
1

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study program/Specialization:

Petroleum Engineering/Reservoir Engineering

Spring Semester, 2019

Open

Author:

Juan Manuel Cadena Zetina

(Signature of author)

Programme coordinator:

Supervisor(s): Anton Shchipanov

Title of master’s thesis:

Well monitoring from om-the-fly analysis of data from Permanent Downhole Gauges (PDGs)

Credits: 30

Keywords:
Pressure Transient Analysis (PTA)
Permanent Downhole Gauges (PDGs)
Automation

Pages: 40

+enclosure: 30

Stavanger, 15.06.2019

2

Well monitoring from on-the-Fly analysis of data from Permanent

Downhole Gauges (PDGs)

Juan Manuel Cadena Zetina

Summary

The thesis focuses on time-lapse Pressure Transient Analysis (PTA) of data acquire with Permanent

Downhole Gauges (PDGs). The objective is to develop and test approaches in automation of time-

lapse PTA. Helping in providing well-reservoir parameters such as reservoir flow capacity (Kh) and

well skin (S) is analyzed.

A short review of modern PDGs with description of their specifications (i.e. accuracy, resolution) is

followed by literature review of recent paper focused on automating time-lapse PTA. This includes

machine learning and multi-well interpretation. The main part of the thesis begins with the

description of the code developed in combination with analytical solutions used for time-lapse PTA

interpretations. The thesis continues with analysis of a synthetic injection well simulated in Saphir.

And end up with testing the code with an actual history well production on the Norwegian

Continental shelf.

The results of the test on the synthetic well example have shown that from two flow capacity

calculation procedures using semi-log and log-log derivative analyses. The last one provides more

accurate results on flowing transients. The estimated well skin depends on the flow capacity

estimation above. Therefore, is also better estimated with the log-log (derivative) analysis. Both

methodologies behave similar in shut-in cases. The inclusion of superposition time when estimating

parameters was demonstrated to be a determinant factor.

The tests on the actual well showed that the code provides similar results with Saphir, where the

automation routines gives values with an error of 12% and 6% for the semi-log and derivative

analysis respectively.

Contents
1 Objectives and Scope ... 5

2 Introduction ... 5

3 Theoretical Background .. 8

3.1 Permanent Downhole Gauges .. 8

3.1.1 Applications of Permanent Downhole Gauge data and automated analysis 11

4 Methodology ... 16

4.1 Input data synthetic example .. 16

4.2 Explanation of the main parts of the code and formulas used 16

5 Synthetic Case further analysis ... 25

5.1 Injection analysis .. 25

5.2 Fall-off analysis ... 30

5.3 Synthetic analysis discussion ... 33

6 Real Case Analysis .. 34

7 Conclusions .. 38

8 References ... 39

9 Nomenclature .. 40

10 Appendix A ... 42

10.1 Workflow.. 42

10.2 Prepare... 42

10.3 Initialize .. 44

10.4 Generate .. 45

10.5 Normalize ... 50

10.6 Calculate... 51

10.7 Calculateb... 52

10.8 Superposition ... 54

10.9 Derivative ... 54

10.10 Interpolation... 55

10.11 Comparative ... 55

10.12 Limits .. 55

10.13 Propertyks .. 57

10.14 Genesis ... 59

Contents

4

10.15 Printing ... 59

10.16 Gengraph .. 61

10.17 Allgraph .. 64

10.18 Summaries .. 67

10.19 Cleaning .. 68

Acknowledgement

Access to academic license of Saphir software from Kappa Engineering is gratefully acknowledged.

The software was used for simulation of synthetic cases and comparison of the interpreted results

obtained with the code developed in the thesis.

Free access to the Volve Field data provided by Equinor under a Creative Commons license is

acknowledge. This data set was used for interpretation of pressure transient analysis and testing

the code developed in the thesis.

1 Objectives and Scope

The thesis objectives are:

• Literature review of today’s practice and recent developments in manual, semi- and fully
automated PTA of PDG data.

• Development and coding of algorithms for interpretation of well flowing (constant rate) and
shut-in periods with estimation of reservoir flow capacity (kh) and skin (S) accounting for
time superposition effects.

• Analysis of possibilities to automate routine procedures of pressure / rate interpretations
(time-lapse PTA).

• Development and coding of algorithms for automated time-lapse PTA with possibility of on-
the-fly analysis and alarming on well performance changes in real-time.

• Analysis of real well data pressure and rate from a North Sea field.

2 Introduction

The increase in the amount of data provided during well measurements has been receiving a boost

from the new technologies and the digitalization, leading to big data sets to be handle by reservoir

engineers. This requires from engineers not only knowledge in reservoir engineering, but also the

programing skills in helping and developing fast and efficient solutions. To deal with such big data

sets.

Being able to perform simple tasks such as filtering, synchronizing data, or structuring before input

into commercial software for such big sets of data can be a complicated task without a proper

computational approach.

Here, one of the possibilities is automating certain tasks by using complementary software as

MATLAB, Python or MS Excel as in the case of the thesis. The reasons for using macros in MS Excel

was that most of the computers have access to MS Excel. The second reason is simple input and

output via spreadsheets, while the amount of computational power to run simple models in MS

Chapter 2.- Introduction

6

Excel is quite low. The input data can be updated easily via coping the data in the predefined MS

Excel sheet, along with the coding based on VBA.

Well test analysis has the objectives to provide information about the well and the reservoir. Which

in combination with geological, geophysical and petrophysical data enables to build a reservoir

model that simulates the reservoir and can predict the field behavior and fluid recovery. Well tests

provide the description of the dynamic conditions, in measurements of the flow (rates) and physical

properties (like pressure, temperature, saturations, etc.) when fluids are flowing from the reservoir

to the well and vice versa [1].

Well test analysis was renamed in posterior years into Pressure Transient Analysis (PTA). This

includes all methodologies and tools developed to analyze well shut-in periods, or pressure build-

ups and falloffs, with analyzing the whole well production life with time-lapse analysis.

In the past PTA was traditionally used to characterize well and reservoir parameters from well tests

based on shut-in periods and was mainly used in the reservoir management and decision making

before reservoir simulation [14].

The development of Permanent Downhole Gauges (PDGs) has brought a massive number of

pressure and temperature measurements, providing basis for significant improvement for well and

reservoir monitoring.

PDG’s provides high quality/high frequency pressure data for the whole well story, but the

interpretation of the data becomes challenging related to the lack of interpretation techniques for

on-the-fly data analysis dealing with short time periods, between receiving the data and taking of

decisions [14].

The comparison of different pressure transients is traditionally done by plotting all the transients

and derivatives on the same log-log plot. In practice the comparison between the transients is

normally done based on a reference transient chosen, conventionally the first one. The transients

are normalized based on the rate [14]. This will further elaborated in Chapter 3 of the thesis. Analysis

of time-lapse pressure transient can provide descriptions of long-term changes in well reservoir

parameters.

The objective of the thesis is to use PTA as an interpretation tool for fast analytical solutions for data

interpretation that can be easily updated with the new information provided by the PDG’s,

classifying in flowing or shut-in periods. Two interpretation methods that use the semi-log and log-

log (pressure derivative) analysis to estimate the reservoir flow capacity (kh), permeability (k) and

skin factor (s) from time-lapse PTA, are implemented and testes.

The analysis will focus on the effect of duration of a transient period. Estimation of the well-reservoir

parameters described above related to the radial flow regime. The results are further compared

with the “Saphir” software used for simulating a synthetic well case or an actual field case.

The following questions were addressed:

• How good does the filter of the macro work in classifying the flowing and shut in periods?

Chapter 2.- Introduction

7

• Under which circumstances is better to use the semi-log analysis. Which uses less complex

and simple equations than the derivative method.

• In which cases flowing periods can offer similar results to shut-in periods. How different are

the calculated well-reservoir parameters for these two types of transients?

• What is the minimum tolerance accepted for determining the radial flow regime for flowing

and shut-in periods to provide reliable and accurate information?

The questions also include the importance of superposition time as input data for the flow

equations, which accounts for the whole well history before the analyzed transient.

Finally, a discussion of the results obtained and recommendations on using interpretation models

for certain circumstances. And keeping in mind the possibility of providing a quick analysis of PDG

data for making decisions.

3 Theoretical Background

This chapter will cover the basic theory related to automation, big data analysis and some

applications. It will also cover general description, classification of Permanent Downhole Gauges,

advantages and disadvantages of the different types.

In reservoir engineering the objective of Pressure Transient Analysis (PTA) is to obtain information

about the rock, fluid and well properties including permeability, heterogeneity, reservoir pressure,

reserves, wellbore damage, boundaries, fluid contacts, etc. Buildup, drawdown, injectivity, falloff

and interference tests are used for this purpose [1] [2] [3].

A pressure disturbance (e.g. with short term production of injection for a well test) followed by

pressure monitoring is required to get the information about a well or reservoir using PTA. Pressure

transient response may be also created by a temporary change in the production rate. The well must

be monitoring during a certain period depending on the well test objectives. It can last a few hours

or days for well evaluation, up to month(s) for evaluating distant reservoir areas or well

interferences. The pressure is measured in the well where the flow rate has been changed or in

another well (interference). In most of the cases the flow rate is measured at surface while the

pressure is recorded downhole [1] [2] [3].

In practice, PTA applications are often limited by [3]:

1) Insufficient data collection.

2) Inappropriate application of analysis techniques.

3) Failure to integrate other available or potentially available information.

These limitations make the most complex reservoir harder to analyze, making the acquisition of

reliable data an important and valuable task in reservoir engineering.

For a long time, pressure and temperature measurement in wells have been obtained through

surveys carried out using wireline interventions. Today, the Permanent Downhole Gauges offer an

alternative to measure pressure and temperature in real-time [4].

3.1 Permanent Downhole Gauges

A Permanent downhole Gauge (PDG) is a device installed permanently in a well, to provide a

continuous record of pressure, temperature and sometimes also flow rate during production well

production. The continuous record provides us rich information about the reservoir and makes PDG

data a valuable source for the reservoir analysis [5] [6].

Based on the measuring principle or sensor there are four main categories [7]:

1) Piezoelectric crystal gauges.

2) Optical sensors gauges.

Chapter 3.- Theoretical Background

9

3) Electronic silicon-on-insulator gauges.

4) Capillary tube gauges.

Piezoelectric crystal gauges: these gauges use piezoelectric substances as sensors, being quartz and

sapphire as main crystal. These gauges generate a current when pressure is applied, this current is

proportional to the pressure applied to it [7].

• Quartz gauges: has been the main primary sensor technology utilized in PDGs, due to

providing a very high accuracy (order of 0.002%, full scale) and resolution (0.000006%, full

scale) of pressure measurement, they can obtain continuous or intermittent data. Typical

maximum temperature of 150 °C (302 °F) and pressures up to 1103.16 bar (16 000 psi). They

have an approximate ten years of life expectancy, before they need to be replaced.

Additionally, they can operate with other downhole equipment such as Electric submersible

Pumps (ESP). However, they are not very suitable above 200 °C and require power from a

battery cell to detect and relay measurements [7].

• Sapphire gauges: are similar to quartz features, applications and limitations, but they cannot

operate as optimal as quartz in higher temperatures [7].

Optical gauges: these are non-electronic systems that use optical fiber as the primary sensing

element or intrinsic sensor, which sends the information via electronic signals. The sensors are made

of glass and can withstand high temperatures (175 °C), pressures and vibrations. The glass also

prevents interference and noise pollution of the signal. Optical sensors require no power supply for

measurement taking and relay, they don’t cause additional wellbore restriction and are easy to

maintain, plus they offer various configurations to allow a wide range of applications like: downhole

and multiphase flow monitoring (rates of oil, gas and water are get distinctly, in zonal completions

commingling and individual productivity are easily determined), distributed temperature sensing

(identify leaking in casing or tubing, obstructions, and thief zones), and real time seismic imaging.

However, its main limitation is the cost [7].

Electronic Silicon-On-Insulator (SOI) gauges are piezo-resistive transducers that convert pressure

into a change in resistance. The strain of the applied pressure is measured across an active resistive

bridge while the temperature is measured from a secondary of the main bridge. SOI are flexible and

relatively economical. The measure is in moderate temperature and pressure ranges (up to 125 °C).

Additionally, they can be used in the vibration and artificial lift monitoring (good measurement in

vibration caused by natural flow or artificial lift systems), zonal monitoring array and multipoint

sensing (several gauges can be arranged on the same array), coal bed methane. It is limited by

temperature and pressure, since it is not suitable for these conditions [7].

Capillary tube or permanent pressure gauges are robust mechanical systems that acts on a piston

or sleeve that in turns acts on hydraulic fluid to control the line, transmitting the downhole pressure

to surface via a standard hydraulic control-line. As there are no electronic or electrical components,

this pressure gauge system has great applications in harsher environments and is significantly

cheaper. A floating piston mechanism ensures the systems compensates or temperatures effects.

Chapter 3.- Theoretical Background

10

They are suitable for HPHT wells, gas lift and chemical injection capability, but it does not allow

simultaneous measurements besides temperature or pressure [7].

In the Table 3-1 is shown a summary of all the different PDGs sensors and their performance

depending on which characteristic, we are planning to monitor. The scale goes from 1 (not suitable)

to 5 (most suitable). In Table 3-1 it is easy to see that the optical sensors cover more of the

necessities, follow by the piezoelectric crystals, the only problem for optical sensors is their high

cost.

Table 3-1 Comparative table of PDGs applications [7].

Reservoir

Monitoring
Optical sensors

Piezoelectric

crystals

Electronic silicon-

On-Insulator (SOI)
Capillary tube

Zonal isolation

monitoring
5 5 5 3

Pressure Transient

Analysis
5 5 3 1

Distributed

temperature sensing
5 1 1 1

Multipoint sensing 5 3 4 1

Seismic imaging and

monitoring
5 1 1 1

Water and steam

breakthrough
5 1 1 1

Other

Measurements

HPHT 5 (175*) 4 (150*) 1 (125*) 5

Artificial Lift

Monitoring
2 2 5 3

Production profiling 5 1 1 1

Well startup

monitoring
5 1 1 1

Downhole flow

measurement
5 1 1 1

* Temperature in °C.

As seen in these categories each of them as they can be used for additional measurements, and for

different conditions. This increases the benefits for installing PDGs in wells by collecting the exact

reservoir pressure with representative long shut-in period. Since the first day of completion, saving

additionally rig time and money as it will not interrupt any on-going drilling activities. Another

benefit is identification of completion failures such as leaking. PDGs also provides a real time well

Chapter 3.- Theoretical Background

11

response or monitor the downhole flowing conditions [4]. However, the characteristics of PDG data

make the interpretation challenging.

First unlike conventional well testing where flow rate is always carefully controlled, the flow rate

recorded by PDGs is subject to operational variations during production. The continuously variable

flow rate history makes the pressure and temperature signal more difficult to de-convolve [6].

Secondly, the PDG data are often very noisy. The noise comes from the operational variations that

occur in the well and should be treated as an inherent property of PDG data. The noise may hide

the true reservoir response and makes it harder for us to recover the true reservoir model.

Specifically, the noise in flow rate data brings difficulty for breakpoint identification, which is needed

to divide the whole set of PDG data into separate transients. With noise in the flow rate data, it can

be challenging to detect which is an actual rate change event and which is noise [6].

The large volume of data is another problem. Modern PDGs can record data at a frequency as high

as once per second. This means that millions of data are stored in a PDG record after months of

production. People would never want to attempt manually poring over data of such high volume

[6].

PDGs were initially deployed for well monitoring and pressure transient analysis. But as explain

before the advances in technologies, materials, multipoint tools have allowed the measurement of

different properties. This also allowing new uses for the PDG data obtained, well communication,

position of wells (injectors/producers) in waterflooding, flow rate reconstruction, for naming some

of them.

3.1.1 Applications of Permanent Downhole Gauge data and automated analysis

In Waterflood performance, the most important data in any injection project are production and

injection rates, the PDGs offer a continuous source of information, which can be used for optimizing

the oil recovery by changing the injection patterns, location of injectors, well priorities in operations,

recompletions of wells and targeting infill drilling [7].

Jahangiri et al (2014) proposed a method called Top-Down Waterflood (TDWF), which was applied

in one filed in the North Sea in late 2012 and early 2013. This method evaluates the effectiveness of

water injection efficiency in the reservoir, the value of injection water (VoiW) and the quantity of

the relative connectivity of the injector/producer in the early life of the waterflood prior to

significant water breakthrough. The process relies on good estimates of daily production an

injection rate data [8].

In their work it was show that the two parameters that have a significant impact in water flooding

are the maximum number of injectors that can be connected to a producer, and the distance radius

around a producer within which an injector will be allowed to influence that producer [8].

Chapter 3.- Theoretical Background

12

Jahangiri et al (2014) also address the connectivity of the well in their work, which main idea was to

identify the important connections through the time, and compared the results in the model TDWF

with surveillance techniques, such as tracers, streamline models, and 4D seismic [8].

Figure 3-1 shows an example of their work. Well A04 is the injector well, while the other wells are

producers. The figures contain the frequency of occurrence of statistically important connection,

from seven periods of time. An important connection was defined as connectivity between the

injector (A04) and the producers greater than 20% of the injector flow. Each spoke represents the

connection between the injector and one of the producers. Finally, the colored line shows the

magnitude of the connection [8]. In Figure 2.1 it is observed that wells A01 and A02 where the most

important connections in 2006 and 2007, followed by A03 and A09. However, in 2008 when the well

A10 became online, this importance change, being now well A10 the most important connection

until the end of the experiment.

Tian and Horne (2016) also address the connectivity in waterflooding. In their work, data from PDGs

was used to build a reservoir scale network based on the connectivity and perform reservoir analysis

without referring to a reservoir simulation model that obliged to make assumptions about geology

[9].

In this work they analyzed different scenarios of connectivity, while refining their model, between

the different scenarios, they tested their connectivity model with synthetic and real field cases. The

results showed consistency with the tracer test and the reservoir geology, but also works as a rough

model of the reservoir [9].

Conventionally the estimation of reservoir pressure and some other dynamic reservoir properties

are obtained through Pressure Transient Analysis. Pressure management is fundamental element

of reservoir performance and is one of the variables to consider in field development strategy. This

challenge has been addressed by using conventional techniques of PTA but doing it in real time

(automatically), using the live data from PDGs. Automation and real time monitoring tools enable

Figure 3-1 Important connections for injector A04 for different years in the reservoir history [8].

Chapter 3.- Theoretical Background

13

proactive identification of problems, fewer interventions required, improved well integrity and

maximized production for ultimate recovery.

 Transient pressure responses to flow rate changes are modeled by solving the relevant partial

differential equations analytically. These analytical models characterize the well and reservoir in

terms of parameters such as permeability, skin, wellbore storage, type and distance to reservoir

boundaries, initial pressure [10].

Pressure Transient Analysis has two parts [10]:

• Model identification: In this step, the reservoir flow model is identified using diagnostics

plots and prior information about reservoir and well.

• Parameter estimation: the identified analytical model is matched to the measured pressure

and flow rate data, through estimation of parameters. Conventional parameter estimation

techniques use regression methods to match the analytical models to the field data.

Recently there have been some attempts to apply machine-learning techniques for PDG data

analysis. Machine learning is an important tool for analyzing large sets of data as the one provided

by PDGs. Fundamentally the goal of machine learning is to learn the patterns behind PDG data

(variables), where the patterns contain the relation of implicitly of the reservoir [6]. Some

applications of machine learning in the Pressure Transient Analysis are pressure history

reconstruction, flow rate/temperature substitution as some examples.

As stated, before incomplete flow rate history is a common phenomenon in PDG measurements,

Tian and Horne (2015) proposed that the missing flow rates could be estimated from the available

pressure data. Their model was tested with synthetic and real data and showed promising

performance. In comparison with analytical solutions the machine learning provides an effective

alternative, this is due to machine learning doesn’t require geological assumptions of the reservoir

model [5].

Figure 3-2 shows an example of this work. After calibrating the machine-learning model, they give

a partial information of the pressure and the flow rate of a new well, after the model prediction (red

line) was done, they compared the result with the complete (true) data. In this figure, it is observed

that the prediction offers an accurate reconstruction of the flow rate.

Figure 3-2 Machine learning result of the reconstructed flow rate using the pressure [5].

Chapter 3.- Theoretical Background

14

Tian and Horne (2015) in their second work, since machine learning contains the patterns between

variables implicitly, can be used as a transformation between forward model and inverse model is

easier than in conventional ways, which allows to model pressure from flow rate [6].

In Figure 3-3, there are some examples of their results. The graph on the left shows a comparison

between the reconstruction of the temperature curve obtained from the model of machine learning

(red line) and the pressure data, the curve calculated has the same form than the original data, and

is very accurate at the beginning, but presents some inaccuracies after the 600 hours mark. The

graph from the right shows the inverse case a reconstruction of the pressure data from the machine-

learning model (red line) inverted and the temperature data, as in the case before the curve present

the form of the data, with high accuracy at the beginning and some inaccuracies after the 650 hours.

Even if this offers a good alternative for reconstructing both sets of data when flow rate is not

available or to have a second opinion to compared with the flow rate results. The only requirement

needed for machine learning method is to have at least one proper set of data complete during the

training process.

A second way to approach the pressure problem was proposed in the same work by using the

temperature as a substitute for flow rate to model the pressure. Since, temperature have been

measured by PDGs since their initial installation, in this case the machine learning was trained to

find a pattern between the temperature and pressure for predictions, this model was tested by

comparing the results obtained with the flow rate and pressure model. The results obtained were

fair and presented some limitations. This can be due to the pressure and the temperature having

physical independent properties that couldn’t be modeled property [6].

Figure 3-3 Left graph shows machine learning using ridge regression (RR) to model temperature from pressure data.
Right graph shows machine learning using the ridge regression inverted to model pressure from temperature data[6].

Chapter 3.- Theoretical Background

15

Figure 3-4 shows one of their machine learning results when using temperature as a substitute of

the flow rate when contracting the pressure and derivative pressure curves, for realizing Pressure

Transient Analysis. The pressure curve after 1-hour is very accurate, while before the 1-hour, mark

has some differences, but this is not a problem since is related to storage effect. The pressure

derivative by the other hand is more inaccurate than the true data derivative suing the flow rate

data and the differential equations but offers an alternative when the flow rate data is missing.

Virtual flow metering was addressed in a paper by Bello (2014), multiphase technology solutions

have enabled the petroleum industry to improve their production performance. However, a

multiphase flow in wells is quite complex as reservoir types and fluid composition varies. Multiphase

flow meter has been used for this purpose, of continuous metering of produced hydrocarbon.

Virtual metering has started to become an alternative to measure three phase flow rates by using

machine learning to generate patterns, which are compared with the historical well flow rates data

to evaluate their match and update the model parameters [11].

Figure 3-4 Machine learning results using temperature as flow rate substitute [6].

4 Methodology

According to the objectives of the thesis described above, algorithms for time-lapse Pressure

Transient Analysis (further time-lapse PTA) were developed and implemented. These was done in

macros in MS Excel based on literature review. This Chapter describes the background, equations

and logic used in the analysis, as well as input data. The code implementing the macros is given in

Appendix A. The Chapter ends up by testing the algorithms on a synthetic case of injection into a

vertical well simulated with software Saphir from Kappa Eng.

4.1 Input data synthetic example

The Excel file contains three sheets. The first one is called “Main”, which has the command button

for interacting with the macro. It contains the number of wells to work and the rock and fluid

properties of the well. The second sheet is “Pressure” here is added the time and pressure data.

Finally, the last sheet is called “Rate” in which the end time and rate test are added.

A synthetic case of one-well injection of water into an infinite saline aquifer (single-phase flow) was

used for testing purposes. The simulated well was assumed to have an induced fracture causing a

negative skin factor. The case contains simulated pressure data for more than 6000 hours (about 8

months) as response to a sequence of injection and shut-in periods specified. The well and reservoir

properties used are:

a) Initial pressure: 2000 psia.

b) Formation volume factor: 1 RB/STB.

c) Viscosity: 1 cp.

d) Well radius: 0.2 ft.

e) Porosity: 30%

f) Compressibility of the rock: 1x10-5 psia-1.

g) Thickness: 200 ft.

4.2 Explanation of the main parts of the code and formulas used

The main subroutine is “Workflow”, in Figure 4-1 can be seen the order in which it called the rest of

the subroutines. The first subroutine called is “Prepare”. This subroutine creates the layout for the

input data depending on the number of wells the user wants to analyze. “Initialize” reads the initial

properties of the rock and fluids on the well. “Generate” reads the input data of pressure, time, and

rate and identifies the liquid rate segments, its’ initial and ending time, it proposed names to the

different transient, main and secondary, i.e. “Injection 4-3”, is the fourth injection period, with its’

Chapter 4.- Methodology

17

third different injection rate. The criteria used for establishing the transient is production (positive

rate), Fall-off (rates equal to 0) and injection (negative rate).

“Generates” also perform some calculations. The Equation 4-1 calculate the time for each segment

dt, in which Tis is the time in which the segment starts and T is the time registered.

𝑑𝑡 = T − 𝑇𝑖s … Equation 4-1

Then the pressure of the segment and pressure with initial pressure are calculated with Equation

4-2, Equation 4-3 respectively, in which Pis is the initial pressure of the transient, and Pi is the initial

pressure at the time 0 of the test, P is the pressure registered.

dps = |P − Pis| … Equation 4-2

dp@Pi = |P − Pi| … Equation 4-3

Figure 4-1 Workflow of the main subroutines in the macro developed.

Chapter 4.- Methodology

18

The next step in Figure 4-1 is showing the User-form “Reference”, Figure 4-2. The User-Form allows

to select the flowing or shut in periods. The reference transient to use for normalization and the

transients you want to compare with can be chosen. Once this is done, the user-form is closed, and

the workflow continues.

The next subroutine to run is called “Normalize” this subroutine normalizes the pressure for

superposition, derivative and adjusted for non-normalized calculations to mimic the results in the

Kappa software “Saphir” the equations used for normalizing injection and production are Equation

4-4, Equation 4-5 and Equation 4-6:

𝑑𝑝𝑛𝑝 = |
𝑄𝑟𝑒𝑓

𝑄𝑖
∗ dp

@Pi
| … Equation 4-4

𝑑𝑝𝑛𝑑 = |
𝑄𝑟𝑒𝑓

𝑄𝑖 − 𝑄𝑖−1
∗ 𝑑𝑝𝑠| … Equation 4-5

𝑑𝑝𝑟 = |
𝑄𝑖

𝑄𝑟𝑒𝑓
∗ 𝑑𝑝𝑛𝑑| … Equation 4-6

Figure 4-2 Reference User-Form generated by Macros.

Chapter 4.- Methodology

19

The variables dpnp is the pressure normalized for the superposition time reported in the transients,

dpnd is the pressure normalized for the derivative and dpr is the pressure re-scale for the transient

that is reported with the derivative results. Qref is the reference rate to normalize the rest of the

values, by default is the first injection/production. Qi is the rate of the transient analyzed. Qi-1 is the

rate of the previous transient, all the calculations are obtained in absolute value due to injection

having a negative rate.

The equation for normalization for the fall-off tests is similar to Equation 4-4 with the difference

that it should use the rates before the shut-in period and dps. By default, Qref is the previous

transient before the first shut in period. Changing Equation 4-4 into Equation 4-7:

𝑑𝑝𝑛𝑝 = |
𝑄𝑟𝑒𝑓

𝑄𝑖−1
∗ dps| … Equation 4-7

In Fall-off transients, there is used only one equation for normalization. The next subroutine called

is “Calculate”. “Calculate” has the cycles depending on the number of transients analyzed. For each

transient, it will call the superposition function, Equation 4-8:

𝑇𝑠 =
1

𝑄𝑛
∑(𝑄𝑖 − 𝑄𝑖−1)

𝑛

𝑖

∗ log(T − 𝑇𝑖) … Equation 4-8

In which Qn is the rate of the segment analyzed. Qi and Qi-1 are the rates for the previous transient

before the transient analyzed. T is the time referred and Ti is the end time of the previous transient.

For calculating the superposition for Fall-off, the rate should be the previous one prior to the shut-

in period.

The next subroutine is “Calculateb”. This calculates the Pressure derivative, and establish its’ left

and right side with Equation 4-9, Equation 4-10 respectively. The first point for the left derivative is

set up by default as the smallest of the logarithmic cycle, i.e. if the smaller value is 0.65 the smallest

value of the cycle is 0.1.

ln (
𝑇𝑠𝑖

𝑇𝐿
) > 𝑤 … Equation 4-9

ln (
𝑇𝑅

𝑇𝑠𝑖
) > 𝑤 … Equation 4-10

TL and TR are not necessarily the points previous or subsequent to the analyzed point. This depends

on the smoother, by default is the smoother is set in 0.1. The subroutine “Calculateb” will call the

function derivative. The derivative, [13] is calculated with the Equation 4-11 and then is normalized

with Equation 4-12.

Chapter 4.- Methodology

20

(
𝑑∆𝑝

𝑑[ln(∆𝑡)]
)

𝑗

=
(∆𝑃𝑗 − ∆𝑃𝐿)

ln (
∆𝑇𝑗

∆𝑇𝐿
)

ln (
∆𝑇𝑅
∆𝑇𝑗

)

ln (
∆𝑇𝑅
∆𝑇𝐿

)
+

(∆𝑃𝑅 − ∆𝑃𝑗)

ln (
∆𝑇𝑅
∆𝑇𝑗

)

ln (
∆𝑇𝑗

∆𝑇𝐿
)

ln (
∆𝑇𝑅
∆𝑇𝐿

)
 …

Equation 4-11

𝑑∆𝑝𝑛 =
𝑄𝑟𝑒𝑓

𝑄𝑖−1
∗ (

𝑑∆𝑝

𝑑[ln(∆𝑡)]
)

𝑗

… Equation 4-12

The next subroutine is “Comparative”, this will manage the cycles for calculating the permeability

and skin. First, it will call the subroutine “Limits”, which oversees establishing the right and left limit

of the radial flow (horizontal line). This function uses the slope value of the derivative to detect the

beginning of the radial flow. “Limits” uses Equation 4-13. Where, p’i is the current pressure

derivative point and p’i-1 is the previous pressure derivative point.

𝑡𝑜𝑙 𝑒𝑟𝑟𝑜𝑟(%) = |
𝑝′

𝑖
− 𝑝′

𝑖−1

𝑝′
𝑖−1

| ∗ 100 … Equation 4-13

The condition for calculating the derivative is by finding a slope with less than 0.1% (value by default)

tolerance. In case it doesn’t find a point in the derivative slopes that fulfill the condition, the

subroutine will automatically increase the error by 0.1, and start looking again until a solution is

found. Once the value has been found, the program will establish it as the beginning of the radial

flow and will check all the subsequent values that are within the tolerance range. This is to define

the end of the radial flow.

 The next step for “Comparative” is to call “Propertyks”. This calculates the permeability and skin

factor of the transient in semi-log and derivative method. The equations used for the semi-log

analysis for injection and production are Equation 4-14 and Equation 4-15:

𝑚 =
162.5683 ∗ 𝑞 ∗ 𝐵𝑜 ∗ 𝜇𝑜

𝑘ℎ
…

Equation 4-14

𝑆 = 1.151 (
𝑃𝑖 − 𝑃1ℎ𝑟

𝑚
− log (

𝑘

𝜑 ∗ 𝜇𝑜 ∗ 𝐶𝑡 ∗ 𝑟𝑤2
) + 3.2275) … Equation 4-15

For the Fall-off the Equation 4-15 is changed for the Equation 4-16:

𝑆 = 1.151 (
𝑃1ℎ𝑟 − 𝑃𝑤𝑓,𝑠

𝑚
− log (

𝑡

𝑡 + 1
) − log (

𝑘

𝜑 ∗ 𝜇𝑜 ∗ 𝐶𝑡 ∗ 𝑟𝑤2
) + 3.2275) … Equation 4-16

For calculating the permeability and the skin with the derivative method, the following equations

are used:

𝑚′ =
70.6 ∗ 𝑞 ∗ 𝐵𝑜 ∗ 𝜇𝑜

𝑘ℎ
…

Equation 4-17

Chapter 4.- Methodology

21

𝑆 = 1.151 (
𝑑𝑝𝑑 ∗ 𝑘 ∗ ℎ

162.5683 ∗ 𝑞 ∗ 𝐵𝑜 ∗ 𝜇𝑜
− log (

𝑡

𝑡 + 1
) − log (

𝑘

𝜑 ∗ 𝜇𝑜 ∗ 𝐶𝑡 ∗ 𝑟𝑤2
) + 3.2275) … Equation 4-18

In Equation 4-16, and Equation 4-18 for the Fall-off, the term log (
𝑡

𝑡+1
) has been replaced for the

superposition time 10Ts, dpd is the value of the constant derivative calculated in log-log plot.

After the calculations are done the next step in Figure 4-1 is calling the subroutine “Genesis”. This

only creates a new sheet in excel. Then the subroutine “Printing” is called, which prints the results

for superposition, derivative, pressure, for normalized and non-normalized cases. Then it shows one

final User-Form called “Plotter”, Figure 4-3. This User-Form plots the pressure and pressure

derivative of the transients previously selected.

Inside the “Plotter” User-form there is a matrix in charge of storing the limits of the radial flow. It

includes one graphic subroutine called “Gengraph” which plots the Pressure and Pressure Derivative

graph in the User-Form.

The user can interact with the left and right bar to readjust the boundaries of the radial flow and

the click the button “Recalculate Test”. This will run the subroutine “Propertyks” described above.

Here the smoother and the tolerance can be changed. The code will call again “Calulateb”, “Limits”,

“Propertyks” and “Printing”, to update the results with the new conditions proposed by the user.

Once the analysis is performed, the next subroutine is “Allgraph”. This subroutine is used for

creating the pressure and pressure derivative graph and the superposition time in separate graph

Figure 4-3 Plotter User-form generated by macros.

Chapter 4.- Methodology

22

sheets. Finally, it will run the “Summaries” subroutine which creates a new sheet in which it prints

the permeability, skin factor for the semi-log and derivative method, as well as the smoother used.

Some results are shown in Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7. These figures compare

the values obtained with Kappa software “Saphir” (solid lines) and the program in excel (dots), for

pressure, pressure derivative and superposition time, for some injection and fall-off transients.

Figure 4-4 Comparison between Saphir (solid line) and the program (dots) for Pressure and Pressure Derivative for some
injection transients.

Figure 4-5 Comparison between Saphir (solid line) and the program (dots) for superposition time for some injection
transients..

Chapter 4.- Methodology

23

Figure 4-6 Comparison between Saphir (solid line) and the program (dots) for pressure and Pressure Derivative for some
Fall-off transients.

Figure 4-7 Comparison between Saphir (solid line) and the program (dots) for superposition time for some Fall-off
transients.

Chapter 4.- Methodology

24

Has seen in the Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 the values calculated are slightly

higher than the Kappa software “Saphir”. For pressure derivative figures, the first value calculated

is the one presenting the highest error. This is due to “Saphir” choosing a different arbitrary number

for starting the derivative calculation than the proposed code. Due to the first point value will

normally be inside the wellbore storage effect, this point is not considered in the area of interest

(the radial flow).

The Table 4-1 shows the results obtained in the macro the Kappa software “Saphir”. It is seen that

the results obtained are very similar. The derivative method offers better approximation than the

semi-log analysis.

Table 4-1 Comparison of Permeability and Skin Factor

 Saphir Semi-log Derivative

Flow capacity (mD*ft) 2780 2796 2783
Permeability (mD) 13.90 14.04 14.03

Skin Factor -3.93 -3.89 -3.90

5 Synthetic Case further analysis

This chapter will analyze some transients from the synthetic case to test the algorithm. The

transients were evaluated for comparison with the “Saphir” software. The semi-log and log-log

(derivative pressure) methods are compared to know under which conditions is better to use one

or another. The injection and Fall-off periods were analyzed separately.

5.1 Injection analysis

The Figure 5-1 shows the history plot simulated. Here, can be seen the injection periods used in the

analysis, covering different durations and times in the history.

The Figure 5-2 shows the pressure and pressure derivative for the 2 to 10 hours transients chosen.

The reason for not choosing transients below 2 hours is due to not having an established radial flow,

and due to be related to wellbore storage effect.

Figure 5-1 History plot (pressure and rate) for the whole simulation period.

Chapter 5.- Synthetic Case Analysis

26

Figure 5-3 Pressure and Pressure derivative for five injection tests with time duration between 10 and 100 hours.

Figure 5-2 Pressure and Pressure derivative for five injection transients with time duration between 2 and 10 hours.

Chapter 5.- Synthetic Case Analysis

27

The Figure 5-3 and Figure 5-4 shows the pressure and pressure derivative of injections transients of

10 to 100 hours and higher than 100 hours respectively. For each one 5 different injection transients

were selected.

Figure 5-5 Flow capacity comparison between derivative and semi-log analysis for 15 injections transients with different
durations at 0.1% tolerance. The left graph shows the derivative method. The right graph shows the semi-log analysis.

Figure 5-4 Pressure and pressure derivative for five injection transients with time duration higher than 100 hours.

Chapter 5.- Synthetic Case Analysis

28

Figure 5-6 Permeability comparison between derivative and semi-log analysis for 15 injection transients with different
durations at 0.1% tolerance. The left graph shows the derivative method. The right graph shows the semi-log analysis.

Figure 5-7 Skin factor comparison between derivative and semi-log analysis for 15 injection transients with different
durations at 0.1% tolerance. The left graph shows the derivative method. The right graph shows the semi-log analysis.

The Figure 5-5, Figure 5-6 and Figure 5-7 shows 15 injection transients that were evaluated with a

tolerance of 0.1% when estimating the radial flow regime.

The Figure 5-5 and Figure 5-6 show a comparison between semi-log and derivative analysis for Flow

capacity and permeability respectively. Both graphs show that the semi-log analysis has some

trouble when calculating the properties by obtaining higher values than the derivative case. This is

due to the semi-log analysis doesn’t consider the superposition time. In the derivative case it’s clear

that longer duration periods estimate values closer to the true value. In comparison with the shorter

duration ones (less than 10 hours).

The short duration ones estimate lower values. Curiously the transient with the longer time duration

has values more deviated to the true value than the rest of transients higher than 100 hours. The

Figure 5-7 shows the skin factor for semi-log and derivative analysis. Again, the semi-log analysis

Chapter 5.- Synthetic Case Analysis

29

has transients with higher values than the derivative case. The skins calculated with the derivative

show more homogeneous results with all the transients analyzed.

The Figure 5-8, Figure 5-9 and Figure 5-10 show 15 injection transients that were evaluated with a

tolerance of 1% when estimating the radial flow regime.

Figure 5-8 Flow capacity comparison between derivative and semi-log analysis for 15 injection transients with different
durations at 1% tolerance. The left graph shows the derivative analysis. The right graph shows the semi-log analysis.

Figure 5-9 Permeability comparison between derivative and semi-log analysis for 15 injection transients with different
durations at 1% tolerance. The left graph shows the derivative analysis. The right graph shows the semi-log analysis.

The Figure 5-8 and Figure 5-9 when increasing the tolerance the values obtained diverged more

from the true value of the synthetic case. This is appreciated in both methodologies. The transients

with the longer durations were the ones that suffer the less changed values. These can be due to

having more stabilized points in comparison with the short duration transients.

Chapter 5.- Synthetic Case Analysis

30

By the other hand, Figure 5-10 for skin factor shows less modification of their values in comparison

with the flow capacity and the permeability. The semi-log analysis is still giving higher values than

the derivative ones.

Figure 5-10 Skin factor comparison between derivative and semi-log analysis for 15 injection transients with different
duration at 1% tolerance. The left graph shows the derivative analysis. The right graph shows the semi-log analysis.

5.2 Fall-off analysis

The Figure 5-11 shows the history plot simulated. Here, can be seen the Fall-off periods used in the

analysis, covering different durations and time in the history. There were analyzed 9 transients. Four

between 2 and 10 hours and 5 with more than 10 hours duration. The Figure 5-12 and Figure 5-13

show the pressure and pressure derivative of Fall-off transients between 2 and 10 hours and higher

than 10 hours respectively.

Figure 5-11 History plot (pressure and rate) for the whole simulation period.

Chapter 5.- Synthetic Case Analysis

31

Figure 5-12 Pressure and pressure derivative from four Fall-off transients with time duration between 2 and 10
hours.

Figure 5-13 Pressure and pressure derivative from five Fall-off transients with time intervals higher than 10 hours.

Chapter 5.- Synthetic Case Analysis

32

In Figure 5-14 and Figure 5-15 were consider a tolerance of 0.1% for estimating the radial flow

regime. In both figures the values estimated with the methodologies are more alike. This is due to

the equations for shut-in periods consider the superposition time. For the flow capacity and

permeability, the semi-log analysis gives closer values than the derivative with the true values. While

the skin factor derivative is more accurate than the semi-log estimation.

Figure 5-14 Comparison between the semi-log and derivative analysis for 9 transients at 0.1% tolerance. The left graph
shows the flow capacity. The right graphs shows the permeability.

In Figure 5-16 and Figure 5-17 were consider a tolerance of 1% for estimating the radial flow regime.

As in the previous case the values between the semi-log and derivative analysis are very similar.

Also, when increasing the tolerance for estimating the radial flow regime the values calculated in

flow capacity and permeability divert more from the true value. The skin factor is less affected when

the tolerance increases. The most affected transients were the ones between 10 and 100 hours.

This can be explained due to adding points that are not stable enough to the estimated radial flow.

Figure 5-15 Skin factor comparison between the semi-log and derivative analysis
for 9 transients at 0.1% tolerance.

Chapter 5.- Synthetic Case Analysis

33

Figure 5-16 Comparison between the semi-log and derivative analysis for 9 transients at 1% tolerance. The left graph shows
the flow capacity. The right graph shows the permeability.

5.3 Synthetic analysis discussion

In all cases increasing the tolerance value for estimating the radial flow diverge more for both

methodologies and injection and fall-off transients. The transients between 2 and 10 hours tends to

give less accurate values than the ones with higher duration. Also are more susceptible to tolerance.

For the injection case is recommended to perform a derivative analysis than a semi-log analysis due

to the superposition time. For the fall-off both methodologies show similar results. The semi-log

performs better for flow capacity and permeability, but the derivative estimates a skin factor more

accurately to the true value. For the fall-off case can be considered to calculate an average between

the semi-log and derivative analysis.

Figure 5-17 Skin factor comparison between the semi-log and derivative analysis for 9
transients at 1% tolerance.

6 Real Case Analysis

From the free access data set provided by Equinor for Volve field an analysis was performed. The

transients analyzed were chosen after visualizing the data in Kappa software “Saphir”. The best sets

of data for Volve were Build-up transients from well NO 15/9F-15D. The properties used where the

ones reported in the Volve data set, after conversions to be used in the macro, as follow:

a) Initial pressure: 4670 psia.

b) Formation volume factor: 1.44 RB/STB.

c) Viscosity: 0.32 cp.

d) Well radius: 0.35 ft

e) Porosity: 22%

f) Compressibility of the rock: 2.33x10-5 psia-1.

g) Pay zone (Thickness): 72 ft.

Figure 6-1 History plot (rate and pressure) for the whole simulation period.

The Figure 6-1 shows the history plot of the well, the transients analyzed are highlighted. The

Macro used the total rate calculated by “Saphir”, instead of the separated phases.

The derivative and superposition time from the code was compared with the “Saphir” software and

are shown in Figure 6-2 and Figure 6-3. The calculation from the algorithm showed good

performance in pressure and pressure derivative in the real case data Figure 6-2. Only the build-up

transient 5-1 has the bigger difference with the trend calculated.

Chapter 6.- Real Case Analysis

35

Figure 6-2 Pressure and Pressure derivative comparison between Macro and Saphir.

The Figure 6-3 in superposition time showed really good results for the real case. These gives the

possibility to perform a quick analysis with the smoother for the derivative. There were performed

two different smoother runs. The first one with the default value 0.1 and the second one with 0.3

for all cases, this is shown in Figure 6-4. There were no changes in build-ups 3-1 and 9-1. For the

Build-up 8-1 the curve became more smoothed but 5-1 got more spiked. This means that there can

be a possibility for more smoother analysis in further works with other sets of data.

Figure 6-3 Superposition time comparison between the Macro and Saphir.

Pressure

Pressure

derivative

Chapter 6.- Real Case Analysis

36

Figure 6-4 Smoother comparison of the pressure derivative.

Figure 6-5 Comparison graphs between semi-log, derivative analysis and Saphir from four build-up transients. Left graph
shows the flow capacity. Right graph shows the permeability.

Figure 6-6 Comparison of skin factor between semi-log, derivative and Saphir analysis from four build-up transients.

Chapter 6.- Real Case Analysis

37

From the analysis done in the synthetic case related to shut-in transients, it’s possible to make both

analyses. These are shown in Figure 6-5 and Figure 6-6. For flow capacity and permeability, the semi-

log analysis gives slightly higher values than the derivative.

Table 6-1 Duration of four Build-up transients.

Transient Duration (hours)

W#1 BU#3-1 864

W#1 BU#5-1 648

W#1 BU#8-1 384

W#1 BU#9-1 288

The Table 6-1 shows that the transients analyzed lasted more than 100 hours. Here, it can see that

the transients with the best results are the Build-up with the longest duration. The derivative

analysis worked better at estimating flow capacity and permeability values than the semi-log

analysis. For the skin factor both methodologies worked better for some transients than the other

one and vice versa.

Table 6-2 Percentage error of the average parameters estimated with the code in
comparison with Saphir.

 Semi-log Derivative

Kh (mD*ft) 13% 6%

K (mD) 13% 6%

Skin 14% 12%

The Table 6-2 shows the average error estimated with both methodologies in comparison with

saphir results. The derivative as seen in the graphs estimates better values than the semi-log. The

derivative calculates values 6% error in comparison with the 12% for the semi-log for flow capacity

and permeability. Both methodologies offer similar error for the skin factor. The transients that

increases the average error was the build-up 5-1, due to having a not so stable radial flow regime.

7 Conclusions

Using the MS Excel allows an easy way to add new data (pressure and rate) acquire from the PDGs

into the defined input sheets. Suggest a first filter of the different transients included in the data.

From what was discussed in the chapters 5 and 6 there can be listed the following statements when

using the semi-log analysis or the derivative analysis.

1. Not considering superposition in injection periods leads to higher error in the results for the

semi-log analysis in all properties estimated.

2. Considering superposition time in shut-in equations, for both methodologies gives very

similar results. In the synthetic case the semi-log analysis performed slightly better than the

derivative analysis. However, in the real case the derivative showed better results. It can be

considered to perform an average between both methodologies for a better estimation.

3. Derivative analysis is recommended for flowing periods. Due to derivative using values

corrected with the superposition time. This means that the period response analyzed is a

function of the previous periods.

When analyzing the impact of the tolerance, it can be mentioned that a higher tolerance leads to

higher error values. This is mainly notice in periods that last less than 10 hours. The periods that last

longer are less affected, due to having more points stabilized.

In further work for the thesis it can be consider to:

1. Work in a filter of noise for detecting the problematic points. A different solution could be

allowing the user to manually specify the exclusion of specific points.

2. Other improvement could be the inclusion of an extra step after the proposed data has

been filtered and classified in injection or Fall-off periods. In here, it can be highlighted the

transients that can be considered problematic or too short (less than 2 hours) to perform

an analysis. This will leave the engineer to decide whether to continue with these periods

or filtered them.

3. Would be good to analyze the impact of the smoother in the derivative analysis. Since, the

smoother mainly fixes late times when calculating the derivative.

4. Consider using different methodologies than the slope to estimate the “window” of the

radial flow regime. And compare both estimations to define the best approach.

The Inclusion of three phases systems and calculation of the total rate without the necessity of using

“Saphir” software should be considered. Also, a comparison between different sandstones and

carbonates reservoir and the behavior on the macro when suggesting the radial flow and properties

calculated.

8 References

[1] Bourdet D., Well Test analysis: The Use of Advanced Interpretation Models, Handbook of

Petroleum Exploration and Production 3, Elsevier Science, 2002.

[2] Bourdarot G., Well Testing: Interpretation Methods, Institut Francais du Petrole Publications,

Editions Technip, 1998.

[3] Earlougher R., Advances in Well Test Analysis, Society of petroleum engineers of AIME, second

printing, 1977.

[4] Jiung C., Salmi N., Permanent Downhole Gauge a Need or a Luxury, Paper SPE 122604 was

presented in Jakarta, Indonesia, 2009

[5] Tian C., Horne R., Machine Learning Applied to Multiwall Test Analysis and Flow Rate

Reconstruction, Paper SPE 175059-MS was presented in Houston, USA, 2015.

[6] Tian C., Horne R., Applying Machine Learning Techniques to Interpret Flow Rate, Pressure and

Temperature Data from Permanent Downhole Gauges, Paper SPE 174034-MS was presented

in California, USA, 2015.

[7] Enyekwe A, Ajienka J., Comparative Analysis of Permanent Downhole Gauges and Their

Applications, Paper SPE-172435-MS was presented in Lags, Nigeria, 2014.

[8] Jahangiri H., Adler C. et al, A Data-Driven Approach Enhances Conventional Reservoir

Surveillance Methods for Waterflood Performance Management in the North Sea, Paper SPE-

167849-MS was presented in Utrecht, Netherlands, 2014.

[9] Tian C., Horne R., Inferring Interwell Connectivity using Production Data, Paper SPE-181556-MS

was presented in Dubai, UAE, 2016.

[10] Bandyopadhyay P., Horne R., Development of General Likelihood Maximization Method for

Robust Parameter Estimation from Pressure Transient Data, Paper SPE 175003-MS was

presented in Houston, USA, 2015.

[11] Bello O., Development of Hybrid Intelligent System for Virtual Flow Metering in Production

Wells, Paper SPE 167880-MS was presented in Utrecht, Netherlands, 2014.

[12] Bourdet, Dominique, Use of Pressure Derivative in Well-Test Interpretation, Paper SPE 12777-

PA was presented in California, USA, 1984.

[13] Hosseinpour-Zonoozi, N., Blasingame, A., The Pressure Derivative Revisited – Improved

Formulations and applications, Paper SPE 103204 was presented in San Antonio, USA, 2006.

[14] Shchipanov A., Berenblyum R., Kollboth L., Pressure Transient Analysis as an Element of

Permanent Reservoir Monitoring, Paper SPE 170740-MS was presented in Amsterdam,

Netherlands, 2014.

9 Nomenclature

dt Difference in time between the time analyzed and the start of the segment.

T Time from the data point analyzed.

Tis Initial time at the start of the segment.

dps Difference pressure between the pressure analyzed and the pressure in the segment.

P Pressure from the data point analyzed.

Pis Initial pressure at the start of the segment.

dp@Pi Difference pressure between the pressure analyzed and the initial pressure at time 0.

Pi Pressure at the initial time zero.

dpnp Pressure normalized for the superposition time in the point analyzed.

Qref Reference rate used for the normalization.

Qi Rate from the test analyzed.

dpnd Pressure normalized for the derivative in the point analyzed.

Qi-1 Rate from the previous test analyzed.

dpr Pressure re-scale for the derivative pressure.

Ts Superposition time.

Qn Most recent rate for the superposition time analyzed.

Ti End time from the previous test.

Tsi Time of the point analyzed for the derivative calculation.

TL Left point to the analyzed point for the derivative calculation.

TR Right point to the analyzed point for the derivative calculation.

w Smoother value.

d∆p Derivative from the delta pressure.

d∆t derivative from the delta time.

j Point analyzed.

∆Pj Pressure difference at point j.

∆PL Pressure difference to the left point of the point j.

Chapter 9.- Nomenclature

41

∆PR Pressure difference to the right point of the point j.

∆TR Time difference to the right point of the point j.

∆TL Time difference to the left point of the point j.

∆Tj Time difference at point j.

d∆pn Pressure derivative normalized.

p’i Pressure derivative at point i.

p’i-1 Previous pressure derivative point to the point i.

n Number of data points in the MSE calculation.

Yi Value of the derivative at the point i during MSE calculation.

Y Value of the constant derivative in the MSE calculation.

m Slope for the semi-log analysis.

q Rate of the test analyzed in stb/d.

Bo Oil volume factor in RB/STB.

µo Oil viscosity in centipoise.

kh Flow capacity in mD*ft.

k Permeability in mD.

S Skin factor.

P1hr Pressure at 1 hour in psia.

ϕ Porosity (dimensionless).

Ct Total compressibility in psia-1.

rw Well radius in ft.

Pwfs Last flowing pressure before the shut-in.

t Production time before the shut-in.

m’ Slope for the derivative analysis.

dpd Constant pressure in the derivative analysis.

h Formation thickness.

10 Appendix A

The appendix A contains the subroutines written in the module. The Global variables were defined

as follow

Global ww As Byte, sapphire(), topaz(), emerald(), ruby(), summat, pini(), bo(), muo(), rw(), hgt()
Global poro(), ct(), tt As Integer, quartz(), derev, interp, ws As Worksheet, wellww As Byte

10.1 Workflow

This is the main subroutine that calls the rest of the subroutines.

Public Sub Workflow()

Dim condb As String

condb = Worksheets(1).Shapes(1).TextFrame.Characters.Text
If condb = "Generate" Then
 Prepare
ElseIf condb = "Calculate" Then
 Initialize
 Generate
 Reference.Show 'Calls the first userform
 If quartz(1) = 1 Then
 Normalize
 Calculate
 Calculateb
 Comparative
 Genesis
 Printing
 Plotter.Show 'Calls the second userform
 End If
End If

End Sub

10.2 Prepare

This subroutine prepares the layout of the main excel sheet for input the properties of the well

and pressure/rate data.

Chapter 10.- Appendix A

43

Public Sub Prepare()

Dim aa As Byte

Application.ScreenUpdating = False 'Faster calculations

ww = Worksheets(1).Cells(3, 4)
Worksheets(1).Unprotect Password:="crystal"
Worksheets(1).Cells(3, 4).Interior.Color = RGB(0, 204, 0)
Worksheets(1).Cells(3, 4).Locked = True
Worksheets(2).Unprotect Password:="crystal"
Worksheets(3).Unprotect Password:="crystal"

aa = 0
For i = 1 To ww
 Worksheets(2).Columns(1 + 4 * aa).Resize(, 2).Locked = False
 Worksheets(3).Columns(1 + 4 * aa).Resize(, 2).Locked = False
 aa = aa + 1
Next i

aa = 0
For i = 1 To ww
 Worksheets(2).Cells(2, 1 + 4 * aa) = "Well " & aa + 1
 Worksheets(2).Cells(2, 1 + 4 * aa).Locked = True
 Worksheets(2).Cells(3, 1 + 4 * aa) = "Date"
 Worksheets(2).Cells(3, 1 + 4 * aa).Locked = True
 Worksheets(2).Cells(3, 2 + 4 * aa) = "Pressure (psia)"
 Worksheets(2).Cells(3, 2 + 4 * aa).Locked = True
 Worksheets(2).Cells(3, 2 + 4 * aa).WrapText = True
 Worksheets(3).Cells(2, 1 + 4 * aa) = "Well " & aa + 1
 Worksheets(3).Cells(2, 1 + 4 * aa).Locked = True
 Worksheets(3).Cells(3, 1 + 4 * aa) = "Time@end"
 Worksheets(3).Cells(3, 1 + 4 * aa).Locked = True
 Worksheets(3).Cells(3, 2 + 4 * aa) = "Liquid rate (STB/D)"
 Worksheets(3).Cells(3, 2 + 4 * aa).WrapText = True
 Worksheets(3).Cells(3, 2 + 4 * aa).Locked = True
 Worksheets(1).Cells(8, 2 + 4 * aa) = "Well " & aa + 1
 Worksheets(1).Cells(9, 2 + 4 * aa) = "Pi(psia)"
 Worksheets(1).Cells(9, 3 + 4 * aa).Interior.ColorIndex = 6
 Worksheets(1).Cells(9, 3 + 4 * aa).Locked = False
 Worksheets(1).Cells(10, 2 + 4 * aa) = "Bo(RB/STB)"
 Worksheets(1).Cells(10, 3 + 4 * aa).Interior.ColorIndex = 6
 Worksheets(1).Cells(10, 3 + 4 * aa).Locked = False
 Worksheets(1).Cells(11, 2 + 4 * aa) = "Viscosity(cp)"
 Worksheets(1).Cells(11, 3 + 4 * aa).Interior.ColorIndex = 6
 Worksheets(1).Cells(11, 3 + 4 * aa).Locked = False
 Worksheets(1).Cells(12, 2 + 4 * aa) = "rw(ft)"

Chapter 10.- Appendix A

44

 Worksheets(1).Cells(12, 3 + 4 * aa).Interior.ColorIndex = 6
 Worksheets(1).Cells(12, 3 + 4 * aa).Locked = False
 Worksheets(1).Cells(13, 2 + 4 * aa) = "h(ft)"
 Worksheets(1).Cells(13, 3 + 4 * aa).Interior.ColorIndex = 6
 Worksheets(1).Cells(13, 3 + 4 * aa).Locked = False
 Worksheets(1).Cells(14, 2 + 4 * aa) = "Porosity"
 Worksheets(1).Cells(14, 3 + 4 * aa).Interior.ColorIndex = 6
 Worksheets(1).Cells(14, 3 + 4 * aa).Locked = False
 Worksheets(1).Cells(15, 2 + 4 * aa) = "Ct(psia-1)"
 Worksheets(1).Cells(15, 3 + 4 * aa).Interior.ColorIndex = 6
 Worksheets(1).Cells(15, 3 + 4 * aa).Locked = False
 aa = aa + 1
Next i

Worksheets(2).Protect Password:="crystal", AllowFormattingCells:=True,
AllowFormattingColumns:=True, AllowFormattingRows:=True
Worksheets(3).Protect Password:="crystal", AllowFormattingCells:=True,
AllowFormattingColumns:=True, AllowFormattingRows:=True
Worksheets(1).Shapes(1).TextFrame.Characters.Text = "Calculate"
Worksheets(1).Protect Password:="crystal", AllowFormattingCells:=True,
AllowFormattingColumns:=True, AllowFormattingRows:=True
Application.ScreenUpdating = True 'Faster calculations
Worksheets(1).Activate 'To return to the main sheet

End Sub

10.3 Initialize

This subroutine saves the input data from the well properties.

Public Sub Initialize()

Dim aa As Byte, bb As Integer, mm As Integer

Application.ScreenUpdating = False 'Faster calculations
Worksheets(1).Unprotect Password:="crystal"
Worksheets(3).Unprotect Password:="crystal"
ww = Worksheets(1).Cells(3, 4)

ReDim pini(ww), bo(ww), muo(ww), rw(ww), hgt(ww), poro(ww), ct(ww)

aa = 0
For i = 1 To ww
 'Initial data of wells
 pini(i) = Worksheets(1).Cells(9, 3 + 4 * aa) 'Initial pressure
 Worksheets(1).Cells(9, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0)

Chapter 10.- Appendix A

45

 Worksheets(1).Cells(9, 3 + 4 * aa).Locked = True
 bo(i) = Worksheets(1).Cells(10, 3 + 4 * aa) 'Oil formation volume factor
 Worksheets(1).Cells(10, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0)
 Worksheets(1).Cells(10, 3 + 4 * aa).Locked = True
 muo(i) = Worksheets(1).Cells(11, 3 + 4 * aa) 'Oil viscosity
 Worksheets(1).Cells(11, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0)
 Worksheets(1).Cells(11, 3 + 4 * aa).Locked = True
 rw(i) = Worksheets(1).Cells(12, 3 + 4 * aa) 'Wellbore radius
 Worksheets(1).Cells(12, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0)
 Worksheets(1).Cells(12, 3 + 4 * aa).Locked = True
 hgt(i) = Worksheets(1).Cells(13, 3 + 4 * aa) 'Height reservoir
 Worksheets(1).Cells(13, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0)
 Worksheets(1).Cells(13, 3 + 4 * aa).Locked = True
 poro(i) = Worksheets(1).Cells(14, 3 + 4 * aa) 'Porosity
 Worksheets(1).Cells(14, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0)
 Worksheets(1).Cells(14, 3 + 4 * aa).Locked = True
 ct(i) = Worksheets(1).Cells(15, 3 + 4 * aa) 'Compressibility of the rock
 Worksheets(1).Cells(15, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0)
 Worksheets(1).Cells(15, 3 + 4 * aa).Locked = True
 aa = aa + 1
Next i

Application.ScreenUpdating = True 'Faster calculations
Worksheets(1).Activate 'To return to the main sheet

End Sub

10.4 Generate

This subroutine reads the pressure and rate data, set up the working matrixes and filter the

transients by type.

Public Sub Generate()

Dim aa As Byte, bb As Integer, mm As Integer, cc As Byte, dd As Byte, ff As Byte, gg As Byte
Dim nn as Byte

Application.ScreenUpdating = False 'Faster calculations
ww = Worksheets(1).Cells(3, 4)

'Counts the number rows to use (the longest well data) in production matrix
aa = 0: mm = 0
For i = 1 To ww
 bb = Worksheets(3).Cells(Rows.Count, 1 + 4 * aa).End(xlUp).row 'Last active cell in the column
 bb = bb - 3

Chapter 10.- Appendix A

46

 If bb > mm Then
 mm = bb
 End If
 aa = aa + 1
Next i

ReDim topaz(ww, mm, 10)

'Save data in the production matrix
aa = 0
For i = 1 To ww 'Number of Wells
 topaz(i, 0, 1) = 0
 For j = 1 To mm 'Number of row in rate sheet
 If IsEmpty(Worksheets(3).Cells(j + 3, 1 + 4 * aa)) Then 'Check time data as void
 topaz(i, j, 1) = 0
 Else
 topaz(i, j, 1) = Worksheets(3).Cells(j + 3, 1 + 4 * aa) 'Time data
 topaz(i, 0, 1) = topaz(i, 0, 1) + 1 'starts counting number of data of each well
 End If
 If IsEmpty(Worksheets(3).Cells(j + 3, 2 + 4 * aa)) Then
 topaz(i, j, 2) = 0
 Else
 topaz(i, j, 2) = Worksheets(3).Cells(j + 3, 2 + 4 * aa) 'Rate data
 End If
 If topaz(i, j, 2) < 0 Then
 topaz(i, j, 3) = 1 'Injection test
 ElseIf topaz(i, j, 2) = 0 Then
 topaz(i, j, 3) = 2 ' Fall-off test
 Else
 topaz(i, j, 3) = 3 'Production test
 End If
 Next j
 Worksheets(1).Cells(17, 2 + 4 * aa) = "No. test"
 Worksheets(1).Cells(17, 3 + 4 * aa) = topaz(i, 0, 1)
 aa = aa + 1
Next i

'Establishing segments dd counter for injection secondary, ff counter for fall-off, gg counter for
' production cc counter for secondary
aa = 0
For i = 1 To ww
 cc = 0: dd = 0: ff = 0: gg = 0
 nn = topaz(i, 1, 3)
 'For the first value
 Select Case nn
 Case 1
 dd = dd + 1

Chapter 10.- Appendix A

47

 topaz(i, 1, 4) = dd
 topaz(i, 1, 6) = "Well#" & i & " Injection#" & dd
 topaz(i, 1, 7) = "W#" & i & " I#" & dd & "-"
 Case 2
 ff = ff + 1
 topaz(i, 1, 4) = ff
 topaz(i, 1, 6) = "Well#" & i & " Fall-off#" & ff
 topaz(i, 1, 7) = "W#" & i & " F#" & ff & "-"
 Case 3
 gg = gg + 1
 topaz(i, 1, 4) = gg
 topaz(i, 1, 6) = "Well#" & i & " Production#" & gg
 topaz(i, 1, 7) = "W#" & i & " P#" & gg & "-"
 End Select
 cc = cc + 1
 topaz(i, 1, 5) = cc
 topaz(i, 1, 7) = topaz(i, 1, 7) & cc
 Worksheets(3).Cells(4, 3 + 4 * aa) = topaz(i, 1, 7) 'Show the name of the test detected
 For j = 2 To topaz(i, 0, 1) 'For the rest of the data
 If nn = topaz(i, j, 3) Then 'Check the type of test
 cc = cc + 1
 Select Case nn
 Case 1
 topaz(i, j, 4) = dd
 topaz(i, j, 6) = "Well#" & i & " Injection#" & dd
 topaz(i, j, 7) = "W#" & i & " I#" & dd & "-"
 Case 2
 topaz(i, j, 4) = ff
 topaz(i, j, 6) = "Well#" & i & " Fall-off#" & ff
 topaz(i, j, 7) = "W#" & i & " F#" & ff & "-"
 Case 3
 topaz(i, j, 4) = gg
 topaz(i, j, 6) = "Well#" & i & " Production#" & gg
 topaz(i, j, 7) = "W#" & i & " P#" & gg & "-"
 End Select
 Else
 cc = 1
 nn = topaz(i, j, 3)
 Select Case nn
 Case 1
 dd = dd + 1
 topaz(i, j, 4) = dd
 topaz(i, j, 6) = "Well#" & i & " Injection#" & dd
 topaz(i, j, 7) = "W#" & i & " I#" & dd & "-"
 Case 2
 ff = ff + 1
 topaz(i, j, 4) = ff

Chapter 10.- Appendix A

48

 topaz(i, j, 6) = "Well#" & i & " Fall-off#" & ff
 topaz(i, j, 7) = "W#" & i & " F#" & ff & "-"
 Case 3
 gg = gg + 1
 topaz(i, j, 4) = gg
 topaz(i, j, 6) = "Well#" & i & " Production#" & gg
 topaz(i, j, 7) = "W#" & i & " P#" & gg & "-"
 End Select
 End If
 topaz(i, j, 5) = cc 'Secondary name
 topaz(i, j, 7) = topaz(i, j, 7) & cc
 Worksheets(3).Cells(j + 3, 3 + 4 * aa) = topaz(i, j, 7) 'Show the name of the test detected
 Next j
 aa = aa + 1
Next i
'Counts the number rows to use (the longest well data) in temporal matrix
aa = 0: mm = 0
For i = 1 To ww
 bb = Worksheets(2).Cells(Rows.Count, 1 + 4 * aa).End(xlUp).row 'Last active cell in the column
 bb = bb - 3
 If bb > mm Then
 mm = bb
 End If
 aa = aa + 1
Next i

ReDim quartz(ww, mm, 3)

'Save data in the temporal matrix
aa = 0
For i = 1 To ww 'Number of Wells
 quartz(i, 0, 1) = 0
 For j = 1 To mm 'Number of row
 If IsEmpty(Worksheets(2).Cells(j + 3, 1 + 4 * aa)) Then 'Check time data as void
 quartz(i, j, 1) = 0
 Else
 quartz(i, j, 1) = Worksheets(2).Cells(j + 3, 1 + 4 * aa) 'Time data
 quartz(i, 0, 1) = quartz(i, 0, 1) + 1 'starts counting number of data of each well

'Calculating accumulative time data
 quartz(i, j, 2) = DateDiff("s", quartz(i, 1, 1), quartz(i, j, 1)) / 3600
 End If
 If IsEmpty(Worksheets(2).Cells(j + 3, 2 + 4 * aa)) Then
 quartz(i, j, 3) = 0
 Else
 quartz(i, j, 3) = Worksheets(2).Cells(j + 3, 2 + 4 * aa) 'Pressure data
 End If
 Next j

Chapter 10.- Appendix A

49

 aa = aa + 1
Next i

'Calculate position of the data start time in the segment
For i = 1 To ww
 bb = 1
 For j = 1 To quartz(i, 0, 1)
 If quartz(i, j, 1) > topaz(i, bb, 1) Then
 topaz(i, bb, 8) = j - 1 'Saves the end of the segment
 topaz(i, bb, 9) = topaz(i, bb, 8) - topaz(i, bb - 1, 8) 'Saves the number of max data for the test
 bb = bb + 1
 End If
 Next j
 topaz(i, topaz(i, 0, 1), 8) = quartz(i, 0, 1) 'Saves the last end point in the last segment
 topaz(i, topaz(i, 0, 1), 9) = topaz(i, topaz(i, 0, 1), 8) - topaz(i, topaz(i, 0, 1) - 1, 8)
Next i
'Detects larger set of data in test and test
mm = 0: bb = 0
For i = 1 To ww
 If topaz(i, 0, 1) > bb Then
 bb = topaz(i, 0, 1) 'Larger set of test
 End If
 For j = 1 To topaz(i, 0, 1)
 If topaz(i, j, 9) > mm Then
 mm = topaz(i, j, 9) 'Larger set of data test
 End If
 Next j
Next i

ReDim sapphire(ww, bb, mm, 6)

'Preparing pressure matrix
For i = 1 To ww
 bb = 1: mm = 0
 For j = 1 To topaz(i, 0, 1)
 sapphire(i, j, 0, 1) = topaz(i, j, 3) 'Saves type of test
 k = 1
 Do
 'For k = 1 To topaz(i, j, 9)
 sapphire(i, j, k, 1) = quartz(i, bb, 1) 'Saving time
 sapphire(i, j, k, 2) = quartz(i, bb, 2) 'Saving acumulative time
 sapphire(i, j, k, 3) = quartz(i, bb, 3) 'Saving pressure

'Calculating time of segments dt
 sapphire(i, j, k, 4) = quartz(i, bb, 2) - quartz(i, topaz(i, j - 1, 8), 2)
 If j = 1 Then
 sapphire(i, j, k, 5) = Abs(quartz(i, bb, 3) - pini(ww)) 'Calculating dp for the first segment
 Else

Chapter 10.- Appendix A

50

'Calculating dp segments
 sapphire(i, j, k, 5) = Abs(quartz(i, bb, 3) - quartz(i, topaz(i, j - 1, 8), 3))
 End If
 sapphire(i, j, k, 6) = Abs(quartz(i, bb, 3) - pini(ww)) 'Calculating dp with initial P(t=0)
 If quartz(i, bb, 2) <> 0 Then
 k = k + 1
 Else
 topaz(i, j, 9) = topaz(i, j, 9) - 1
 End If
 bb = bb + 1
 'Next k
 Loop While k <= topaz(i, j, 9)
 If topaz(i, j, 3) = 2 Then
 topaz(i, j, 10) = topaz(i, j - 1, 10) 'Saves production time
 mm = j
 Else
 topaz(i, j, 10) = sapphire(i, j, topaz(i, j, 9), 2) - sapphire(i, mm, topaz(i, j, 9), 2)
 End If
 Next j
Next i

Worksheets(1).Shapes(1).TextFrame.Characters.Text = "Calculate"
Worksheets(1).Protect Password:="crystal", AllowFormattingCells:=True,
AllowFormattingColumns:=True, AllowFormattingRows:=True
Worksheets(3).Protect Password:="crystal", AllowFormattingCells:=True,
AllowFormattingColumns:=True, AllowFormattingRows:=True
Application.ScreenUpdating = True 'Faster calculations
End Sub

10.5 Normalize

This subroutine normalizes the pressure with a reference test previously selected in the userform

“Reference”.

Public Sub Normalize()

Dim aa As Byte, bb As Integer, agata As Integer

For i = 1 To ruby(0, 1)
 aa = ruby(i, 1) 'Number of well
 bb = ruby(i, 2) 'Position of the test data
 agata = topaz(aa, bb, 3) 'Type of test
 emerald(i, 0, 1) = 0.1 'Saves the smoother by default
 For j = 1 To topaz(aa, bb, 9) 'Data calculations
 emerald(i, j, 1) = sapphire(aa, bb, j, 4) 'Copying dt segment

Chapter 10.- Appendix A

51

 Select Case agata
 Case 1 'Injection
 emerald(i, j, 2) = sapphire(aa, bb, j, 6) 'Copying pressure unormalized sp
 'Normalization of pressure for superposition
 emerald(i, j, 4) = Abs(ruby(0, 2) / topaz(aa, bb, 2) * emerald(i, j, 2))
 'Normalization of pressure for derivative
 emerald(i, j, 7) = Abs(ruby(0,2)/(topaz(aa,bb,2)-topaz(aa, bb-1,2))*sapphire(aa,bb,j, 5))
 'dp re-scale
 emerald(i, j, 6) = Abs((topaz(aa, bb, 2) / ruby(0, 2)) * emerald(i, j, 7))
 Case 2 'Fall-off
 emerald(i, j, 2) = sapphire(aa, bb, j, 5) 'Copying pressure unormalized sp
 'Normalization of pressure for superposition
 emerald(i, j, 4) = Abs(ruby(0, 2) / topaz(aa, bb - 1, 2) * emerald(i, j, 2))
 'Normalized of pressure for derivative
 emerald(i, j, 7) = emerald(i, j, 4)
 'dp re-scale
 emerald(i, j, 6) = emerald(i, j, 7)
 Case 3 'Production
 emerald(i, j, 2) = sapphire(aa, bb, j, 6) 'Copying pressure unormalized sp
 'Normalization pressure for superposition
 emerald(i, j, 5) = Abs(ruby(0, 2) / topaz(aa, bb, 2) * emerald(i, j, 2))
 'Normalization of pressure for derivative
 emerald(i, j, 7) = Abs(ruby(0,2)/(topaz(aa,bb,2)-topaz(aa,bb-1,2))*sapphire(aa,bb,j,5))
 'dp re-scale
 emerald(i, j, 6) = Abs((topaz(aa, bb, 2) / ruby(0, 2)) * emerald(i, j, 7))
 End Select
 Next j
Next i

End Sub

10.6 Calculate

This subroutine is the one in charge of calculating the superposition time and a multiplier factor,

which is used for faster calculations or to avoid mathematical errors due to number being too big or

small.

Public Sub Calculate()

Dim aa As Byte, bb As Integer

For i = 1 To ruby(0, 1)
 aa = ruby(i, 1) 'Number of well
 bb = ruby(i, 2) 'No. test

Chapter 10.- Appendix A

52

 For j = 1 To topaz(aa, bb, 9)
 Call Superposition(bb, sapphire(aa, bb, j, 2), aa)
 emerald(i, j, 3) = summat 'To save value obtained in superposition
 Next j
 'Calculating factor
 ruby(i, 3) = 1 'Saves adjust factor by default
 If Abs(emerald(i, topaz(aa, bb, 9), 3)) > Abs(emerald(i, 1, 3)) Then
 diff = Abs(emerald(i, topaz(aa, bb, 9), 3))
 Else
 diff = Abs(emerald(i, 1, 3))
 End If
 dtmax = diff
 Do While diff > 9
 ruby(i, 3) = ruby(i, 3) * 10
 diff = dtmax / ruby(i, 3)
 Loop
Next i
ReDim quartz(ruby(0, 1), 6)

End Sub

10.7 Calculateb

This subroutine calculates the derivative with the smoother assigned by default or by the user. The

derivative is calculated with the superposition time and the pressure difference with the time 0.

Public Sub Calculateb()

Dim aa As Byte, bb As Integer, cc As Integer, diff, dd As Integer, dtmin, dpmin
Dim dtmax, dpmax, agata As Byte

For i = 1 To ruby(0, 1)
 aa = ruby(i, 1) 'Number of well
 bb = ruby(i, 2) ' No. test
 'Defining left and right smoother
 For j = 1 To topaz(aa, bb, 9) - 1
 cc = j - 1 'Initial guess left side
 dd = j + 1 'Initial guess right side
 'Calculating left side
 If j = 1 Then
 agata = 0
 diff = emerald(i, j, 1)
 dtmin = 10 ^ (-agata)
 Do While dtmin > diff
 agata = agata + 1

Chapter 10.- Appendix A

53

 dtmin = 10 ^ (-agata) 'Calculating lowest value
 Loop
 Do
 'Simple interpolation with dt segment and dp(dt=0)
 Call Interpolation(sapphire(aa, bb, j, 6), sapphire(aa, bb - 1, topaz(aa, bb - 1, 9), 6), _
emerald(i, j, 1), 0, dtmin)
 dpmin = interp
 'dpmin = sapphire(aa, bb, j, 6) - (emerald(i, j, 1) - dtmin) * ((sapphire(aa, bb, j, 6) -__
sapphire(aa, bb - 1, topaz(aa, bb - 1, 9), 6)) / (emerald(i, j, 1) - emerald(i, j - 1, 1)))
 dtmin = dtmin + sapphire(aa, bb - 1, topaz(aa, bb - 1, 9), 2)
 'Calculate superposition
 Call Superposition(bb, dtmin, aa)
 dtmin = (sapphire(aa, bb, j, 2) - dtmin) / 2
 diff = Abs(summat - emerald(i, topaz(aa, bb, 9), 3)) / ruby(i, 3)
 Loop While diff > 99
 dtmin = summat / ruby(i, 3)
 Else
 Do
 diff = Log(10 ^ ((emerald(i, j, 3) - emerald(i, cc, 3)) / ruby(i, 3)))
 If Abs(diff) > emerald(i, 0, 1) Then
 Exit Do
 Else
 cc = cc - 1
 End If
 Loop While cc > 1
 'Uses superposition time and dp(dt=0) for calculations
 dpmin = sapphire(aa, bb, cc, 6)
 dtmin = emerald(i, cc, 3) / ruby(i, 3) 'Adjust with factor
 End If
 'Calculating right side
 Do
 diff = Log(10 ^ ((emerald(i, dd, 3) / emerald(i, j, 3)) / ruby(i, 3)))
 If Abs(diff) > emerald(i, 0, 1) Then
 Exit Do
 Else
 dd = dd + 1
 End If
 Loop While dd < topaz(aa, bb, 9) - 1
 dpmax = sapphire(aa, bb, dd, 6)
 dtmax = emerald(i, dd, 3) / ruby(i, 3) 'Adjust with factor
 emerald(i, j, 3) = emerald(i, j, 3) / ruby(i, 3) 'Adjust with factor
 Call Derivative(dpmin, dtmin, sapphire(aa, bb, j, 6), emerald(i, j, 3), dpmax, dtmax)
 emerald(i, j, 3) = emerald(i, j, 3) * ruby(i, 3) 'Original superposition time before factor
 emerald(i, j, 5) = derev / ruby(i, 3) 'Derivative corrected by factor
 'Calculate derivative normalized
 agata = topaz(aa, bb, 3)
 'Normalizing derivative

Chapter 10.- Appendix A

54

 Select Case agata
 Case 1
 'Injection case
 emerald(i, j, 8) = Abs(ruby(0, 2) / topaz(aa, bb, 2)) * emerald(i, j, 5)
 Case 2
 'Fall-off case
 emerald(i, j, 8) = Abs(ruby(0, 2) / topaz(aa, bb - 1, 2)) * emerald(i, j, 5)
 Case 3
 'Production case
 emerald(i, j, 8) = Abs(ruby(0, 2) / topaz(aa, bb, 2)) * emerald(i, j, 5)
 End Select
 Next j
Next i
End Sub

10.8 Superposition

This subroutine calculates the sum used in the superposition time.

Public Sub Superposition(maxs As Integer, timew, wellno As Byte)

Dim deltaq, deltat

summat = 0: ctn = 1
Do
 deltaq = topaz(wellno, ctn, 2) - topaz(wellno, ctn - 1, 2)
 deltat = Log(timew - sapphire(wellno, ctn - 1, topaz(wellno, ctn - 1, 9), 2)) / Log(10)
 summat = summat + deltaq * deltat
 ctn = ctn + 1
Loop While ctn <= maxs
If topaz(wellno, maxs, 3) <> 2 Then
 summat = summat / topaz(wellno, maxs, 2) 'Superposition for injection/production
Else
 'superposition for Fall-off
 summat = summat / Abs(topaz(wellno, maxs, 2) - topaz(wellno, maxs - 1, 2))
End If

End Sub

10.9 Derivative

This subroutine calculates the 3-point derivative with smoother and normalize it with the reference

test set up before in the Reference userform.

Public Sub Derivative(dpl, dtl, dpj, dtj, dpr, dtr)

Chapter 10.- Appendix A

55

Dim term1, term2, term3, term4

term1 = (dpj - dpl) / Log(10 ^ (dtj - dtl))
term2 = Log(10 ^ (dtr - dtj)) / Log(10 ^ (dtr - dtl))
term3 = (dpr - dpj) / Log(10 ^ (dtr - dtj))
term4 = Log(10 ^ (dtj - dtl)) / Log(10 ^ (dtr - dtl))
derev = Abs(term1 * term2 + term3 * term4)

End Sub

10.10 Interpolation

This subroutine is used for interpolating values when need it.

Public Sub Interpolation(vv1, vv2, uu1, uu2, uu)
interp = vv2 - (vv2 - vv1) * (uu2 - uu) / (uu2 - uu1)

End Sub

10.11 Comparative

This subroutine calls the subroutines that calculate permeabilities and skin factor by semi-log and
derivative analysis.

Public Sub Comparative()

For i = 1 To ruby(0, 1)
 'Calculate limits based on tolerance
 Call Limits(i, 1)
 'Calculate permeability, skin factor
 Call Propertyks(ruby(i, 1), i, ruby(i, 2), quartz(i, 1), quartz(i, 2))
Next i

End Sub

10.12 Limits

This subroutine calculates the limits of the radial flow to use for calculating the flow capacity,

permeability and skin factors.

Public Sub Limits(testno, tole)

Chapter 10.- Appendix A

56

Dim dref, bb As Integer, pfixed, j As Integer, diff

'Initial point
dref = emerald(testno, ruby(testno, 5), 1) - emerald(testno, 1, 1)
j = 1
If emerald(testno, j, 1) = 0 Then
 j = j + 1 'To avoid zero from the initial value
End If
Do
 If dref > 2 Then
 'Calculate slope every 15 min, for faster calculations and jump wellbore storage
 bb = j
 Do
 j = j + 1
 diff = emerald(testno, j, 1) - emerald(testno, bb, 1)
 If j >= ruby(testno, 5) - 1 Then
 j = ruby(testno, 5) - 1
 Exit Do 'To avoid infinite loop
 End If
 Loop While diff < 0.25 'Every 15 min
 Else
 bb = j
 j = j + 1
 End If
 pfixed = Abs((emerald(testno, j, 8) - emerald(testno, bb, 8)) / emerald(testno, bb, 8))
 pfixed = pfixed * 100
 If pfixed < ruby(testno, 4) Then
 Exit Do
 End If
 If j >= ruby(testno, 5) - 2 Then
 If tole <> 0 Then
 'For recalculating tolerance
 j = 1
 ruby(testno, 4) = ruby(testno, 4) + 0.1 'Increases error
 Else
 'For using fix tolerance
 j = ruby(testno, 5) - 2
 Exit Do
 End If
 End If
Loop While j < ruby(testno, 5) - 1
quartz(testno, 1) = j 'Initial point

'End point
Do
 j = j + 1
 pfixed = Abs((emerald(testno, j, 8) - emerald(testno, quartz(testno, 1), 8)) / emerald(testno,_

Chapter 10.- Appendix A

57

quartz(testno, 1), 8)) * 100
 If pfixed > 4 Then
 Exit Do
 End If
Loop While j < ruby(testno, 5) - 1
quartz(testno, 2) = j 'End point

End Sub

10.13 Propertyks

This subroutine calculates the flow capacity, permeability and skin factor with semi-log and

derivative analysis, with the limits calculated in “Limits” or the ones assigned by the user.

Public Sub Propertyks(aa, testno, bb, lptn, rptn)

Dim agl, agr, hyddif, slope, p1hr, st1hr, pfixed, agata As Integer, cc As Integer, dd As Integer

cc = lptn: dd = rptn
'Calculate constant value for derivative
pfixed = 0: agata = 0
For k = cc To dd
 pfixed = pfixed + emerald(testno, k, 8) 'summatory
 agata = agata + 1
Next k
pfixed = pfixed / agata 'Average value for derivative constant

'Calculating permeabilities
If topaz(aa, bb, 3) <> 2 Then
 slope = Abs((emerald(testno, dd, 7) - emerald(testno, cc, 7)) / (Log(emerald(testno, dd, 1) /_
emerald(testno, cc, 1)) / Log(10))) 'Semilog
 ruby(testno, 6) = Abs((162.5683 * topaz(aa, bb, 2) * bo(aa) * muo(aa)) / slope) 'kh for semilog
 ruby(testno, 7) = ruby(testno, 6) / hgt(aa) 'k for semilog
 ruby(testno, 9) = Abs((70.6 * topaz(aa, bb, 2) * bo(aa) * muo(aa)) / pfixed) 'kh for derivative
 ruby(testno, 10) = ruby(testno, 9) / hgt(aa) 'k for derivative
Else
 agl = emerald(testno, cc, 1) * topaz(aa, bb, 10) / (emerald(testno, cc, 1) + topaz(aa, bb, 10))
 agr = emerald(testno, dd, 1) * topaz(aa, bb, 10) / (emerald(testno, dd, 1) + topaz(aa, bb, 10))
 slope = Abs((emerald(testno, dd, 7) - emerald(testno, cc, 7)) / (Log(agr / agl) / Log(10))) 'Semilog
 ruby(testno, 6) = Abs((162.5683 * topaz(aa, bb - 1, 2) * bo(aa) * muo(aa)) / slope) 'kh for semilog
 ruby(testno, 7) = ruby(testno, 6) / hgt(aa) 'k for semilog
 ruby(testno, 9) = Abs((70.6 * topaz(aa, bb - 1, 2) * bo(aa) * muo(aa)) / pfixed) 'kh for derivative
 ruby(testno, 10) = ruby(testno, 9) / hgt(aa) 'k for derivative
End If

Chapter 10.- Appendix A

58

'Calculating skin for semilog
p1hr = Abs(emerald(testno, dd, 7) - slope * Log(emerald(testno, dd, 1)) / Log(10))
hyddif = ruby(testno, 7) / (poro(aa) * muo(aa) * ct(aa) * rw(aa) * rw(aa))
hyddif = Log(hyddif) / Log(10)
If topaz(aa, bb, 3) <> 2 Then
 ruby(testno, 8) = 1.151 * (Abs((p1hr - 0) / slope) - hyddif + 3.2275) 'skin for semilog
Else
 st1hr = 1 * topaz(aa, bb, 10) / (1 + topaz(aa, bb, 10)) 'Agarwal time
 sthr1 = Log(st1hr) / Log(10)
 ruby(testno, 8) = 1.151 * (Abs((p1hr - 0) / slope) - st1hr - hyddif + 3.2275) 'skin for semilog
End If

'Calculating skin for derivative
dd = cc
Do
 If dd >= ruby(testno, 5) - 1 Then
 dd = ruby(testno, 5) - 1
 Exit Do
 End If
 dd = dd + 1 'Right side of the derivative average
Loop While emerald(testno, dd, 8) < pfixed

cc = dd - 1 'Left side of the derivative average
Call Interpolation(emerald(testno, cc, 7), emerald(testno, dd, 7), emerald(testno, cc, 8),_
emerald(testno, dd, 8), pfixed)
p1hr = interp
hyddif = ruby(testno, 10) / (poro(aa) * muo(aa) * bo(aa) * ct(aa) * rw(aa) * rw(aa))
hyddif = Log(hyddif) / Log(10)
If topaz(aa, bb, 3) <> 2 Then
 Call Interpolation(emerald(testno, cc, 1), emerald(testno, dd, 1), emerald(testno, cc, 8),_
emerald(testno, dd, 8), pfixed)
 st1hr = Log(interp) / Log(10)
 slope = Abs((p1hr * ruby(testno, 9)) / (162.5683 * topaz(aa, bb, 2) * bo(aa) * muo(aa)))
 ruby(testno, 11) = 1.151 * (slope - st1hr - hyddif + 3.2275) 'skin factor for derivative
Else
 agr = emerald(testno, dd, 1) * topaz(aa, bb, 10) / (emerald(testno, dd, 1) + topaz(aa, bb, 10))
 agl = emerald(testno, cc, 1) * topaz(aa, bb, 10) / (emerald(testno, cc, 1) + topaz(aa, bb, 10))
 Call Interpolation(agl, agr, emerald(testno, cc, 8), emerald(testno, dd, 8), pfixed)
 st1hr = Log(interp) / Log(10)
 slope = Abs((p1hr * ruby(testno, 9)) / (162.5683 * topaz(aa, bb - 1, 2) * bo(aa) * muo(aa)))
 ruby(testno, 11) = 1.151 * (slope - st1hr - hyddif + 3.2275) 'skin factor for derivative
End If

End Sub

Chapter 10.- Appendix A

59

10.14 Genesis

This subroutine creates anew sheet in excel, which will be containing the results from the derivative,

and renamed as “Analysis”

Public Sub Genesis()

Dim aa As Byte, tempo As String, maxy As Byte, bb As Byte

Application.ScreenUpdating = False 'Faster calculations

With ThisWorkbook
 Set ws = .Sheets.Add(After:=.Sheets(.Sheets.Count))
 aa = 1
 For i = 1 To Sheets.Count
 If Left(Sheets(i).Name, 8) = "Analysis" Then
 bb = Len(Sheets(i).Name)
 maxy = Val(Right(Sheets(i).Name, bb - 9))
 If maxy >= aa Then
 aa = maxy + 1
 End If
 End If
 Next i
 tempo = "Analysis_" & aa
 .Unprotect
 ws.Name = tempo
End With

ws.Visible = xlSheetVeryHidden '--------------------------Important to work in background
Application.ScreenUpdating = True 'Faster calculations
End Sub

10.15 Printing

This subroutine prints the results in the sheet Analysis, that are going to be used for generating the

graph in the Plotter userform, see Appendix C for its’ code. It also prints the unnormalized data in

case one wants to check it.

Public Sub Printing()

Dim bb As Integer, miny, maxy

Application.ScreenUpdating = False 'Faster calculations
ThisWorkbook.Unprotect
ws.Activate 'To change activation for new sheet

Chapter 10.- Appendix A

60

bb = 0
For i = 1 To ruby(0, 1)
 'For the Normalized data headers
 ws.Cells(2 + bb, 1) = topaz(ruby(i, 1), ruby(i, 2), 7) 'Print name of the test
 ws.Cells(2 + bb, 2) = "Normalized"
 ws.Cells(3 + bb, 1) = "dTime (hrs)"
 ws.Cells(3 + bb, 1).WrapText = True
 ws.Cells(3 + bb, 2) = "p-p@dt=0 (psia)"
 ws.Cells(3 + bb, 2).WrapText = True
 ws.Cells(3 + bb, 3) = "Derivative (psia)"
 ws.Cells(3 + bb, 3).WrapText = True
 ws.Cells(3 + bb, 4) = "Superposition time()"
 ws.Cells(3 + bb, 4).WrapText = True
 ws.Cells(3 + bb, 5) = "p (psia)"
 ws.Cells(3 + bb, 5).WrapText = True
 'For the unnormalized headers
 ws.Cells(2 + bb, 8) = topaz(ruby(i, 1), ruby(i, 2), 7) 'Print name of the test
 ws.Cells(2 + bb, 9) = "Unnormalized"
 ws.Cells(3 + bb, 8) = "dTime (hrs)"
 ws.Cells(3 + bb, 8).WrapText = True
 ws.Cells(3 + bb, 9) = "p-p@dt=0 (psia)"
 ws.Cells(3 + bb, 9).WrapText = True
 ws.Cells(3 + bb, 10) = "Derivative (psia)"
 ws.Cells(3 + bb, 10).WrapText = True
 ws.Cells(3 + bb, 11) = "Superposition time()"
 ws.Cells(3 + bb, 11).WrapText = True
 ws.Cells(3 + bb, 12) = "p (psia)"
 ws.Cells(3 + bb, 12).WrapText = True
 'To print results for emerald matrix
 For j = 1 To ruby(i, 5)
 ws.Cells(3 + bb + j, 1) = emerald(i, j, 1) 'dt segment
 ws.Cells(3 + bb + j, 2) = emerald(i, j, 7) 'Pressure derivative normalized
 ws.Cells(3 + bb + j, 3) = emerald(i, j, 8) 'Derivative normalized
 ws.Cells(3 + bb + j, 4) = emerald(i, j, 3) 'Superposition time
 ws.Cells(3 + bb + j, 5) = emerald(i, j, 4) 'Pressure superposition normalized
 ws.Cells(3 + bb + j, 8) = emerald(i, j, 1) 'dt segment
 ws.Cells(3 + bb + j, 9) = emerald(i, j, 6) 'Pressure derivative
 ws.Cells(3 + bb + j, 10) = emerald(i, j, 5) 'Derivative
 ws.Cells(3 + bb + j, 11) = emerald(i, j, 3) 'Superposition time
 ws.Cells(3 + bb + j, 12) = emerald(i, j, 2) 'Pressure superposition
 Next j
 Columns("A:E").EntireColumn.AutoFit
 Columns("H:L").EntireColumn.AutoFit
 bb = bb + ruby(i, 5) + 5
Next i

Chapter 10.- Appendix A

61

'Calculate max and min in pressure and derivative
miny = 10000000: maxy = 0
For i = 1 To ruby(0, 1)
 For j = 2 To ruby(i, 5) - 1
 If emerald(i, j, 7) > maxy Then
 maxy = emerald(i, j, 7)
 End If
 If emerald(i, j, 8) > maxy Then
 maxy = emerald(i, j, 8)
 End If
 If miny > emerald(i, j, 7) Then
 miny = emerald(i, j, 7)
 End If
 If miny > emerald(i, j, 8) Then
 miny = emerald(i, j, 8)
 End If
 Next j
Next i

bb = 0
For i = 1 To ruby(0, 1)
 ws.Cells(10 + bb, 15) = "Xleft"
 ws.Cells(11 + bb, 15) = emerald(i, quartz(i, 1), 1) 'Left point
 ws.Cells(12 + bb, 15) = emerald(i, quartz(i, 1), 1) 'Left point
 ws.Cells(10 + bb, 16) = "Y"
 ws.Cells(11 + bb, 16) = miny
 ws.Cells(12 + bb, 16) = maxy
 ws.Cells(10 + bb, 17) = "Xright"
 ws.Cells(11 + bb, 17) = emerald(i, quartz(i, 2), 1) 'Right point
 ws.Cells(12 + bb, 17) = emerald(i, quartz(i, 2), 1) 'Right point
 'Generating random colors
 quartz(i, 3) = WorksheetFunction.RandBetween(0, 255) 'Red color
 quartz(i, 4) = WorksheetFunction.RandBetween(0, 255) 'Green color
 quartz(i, 5) = WorksheetFunction.RandBetween(0, 255) 'Blue color
 quartz(i, 6) = 11 + bb 'Position of the lines
 bb = bb + ruby(i, 5) + 5
Next i
Application.ScreenUpdating = True 'Faster calculations

End Sub

10.16 Gengraph

This subroutine generates the graph in excel and export it to the image box in the Plotter userform.

It also assigned random colors to the lines, the format and names shown in the legend.

Chapter 10.- Appendix A

62

Public Sub Gengraph()

Dim Mychart As Object, aa As Integer, bb As Integer

Application.ScreenUpdating = False 'To create the graph but not generating, it makes it faster
'Detect the workbook with the data for graphs
With ThisWorkbook
 Set ws = .Sheets(.Sheets.Count)
End With
ws.Activate
Set Mychart = ActiveSheet.Shapes.AddChart(xlXYScatterLinesNoMarkers, width:=600,
height:=400).Chart

aa = 4
For i = 1 To 4
 Mychart.SeriesCollection(aa).Delete 'since is creating a graph with predefined series
 aa = aa - 1
Next i

'Adding the pressure part
aa = 4: bb = 0
For i = 1 To ruby(0, 1)
 bb = bb + 1
 'Adding the pressure part
 Mychart.SeriesCollection.NewSeries 'Add new series
 Mychart.SeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7) 'Add the name of the series
 'X values
 Mychart.SeriesCollection(bb).XValues = ws.Range(Cells(aa, 1), Cells(aa + ruby(i, 5) - 1, 1))
 Mychart.SeriesCollection(bb).Values = ws.Range(Cells(aa, 2), Cells(aa + ruby(i, 5) - 1, 2)) 'Y values
 'Choose color
 Mychart.SeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 'Choose color
 Mychart.SeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 aa = aa + ruby(i, 5) + 5
Next i
aa = 4
For i = 1 To ruby(0, 1)
 bb = bb + 1
 'Adding derivative part
 Mychart.SeriesCollection.NewSeries 'Add new series
 Mychart.SeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7) 'Add the name of the series
 'X values
 Mychart.SeriesCollection(bb).XValues = ws.Range(Cells(aa, 1), Cells(aa + ruby(i, 5) - 1, 1))
 Mychart.SeriesCollection(bb).Values = ws.Range(Cells(aa, 3), Cells(aa + ruby(i, 5) - 1, 3)) 'Y values
 'Choose color

Chapter 10.- Appendix A

63

 Mychart.SeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 'Choose color
 Mychart.SeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 aa = aa + ruby(i, 5) + 5
Next i
'For adding the boundaries, add two lines for the first test
For i = 1 To 2
 bb = bb + 1
 Mychart.SeriesCollection.NewSeries 'Limit line
 Mychart.SeriesCollection(bb).Name = "Limit" & i
 Mychart.SeriesCollection(bb).XValues = ws.Range(Cells(quartz(tt, 6), 13 + i * 2), _
 Cells(quartz(tt, 6) + 1, 13 + i * 2)) 'X values
 Mychart.SeriesCollection(bb).Values = ws.Range(Cells(quartz(tt, 6), 16), _
 Cells(quartz(tt, 6) + 1, 16)) 'Y values
 Mychart.SeriesCollection(bb).Border.LineStyle = xlDot
 'Choose color
 Mychart.SeriesCollection(bb).Border.Color = RGB(quartz(tt, 3), quartz(tt, 4), quartz(tt, 5))
 'Choose color
 Mychart.SeriesCollection(bb).Interior.Color = RGB(quartz(tt, 3), quartz(tt, 4), quartz(tt, 5))
Next i

'Mychart.SeriesCollection(tt).Format.Line.Weight = 2
Mychart.SeriesCollection(tt).MarkerStyle = xlMarkerStyleCircle
Mychart.SeriesCollection(tt).MarkerSize = 7
Mychart.SeriesCollection(tt).MarkerBackgroundColor = RGB(quartz(tt, 3), quartz(tt, 4),_
quartz(tt, 5))
Mychart.SeriesCollection(tt).MarkerForegroundColor = RGB(0, 0, 0)
Mychart.SeriesCollection(tt + ruby(0, 1)).MarkerStyle = xlMarkerStyleCircle
Mychart.SeriesCollection(tt + ruby(0, 1)).MarkerSize = 7
Mychart.SeriesCollection(tt + ruby(0, 1)).MarkerBackgroundColor = RGB(quartz(tt, 3),_
quartz(tt, 4), quartz(tt, 5))
Mychart.SeriesCollection(tt + ruby(0, 1)).MarkerForegroundColor = RGB(0, 0, 0)

'For editing graph
Mychart.HasTitle = True 'Add title
Mychart.ChartTitle.Text = ws.Name 'Title name
Mychart.ChartTitle.Font.Size = 16 'Font size
Mychart.Axes(xlCategory, xlPrimary).HasTitle = True 'Add X-axis title
Mychart.Axes(xlCategory, xlPrimary).AxisTitle.Text = "Time (hrs)" 'X name
'font size
Mychart.Axes(xlCategory, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 12
Mychart.Axes(xlCategory, xlPrimary).ScaleType = xlScaleLogarithmic 'Log scale
Mychart.Axes(xlCategory, xlPrimary).HasMajorGridlines = True
Mychart.Axes(xlValue, xlPrimary).HasTitle = True 'Add Y-axis title
Mychart.Axes(xlValue, xlPrimary).AxisTitle.Text = "Pressure and Derivative (psi)" 'Y name
Mychart.Axes(xlValue, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 12 'font size
Mychart.Axes(xlValue, xlPrimary).ScaleType = xlScaleLogarithmic 'Log scale

Chapter 10.- Appendix A

64

Mychart.Axes(xlValue, xlPrimary).HasMajorGridlines = True

'Small number so x axis crosses the y at 0.000000001
Mychart.Axes(xlValue, xlPrimary).CrossesAt = 0.0000000001
'Automatically changes the x axis cross to minimum value
Mychart.Axes(xlValue, xlPrimary).Crosses = xlCustom
'Small number so y axis crosses the x at 0.000000001
Mychart.Axes(xlCategory, xlPrimary).CrossesAt = 0.0000000001
'Automatically changes the y axis cross to minimum value
Mychart.Axes(xlCategory, xlPrimary).Crosses = xlCustom

'Now for generating the image
Dim imagename As String

imagename = Application.DefaultFilePath & Application.PathSeparator & "Tempchart.gif"
'MsgBox "The default path is" & Application.DefaultFilePath 'Just to know where image is save
Mychart.Export Filename:=imagename
ws.ChartObjects(1).Delete
Application.ScreenUpdating = True
Plotter.Image1.Picture = LoadPicture(imagename)

End Sub

10.17 Allgraph

This subroutine generates the final graphs for pressure and pressure derivative and the

superposition graph, after the manual or automatic adjustments.

Public Sub Allgraph()

Dim aa As Integer, bb As Integer

Application.ScreenUpdating = False 'To create the graph but not generating, it makes it faster
'Detect the workbook with the data for graphs
With ThisWorkbook
 Set ws = .Sheets(.Sheets.Count)
End With
ws.Activate
'Creating pressure and pressure derivative graph
ActiveSheet.Shapes.AddChart2(240, xlXYScatterLinesNoMarkers).Select

aa = 4
For i = 1 To 4
 ActiveChart.FullSeriesCollection(aa).Delete 'since is creating a graph with predefined series
 aa = aa - 1

Chapter 10.- Appendix A

65

Next i

'Adding the pressure part
aa = 4: bb = 0
For i = 1 To ruby(0, 1)
 bb = bb + 1
 'Adding the pressure part
 ActiveChart.SeriesCollection.NewSeries 'Add new series
 'Add the name of the series
 ActiveChart.FullSeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7)
 'X values
 ActiveChart.FullSeriesCollection(bb).XValues = ws.Range(Cells(aa, 1), Cells(aa + ruby(i, 5) - 1, 1))
 'Y values
 ActiveChart.FullSeriesCollection(bb).Values = ws.Range(Cells(aa, 2), Cells(aa + ruby(i, 5) - 1, 2))
 'Choose color
 ActiveChart.FullSeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 'Choose color
 ActiveChart.FullSeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 aa = aa + ruby(i, 5) + 5
Next i
aa = 4
For i = 1 To ruby(0, 1)
 bb = bb + 1
 'Adding derivative part
 ActiveChart.SeriesCollection.NewSeries 'Add new chart
 'Add the name of the series
 ActiveChart.FullSeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7)
 'X values
 ActiveChart.FullSeriesCollection(bb).XValues = ws.Range(Cells(aa, 1), Cells(aa + ruby(i, 5) - 1, 1))
 'Y values
 ActiveChart.FullSeriesCollection(bb).Values = ws.Range(Cells(aa, 3), Cells(aa + ruby(i, 5) - 1, 3))
 'Choose color
 ActiveChart.FullSeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 'Choose color
 ActiveChart.FullSeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 aa = aa + ruby(i, 5) + 5
Next i

'For editing graph
ActiveChart.HasTitle = True 'Add title
ActiveChart.ChartTitle.Text = ws.Name 'Title name
ActiveChart.ChartTitle.Font.Size = 20 'Font size
ActiveChart.Axes(xlCategory, xlPrimary).HasTitle = True 'Add X-axis title
ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Text = "Time (hrs)" 'X name
'font size
ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 14
ActiveChart.Axes(xlCategory, xlPrimary).ScaleType = xlScaleLogarithmic 'Log scale

Chapter 10.- Appendix A

66

ActiveChart.Axes(xlCategory, xlPrimary).HasMajorGridlines = True
ActiveChart.Axes(xlValue, xlPrimary).HasTitle = True 'Add Y-axis title
ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Text = "Pressure and Derivative (psi)" 'Y name
'font size
ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 14
ActiveChart.Axes(xlValue, xlPrimary).ScaleType = xlScaleLogarithmic 'Log scale
ActiveChart.Axes(xlValue, xlPrimary).HasMajorGridlines = True
'Small number so y axis crosses the x at 0.000000001
ActiveChart.Axes(xlCategory, xlPrimary).CrossesAt = 0.0000000001
'Automatically changes the y axis cross to minimum value
ActiveChart.Axes(xlCategory, xlPrimary).Crosses = xlCustom
ActiveChart.SetElement (msoElementLegendRight)

ThisWorkbook.Unprotect
ActiveChart.Location Where:=xlLocationAsNewSheet, Name:="Der_" & ws.Name

'Creating superposition graph
ws.Activate
ActiveSheet.Shapes.AddChart2(240, xlXYScatterLinesNoMarkers).Select

aa = 4
For i = 1 To 4
 ActiveChart.FullSeriesCollection(aa).Delete 'since is creating a graph with predefined series
 aa = aa - 1
Next i

'Adding the superposition time
aa = 4: bb = 0
For i = 1 To ruby(0, 1)
 bb = bb + 1
 ActiveChart.SeriesCollection.NewSeries 'Add new series
 'Add the name of the series
 ActiveChart.FullSeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7)
 'X values
 ActiveChart.FullSeriesCollection(bb).XValues = ws.Range(Cells(aa, 4), Cells(aa + ruby(i, 5) - 1, 4))
 'Y values
 ActiveChart.FullSeriesCollection(bb).Values = ws.Range(Cells(aa, 5), Cells(aa + ruby(i, 5) - 1, 5))
 'Choose color
 ActiveChart.FullSeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 'Choose color
 ActiveChart.FullSeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))
 aa = aa + ruby(i, 5) + 5
Next i

'For editing graph
ActiveChart.HasTitle = True 'Add title
ActiveChart.ChartTitle.Text = ws.Name 'Title name

Chapter 10.- Appendix A

67

ActiveChart.ChartTitle.Font.Size = 20 'Font size
ActiveChart.Axes(xlCategory, xlPrimary).HasTitle = True 'Add X-axis title
ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Text = "Superposition time" 'X name
'font size
ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 14
ActiveChart.Axes(xlCategory, xlPrimary).HasMajorGridlines = True
ActiveChart.Axes(xlValue, xlPrimary).HasTitle = True 'Add Y-axis title
ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Text = "Pressure (psi)" 'Y name
'font size
ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 14
ActiveChart.Axes(xlValue, xlPrimary).HasMajorGridlines = True
'Small number so y axis crosses the x at 0.000000001
ActiveChart.Axes(xlCategory, xlPrimary).CrossesAt = -100
'Automatically changes the y axis cross to minimum value
ActiveChart.Axes(xlCategory, xlPrimary).Crosses = xlCustom
ActiveChart.SetElement (msoElementLegendRight)

Application.ScreenUpdating = True 'For faster operations
ThisWorkbook.Unprotect
ActiveChart.Location Where:=xlLocationAsNewSheet, Name:="Spt_" & ws.Name

End Sub

10.18 Summaries

This subroutine creates a new sheet and named it “Summary” and will print on it the results from

the flow capacity, permeability and skin factor calculated in the plotter userform.

Public Sub Summaries()

Dim aa As Byte, tempo As String, maxy As Byte, bb As Integer

Application.ScreenUpdating = False 'Faster calculations
tempo = ws.Name
bb = Len(tempo)
aa = Val(Right(tempo, bb - 9)) 'to extract the number
With ThisWorkbook
 Set ws = .Sheets.Add(After:=.Sheets(.Sheets.Count))
 tempo = "Summary_" & aa
 .Unprotect
 ws.Name = tempo
End With
ws.Activate

bb = 0

Chapter 10.- Appendix A

68

For i = 1 To ruby(0, 1)
 'To print results from ruby matrix
 ws.Cells(2 + bb, 2) = topaz(ruby(i, 1), ruby(i, 2), 7) 'Print name of the test
 ws.Cells(3 + bb, 2) = "Kh (mD*ft)"
 ws.Cells(4 + bb, 2) = "K (mD)"
 ws.Cells(5 + bb, 2) = "Skin"
 ws.Cells(2 + bb, 3) = "Semilog method"
 ws.Cells(3 + bb, 3) = ruby(i, 6) 'Kh semi
 ws.Cells(4 + bb, 3) = ruby(i, 7) 'K semi
 ws.Cells(5 + bb, 3) = ruby(i, 8) 'S semi
 ws.Cells(2 + bb, 4) = "Derivative method"
 ws.Cells(3 + bb, 4) = ruby(i, 9) 'Kh der
 ws.Cells(4 + bb, 4) = ruby(i, 10) 'K der
 ws.Cells(5 + bb, 4) = ruby(i, 11) 'S der
 ws.Cells(2 + bb, 5) = "Average"
 ws.Cells(3 + bb, 5) = (ruby(i, 6) + ruby(i, 9)) / 2 'Average kh
 ws.Cells(4 + bb, 5) = (ruby(i, 7) + ruby(i, 10)) / 2 'Average k
 ws.Cells(5 + bb, 5) = (ruby(i, 8) + ruby(i, 11)) / 2 'Average s
 ws.Cells(2 + bb, 6) = "Smoother"
 ws.Cells(3 + bb, 6) = emerald(i, 0, 1) 'Final smoother
 Columns("B:D").EntireColumn.AutoFit
 bb = bb + 6
Next i
Application.ScreenUpdating = True 'Faster calculations
End Sub

10.19 Cleaning

This subroutine will reset the main sheets in the excel file as a new project by deleting all the data

contained but not the summaries, analysis and graphs from previous projects.

Public Sub Cleaning()

Dim aa As Byte, bb As Integer

Application.ScreenUpdating = False 'Faster calculations
Worksheets(1).Unprotect Password:="crystal"
Worksheets(1).Cells(3, 4).Locked = False
Worksheets(1).Cells(3, 4).Interior.ColorIndex = 6
Worksheets(1).Shapes(1).TextFrame.Characters.Text = "Generate"
Worksheets(2).Unprotect Password:="crystal"
Worksheets(3).Unprotect Password:="crystal"

ww = Worksheets(1).Cells(3, 4)

Chapter 10.- Appendix A

69

aa = 0
For i = 1 To ww
 Worksheets(2).Cells(2, 1 + 4 * aa).Clear
 Worksheets(2).Cells(3, 1 + 4 * aa).Clear
 Worksheets(2).Cells(3, 2 + 4 * aa).Clear
 Worksheets(3).Cells(2, 1 + 4 * aa).Clear
 Worksheets(3).Cells(3, 1 + 4 * aa).Clear
 Worksheets(3).Cells(3, 2 + 4 * aa).Clear
 Worksheets(1).Cells(8, 2 + 4 * aa).Clear
 Worksheets(1).Cells(9, 2 + 4 * aa).Clear
 Worksheets(1).Cells(9, 3 + 4 * aa).Clear
 Worksheets(1).Cells(10, 2 + 4 * aa).Clear
 Worksheets(1).Cells(10, 3 + 4 * aa).Clear
 Worksheets(1).Cells(11, 2 + 4 * aa).Clear
 Worksheets(1).Cells(11, 3 + 4 * aa).Clear
 Worksheets(1).Cells(12, 2 + 4 * aa).Clear
 Worksheets(1).Cells(12, 3 + 4 * aa).Clear
 Worksheets(1).Cells(13, 2 + 4 * aa).Clear
 Worksheets(1).Cells(13, 3 + 4 * aa).Clear
 Worksheets(1).Cells(14, 2 + 4 * aa).Clear
 Worksheets(1).Cells(14, 3 + 4 * aa).Clear
 Worksheets(1).Cells(15, 2 + 4 * aa).Clear
 Worksheets(1).Cells(15, 3 + 4 * aa).Clear
 Worksheets(1).Cells(17, 2 + 4 * aa).Clear
 Worksheets(1).Cells(17, 3 + 4 * aa).Clear
 bb = Worksheets(2).Cells(Rows.Count, 1 + 4 * aa).End(xlUp).row 'Last active cell in the column
 For j = 4 To bb
 Worksheets(2).Cells(j, 1 + 4 * aa).Clear 'Clear date
 Worksheets(2).Cells(j, 2 + 4 * aa).Clear 'Clear pressure
 Next j
 bb = Worksheets(3).Cells(Rows.Count, 1 + 4 * aa).End(xlUp).row 'Last active cell in the column
 For j = 4 To bb
 Worksheets(3).Cells(j, 1 + 4 * aa).Clear 'Clear date
 Worksheets(3).Cells(j, 2 + 4 * aa).Clear 'Clear rate
 Worksheets(3).Cells(j, 3 + 4 * aa).Clear 'clear secondary name test
 Next j
 Worksheets(2).Columns(1 + 4 * aa).Resize(, 2).Locked = True
 Worksheets(3).Columns(1 + 4 * aa).Resize(, 2).Locked = True
 aa = aa + 1
Next i

Worksheets(1).Cells(3, 4) = 1
Worksheets(2).Columns(1).Resize(, 2).Locked = False
Worksheets(2).Cells(2, 1) = "Well 1"
Worksheets(2).Cells(2, 1).Locked = True
Worksheets(2).Cells(3, 1) = "Date"
Worksheets(2).Cells(3, 1).Locked = True

Chapter 10.- Appendix A

70

Worksheets(2).Cells(3, 2) = "Pressure (psia)"
Worksheets(2).Cells(3, 2).WrapText = True
Worksheets(2).Cells(3, 2).Locked = True
Worksheets(3).Columns(1).Resize(, 2).Locked = False
Worksheets(3).Cells(2, 1) = "Well 1"
Worksheets(3).Cells(2, 1).Locked = True
Worksheets(3).Cells(3, 1) = "Time@end"
Worksheets(3).Cells(3, 1).Locked = True
Worksheets(3).Cells(3, 2) = "Liquid rate (STB/D)"
Worksheets(3).Cells(3, 2).WrapText = True
Worksheets(3).Cells(3, 2).Locked = True
Worksheets(1).Cells(8, 2) = "Well 1"
Worksheets(1).Cells(9, 2) = "Pi(psia)"
Worksheets(1).Cells(9, 3).Interior.ColorIndex = 6
Worksheets(1).Cells(9, 3).Locked = False
Worksheets(1).Cells(10, 2) = "Bo(RB/STB)"
Worksheets(1).Cells(10, 3).Interior.ColorIndex = 6
Worksheets(1).Cells(10, 3).Locked = False
Worksheets(1).Cells(11, 2) = "Viscosity(cp)"
Worksheets(1).Cells(11, 3).Interior.ColorIndex = 6
Worksheets(1).Cells(11, 3).Locked = False
Worksheets(1).Cells(12, 2) = "rw(ft)"
Worksheets(1).Cells(12, 3).Interior.ColorIndex = 6
Worksheets(1).Cells(12, 3).Locked = False
Worksheets(1).Cells(13, 2) = "h(ft)"
Worksheets(1).Cells(13, 3).Interior.ColorIndex = 6
Worksheets(1).Cells(13, 3).Locked = False
Worksheets(1).Cells(14, 2) = "Porosity"
Worksheets(1).Cells(14, 3).Interior.ColorIndex = 6
Worksheets(1).Cells(14, 3).Locked = False
Worksheets(1).Cells(15, 2) = "Ct(psia-1)"
Worksheets(1).Cells(15, 3).Interior.ColorIndex = 6
Worksheets(1).Cells(15, 3).Locked = False

Worksheets(1).Protect Password:="crystal", AllowFormattingCells:=True,
AllowFormattingColumns:=True, AllowFormattingRows:=True
Worksheets(2).Protect Password:="crystal", AllowFormattingCells:=True,
AllowFormattingColumns:=True, AllowFormattingRows:=True
Worksheets(3).Protect Password:="crystal", AllowFormattingCells:=True,
AllowFormattingColumns:=True, AllowFormattingRows:=True
Application.ScreenUpdating = True 'Faster calculations

End Sub

