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Well monitoring from on-the-Fly analysis of data from Permanent 

Downhole Gauges (PDGs) 

 

Juan Manuel Cadena Zetina 

 

Summary 

The thesis focuses on time-lapse Pressure Transient Analysis (PTA) of data acquire with Permanent 

Downhole Gauges (PDGs). The objective is to develop and test approaches in automation of time-

lapse PTA. Helping in providing well-reservoir parameters such as reservoir flow capacity (Kh) and 

well skin (S) is analyzed. 

A short review of modern PDGs with description of their specifications (i.e. accuracy, resolution) is 

followed by literature review of recent paper focused on automating time-lapse PTA. This includes 

machine learning and multi-well interpretation. The main part of the thesis begins with the 

description of the code developed in combination with analytical solutions used for time-lapse PTA 

interpretations. The thesis continues with analysis of a synthetic injection well simulated in Saphir. 

And end up with testing the code with an actual history well production on the Norwegian 

Continental shelf. 

The results of the test on the synthetic well example have shown that from two flow capacity 

calculation procedures using semi-log and log-log derivative analyses. The last one provides more 

accurate results on flowing transients. The estimated well skin depends on the flow capacity 

estimation above. Therefore, is also better estimated with the log-log (derivative) analysis. Both 

methodologies behave similar in shut-in cases. The inclusion of superposition time when estimating 

parameters was demonstrated to be a determinant factor. 

The tests on the actual well showed that the code provides similar results with Saphir, where the 

automation routines gives values with an error of 12% and 6% for the semi-log and derivative 

analysis respectively. 
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1 Objectives and Scope 
 

The thesis objectives are: 

• Literature review of today’s practice and recent developments in manual, semi- and fully 
automated PTA of PDG data. 

• Development and coding of algorithms for interpretation of well flowing (constant rate) and 
shut-in periods with estimation of reservoir flow capacity (kh) and skin (S) accounting for 
time superposition effects. 

• Analysis of possibilities to automate routine procedures of pressure / rate interpretations 
(time-lapse PTA). 

• Development and coding of algorithms for automated time-lapse PTA with possibility of on-
the-fly analysis and alarming on well performance changes in real-time. 

• Analysis of real well data pressure and rate from a North Sea field. 
 

2 Introduction 
 

The increase in the amount of data provided during well measurements has been receiving a boost 

from the new technologies and the digitalization, leading to big data sets to be handle by reservoir 

engineers. This requires from engineers not only knowledge in reservoir engineering, but also the 

programing skills in helping and developing fast and efficient solutions. To deal with such big data 

sets. 

Being able to perform simple tasks such as filtering, synchronizing data, or structuring before input 

into commercial software for such big sets of data can be a complicated task without a proper 

computational approach.  

Here, one of the possibilities is automating certain tasks by using complementary software as 

MATLAB, Python or MS Excel as in the case of the thesis. The reasons for using macros in MS Excel 

was that most of the computers have access to MS Excel. The second reason is simple input and 

output via spreadsheets, while the amount of computational power to run simple models in MS 
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Excel is quite low. The input data can be updated easily via coping the data in the predefined MS 

Excel sheet, along with the coding based on VBA. 

Well test analysis has the objectives to provide information about the well and the reservoir. Which 

in combination with geological, geophysical and petrophysical data enables to build a reservoir 

model that simulates the reservoir and can predict the field behavior and fluid recovery. Well tests 

provide the description of the dynamic conditions, in measurements of the flow (rates) and physical 

properties (like pressure, temperature, saturations, etc.) when fluids are flowing from the reservoir 

to the well and vice versa [1].  

Well test analysis was renamed in posterior years into Pressure Transient Analysis (PTA). This 

includes all methodologies and tools developed to analyze well shut-in periods, or pressure build-

ups and falloffs, with analyzing the whole well production life with time-lapse analysis. 

In the past PTA was traditionally used to characterize well and reservoir parameters from well tests 

based on shut-in periods and was mainly used in the reservoir management and decision making 

before reservoir simulation [14]. 

The development of Permanent Downhole Gauges (PDGs) has brought a massive number of 

pressure and temperature measurements, providing basis for significant improvement for well and 

reservoir monitoring.  

PDG’s provides high quality/high frequency pressure data for the whole well story, but the 

interpretation of the data becomes challenging related to the lack of interpretation techniques for 

on-the-fly data analysis dealing with short time periods, between receiving the data and taking of 

decisions [14]. 

The comparison of different pressure transients is traditionally done by plotting all the transients 

and derivatives on the same log-log plot. In practice the comparison between the transients is 

normally done based on a reference transient chosen, conventionally the first one. The transients 

are normalized based on the rate [14]. This will further elaborated in Chapter 3 of the thesis. Analysis 

of time-lapse pressure transient can provide descriptions of long-term changes in well reservoir 

parameters. 

The objective of the thesis is to use PTA as an interpretation tool for fast analytical solutions for data 

interpretation that can be easily updated with the new information provided by the PDG’s, 

classifying in flowing or shut-in periods. Two interpretation methods that use the semi-log and log-

log (pressure derivative) analysis to estimate the reservoir flow capacity (kh), permeability (k) and 

skin factor (s) from time-lapse PTA, are implemented and testes. 

The analysis will focus on the effect of duration of a transient period. Estimation of the well-reservoir 

parameters described above related to the radial flow regime. The results are further compared 

with the “Saphir” software used for simulating a synthetic well case or an actual field case. 

The following questions were addressed: 

• How good does the filter of the macro work in classifying the flowing and shut in periods? 
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• Under which circumstances is better to use the semi-log analysis. Which uses less complex 

and simple equations than the derivative method. 

• In which cases flowing periods can offer similar results to shut-in periods. How different are 

the calculated well-reservoir parameters for these two types of transients? 

• What is the minimum tolerance accepted for determining the radial flow regime for flowing 

and shut-in periods to provide reliable and accurate information? 

The questions also include the importance of superposition time as input data for the flow 

equations, which accounts for the whole well history before the analyzed transient. 

Finally, a discussion of the results obtained and recommendations on using interpretation models 

for certain circumstances. And keeping in mind the possibility of providing a quick analysis of PDG 

data for making decisions. 

 

 

 

 

 

 

 

 

 

 



 

 

3 Theoretical Background 
 

This chapter will cover the basic theory related to automation, big data analysis and some 

applications. It will also cover general description, classification of Permanent Downhole Gauges, 

advantages and disadvantages of the different types. 

In reservoir engineering the objective of Pressure Transient Analysis (PTA) is to obtain information 

about the rock, fluid and well properties including permeability, heterogeneity, reservoir pressure, 

reserves, wellbore damage, boundaries, fluid contacts, etc. Buildup, drawdown, injectivity, falloff 

and interference tests are used for this purpose [1] [2] [3]. 

A pressure disturbance (e.g. with short term production of injection for a well test) followed by 

pressure monitoring is required to get the information about a well or reservoir using PTA. Pressure 

transient response may be also created by a temporary change in the production rate. The well must 

be monitoring during a certain period depending on the well test objectives. It can last a few hours 

or days for well evaluation, up to month(s) for evaluating distant reservoir areas or well 

interferences. The pressure is measured in the well where the flow rate has been changed or in 

another well (interference). In most of the cases the flow rate is measured at surface while the 

pressure is recorded downhole [1] [2] [3]. 

In practice, PTA applications are often limited by [3]: 

1) Insufficient data collection. 

2) Inappropriate application of analysis techniques. 

3) Failure to integrate other available or potentially available information. 

These limitations make the most complex reservoir harder to analyze, making the acquisition of 

reliable data an important and valuable task in reservoir engineering.  

For a long time, pressure and temperature measurement in wells have been obtained through 

surveys carried out using wireline interventions. Today, the Permanent Downhole Gauges offer an 

alternative to measure pressure and temperature in real-time [4]. 

 

3.1 Permanent Downhole Gauges 
 

A Permanent downhole Gauge (PDG) is a device installed permanently in a well, to provide a 

continuous record of pressure, temperature and sometimes also flow rate during production well 

production. The continuous record provides us rich information about the reservoir and makes PDG 

data a valuable source for the reservoir analysis [5] [6]. 

Based on the measuring principle or sensor there are four main categories [7]:  

1) Piezoelectric crystal gauges. 

2) Optical sensors gauges. 
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3) Electronic silicon-on-insulator gauges. 

4) Capillary tube gauges. 

 

Piezoelectric crystal gauges: these gauges use piezoelectric substances as sensors, being quartz and 

sapphire as main crystal. These gauges generate a current when pressure is applied, this current is 

proportional to the pressure applied to it [7].  

• Quartz gauges: has been the main primary sensor technology utilized in PDGs, due to 

providing a very high accuracy (order of 0.002%, full scale) and resolution (0.000006%, full 

scale) of pressure measurement, they can obtain continuous or intermittent data. Typical 

maximum temperature of 150 °C (302 °F) and pressures up to 1103.16 bar (16 000 psi). They 

have an approximate ten years of life expectancy, before they need to be replaced. 

Additionally, they can operate with other downhole equipment such as Electric submersible 

Pumps (ESP). However, they are not very suitable above 200 °C and require power from a 

battery cell to detect and relay measurements [7]. 

• Sapphire gauges: are similar to quartz features, applications and limitations, but they cannot 

operate as optimal as quartz in higher temperatures [7]. 

 

Optical gauges: these are non-electronic systems that use optical fiber as the primary sensing 

element or intrinsic sensor, which sends the information via electronic signals. The sensors are made 

of glass and can withstand high temperatures (175 °C), pressures and vibrations. The glass also 

prevents interference and noise pollution of the signal. Optical sensors require no power supply for 

measurement taking and relay, they don’t cause additional wellbore restriction and are easy to 

maintain, plus they offer various configurations to allow a wide range of applications like: downhole 

and multiphase flow monitoring (rates of oil, gas and water are get distinctly, in zonal completions 

commingling and individual productivity are easily determined), distributed temperature sensing 

(identify leaking in casing or tubing, obstructions, and thief zones), and real time seismic imaging. 

However, its main limitation is the cost [7]. 

Electronic Silicon-On-Insulator (SOI) gauges are piezo-resistive transducers that convert pressure 

into a change in resistance. The strain of the applied pressure is measured across an active resistive 

bridge while the temperature is measured from a secondary of the main bridge. SOI are flexible and 

relatively economical. The measure is in moderate temperature and pressure ranges (up to 125 °C). 

Additionally, they can be used in the vibration and artificial lift monitoring (good measurement in 

vibration caused by natural flow or artificial lift systems), zonal monitoring array and multipoint 

sensing (several gauges can be arranged on the same array), coal bed methane. It is limited by 

temperature and pressure, since it is not suitable for these conditions [7]. 

Capillary tube or permanent pressure gauges are robust mechanical systems that acts on a piston 

or sleeve that in turns acts on hydraulic fluid to control the line, transmitting the downhole pressure 

to surface via a standard hydraulic control-line. As there are no electronic or electrical components, 

this pressure gauge system has great applications in harsher environments and is significantly 

cheaper. A floating piston mechanism ensures the systems compensates or temperatures effects. 
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They are suitable for HPHT wells, gas lift and chemical injection capability, but it does not allow 

simultaneous measurements besides temperature or pressure [7]. 

In the Table 3-1 is shown a summary of all the different PDGs sensors and their performance 

depending on which characteristic, we are planning to monitor. The scale goes from 1 (not suitable) 

to 5 (most suitable). In Table 3-1 it is easy to see that the optical sensors cover more of the 

necessities, follow by the piezoelectric crystals, the only problem for optical sensors is their high 

cost. 

 

Table 3-1 Comparative table of PDGs applications [7]. 

 
Reservoir 

Monitoring 
Optical sensors 

Piezoelectric 

crystals 

Electronic silicon-

On-Insulator (SOI) 
Capillary tube 

Zonal isolation 

monitoring 
5 5 5 3 

Pressure Transient 

Analysis 
5 5 3 1 

Distributed 

temperature sensing 
5 1 1 1 

Multipoint sensing 5 3 4 1 

Seismic imaging and 

monitoring 
5 1 1 1 

Water and steam 

breakthrough 
5 1 1 1 

     

Other 

Measurements 
    

HPHT 5 (175*) 4 (150*) 1 (125*) 5 

Artificial Lift 

Monitoring 
2 2 5 3 

Production profiling 5 1 1 1 

Well startup 

monitoring 
5 1 1 1 

Downhole flow 

measurement 
5 1 1 1 

* Temperature in °C. 

 

As seen in these categories each of them as they can be used for additional measurements, and for 

different conditions. This increases the benefits for installing PDGs in wells by collecting the exact 

reservoir pressure with representative long shut-in period. Since the first day of completion, saving 

additionally rig time and money as it will not interrupt any on-going drilling activities. Another 

benefit is identification of completion failures such as leaking. PDGs also provides a real time well 
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response or monitor the downhole flowing conditions [4]. However, the characteristics of PDG data 

make the interpretation challenging. 

First unlike conventional well testing where flow rate is always carefully controlled, the flow rate 

recorded by PDGs is subject to operational variations during production. The continuously variable 

flow rate history makes the pressure and temperature signal more difficult to de-convolve [6]. 

Secondly, the PDG data are often very noisy. The noise comes from the operational variations that 

occur in the well and should be treated as an inherent property of PDG data. The noise may hide 

the true reservoir response and makes it harder for us to recover the true reservoir model. 

Specifically, the noise in flow rate data brings difficulty for breakpoint identification, which is needed 

to divide the whole set of PDG data into separate transients. With noise in the flow rate data, it can 

be challenging to detect which is an actual rate change event and which is noise [6]. 

The large volume of data is another problem. Modern PDGs can record data at a frequency as high 

as once per second. This means that millions of data are stored in a PDG record after months of 

production. People would never want to attempt manually poring over data of such high volume 

[6]. 

PDGs were initially deployed for well monitoring and pressure transient analysis. But as explain 

before the advances in technologies, materials, multipoint tools have allowed the measurement of 

different properties. This also allowing new uses for the PDG data obtained, well communication, 

position of wells (injectors/producers) in waterflooding, flow rate reconstruction, for naming some 

of them. 

 

3.1.1 Applications of Permanent Downhole Gauge data and automated analysis 
 

In Waterflood performance, the most important data in any injection project are production and 

injection rates, the PDGs offer a continuous source of information, which can be used for optimizing 

the oil recovery by changing the injection patterns, location of injectors, well priorities in operations, 

recompletions of wells and targeting infill drilling [7]. 

Jahangiri et al (2014) proposed a method called Top-Down Waterflood (TDWF), which was applied 

in one filed in the North Sea in late 2012 and early 2013. This method evaluates the effectiveness of 

water injection efficiency in the reservoir, the value of injection water (VoiW) and the quantity of 

the relative connectivity of the injector/producer in the early life of the waterflood prior to 

significant water breakthrough. The process relies on good estimates of daily production an 

injection rate data [8]. 

In their work it was show that the two parameters that have a significant impact in water flooding 

are the maximum number of injectors that can be connected to a producer, and the distance radius 

around a producer within which an injector will be allowed to influence that producer [8]. 
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Jahangiri et al (2014) also address the connectivity of the well in their work, which main idea was to 

identify the important connections through the time, and compared the results in the model TDWF 

with surveillance techniques, such as tracers, streamline models, and 4D seismic [8].  

Figure 3-1 shows an example of their work. Well A04 is the injector well, while the other wells are 

producers. The figures contain the frequency of occurrence of statistically important connection, 

from seven periods of time. An important connection was defined as connectivity between the 

injector (A04) and the producers greater than 20% of the injector flow. Each spoke represents the 

connection between the injector and one of the producers. Finally, the colored line shows the 

magnitude of the connection [8]. In Figure 2.1 it is observed that wells A01 and A02 where the most 

important connections in 2006 and 2007, followed by A03 and A09. However, in 2008 when the well 

A10 became online, this importance change, being now well A10 the most important connection 

until the end of the experiment. 

 

Tian and Horne (2016) also address the connectivity in waterflooding. In their work, data from PDGs 

was used to build a reservoir scale network based on the connectivity and perform reservoir analysis 

without referring to a reservoir simulation model that obliged to make assumptions about geology 

[9]. 

In this work they analyzed different scenarios of connectivity, while refining their model, between 

the different scenarios, they tested their connectivity model with synthetic and real field cases. The 

results showed consistency with the tracer test and the reservoir geology, but also works as a rough 

model of the reservoir [9]. 

Conventionally the estimation of reservoir pressure and some other dynamic reservoir properties 

are obtained through Pressure Transient Analysis. Pressure management is fundamental element 

of reservoir performance and is one of the variables to consider in field development strategy. This 

challenge has been addressed by using conventional techniques of PTA but doing it in real time 

(automatically), using the live data from PDGs. Automation and real time monitoring tools enable 

Figure 3-1 Important connections for injector A04 for different years in the reservoir history [8]. 
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proactive identification of problems, fewer interventions required, improved well integrity and 

maximized production for ultimate recovery.  

 Transient pressure responses to flow rate changes are modeled by solving the relevant partial 

differential equations analytically. These analytical models characterize the well and reservoir in 

terms of parameters such as permeability, skin, wellbore storage, type and distance to reservoir 

boundaries, initial pressure [10]. 

Pressure Transient Analysis has two parts [10]: 

• Model identification: In this step, the reservoir flow model is identified using diagnostics 

plots and prior information about reservoir and well. 

• Parameter estimation: the identified analytical model is matched to the measured pressure 

and flow rate data, through estimation of parameters. Conventional parameter estimation 

techniques use regression methods to match the analytical models to the field data. 

Recently there have been some attempts to apply machine-learning techniques for PDG data 

analysis. Machine learning is an important tool for analyzing large sets of data as the one provided 

by PDGs. Fundamentally the goal of machine learning is to learn the patterns behind PDG data 

(variables), where the patterns contain the relation of implicitly of the reservoir [6]. Some 

applications of machine learning in the Pressure Transient Analysis are pressure history 

reconstruction, flow rate/temperature substitution as some examples. 

As stated, before incomplete flow rate history is a common phenomenon in PDG measurements, 

Tian and Horne (2015) proposed that the missing flow rates could be estimated from the available 

pressure data. Their model was tested with synthetic and real data and showed promising 

performance. In comparison with analytical solutions the machine learning provides an effective 

alternative, this is due to machine learning doesn’t require geological assumptions of the reservoir 

model [5]. 

Figure 3-2 shows an example of this work. After calibrating the machine-learning model, they give 

a partial information of the pressure and the flow rate of a new well, after the model prediction (red 

line) was done, they compared the result with the complete (true) data. In this figure, it is observed 

that the prediction offers an accurate reconstruction of the flow rate. 

Figure 3-2 Machine learning result of the reconstructed flow rate using the pressure [5]. 
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Tian and Horne (2015) in their second work, since machine learning contains the patterns between 

variables implicitly, can be used as a transformation between forward model and inverse model is 

easier than in conventional ways, which allows to model pressure from flow rate [6]. 

In Figure 3-3, there are some examples of their results. The graph on the left shows a comparison 

between the reconstruction of the temperature curve obtained from the model of machine learning 

(red line) and the pressure data, the curve calculated has the same form than the original data, and 

is very accurate at the beginning, but presents some inaccuracies after the 600 hours mark. The 

graph from the right shows the inverse case a reconstruction of the pressure data from the machine-

learning model (red line) inverted and the temperature data, as in the case before the curve present 

the form of the data, with high accuracy at the beginning and some inaccuracies after the 650 hours.  

Even if this offers a good alternative for reconstructing both sets of data when flow rate is not 

available or to have a second opinion to compared with the flow rate results. The only requirement 

needed for machine learning method is to have at least one proper set of data complete during the 

training process. 

 

 

A second way to approach the pressure problem was proposed in the same work by using the 

temperature as a substitute for flow rate to model the pressure. Since, temperature have been 

measured by PDGs since their initial installation, in this case the machine learning was trained to 

find a pattern between the temperature and pressure for predictions, this model was tested by 

comparing the results obtained with the flow rate and pressure model. The results obtained were 

fair and presented some limitations. This can be due to the pressure and the temperature having 

physical independent properties that couldn’t be modeled property [6].  

Figure 3-3 Left graph shows machine learning using ridge regression (RR) to model temperature from pressure data. 
Right graph shows machine learning using the ridge regression inverted to model pressure from temperature data[6]. 
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Figure 3-4 shows one of their machine learning results when using temperature as a substitute of 

the flow rate when contracting the pressure and derivative pressure curves, for realizing Pressure 

Transient Analysis. The pressure curve after 1-hour is very accurate, while before the 1-hour, mark 

has some differences, but this is not a problem since is related to storage effect. The pressure 

derivative by the other hand is more inaccurate than the true data derivative suing the flow rate 

data and the differential equations but offers an alternative when the flow rate data is missing. 

Virtual flow metering was addressed in a paper by Bello (2014), multiphase technology solutions 

have enabled the petroleum industry to improve their production performance. However, a 

multiphase flow in wells is quite complex as reservoir types and fluid composition varies. Multiphase 

flow meter has been used for this purpose, of continuous metering of produced hydrocarbon.  

Virtual metering has started to become an alternative to measure three phase flow rates by using 

machine learning to generate patterns, which are compared with the historical well flow rates data 

to evaluate their match and update the model parameters [11]. 

 

 

 

 

 

 

 

 

Figure 3-4 Machine learning results using temperature as flow rate substitute [6]. 



 

 

4 Methodology 
 

According to the objectives of the thesis described above, algorithms for time-lapse Pressure 

Transient Analysis (further time-lapse PTA) were developed and implemented. These was done in 

macros in MS Excel based on literature review. This Chapter describes the background, equations 

and logic used in the analysis, as well as input data. The code implementing the macros is given in 

Appendix A. The Chapter ends up by testing the algorithms on a synthetic case of injection into a 

vertical well simulated with software Saphir from Kappa Eng. 

 

4.1 Input data synthetic example 
 

The Excel file contains three sheets. The first one is called “Main”, which has the command button 

for interacting with the macro. It contains the number of wells to work and the rock and fluid 

properties of the well. The second sheet is “Pressure” here is added the time and pressure data. 

Finally, the last sheet is called “Rate” in which the end time and rate test are added. 

A synthetic case of one-well injection of water into an infinite saline aquifer (single-phase flow) was 

used for testing purposes. The simulated well was assumed to have an induced fracture causing a 

negative skin factor.  The case contains simulated pressure data for more than 6000 hours (about 8 

months) as response to a sequence of injection and shut-in periods specified. The well and reservoir 

properties used are: 

a) Initial pressure: 2000 psia. 

b) Formation volume factor: 1 RB/STB. 

c) Viscosity: 1 cp. 

d) Well radius: 0.2 ft. 

e) Porosity: 30% 

f) Compressibility of the rock: 1x10-5 psia-1. 

g) Thickness: 200 ft. 

 

4.2 Explanation of the main parts of the code and formulas used 
 

The main subroutine is “Workflow”, in Figure 4-1 can be seen the order in which it called the rest of 

the subroutines. The first subroutine called is “Prepare”. This subroutine creates the layout for the 

input data depending on the number of wells the user wants to analyze.  “Initialize” reads the initial 

properties of the rock and fluids on the well. “Generate” reads the input data of pressure, time, and 

rate and identifies the liquid rate segments, its’ initial and ending time, it proposed names to the 

different transient, main and secondary, i.e. “Injection 4-3”, is the fourth injection period, with its’ 
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third different injection rate. The criteria used for establishing the transient is production (positive 

rate), Fall-off (rates equal to 0) and injection (negative rate). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Generates” also perform some calculations. The Equation 4-1 calculate the time for each segment 

dt, in which Tis is the time in which the segment starts and T is the time registered. 

𝑑𝑡 = T − 𝑇𝑖s … Equation 4-1 

 

Then the pressure of the segment and pressure with initial pressure are calculated with Equation 

4-2, Equation 4-3 respectively, in which Pis is the initial pressure of the transient, and Pi is the initial 

pressure at the time 0 of the test, P is the pressure registered. 

dps = |P − Pis| … Equation 4-2 

dp@Pi = |P − Pi| … Equation 4-3 

Figure 4-1 Workflow of the main subroutines in the macro developed. 
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The next step in Figure 4-1 is showing the User-form “Reference”, Figure 4-2. The User-Form allows 

to select the flowing or shut in periods. The reference transient to use for normalization and the 

transients you want to compare with can be chosen. Once this is done, the user-form is closed, and 

the workflow continues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next subroutine to run is called “Normalize” this subroutine normalizes the pressure for 

superposition, derivative and adjusted for non-normalized calculations to mimic the results in the 

Kappa software “Saphir” the equations used for normalizing injection and production are Equation 

4-4, Equation 4-5 and Equation 4-6: 

𝑑𝑝𝑛𝑝 = |
𝑄𝑟𝑒𝑓

𝑄𝑖
∗ dp

@Pi
| … Equation 4-4 

𝑑𝑝𝑛𝑑 = |
𝑄𝑟𝑒𝑓

𝑄𝑖 − 𝑄𝑖−1
∗ 𝑑𝑝𝑠| … Equation 4-5 

𝑑𝑝𝑟 = |
𝑄𝑖

𝑄𝑟𝑒𝑓
∗ 𝑑𝑝𝑛𝑑| … Equation 4-6 

 

Figure 4-2 Reference User-Form generated by Macros.  
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The variables dpnp is the pressure normalized for the superposition time reported in the transients, 

dpnd is the pressure normalized for the derivative and dpr is the pressure re-scale for the transient 

that is reported with the derivative results. Qref is the reference rate to normalize the rest of the 

values, by default is the first injection/production. Qi is the rate of the transient analyzed. Qi-1 is the 

rate of the previous transient, all the calculations are obtained in absolute value due to injection 

having a negative rate. 

The equation for normalization for the fall-off tests is similar to Equation 4-4 with the difference 

that it should use the rates before the shut-in period and dps. By default, Qref is the previous 

transient before the first shut in period. Changing Equation 4-4 into Equation 4-7: 

𝑑𝑝𝑛𝑝 = |
𝑄𝑟𝑒𝑓

𝑄𝑖−1
∗ dps| … Equation 4-7 

 

In Fall-off transients, there is used only one equation for normalization. The next subroutine called 

is “Calculate”. “Calculate” has the cycles depending on the number of transients analyzed. For each 

transient, it will call the superposition function, Equation 4-8: 

𝑇𝑠 =
1

𝑄𝑛
∑(𝑄𝑖 − 𝑄𝑖−1)

𝑛

𝑖

∗ log(T − 𝑇𝑖) … Equation 4-8 

 

In which Qn is the rate of the segment analyzed. Qi and Qi-1 are the rates for the previous transient 

before the transient analyzed. T is the time referred and Ti is the end time of the previous transient. 

For calculating the superposition for Fall-off, the rate should be the previous one prior to the shut-

in period. 

The next subroutine is “Calculateb”. This calculates the Pressure derivative, and establish its’ left 

and right side with Equation 4-9, Equation 4-10 respectively. The first point for the left derivative is 

set up by default as the smallest of the logarithmic cycle, i.e. if the smaller value is 0.65 the smallest 

value of the cycle is 0.1. 

ln (
𝑇𝑠𝑖

𝑇𝐿
) > 𝑤 … Equation 4-9 

ln (
𝑇𝑅

𝑇𝑠𝑖
) > 𝑤 … Equation 4-10 

 

TL and TR are not necessarily the points previous or subsequent to the analyzed point. This depends 

on the smoother, by default is the smoother is set in 0.1. The subroutine “Calculateb” will call the 

function derivative. The derivative, [13] is calculated with the Equation 4-11 and then is normalized 

with Equation 4-12. 

 



Chapter 4.- Methodology 

20 
 
 

(
𝑑∆𝑝

𝑑[ln(∆𝑡)]
)

𝑗

=
(∆𝑃𝑗 − ∆𝑃𝐿)

ln (
∆𝑇𝑗

∆𝑇𝐿
)

ln (
∆𝑇𝑅
∆𝑇𝑗

)

ln (
∆𝑇𝑅
∆𝑇𝐿

)
+

(∆𝑃𝑅 − ∆𝑃𝑗)

ln (
∆𝑇𝑅
∆𝑇𝑗

)

ln (
∆𝑇𝑗

∆𝑇𝐿
)

ln (
∆𝑇𝑅
∆𝑇𝐿

)
 … 

 

Equation 4-11 

𝑑∆𝑝𝑛 =
𝑄𝑟𝑒𝑓

𝑄𝑖−1
∗ (

𝑑∆𝑝

𝑑[ln(∆𝑡)]
)

𝑗

… Equation 4-12 

 

The next subroutine is “Comparative”, this will manage the cycles for calculating the permeability 

and skin. First, it will call the subroutine “Limits”, which oversees establishing the right and left limit 

of the radial flow (horizontal line). This function uses the slope value of the derivative to detect the 

beginning of the radial flow. “Limits” uses Equation 4-13. Where, p’i is the current pressure 

derivative point and p’i-1 is the previous pressure derivative point. 

𝑡𝑜𝑙 𝑒𝑟𝑟𝑜𝑟(%) = |
𝑝′

𝑖
− 𝑝′

𝑖−1

𝑝′
𝑖−1

| ∗ 100 … Equation 4-13 

 

The condition for calculating the derivative is by finding a slope with less than 0.1% (value by default) 

tolerance. In case it doesn’t find a point in the derivative slopes that fulfill the condition, the 

subroutine will automatically increase the error by 0.1, and start looking again until a solution is 

found. Once the value has been found, the program will establish it as the beginning of the radial 

flow and will check all the subsequent values that are within the tolerance range. This is to define 

the end of the radial flow. 

 The next step for “Comparative” is to call “Propertyks”. This calculates the permeability and skin 

factor of the transient in semi-log and derivative method. The equations used for the semi-log 

analysis for injection and production are Equation 4-14 and Equation 4-15: 

𝑚 =
162.5683 ∗ 𝑞 ∗ 𝐵𝑜 ∗ 𝜇𝑜

𝑘ℎ
… 

 

Equation 4-14 

𝑆 = 1.151 (
𝑃𝑖 − 𝑃1ℎ𝑟

𝑚
− log (

𝑘

𝜑 ∗ 𝜇𝑜 ∗ 𝐶𝑡 ∗ 𝑟𝑤2
) + 3.2275) … Equation 4-15 

 

For the Fall-off the Equation 4-15 is changed for the Equation 4-16: 

𝑆 = 1.151 (
𝑃1ℎ𝑟 − 𝑃𝑤𝑓,𝑠

𝑚
− log (

𝑡

𝑡 + 1
) − log (

𝑘

𝜑 ∗ 𝜇𝑜 ∗ 𝐶𝑡 ∗ 𝑟𝑤2
) + 3.2275) … Equation 4-16 

 

For calculating the permeability and the skin with the derivative method, the following equations 

are used: 

𝑚′ =
70.6 ∗ 𝑞 ∗ 𝐵𝑜 ∗ 𝜇𝑜

𝑘ℎ
… 

Equation 4-17 
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𝑆 = 1.151 (
𝑑𝑝𝑑 ∗ 𝑘 ∗ ℎ

162.5683 ∗ 𝑞 ∗ 𝐵𝑜 ∗ 𝜇𝑜
− log (

𝑡

𝑡 + 1
) − log (

𝑘

𝜑 ∗ 𝜇𝑜 ∗ 𝐶𝑡 ∗ 𝑟𝑤2
) + 3.2275) … Equation 4-18 

 

In Equation 4-16, and Equation 4-18 for the Fall-off, the term log (
𝑡

𝑡+1
) has been replaced for the 

superposition time 10Ts, dpd  is the value of the constant derivative calculated in log-log plot. 

After the calculations are done the next step in Figure 4-1 is calling the subroutine “Genesis”. This 

only creates a new sheet in excel. Then the subroutine “Printing” is called, which prints the results 

for superposition, derivative, pressure, for normalized and non-normalized cases. Then it shows one 

final User-Form called “Plotter”, Figure 4-3. This User-Form plots the pressure and pressure 

derivative of the transients previously selected. 

Inside the “Plotter” User-form there is a matrix in charge of storing the limits of the radial flow. It 

includes one graphic subroutine called “Gengraph” which plots the Pressure and Pressure Derivative 

graph in the User-Form. 

The user can interact with the left and right bar to readjust the boundaries of the radial flow and 

the click the button “Recalculate Test”. This will run the subroutine “Propertyks” described above. 

Here the smoother and the tolerance can be changed. The code will call again “Calulateb”, “Limits”, 

“Propertyks” and “Printing”, to update the results with the new conditions proposed by the user. 

Once the analysis is performed, the next subroutine is “Allgraph”. This subroutine is used for 

creating the pressure and pressure derivative graph and the superposition time in separate graph 

Figure 4-3 Plotter User-form generated by macros. 
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sheets. Finally, it will run the “Summaries” subroutine which creates a new sheet in which it prints 

the permeability, skin factor for the semi-log and derivative method, as well as the smoother used. 

Some results are shown in Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7. These figures compare 

the values obtained with Kappa software “Saphir” (solid lines) and the program in excel (dots), for 

pressure, pressure derivative and superposition time, for some injection and fall-off transients. 

 

Figure 4-4 Comparison between Saphir (solid line) and the program (dots) for Pressure and Pressure Derivative for some 
injection transients. 

 

 

Figure 4-5 Comparison between Saphir (solid line) and the program (dots) for superposition time for some injection 
transients.. 
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Figure 4-6 Comparison between Saphir (solid line) and the program (dots) for pressure and Pressure Derivative for some 
Fall-off transients. 

 

 

Figure 4-7 Comparison between Saphir (solid line) and the program (dots) for superposition time for some Fall-off 
transients. 
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Has seen in the Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 the values calculated are slightly 

higher than the Kappa software “Saphir”. For pressure derivative figures, the first value calculated 

is the one presenting the highest error. This is due to “Saphir” choosing a different arbitrary number 

for starting the derivative calculation than the proposed code. Due to the first point value will 

normally be inside the wellbore storage effect, this point is not considered in the area of interest 

(the radial flow). 

The Table 4-1 shows the results obtained in the macro the Kappa software “Saphir”. It is seen that 

the results obtained are very similar. The derivative method offers better approximation than the 

semi-log analysis. 

 

Table 4-1 Comparison of Permeability and Skin Factor 

 Saphir Semi-log Derivative 

Flow capacity (mD*ft) 2780 2796 2783 
Permeability (mD) 13.90 14.04 14.03 

Skin Factor -3.93 -3.89 -3.90 

 

 

 

 



 

 

5 Synthetic Case further analysis 
 

This chapter will analyze some transients from the synthetic case to test the algorithm. The 

transients were evaluated for comparison with the “Saphir” software. The semi-log and log-log 

(derivative pressure) methods are compared to know under which conditions is better to use one 

or another. The injection and Fall-off periods were analyzed separately. 

 

5.1 Injection analysis 
 

The Figure 5-1 shows the history plot simulated. Here, can be seen the injection periods used in the 

analysis, covering different durations and times in the history.  

 

 

The Figure 5-2 shows the pressure and pressure derivative for the 2 to 10 hours transients chosen. 

The reason for not choosing transients below 2 hours is due to not having an established radial flow, 

and due to be related to wellbore storage effect.  

Figure 5-1 History plot (pressure and rate) for the whole simulation period. 
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Figure 5-3 Pressure and Pressure derivative for five injection tests with time duration between 10 and 100 hours. 

Figure 5-2 Pressure and Pressure derivative for five injection transients with  time duration between 2 and 10 hours. 
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The Figure 5-3 and Figure 5-4 shows the pressure and pressure derivative of injections transients of 

10 to 100 hours and higher than 100 hours respectively. For each one 5 different injection transients 

were selected. 

 

Figure 5-5 Flow capacity comparison between derivative and semi-log analysis for 15 injections transients with different 
durations at 0.1% tolerance. The left graph shows the derivative method. The right graph shows the semi-log analysis. 

Figure 5-4 Pressure and pressure derivative for five injection transients with time duration higher than 100 hours. 
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Figure 5-6 Permeability comparison between derivative and semi-log analysis for 15 injection transients with different 
durations at 0.1% tolerance. The left graph shows the derivative method. The right graph shows the semi-log analysis. 

 

 

Figure 5-7 Skin factor comparison between derivative and semi-log analysis for 15 injection transients with different 
durations at 0.1% tolerance. The left graph shows the derivative method. The right graph shows the semi-log analysis. 

The Figure 5-5, Figure 5-6 and Figure 5-7 shows 15 injection transients that were evaluated with a 

tolerance of 0.1% when estimating the radial flow regime. 

The Figure 5-5 and Figure 5-6 show a comparison between semi-log and derivative analysis for Flow 

capacity and permeability respectively. Both graphs show that the semi-log analysis has some 

trouble when calculating the properties by obtaining higher values than the derivative case. This is 

due to the semi-log analysis doesn’t consider the superposition time. In the derivative case it’s clear 

that longer duration periods estimate values closer to the true value. In comparison with the shorter 

duration ones (less than 10 hours). 

The short duration ones estimate lower values. Curiously the transient with the longer time duration 

has values more deviated to the true value than the rest of transients higher than 100 hours. The 

Figure 5-7 shows the skin factor for semi-log and derivative analysis. Again, the semi-log analysis 
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has transients with higher values than the derivative case. The skins calculated with the derivative 

show more homogeneous results with all the transients analyzed. 

 

The Figure 5-8, Figure 5-9 and Figure 5-10 show 15 injection transients that were evaluated with a 

tolerance of 1% when estimating the radial flow regime. 

 

 

Figure 5-8 Flow capacity comparison between derivative and semi-log analysis for 15 injection transients with different 
durations at 1% tolerance. The left graph shows the derivative analysis. The right graph shows the semi-log analysis. 

 

 

Figure 5-9 Permeability comparison between derivative and semi-log analysis for 15 injection transients with different 
durations at 1% tolerance. The left graph shows the derivative analysis. The right graph shows the semi-log analysis. 

The Figure 5-8 and Figure 5-9 when increasing the tolerance the values obtained diverged more 

from the true value of the synthetic case. This is appreciated in both methodologies. The transients 

with the longer durations were the ones that suffer the less changed values. These can be due to 

having more stabilized points in comparison with the short duration transients. 
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By the other hand, Figure 5-10 for skin factor shows less modification of their values in comparison 

with the flow capacity and the permeability. The semi-log analysis is still giving higher values than 

the derivative ones. 

 

Figure 5-10 Skin factor comparison between derivative and semi-log analysis for 15 injection transients with different 
duration at 1% tolerance. The left graph shows the derivative analysis. The right graph shows the semi-log analysis. 

 

5.2 Fall-off analysis 
 

The Figure 5-11 shows the history plot simulated. Here, can be seen the Fall-off periods used in the 

analysis, covering different durations and time in the history. There were analyzed 9 transients. Four 

between 2 and 10 hours and 5 with more than 10 hours duration. The Figure 5-12 and Figure 5-13 

show the pressure and pressure derivative of Fall-off transients between 2 and 10 hours and higher 

than 10 hours respectively. 

 

Figure 5-11 History plot (pressure and rate) for the whole simulation period. 
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Figure 5-12 Pressure and pressure derivative from four Fall-off transients with time duration between 2 and 10 
hours. 

Figure 5-13 Pressure and pressure derivative from five Fall-off transients with time intervals higher than 10 hours. 
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In Figure 5-14 and Figure 5-15 were consider a tolerance of 0.1% for estimating the radial flow 

regime. In both figures the values estimated with the methodologies are more alike. This is due to 

the equations for shut-in periods consider the superposition time. For the flow capacity and 

permeability, the semi-log analysis gives closer values than the derivative with the true values. While 

the skin factor derivative is more accurate than the semi-log estimation. 

 

 

Figure 5-14 Comparison between the semi-log and derivative analysis for 9 transients at 0.1% tolerance. The left graph 
shows the flow capacity. The right graphs shows the permeability. 

 

 

 

 

 

 

 

 

 

 

In Figure 5-16 and Figure 5-17 were consider a tolerance of 1% for estimating the radial flow regime. 

As in the previous case the values between the semi-log and derivative analysis are very similar. 

Also, when increasing the tolerance for estimating the radial flow regime the values calculated in 

flow capacity and permeability divert more from the true value. The skin factor is less affected when 

the tolerance increases. The most affected transients were the ones between 10 and 100 hours. 

This can be explained due to adding points that are not stable enough to the estimated radial flow. 

Figure 5-15 Skin factor comparison between the semi-log and derivative analysis 
for 9 transients at 0.1% tolerance.  
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Figure 5-16 Comparison between the semi-log and derivative analysis for 9 transients at 1% tolerance. The left graph shows 
the flow capacity. The right graph shows the permeability. 

 

 

 

 

 

 

 

 

 

 

5.3 Synthetic analysis discussion 
 

In all cases increasing the tolerance value for estimating the radial flow diverge more for both 

methodologies and injection and fall-off transients. The transients between 2 and 10 hours tends to 

give less accurate values than the ones with higher duration. Also are more susceptible to tolerance. 

For the injection case is recommended to perform a derivative analysis than a semi-log analysis due 

to the superposition time. For the fall-off both methodologies show similar results. The semi-log 

performs better for flow capacity and permeability, but the derivative estimates a skin factor more 

accurately to the true value. For the fall-off case can be considered to calculate an average between 

the semi-log and derivative analysis. 

 

Figure 5-17 Skin factor comparison between the semi-log and derivative analysis for 9 
transients at 1% tolerance. 



 

 

6 Real Case Analysis 
 

From the free access data set provided by Equinor for Volve field an analysis was performed. The 

transients analyzed were chosen after visualizing the data in Kappa software “Saphir”. The best sets 

of data for Volve were Build-up transients from well NO 15/9F-15D. The properties used where the 

ones reported in the Volve data set, after conversions to be used in the macro, as follow: 

a) Initial pressure: 4670 psia. 

b) Formation volume factor: 1.44 RB/STB. 

c) Viscosity: 0.32 cp. 

d) Well radius: 0.35 ft 

e) Porosity: 22% 

f) Compressibility of the rock: 2.33x10-5 psia-1. 

g) Pay zone (Thickness): 72 ft. 

 

Figure 6-1 History plot (rate and pressure) for the whole simulation period. 

The Figure 6-1 shows the history plot of the well, the transients analyzed are highlighted. The 

Macro used the total rate calculated by “Saphir”, instead of the separated phases. 

The derivative and superposition time from the code was compared with the “Saphir” software and 

are shown in Figure 6-2 and Figure 6-3. The calculation from the algorithm showed good 

performance in pressure and pressure derivative in the real case data Figure 6-2. Only the build-up 

transient 5-1 has the bigger difference with the trend calculated. 
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Figure 6-2 Pressure and Pressure derivative comparison between Macro and Saphir. 

 

The Figure 6-3 in superposition time showed really good results for the real case. These gives the 

possibility to perform a quick analysis with the smoother for the derivative. There were performed 

two different smoother runs. The first one with the default value 0.1 and the second one with 0.3 

for all cases, this is shown in Figure 6-4. There were no changes in build-ups 3-1 and 9-1. For the 

Build-up 8-1 the curve became more smoothed but 5-1 got more spiked. This means that there can 

be a possibility for more smoother analysis in further works with other sets of data. 

 

 

Figure 6-3 Superposition time comparison between the Macro and Saphir. 

Pressure 

Pressure 

derivative 
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Figure 6-4 Smoother comparison of the pressure derivative. 

 

 

Figure 6-5 Comparison graphs between semi-log, derivative analysis and Saphir from four build-up transients. Left graph 
shows the flow capacity. Right graph shows the permeability. 

 

 

Figure 6-6 Comparison of skin factor between semi-log, derivative and Saphir analysis from four build-up transients. 
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From the analysis done in the synthetic case related to shut-in transients, it’s possible to make both 

analyses. These are shown in Figure 6-5 and Figure 6-6. For flow capacity and permeability, the semi-

log analysis gives slightly higher values than the derivative. 

 

Table 6-1 Duration of four Build-up transients. 

Transient Duration (hours) 

W#1 BU#3-1 864 

W#1 BU#5-1 648 

W#1 BU#8-1 384 

W#1 BU#9-1 288 

 

The Table 6-1 shows that the transients analyzed lasted more than 100 hours. Here, it can see that 

the transients with the best results are the Build-up with the longest duration. The derivative 

analysis worked better at estimating flow capacity and permeability values than the semi-log 

analysis. For the skin factor both methodologies worked better for some transients than the other 

one and vice versa.  

Table 6-2 Percentage error of the average parameters estimated with the code in 
comparison with Saphir. 

 Semi-log Derivative 

Kh (mD*ft) 13% 6% 

K (mD) 13% 6% 

Skin 14% 12% 

 

The Table 6-2 shows the average error estimated with both methodologies in comparison with 

saphir results. The derivative as seen in the graphs estimates better values than the semi-log. The 

derivative calculates values 6% error in comparison with the 12% for the semi-log for flow capacity 

and permeability. Both methodologies offer similar error for the skin factor. The transients that 

increases the average error was the build-up 5-1, due to having a not so stable radial flow regime. 

 



 

 

7 Conclusions 
 

Using the MS Excel allows an easy way to add new data (pressure and rate) acquire from the PDGs 

into the defined input sheets. Suggest a first filter of the different transients included in the data.  

From what was discussed in the chapters 5 and 6 there can be listed the following statements when 

using the semi-log analysis or the derivative analysis. 

1. Not considering superposition in injection periods leads to higher error in the results for the 

semi-log analysis in all properties estimated. 

2. Considering superposition time in shut-in equations, for both methodologies gives very 

similar results. In the synthetic case the semi-log analysis performed slightly better than the 

derivative analysis. However, in the real case the derivative showed better results. It can be 

considered to perform an average between both methodologies for a better estimation. 

3. Derivative analysis is recommended for flowing periods. Due to derivative using values 

corrected with the superposition time. This means that the period response analyzed is a 

function of the previous periods. 

When analyzing the impact of the tolerance, it can be mentioned that a higher tolerance leads to 

higher error values. This is mainly notice in periods that last less than 10 hours. The periods that last 

longer are less affected, due to having more points stabilized. 

In further work for the thesis it can be consider to: 

1. Work in a filter of noise for detecting the problematic points. A different solution could be 

allowing the user to manually specify the exclusion of specific points. 

2. Other improvement could be the inclusion of an extra step after the proposed data has 

been filtered and classified in injection or Fall-off periods. In here, it can be highlighted the 

transients that can be considered problematic or too short (less than 2 hours) to perform 

an analysis. This will leave the engineer to decide whether to continue with these periods 

or filtered them. 

3. Would be good to analyze the impact of the smoother in the derivative analysis. Since, the 

smoother mainly fixes late times when calculating the derivative. 

4. Consider using different methodologies than the slope to estimate the “window” of the 

radial flow regime. And compare both estimations to define the best approach. 

The Inclusion of three phases systems and calculation of the total rate without the necessity of using 

“Saphir” software should be considered. Also, a comparison between different sandstones and 

carbonates reservoir and the behavior on the macro when suggesting the radial flow and properties 

calculated. 
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9 Nomenclature 
 

dt Difference in time between the time analyzed and the start of the segment. 

T Time from the data point analyzed. 

Tis Initial time at the start of the segment. 

dps Difference pressure between the pressure analyzed and the pressure in the segment. 

P Pressure from the data point analyzed. 

Pis Initial pressure at the start of the segment. 

dp@Pi Difference pressure between the pressure analyzed and the initial pressure at time 0. 

Pi Pressure at the initial time zero. 

dpnp Pressure normalized for the superposition time in the point analyzed. 

Qref Reference rate used for the normalization. 

Qi Rate from the test analyzed. 

dpnd Pressure normalized for the derivative in the point analyzed. 

Qi-1 Rate from the previous test analyzed. 

dpr Pressure re-scale for the derivative pressure. 

Ts Superposition time. 

Qn Most recent rate for the superposition time analyzed. 

Ti End time from the previous test. 

Tsi Time of the point analyzed for the derivative calculation. 

TL Left point to the analyzed point for the derivative calculation. 

TR Right point to the analyzed point for the derivative calculation. 

w Smoother value. 

d∆p Derivative from the delta pressure. 

d∆t derivative from the delta time. 

j Point analyzed. 

∆Pj Pressure difference at point j. 

∆PL Pressure difference to the left point of the point j. 
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∆PR Pressure difference to the right point of the point j. 

∆TR Time difference to the right point of the point j. 

∆TL Time difference to the left point of the point j. 

∆Tj Time difference at point j. 

d∆pn Pressure derivative normalized. 

p’i Pressure derivative at point i. 

p’i-1 Previous pressure derivative point to the point i. 

n Number of data points in the MSE calculation. 

Yi Value of the derivative at the point i during MSE calculation. 

Y Value of the constant derivative in the MSE calculation. 

m Slope for the semi-log analysis. 

q Rate of the test analyzed in stb/d. 

Bo Oil volume factor in RB/STB. 

µo Oil viscosity in centipoise. 

kh Flow capacity in mD*ft. 

k Permeability in mD. 

S Skin factor. 

P1hr Pressure at 1 hour in psia. 

ϕ Porosity (dimensionless). 

Ct Total compressibility in psia-1. 

rw Well radius in ft. 

Pwfs Last flowing pressure before the shut-in. 

t Production time before the shut-in. 

m’ Slope for the derivative analysis. 

dpd Constant pressure in the derivative analysis. 

h Formation thickness. 



 

 

10 Appendix A 
 

The appendix A contains the subroutines written in the module. The Global variables were defined 

as follow 

 

Global ww As Byte, sapphire(), topaz(), emerald(), ruby(), summat, pini(), bo(), muo(), rw(), hgt() 
Global poro(), ct(), tt As Integer, quartz(), derev, interp, ws As Worksheet, wellww As Byte  
 

10.1 Workflow 
 

This is the main subroutine that calls the rest of the subroutines. 

Public Sub Workflow() 

Dim condb As String 
 
condb = Worksheets(1).Shapes(1).TextFrame.Characters.Text 
If condb = "Generate" Then 
    Prepare 
ElseIf condb = "Calculate" Then 
    Initialize 
    Generate 
    Reference.Show 'Calls the first userform 
    If quartz(1) = 1 Then 
        Normalize 
        Calculate 
        Calculateb 
        Comparative 
        Genesis 
        Printing 
        Plotter.Show 'Calls the second userform 
    End If 
End If 
 
End Sub 

 

10.2 Prepare 
 

This subroutine prepares the layout of the main excel sheet for input the properties of the well 

and pressure/rate data. 
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Public Sub Prepare() 

Dim aa As Byte 
 
Application.ScreenUpdating = False 'Faster calculations 
 
ww = Worksheets(1).Cells(3, 4) 
Worksheets(1).Unprotect Password:="crystal" 
Worksheets(1).Cells(3, 4).Interior.Color = RGB(0, 204, 0) 
Worksheets(1).Cells(3, 4).Locked = True 
Worksheets(2).Unprotect Password:="crystal" 
Worksheets(3).Unprotect Password:="crystal" 
 
aa = 0 
For i = 1 To ww 
    Worksheets(2).Columns(1 + 4 * aa).Resize(, 2).Locked = False 
    Worksheets(3).Columns(1 + 4 * aa).Resize(, 2).Locked = False 
    aa = aa + 1 
Next i 
 
aa = 0 
For i = 1 To ww 
    Worksheets(2).Cells(2, 1 + 4 * aa) = "Well " & aa + 1 
    Worksheets(2).Cells(2, 1 + 4 * aa).Locked = True 
    Worksheets(2).Cells(3, 1 + 4 * aa) = "Date" 
    Worksheets(2).Cells(3, 1 + 4 * aa).Locked = True 
    Worksheets(2).Cells(3, 2 + 4 * aa) = "Pressure (psia)" 
    Worksheets(2).Cells(3, 2 + 4 * aa).Locked = True 
    Worksheets(2).Cells(3, 2 + 4 * aa).WrapText = True 
    Worksheets(3).Cells(2, 1 + 4 * aa) = "Well " & aa + 1 
    Worksheets(3).Cells(2, 1 + 4 * aa).Locked = True 
    Worksheets(3).Cells(3, 1 + 4 * aa) = "Time@end" 
    Worksheets(3).Cells(3, 1 + 4 * aa).Locked = True 
    Worksheets(3).Cells(3, 2 + 4 * aa) = "Liquid rate (STB/D)" 
    Worksheets(3).Cells(3, 2 + 4 * aa).WrapText = True 
    Worksheets(3).Cells(3, 2 + 4 * aa).Locked = True 
    Worksheets(1).Cells(8, 2 + 4 * aa) = "Well " & aa + 1 
    Worksheets(1).Cells(9, 2 + 4 * aa) = "Pi(psia)" 
    Worksheets(1).Cells(9, 3 + 4 * aa).Interior.ColorIndex = 6 
    Worksheets(1).Cells(9, 3 + 4 * aa).Locked = False 
    Worksheets(1).Cells(10, 2 + 4 * aa) = "Bo(RB/STB)" 
    Worksheets(1).Cells(10, 3 + 4 * aa).Interior.ColorIndex = 6 
    Worksheets(1).Cells(10, 3 + 4 * aa).Locked = False 
    Worksheets(1).Cells(11, 2 + 4 * aa) = "Viscosity(cp)" 
    Worksheets(1).Cells(11, 3 + 4 * aa).Interior.ColorIndex = 6 
    Worksheets(1).Cells(11, 3 + 4 * aa).Locked = False 
    Worksheets(1).Cells(12, 2 + 4 * aa) = "rw(ft)" 
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    Worksheets(1).Cells(12, 3 + 4 * aa).Interior.ColorIndex = 6 
    Worksheets(1).Cells(12, 3 + 4 * aa).Locked = False 
    Worksheets(1).Cells(13, 2 + 4 * aa) = "h(ft)" 
    Worksheets(1).Cells(13, 3 + 4 * aa).Interior.ColorIndex = 6 
    Worksheets(1).Cells(13, 3 + 4 * aa).Locked = False 
    Worksheets(1).Cells(14, 2 + 4 * aa) = "Porosity" 
    Worksheets(1).Cells(14, 3 + 4 * aa).Interior.ColorIndex = 6 
    Worksheets(1).Cells(14, 3 + 4 * aa).Locked = False 
    Worksheets(1).Cells(15, 2 + 4 * aa) = "Ct(psia-1)" 
    Worksheets(1).Cells(15, 3 + 4 * aa).Interior.ColorIndex = 6 
    Worksheets(1).Cells(15, 3 + 4 * aa).Locked = False 
    aa = aa + 1 
Next i 
 
Worksheets(2).Protect Password:="crystal", AllowFormattingCells:=True, 
AllowFormattingColumns:=True, AllowFormattingRows:=True 
Worksheets(3).Protect Password:="crystal", AllowFormattingCells:=True, 
AllowFormattingColumns:=True, AllowFormattingRows:=True 
Worksheets(1).Shapes(1).TextFrame.Characters.Text = "Calculate" 
Worksheets(1).Protect Password:="crystal", AllowFormattingCells:=True, 
AllowFormattingColumns:=True, AllowFormattingRows:=True 
Application.ScreenUpdating = True 'Faster calculations 
Worksheets(1).Activate 'To return to the main sheet 
 
End Sub 

 

10.3 Initialize 
 
This subroutine saves the input data from the well properties.  
 
Public Sub Initialize() 

Dim aa As Byte, bb As Integer, mm As Integer 
 
Application.ScreenUpdating = False 'Faster calculations 
Worksheets(1).Unprotect Password:="crystal" 
Worksheets(3).Unprotect Password:="crystal" 
ww = Worksheets(1).Cells(3, 4) 
 
ReDim pini(ww), bo(ww), muo(ww), rw(ww), hgt(ww), poro(ww), ct(ww) 
 
aa = 0 
For i = 1 To ww 
    'Initial data of wells 
    pini(i) = Worksheets(1).Cells(9, 3 + 4 * aa) 'Initial pressure 
    Worksheets(1).Cells(9, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0) 
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    Worksheets(1).Cells(9, 3 + 4 * aa).Locked = True 
    bo(i) = Worksheets(1).Cells(10, 3 + 4 * aa) 'Oil formation volume factor 
    Worksheets(1).Cells(10, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0) 
    Worksheets(1).Cells(10, 3 + 4 * aa).Locked = True 
    muo(i) = Worksheets(1).Cells(11, 3 + 4 * aa) 'Oil viscosity 
    Worksheets(1).Cells(11, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0) 
    Worksheets(1).Cells(11, 3 + 4 * aa).Locked = True 
    rw(i) = Worksheets(1).Cells(12, 3 + 4 * aa) 'Wellbore radius 
    Worksheets(1).Cells(12, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0) 
    Worksheets(1).Cells(12, 3 + 4 * aa).Locked = True 
    hgt(i) = Worksheets(1).Cells(13, 3 + 4 * aa) 'Height reservoir 
    Worksheets(1).Cells(13, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0) 
    Worksheets(1).Cells(13, 3 + 4 * aa).Locked = True 
    poro(i) = Worksheets(1).Cells(14, 3 + 4 * aa) 'Porosity 
    Worksheets(1).Cells(14, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0) 
    Worksheets(1).Cells(14, 3 + 4 * aa).Locked = True 
    ct(i) = Worksheets(1).Cells(15, 3 + 4 * aa) 'Compressibility of the rock 
    Worksheets(1).Cells(15, 3 + 4 * aa).Interior.Color = RGB(0, 204, 0) 
    Worksheets(1).Cells(15, 3 + 4 * aa).Locked = True 
    aa = aa + 1 
Next i 
 
Application.ScreenUpdating = True 'Faster calculations 
Worksheets(1).Activate 'To return to the main sheet 
 
End Sub 

 

10.4 Generate 
 

This subroutine reads the pressure and rate data, set up the working matrixes and filter the 

transients by type. 

Public Sub Generate() 

Dim aa As Byte, bb As Integer, mm As Integer, cc As Byte, dd As Byte, ff As Byte, gg As Byte 
Dim nn as Byte 
 
Application.ScreenUpdating = False 'Faster calculations 
ww = Worksheets(1).Cells(3, 4) 
 
'Counts the number rows to use (the longest well data) in production matrix 
aa = 0: mm = 0 
For i = 1 To ww 
    bb = Worksheets(3).Cells(Rows.Count, 1 + 4 * aa).End(xlUp).row 'Last active cell in the column 
    bb = bb - 3 
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    If bb > mm Then 
        mm = bb 
    End If 
    aa = aa + 1 
Next i 
 
ReDim topaz(ww, mm, 10) 
 
'Save data in the production matrix 
aa = 0 
For i = 1 To ww 'Number of Wells 
    topaz(i, 0, 1) = 0 
    For j = 1 To mm 'Number of row in rate sheet 
        If IsEmpty(Worksheets(3).Cells(j + 3, 1 + 4 * aa)) Then 'Check time data as void 
            topaz(i, j, 1) = 0 
        Else 
            topaz(i, j, 1) = Worksheets(3).Cells(j + 3, 1 + 4 * aa) 'Time data 
            topaz(i, 0, 1) = topaz(i, 0, 1) + 1 'starts counting number of data of each well 
        End If 
        If IsEmpty(Worksheets(3).Cells(j + 3, 2 + 4 * aa)) Then 
            topaz(i, j, 2) = 0 
        Else 
            topaz(i, j, 2) = Worksheets(3).Cells(j + 3, 2 + 4 * aa) 'Rate data 
        End If 
        If topaz(i, j, 2) < 0 Then 
            topaz(i, j, 3) = 1 'Injection test 
        ElseIf topaz(i, j, 2) = 0 Then 
            topaz(i, j, 3) = 2 ' Fall-off test 
        Else 
            topaz(i, j, 3) = 3 'Production test 
        End If 
    Next j 
    Worksheets(1).Cells(17, 2 + 4 * aa) = "No. test" 
    Worksheets(1).Cells(17, 3 + 4 * aa) = topaz(i, 0, 1) 
    aa = aa + 1 
Next i 
 
'Establishing segments dd counter for injection secondary, ff counter for fall-off, gg counter for 
' production cc counter for secondary 
aa = 0 
For i = 1 To ww 
    cc = 0: dd = 0: ff = 0: gg = 0 
    nn = topaz(i, 1, 3) 
    'For the first value 
    Select Case nn 
        Case 1 
            dd = dd + 1 
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            topaz(i, 1, 4) = dd 
            topaz(i, 1, 6) = "Well#" & i & " Injection#" & dd 
            topaz(i, 1, 7) = "W#" & i & " I#" & dd & "-" 
        Case 2 
            ff = ff + 1 
            topaz(i, 1, 4) = ff 
            topaz(i, 1, 6) = "Well#" & i & " Fall-off#" & ff 
            topaz(i, 1, 7) = "W#" & i & " F#" & ff & "-" 
        Case 3 
            gg = gg + 1 
            topaz(i, 1, 4) = gg 
            topaz(i, 1, 6) = "Well#" & i & " Production#" & gg 
            topaz(i, 1, 7) = "W#" & i & " P#" & gg & "-" 
    End Select 
    cc = cc + 1 
    topaz(i, 1, 5) = cc 
    topaz(i, 1, 7) = topaz(i, 1, 7) & cc 
    Worksheets(3).Cells(4, 3 + 4 * aa) = topaz(i, 1, 7) 'Show the name of the test detected 
    For j = 2 To topaz(i, 0, 1)  'For the rest of the data 
        If nn = topaz(i, j, 3) Then 'Check the type of test 
            cc = cc + 1 
            Select Case nn 
                Case 1 
                    topaz(i, j, 4) = dd 
                    topaz(i, j, 6) = "Well#" & i & " Injection#" & dd 
                    topaz(i, j, 7) = "W#" & i & " I#" & dd & "-" 
                Case 2 
                    topaz(i, j, 4) = ff 
                    topaz(i, j, 6) = "Well#" & i & " Fall-off#" & ff 
                    topaz(i, j, 7) = "W#" & i & " F#" & ff & "-" 
                Case 3 
                    topaz(i, j, 4) = gg 
                    topaz(i, j, 6) = "Well#" & i & " Production#" & gg 
                    topaz(i, j, 7) = "W#" & i & " P#" & gg & "-" 
            End Select 
        Else 
            cc = 1 
            nn = topaz(i, j, 3) 
            Select Case nn 
                Case 1 
                    dd = dd + 1 
                    topaz(i, j, 4) = dd 
                    topaz(i, j, 6) = "Well#" & i & " Injection#" & dd 
                    topaz(i, j, 7) = "W#" & i & " I#" & dd & "-" 
                Case 2 
                    ff = ff + 1 
                    topaz(i, j, 4) = ff 
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                    topaz(i, j, 6) = "Well#" & i & " Fall-off#" & ff 
                    topaz(i, j, 7) = "W#" & i & " F#" & ff & "-" 
                Case 3 
                    gg = gg + 1 
                    topaz(i, j, 4) = gg 
                    topaz(i, j, 6) = "Well#" & i & " Production#" & gg 
                    topaz(i, j, 7) = "W#" & i & " P#" & gg & "-" 
            End Select 
        End If 
        topaz(i, j, 5) = cc 'Secondary name 
        topaz(i, j, 7) = topaz(i, j, 7) & cc 
        Worksheets(3).Cells(j + 3, 3 + 4 * aa) = topaz(i, j, 7) 'Show the name of the test detected 
    Next j 
    aa = aa + 1 
Next i 
'Counts the number rows to use (the longest well data) in temporal matrix 
aa = 0: mm = 0 
For i = 1 To ww 
    bb = Worksheets(2).Cells(Rows.Count, 1 + 4 * aa).End(xlUp).row 'Last active cell in the column 
    bb = bb - 3 
    If bb > mm Then 
        mm = bb 
    End If 
    aa = aa + 1 
Next i 
 
ReDim quartz(ww, mm, 3) 
 
'Save data in the temporal matrix 
aa = 0 
For i = 1 To ww 'Number of Wells 
    quartz(i, 0, 1) = 0 
    For j = 1 To mm 'Number of row 
        If IsEmpty(Worksheets(2).Cells(j + 3, 1 + 4 * aa)) Then 'Check time data as void 
            quartz(i, j, 1) = 0 
        Else 
            quartz(i, j, 1) = Worksheets(2).Cells(j + 3, 1 + 4 * aa) 'Time data 
            quartz(i, 0, 1) = quartz(i, 0, 1) + 1 'starts counting number of data of each well 

'Calculating accumulative time data 
            quartz(i, j, 2) = DateDiff("s", quartz(i, 1, 1), quartz(i, j, 1)) / 3600 
        End If 
        If IsEmpty(Worksheets(2).Cells(j + 3, 2 + 4 * aa)) Then 
            quartz(i, j, 3) = 0 
        Else 
            quartz(i, j, 3) = Worksheets(2).Cells(j + 3, 2 + 4 * aa) 'Pressure data 
        End If 
    Next j 
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    aa = aa + 1 
Next i 
 
'Calculate position of the data start time in the segment 
For i = 1 To ww 
    bb = 1 
    For j = 1 To quartz(i, 0, 1) 
        If quartz(i, j, 1) > topaz(i, bb, 1) Then 
            topaz(i, bb, 8) = j - 1 'Saves the end of the segment 
            topaz(i, bb, 9) = topaz(i, bb, 8) - topaz(i, bb - 1, 8) 'Saves the number of max data for the test 
            bb = bb + 1 
        End If 
    Next j 
    topaz(i, topaz(i, 0, 1), 8) = quartz(i, 0, 1) 'Saves the last end point in the last segment 
    topaz(i, topaz(i, 0, 1), 9) = topaz(i, topaz(i, 0, 1), 8) - topaz(i, topaz(i, 0, 1) - 1, 8)  
Next i 
'Detects larger set of data in test and test 
mm = 0: bb = 0 
For i = 1 To ww 
    If topaz(i, 0, 1) > bb Then 
        bb = topaz(i, 0, 1) 'Larger set of test 
    End If 
    For j = 1 To topaz(i, 0, 1) 
        If topaz(i, j, 9) > mm Then 
            mm = topaz(i, j, 9) 'Larger set of data test 
        End If 
    Next j 
Next i 
 
ReDim sapphire(ww, bb, mm, 6) 
 
'Preparing pressure matrix 
For i = 1 To ww 
    bb = 1: mm = 0 
    For j = 1 To topaz(i, 0, 1) 
        sapphire(i, j, 0, 1) = topaz(i, j, 3) 'Saves type of test 
        k = 1 
        Do 
        'For k = 1 To topaz(i, j, 9) 
            sapphire(i, j, k, 1) = quartz(i, bb, 1) 'Saving time 
            sapphire(i, j, k, 2) = quartz(i, bb, 2) 'Saving acumulative time 
            sapphire(i, j, k, 3) = quartz(i, bb, 3) 'Saving pressure 

'Calculating time of segments dt 
            sapphire(i, j, k, 4) = quartz(i, bb, 2) - quartz(i, topaz(i, j - 1, 8), 2)  
            If j = 1 Then 
                sapphire(i, j, k, 5) = Abs(quartz(i, bb, 3) - pini(ww)) 'Calculating dp for the first segment 
            Else 
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'Calculating dp segments 
                sapphire(i, j, k, 5) = Abs(quartz(i, bb, 3) - quartz(i, topaz(i, j - 1, 8), 3))  
            End If 
            sapphire(i, j, k, 6) = Abs(quartz(i, bb, 3) - pini(ww)) 'Calculating dp with initial P(t=0) 
            If quartz(i, bb, 2) <> 0 Then 
                k = k + 1 
            Else 
                topaz(i, j, 9) = topaz(i, j, 9) - 1 
            End If 
            bb = bb + 1 
        'Next k 
        Loop While k <= topaz(i, j, 9) 
        If topaz(i, j, 3) = 2 Then 
            topaz(i, j, 10) = topaz(i, j - 1, 10) 'Saves production time 
            mm = j 
        Else 
            topaz(i, j, 10) = sapphire(i, j, topaz(i, j, 9), 2) - sapphire(i, mm, topaz(i, j, 9), 2) 
        End If 
    Next j 
Next i 
 
Worksheets(1).Shapes(1).TextFrame.Characters.Text = "Calculate" 
Worksheets(1).Protect Password:="crystal", AllowFormattingCells:=True, 
AllowFormattingColumns:=True, AllowFormattingRows:=True 
Worksheets(3).Protect Password:="crystal", AllowFormattingCells:=True, 
AllowFormattingColumns:=True, AllowFormattingRows:=True 
Application.ScreenUpdating = True 'Faster calculations 
End Sub 

 

10.5 Normalize 
 

This subroutine normalizes the pressure with a reference test previously selected in the userform 

“Reference”. 

Public Sub Normalize() 

Dim aa As Byte, bb As Integer, agata As Integer 
 
For i = 1 To ruby(0, 1) 
    aa = ruby(i, 1) 'Number of well 
    bb = ruby(i, 2) 'Position of the test data 
    agata = topaz(aa, bb, 3) 'Type of test 
    emerald(i, 0, 1) = 0.1 'Saves the smoother by default 
    For j = 1 To topaz(aa, bb, 9) 'Data calculations 
        emerald(i, j, 1) = sapphire(aa, bb, j, 4) 'Copying dt segment 
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        Select Case agata 
            Case 1 'Injection 
                emerald(i, j, 2) = sapphire(aa, bb, j, 6) 'Copying pressure unormalized sp 
                'Normalization of pressure for superposition 
                emerald(i, j, 4) = Abs(ruby(0, 2) / topaz(aa, bb, 2) * emerald(i, j, 2)) 
                'Normalization of pressure for derivative 
                emerald(i, j, 7) = Abs(ruby(0,2)/(topaz(aa,bb,2)-topaz(aa, bb-1,2))*sapphire(aa,bb,j, 5)) 
                'dp re-scale 
                emerald(i, j, 6) = Abs((topaz(aa, bb, 2) / ruby(0, 2)) * emerald(i, j, 7)) 
            Case 2 'Fall-off 
                emerald(i, j, 2) = sapphire(aa, bb, j, 5) 'Copying pressure unormalized sp 
                'Normalization of pressure for superposition 
                emerald(i, j, 4) = Abs(ruby(0, 2) / topaz(aa, bb - 1, 2) * emerald(i, j, 2)) 
                'Normalized of pressure for derivative 
                emerald(i, j, 7) = emerald(i, j, 4) 
                'dp re-scale 
                emerald(i, j, 6) = emerald(i, j, 7) 
            Case 3 'Production 
                emerald(i, j, 2) = sapphire(aa, bb, j, 6) 'Copying pressure unormalized sp 
                'Normalization pressure for superposition 
                emerald(i, j, 5) = Abs(ruby(0, 2) / topaz(aa, bb, 2) * emerald(i, j, 2)) 
                'Normalization of pressure for derivative 
                emerald(i, j, 7) = Abs(ruby(0,2)/(topaz(aa,bb,2)-topaz(aa,bb-1,2))*sapphire(aa,bb,j,5)) 
                'dp re-scale 
                emerald(i, j, 6) = Abs((topaz(aa, bb, 2) / ruby(0, 2)) * emerald(i, j, 7)) 
        End Select 
    Next j 
Next i 
 

End Sub 

 

10.6 Calculate 
 

This subroutine is the one in charge of calculating the superposition time and a multiplier factor, 

which is used for faster calculations or to avoid mathematical errors due to number being too big or 

small. 

Public Sub Calculate() 

Dim aa As Byte, bb As Integer 
 
For i = 1 To ruby(0, 1) 
    aa = ruby(i, 1) 'Number of well 
    bb = ruby(i, 2) 'No. test 
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    For j = 1 To topaz(aa, bb, 9) 
        Call Superposition(bb, sapphire(aa, bb, j, 2), aa) 
        emerald(i, j, 3) = summat 'To save value obtained in superposition 
    Next j 
    'Calculating factor 
    ruby(i, 3) = 1 'Saves adjust factor by default 
    If Abs(emerald(i, topaz(aa, bb, 9), 3)) > Abs(emerald(i, 1, 3)) Then 
        diff = Abs(emerald(i, topaz(aa, bb, 9), 3)) 
    Else 
        diff = Abs(emerald(i, 1, 3)) 
    End If 
    dtmax = diff 
    Do While diff > 9 
        ruby(i, 3) = ruby(i, 3) * 10 
        diff = dtmax / ruby(i, 3) 
    Loop 
Next i 
ReDim quartz(ruby(0, 1), 6) 
 
End Sub 

 

10.7 Calculateb 
 

This subroutine calculates the derivative with the smoother assigned by default or by the user. The 

derivative is calculated with the superposition time and the pressure difference with the time 0. 

Public Sub Calculateb() 

Dim aa As Byte, bb As Integer, cc As Integer, diff, dd As Integer, dtmin, dpmin 
Dim dtmax, dpmax, agata As Byte 
 
For i = 1 To ruby(0, 1) 
    aa = ruby(i, 1) 'Number of well 
    bb = ruby(i, 2) ' No. test 
    'Defining left and right smoother 
    For j = 1 To topaz(aa, bb, 9) - 1 
        cc = j - 1 'Initial guess left side 
        dd = j + 1 'Initial guess right side 
        'Calculating left side 
        If j = 1 Then 
            agata = 0 
            diff = emerald(i, j, 1) 
            dtmin = 10 ^ (-agata) 
            Do While dtmin > diff 
                agata = agata + 1 
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                dtmin = 10 ^ (-agata) 'Calculating lowest value 
            Loop 
            Do 
                'Simple interpolation with dt segment and dp(dt=0) 
                Call Interpolation(sapphire(aa, bb, j, 6), sapphire(aa, bb - 1, topaz(aa, bb - 1, 9), 6), _ 
emerald(i, j, 1), 0, dtmin) 
                dpmin = interp 
                'dpmin = sapphire(aa, bb, j, 6) - (emerald(i, j, 1) - dtmin) * ((sapphire(aa, bb, j, 6) -__ 
sapphire(aa, bb - 1, topaz(aa, bb - 1, 9), 6)) / (emerald(i, j, 1) - emerald(i, j - 1, 1))) 
                dtmin = dtmin + sapphire(aa, bb - 1, topaz(aa, bb - 1, 9), 2) 
                'Calculate superposition 
                Call Superposition(bb, dtmin, aa) 
                dtmin = (sapphire(aa, bb, j, 2) - dtmin) / 2 
                diff = Abs(summat - emerald(i, topaz(aa, bb, 9), 3)) / ruby(i, 3) 
            Loop While diff > 99 
            dtmin = summat / ruby(i, 3) 
        Else 
            Do 
                diff = Log(10 ^ ((emerald(i, j, 3) - emerald(i, cc, 3)) / ruby(i, 3))) 
                If Abs(diff) > emerald(i, 0, 1) Then 
                    Exit Do 
                Else 
                    cc = cc - 1 
                End If 
            Loop While cc > 1 
            'Uses superposition time and dp(dt=0) for calculations 
            dpmin = sapphire(aa, bb, cc, 6) 
            dtmin = emerald(i, cc, 3) / ruby(i, 3) 'Adjust with factor 
        End If 
        'Calculating right side 
        Do 
            diff = Log(10 ^ ((emerald(i, dd, 3) / emerald(i, j, 3)) / ruby(i, 3))) 
            If Abs(diff) > emerald(i, 0, 1) Then 
                Exit Do 
            Else 
                dd = dd + 1 
            End If 
        Loop While dd < topaz(aa, bb, 9) - 1 
        dpmax = sapphire(aa, bb, dd, 6) 
        dtmax = emerald(i, dd, 3) / ruby(i, 3) 'Adjust with factor 
        emerald(i, j, 3) = emerald(i, j, 3) / ruby(i, 3) 'Adjust with factor 
        Call Derivative(dpmin, dtmin, sapphire(aa, bb, j, 6), emerald(i, j, 3), dpmax, dtmax) 
        emerald(i, j, 3) = emerald(i, j, 3) * ruby(i, 3) 'Original superposition time before factor 
        emerald(i, j, 5) = derev / ruby(i, 3) 'Derivative corrected by factor 
        'Calculate derivative normalized 
        agata = topaz(aa, bb, 3) 
        'Normalizing derivative 
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        Select Case agata 
            Case 1 
                'Injection case 
                emerald(i, j, 8) = Abs(ruby(0, 2) / topaz(aa, bb, 2)) * emerald(i, j, 5) 
            Case 2 
                'Fall-off case 
                emerald(i, j, 8) = Abs(ruby(0, 2) / topaz(aa, bb - 1, 2)) * emerald(i, j, 5) 
            Case 3 
                'Production case 
                emerald(i, j, 8) = Abs(ruby(0, 2) / topaz(aa, bb, 2)) * emerald(i, j, 5) 
        End Select 
    Next j 
Next i 
End Sub 

10.8 Superposition 
 

This subroutine calculates the sum used in the superposition time. 

Public Sub Superposition(maxs As Integer, timew, wellno As Byte) 
 
Dim deltaq, deltat 
 
summat = 0: ctn = 1 
Do 
    deltaq = topaz(wellno, ctn, 2) - topaz(wellno, ctn - 1, 2) 
    deltat = Log(timew - sapphire(wellno, ctn - 1, topaz(wellno, ctn - 1, 9), 2)) / Log(10) 
    summat = summat + deltaq * deltat 
    ctn = ctn + 1 
Loop While ctn <= maxs 
If topaz(wellno, maxs, 3) <> 2 Then 
    summat = summat / topaz(wellno, maxs, 2) 'Superposition for injection/production 
Else 
   'superposition for Fall-off 
    summat = summat / Abs(topaz(wellno, maxs, 2) - topaz(wellno, maxs - 1, 2))  
End If 
 
End Sub 
 

10.9 Derivative 
 

This subroutine calculates the 3-point derivative with smoother and normalize it with the reference 

test set up before in the Reference userform. 

Public Sub Derivative(dpl, dtl, dpj, dtj, dpr, dtr) 



Chapter 10.- Appendix A 

55 
 
 

 
Dim term1, term2, term3, term4 
 
term1 = (dpj - dpl) / Log(10 ^ (dtj - dtl)) 
term2 = Log(10 ^ (dtr - dtj)) / Log(10 ^ (dtr - dtl)) 
term3 = (dpr - dpj) / Log(10 ^ (dtr - dtj)) 
term4 = Log(10 ^ (dtj - dtl)) / Log(10 ^ (dtr - dtl)) 
derev = Abs(term1 * term2 + term3 * term4) 
 
End Sub 
 

10.10 Interpolation 
 

This subroutine is used for interpolating values when need it. 

Public Sub Interpolation(vv1, vv2, uu1, uu2, uu) 
interp = vv2 - (vv2 - vv1) * (uu2 - uu) / (uu2 - uu1) 
 
End Sub 
 

10.11 Comparative 
 

This subroutine calls the subroutines that calculate permeabilities and skin factor by semi-log and 
derivative analysis. 
 

Public Sub Comparative() 
 
For i = 1 To ruby(0, 1) 
    'Calculate limits based on tolerance 
    Call Limits(i, 1) 
    'Calculate permeability, skin factor 
    Call Propertyks(ruby(i, 1), i, ruby(i, 2), quartz(i, 1), quartz(i, 2)) 
Next i 
 
End Sub 
 

10.12 Limits 
 

This subroutine calculates the limits of the radial flow to use for calculating the flow capacity, 

permeability and skin factors. 

Public Sub Limits(testno, tole) 
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Dim dref, bb As Integer, pfixed, j As Integer, diff 
 
'Initial point 
dref = emerald(testno, ruby(testno, 5), 1) - emerald(testno, 1, 1) 
j = 1 
If emerald(testno, j, 1) = 0 Then 
    j = j + 1 'To avoid zero from the initial value 
End If 
Do 
    If dref > 2 Then 
        'Calculate slope every 15 min, for faster calculations and jump wellbore storage 
        bb = j 
        Do 
            j = j + 1 
            diff = emerald(testno, j, 1) - emerald(testno, bb, 1) 
            If j >= ruby(testno, 5) - 1 Then 
                j = ruby(testno, 5) - 1 
                Exit Do 'To avoid infinite loop 
            End If 
        Loop While diff < 0.25 'Every 15 min 
    Else 
        bb = j 
        j = j + 1 
    End If 
    pfixed = Abs((emerald(testno, j, 8) - emerald(testno, bb, 8)) / emerald(testno, bb, 8)) 
    pfixed = pfixed * 100 
    If pfixed < ruby(testno, 4) Then 
        Exit Do 
    End If 
    If j >= ruby(testno, 5) - 2 Then 
        If tole <> 0 Then 
            'For recalculating tolerance 
            j = 1 
            ruby(testno, 4) = ruby(testno, 4) + 0.1 'Increases error 
        Else 
            'For using fix tolerance 
            j = ruby(testno, 5) - 2 
            Exit Do 
        End If 
    End If 
Loop While j < ruby(testno, 5) - 1 
quartz(testno, 1) = j 'Initial point 
 
'End point 
Do 
    j = j + 1 
    pfixed = Abs((emerald(testno, j, 8) - emerald(testno, quartz(testno, 1), 8)) / emerald(testno,_ 
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quartz(testno, 1), 8)) * 100 
    If pfixed > 4 Then 
        Exit Do 
    End If 
Loop While j < ruby(testno, 5) - 1 
quartz(testno, 2) = j 'End point 
 
End Sub 
 

10.13 Propertyks 
 

This subroutine calculates the flow capacity, permeability and skin factor with semi-log and 

derivative analysis, with the limits calculated in “Limits” or the ones assigned by the user. 

Public Sub Propertyks(aa, testno, bb, lptn, rptn) 
 
Dim agl, agr, hyddif, slope, p1hr, st1hr, pfixed, agata As Integer, cc As Integer, dd As Integer 
 
cc = lptn: dd = rptn 
'Calculate constant value for derivative 
pfixed = 0: agata = 0 
For k = cc To dd 
    pfixed = pfixed + emerald(testno, k, 8) 'summatory 
    agata = agata + 1 
Next k 
pfixed = pfixed / agata 'Average value for derivative constant 
 
'Calculating permeabilities 
If topaz(aa, bb, 3) <> 2 Then 
    slope = Abs((emerald(testno, dd, 7) - emerald(testno, cc, 7)) / (Log(emerald(testno, dd, 1) /_ 
emerald(testno, cc, 1)) / Log(10))) 'Semilog 
    ruby(testno, 6) = Abs((162.5683 * topaz(aa, bb, 2) * bo(aa) * muo(aa)) / slope) 'kh for semilog 
    ruby(testno, 7) = ruby(testno, 6) / hgt(aa) 'k for semilog 
    ruby(testno, 9) = Abs((70.6 * topaz(aa, bb, 2) * bo(aa) * muo(aa)) / pfixed) 'kh for derivative 
    ruby(testno, 10) = ruby(testno, 9) / hgt(aa) 'k for derivative 
Else 
    agl = emerald(testno, cc, 1) * topaz(aa, bb, 10) / (emerald(testno, cc, 1) + topaz(aa, bb, 10))  
    agr = emerald(testno, dd, 1) * topaz(aa, bb, 10) / (emerald(testno, dd, 1) + topaz(aa, bb, 10))  
    slope = Abs((emerald(testno, dd, 7) - emerald(testno, cc, 7)) / (Log(agr / agl) / Log(10))) 'Semilog 
    ruby(testno, 6) = Abs((162.5683 * topaz(aa, bb - 1, 2) * bo(aa) * muo(aa)) / slope) 'kh for semilog 
    ruby(testno, 7) = ruby(testno, 6) / hgt(aa) 'k for semilog 
    ruby(testno, 9) = Abs((70.6 * topaz(aa, bb - 1, 2) * bo(aa) * muo(aa)) / pfixed) 'kh for derivative 
    ruby(testno, 10) = ruby(testno, 9) / hgt(aa) 'k for derivative 
End If 
 
 



Chapter 10.- Appendix A 

58 
 
 

'Calculating skin for semilog 
p1hr = Abs(emerald(testno, dd, 7) - slope * Log(emerald(testno, dd, 1)) / Log(10)) 
hyddif = ruby(testno, 7) / (poro(aa) * muo(aa) * ct(aa) * rw(aa) * rw(aa)) 
hyddif = Log(hyddif) / Log(10) 
If topaz(aa, bb, 3) <> 2 Then 
    ruby(testno, 8) = 1.151 * (Abs((p1hr - 0) / slope) - hyddif + 3.2275) 'skin for semilog 
Else 
    st1hr = 1 * topaz(aa, bb, 10) / (1 + topaz(aa, bb, 10)) 'Agarwal time 
    sthr1 = Log(st1hr) / Log(10) 
    ruby(testno, 8) = 1.151 * (Abs((p1hr - 0) / slope) - st1hr - hyddif + 3.2275) 'skin for semilog 
End If 
 
'Calculating skin for derivative 
dd = cc 
Do 
    If dd >= ruby(testno, 5) - 1 Then 
        dd = ruby(testno, 5) - 1 
        Exit Do 
    End If 
    dd = dd + 1 'Right side of the derivative average 
Loop While emerald(testno, dd, 8) < pfixed 
 
cc = dd - 1 'Left side of the derivative average 
Call Interpolation(emerald(testno, cc, 7), emerald(testno, dd, 7), emerald(testno, cc, 8),_ 
emerald(testno, dd, 8), pfixed) 
p1hr = interp 
hyddif = ruby(testno, 10) / (poro(aa) * muo(aa) * bo(aa) * ct(aa) * rw(aa) * rw(aa)) 
hyddif = Log(hyddif) / Log(10) 
If topaz(aa, bb, 3) <> 2 Then 
    Call Interpolation(emerald(testno, cc, 1), emerald(testno, dd, 1), emerald(testno, cc, 8),_ 
emerald(testno, dd, 8), pfixed) 
    st1hr = Log(interp) / Log(10) 
    slope = Abs((p1hr * ruby(testno, 9)) / (162.5683 * topaz(aa, bb, 2) * bo(aa) * muo(aa))) 
    ruby(testno, 11) = 1.151 * (slope - st1hr - hyddif + 3.2275) 'skin factor for derivative 
Else 
    agr = emerald(testno, dd, 1) * topaz(aa, bb, 10) / (emerald(testno, dd, 1) + topaz(aa, bb, 10)) 
    agl = emerald(testno, cc, 1) * topaz(aa, bb, 10) / (emerald(testno, cc, 1) + topaz(aa, bb, 10)) 
    Call Interpolation(agl, agr, emerald(testno, cc, 8), emerald(testno, dd, 8), pfixed) 
    st1hr = Log(interp) / Log(10) 
    slope = Abs((p1hr * ruby(testno, 9)) / (162.5683 * topaz(aa, bb - 1, 2) * bo(aa) * muo(aa))) 
    ruby(testno, 11) = 1.151 * (slope - st1hr - hyddif + 3.2275) 'skin factor for derivative 
End If 
 
End Sub 
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10.14 Genesis 
 

This subroutine creates anew sheet in excel, which will be containing the results from the derivative, 

and renamed as “Analysis” 

Public Sub Genesis() 
 
Dim aa As Byte, tempo As String, maxy As Byte, bb As Byte 
 
Application.ScreenUpdating = False 'Faster calculations 
 
With ThisWorkbook 
    Set ws = .Sheets.Add(After:=.Sheets(.Sheets.Count)) 
    aa = 1 
    For i = 1 To Sheets.Count 
        If Left(Sheets(i).Name, 8) = "Analysis" Then 
            bb = Len(Sheets(i).Name) 
            maxy = Val(Right(Sheets(i).Name, bb - 9)) 
            If maxy >= aa Then 
                aa = maxy + 1 
            End If 
        End If 
    Next i 
    tempo = "Analysis_" & aa 
    .Unprotect 
    ws.Name = tempo 
End With 
 
ws.Visible = xlSheetVeryHidden '--------------------------Important to work in background 
Application.ScreenUpdating = True 'Faster calculations 
End Sub 
 

10.15 Printing 
 

This subroutine prints the results in the sheet Analysis, that are going to be used for generating the 

graph in the Plotter userform, see Appendix C for its’ code. It also prints the unnormalized data in 

case one wants to check it. 

Public Sub Printing() 
 
Dim bb As Integer, miny, maxy 
 
Application.ScreenUpdating = False 'Faster calculations 
ThisWorkbook.Unprotect 
ws.Activate 'To change activation for new sheet 
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bb = 0 
For i = 1 To ruby(0, 1) 
    'For the Normalized data headers 
    ws.Cells(2 + bb, 1) = topaz(ruby(i, 1), ruby(i, 2), 7) 'Print name of the test 
    ws.Cells(2 + bb, 2) = "Normalized" 
    ws.Cells(3 + bb, 1) = "dTime (hrs)" 
    ws.Cells(3 + bb, 1).WrapText = True 
    ws.Cells(3 + bb, 2) = "p-p@dt=0 (psia)" 
    ws.Cells(3 + bb, 2).WrapText = True 
    ws.Cells(3 + bb, 3) = "Derivative (psia)" 
    ws.Cells(3 + bb, 3).WrapText = True 
    ws.Cells(3 + bb, 4) = "Superposition time()" 
    ws.Cells(3 + bb, 4).WrapText = True 
    ws.Cells(3 + bb, 5) = "p (psia)" 
    ws.Cells(3 + bb, 5).WrapText = True 
    'For the unnormalized headers 
    ws.Cells(2 + bb, 8) = topaz(ruby(i, 1), ruby(i, 2), 7) 'Print name of the test 
    ws.Cells(2 + bb, 9) = "Unnormalized" 
    ws.Cells(3 + bb, 8) = "dTime (hrs)" 
    ws.Cells(3 + bb, 8).WrapText = True 
    ws.Cells(3 + bb, 9) = "p-p@dt=0 (psia)" 
    ws.Cells(3 + bb, 9).WrapText = True 
    ws.Cells(3 + bb, 10) = "Derivative (psia)" 
    ws.Cells(3 + bb, 10).WrapText = True 
    ws.Cells(3 + bb, 11) = "Superposition time()" 
    ws.Cells(3 + bb, 11).WrapText = True 
    ws.Cells(3 + bb, 12) = "p (psia)" 
    ws.Cells(3 + bb, 12).WrapText = True 
    'To print results for emerald matrix 
    For j = 1 To ruby(i, 5) 
        ws.Cells(3 + bb + j, 1) = emerald(i, j, 1) 'dt segment 
        ws.Cells(3 + bb + j, 2) = emerald(i, j, 7) 'Pressure derivative normalized 
        ws.Cells(3 + bb + j, 3) = emerald(i, j, 8) 'Derivative normalized 
        ws.Cells(3 + bb + j, 4) = emerald(i, j, 3) 'Superposition time 
        ws.Cells(3 + bb + j, 5) = emerald(i, j, 4) 'Pressure superposition normalized 
        ws.Cells(3 + bb + j, 8) = emerald(i, j, 1) 'dt segment 
        ws.Cells(3 + bb + j, 9) = emerald(i, j, 6) 'Pressure derivative 
        ws.Cells(3 + bb + j, 10) = emerald(i, j, 5) 'Derivative 
        ws.Cells(3 + bb + j, 11) = emerald(i, j, 3) 'Superposition time 
        ws.Cells(3 + bb + j, 12) = emerald(i, j, 2) 'Pressure superposition 
    Next j 
    Columns("A:E").EntireColumn.AutoFit 
    Columns("H:L").EntireColumn.AutoFit 
    bb = bb + ruby(i, 5) + 5 
Next i 
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'Calculate max and min in pressure and derivative 
miny = 10000000: maxy = 0 
For i = 1 To ruby(0, 1) 
    For j = 2 To ruby(i, 5) - 1 
        If emerald(i, j, 7) > maxy Then 
            maxy = emerald(i, j, 7) 
        End If 
        If emerald(i, j, 8) > maxy Then 
            maxy = emerald(i, j, 8) 
        End If 
        If miny > emerald(i, j, 7) Then 
            miny = emerald(i, j, 7) 
        End If 
        If miny > emerald(i, j, 8) Then 
            miny = emerald(i, j, 8) 
        End If 
    Next j 
Next i 
 
bb = 0 
For i = 1 To ruby(0, 1) 
    ws.Cells(10 + bb, 15) = "Xleft" 
    ws.Cells(11 + bb, 15) = emerald(i, quartz(i, 1), 1) 'Left point 
    ws.Cells(12 + bb, 15) = emerald(i, quartz(i, 1), 1) 'Left point 
    ws.Cells(10 + bb, 16) = "Y" 
    ws.Cells(11 + bb, 16) = miny 
    ws.Cells(12 + bb, 16) = maxy 
    ws.Cells(10 + bb, 17) = "Xright" 
    ws.Cells(11 + bb, 17) = emerald(i, quartz(i, 2), 1) 'Right point 
    ws.Cells(12 + bb, 17) = emerald(i, quartz(i, 2), 1) 'Right point 
    'Generating random colors 
    quartz(i, 3) = WorksheetFunction.RandBetween(0, 255) 'Red color 
    quartz(i, 4) = WorksheetFunction.RandBetween(0, 255) 'Green color 
    quartz(i, 5) = WorksheetFunction.RandBetween(0, 255) 'Blue color 
    quartz(i, 6) = 11 + bb 'Position of the lines 
    bb = bb + ruby(i, 5) + 5 
Next i 
Application.ScreenUpdating = True 'Faster calculations 
 
End Sub 
 

10.16 Gengraph 
 

This subroutine generates the graph in excel and export it to the image box in the Plotter userform. 

It also assigned random colors to the lines, the format and names shown in the legend. 
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Public Sub Gengraph() 
 
Dim Mychart As Object, aa As Integer, bb As Integer 
   
Application.ScreenUpdating = False 'To create the graph but not generating, it makes it faster 
'Detect the workbook with the data for graphs 
With ThisWorkbook 
    Set ws = .Sheets(.Sheets.Count) 
End With 
ws.Activate 
Set Mychart = ActiveSheet.Shapes.AddChart(xlXYScatterLinesNoMarkers, width:=600, 
height:=400).Chart 
 
aa = 4 
For i = 1 To 4 
    Mychart.SeriesCollection(aa).Delete 'since is creating a graph with predefined series 
    aa = aa - 1 
Next i 
 
'Adding the pressure part 
aa = 4: bb = 0 
For i = 1 To ruby(0, 1) 
    bb = bb + 1 
    'Adding the pressure part 
    Mychart.SeriesCollection.NewSeries 'Add new series 
    Mychart.SeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7) 'Add the name of the series 
    'X values 
    Mychart.SeriesCollection(bb).XValues = ws.Range(Cells(aa, 1), Cells(aa + ruby(i, 5) - 1, 1)) 
    Mychart.SeriesCollection(bb).Values = ws.Range(Cells(aa, 2), Cells(aa + ruby(i, 5) - 1, 2)) 'Y values 
    'Choose color 
    Mychart.SeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5)) 
    'Choose color 
    Mychart.SeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
    aa = aa + ruby(i, 5) + 5 
Next i 
aa = 4 
For i = 1 To ruby(0, 1) 
    bb = bb + 1 
    'Adding derivative part 
    Mychart.SeriesCollection.NewSeries 'Add new series 
    Mychart.SeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7) 'Add the name of the series 
     'X values 
    Mychart.SeriesCollection(bb).XValues = ws.Range(Cells(aa, 1), Cells(aa + ruby(i, 5) - 1, 1))  
    Mychart.SeriesCollection(bb).Values = ws.Range(Cells(aa, 3), Cells(aa + ruby(i, 5) - 1, 3)) 'Y values 
    'Choose color 
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    Mychart.SeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
    'Choose color 
    Mychart.SeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
    aa = aa + ruby(i, 5) + 5 
Next i 
'For adding the boundaries, add two lines for the first test 
For i = 1 To 2 
    bb = bb + 1 
    Mychart.SeriesCollection.NewSeries 'Limit line 
    Mychart.SeriesCollection(bb).Name = "Limit" & i 
    Mychart.SeriesCollection(bb).XValues = ws.Range(Cells(quartz(tt, 6), 13 + i * 2), _ 
   Cells(quartz(tt, 6) + 1, 13 + i * 2)) 'X values 
    Mychart.SeriesCollection(bb).Values = ws.Range(Cells(quartz(tt, 6), 16), _ 
   Cells(quartz(tt, 6) + 1, 16)) 'Y values 
    Mychart.SeriesCollection(bb).Border.LineStyle = xlDot 
    'Choose color 
    Mychart.SeriesCollection(bb).Border.Color = RGB(quartz(tt, 3), quartz(tt, 4), quartz(tt, 5))  
    'Choose color 
    Mychart.SeriesCollection(bb).Interior.Color = RGB(quartz(tt, 3), quartz(tt, 4), quartz(tt, 5))  
Next i 
 
'Mychart.SeriesCollection(tt).Format.Line.Weight = 2 
Mychart.SeriesCollection(tt).MarkerStyle = xlMarkerStyleCircle 
Mychart.SeriesCollection(tt).MarkerSize = 7 
Mychart.SeriesCollection(tt).MarkerBackgroundColor = RGB(quartz(tt, 3), quartz(tt, 4),_ 
quartz(tt, 5)) 
Mychart.SeriesCollection(tt).MarkerForegroundColor = RGB(0, 0, 0) 
Mychart.SeriesCollection(tt + ruby(0, 1)).MarkerStyle = xlMarkerStyleCircle 
Mychart.SeriesCollection(tt + ruby(0, 1)).MarkerSize = 7 
Mychart.SeriesCollection(tt + ruby(0, 1)).MarkerBackgroundColor = RGB(quartz(tt, 3),_ 
quartz(tt, 4), quartz(tt, 5)) 
Mychart.SeriesCollection(tt + ruby(0, 1)).MarkerForegroundColor = RGB(0, 0, 0) 
 
'For editing graph 
Mychart.HasTitle = True 'Add title 
Mychart.ChartTitle.Text = ws.Name 'Title name 
Mychart.ChartTitle.Font.Size = 16 'Font size 
Mychart.Axes(xlCategory, xlPrimary).HasTitle = True 'Add X-axis title 
Mychart.Axes(xlCategory, xlPrimary).AxisTitle.Text = "Time (hrs)" 'X name 
'font size 
Mychart.Axes(xlCategory, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 12  
Mychart.Axes(xlCategory, xlPrimary).ScaleType = xlScaleLogarithmic 'Log scale 
Mychart.Axes(xlCategory, xlPrimary).HasMajorGridlines = True 
Mychart.Axes(xlValue, xlPrimary).HasTitle = True 'Add Y-axis title 
Mychart.Axes(xlValue, xlPrimary).AxisTitle.Text = "Pressure and Derivative (psi)" 'Y name 
Mychart.Axes(xlValue, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 12 'font size 
Mychart.Axes(xlValue, xlPrimary).ScaleType = xlScaleLogarithmic 'Log scale 
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Mychart.Axes(xlValue, xlPrimary).HasMajorGridlines = True 
 
'Small number so x axis crosses the y at 0.000000001 
Mychart.Axes(xlValue, xlPrimary).CrossesAt = 0.0000000001 
'Automatically changes the x axis cross to minimum value 
Mychart.Axes(xlValue, xlPrimary).Crosses = xlCustom  
'Small number so y axis crosses the x at 0.000000001 
Mychart.Axes(xlCategory, xlPrimary).CrossesAt = 0.0000000001  
'Automatically changes the y axis cross to minimum value 
Mychart.Axes(xlCategory, xlPrimary).Crosses = xlCustom  
 
'Now for generating the image 
Dim imagename As String 
 
imagename = Application.DefaultFilePath & Application.PathSeparator & "Tempchart.gif" 
'MsgBox "The default path is" & Application.DefaultFilePath 'Just to know where image is save 
Mychart.Export Filename:=imagename 
ws.ChartObjects(1).Delete 
Application.ScreenUpdating = True 
Plotter.Image1.Picture = LoadPicture(imagename) 
 
End Sub 

10.17 Allgraph 
 

This subroutine generates the final graphs for pressure and pressure derivative and the 

superposition graph, after the manual or automatic adjustments. 

 

Public Sub Allgraph() 
 
Dim aa As Integer, bb As Integer 
 
Application.ScreenUpdating = False 'To create the graph but not generating, it makes it faster 
'Detect the workbook with the data for graphs 
With ThisWorkbook 
    Set ws = .Sheets(.Sheets.Count) 
End With 
ws.Activate 
'Creating pressure and pressure derivative graph 
ActiveSheet.Shapes.AddChart2(240, xlXYScatterLinesNoMarkers).Select 
 
aa = 4 
For i = 1 To 4 
    ActiveChart.FullSeriesCollection(aa).Delete 'since is creating a graph with predefined series 
    aa = aa - 1 
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Next i 
 
'Adding the pressure part 
aa = 4: bb = 0 
For i = 1 To ruby(0, 1) 
    bb = bb + 1 
    'Adding the pressure part 
    ActiveChart.SeriesCollection.NewSeries 'Add new series 
     'Add the name of the series 
    ActiveChart.FullSeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7)  
    'X values 
    ActiveChart.FullSeriesCollection(bb).XValues = ws.Range(Cells(aa, 1), Cells(aa + ruby(i, 5) - 1, 1))  
    'Y values 
    ActiveChart.FullSeriesCollection(bb).Values = ws.Range(Cells(aa, 2), Cells(aa + ruby(i, 5) - 1, 2))  
    'Choose color 
    ActiveChart.FullSeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
   'Choose color 
    ActiveChart.FullSeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
    aa = aa + ruby(i, 5) + 5 
Next i 
aa = 4 
For i = 1 To ruby(0, 1) 
    bb = bb + 1 
    'Adding derivative part 
    ActiveChart.SeriesCollection.NewSeries 'Add new chart 
    'Add the name of the series 
    ActiveChart.FullSeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7)  
    'X values 
    ActiveChart.FullSeriesCollection(bb).XValues = ws.Range(Cells(aa, 1), Cells(aa + ruby(i, 5) - 1, 1))  
   'Y values 
    ActiveChart.FullSeriesCollection(bb).Values = ws.Range(Cells(aa, 3), Cells(aa + ruby(i, 5) - 1, 3))  
   'Choose color 
    ActiveChart.FullSeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
    'Choose color 
    ActiveChart.FullSeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
    aa = aa + ruby(i, 5) + 5 
Next i 
 
'For editing graph 
ActiveChart.HasTitle = True 'Add title 
ActiveChart.ChartTitle.Text = ws.Name 'Title name 
ActiveChart.ChartTitle.Font.Size = 20 'Font size 
ActiveChart.Axes(xlCategory, xlPrimary).HasTitle = True 'Add X-axis title 
ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Text = "Time (hrs)" 'X name 
'font size 
ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 14  
ActiveChart.Axes(xlCategory, xlPrimary).ScaleType = xlScaleLogarithmic 'Log scale 
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ActiveChart.Axes(xlCategory, xlPrimary).HasMajorGridlines = True 
ActiveChart.Axes(xlValue, xlPrimary).HasTitle = True 'Add Y-axis title 
ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Text = "Pressure and Derivative (psi)" 'Y name 
'font size 
ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 14  
ActiveChart.Axes(xlValue, xlPrimary).ScaleType = xlScaleLogarithmic 'Log scale 
ActiveChart.Axes(xlValue, xlPrimary).HasMajorGridlines = True 
'Small number so y axis crosses the x at 0.000000001 
ActiveChart.Axes(xlCategory, xlPrimary).CrossesAt = 0.0000000001  
'Automatically changes the y axis cross to minimum value 
ActiveChart.Axes(xlCategory, xlPrimary).Crosses = xlCustom  
ActiveChart.SetElement (msoElementLegendRight) 
 
ThisWorkbook.Unprotect 
ActiveChart.Location Where:=xlLocationAsNewSheet, Name:="Der_" & ws.Name 
 
'Creating superposition graph 
ws.Activate 
ActiveSheet.Shapes.AddChart2(240, xlXYScatterLinesNoMarkers).Select 
 
aa = 4 
For i = 1 To 4 
    ActiveChart.FullSeriesCollection(aa).Delete 'since is creating a graph with predefined series 
    aa = aa - 1 
Next i 
 
'Adding the superposition time 
aa = 4: bb = 0 
For i = 1 To ruby(0, 1) 
    bb = bb + 1 
    ActiveChart.SeriesCollection.NewSeries 'Add new series 
   'Add the name of the series 
    ActiveChart.FullSeriesCollection(bb).Name = topaz(ruby(i, 1), ruby(i, 2), 7)  
   'X values 
    ActiveChart.FullSeriesCollection(bb).XValues = ws.Range(Cells(aa, 4), Cells(aa + ruby(i, 5) - 1, 4))  
   'Y values 
    ActiveChart.FullSeriesCollection(bb).Values = ws.Range(Cells(aa, 5), Cells(aa + ruby(i, 5) - 1, 5))  
    'Choose color 
    ActiveChart.FullSeriesCollection(bb).Border.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
   'Choose color 
    ActiveChart.FullSeriesCollection(bb).Interior.Color = RGB(quartz(i, 3), quartz(i, 4), quartz(i, 5))  
    aa = aa + ruby(i, 5) + 5 
Next i 
 
'For editing graph 
ActiveChart.HasTitle = True 'Add title 
ActiveChart.ChartTitle.Text = ws.Name 'Title name 
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ActiveChart.ChartTitle.Font.Size = 20 'Font size 
ActiveChart.Axes(xlCategory, xlPrimary).HasTitle = True 'Add X-axis title 
ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Text = "Superposition time" 'X name 
'font size 
ActiveChart.Axes(xlCategory, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 14  
ActiveChart.Axes(xlCategory, xlPrimary).HasMajorGridlines = True 
ActiveChart.Axes(xlValue, xlPrimary).HasTitle = True 'Add Y-axis title 
ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Text = "Pressure (psi)" 'Y name 
'font size 
ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Format.TextFrame2.TextRange.Font.Size = 14 
ActiveChart.Axes(xlValue, xlPrimary).HasMajorGridlines = True 
'Small number so y axis crosses the x at 0.000000001 
ActiveChart.Axes(xlCategory, xlPrimary).CrossesAt = -100 
'Automatically changes the y axis cross to minimum value 
ActiveChart.Axes(xlCategory, xlPrimary).Crosses = xlCustom  
ActiveChart.SetElement (msoElementLegendRight) 
 
Application.ScreenUpdating = True 'For faster operations 
ThisWorkbook.Unprotect 
ActiveChart.Location Where:=xlLocationAsNewSheet, Name:="Spt_" & ws.Name 
 
End Sub 
 
 

10.18 Summaries 
 

This subroutine creates a new sheet and named it “Summary” and will print on it the results from 

the flow capacity, permeability and skin factor calculated in the plotter userform. 

Public Sub Summaries() 
 
Dim aa As Byte, tempo As String, maxy As Byte, bb As Integer 
 
Application.ScreenUpdating = False 'Faster calculations 
tempo = ws.Name 
bb = Len(tempo) 
aa = Val(Right(tempo, bb - 9)) 'to extract the number 
With ThisWorkbook 
    Set ws = .Sheets.Add(After:=.Sheets(.Sheets.Count)) 
    tempo = "Summary_" & aa 
    .Unprotect 
    ws.Name = tempo 
End With 
ws.Activate 
 
bb = 0 
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For i = 1 To ruby(0, 1) 
    'To print results from ruby matrix 
    ws.Cells(2 + bb, 2) = topaz(ruby(i, 1), ruby(i, 2), 7) 'Print name of the test 
    ws.Cells(3 + bb, 2) = "Kh (mD*ft)" 
    ws.Cells(4 + bb, 2) = "K (mD)" 
    ws.Cells(5 + bb, 2) = "Skin" 
    ws.Cells(2 + bb, 3) = "Semilog method" 
    ws.Cells(3 + bb, 3) = ruby(i, 6) 'Kh semi 
    ws.Cells(4 + bb, 3) = ruby(i, 7) 'K semi 
    ws.Cells(5 + bb, 3) = ruby(i, 8) 'S semi 
    ws.Cells(2 + bb, 4) = "Derivative method" 
    ws.Cells(3 + bb, 4) = ruby(i, 9) 'Kh der 
    ws.Cells(4 + bb, 4) = ruby(i, 10) 'K der 
    ws.Cells(5 + bb, 4) = ruby(i, 11) 'S der 
    ws.Cells(2 + bb, 5) = "Average" 
    ws.Cells(3 + bb, 5) = (ruby(i, 6) + ruby(i, 9)) / 2 'Average kh 
    ws.Cells(4 + bb, 5) = (ruby(i, 7) + ruby(i, 10)) / 2 'Average k 
    ws.Cells(5 + bb, 5) = (ruby(i, 8) + ruby(i, 11)) / 2 'Average s 
    ws.Cells(2 + bb, 6) = "Smoother" 
    ws.Cells(3 + bb, 6) = emerald(i, 0, 1) 'Final smoother 
    Columns("B:D").EntireColumn.AutoFit 
    bb = bb + 6 
Next i 
Application.ScreenUpdating = True 'Faster calculations 
End Sub 
 

10.19 Cleaning 
 

This subroutine will reset the main sheets in the excel file as a new project by deleting all the data 

contained but not the summaries, analysis and graphs from previous projects. 

 

Public Sub Cleaning() 
 
Dim aa As Byte, bb As Integer 
 
Application.ScreenUpdating = False 'Faster calculations 
Worksheets(1).Unprotect Password:="crystal" 
Worksheets(1).Cells(3, 4).Locked = False 
Worksheets(1).Cells(3, 4).Interior.ColorIndex = 6 
Worksheets(1).Shapes(1).TextFrame.Characters.Text = "Generate" 
Worksheets(2).Unprotect Password:="crystal" 
Worksheets(3).Unprotect Password:="crystal" 
 
ww = Worksheets(1).Cells(3, 4) 
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aa = 0 
For i = 1 To ww 
    Worksheets(2).Cells(2, 1 + 4 * aa).Clear 
    Worksheets(2).Cells(3, 1 + 4 * aa).Clear 
    Worksheets(2).Cells(3, 2 + 4 * aa).Clear 
    Worksheets(3).Cells(2, 1 + 4 * aa).Clear 
    Worksheets(3).Cells(3, 1 + 4 * aa).Clear 
    Worksheets(3).Cells(3, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(8, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(9, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(9, 3 + 4 * aa).Clear 
    Worksheets(1).Cells(10, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(10, 3 + 4 * aa).Clear 
    Worksheets(1).Cells(11, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(11, 3 + 4 * aa).Clear 
    Worksheets(1).Cells(12, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(12, 3 + 4 * aa).Clear 
    Worksheets(1).Cells(13, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(13, 3 + 4 * aa).Clear 
    Worksheets(1).Cells(14, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(14, 3 + 4 * aa).Clear 
    Worksheets(1).Cells(15, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(15, 3 + 4 * aa).Clear 
    Worksheets(1).Cells(17, 2 + 4 * aa).Clear 
    Worksheets(1).Cells(17, 3 + 4 * aa).Clear 
    bb = Worksheets(2).Cells(Rows.Count, 1 + 4 * aa).End(xlUp).row 'Last active cell in the column 
    For j = 4 To bb 
        Worksheets(2).Cells(j, 1 + 4 * aa).Clear 'Clear date 
        Worksheets(2).Cells(j, 2 + 4 * aa).Clear 'Clear pressure 
    Next j 
    bb = Worksheets(3).Cells(Rows.Count, 1 + 4 * aa).End(xlUp).row 'Last active cell in the column 
    For j = 4 To bb 
        Worksheets(3).Cells(j, 1 + 4 * aa).Clear 'Clear date 
        Worksheets(3).Cells(j, 2 + 4 * aa).Clear 'Clear rate 
        Worksheets(3).Cells(j, 3 + 4 * aa).Clear 'clear secondary name test 
    Next j 
    Worksheets(2).Columns(1 + 4 * aa).Resize(, 2).Locked = True 
    Worksheets(3).Columns(1 + 4 * aa).Resize(, 2).Locked = True 
    aa = aa + 1 
Next i 
 
Worksheets(1).Cells(3, 4) = 1 
Worksheets(2).Columns(1).Resize(, 2).Locked = False 
Worksheets(2).Cells(2, 1) = "Well 1" 
Worksheets(2).Cells(2, 1).Locked = True 
Worksheets(2).Cells(3, 1) = "Date" 
Worksheets(2).Cells(3, 1).Locked = True 
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Worksheets(2).Cells(3, 2) = "Pressure (psia)" 
Worksheets(2).Cells(3, 2).WrapText = True 
Worksheets(2).Cells(3, 2).Locked = True 
Worksheets(3).Columns(1).Resize(, 2).Locked = False 
Worksheets(3).Cells(2, 1) = "Well 1" 
Worksheets(3).Cells(2, 1).Locked = True 
Worksheets(3).Cells(3, 1) = "Time@end" 
Worksheets(3).Cells(3, 1).Locked = True 
Worksheets(3).Cells(3, 2) = "Liquid rate (STB/D)" 
Worksheets(3).Cells(3, 2).WrapText = True 
Worksheets(3).Cells(3, 2).Locked = True 
Worksheets(1).Cells(8, 2) = "Well 1" 
Worksheets(1).Cells(9, 2) = "Pi(psia)" 
Worksheets(1).Cells(9, 3).Interior.ColorIndex = 6 
Worksheets(1).Cells(9, 3).Locked = False 
Worksheets(1).Cells(10, 2) = "Bo(RB/STB)" 
Worksheets(1).Cells(10, 3).Interior.ColorIndex = 6 
Worksheets(1).Cells(10, 3).Locked = False 
Worksheets(1).Cells(11, 2) = "Viscosity(cp)" 
Worksheets(1).Cells(11, 3).Interior.ColorIndex = 6 
Worksheets(1).Cells(11, 3).Locked = False 
Worksheets(1).Cells(12, 2) = "rw(ft)" 
Worksheets(1).Cells(12, 3).Interior.ColorIndex = 6 
Worksheets(1).Cells(12, 3).Locked = False 
Worksheets(1).Cells(13, 2) = "h(ft)" 
Worksheets(1).Cells(13, 3).Interior.ColorIndex = 6 
Worksheets(1).Cells(13, 3).Locked = False 
Worksheets(1).Cells(14, 2) = "Porosity" 
Worksheets(1).Cells(14, 3).Interior.ColorIndex = 6 
Worksheets(1).Cells(14, 3).Locked = False 
Worksheets(1).Cells(15, 2) = "Ct(psia-1)" 
Worksheets(1).Cells(15, 3).Interior.ColorIndex = 6 
Worksheets(1).Cells(15, 3).Locked = False 
 
Worksheets(1).Protect Password:="crystal", AllowFormattingCells:=True, 
AllowFormattingColumns:=True, AllowFormattingRows:=True 
Worksheets(2).Protect Password:="crystal", AllowFormattingCells:=True, 
AllowFormattingColumns:=True, AllowFormattingRows:=True 
Worksheets(3).Protect Password:="crystal", AllowFormattingCells:=True, 
AllowFormattingColumns:=True, AllowFormattingRows:=True 
Application.ScreenUpdating = True 'Faster calculations 
 
End Sub 


