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Abstract 
This paper applies cointegration tests to identify cryptocurrency pairs which can be used in 

pairs trading strategies. The aim of this research is twofold. First, I want to examine 

cointegration in a system of bitcoin, dashcoin, dogecoin and litecoin. In the second part, I 

create pairs trading strategies in order to determine whether excess return can be made, 

compared to a simple buy and hold approach. The results find evidence of cointegration 

between the cryptocurrencies and positive profitability using pairs trading. By creating a 

portfolio in which the funds are equally allocated to the strategies with an open position, 

excess return can be made. 

 
Keywords: cryptocurrency, cointegration, pairs trading  
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1. Introduction 
The cryptocurrency market has since its origin grown tremendously and become popular for 

investors and researchers worldwide. The most known cryptocurrency, bitcoin, was created in 

2008 and started trading at a price of $0.003 American dollars in 2010. The 17th of December 

2017, bitcoin peaked at a price of $19,783.06. The opportunity to make high returns in short 

time resulted in large investments from both speculators and professionals, which created a 

high demand and rapidly increasing prices. The cryptocurrency market is susceptible of being 

a bubble (Cheah and Fry, 2015) and is compared to the dot-com bubble of 1994 

(Folkinshteyn, Lennon and Reilly, 2015).  

 

Pairs trading is aiming to be a market-neutral statistical arbitrage strategy, developed in the 

early mid 1980s, which simultaneously matches a long position with a short position in a pair 

of highly correlated assets. The underlying premise in relative pricing is that assets, with 

similar characteristics, must be priced more or less the same (Vidyamurthy, 2004). Profits are 

generated when the spread between two correlated assets revert back to its historical mean 

after deviating from their equilibrium relationship. One of the most cited papers in the pairs 

trading literature is the work of Gatev (2006). The study back-tested pairs trading on U.S. 

equities between 1962 and 2002, yielding 11% annualized excess return. However, Do and 

Faff (2010) replicated the work of Gatev (2006) and found evidence of decreasing profits 

using the strategy, due to growing popularity and increased competition among arbitregeurs. 

 

Acharya and Pedersen (2005) found evidence of pairs trading profitability being negatively 

correlated with market liquidity, while Do and Faff (2010) argued that the strategy performs 

stronger during longer periods of high volatility. The cryptomarket has since its origin been 

subject to a high degree of volatility. In addition, the liquidity is lower than other emerged 

currencies (Carrick, 2016), making cryptocurrencies a candidate for excess return using pairs 

trading.  

 

The pricing mechanism of cryptocurrencies is studied in Sovbetov (2018), Cheah and Fry 

(2015) as well as Bouoiyour, Tiwari, Selmi & Olayeni (2016). Sovbetov (2018) found 

evidence of Google search frequency for “Bitcoin”, “BTC” or “Blockchain” being fairly 

correlated with bitcoin and altcoin prices, making it a significant explanatory factor of 

cryptocurrency prices. The work of Sovbetov (2018) is consistent with Aalborg, Molnár & 

Vries (2018) who found that the trading volume of bitcoin can be predicted from google 

search for “Bitcoin”. Cheah and Fry (2015) found empirical evidence which supported that 
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the fundamental price of bitcoin is zero. However, Bouoiyour et al (2016) argues that 

cryptocurrencies may be driven by long-term fundamentals while short-term fluctuations are a 

result of news, media coverage, hacking, political regulations and other external factors.  

 

Pairs trading relies on two highly correlated assets. In order to find suitable assets, three 

commonly methods are applied to pairs trading in the literature: the distance model, 

cointegration and stochastic spread. Gatev (2006) selected pairs and created trading signals 

according to the distance model but Do, Faff and Hamza (2006) argued that this approach 

provided little help in forecasting. Elliott, Hoek and Malcolm (2005) is the most referenced 

work with regards to pairs trading using the stochastic spread method. However, this thesis 

will take the basis of Vidyamurthy (2004) who developed the framework for pairs trading 

using cointegration.   

 

Cointegration, introduced by Engle and Granger (1987), is a common method to determine if 

there is a cause-effect relationship between two time series variables (Vidyamurthy, 2004). In 

a multivariate case, the Johansen test is commonly used to determine cointegration in a 

system of more than two time series (Johansen, 1988). If two series are said to be 

cointegrated, it exists a long-run equilibrium between them, and a short-run deviation from 

equilibrium would be corrected for in a future period. However, from a financial theory 

perspective, two assets which are moving together in the long-run would be in violation of the 

efficient market hypothesis (Schleifer, 2000). In addition, decreased diversification effect is 

another implication of cointegration for investors who seek to minimize risks (Balarezo, 

2010). 

 

The examined cryptocurrencies in this paper are bitcoin, dogecoin, litecoin and dashcoin. 

These are selected based on their relatively longer existence compared to other 

cryptocurrencies1. After conducting both the Engle and Granger approach and the Johansen 

test, the vector error correction model (VECM) is executed in order to reveal the short- and 

long-term effects of one cryptocurrency on another. The pairs trading strategy is conducted in 

the last part of the thesis, where the spread is estimated by regression. In this thesis, there was 

evidence of three cointegration relationships between the examined cryptocurrencies, and 

positive profitability using the pairs trading strategy. 

 

                                                
1  Ripple is not considered due to its different characteristics 
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2. Overview of studied cryptocurrencies 
A cryptocurrency is a digital asset with the purpose to serve as a medium of exchange, 

functioning in a similar matter as fiat currencies (Broek & Sharif, 2018). Cryptocurrencies are 

considered to be decentralized, meaning no central authority, government or corporation 

possess access to an individual’s funds or private information. In other words, third parties 

such as banks or financial institutions are not needed. The decentralized control works 

through a distributed ledger technology, typically known as blockchain. According to the 

coinmarketcap website, more than 2000 cryptocurrencies exists, serving different purposes 

and functions. In this chapter, a brief overview of the blockchain technology, as well as the 

cryptocurrencies involved in this thesis, will be presented. 

 

2.1 Blockchain  
Blockchain is the decentralized, public digital ledger used to record transactions between two 

parties in a verifiable and permanent way. Blockchain is a chain of blocks that contains 

information which are linked using cryptography. Each block contains a cryptographic hash, 

containing information about the transaction, who is participating in the transaction and 

information of how the block distinguishes itself from other blocks. The blocks are secured 

and bound to each other using cryptographic principles. As an example, when one party 

initiates a transaction process by creating a block, this block is verified by thousands of 

computers distributed in the network. The verified block, which is unique with a unique 

history, is added to the chain. Therefore, falsifying a single record would imply falsifying the 

entire chain, which is virtually impossible.  

 

There are no transaction costs associated with blockchain, but the so called “proof of work” 

system, used to validate transactions and create new blocks, is not free. Miners compete 

against each other to complete transaction, by solving advanced mathematical puzzles, and 

are rewarded in cryptocurrency. The proof of work system is also a mechanism used to slow 

down transactions, with the purpose of making it impossible to tamper with the blocks, due to 

the amount of time it would take to recalculate the proof of work for all blocks.   

 

The blockchain is maintained by a peer-to-peer network, which is a collection of peers 

(commonly known as nodes) that are interconnected to each other. Accordingly, there is no 

need for a central point of storage as the information is constantly recorded and interchanged 

between all parties in the network. Each node verifies the block which is added to the 
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blockchain, making it almost impossible for a tampered block to be accepted within the 

system.  

 

As the existing blockchain is public, which everyone can join, developers can implement new 

technology with the intent to improve certain features, commonly known as a fork. 

Cryptocurrencies that are emerged from a fork or ICO (initial coin offering) is defined as 

altcoins.  

 

2.2 Bitcoin  
Bitcoin was the first ever cryptocurrency, created in 2008 by the unknown person/group 

named Satoshi Nakamoto. It serves as an open-source network where transactions and the 

issuing of bitcoins are carried out collectively through the network. Bitcoin uses peer-to-peer 

technology and is exchanged through the digital ledger blockchain. The verification and 

connection of blocks happens through mining. Mining occurs when computer power is used 

to solve advanced mathematical puzzles which yields a hash. The hash is the link between the 

new block and the old chain. Miners are competing in order to solve the puzzles and are 

compensated in bitcoins. There exists a total amount of 21 million bitcoins that can be mined, 

and today more than 16 million bitcoins are released.  

 

Per May 2019, bitcoin accounts for more than 50% of the total market capitalization of 

cryptocurrencies with a market cap of more than $120 billion dollars, making it by far the 

largest cryptocurrency.  

 

2.3 Litecoin 
Litecoin was announced in 2011 by Charlie Lee and is the 5th largest cryptocurrency with 

regards to market capitalization, with a market cap of more than $5 billion dollars. Litecoin 

serves many of the same features as bitcoin. However, litecoin manage to confirm 

transactions faster and can handle a higher volume of transactions. In order to create a new 

block, litecoin uses approximately 2.5 minutes, in contrast to bitcoin which uses 

approximately 10 minutes. Litecoin uses blockchain in order to verify transactions, and there 

is a maximum of 84 million litecoins that can be mined. 
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2.4 Dogecoin  
Dogecoin was introduced in 2013 and has reached a market capitalization of more than $307 

million dollars, being the 29th largest cryptocurrency per May 2019. Dogecoin can be 

compared to bitcoin as it enables peer-to-peer transactions across a decentralized network. 

However, dogecoin started much as a “joke” with the purpose of bringing something fun into 

cryptocurrencies. Even though the development team produces minimal updates, the dogecoin 

community stays active and loyal due to its feature of being both faster and cheaper than 

bitcoin.  

 

2.5 Dashcoin 
Dashcoin is a fork of bitcoin, introduced in 2014, and is the thirteenth biggest cryptocurrency 

with a market cap of more than $1 billion dollars. The purpose of dashcoin was to allow for 

fast and anonymous transactions which could overcome shortfalls in bitcoin through 

blockchain via so called masternodes. There is a maximum number of 18 million dashcoins 

which can exist, and average mining time is 2.5 minutes. 

 

Bitcoin is based on an open source which can be found online. Accordingly, most of the 

created altcoins are created on the basis of bitcoin with the purpose of fixing certain issues or 

improve specific features related to bitcoin. Given the joint characteristics, it is natural to 

think that their prices may be connected. Due to the relatively high volatility and current 

regulatory situation, cryptocurrencies contribution to an asset portfolio is questionable. 

However, being a new developed asset class, diversification potential can be exploited as the 

characteristics of cryptocurrencies may potentially be less affected by shocks in the traditional 

market, making it a potential hedge option (Kurka, 2019). Chuen, Guo and Wang (2017) 

found that incorporating the cryptocurrency index CRIX, with a portfolio consisting of 

traditional assets, would improve the performance.  

 

The intent of this paper is to examine whether pairs trading can obtain excess return in the 

cryptocurrency market, compared to a simple buy and hold strategy, based on a cointegration 

approach. The disposition of the thesis will be as follows: Chapter 3 presents the data used in 

the paper. The methodology is described in chapter 4 while chapter 5 presents the findings 

and a discussing of the results. Chapter 6 concludes. 
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3. Data 
The data used are daily time series of bitcoin, dogecoin, dashcoin and litecoin. The data spans 

from 14th February 2014 until 25th January 2019, consisting of 1806 daily observations. 

According to the coinmarketcap website, the selected cryptocurrencies accounts for more than 

60% of the total cryptocurrency market cap, per 9th of April 2019. The prices are collected 

from the cryptocurrency website coingecko and are expressed in American dollars. All 

variables are transformed by natural logarithm. Table 1 presents the correlation matrix 

between bitcoin, dashcoin, dogecoin and litecoin.  

 

Table 1 – Correlation matrix 

 
Crypto 

 
Bitcoin 

 
Dashcoin 

 
Dogecoin 

 
Litecoin 

Bitcoin 1 - - - 
Dashcoin 0.39 1 - - 
Dogecoin 0.53 0.29 1 - 
Litecoin 0.61 0.34 0.49 1 

Table 1 presents the correlation between the returns of bitcoin, dashcoin, dogecoin and litecoin, at daily intervals. Time 
period is from 14th of February 2014 until 25th of January 2019. 

 

Cryptocurrencies are traded on digital exchanges and do not follow traditional opening and 

closing hours. Exchanges trading cryptocurrencies are open all day, 7 days a week, 365 days a 

year. The opportunity to trade at any time creates a wider window of trading possibilities.  

 

As can be seen in the figures below, the price of bitcoin, dashcoin, dogecoin and litecoin 

increased rapidly until the end of 2017. At this time, the cryptocurrency market crashed and 

more than 50% of the market value vanished. The graphical representation of the 

cryptocurrencies may give an indication of their statistical properties (Bjørnland & Thorsrud, 

2014). The figures present the price evolution, transformed by natural logarithm, of each 

cryptocurrency with the corresponding return. 
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Figure 1  a) Bitcoin price           b) Return bitcoin  

    
c)  Dogecoin price           d) Return dogecoin 

    
 e)  Dashcoin price           f) Return dashcoin 

    

    

g)  Litecoin price          h) Return litecoin 
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The visual inspection indicates non-stationarity in the original series, while the return seems 

to oscillate around a mean of zero, indicating stationarity. Table 2 presents descriptive 

statistics for the return of bitcoin, litecoin, dashcoin and dogecoin over the sample period. 

 

 

Table 2 – Descriptive statistics of returns 

Crypto 
Number of 

observations Mean Std. Dev Min Max 

Bitcoin 1806 0.0009 0.0396 -0.2518 0.2871 

Litecoin 1806 0.0004 0.0583 -0.5472 0.5144 

Dashcoin 1806 0.0032 0.0774 -0.4676 0.7619 

Dogecoin 1806 0.0001 0.0669 -0.4781 0.4802 

Table 2 Descriptive statistics for daily log returns from 14th February 2014 until 24th January 2019. 

 

The logarithmic return is calculated according to equation (1) 

 

       𝑟" = ln	(	 ()
()*+

	)  (1) 

 

Where 𝑟" is the log return, 𝑃" is the cryptocurrency price at day t and 𝑃"./ is the 

cryptocurrency price from the previous day.  
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4. Methodology  
A cointegrated relationship exists when asset prices are tied together in the long term, 

implying that short-run deviation from equilibrium will be corrected for in the long-run. Such 

a situation occurs when a linear combination of non-stationary variables is stationary (Enders 

2010).  

 

The most referenced methods used in the cointegration literature are the two-step Engle and 

Granger (1987) approach and the Johansen cointegration test (Johansen, 1988). Both methods 

will be used in this thesis. The Johansen test is appropriate when analyzing multivariate time 

series while the Engle and Granger is a bivariate test used on the relationship between two 

variables. Although both models share common characteristics, the Johansen test seeks the 

linear combinations which is most stationary. The Engle and Granger approach, on the other 

hand, is based on ordinary least squares (OLS) and locates the linear combination with 

minimum variance (Leung & Nguyen 2018).  

 

A common method in the cointegration literature is to take out the mean of the time series, 

following the seminal paper of Engle and Granger (1996) and MacKinnon (1996). This is 

done according to equation (2) 

 

     𝑦" = (𝑋" − 𝑋3)     (2) 

 

By extracting the mean, the constant term is expected to be zero. The stationarity test and 

VECM estimation follows this approach.  

 

  

4.1 Stationarity 
In order to perform cointegration tests, it is necessary to determine stationarity and non-

stationarity properties. Stationarity is a necessary assumption in modelling and analyzing 

most time series, as non-stationary data is unpredictable and must, in most cases, be 

transformed in order to become stationary. A stationary process is defined by Challis and 

Kitney (1991) as where the mean, variance and autocorrelation structure do not change over 

time. 
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The presence of non-stationary variables may cause spurious regression (Granger & Newbold, 

1974). Spurious regression can provide misleading statistical evidence of a linear relationship 

between trending variables (Wooldridge, 2014). This may happen when two local trends are 

similar, but it may not be true that they move together. Typically, this involves a high degree 

of fit, R2, and a significant t statistic (Brooks, 2008). This form of misspecification can occur 

from: 

i) The omission of relevant variables 

ii) The inclusion of irrelevant variables 

iii) Autocorrelated residuals 

 

In order to alleviate the problem, Granger and Newbold (1974) propose to either include a 

lagged dependent variable, take the first difference of the variables involved in the equation or 

to assume simple first-order autoregressive form for the residual of the equation. 

 

4.1.1 Augmented Dickey-Fuller test 

If a unit root is detected in a time series, it is said to be non-stationary. In order to test for unit 

roots in a time series yt, the Augmented Dickey-Fuller test will be performed, while the DF-

GLS test is included to complement the results. The Augmented Dickey-Fuller test is an 

extension of the Dickey-Fuller test which have been augmented with the lagged changes 

∆𝑦".5. The inclusion of the lagged changes is intended to clean up any serial correlation in 

∆𝑦". It follows equation (3) 

   

    ∆𝑦" = 𝛾𝑦"./ + ∑ 𝛽:
5
:;/ ∆𝑦".: + 𝑒"   (3) 

 

Where p is the number of lags and ∆𝑦" denotes the value of a variable at time t (∆𝑦" = 𝑦" −

𝑦"./). The hypothesis can be noted as: 

  

H0: 𝛾 = 0	(unit	root)  

H1: 𝛾 < 0	(stationary	data).  

 

H0 is rejected if 𝑡I < 𝑐, where c is the critical value. If a unit root is detected, which implies 

that the time series are non-stationary, Granger and Newbold (1974) proposed differencing 

the series. If differencing the series d times yield stationary data, the original series is said to 

be integrated of order d, denoted 𝑥"~𝐼(𝑑).  
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The critical test statistic is obtained according to equation (4) 

 

 test	statistic, 𝑡I =
RS

TU(RS)
   (4) 

 

Where 𝛾V is the estimated coefficient from equation 3. The test statistic does not follow a 

normal distribution, but rather a distribution developed by Dickey-Fuller, leading to non-

asymptotic critical values. Appropriate critical values can be found in Dickey and Fuller 

(1979) 

 

Campbell and Perron (1991) discussed the importance of correctly specifying deterministic 

components of the series. The critical values used to reject the null is sensitive to whether or 

not deterministic factors are included. As an example: not accounting for trend, if trend is 

present, may lead to spurious regression (Enders, 2010).  

     

4.1.2 DF-GLS test 

The Augmented Dickey-fuller test have been criticized for lack of power and size distortion 

as it may struggle to distinguish between 𝛾 = 0.95 and 𝛾 = 1 (Brooks, 2008). Accordingly, a 

modified Dickey-Fuller approach, DF-GLS, proposed by Elliott, Rothenberg and Stock 

(1996) will be used to complement the results. Studies has shown that this test has 

significantly greater power than the traditional augmented Dickey-Fuller (Becketti, 2013). 

The modified test performs a generalized least squares (GLS) transformation prior to the 

estimation of Dickey-Fuller. The problem of choosing appropriate deterministic factors is less 

critical in the DF-GLS method (Enders, 2010). Stock and Watson (2011) provides a detailed 

discussion of the DF-GLS approach. The DF-GLS test follows equation (5)  

 

    ∆𝑦"[ = 𝛾𝑦"./[ + ∑ 𝛽\∆𝑦".:[ + 𝑒"
5
:;/    (5) 

 

The notation of d represents the GLS de-trending. The use of GLS de-trending gives a 

substantial gain in power and improves the ability to distinguish between the null and the 

alternative as it removes any linear trends in the series (Perron & Rodriguez, 2003).  
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The hypothesis tests are as follows: 

 

   H0 = Series is a random walk 

   H1 = Series is stationary  

 

Appropriate critical values can be found in Cheung and Lai (1995). In addition, the results are 

affected by the maximum number of lags included. The maximum number of lags follows the 

work of Schwert (1989), and is calculated according to equation (6) 

 

      𝑘^_` = 𝑓𝑙𝑜𝑜𝑟 d12 fgh/
/ii
j
i,kl

m  (6) 

 

 

4.2 Lag length 
It is crucial for both the stationarity test and cointegration analysis to select the appropriate 

number of lags. Cheung and Lai (1995) revealed that the lag order can significantly affect the 

critical values of the stationarity tests.  

 

Studies are not consistent regarding the most correct way to determine the appropriate number 

of lags. However, the most widely used selection criteria are the Schwartz Bayesian 

Information Criterion (SBIC) and the Akaike Information Criterion, proposed by Schwartz 

(1978) and Akaike (1973), respectively. Lütkepohl (2005) argues that the SBIC provides 

consistent estimates of the true lag order, while the AIC overestimates the lag order with 

positive probability. Choosing SBIC over AIC is in accordance with Koehler and Murphree 

(1987) who argued that the AIC and SBIC often choose different number of lags and that AIC 

will overfit the data. Accordingly, the SBIC will be chosen if the two information criteria 

differ. The SBIC is computed according to equation (7) 

 

																																																						𝑆𝐵𝐼𝐶 = −2rss
g
t + kuv{xy	(g)}

g
𝑡5   (7) 

 

where LL is the log likelihood, 𝑡5 is the total number of parameters in the model and T is the 

number of observations. The appropriate number of lags is chosen where SBIC is minimized.  
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 4.3 The Johansen Test & Vector Error Correction Model (VECM) 
The Johansen test belongs to the multivariate cointegration category. This involves testing for 

cointegration in a system of two or more variables. If there exist k variables, a maximum of k-

1 cointegrating vectors can exist. The Johansen approach relies on a vector autoregressive 

(VAR) model (appendix). In summary, it is defined as a stochastic process used to identify 

the linear independencies between several time series (Wooldridge 2014). In a VAR model, 

all variables have an equation explaining its development based on its own, and other 

variables lagged values, as well as an error term. The Johansen test is used to obtain the 

number of ranks which would be included in the vector error correction model. 

 

In order to use the Johansen test, the VAR must be transformed into a Vector Error Correction 

Model (VECM) by including error correction features to the VAR model (Brooks, 2008). A 

VECM is basically a VAR in first difference with a vector of cointegrating residuals. Any 

VAR(p) can after some algebraic manipulation be rewritten to a VECM of the form: 

 

     Δ𝑦" = 𝜇 + Π𝑦"./ + ∑ Γ\∆𝑦".\ + 𝜖"
5./
\;/         (8) 

Where 

     Π = ∑ Φ: − 𝐼
5
:;/  

And 

     Γ: = −∑ Φ:
5
:;\h/  

 

Where p-1 is the lags of the dependent variable,	Γ is the coefficient matrix of every lagged 

variable and Π is the long-run coefficient matrix. The VECM in equation 8 contains 

information on both the long-run equilibrium and the short-run dynamics between the 

variables in 𝑦"	(Bjørnland and Thorsrud, 2014). Engle and Granger (1987) showed that Π has 

a rank r, 0 ≤ 𝑟 < 𝐾, where r is the number of linearly independent cointegrating relationships 

among the elements of 𝑦".  

 

The Π matrix is defined as the product of two matrices, 𝛼 (short-term matrix) and 𝛽´	(long-

term matrix), of dimensions (g x r) and (r x g), respectively (Brooks, 2008).	Π can be written 

in terms of: 

 

 

     Π = 𝛼𝛽´     (9) 
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The 𝛽 matrix gives the cointegrating vectors, while 𝛼 (also known as the adjustment 

parameter) gives the amount of each cointegrating vector entering each equation of the 

VECM (Brooks, 2008). The interpretation would be that 𝛼 measures the speed at which the 

variables adjust to the long-run equilibrium while 𝛽 represents the long-run cointegrated 

relationship. If the Π  matrix equals zero (Π = 0), the variables are not cointegrated.  

 

The VECM is estimated by maximum likelihood estimation process, in contrast to Engle and 

Granger which used the ordinary least squares estimation. The Johansen method estimates the 

rank, r, of the matrix Π. The rank equals the number of characteristic roots (eigenvalues) 

which are significantly different from zero (Dwyer, 2015).  

 

According to Bjørnland & Thorsrud (2014), there are three possible outcomes with regard to 

the number of ranks in the Π matrix: 

 
1) Full rank (r = k): Every eigenvalue is different from zero and significant. This 

indicates that the original variables are stationary and cointegration is impossible. 

2) Rank is zero (r = 0): There are no eigenvalues different from zero and thus no 

cointegration. 

3) Reduced rank (0 < r < k): Cointegration exist in the system, with r cointegrating 

vectors. 

 

In order to compute the number of ranks in the VECM, the Johansen test is used. The 

Johansen test defines the maximum eigenvalue and trace statistics, which are computed 

according to equations (10) and (11) 

 

Maximum eigenvalue,  𝜆^_`(𝑟, 𝑟 + 1) = −𝑇𝑙𝑛(1 − 𝜆�h/�)  (10) 

 Where: 

H0 = r cointegrating vectors 

H1 = r + 1 cointegrating vectors 

 

Trace statistic,   𝜆"�_��(𝑟) = 	−𝑇∑ ln	(1 − 𝜆��)�
\;�h/   (11) 

Where: 

   H0 = r or less than r cointegrating vectors 

   H1 = More than r cointegrating vectors 
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The 𝜆��  is the estimated eigenvalue, T is the number of observations and r is the number of 

cointegrating vectors. The critical values used in the model depends on the value k – r and the 

included deterministic features. This can be found in Johansen and Juselius (1990).  

 

Five different cases can be used in estimation of both the Johansen test and VECM, with basis 

of equation 3 (Becketti, 2013): 

 

1) Unrestricted trend: It is assumed that there are quadratic trends in the level of 𝑦" and 

the cointegrating equations are trend stationary. 

2) Restricted trend, 𝜏 = 0: A linear trend, but not a quadratic trend, is included in 𝑦". The 

cointegrating equations are trend stationary. 

3) Unrestricted constant, 𝜏 = 𝜌 = 0: The observable variables follows a linear trend, but 

the cointegrating equations are stationary around constant means. 

4) Restricted constant,	𝜏 = 𝜌 = 𝛾 = 0: 𝑦" includes no trend, but the cointegrating 

equations are stationary around a constant mean.  

5) No trend,	𝜏 = 𝜌 = 𝛾 = 𝜇 = 0: No non-zero means or trends. 

 

 

 

4.4 Pairs trading strategy 
Pairs trading strategy is based on the concept of relative pricing. If a cointegrated relationship 

is detected, and a long-run equilibrium exists, a temporary deviation from the equilibrium 

could be exploited by taking a long position in the relative cheap asset and short position in 

the relative expensive asset. Profits are generated when the deviation is corrected. Pairs 

trading strategy is a market neutral strategy where close to all risk is asset specific risk. 

Market neutrality holds as a long and short position of the same value is open and closed at 

the same time. Suitable pairs can be found using the Johansen test, and Engle and Granger 

test. 

 

The bivariate Engle and Granger approach is used to estimate the beta in the cointegrated 

relationship between two assets, according to equation (12)  

 

																																								ln	(𝑦") = 𝛼 + 𝛽ln	(𝑧") + 𝑢"                           (12) 

 



 
 

 21 

Where the cointegration coefficient, 𝛽, is the expected percentage change in the price of 𝑦" 

when the price of 𝑧" change. When the cointegrated relationship has been established, the 

spread between asset 𝑦"	and 𝑧" is defined according to equation (13) 

    

																																												𝑆" = ln	(𝑦") − 𝛼 − 𝛽 ln(𝑧")                 (13) 

 

The spread at time t, 𝑆", will be a stationary zero mean variable. In order to create a strategy, 

the spread must be monitored. If 𝑆" ≠ 0, a departure from the relationship in (12) is detected. 

If the spread exceed a predefined threshold, d, a position may be opened. 

  

If: 

 

1) 𝑆" < −𝑑:	Asset 𝑧" is overvalued relative to asset 𝑦". Then a long position in	 𝑦" and 

short position in 𝑧" is created 

2) 𝑆" > 𝑑: Asset 𝑧" is undervalued relative to asset 𝑦". Then a long position in 𝑧" and 

short position in	 𝑦" is created. 

 

In the pairs trading literatur, it is common to make a standardized value of the spread. The 

standardized value measures the distance to the long-term mean in terms of long-term 

standard deviation (Caldeira & Moura, 2013). This is done accordingly: 

 

																																																		𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 = T).T)�

Tg�(T))
                            (14) 

 

Both positions are closed when the spread crosses a predefined threshold which is closer to 

the mean than the opening thresholds.  
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5. Results 
 

5.1 Cointegration 
 

5.1.1 Testing for unit roots 

In order to determine whether the cryptocurrencies are cointegrated, a requirement is that they 

are intergrated of the same order. The examination of the figures in chapter 3 indicated 

integration of order 1, I (1), in all cases. In order to determine this property, the Augmented 

Dickey-Fuller test is performed on the natural logarithm of each series. The DF-GLS test is 

included to complement the result of the Augmented Dickey-Fuller test. 

 

The Schwarz information criteria is used in order to specify the number of lags. The null 

hypothesis, unit root in the times series, is rejected if the test statistic is lower than the critical 

values, 𝑡I < 𝑐. There is no constant in the equation as the mean has been taken out of the time 

series. The results of the Augmented Dickey-Fuller test and DF-GLS test are presented in 

table 3 

 

     Table 3 – Stationarity test 

 Augmented Dickey-Fuller DF-GLS 

 Level             Return                       Level          Return    

Bitcoin - 0.391 

(0.0007) 

- 30.982*** 

(0.0333) 

0.032 - 18.022*** 

Dogecoin - 0.985 

(0.0011) 

- 28.630*** 

(0.0329) 

-0.851 - 10.744*** 

Dashcoin - 1.863 

(0.0008) 

- 30.013*** 

(0.0329) 

0.700 - 3.563*** 

 

Litecoin - 0.696 

(0.0009) 

- 31.607*** 

(0.0331) 

-0.739 -30.733*** 

 
Table 3 The Augmented Dickey-Fuller test complemented with the DF-GLS test. Standard Error in parenthesis. Critical 
values for the DF-GLS test can be found in Elliott, Rothenberg and Stock (1996), while critical values for Augmented Dickey-
Fuller can be found in MacKinnon (1996). Symbols ***, ** and * represents significance at 1%, 5% and 10% respectively.  

 

None of the test statistics are lower than the critical values of the series in original form. 

Hence, the null hypothesis cannot be rejected, indicating unit roots in the series and non-

stationarity. The test statistics of the return are all signficantly lower than the critical values 
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and the null hypothesis can be rejected. Accordingly, the return is stationary, implying that 

the series are integrated of order 1, I(1). The DF-GLS test confirms the findings of the 

Augmented Dickey-Fuller test. The stationarity tests imply integration of the same order 

among all cryptocurrencies, making cointegration theoretically possible.  

 

5.1.2 The Johansen test 

The Johansen test is used in order to determine the number of cointegrating relationships in a 

system of several variables, which is used in the vector error correction model. The test is 

performed with no constant or trend (𝜏 = 𝜌 = 𝛾 = 𝜇 = 0). 

 

Testing for cointegration in a multivariate case involves determining the rank of Π. The 

Johansen test consist of the trace and maximum eigenvalue tests where the null hypothesis, 

with regards to the trace statistic, is no more than r cointegration vectors, versus the 

alternative hypothesis of r > 0. If the null is rejected, it proceeds to r ≤ 1, versus r > 1. This 

continues until the null is accepted. The eigenvalue test performs a likelihood-ratio test where 

the null hypothesis is exactly r cointegrating vectors versus the alternative of r + 1 (Becketti, 

2013). Table 4 presents the results from the Johansen test  

 

Table 4 – Johansen cointegration test 

 
Cointegrating 

relationships (r) 

Test statistics Lags 

Trace Max  

 
 

System 

None 
r = 0 

67.66 
(39.89) 

43.16 
(23.80)) 1 

 
Up to 1 

r = 1 

 
24.50 

(24.31) 

 
14.10* 
(17.89) 

1 

 Up to 2 
r = 2 

 
10.39* 
(12.53) 

 

9.15 
(11.44) 1 

 Up to 3 
r = 3 

1.24 
(3.84) 

1.24 
(3.84) 1 

Table 4 The trace and maximum eigenvalue test with 5% critical values in parentheses. The included variables 
are bitcoin, litecoin, dashcoin and dogecoin. Sample period is from 14th of February 2014 to 25th January 2019 

 

The trace statistic accepts the null hypothesis of r ≤	 2, against the alternative of r > 2 

cointegrating vectors. The maximum eigenvalue test accepts the null hypothesis of r =1 

against r + 1 cointegrating vectors. However, as the trace statistic only marginally rejects 

three cointegrating vectors, and the bivariate Engle and Granger test (appendix) indicates 
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cointegration among the pairs, it is assumed three cointegrating vectors when specifying the 

VECM.  

 

 

5.1.3 Fitting the VECM 

The rank of Π is estimated to be three and the VECM can be specified. The VECM is used to 

determine the long- and short-run relationship between the series and is performed with no 

constant or trend (𝜏 = 𝜌 = 𝛾 = 𝜇 = 0). The estimated equations, with basis of equation 8, are 

as follows: 

 

																																	Δ𝑦" = 𝛼(𝛽´𝑦"./) + ∑ Γ\∆𝑦".\ + 𝜖"
5./
\;/                     (15) 

 

Where 
 

𝛥𝑑𝑜𝑔𝑒𝑐𝑜𝑖𝑛" = 𝛼/𝐸𝐶𝑇"./ + ∑ 𝛿\𝛥𝑑𝑜𝑔𝑒𝑐𝑜𝑖𝑛".\ +
5./
\;/ ∑ 𝜌:𝛥𝑑𝑎𝑠ℎ𝑐𝑜𝑖𝑛".: +

5./
:;/

∑ 𝜂�𝛥𝑙𝑖𝑡𝑒𝑐𝑜𝑖𝑛".�
5./
�;/ +∑ 𝜑u𝛥𝑏𝑖𝑡𝑐𝑜𝑖𝑛".u + 𝜖/"

5./
u;/   

 

𝛥𝑑𝑎𝑠ℎ𝑐𝑜𝑖𝑛" = 𝛼k𝐸𝐶𝑇"./ + ∑ 𝛿\𝛥𝑑𝑜𝑔𝑒𝑐𝑜𝑖𝑛".\ +
5./
\;/ ∑ 𝜌:𝛥𝑑𝑎𝑠ℎ𝑐𝑜𝑖𝑛".: +

5./
:;/

∑ 𝜂�𝛥𝑙𝑖𝑡𝑒𝑐𝑜𝑖𝑛".�
5./
�;/ +∑ 𝜑u𝛥𝑏𝑖𝑡𝑐𝑜𝑖𝑛".u + 𝜖k"

5./
u;/   

 

𝛥𝑙𝑖𝑡𝑒𝑐𝑜𝑖𝑛" = 𝛼¤𝐸𝐶𝑇"./ + ∑ 𝛿\𝛥𝑑𝑜𝑔𝑒𝑐𝑜𝑖𝑛".\ + ∑ 𝜌:𝛥𝑑𝑎𝑠ℎ𝑐𝑜𝑖𝑛".: +
5./
:;/

5./
\;/ ∑ 𝜂�𝛥𝑙𝑖𝑡𝑒𝑐𝑜𝑖𝑛".�

5./
�;/ +

	∑ 𝜑u𝛥𝑏𝑖𝑡𝑐𝑜𝑖𝑛".u + 𝜖¤"
5./
u;/   

 

𝛥𝑏𝑖𝑡𝑐𝑜𝑖𝑛" = 𝛼¥𝐸𝐶𝑇"./ + ∑ 𝛿\𝛥𝑑𝑜𝑔𝑒𝑐𝑜𝑖𝑛".\ + ∑ 𝜌:𝛥𝑑𝑎𝑠ℎ𝑐𝑜𝑖𝑛".: +
5./
:;/ ∑ 𝜂�𝛥𝑙𝑖𝑡𝑒𝑐𝑜𝑖𝑛".�

5./
�;/

5./
\;/ +

∑ 𝜑u𝛥𝑏𝑖𝑡𝑐𝑜𝑖𝑛".u +
5./
u;/ 𝜖¥"  

 

Where: 

- Lag is 1 

- 𝜌:, 𝜑u, 𝛿\  and 𝜂� are short-run dynamic coefficients of the model’s adjustment to 

long-run equilibrium 

- 𝛼\ is the speed of adjustment coefficient 

- 𝐸𝐶𝑇"./ is the error correction term  

- 𝜖\"	are the residuals 
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Due to Π = 𝛼𝛽´ is less than full rank, restrictions are needed in order to identify the elements 

of the two matrices (Becketti 2013). In the case of r cointegrating relationships, 𝑟k restrictions 

are necessary to estimate under the assumption of exact identification. The VECM will be 

performed both as an unrestricted and restricted model after testing for weak exogeneity. 

There are three cointegrating vectors and four variables in the system. Hence, the elements of 

Π, where 𝛼 and 𝛽	are (4 X 3), can be written as follows: 

 

Π = 𝛼𝛽´ = ¦	
𝛼// 𝛼k/ 𝛼¤/
𝛼/k 𝛼kk 𝛼¤k
𝛼/¤ 𝛼k¤ 𝛼¤¤
𝛼/¥ 𝛼k¥ 𝛼¤¥

§¨
	𝛽// 		𝛽/k 		𝛽/¤
		𝛽k/ 		𝛽kk 		𝛽k¤
		𝛽¤/ 		𝛽¤k 		𝛽¤¤

			
		𝛽/¥
		𝛽k¥
		𝛽¤¥

©		 

 

The long-run coefficients are normalized in order for the relationships to be expressed with 

one of the variables being the dependent variable. This yields the following unrestricted 𝛼 and 

𝛽 matrices with short-run coefficients: 

 

 

																																																											𝐓𝐚𝐛𝐥𝐞	𝟓 − 𝛃	matrix   

Variable 
              CV 1              CV 2           CV 3 

 	𝛽/\     	𝛽k\     	𝛽¤\    

𝐷𝑜𝑔𝑒𝑐𝑜𝑖𝑛"./  1    0    0   

𝐷𝑎𝑠ℎ𝑐𝑜𝑖𝑛"./  0    1    0   

𝐿𝑖𝑡𝑒𝑐𝑜𝑖𝑛"./  0    0    1   

𝐵𝑖𝑡𝑐𝑜𝑖𝑛"./ 
 

-1.03*** 
(0.087) 

 
  
 

 -1.46*** 
(0.089) 

  
 

-1.17*** 
(0.105) 

  

Table 5 The unrestricted beta matrix shows the long-run relationship between dogecoin, dashcoin, litecoin and bitcoin. The 
following restrictions are imposed in order to estimate the beta matrix under the assumption of exact identification:		𝛽// =
		𝛽kk = 		𝛽¤¤ = 1	𝑎𝑛𝑑				𝛽k/ = 		𝛽¤/ = 		𝛽/k = 		𝛽¤k = 		𝛽/¤ = 		𝛽k¤ = 0. Standard Error in parentheses. CV 1, CV2 and CV3 
are the cointegration vector 1, 2 and 3, respectively. Symbols ***, ** and * represents significance at 1%, 5% and 10%, 
respectively. 
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Table 6 - 𝜶 matrix and short-run coefficients 

  Dependent Variables 

Variables Coefficient Dogecoin Dashcoin Litecoin Bitcoin 

Speed 
adjustment CV1 

𝛼/ 
- 0.015*** 

(0.004) 
- 0.001 
(0.005) 

0.001 
(0.004) 

- 0.003 
(0.003) 

Speed 
adjustment CV2 

𝛼k 
0.003 

(0.003) 
- 0.007** 
(0.003) 

0.006*** 
(0.002) 

0.005*** 
(0.002) 

Speed 
adjustment CV3 

𝛼¤ 
0.004 

(0.004) 
- 0.001 
(0.005) 

- 0.006 
(0.004) 

0.004 
(0.0027) 

𝛥𝑑𝑜𝑔𝑒𝑐𝑜𝑖𝑛 𝛿\ 
0.0447 

(0.0285) 
-0.0115 
(0.0330) 

-0.0211 
(0.025) 

-0.011 
(0.016) 

𝛥𝑑𝑎𝑠ℎ𝑐𝑜𝑖𝑛 𝜌:  
0.0286 

(0.0222) 
0.0365 
(0.025) 

0.0207 
(0.019) 

0.011 
(0.0132) 

𝛥𝑙𝑖𝑡𝑒𝑐𝑜𝑖𝑛 𝜂� 
0.0159 

(0.0352) 
0.0165 
(0.041) 

-0.010 
(0.031) 

-0.033 
(0.0209) 

𝛥𝑏𝑖𝑡𝑐𝑜𝑖𝑛 𝜑u 
-0.1328** 
(0.0542) 

-0.1477** 
(0.0627) 

0.033 
(0.047) 

0.0222 
(0.0322) 

Table 6 shows the unrestricted alpha matrix found by VECM and short-run coefficients. Standard Error in parenthesis. 
Symbols ***, ** and * represents significance at 1%, 5% and 10%, respectively. 𝛼/, 𝛼k	𝑎𝑛𝑑	𝛼¤ represents the speed 
adjustment coefficient from cointegration vector 1, 2 and 3, respectively.  

 

A significant alpha indicates the speed of adjustment after deviating from the long-run 

equilibrium. 

 

The next step is testing for over-identified restrictions. The first test involves testing for weak 

exogeneity, whether or not 𝛼 = 0 for the respective equations by using likelihood ratio (LR) 

test. If weak exogeneity is detected in a variable, it means that the variable does not adapt to 

deviations from equilibrium and that the stochastic process of the variable drives the system 

(Bjørnland & Thorsrud, 2014). Table 7 shows the result of the weak exogeneity test.  
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     Table 7 – Weak exogeneity test 

Test  Variable Restrictions LR test p-value 
 
1 
 

Dogecoin 𝛼// = 𝛼k/ = 𝛼¤/ = 0 20.24 0.000 

2 Dashcoin 𝛼/k = 𝛼kk = 𝛼¤k = 0 5.14 0.161 

3 Litecoin 𝛼/¤ = 𝛼k¤ = 𝛼¤¤ = 0  
13.63 

 
0.003 

4 Bitcoin 𝛼/¥ = 𝛼k¥ = 𝛼¤¥ = 0  
14.52 

 
0.002 

Table 7 Test 1-4 is used to check weak exogeneity for all variables. Restrictions imposed to beta matrix is under the 
assumption of 𝑒𝑥𝑎𝑐𝑡	𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛:	𝛽// = 		𝛽kk = 		𝛽¤¤ = 1	𝑎𝑛𝑑				𝛽k/ = 		𝛽¤/ = 		𝛽/k = 		𝛽¤k = 		𝛽/¤ = 		𝛽k¤ = 0. LR = 
Likelihood ratio 

 
 
The LR-tests in table 7 rejects the possibility of dogecoin, litecoin or bitcoin being weakly 

exogenous (p-values are below 5%). However, test 2 cannot reject the possibility that 𝛼/k =

𝛼kk = 𝛼¤k = 0. This result is surprising as the speed-adjustment coefficient in table 6 is 

significant. Intuitively, dashcoin is not the driver of the system. By re-doing the test with a 

sample period starting 6 months later, p-value is below 5%. Hence, dashcoin is assumed not 

to be weakly exogeneous in the restricted VECM.  

 
Next, it tested whether	𝛽/¥ = 	𝛽k¥	= 𝛽¤¥ = −1. The LR test cannot reject that 		𝛽/¥	= 𝛽¤¥ =

−1 (p-value > 0.1) but rejects that 	𝛽k¥ = −1 (p-value = 0.004). Naturally, it is tested that 

		𝛽/¥	= 𝛽¤¥ = −1, where 	𝛽k¥ is freely estimated. The LR test cannot reject the null (p-value = 

0.271), making		𝛽/¥	and	𝛽¤¥ restricted to -1. Accordingly, the 𝛽 vectors are equal [1, -1] for 

the pairs of dogecoin/bitcoin and litecoin/bitcoin.  

 

Table 8 and 9 presents the VECM results with restrictions according to the overidentifying 

tests. The alpha values are the coefficients to be estimated. In addition, insignificant alphas 

are restricted to zero.  
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																																																											𝐓𝐚𝐛𝐥𝐞	𝟖 − 	𝛃	matrix   

Variable 
              CV 1              CV 2           CV 3 

 	𝛽\/    	𝛽\k    	𝛽\¤   

𝐷𝑜𝑔𝑒𝑐𝑜𝑖𝑛"./  1    0    0   

𝐷𝑎𝑠ℎ𝑐𝑜𝑖𝑛"./  0    1    0   

𝐿𝑖𝑡𝑒𝑐𝑜𝑖𝑛"./  0    0    1   

𝐵𝑖𝑡𝑐𝑜𝑖𝑛"./ 
 

-1.00*** 
 

 
  
 

 -1.46*** 
(0.089) 

  
 

-1.00*** 
 

  

Table 8 This table presents the restricted beta matrix from VECM. The following restrictions are imposed:	𝛽// = 		𝛽kk =
		𝛽¤¤ = 1	𝑎𝑛𝑑				𝛽k/ = 		𝛽¤/ = 		𝛽/k = 		𝛽¤k = 		𝛽/¤ = 		𝛽k¤ = 0 and 		𝛽/¥ = 	𝛽¤¥ = −1. Symbols ***, ** and * represents 
significance at 1%, 5% and 10% respectively.  

 
 

Table 9 −	𝜶 matrix and short-run coefficients 
  Dependent Variables 

Variables Coefficient Dogecoin Dashcoin Litecoin Bitcoin 

Speed 
adjustment CV1 

𝛼/ - 0.013*** 
(0.023) 0 0 0 

Speed 
adjustment CV2 

𝛼k 0 - 0.007** 
(0.003) 

0.006*** 
(0.002) 

0.004*** 
(0.001) 

Speed 
adjustment CV3 

𝛼¤ 
0 
 

0 0 
 

0 
 

𝛥𝑑𝑜𝑔𝑒𝑐𝑜𝑖𝑛 𝛿\ 
0.0444 

(0.0285) 
-0.0109 
(0.0329) 

-0.0182 
(0.0249) 

-0.0131 
(0.0169) 

𝛥𝑑𝑎𝑠ℎ𝑐𝑜𝑖𝑛 𝜌: 
0.0279 

(0.0222) 
0.0357 

(0.0256) 
0.0198 

(0.0194) 
0.0105 

(0.0132) 

𝛥𝑙𝑖𝑡𝑒𝑐𝑜𝑖𝑛 𝜂� 0.0197 
(0.0351) 

0.0164 
(0.0406) 

-0.0122 
(0.0307) 

-0.0311 
(0.0209) 

𝛥𝑏𝑖𝑡𝑐𝑜𝑖𝑛 𝜑u 
-0.1328** 
(0.0542) 

-0.1459** 
(0.0625) 

0.0347 
(0.0473) 

0.0239 
(0.0321) 

Table 9 This table presents the results of the restricted VECM. Insignificant alphas are restricted to zero while the beta 
coefficients are restricted as follows: 	𝛽// = 		𝛽kk = 		𝛽¤¤ = 1, 	𝛽k/ = 		𝛽¤/ = 		𝛽/k = 		𝛽¤k = 		𝛽/¤ = 		𝛽k¤ = 0 and 
		𝛽/¥ = 	𝛽¤¥ = −1. CV1, CV2 and CV3 are the first, second and third cointegration vector, respectively. Symbols ***, ** and 
* represents significance at 1%, 5% and 10% 
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As presented in table 8, the β vectors are significantly equal [1, -1] for the pairs of 

dogecoin/bitcoin and litecoin/bitcoin. After excluding insignificant alphas, table 9 shows the 

speed-adjustment coefficients which are all highly significant.  

 

The results are in line with Nguyen & Leung (2018) who found long-term relationships 

between bitcoin, bitcoin cash, ethereum and litecoin. Broek et al (2018) found 31 cointegrated 

pairs within the cryptocurrency market after testing 952 potential pairs. Sovbetov (2018) 

found long-run equilibrium among a system consisting of bitcoin, ethereum, dash, litecoin 

and monero, using weekly observations. More specific comparable literature is hard to find as 

the cryptocurrency market is not heavily researched. As the long- and short-run relationship 

has been established, a pairs trading strategy can be implemented in order to potentially 

exploit arbitrage opportunities.  

 

 5.2 Pairs trading strategy 
The pairs trading strategy is aiming not to be affected by market movements, as a long and 

short position, having the same value, is opened and closed simultaneously. However, due to 

historical limited possibilities, with regards to shorting cryptocurrencies, a second more 

practical investment strategy, which only allows long positions, will be implemented. In the 

remaining part of the thesis, these strategies will be denoted unrestricted and restricted 

strategy, respectively. The strategies will be performed on the pair of bitcoin/dogecoin, 

bitcoin/dashcoin and bitcoin/litecoin, due to the evidence of cointegration among the pairs. 

Only pairs involving bitcoin will be included as bitcoin is the largest cryptocurrency, with 

longest history, in which the other cryptocurrencies most intuitively are dependent on. 

Moreover, bitcoin is the most liquid, hence trading bitcoin is more easily implementable. The 

strategy follows the work of Vidyamurthy (2004) and Caldeira and Moura (2013).  

 

The bivariate Engle and Granger approach is used to estimate the cointegration coefficient 𝛽 

and to establish the relationship: 

 

    ln(𝑌) = 𝛼 + 𝛽ln	(𝑧)     (16) 

 

Where 𝛼 is the constant. Due to the frequently changing structure of volatility and expected 

return of bitcoin (Molnár and Thies, 2018), performing regression based on historical returns, 

over the whole sample period, could give inaccurate results. Hence, the beta value in equation 

16 is moving with one-year interval. This implies that each beta represents the relationship 
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between the cryptocurrency pair for 365 days. The spread between cryptocurrency y and z, 

which is used to open or close a position, is calculated as follows: 

 

    𝑆" = ln(𝑌) − 𝛼 − 	𝛽ln	(𝑧)    (17) 

 

And is standardized according to 

 

 𝑆𝑝𝑟𝑒𝑎𝑑¸"_v[_�[\¹�[ =
T).T)�

Tg�(T))
   (18)               

 

The following figures present the standardized spread of each pair and their respective 

threshold levels. The widest thresholds, at 0.7 and -0.7, represents the opening signals, while 

the narrower thresholds, at 0.4 and -0.4, represents the closing signals. 
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                 Figure 2 Standardized spread between dashcoin and bitcoin. Thresholds at -0.7, 0.7, -0.4 and 0.4 

 
                 Figure 3 Standardized spread between bitcoin and dogecoin. Thresholds at -0.7, 0.7, -0.4 and 0.4  

 
                 Figure 4 Standardized spread between litecoin and bitcoin. Thresholds at -0.7, 0.7, -0.4 and 0.4 
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In order to open a position, Caldeira and Moura (2013) suggest using a threshold level of 2/-2 

and close the position at 1.5/-1.5. These specifications would, in this thesis, result in a low 

number of trades. Hence, the thresholds used are thereby lower. A simple buy and hold 

strategy is used as a benchmark while performance measures of the S&P 500 is included for 

illustrative purposes. In order to back-test the pairs trading strategy, average return per day, 

annualized return, annualized volatility and Sharpe Ratio is examined. The price of the crypto 

in which a long position has been opened is represented as 𝑋u, while the price of the crypto in 

which a short position has been opened is represented as 𝑋¸. The statistics are computed as 

follows: 

  

Return at day t 𝑙𝑛 d 𝑋"u
𝑋u"./

m − 𝛽𝑙𝑛 d 𝑋
¸
"

𝑋¸"./
m

1 + 𝛽  (19) 

Annualized return �̅� ∗ 365 (20) 

Volatility, 𝜎 ¿
1

𝑁 − 1Á(𝑧\ − 𝑧)̅
v

\;/

 (21) 

Annualized volatility 𝜎 ∗ √365 (22) 

Sharpe Ratio 
𝑟" − 𝑟Ã
𝑆𝑡𝑑"

 (23) 

 

Where 𝑟Ã is the 12 months US treasury rate and 𝑟" is annualized return.  

 

The performance of the buy and hold strategy is calculated as a portfolio with equal weights 

assigned to the two respective cryptocurrencies. The portfolio return is calculated according 

to equation (24): 

 

Portfolio	return	at	day	t, 𝑅" 																								∑ 𝑤\𝑅\È
\;/                  (24) 

 

 

Annualized return, volatility and Sharpe ratio are calculated according to equations (20), (21) 

and (23). 
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5.2.1 The unrestricted strategy 

In the unrestricted strategy, there are no restrictions attached to shorting. In order to create 

trading signals, and determine when to open and close a position, some predefined investment 

rules must be specified. As the spread has been calculated as 𝑆" = 𝑙𝑛	(𝑦") − 𝛼 − 𝛽/ 𝑙𝑛(𝑧") and 

standardized according to equation (18), the trading signal is based on the distance to the 

long-term mean in units of standard deviation. When the standardized spread crosses a 

threshold of 0.7 from above or -0.7 from below, the cryptocurrencies in the pair are mispriced 

in terms of their relative value and a position is opened. If the standardized spread is above 

0.7 it is overvalued and should be sold short, meaning shorting /
É

 units of crypto y and buying 

1 unit of crypto z. On the other hand, if the standardized spread is below -0.7, it is 

undervalued and the portfolio should be bought, meaning buying 1 unit of crypto y and 

shorting 𝛽 units of crypto z. The position is closed when the standardized spread rises above   

-0.4 or declines below 0.4. The strategy can be summarized as follows: 

 

    Buy (long) to open position if 𝑧" < −0.7 

    Sell (short) to open position if 𝑧" 	> 	0.7 

    Close short position  if 𝑧" < 0.4 

    Close long position   if 𝑧" > −0.4 

     

      

5.2.2 The restricted strategy 

In the restricted strategy, shorting is not allowed. From the spread	𝑆" = 𝑙𝑛	(𝑦") − 𝛼 − 𝛽/ 𝑙𝑛(𝑧") 
would a buy signal imply going long in crypto y, while a sell signal would imply going long 

in crypto z. Investment signals and trading rules are similar to the unrestricted model. Hence, 

a buy signal when the standardized spread crosses -0.7 threshold and a sell signal when the 

spread crosses 0.7 threshold. The restricted strategy can be summarized as follows: 

     

    Buy signal, long in crypto y  if 𝑧" < −0.7 

    Close long position   if 𝑧" > −0.4 

Sell signal, long in crypto z if 𝑧" > 0.7 

    Close long position  if 𝑧" < 0.4 

     

The performance statistics are calculated in the same way as the unrestricted strategy, except 

for return. Return is calculated according to equations (25) and (26) 
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    If buy position: ln	( ((Ì))
((Ì))*+

)    (25) 

 

    If sell position: ln	(	 ((¹))
((¹))*+

)    (26) 

 

5.2.3 Performance measures of pairs trading 

In both strategies, the portfolio is calculated as a weighted average of the pairs in which a 

position is open. As an example, if only the strategy of the pair bitcoin/dashcoin is open, 

100% is allocated to the pair of bitcoin/dashcoin. On the other hand, if all three strategies are 

open, 1/3 are allocated to the respective portfolios. A simple buy and hold approach, with 

daily returns over the full period, is used as a benchmark. The benchmark portfolio is 

weighted 1/3 to each pair over the whole period. Table 10 presents the performance of the 

pairs trading strategies  

 

Table 10 – Performance statistics of pairs trading strategies 

   Daily  Annualized   Total 

Strategy Pair 
Winner/
losers 

Avg. 
return 

Vol. 
Avg. 

Return 
Vol. S. R Return 

Buy and 
Hold 

        

 Bitcoin/Dogecoin  0.19% 4.6% 68.0% 87.7% 0.75 269% 

 Bitcoin/Dashcoin  0.20% 4.2% 74.8% 80.5% 0.90 296% 

 Bitcoin/Litecoin  0.19% 4.3% 70.8% 82.9% 0.83 280% 
 Portfolio  0.20% 3.9% 71.2% 75.4% 0.91 281% 

Unrestricted         
 Bitcoin/Dogecoin 7/3 0.04% 1.5% 15.3% 28.8% 0.45 60% 
 Bitcoin/Dashcoin 9/7 0.48% 13.2% 175.1% 252.6% 0.68 691% 

 Bitcoin/Litecoin 7/5 0.06% 2.2% 23.5% 41.6% 0.51 92% 
 Portfolio  0.59% 13.5% 213.9% 257.7% 0.82 844% 

Restricted         
 Bitcoin/Dogecoin 6/4 0.13% 4.2% 47.5% 80.2% 0.56 187.6% 
 Bitcoin/Dashcoin 10/6 0.21% 5.4% 76.1% 103.7% 0.71 300.5% 
 Bitcoin/Litecoin 8/4 0.18% 6.3% 66.9% 119.9% 0.54 264.2% 
 Portfolio  0.52% 9.3% 190.5% 177.5% 1.06 752.2% 

Table 10 The performance of the buy and hold, restricted and unrestricted strategy. Trading period is between 14.02.2015 - 
25.01.2019. Vol and S.R indicates volatility and Sharpe Ratio. 
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It can be seen from table 10 that only the pair of bitcoin/dashcoin would outperform a simple 

buy and hold strategy, in both cases, with regards to return. However, the Sharpe Ratio is 

lower which indicates a poorer trade-off between risk and return. Due to the low amount of 

trades over the time period, the portfolio return is close to the sum of the return of the three 

pairs. Hence, an equally weighted portfolio of the pairs, in which a position is open, would 

outperform the market portfolio in both the unrestricted and restricted case. The S&P 500 

obtained an annualized return of 6.2% and Sharpe ratio of 0.27 for the same period 

(appendix). 

 

The statistics in table 10 is calculated per day, including the days when no position is open. 

Accordingly, table 11 presents the daily performance of both strategies, only for the days 

when a position is open.  

 

Table 11 - Performance when position is open 

    Daily  Annualized   

Strategy Pair 
Winners

/ 
losers 

Average 
days in 
position 

Avg. 
Return 

Vol. 
Avg. 

Return 
Vol. Max/min 

Unrestricted         

 Bitcoin/Dogecoin 7/3 56.7 0.44% 12.1% 162.3% 231.3% 217.5% / -147.0% 
 Bitcoin/Dashcoin 9/7 52.5 0.43% 12.2% 155.7% 151.0% 110.6% / -183.3% 
 Bitcoin/Litecoin 7/5 52.2 0.13% 5.5% 47.4% 104.6% 66.2% / -29.9% 

Restricted         
 Bitcoin/Dogecoin 6/4 56.7 0.25% 3.53% 65.0% 67.4% 34.3% / -47.8% 
 Bitcoin/Dashcoin 10/6 52.5 0.23% 4.25% 60.7% 62.0% 26.8% / -24.0% 
 Bitcoin/Litecoin 8/4 52.2 0.31% 3.05% 113.3% 58.2% 36.7% / -19.4% 

Table 11 Performance of the pairs trading strategy on daily basis, when position is open. 

 

Table 11 shows the average daily return in the days when a position is open. This illustrates 

that the average daily return is higher when a position is open, in both strategies, compared to 

the whole period. In addition, the unrestricted strategy seems to yield a higher average return, 

as well as having a higher volatility, than the restricted strategy.  
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The selection of upper and lower threshold levels, used to trigger a buy/sell signal, is a matter 

of preference and risk aversion for the individual investor. Accordingly, a sensitivity analysis 

will be performed on both strategies in order to measure how sensitive returns and volatility 

are to the predefined investment rules. Table 12 summarizes the performance of the 

unrestricted and restricted strategy at different threshold levels. The selected threshold levels 

are 1/-1, 1.5/-1.5 and 2/-2, while the position is closed at 0.4/-0.4 in all cases.  

 

Table 12 – Sensitivity Analysis 

 Bitcoin/Dogecoin Bitcoin/Dashcoin  Bitcoin/Litecoin  

Thresholds A. R. Vol. S.R A. R. Vol. S.R A. R. Vol. S.R 

Unrestricted            

1/-1 22.3% 32.4% 0.61 60.4% 115.9% 0.50 5.2% 8.6% 0.33 

1.5/-1.5 16.6% 28.1% 0.51 20.5% 16.7% 1.08 6.4% 8.2% 0.49 

2/-2 30.9% 41.9% 0.68 31.2% 29.7% 0.97 8.7% 9.90% 0.65 

Restricted           

1/-1 48.2% 70.8% 0.65 71.0% 89.7% 0.76 62.0% 121.0% 0.49 

1.5/-1.5 40.3% 71.9% 0.53 67.6% 86.8% 0.75 94.0% 112.2% 0.82 

2/-2 35.3% 73.7% 0.45 56.2% 61.3% 0.88 77.5% 98.4% 0.76 

Buy & Hold          

 68.0% 87.7% 0.75 74.8% 80.5% 0.90 70.8% 82.9% 0.83 
Table 12 Sensitivity analysis for the unrestricted and restricted strategy. A.R, VOL. and S.R indicates annualized return, 
annualized volatility and Sharpe Ratio, respectively 

 

It can be seen from table 12 that pairs trading does not guarantee a higher return than a simple 

buy and hold approach, for the individual pairs. The restricted strategy outperforms the 

unrestricted strategy in terms of return and Sharpe Ratio. It can be noted that this thesis 

assumes no transaction costs, which would affect the active trading strategies in a negative 

direction.  

 

Nguyen and Leung (2018) found evidence of wider threshold levels yield higher profits in the 

period December 2017 until June 2018, in a sample of bitcoin, bitcoin cash, ethereum and 

litecoin. This thesis does not find consistent results that support this statement. In addition, 

Nguyen and Leung found the threshold level 1.5/-1.5 to be optimal. Given the results in table 

12, it is hard to determine the optimal threshold level. Broek et al (2018) concluded that the 

efficient market hypothesis does not hold for the cryptocurrency market, as the paper found 
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positive profitability from arbitrage opportunities by using pairs trading, following the work 

of Gatev et al (1999). In addition, Broek et al (2018) concluded that pairs trading strategy can 

successfully be applied to the cryptocurrency market and generate profits. This research 

concludes that positive profitability can be obtained by using pairs trading, and that a 

portfolio which is equally weighted in the pairs, in which a position is open, outperform the 

market portfolio. The individual pairs, on the other hand, does not outperform a buy and hold 

strategy. A final observation is that return and volatility are highly sensitive to the selected 

threshold levels.  

 

6. Conclusion 
 

In this research, the statistical arbitrage strategy, known as pairs trading, have been conducted 

on selected cryptocurrencies. The purpose of this study was to examine whether the strategy 

could obtain excess return, compared to a simple buy and hold approach. The strategy is 

based on cointegration. Cointegration tests are applied to bitcoin, dashcoin, dogecoin and 

litecoin, which are selected based on their relative long existence, in order to identify whether 

they share a long-run equilibrium relationship. After conducting both the Johansen test, and 

Engle and Granger test, cointegration was found between the variables. Hence, three 

cointegration relationships were included when specifying the vector error correction model. 

Subsequently, the standardized spread between each pair was calculated, and used as signals 

in order to open or close a position. Only pairs involving bitcoin were included, as bitcoin is 

the largest cryptocurrencies in which the other currencies most intuitively are dependent on. 

An unrestricted and restricted strategy was created, where the unrestricted allowed shorting, 

while the restricted only allowed long positions. A simple buy and hold approach, involving 

an equally weighted portfolio of the pairs, was used as a benchmark.  

 

The proposed strategies in this thesis did not consistently perform better than their 

benchmark. The pair of bitcoin/dashcoin outperformed the buy and hold approach with 

regards to return but yielded a lower Sharpe Ratio. However, the average daily return of each 

pair was higher in the period in which a position was open, than for the whole period. In 

addition, holding an equally weighted portfolio in the pairs in which a position is open, 

outperformed the market portfolio with regards to return in both cases and Sharpe Ratio in the 

restricted case. The sensitivity analysis indicated that the performance of the respective 
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strategies is sensitive to the predefined threshold levels. No evidence of a superior threshold 

level was found, which is inconsistent with the findings of Nguyen and Leung (2018). 

 

This research could be expanded by including transaction costs. In addition, as bitcoin 

frequently changes in terms of volatility and expected return (Thies and Molnàr, 2018), the 

estimations, which includes historical returns, could be divided into shorter periods. Due to 

evidence of stronger performance under high volatility (Do and Faff, 2010), the strategy could 

be tested before, after and during the crash of 2017/2018. To modify the strategy, a stop-loss 

or profit exit points could be implemented, although, Nguyen and Leung (2018) found the 

pairs trading strategy, without stop-loss, to yield higher return.  
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8. Appendix   
 

8.1 Vector Autoregressive model (VAR) model 
A brief explanation of the VAR model is included as the Vector Error Correction Model 

(VECM) is an extension of VAR. VAR is proposed by Sims (1980) and is an extension of the 

univariate autoregressive model (AR) by including more than one evolving variable. The 

model is used to explain the dynamic behavior of time series. A VAR fits a multivariate time 

series regression of each dependent variable on both lags of its own, and all other dependent 

variables. The model contains K variables and a VAR with p lags are often denoted VAR(p). 

The equations for a simple case of VAR(1), with two variables are as follows 

 

     𝑦/," = 𝜂/ + 𝛿/𝑦/"./ + 𝛼/𝑦k"./ + 𝑒/,"    

     𝑧k," = 𝜂k + 𝛿k𝑦/"./ + 𝛼k𝑦k"./ + 𝑒k,"    

 

Where 𝑒" is an error term with expected value of zero, E(𝑒") = 0. It is not necessary to specify 

endogenous or exogenous variables in a VAR model, which makes it a flexible and easy 

model to work with.  

 

 

8.2 Engle and Granger 
Engle and Granger (1987) formalized the cointegration vector approach. The Engle and 

Granger approach belongs to the bivariate category of cointegration. Bivariate approach 

indicates a pairwise analysis with one endogenous and one exogenous variable. If a 

cointegrated relationship is found, an error-correction model can be specified.  

 

Mathematically would cointegration of order d, b, denoted 𝑥"~𝐶𝐼(𝑑, 𝑏), if (i) all components 

of 𝑥" are 𝐼(𝑑); (ii) there exist a vector 𝛼(≠ 0) so that (𝑧" = 𝛼Í𝑥"~𝑖(𝑑 − 𝑏), 𝑏 > 0). The 

vector 𝛽 is called the cointegration vector (Engle and Granger 1987). 

 

The Engle and Granger method consist of four steps (Enders 2010): 

 

1) Pretest the variables for their order of integration. If both series are integrated of 

the same order, cointegration is theoretically possible. On the other hand, if they 

are not integrated of the same order, cointegration is not possible.  
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2) If the series are integrated of the same order, estimate the long-run equilibrium 

using ordinary least squares of the form 

 

     		𝑦" = 𝛽i + 𝛽/𝑧" + 𝑒"     

   

In order to determine whether or not the variables are cointegrated, the residuals 

are stored and tested if they are stationary using the Augmented Dickey-Fuller test, 

where the following equation is tested: 

 

   ∆𝑒"S = 𝑎/𝑒"./Î + ∑ 𝑎\h/v
\;/ ∆𝑒".�Î + 𝑒"   

where: 

 

𝐻i: 𝑎/ = 0, 𝑢"Î	~	𝐼(1)			 - Nonstationary residuals and no 

cointegration 

𝐻/: 𝑎/ < 0, 𝑢"Î	~	𝐼(0)			 - Stationary residuals and 

cointegration 
 

If the test statistic indicates rejecting the null, there exist a cointegration relationship between 

the variables. MacKinnon (1990) provides a valid table of critical values used to test the 

residuals for stationarity.  

 

3) If cointegration is detected, estimate the error correction model. In an error 

correction model, the short-term dynamics of the variables are influenced by the 

deviation from equilibrium. In this case, the residuals from the equilibrium 

regression are used to estimate the error correction model of the form: 

 

																																	∆𝑦" = 𝛼Ì𝑒"./Î + ∑ 𝛿//\�
\;/ Δ𝑦".\ + ∑ 𝛿/k\�

\;/ Δ𝑥".\ + 𝜀Ì"        

																																	∆𝑥" = 𝛼`𝑒"./Î + ∑ 𝛿k/\�
\;/ Δ𝑦".\ + ∑ 𝛿kk\�

\;/ Δ𝑦".\ + 𝜀`"          

 

Where ∆𝑦 is the dependent variable being tested, 𝜀Ì" are white noise disturbance, i 

is number of lags and 𝛿//, 𝛿k/,	𝛿/k and	𝛿kk, are all short-run parameters. The speed 

adjustment parameter is expressed by 𝛼Ì, while 𝛼Ì𝑒"./Î  being the error correction 

term. 
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4) Determine whether or not the error-correction estimated is appropriate.  

 

Table 13 presents the results of the Engle and Granger test. The Bayasian Information criteria 

is used to determine the number of lags. The sample period is 14th of February 2014 until 25th 

of January 2019. Trend is excluded in each test.  

 

Table 13 – Engle and Granger cointegration test 

Crypto 
 

Bitcoin 
 

Dogecoin 
 

Litecoin 
 

Dashcoin 
 

Bitcoin 
Dogecoin 
Litecoin 
Dashcoin 

- 
- 3.574** 
- 2.706 
- 4.569*** 

- 3.689** 
- 

- 3.682** 
- 4.615*** 

- 2.776 
- 3.612** 

- 
- 4.178*** 

- 4.977*** 
- 5.136*** 
- 4.717*** 

- 

Table 13 The Engle and Granger test. Symbols ***, ** and * represents significance at 1%, 5% and 10%, respectively. 
Critical values can be found in MacKinnon (1990). 

 
 
8.3 Performance of the S&P 500 
The S&P 500 index accounts for more than 80% of the stock market in the United States and 

is considered to be a good representation of the US stock market. Accordingly, performance 

of the index is included for illustrative purposes, with regards to the pairs trading strategy. 

The price of S&P 500 is gathered from Yahoo Finance. Table 15 presents the performance 

over the period 13th February 2015 until 25th January 2019. The statistics are calculated 

according to equation (20), (22) and (23) but with 252 trading days. 

 

 

Table 15 - Performance of the S&P 500 

Statistics Performance 

Average return 0.02% 

Annualized return 6.2% 

Annualized standard deviation 13.73% 

Sharpe ratio 0.278 

Table 15 The performance of S&P 500 over the period 13th February 2015 – 25th January 2019.  
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