polyakov loop
Φ (red lines) as functions of the temperature T at μB ¼
μI ¼ 0 using the polynomial potential (33). The blue
dashed line is the chiral condensate obtained in the QM
model while the blue solid line is obtained in the PQM
model, i.e., with the coupling between the order parame-
ters. Similarly, the red dashed line is obtained using the
pure-glue potential Eq. (33) for Φ (with the Nf dependent
T0 ¼ 208 MeV), while the red solid line is obtained in the
PQM model. We notice that the critical temperature for the
chiral transition moves to the right, i.e., to higher temper-
atures while the transition temperature for deconfinement
moves to the left. They are now within a few MeVof each
other, with the deconfinement transition occurring at
slightly lower temperature than the chiral transition.

3We express the various contributions to the effective potential
in terms of Φ and Φ̄, although they are equal in the present case.
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V. PHASE DIAGRAM

In this section, we discuss the phase diagram in the
μI–T plane. In the numerical work below, we set Nc ¼ 3,
mπ ¼ 140 MeV, and fπ ¼ 93 MeV. We vary mσ between
500 and 600 MeV.
In Fig. 2, we show the chiral (blue line) and pion

condensates (red line) as functions of μI at zero temper-
ature. We notice the onset of pion condensation which takes
place at exactly μI ¼ 1

2
mπ as we will discuss in some detail

below. Moreover, the quark condensate decreases with μI
once the pion condensate is nonzero. Finally, all physical
quantities, are independent of μI from μI ¼ 0 all the way
up to μI ¼ 1

2
mπ . For example, the effective potential is

independent of μI , implying via Eq. (3) that the isospin
density vanishes. This is an example of the Silver Blaze
property [50] and was discussed in detail in the context of
pion condensation in Refs. [38,41]. We refer to this region
as the vacuum phase.
In Fig. 3, we show the phase diagram in the μI–T plane

for μB ¼ 0 without the Polyakov loop, i.e., for the quark-
meson model. The blue line is the transition line for the
chiral transition and the green line is the transition line for
condensation of πþ, The blue line is defined by the
inflection point of the order parameter Δ as functions of

T for fixed μI and the black dotted line indicates the
crossover from a pion condensate to a BCS state with
Cooper pairs.
The onset of pion condensation at T ¼ 0 is for

μI ¼ 1
2
mπ , which is guaranteed by the way we have

determined the parameters in the Lagrangian. This was
explicitly demonstrated in Ref. [41]. We can understand
this result by considering that the energy of a zero-
momentum pion in the vacuum phase is mπ − 2μI . If
condensations of pions is a second order transition, it
must take place exactly at a point where the (medium-
dependent) mass of the pion drops to zero, because in
the condensed phase there is a massless Nambu-
Goldstone mode associated with the breaking of a
Uð1Þ symmetry. If one uses matching at tree level, there
will be finite corrections to this relation. Likewise, if one
uses the effective potential itself to define the pion mass,
one uses the pion self-energy at zero external momentum
and so the pole of the propagator is not at the physical
mass. Again there will be finite corrections and in some
cases, the deviation from the exact result can be
significant [38].
The condensation of pions is always a second-order

transition with mean-field critical exponents. The order of
the transition to a BEC is in agreement with the functional
renormalization group application to the QM model in
Ref. [38]. The critical isospin chemical potential is
fairly constant for temperatures up to approximately
T ¼ 100 MeV, after which it rapidly increases. For large
values of μI the critical temperature for pion condensation
stays at Tρ ≈ 187 MeV. We also notice that the chiral
transition temperature line Tχ meets the critical tempera-
ture line for pion condensation Tρ at ðμmeet

I ; TmeetÞ≈
ð105; 159Þ MeV, and coincide for larger values of μI.
As we have seen, we enter the BEC phase when μI

exceeds 1
2
mπ . As μI increases the quark mass Δ decreases

as shown in Fig. 2. Once μI > Δ, the u-quark and d̄-quark
energies, Eqs. (17) and (18), are no longer minimized for
p ¼ 0, but for p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2I − Δ2

p
. This change is a signal of
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FIG. 2. Chiral (blue line) and pion condensates (red line) Δ and
ρ as functions of the isospin chemical potential μI at T ¼ 0.
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FIG. 3. Phase diagram in the μI–T plane for μB ¼ 0 without
Polyakov loop. See main text for details.
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q
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FIG. 1. Normalized chiral condensate Δ
mq

(blue lines) and Poly-
akov loop Φ (red lines) as functions of the temperature T for
μB ¼ μI ¼ 0. See main text for details.
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the BEC-BCS crossover. Although the BEC-BCS cross-
over is not particularly sharp, it is typically defined by the
condition μI > Δ [33,51]. The crossover starts at μI ¼
113 MeV for T ¼ 0 and is almost independent of the
temperature, as can be seen from the figure.
In Fig. 4, we show the phase diagram in the μI–T plane at

zero baryon chemical potential with the Polyakov loop and
U
T4 given by (33). The green line is the critical line for Bose-
Einstein condensation of charged pions, the red line is the
critical line for deconfinement, and the blue line is the
critical line for the chiral transition. Finally, the black
dotted line indicates the BEC-BCS transition line. The
blue and red lines are defined by the inflection point of
the order parameters Δ andΦ as functions of T for fixed μI .
As in the QM model, the transition temperature line Tχ

joins the critical temperature for pion condensation at
ðμmeet

I ; TmeetÞ ≈ ð116; 187Þ MeV. The transition line for
deconfinement lies approximately 15 MeV below the chiral
transition line for μI ¼ 0 increasing somewhat for large
values of μI.
The gap between the chiral and deconfinement line can

be reduced by using a logarithmic Polyakov potential (37)
instead of Eq. (33) and decreasing the sigma mass. For
mσ ¼ 500 MeV the two lines basically coincide at T ¼ 0
as seen in Fig. 5. The chiral and deconfinement transition
line also meet the pion-condensed line at a point for a
smaller value of μI as compared to Fig. 4, ðμmeet

I ; TmeetÞ≈
ð75; 164Þ MeV.
For completeness, we show in Fig. 6 the phase diagram

in the standard mean-field approximation (sMFA), which is
a common approximation used in the literature, where one
ignores the loop corrections to the vacuum potential, i.e.,
uses Eq. (16) instead of Eq. (26). We find the critical
temperature for pion condensation to be smaller than for the
one-loop potential in Fig. 4. We also find a first-order
transition of the pion condensate above a critical isospin
chemical potential μI ≈ 86 MeV, indicated by the black dot
in the figure. This critical point is absent once we go
beyond the sMFA, at least in the region of μI consid-
ered here.

Our phase diagram is in good qualitative agreement
with that obtained by Brandt, Endrődi, Schmalzbauer
using lattice simulations [16–18], in particular if we use a
logarithmic Polyakov loop potential and choose a lower
sigma mass of 500 MeV. We believe that the quantitative
differences (essentially the temperature dependence of the
various transition lines) can mainly be attributed to the
fact that we have two light flavors, while they consider
2þ 1 flavors; e.g., the deconfinement transition temper-
ature decreases with the number of quarks and our
transition line is consistently higher.4 They find that
chiral and BEC transition lines meet at a triple point,
beyond which they coincide. The latter transition is again
found to be second order for all values of μI and the
scaling analysis is consistent with the Oð2Þ universality
class. They computed contour lines of the expectation
values of the renormalized Polyakov loop Φ for values
0.2, 0.4, 0.6, 0.8, and 1.0. Given their renormalization
prescription for the Polyakov loop, developed in [52], a
possible choice for Tdec is Φ ¼ 1, which implies that it
coincides with Tχ within errors [18]. Finally, we mention
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FIG. 5. Phase diagram in the μI–T plane for μB ¼ 0 with the
Polyakov-loop potential Eq. (37). See main text for details.
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FIG. 6. Phase diagram in the μI–T plane for μB ¼ 0 in the
standard mean field approximation with the Polyakov-loop
potential Eq. (33). See main text for details.
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FIG. 4. Phase diagram in the μI–T plane for μB ¼ 0 with the
Polyakov-loop potential Eq. (33). See main text for details.

4By using a smaller value of T0, we can bring down the
transition line.
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that the deconfinement line penetrates smoothly into the
BEC phase and that they identify this line with the BEC-
BCS transition.
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APPENDIX A: INTEGRALS

With dimensional regularization, the momentum integral
is generalized to d ¼ 3 − 2ϵ spatial dimensions. We define
the dimensionally regularized integral by

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd ; ðA1Þ

where Λ is the renormalization scale in the modified
minimal subtraction scheme MS.
In order to calculate the vacuum part of the effective

potential, we need the vacuum integrals

Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
¼ −

M4

ð4πÞ2
�
eγEΛ2

M2

�
ϵ

Γð−2þ ϵÞ

¼ −
M4

2ð4πÞ2
�
Λ2

M2

�
ϵ
�
1

ϵ
þ 3

2
þOðϵÞ

�
; ðA2Þ

Z
p

1

ðp2 þM2Þ32 ¼
4

ð4πÞ2
�
eγEΛ2

M2

�
ϵ

ΓðϵÞ

¼ 4

ð4πÞ2
�
Λ2

M2

�
ϵ
�
1

ϵ
þOðϵÞ

�
: ðA3Þ

APPENDIX B: PARAMETER FIXING

In this Appendix, we briefly discuss the fixing of
the model parameters. At tree level, the relations between
these parameters and the physical quantities are given
by Eqs. (14) and (15). In the on-shell scheme, the counter-
terms are chosen such that they exactly cancel the loop
corrections to the self-energies and couplings evaluated
on the mass shell, and such that the residues evaluated
on shell are unity. Consequently, the renormalized param-
eters are independent of the renormalization scale and
satisfy the tree-level relations [54–56]. In the MS scheme,
the counterterms are chosen so that they cancel only the
poles in ϵ of the loop corrections. The bare parameters are
the same in the two schemes, which means that we can
relate the corresponding renormalized parameters. The
running parameters in the MS scheme can therefore be
expressed in terms of the physical masses mσ, mπ , and mq

as well as the pion decay constant fπ . In Ref. [53] we
found

m2

MS
¼ m2 þ 8ig2Nc

�
Aðm2

qÞ þ
1

4
ðm2

σ − 4m2
qÞBðm2

σÞ −
3

4
m2

πBðm2
πÞ
�
− δm2

MS

¼ m2 þ 4g2Nc

ð4πÞ2
�
m2 log

Λ2

m2
q
− 2m2

q −
1

2
ðm2

σ − 4m2
qÞFðm2

σÞ þ
3

2
m2

πFðm2
πÞ
�
; ðB1Þ

λMS ¼ λ −
12ig2Nc

f2π
ðm2

σ − 4m2
qÞBðm2

σÞ þ
12ig2Nc

f2π
m2

πBðm2
πÞ − 4iλg2Nc½Bðm2

πÞ þm2
πB0ðm2

πÞ� − δλMS

¼ λþ
	
12g2Nc

ð4πÞ2f2π

�
ðm2

σ − 4m2
qÞ
�
log

Λ2

m2
q
þ Fðm2

σÞ
�
þm2

σ

�
log

Λ2

m2
q
þ Fðm2

πÞ þm2
πF0ðm2

πÞ
�

−m2
π

�
2 log

Λ2

m2
q
þ 2Fðm2

πÞ þ F0ðm2
πÞ
��


; ðB2Þ

g2
MS

¼ g2 − 4ig4Nc½Bðm2
πÞ þm2

πB0ðm2
πÞ� − δg2

MS
¼ m2

q

f2π

	
1þ 4g2Nc

ð4πÞ2
�
log

Λ2

m2
q
þ Fðm2

πÞ þm2
πF0ðm2

πÞ
�


; ðB3Þ

hMS ¼ h − 2ig2Ncm2
πfπ½Bðm2

πÞ −m2
πB0ðm2

πÞ� − δhMS ¼ h

	
1þ 2g2Nc

ð4πÞ2
�
log

Λ2

m2
q
þ Fðm2

πÞ −m2
πF0ðm2

πÞ
�


; ðB4Þ

where Aðm2
qÞ, Bðp2Þ, and B0ðp2Þ are integrals in d ¼ 4 − 2ϵ dimensions in Minkowski space in analogy to Eq. (A1). Going

to Euclidean space, they can be straightforwardly computed and read
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Aðm2
qÞ ¼

Z
k

1

k2 −m2
q

¼ im2
q

ð4πÞ2
�
Λ2

m2
q

��
1

ϵ
þ 1þOðϵÞ

�
; ðB5Þ

Bðp2Þ ¼
Z
k

1

ðk2 −m2
qÞ½ðkþ pÞ2 −m2

q�

¼ i
ð4πÞ2

�
Λ2

m2
q

��
1

ϵ
þ Fðp2Þ þOðϵÞ

�
; ðB6Þ

B0ðp2Þ ¼ i
ð4πÞ2 F

0ðp2Þ; ðB7Þ

where we have defined

Fðp2Þ ¼ 2 − 2r arctan

�
1

r

�
; ðB8Þ

F0ðp2Þ ¼ 4m2
qr

p2ð4m2
q − r2Þ arctan

�
1

r

�
−

1

p2
; ðB9Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

q

p2 − 1

q
.

The running parameters satisfy the following renormal-
ization group equations

Λ
dm2

MS
ðΛÞ

dΛ
¼

8Ncm2

MS
ðΛÞg2

MS
ðΛÞ

ð4πÞ2 ; ðB10Þ

Λ
dg2

MS
ðΛÞ

dΛ
¼

8Ncg4MS
ðΛÞ

ð4πÞ2 ; ðB11Þ

Λ
dλMSðΛÞ

dΛ
¼ 16Nc

ð4πÞ2 ½λMSðΛÞg2MS
ðΛÞ − 6g4

MS
ðΛÞ�; ðB12Þ

Λ
dhMSðΛÞ

dΛ
¼

4Ncg2MS
ðΛÞhMSðΛÞ
ð4πÞ2 : ðB13Þ

The solutions to Eqs. (B10)–(B13) are

m2

MS
ðΛÞ ¼ m2

0

1 − 4g2
0
Nc

ð4πÞ2 log
Λ2

Λ2
0

: ðB14Þ

g2
MS

ðΛÞ ¼ g20

1 − 4g2
0
Nc

ð4πÞ2 log
Λ2

Λ2
0

; ðB15Þ

λMSðΛÞ ¼
λ0 −

48g4
0
Nc

ð4πÞ2 log Λ2

Λ2
0�

1 − 4g2
0
Nc

ð4πÞ2 log
Λ2

Λ2
0

�
2
; ðB16Þ

hMSðΛÞ ¼
h0

1 − 2g2
0
Nc

ð4πÞ2 log
Λ2

Λ2
0

; ðB17Þ

where m2
0, g

2
0, λ0 and h0, are the values of the running

parameters at the scale Λ0. We choose Λ0 to satisfy

log
Λ2
0

m2
q
þ Fðm2

πÞ þm2
πF0ðm2

πÞ ¼ 0: ðB18Þ

One can now evaluate Eqs. (B1)–(B4) at the scale Λ ¼ Λ0

to find m2
0, λ0, g

2
0, and h0. Inserting Eqs. (B14)–(B17) into

Eq. (25) using the results for m2
0, λ0, g

2
0, and h0, we obtain

the final result Eq. (26).
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