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Abstract

Triassic reservoir potential in the grater Oda and Ula fields areaNorth sea

Birgitte Kverneland, MSc

The University of Stavanger, 2019

Supervisor: Alejandro Escalona and Lars Aamodt

The objective of this thesis is to improve the understanding of the lateral distribution of the
sandstones of the Skagerrak Fm, byg$D seismic data and wells in the greater Oda and
Ula field area. The Oda and Ula fields are located in the salt province in the Central Graben.
Consequently, salt tectonics played an important role in the deposition of the Skagerrak Fm
sands, resultin a large lateral variation in thickness dadies. Thecomposition of thesalt
alsohas a large impact on thepsasaltstructural style, and furthermore tbedimentation of

the Skagerrak Fm.

The interaction between salt tectonics and sedimentatioadstigated in order to understand
how salt related subsidence or uplift acted as depocdatessdimentation. The main aim is
to understand the facies distribution, to further build a conceptual model for sandstone
fairways, and ultimately point to @as where there can geod quality reservoir potentiad

the Triassic.

Most wells in the salt province are placed in an interpod setting where the Ska&geisak
very thin or absent, since it has not traditionally been the main target. Howevepibiea
working play, and is being produced in the Ula Field. It is therefore likely that there are

commercial accumulations of oil other plaesswell in the Triassic sectiom the area.

Two different salt regimes has been defined, where one sais undtbile and halite

dominated. The othesalt unitis interbedded with carbonates and anhydrite, and consequently
a lot more viscous and nanobile. The two salt regimes result in different subsalt structural
style. Themobilesaltunit result in a poehrea where accommodation space is created next to
large salt structures, where the Skagerrak Fm sandstone can be deposited and preserved. In
contrast, in the area of the nrorobile unit the Triassic thickness is relatively constant and the

Top Triassic surfee has a gentle topography.

V



The Skagerrak Fm is a part of a regional fluvial alluvial system, and is locally interpreted to
be in a braided streams depositional environment with ephemeral lakes. Rivers have been
directed into the pods, where there has @@®ommodation space for sediments to be
deposited, and it is suggested that thereggaa Triassic reservoir potential withiié pods.

The interpod area is ffilnerawayfrom the channel feeder, well logs show less developed sand

packages and has podgilower reservoir potential.
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1. Introduction

1.1 Motivation

The study area is locatedtime Central Graben in the North Sea, whenportant structural

elements are the Cod Terrace #mel Sgrvestlandetigh (Figurel). This area haseen

studiedin several decades,i nce t he 197006s when inghestreaol eum e
Traditionally, the exploration has be¢argetingthe Ula sandstonerh of Late Jurassic Age,

the Chalk formations Tor and Ekek, of Late Cretaceous to eaRgleocenage, andhe

FortiesFm of Paleocene ag&owers, 1995)

The Triassic hairarely been the main target, but the Triassic Skagerrak Fm play model was
proven on the Ula Field in 1981, and recent well results have conftira&tkagerrak Fm
sandstones as potential reservoitha areaSeveraldiscoveriesin the UK sectoclose b the
study arednaveprovenoil or gas condensate from Late Triassic storss of the Skagerrak

Fm (Figurel) (Fisher and Mudge, 1998)
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Figurel: Approximate location of study area and the main structdrelements in the neighborhoodTriassic fields and
discoveries are shown in piniodified after NPD factpages anBlvans et al., (2003)

Relatively ittle effort has been invested in understanding the Triassic stratigraphy on the
Norwegian sectofEvans éal., 2003). e lateral distribution of the Skagerrak Sandstone is
poorly understood anitlis probably underexplored, on the NCS in this aFégure 2 is a
lithostratigraphic correlation of the &gerrak Fm showing variatioms thickness and GR log

characte. In well 8/104 S the Triassic consists ghalesonly, while in the other wellgood



guality sandstone packages up to 20 meterpresentThese variations are a result of the

paleogeographyikely to be controlled bgalt tectonics and fauttg in the area.

Given the focus on the Ula Fm and chalk playsstof the wells in the Central Graben on the
Norwegian sector targeting the Skagerrak Fm have been placed in an interpod setting, on top
of salt structuresrovery close to salt structures.dst wells have shown that the Triassic is

very thin or absent. However, there are dramatic changes in thickness, and the Triassic is
much thicker further away from thalsstructuresKigure3). Thethicknesscharges are most

likely related to salt movement, and awdicating that salt may have played an imgot role

in controlling thedepositioal system and the distribution of sandstone and shale

A seismic section and the corresponding-gectionaregiven in Figure3. Thewells shown
arelocated in a typical interpod settirfgpom the Ula field, where the trap isauft-bound dip
closure and from the Oda fielplaced on the flank of a diapir, where the Triassiclpas out

onto the piercing dr. Note also how the Triassic varideamatically in thicknesalong the

section from the interpods where it is thin or absent to several hundred meters in the adjacent
mini-basins.The Skagerrak Fm is thicker and more ¢antn thicknesson the Ula field,

compared to the Oda field where it is thinning towards the salt diapir. There were no
indications of hydrocarbons in the thin Skagerrak interval in the Oda weld8&LMut in the

Ula well 7/126 hydrocarbons were prem(NPD fact pages)Figure3).

Fisher and Mudge (1998jated that the limited succeststainedn the Triassic of the Central
North Sea reflects lack of confidencepiredictinga good reservoirather tharack of
competent trapping and sourcing mechanisms. Thissmportant tafocus onresearch and

studies on the reservoir distribution.

1.2 Objectives

The objective of thishesis is to improve the understanding of the lateral distribution of the
sandstonesf the Skagerrak Fiwithin the study areay using 3D seismic data and wells in
the greater Odand Ula field area. fie interaction between salt tectonics amnidssic
sedimentation is investigate orderto understanthow salt related subsidence or ftpicted

as depocenters for sedimentatiangd impacted the deposition of sand and clay in the
Triassic.To further build a conceptual model for sandstone fairways.wWiliprovide the
basis forbetter predict the presence of the reservoir in this foomaind set up the study area

into the regional contexor future more detailed studies
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A) 7/12-6 (Ula) 8/10-4 S (Oda)

d
f

Mandal Fm

TWT (ms)

B) 7/12-6 (Ula) 8/10-4 S (Oda)

Figure3: A) Seismic lindrom seismic cube FP17M@fing through well 7/126 on the Ula field and 8/1& S on the Oda
field, showing salt structures and pod8) Same seismic line with the salt filled wittolor and interpretation of Top
Skagerrak Fm.

Note that it is not the real Top Rotliegend under the salt diapir, but a seismic velocity-ppleffect.



2. Previous work

2.1 Geological setting of the Ula and Oda field area

The tectonic framework of norlvesernEurope was developed in pBevonian In Silurian,
Baltica collided with Laurentia, and foa low-angle thrusts formethe Scottish and
Norwegian Caledonides, resulting in closure of the northern lapetus (Eears et al.,

2003) This was followed by rifting ithe latest Devonian time to Middle Carboniferous times
(Brekke et al., 2001)rhecrustal lineaments from p#feermian time have acted as zones of

crustal weaknesses, affecting the North Sea rift sy@sans et al., 2003)

The Pangea supercontinent was completely broken up in the periothEbate Permian to
the EarlyTriassic.This period was the firstft phase, and it is likely thahe Central Graben
in the North Sea was formexd this time(Bell et al., 2014)The direction of the crustal
extension issumedo have been east wegstallting in faults trending nortisouth to
northeast southweg@Eigure4a) (Feerseth, 1996Y he rifting periodwas followed bya period
of thermal relaxation andifferentialsubsidencef the graben floom Late Triasst to Early
Jurassic. Triassic sediments have accumulated in these subsidingidreagkness ofip to
4000 m.(Brekke et al., 2001; Lippmann, 2012; Ziegler, 19@yure 4b).

—=r= Major normal faults
@ salt diapirs

5 >
b) land Platfo P
{ 1/
S/ AV Z|
| High
/4
e r Y
< —
we AN )
Jd ’
C ) ﬁ( Hoh
r\ \ 5
and / . ‘E
5 area | \
ng ng
\ d N sén' % Fyn High
. |
{
Maximum northerly extent
of marine influences ?
L. Anisian to E. Ladinian
=] & L. Camian to E. Norian | B3
=
Sou Nprth
(%)
O o =y 5

[:] Fluvial sheetflood

I: Marine

Figure4: a) Structural map modified after Evans et al., (2003) b) Map of the distribution of the Triassic red beds, modified
after Lippmann (2012)

A later rifting event took place from the Middle Jurassic to Early Cretaceous. This rift event is

proposed to be lated to rise and collapse of a thermal dome in the Forties region, caused by

5



volcanism (Bell et al., 2014) (Figure 5). The faults created and/or reactivated during this rift
period have the same strike as the earlier rift phase;-south and northeasbuthwest (Bell
et al., 2014). The rifting caused uplift and erosion of footwalls, resulting in removal of large

parts of the Triassic sediments (Evans et al., 2003) and decrease in the Triassic thickness.

The period from the Cretaceous to the Cenozoicahasacterized by thermal subsidence and
pulses of tectonic inversion. Another important event in the Cenozoic is the regional uplift of
the basin margins, which lead to widespread erosion of the Triassic and Jurassic strata (Evans
et al., 2003).

2.2Depositional environment

2.2.1 Lithostratigraphy

Thegeneral lithostratigraphic column for the Sgrvestlandet High and the Cod Terrace in the
southern Central Graben is showrFigure5. The Triassic succession in the study asea
composed of the fluvial to lacustrine Smith Baftk mudstonesfollowed by theheterolithic
fluvial dominated Skagerrak Fm. This formatimonsists of interbedded conglomerates,
sandstones, siltstones and shéliegure5) (Deegan and Scull, 1977)

The boundary between the two formations is considered to be diachronous, meaning that the
Skagerrak Fm in some areas represents the |&eras equivalent of the Smith Bank Fm and

in other areas the Smith Bank does not exist and the Skagerrak Fm directly overlies the
Zechstein Group (Fisher and Mudge, 1990). However, thegfim@ed Smith Bank is the

dominating formation in the early Trisis (InduarOlenekian) (Evans et al., 2003).



Chronostratigraphy Group Central Graben Tectonical salt
Age| Era Period  Epoch Age/Stage South events movement
DK UK/NO
o o :W: E
10 5 an
Miocene | Sgraas:
2 = an u Nordland
3/ otgocs -
2 ‘
“ 8 -
’ Hordaland Inversion
50
60 ) ::_'a:\‘ - Rogaland
70 Maastrichtian
P Campanian
3 5 Shetland
il Wm acan
100
Albian
10
= Cromer Knoll
130
@ Main rift phase
10 Tyne
160
170 =
9 Vestland
190
200
‘Rhaetian
210 o
e
220 ‘Norian
0 - Hegre
240
m o .
Early rift phase
pingian _, Zechstein LAt
o0 .
. Deposition of
270 0 Rotlgend Zechstein salt

Figure5: Lithostratigraphic column and main tectonic events for thstudy area, modified afteVolleset and Dore, 1984)
and Evans et al., (2003).



2.2.3 Climate and paleogeograph y

The climde in the Triassic was arid to searid (Weibel et al., 2017)Due to northwards

continental drifting, there was a gradual cooling ef ¢thmate and the humidity was in

general increasing between Late Permian and Early Jurassic times (Evans et al., 2003). These
climate changes together with chasgethe base level had largepact on the regional

depositiondenvironments and lithologse

According to Evans et.al, (2008)e Early TriassicSmith Bank Fm was deposited in a
widespread lacustrinedibdplain environmeninder continental playa conditioffSigure6).
Theplaya muds are widespread repentinghe Early TriassicThe mudprone deposits
represent lowenergy depositiorand the period is generally dominated by high water tables
and low sand supplfMcKie, 2014)(Figure7).

Larger grairsizes in theSkagerrak Fnindicate that this formation was deposited in a higher
energy systemompared tdheshalySmith Bank FmThe Skagerrakmwas deposited as
sheeflood and braidedtream sands on an extensive alluvial pl&ig§re6) (Evans et al.,
2003).Coarse fluvial material was deposited along the rift margins, grading into finer fluvial
and lake deposits into the center of the ba@itD, 2014) The fluvial sands were able to
expandacrosslte basirduring periods opluvial events witlreduced aridityand reacheds
maximum basinward extent in the Central Nd&#eaduring the LadiniarfFigure?) (McKie,

2014 McKie and Williams, 200p

The transportirection of the Skagerrak Ffluvial and sheet flood sandstoneshown in

Figure8. The system interacted with both axial and transverse systems draining off the
Scottish highlands and the Fennoscandia Shialdtand. From here the eroded material

flowed southward, past the study area, into the northern margin of the Southern Permian basin
(McKie, 2014)

In thelate Triassidhe fluvial environment was replaced by vegetateddplaingFigure7)
(McKie and Williams, 2009) There was notable change from deposition of continental
sandstones and mudstoneshallow to deepmarine mudstonedigure6) (Evans et al.,
2003)



Figure6: Depositional environment maps for North Sea Triassic, divided into six time sequences. The white arrows show
how the sediments were sourced from thbasement highs. The sediment transport direction was influencedHosy
active extensional fault§Evans et al., 2003)























































































































































































