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Abstract

Theoretical and experimental work has shown that fluid mobilities can depend on flow
configuration, and are typically lower when fluids flow in opposite directions as compared
to when they flow in the same direction. Such phenomena are referred to as fluid-fluid
interactions or viscous coupling. Conventional modelling of two-phase flow, using sim-
ple, saturation dependent relative permeabilities is not able to account for variations in
fluid mobilities with flow mode. As measurements are commonly taken during co-current
flow, relative permeabilities have to be adjusted manually in order to correctly predict oil
recovery in settings that are not purely co-current.

In this work we consider a generalized theory for multiphase flow in porous media based
on mixture theory, where fluid mobilities follow from water-rock, oil-rock and water-oil
interaction terms defined in momentum equations. The generalized model gives rise to
relative permeability expressions that are dependent on the assumed flow mode, as well
as fluid viscosities and saturations. By assuming counter-current flow, a new expression
for generalized counter-current relative permeabilities has been derived.

The generalized relative permeability expressions have been parametrized against ex-
perimental results available in the literature. Further, the expressions have been incor-
porated into analytical solutions for forced and spontaneous imbibition (SI), to study the
effect of viscous coupling during purely co-current and purely counter-current flow. For
the case of forced imbibition (FI), the classical Buckley-Leverett theory is used to calculate
the solution, while for counter-current SI, the theory by McWhorter and Sunada (1990)
using integral solutions is applied.

If viscous coupling is included, the generalized relative permeability expressions indi-
cate that counter-current values are always lower as compared to co-current. In addition,
counter-current end point values have been found to be dependent on the viscosity of the
opposite phase. Consequently, also the end point values are lower for counter-current flow.

Increased viscous coupling in the FI case led to a more effective displacement, seen as
an increase in front saturation and average water saturation behind the front. The same
effect was seen for increased water viscosity. Increased oil viscosity led to a less effective
process and earlier breakthrough.

For the counter-current SI case, increased viscous coupling resulted in a slowdown of

the process, and thus of the oil recovery rate. Increases in viscosities had similar effects. A

conventional model will also predict a slowdown of the process for higher viscosities. How-

ever, when the generalized model is applied, increased viscosities will additionally depress

both oil and water relative permeabilities, resulting in a more significant decrease in imbi-

bition rate. The water-wet media considered here showed higher sensitivity to changes in

the water viscosity as compared to oil viscosity. The analytical solutions showed excellent

matches to numerical solutions of both a conventional model and the generalized model

based on mixture theory. The results suggest that the newly derived relative permeability

expressions can be used to construct valid functions if the flow mode is changed from co-

to counter-current.
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Chapter 1

Introduction

1.1 Background

Multiphase flow in porous media is often modelled in terms of relative permeabilities.
The common assumption is that the relative permeability is a function of saturation
only. Consequently, this standard approach does not account for the role of fluid-
fluid interactions between the flowing phases, referred to as viscous coupling. Theory
and experimental observations indicate that fluids travelling in opposite directions
(counter-currently) experience greater flow resistance and hence lower mobilities
compared to when they both travel in the same direction (co-currently) (Babchin
et al., 1998; Bentsen and Manai, 1992; Bourbiaux and Kalaydjian, 1990; Dullien and
Dong, 1996). Similar phenomena are induced by variations in fluid velocities and
viscosities (Armstrong et al., 2017; Ehrlich, 1993; Wang et al., 2006; Odeh, 1959;
Nejad et al., 2011). The relative permeabilities measured in the lab are typically
from co-current displacements (Geffen et al., 1951; Richardson et al., 1952), and
due to the mentioned phenomena, may not transfer directly to counter-current flow
settings.

Bourbiaux and Kalaydjian (1990) found that predicting counter-current oil recov-
ery using relative permeabilities determined in a co-current setting led to overestima-
tion of both recovery rate and ultimate oil recovery. Other researcher have demon-
strated similar results (Pooladi-Darvish and Firoozabadi, 1998, 2000; Standnes,
2004; Karimaie et al., 2006). This is particularly relevant when scaling up lab
results for prediction of oil recovery from naturally fractured reservoirs, where both
co- and counter-current spontaneous imbibition can be important recovery mecha-
nisms (Pooladi-Darvish and Firoozabadi, 2000; Mason and Morrow, 2013; Andersen
et al., 2014).

While, there is substantial evidence indicating that multiphase flow modelling
is more complex than proposed by the simple saturation dependent relative perme-
ability, there is still no agreed upon method of predicting relative permeabilities if
the flow mode is changed.
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1.2 Objectives

In this work, a generalized model for multiphase flow based on mixture theory is
applied. The model gives fluid mobilities that depend on water-rock, oil-rock and
water-oil interaction terms, defined in momentum equations. The generalized model
gives rise to relative permeability expressions that are dependent on the assumed
flow mode. The aim of this work is to extend analytical solutions for forced and
spontaneous imbibition to account for viscous coupling phenomena by including such
flow mode dependent relative permeabilities. The main objectives of this thesis are
as follows:

� Based on the generalized model, derive co- and counter-current relative perme-
ability expressions that can be used in analytical solutions for counter-current
SI. The counter-current expressions are derived using a novel approach, that
has not been explored in previous works relating to the generalized model.

� Investigate the role of the fluid-fluid interaction term and fluid viscosities on
generalized co- and counter-current relative permeabilities.

� Implement analytical solutions for co-current forced imbibition and counter-
current spontaneous imbibition accounting for viscous coupling using MAT-
LAB.

� Investigate the role of viscous coupling during co- and counter-current flow
by varying input parameters used in the generalized model, such as fluid vis-
cosities and the fluid-fluid interaction parameter that controls the strength of
interaction.

� Compare analytical results for the counter-current SI case to numerical so-
lutions of a conventional model and the generalized model. The numerical
solution of the generalized model has previously been shown to be able to
account for viscous coupling effects as the flow mode is changed.
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Chapter 2

Basic theory

2.1 Relative permeability

Relative permeability is one of the key concept for describing multiphase flow through
porous media. Extension of Darcy’s law (Darcy, 1856) to two-phase flow by incor-
poration of relative permeabilities was presented by Muskat et al. (1937). The phase
fluxes for a one-dimensional oil-water system using their approach can be written in
the following way:

ui = −kkri
µi

∂pi
∂x

, (i = o, w). (2.1)

Here, ui is phase flux or Darcy velocity of phase i, k is the absolute permeability
of the porous medium, kri is the relative permeability to phase i, µi is the phase
viscosity and ∂pi/∂x is the pressure gradient in the x-direction. The relative perme-
ability can be viewed as the fraction of the absolute permeability that is available
for the phase in question. Hence, a higher value for relative permeability will equate
to lower flow resistance and higher flow rate.

2.1.1 Measuring relative permeability

Experimental methods for determination of relative permeability can be divided into
two main types: steady-state and unsteady-state. The most common and simplest
methods are based on steady-state flow, and all follow essentially the same procedure
(Bear, 2013): Oil and water is injected at a certain ratio at the inflow end of a core
sample. Enough time is then allowed to pass, such that a steady flow has developed,
where the inflow ratio equals the outflow ratio. The pressures in each phase at
both ends is measured, and the flow rates and saturations are determined. Relative
permeabilities for oil and water at the current saturations can then be calculated
from Eq. (2.1). By varying the ratio of oil and water that is injected, a set of points
is obtained, which can be used to construct complete relative permeability curves.

Unsteady-state methods are significantly quicker, due to not requiring saturation
equilibrium to be reached, but also more mathematically complicated, involving the
use of Buckley-Leverett-theory to compute relative permeabilities (Anderson, 1987;
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Honarpour and Mahmood, 1988; Richardson et al., 1952). Exact experimental pro-
cedures will not be covered in any more detail, as it is not directly relevant for this
thesis. However, one key aspect regarding measurements of relative permeability
is very much relevant for this work. This is the notion that standard measure-
ments are taken during co-current flow, where both fluids are flowing in the same
direction. Hence, resulting relative permeabilities might not be representative for
settings where counter-current flow is significant. This will be covered in more detail
in Chapter 3, where the concept of viscous coupling is explained.

2.1.2 Simple relative permeability models

Several mathematical models for correlation of relative permeabilities have been
presented through the years. In this work, a simple power-law model is applied to
describe relative permeabilities as functions of phase saturations. The relations are
as follows:

krw = kmaxrw (Sw)nw , (2.2)

kro = kmaxro (1− Sw)no , (2.3)

where kmaxrw and kmaxro represent end point relative permeabilities for water and oil,
respectively, Sw is normalized water saturation, and nw and no are saturation expo-
nents for water and oil. The saturation exponents control the shape of the relative
permeability curves, and can thus be used for curve fitting. Simple models of this
form are often referred to as modified Brooks-Corey expressions, due to their simi-
larity to expressions presented by Brooks and Corey (1964). In this thesis, relative
permeabilities of the form shown in (2.2) and (2.3) will be referred to as ”Corey-
type”.
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2.1.3 Impact of wettability

Wettability describes the tendency of one fluid to adhere to a solid surface in the
presence of other immiscible fluids (Craig, 1971). In a strongly water-wet porous
media, which is what will be considered in this work, the solid is preferentially coated
by water. This affects the distribution of fluids in the pore space, where water will
occupy the pore walls and the smaller pores, while oil can be found in the middle of
larger pores. This difference in fluid distribution is illustrated in Fig. 2.1.

Figure 2.1: Illustration of fluid distribution in the pore space of water-wet, mixed-wet and oil-wet
rock. From (Abdallah et al., 2007).

At water saturations near the residual water saturation, the water has little
effect on the flow of oil, and the oil effective permeability can approach the absolute
permeability. Conversely, near residual oil saturation, the oil that is trapped in
larger pores can block the flow of water. This leads to a low relative (and effective)
permeability for water at the end point. Fig. 2.2 illustrates the characteristic
differences seen in relative permeabilities for water-wet and oil-wet porous media.

Figure 2.2: Illustration of typical relative permeability curves for (a): water-wet porous media,
(b): oil-wet porous media. From Anderson (1987).
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For the oil-wet case, the situation is reversed. As water saturation increases,
the water will start to fill the larger pores, thus blocking the flow of oil. As the
oil approaches resiudual oil saturation, it will have little effect on the flow of water.
Consequently, the end point relative permeability for water is much higher for the
oil-wet case (Anderson, 1987).

2.2 Capillary pressure

Capillary pressure is another phenomenon that is related to differences in adhesive
forces between fluids and the solid porous medium. It can be defined as the pressure
difference across a curved interface between two immiscible fluids. The capillary
pressure, pc, is given by the Laplace equation:

pc = po − pw = σow

( 1

R1

+
1

R2

)
, (2.4)

where po and pw are pressures in the oil and water phases, respectively, σow is
interfacial tension between oil and water, R1 and R2 are principal radii of curvature.
If a capillary tube is used as a simplified representation of a single pore in a porous
medium, the capillary pressure can be expressed as

pc = po − pw =
2σow · cos θ

Rtube

, (2.5)

where θ represents the contact angle at the interface, which is related to the wet-
tability of the system and Rtube is the radius of the capillary tube, as illustrated
in Fig. 2.3. The figure illustrates a case where the capillary tube is preferentially
water-wet. Due to the difference in adhesive forces between the two fluids and the
solid surface, water is able to rise above the water level outside of the tube. This also
happens in a real world reservoir, and thus affects the fluid saturation distribution
in a transition zone above the free water level (for a water-wet reservoir).

Figure 2.3: Illustration of oil/water interface in a capillary tube.
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2.2.1 Spontaneous imbibition

A displacement process where the wetting phase saturation is increasing is referred
to as an imbibition process. When water displaces oil due to capillary pressure, the
process is called spontaneous imbibition (SI). Fig. 2.4 illustrates a capillary pressure
curve for a water-wet porous medium, such as the one that will be considered in
this thesis. The key characteristic to take note of is that for a water-wet medium,
the capillary pressure is assumed positive for the whole saturation range where oil
is mobile (i.e. from swr to 1− sor) (Schmid and Geiger, 2013).

Figure 2.4: Illustration of capillary pressure curve for imbibition in a water-wet porous medium.

2.2.2 Capillary pressure correlation

Several mathematical expressions exist for correlating capillary pressure curves as
functions of water saturation. In this work it is assumed that the capillary pressure
follows the Leverett J-function scaling (Bear, 2013; Leverett, 1941):

pc = σow

√
φ

k
J(Sw), (2.6)

where σow is interfacial tension between oil and water, φ is porosity, k is the absolute
permeability of the porous medium and J(Sw) is a dimensionless capillary pressure

7



function. The advantage of using a model of this type is that it can be used to cor-
relate capillary pressure for rocks with similar pore structure and wettability, but
different permeability. For the dimensionless function J(Sw), the following expres-
sion by Andersen et al. (2014, 2017a) is used :

J(Sw) =
a1

1 + k1Sw
− a2

1 + k2(1− Sw)
+ c, (2.7)

where a1, a2, k1, k2 > 0 and c are curve-fitting parameters. The same expression was
applied in other works which relate closely to this thesis (Andersen et al., 2019; Qiao
et al., 2018).
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2.3 1D mass balance equations

Consider a control volume V of the reservoir of length ∆x and cross sectional area
Ac, such that V = Ac∆x, as illustrated in Fig 2.5. Let u(x, t) represent fluid flux,

Figure 2.5: Illustration of mass flow into and out of the control volume V.

φ(x, t) porosity and ρ(x, t) fluid density. Assume also that water is injected from the
left hand side of the reservoir, resulting in rightward flow. Let t represent a point in
time and ∆t a small time increment. Mass flow of water into V at position x during
a time interval ∆t is then given by

Acuw(x)ρw(x)∆t, (2.8)

where the product Acuw represents volumetric flow rate. Mass flow of water out of
V at position x+ ∆x is similarly given by

Acuw(x+ ∆x)ρw(x+ ∆x)∆t. (2.9)

The change in water mass in V is equal to

[uw(x)ρw(x)− uw(x+ ∆x)ρw(x+ ∆x)]Ac∆t (2.10)

Change of water mass can also be expressed as

V [φ(t+ ∆t)ρw(t+ ∆t)Sw(t+ ∆t)− φ(t)ρw(t)Sw(t)] (2.11)

Here we assume an incompressible reservoir and incompressible fluids. From these
assumptions, it follows that densities and porosity are constant values, independent

9



of position and time. Using this, the expression in (2.10) simplifies to:

[uw(x)− uw(x+ ∆x)]ρwAc∆t (2.12)

Similarly, (2.11) is simplified:

ρwφV [Sw(t+ ∆t)− Sw(t)] (2.13)

The expressions both represent the change of mass in the control volume V , and
must be equal.

[uw(x)− uw(x+ ∆x)]ρwAc∆t = ρwφV [Sw(t+ ∆t)− Sw(t)] (2.14)

Dividing both sides by ρwAc∆x∆t, and noting that V = Ac∆x, gives:

uw(x)− uw(x+ ∆x)

∆x
=
φ[Sw(t+ ∆t)− Sw(t)]

∆t
(2.15)

We then recall the definition of a derivative:

f ′ = lim
h→0

f(x+ h)− f(x)

h
. (2.16)

In this definition f is an arbitrary, smooth function and h is a small jump along the
x-axis. Letting ∆x and ∆t in (2.15) approach zero, and by applying the definition of
a derivative, the differential equation for mass conservation (for water in this case)
is obtained:

∂uw
∂x

= −φ∂Sw
∂t

(2.17)

Using the same method for mass conservation of oil yields the corresponding oil
equation:

∂uo
∂x

= −φ∂So
∂t

(2.18)
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Chapter 3

Generalized modeling of two-phase
flow.

3.1 Limitations of the conventional Darcy model.

The conventional way of modelling two-phase flow in porous media, as described
by extension of Darcy’s law in Eq. (2.1), relies on the major assumption that a
fluids relative permeability is only a function of its own phase saturation. Conse-
quently, conventional relative permeability curves cannot account for different types
of flow configurations, as they do not include the velocity or pressure of the other
phase. The relative permeability that results from experimental measurements can
be thought of as a system specific representation of several different effects governing
two-phase flow, all lumped into one number. Hence, there is no account for varia-
tion in interaction between the fluids or between fluid and rock if the flow setting
is changed from co-current to counter-current, or some combination of the two. To
get around this limitation and ensure applicability of lab results, measurements of
relative permeabilities should ideally be performed under conditions similar to those
expected in the reservoir.

3.2 Viscous coupling.

The term viscous coupling refers to fluid-fluid interactions during multi-phase flow
in porous media. Yuster (1951) first mentioned such phenomena after theoretical
analysis of two-phase flow in capillary tubes. He found that relative permeabilities
should not only depend on saturations, but also on the viscosity ratio of the fluid
phases. Subsequent research has indicated that relative permeabilities are depen-
dant on saturation, capillary number and viscosity ratio (Armstrong et al., 2017;
Avraam and Payatakes, 1995a; Ehrlich, 1993). Additionally, experimental work by
Bourbiaux and Kalaydjian (1990), Bentsen and Manai (1992) and Dullien and Dong
(1996) has suggested that the relative flow direction of the phases is important to
take into consideration.
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Figure 3.1: Oil recovery for simulations using co-current and counter-current relative permeabil-
ities compared to experimental result GVB-3. From Bourbiaux and Kalaydjian (1990).

Bourbiaux and Kalaydjian (1990) performed experiments on a natural, low per-
meability porous medium, representative of the matrix blocks in fractured reservoirs.
The material was strongly water-wet to ensure that capillary pressure served as a
driving force for spontaneous imbibition. Their experiments with counter-current
imbibition showed slower oil recovery, a smoother front and slightly lower ultimate
oil recovery when compared to those where the flow was mainly co-current. Ad-
ditionaly, they performed numerical simulations using relative permeability curves
based on a co-current imbibition experiment to simulate counter-current imbibition.
This resulted in overestimation of imbibition rate when compared to their counter-
current experiment, as can be seen in figure 3.1. In particular, the half-recovery time
was underestimated by about 25% when co-current curves were used. By modifying
the co-current relative permeabilities, they were able to match their counter-current
experimental result. They noted that a good match was obtained by decreasing oil
relative permeabilities by 60% of the co-current values, water (brine) relative per-
meabilities by 45% of their co-current values, or both by around 30%. The original
co-current curves and reduced curves that resulted in good prediction are shown in
Fig. 3.2.

Bentsen and Manai (1992) performed steady-state experiments involving two-
phase co- and counter-current flow in a 1-D, horizontal, unconsolidated porous
medium. Their measurements of saturation and pressure distribution along the core
were used to estimate relative permeability and capillary pressure curves for both
flow modes. The magnitude of a counter-current relative permeability at a given
saturation was found to always be less than that of a corresponding co-current rel-
ative permeability. For the wetting phase the relative difference was always greater
than 25%, while for the non-wetting phase it was always greater than 20%.

Several generalized equations that take into account fluid-fluid interactions have
been presented in the literature. The common feature that characterizes models
of this form is the incorporation of four mobility terms instead of the two used in
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Figure 3.2: Comparison between co-current relative permeability curves and reduced curves
used in simulation to match counter-current experiment GVB-3. From Bourbiaux and Kalaydjian
(1990).

conventional Darcy models. They can be expressed in the general form (Standnes
et al., 2017):

uw = −λww
∂pw
∂x
− λwo

∂po
∂x

(3.1)

uo = −λow
∂pw
∂x
− λoo

∂po
∂x

, (3.2)

where λij(i, j = w, o) are referred to as generalized phase mobilities. From this it
can be seen that the water flux is not only dependent on water mobility (λww) and
the pressure gradient in the water phase, but also on a cross-term mobility (λwo) and
the pressure gradient in the oil phase. Similarly, the oil flux includes a cross-term
mobility and the pressure gradient in the water phase.

Avraam and Payatakes (1995b) investigated the role of the cross-terms exper-
imentally in 2-D micro models in steady-state, co-current flow of water and oil.
They concluded that viscous coupling is important over broad ranges of wetting
phase saturation, capillary number and viscosity ratio. Dullien and Dong (1996)
measured cross-terms over wide water saturation ranges in sand packs using a fluid
system with viscosity ratio of unity. The values of the cross terms were found to
be significant, ranging from 10 to 35% of the value of the effective permeability to
water and from 5 to 15 % of the effective permeability to oil, respectively.
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3.3 Derivation of the model based on mixture the-

ory.

The generalized model that is applied to account for viscous coupling is based on
extension of the theory of mixtures to porous media (Bowen, 1980; Rajagopal and
Tao, 1995; Ambrosi and Preziosi, 2002). The idea behind the model is that the
pressure gradient over each fluid phase is related to friction between fluid and rock,
as well as drag between the fluids at the fluid-fluid interface. Detailed derivations of
the model and description of the numerical schemes can be found in previous works
by Standnes et al. (2017) and Qiao et al. (2018). They derived the model for 3-D
flow with gravity included. As the model is relatively new, and plays a key role for
this work, it is repeated here. The following is an outline of the generalized model in
its simplest form (no source term, no gravity), based on the work of Andersen et al.
(2019) Andersen et al. (2018). It is key to understanding the difference between the
numerical solutions used for comparison against the analytical solutions for counter-
current SI. The model is also the basis for the new generalized relative permeabilities
for counter-current SI that are derived in a later section.

1D mass balance equations for horizontal, incompressible transport of water and
oil are given by:

∂(φsi)

∂t
+
∂ui
∂x

= 0, (i = w, o) (3.3)

ui = φ(si − swr)vi, (3.4)

where φ is porosity, si fluid saturation, swr residual water saturation and vi is in-
terstitial fluid velocity. The latter equation expresses the relation between flux and
interstitial valocity in the mobile domain. For simplicity, an effective porosity is
introduced:

φe = φ(1− sor − swr) (3.5)

This allows us to write
ui = φeSivi, (i = w, o), (3.6)

Sw =
sw − swr

1− sor − swr
, (3.7)

where Sw is normalized. The saturations must add to unity due to conservation of
volume:

Sw + So = 1, (3.8)

and the capillary pressure relating the phase pressures is assumed:

pc = po − pw. (3.9)
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These equations are so far in line with conventional modeling using the extension
of Darcy’s law. For the generalized model the approach based on Darcy’s law is
replaced by a coupled momentum equation model. Ignoring inertial effects, as is
usual for creeping (slow) flow in porous media, the mechanical stress balance for a
fluid is given by (Ambrosi and Preziosi, 2002):

∂(Siσi)

∂x
+mi = 0 (i = w, o), (3.10)

where σi represents the Cauchy stress tensor and mi represents interaction forces
exerted on fluid i by the other constituents of the mixture. In 1-D, the standard
expression for the stress term is:

σi = −pi + τi (i = w, o), (3.11)

where τi represents viscous forces. In the following the contribution from τi is ignored
(τi = 0). The interaction forces mi are given by (Preziosi and Farina, 2002; Ambrosi
and Preziosi, 2002):

mw = pw
∂Sw
∂x
− Fow +Mwm (3.12)

mo = po
∂So
∂x

+ Fow +Mom, (3.13)

where Fow represents the drag force exerted by the water phase on the oil phase. The
oil must necessarily exert an equal and opposite force, −Fow, on the water phase.
The terms Mom and Mwm denote interaction forces between the fluids and the porous
media for oil and water, respectively. The terms pw∂Sw/∂x and po∂So/∂x represent
interfacial forces arising from an averaging process. The drag force is modeled as
(Preziosi and Farina, 2002; Ambrosi and Preziosi, 2002):

Fow = R(vw − vo). (3.14)

Thus, the force exerted between the fluids is related to the difference in intersti-
tial velocities through a fluid-fluid interaction term, R ≥ 0, which needs further
specification. Similarly, the force between a fluid and the matrix wall is expressed
as:

Mim = −Rivi (i = w, o), (3.15)

where the interaction terms Ri are assumed larger than or equal to zero (Ri ≥ 0).
Combination of Eqs. (3.10) through (3.15), where the chain rule is applied to Eq.
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(3.10) and τi = 0, results in:

Sw
∂pw
∂x

= −Rwvw +R(vo − vw) (3.16)

So
∂po
∂x

= −Rovw −R(vo − vw), (3.17)

where the right hand side of the equations represent matrix-fluid and fluid-fluid
interaction. Solving for the interstitial velocities and inserting these into (3.6),
yields:

uw = −λ̂ww
∂pw
∂x
− λ̂wo

∂po
∂x

, (3.18)

uo = −λ̂ow
∂pw
∂x
− λ̂oo

∂po
∂x

. (3.19)

A key observation here is that the expressions for the fluxes are of the form presented
in Eqs. (3.1) and (3.2), using generalized mobilities. If the capillary pressure relation
pc = po − pw is used we have:

uw = −(λ̂ww + λ̂wo)
∂pw
∂x
− λ̂wo

∂pc
∂x

, (3.20)

uo = −(λ̂ow + λ̂oo)
∂pw
∂x
− λ̂oo

∂pc
∂x

. (3.21)

With the following definitions for generalized diagonal and cross-term mobilities:

λ̂ww =
Sw

2(Ro +R)

RoRw +R(Ro +Rw)
φe, (3.22)

λ̂oo =
So

2(Rw +R)

RoRw +R(Ro +Rw)
φe, (3.23)

λ̂ow = λ̂wo =
SwSoR

RoRw +R(Ro +Rw)
φe. (3.24)

The following notation is defined for generalized phase mobilities λ̂w, λ̂o and total
mobility λ̂T :

λ̂w = λ̂ww + λ̂wo =
Sw

2Ro + SwR

RoRw +R(Ro +Rw)
φe, (3.25)
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λ̂o = λ̂ow + λ̂oo =
So

2Rw + SoR

RoRw +R(Ro +Rw)
φe, (3.26)

λ̂T = λ̂o + λ̂w =
Sw

2Ro + SoRw +R

RoRw +R(Ro +Rw)
φe. (3.27)

Here it is assumed that the fluid-fluid interaction terms (denoted Rwo when
water is acting on oil and Row when oil is acting on water) are equal, hence Rwo =
Row = R. This leads to equality of the cross-terms λ̂wo = λ̂ow, and implies validity
of Onsager’s reciprocal relationship (Onsager, 1931). Note that the hat notation
is used to signify that the mobilities (and later permeabilities) are expressed using
generalized interaction parameters. The terms R and Ri characterize the magnitude
of fluid-fluid and rock-fluid interaction. Typically, R should be proportional to the
product kSwSo to reflect that the term vanishes if one of the phase saturations is
zero. If R = 0 is used, with the interpretation that fluid-fluid interaction is zero, we
get the following phase fluxes:

uw = −Sw
2

Rw

φe
∂pw
∂x

, uo = −So
2

Ro

φe
∂po
∂x

. (3.28)

Notably, the fluid flux now only depends on its own saturation and pressure gradient,
in addition to the solid-fluid interaction term. This term can be chosen such that
the conventional model based on extension of Darcy’s law is regained.

By summing uw and uo given in Eqs. (3.20) and (3.21), and using the notation
introduced in Eqs. (3.25) - (3.27), the total flux can be expressed as:

uT = uw + uo = −λ̂T
∂pw
∂x
− λ̂o

∂pc
∂x

(3.29)

The water pressure gradient can be expressed as

∂pw
∂x

= − 1

λ̂T
uT − (1− f̂w)

∂pc
∂x

, (3.30)

where the generalized fractional flow function for water is

f̂w =
λ̂w

λ̂T
. (3.31)

Inserting Eq. (3.30) into Eqs. (3.20) and (3.21), along with the notation in Eqs.
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(3.25) - (3.27), the following is obtained:

uw = uT f̂w +W
∂pc
∂x

, uo = uT f̂o −W
∂pc
∂x

, (3.32)

with definitions:

f̂w =
λ̂w

λ̂T
=

Sw
2Ro + SwR

Sw
2Ro + So

2Rw +R
, (3.33)

W (Sw) = f̂wλ̂o − λ̂ow =
Sw

2So
2φe

Sw
2Ro + So

2Rw +R
. (3.34)

If the water flux from Eq. (3.32) is inserted into the conservation equation for water,
(3.3), we get:

∂(φsw)

∂t
= −∂(uT f̂w)

∂x
− ∂

∂x
(W

∂pc
∂x

). (3.35)

For comparison, the equation takes the following form when a conventional Darcy
model is used:

∂(φsw)

∂t
= −∂(uTfw)

∂x
− ∂

∂x
(fwλo

∂pc
∂x

). (3.36)

The key difference is the extra term −λ̂ow that is included in W for the generalized
model. Consequently, the generalized model has a built in capability of accounting
for the impact of viscous coupling when the flow setting changes from co- to counter-
current.

3.4 Specification of interaction terms.

Still, specification of the interaction terms R and Ri(i = w, o) is needed to obtain
explicit analytical expressions for the generalized phase mobilities. It should be
clear that the solid-fluid interaction terms Ri have to obey the relationship Ri ∝
µiφ/k in order to be consistent with conventional (Darcy) modeling of fluid flow in
porous media. The following relations for the interaction terms were included in
the generalized model to capture the interaction between fluids flowing in a porous
medium (Standnes et al., 2017; Standnes and Andersen, 2017; Qiao et al., 2018):

Rw = IwSw
αµw
k
φe, (3.37)

Ro = IoSw
βµw
k
φe, (3.38)
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R = ISwSo
µwµo
k

φe. (3.39)

Here, α and β are dimensionless exponents, the terms Iw and Io are dimensionless
coefficients that characterize the magnitude of solid-fluid interaction (friction), while
I is a coefficient with units of (Pa · s)−1, characterizing the magnitude of fluid-fluid
coupling.

3.5 Generalized relative permeabilities.

3.5.1 Co-current flow.

If we assume a co-current flow regime which is typical during standard coreflooding
experiments, a direct link between the generalized and conventional model can be
shown, assuming capillary end effects (Rapoport and Leas, 1953; Andersen et al.,
2017b) can be ignored. During coreflooding both phases are injected in the same
direction with the same pressure gradient, thus yielding:

uw = −λ̂w
∂p

∂x
= −(λ̂ww + λ̂ow)

∂p

∂x
, (3.40)

uo = −λ̂o
∂p

∂x
= −(λ̂ow + λ̂oo)

∂p

∂x
(3.41)

The generalized mobilities λ̂w and λ̂o then represent mobilities that would be mea-
sured in a co-current relative permeability measurement. Note that the proportion-
ality factor between ui and ∂pi/∂x should be −kkri/µi, where (i = w, o). Thus,
from these mobilities we can construct generalized relative permeabilities expressed
in terms of interaction term parameters:

k̂corw =
µw
k
λ̂w =

µw
k

(λ̂ww + λ̂ow) =
SwS

β−1
o Io + SwµwI

Sα−1w Sβ−1o IoIw + I(SαwµwIw + Sβo µoIo)
, (3.42)

k̂coro =
µo
k
λ̂o =

µo
k

(λ̂oo + λ̂ow) =
SoS

α−1
w Iw + SoµoI

Sα−1w Sβ−1o IoIw + I(SαwµwIw + Sβo µoIo)
. (3.43)

It is evident that the generalized relative permeabilities are not only functions of
saturations, but also depend on fluid viscosities when I > 0. Viscosity dependence
has been suggested previously by several authors (Yuster, 1951; Odeh, 1959; Lefeb-
vre du Prey, 1973; Nejad et al., 2011). The resulting relative permeability endpoints
are

k̂corw(Sw = 0) = 0, k̂corw(Sw = 1) =
1

Iw
, (3.44)
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k̂coro(Sw = 0) =
1

Io
, k̂coro(Sw = 1) = 0. (3.45)

Further, if the fluid-fluid interaction parameter I is zero, the relative permeabilities
simplify to Corey-type expressions:

k̂corw(I = 0) =
S2−α
w

Iw
, (3.46)

k̂coro(I = 0) =
S2−β
o

Io
, (3.47)

where α and β are related to the Corey exponents nw and no by:

α = 2− nw, β = 2− no. (3.48)

Andersen et al. (2019) and Qiao et al. (2018) showed that the generalized model is
able to account for variation in flow mode, by matching both co-current and counter-
current experiments using only generalized co-current relative permeabilities. They
matched the co-current relative permeabilities and capillary pressure curves reported
by Bourbiaux and Kalaydjian (1990), and were able to reproduce oil recovery for
both co-current and counter-current SI. Fig. 3.3 shows how the numerical solution
of the generalized model was able to capture the delay seen in the counter-current
experiment.

Figure 3.3: Comparison of numerical solutions of the generalized and conventional model with the
experimental work (Bourbiaux and Kalaydjian, 1990) for the counter-current SI case (experiment
GVB-3 in the original paper). From Qiao et al. (2018).
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3.5.2 Counter-current flow.

When the flow mode is changed to purely counter-current, due to conservation of
volume, we have fluxes of equal magnitude, but with opposite directions:

uw = −uo. (3.49)

In this section, eq. (3.49) is used to derive generalized mobilities and relative per-
meabilities for counter-current flow.

The fluxes can be expressed using generalized mobilities as in (3.18) and (3.19),
and we obtain:

−λ̂ww
∂pw
∂x
− λ̂ow

∂po
∂x

= λ̂ow
∂pw
∂x

+ λ̂oo
∂po
∂x

. (3.50)

The pressure gradients are separated:

−λ̂oo
∂po
∂x
− λ̂ow

∂po
∂x

= λ̂ow
∂pw
∂x

+ λ̂ww
∂pw
∂x

. (3.51)

Next, we express the pressure gradients relative to each other:

∂po
∂x

= −(λ̂ow + λ̂ww)

(λ̂oo + λ̂ow)

∂pw
∂x

, (3.52)

∂pw
∂x

= − (λ̂oo + λ̂ow)

(λ̂ow + λ̂ww)

∂po
∂x

(3.53)

The pressure gradients can now be inserted back into the flux relations. For brevity,
this is only shown here for the water flux, since the procedure is the same for the
oil flux. The water flux is given by:

uw = −λ̂ww
∂pw
∂x
− λ̂ow

∂po
∂x

(3.54)

The oil pressure gradient is replaced using eq. (3.52):

uw = −λ̂ww
∂pw
∂x
− λ̂ow

(
− (λ̂ow + λ̂ww)

(λ̂oo + λ̂ow)

∂pw
∂x

)
(3.55)

After some algebraic manipulation, we obtain the following expression for the water
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flux, now only expressed using the water pressure gradient:

uw = −(λ̂ww + λ̂ow)
[ λ̂ww

(λ̂ww + λ̂ow)
− λ̂ow

(λ̂oo + λ̂ow)

]∂pw
∂x

(3.56)

The corresponding oil flux in terms of the oil pressure gradient is:

uo = −(λ̂ow + λ̂oo)
[ λ̂oo

(λ̂ow + λ̂oo)
− λ̂ow

(λ̂ow + λ̂ww)

]∂po
∂x

(3.57)

If we now compare equations (3.56) and (3.57) to the co-current versions (3.40) and
(3.41), we see that they differ by the factor enclosed in square brackets. Further,
we again note that the proportionality factor between ui and ∂pi/∂x should be
−kkri/µi, where (i = w, o). This is used to obtain the following generalized relative
permeabilities for purely counter-current flow:

k̂courw =
µw
k

(λ̂ww + λ̂ow)
[ λ̂ww

(λ̂ww + λ̂ow)
− λ̂ow

(λ̂oo + λ̂ow)

]
, (3.58)

k̂couro =
µo
k

(λ̂ow + λ̂oo)
[ λ̂oo

(λ̂ow + λ̂oo)
− λ̂ow

(λ̂ow + λ̂ww)

]
. (3.59)

The key point here is that the counter current relative permeabilities are actually
the co-current relative permeabilities from eqs. (3.42) and (3.43), multiplied by the
factors in square brackets. The superscript cou is used for identification. Thus, we
can write:

k̂courw = k̂corw

[ λ̂ww

(λ̂ww + λ̂ow)
− λ̂ow

(λ̂oo + λ̂ow)

]
, (3.60)

k̂couro = k̂coro

[ λ̂oo

(λ̂ow + λ̂oo)
− λ̂ow

(λ̂ow + λ̂ww)

]
, (3.61)

where the square bracketed factors will be referred to as counter-current factors.
Finally, we apply the definitions of the mobility terms from eqs. (3.22) - (3.24) and
the definitions for the interaction terms Rw, Ro and R from eqs. (3.37) - (3.39). We
now get generalized relative permeabilities for counter-current flow, expressed using
interaction term parameters α, β, Iw, Io, I , µw and µo. The full expressions, after
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simplification, are as follows:

k̂courw =
SwS

β−1
o Io + SwµwI

Sα−1w Sβ−1o IoIw + I(SαwµwIw + Sβo µoIo)

·
[IoSβ−1o + ISwµw

IoS
β−1
o + Iµw

− ISwµo
IwSα−1w + Iµo

]
, (3.62)

k̂couro =
SoS

α−1
w Iw + SoµoI

Sα−1w Sβ−1o IoIw + I(SαwµwIw + Sβo µoIo)

·
[IwSα−1w + ISoµo
IwSα−1w + Iµo

− ISoµw

IoS
β−1
o + Iµw

]
. (3.63)

3.5.3 Counter-current end points

For I > 0, the following relative permeability end points are obtained for water:

k̂courw (Sw = 0) = 0,

k̂courw (Sw = 1) =
1

Iw

[ Iw
Iw + Iµo

]
=

1

Iw + Iµo
.

(3.64)

Similarly for oil, we get:

k̂couro (Sw = 0) =
1

Io

[ Io
Io + Iµw

]
=

1

Io + Iµw
,

k̂couro (Sw = 1) = 0.

(3.65)

Thus, when the fluid-fluid interaction term is non-zero, the counter-current end-
points will be lower than the co-current end points due to the extra terms in the
denominators of Eqs. (3.64) and (3.65). For the water relative permeability, the
magnitude of this difference depends on the values of the solid-fluid interaction
term, Iw, the fluid-fluid interaction term I and the viscosity of the oil phase, µo.
Similarly, for the oil relative permeability, the magnitude of the difference depends
on the values of the solid-fluid interaction term, Io, the fluid-fluid interaction term
I and the viscosity of the water phase, µw. For I = 0, the counter-current factors
become unity for all saturations, and there is no difference between k̂cori and k̂couri
(i = w, o). The behaviour of the relative permeability curves for different input
parameters is studied further in the first part of the results section. The generalized
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relative permeabilities will be implemented in the analytical solution for counter-
current SI and compared to numerical solutions of both the conventional model and
the generalized model.

3.5.4 Relation between co- and counter-current generalized
relative permeabilities

From Eqs. (3.62) and (3.63), it is seen that the factors enclosed in square brackets
relate the counter-current relative permeability to the co-current relative permeabil-
ity. For convenience and clarity, the relations can be rewritten as:

Cw =
k̂courw

k̂corw
=
[IoSβ−1o + ISwµw

IoS
β−1
o + Iµw

− ISwµo
IwSα−1w + Iµo

]
, (3.66)

Co =
k̂couro

k̂coro
=
[IwSα−1w + ISoµo
IwSα−1w + Iµo

− ISoµw

IoS
β−1
o + Iµw

]
, (3.67)

where Cw and Co have been introduced to denote the counter-current factors for
water and oil, respectively.
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Chapter 4

Analytical solutions

4.1 Solution for 1-D, co-current flow (Buckley-

Leverett).

The analytical solution for a two-phase, 1-D, co-current flow scenario was first pre-
sented by Buckley and Leverett (1942). It’s validity is conditioned on a set of
assumptions concerning the porous media and fluids involved. The assumptions are
as follows:

� Horizontal, homogeneous reservoir of length L and cross sectional area Ac.

� Incompressible and immiscible fluids, oil and water.

� Incompressible reservoir with porosity φ and permeability k.

� No capillary pressure. Flow driven by external pressure. This also implies
that the pressure gradient is equal in both phases.

� Reservoir is initially filled with oil (So(x, t = 0) = 1).

� Water injected with rate Q at one end, production at the other end (pure
co-current flow).

� Impact of gravity can be ignored. This assumption holds if Q is sufficiently
high.

Incompressibility of the reservoir and fluids implies that the total flow rate will be
controlled by and equal to Q at any point along the reservoir. Darcy velocity is
defined as u = Q/Ac. The extension of Darcy’s law to two-phase flow is applied.
Darcy velocities or fluid fluxes for oil and water are given by

uo = −kkro
µo

∂p

∂x
, (4.1)
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uw = −kkrw
µw

∂p

∂x
, (4.2)

where kro and krw are relative permeabilities for oil and water respectively, and µo
and µw are oil and water viscosities. Viscosities are assumed constant, while relative
permeabilities are functions of fluid saturations So and Sw. The total flux uT follows
from the constraint So + Sw = 1:

uT = uo + uw =
Q

Ac
. (4.3)

4.1.1 Deriving the Buckley-Leverett equation.

The fluxes uw and uo above can be inserted into the conservation equations for water
and oil, resulting in the following:

∂

∂x
(
kkrw
µw

∂p

∂x
) = φ

∂Sw
∂t

, (4.4)

∂

∂x
(
kkro
µo

∂p

∂x
) = φ

∂So
∂t

. (4.5)

Water and oil mobilities are defined by:

λw =
kkrw
µw

, (4.6)

λo =
kkro
µo

. (4.7)

Rewriting the mass balance equations using mobilities gives:

∂

∂x
(λw

∂p

∂x
) = φ

∂Sw
∂t

, (4.8)

∂

∂x
(λo

∂p

∂x
) = φ

∂So
∂t

. (4.9)

Equations (4.8) and (4.9) are added, resulting in:

∂

∂x
[(λw + λo)

∂p

∂x
] = φ(

∂Sw
∂t

+
∂So
∂t

). (4.10)
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The time derivatives on the right hand side cancel out due to the saturation con-
straint Sw + So = 1. Further, the mobilities can be expressed using total mobility
λT = λw + λo. Thus, (4.10) becomes:

∂

∂x
(λT

∂p

∂x
) = 0 (4.11)

The total flux uT = Q/Ac can now be expressed in terms of the total mobility:

uT = uw + uo = −(λw + λo)
∂p

∂x
= −λT

∂p

∂x
(4.12)

From the above, an expression for the pressure gradient is obtained:

∂p

∂x
= −uT

λT
. (4.13)

This is used to eliminate the pressure term in the mass balance equation for water.
Combining (4.8) and (4.13) yields:

∂

∂x
(−uT

λw
λT

) = φ
∂Sw
∂t

. (4.14)

Since uT is constant due to constant injection rate Q, and introducing the water
fractional flow function f , Eq. (4.14) can be rewritten as the Buckley-Leverett
equation

φ
∂Sw
∂t

+ uT
∂f

∂x
= 0, (4.15)

where f is defined by

f =
λw
λT

=

kkrw
µw

kkrw
µw

+ kkro
µo

. (4.16)

Alternatively, dividing through by kkrw/µw, f can be expressed as

f =
1

1 + kroµw
krwµo

= (1 +
kroµw
krwµo

)−1. (4.17)

4.1.2 Frontal advance equation

Since
Sw = Sw(x, t), (4.18)
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a change in saturation can be expressed as

dSw =
∂Sw
∂x

dx+
∂Sw
∂t

dt. (4.19)

The idea of the Buckley-Leverett solution is to follow a plane of constant saturation
as it travels along the reservoir. Expressing constant saturation as

∂Sw
∂x

dx+
∂Sw
∂t

dt = 0 (4.20)

and substituting this into the BL equation (4.15) yields:

dx

dt
=
uT
φ

df

dSw
(4.21)

Integration in time and considering the fractional flow derivative at a specific satu-
ration gives an expression for the position of that saturation:

xSw =
uT t

φ
(
df

dSw
)Sw (4.22)

where xSw is the position of the saturation plane and df/dSw is the speed at which
the plane of constant saturation moves along the reservoir.

4.1.3 Dimensionless variables

For convenience we can introduce dimensionless position xD = x/L and dimension-
less time tD = uT t/φL. The dimensionless time is equal to the number of injected
pore volumes. Eq. (4.22) on dimensionless form then becomes:

xD = (
df

dSw
)tD. (4.23)

From here on, the subscript D is dropped, but note that dimensionless position and
time is still used. This implies that 0 ≤ x ≤ 1 and t ≥ 0.

4.1.4 Physically correct saturation profile

We denote dimensionless time time corresponding to real time t by T . Application
of the frontal advance equation and plotting water saturation against distance gives
an impossible, unphysical solution. For the illustration of this phenomenon, simple
Corey-type expressions have been used to generate relative permeability curves for
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computation of the fractional flow function. For this simple example we use the
values given in Table 4.1 and consider the case where T=0.4.

Table 4.1: Input for simple Corey-type relative permeability curves.

Parameter Value
krw,max 1
kro,max 1
nw 2
no 2
µw/µo 0.5
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Figure 4.1: Top: Corey-type relative permeabilities and resulting fractional flow function. Bot-
tom: Unphysical saturation profile at T=0.4 and the derivative of the fractional flow function.

Fig. 4.1 shows how simply moving every saturation along according to xSw =
f ′(Sw)T , results in an impossible saturation profile. Each position along the x-axis
corresponds to two different water saturations. This is a consequence of the S-shaped
fractional flow curve and the resulting shape of the derivative f ′(S). To obtain
a physically correct solution, a shock front is introduced, and an area balancing
argument is applied. Referring to Fig. 4.2, due to mass conservation, the area of
the unphysical profile (A1) has to be equal to the area of the profile where a shock
front has been introduced (A2). The areas can be calculated by integrating the
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saturation profile over the saturation range:

A1 =

∫ 1

0

f ′(S)TdS = T, (4.24)

A2 = Sfxf +

∫ 1

Sf

f ′(S)TdS = Sff
′(Sf )T + (1− f(Sf ))T, (4.25)

where Sf is the shock front saturation and xf is the position of the shock. By
equating the areas, we can obtain the following relation:

f ′(Sf ) =
f(Sf )

Sf
. (4.26)

The front saturation can now be found from defining a function

g(S) = f ′(Sf )Sf − f(Sf ) (4.27)

and finding where g(S) = 0. The front saturation can also be found graphically
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Figure 4.2: Area balancing to determine shock front saturation.

from the tangent of the fractional flow curve that passes through (0,0). Similarly,
the speed of any saturation S > Sf can be found from the derivative of the fractional
flow curve at that specific water saturation.

The position of the front at any time is found by multiplying the speed of the
front with the time that has elapsed:

xf = f ′(Sf )T, (4.28)
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and the profile behind the front is found similarly by using the speed f ′(S):

x = f ′(S)T. (4.29)

Thus the correct saturation profile is finally obtained and shown in Fig. 4.3. Lastly,
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Figure 4.3: Correct saturation profile for T=0.4.

we can find the breakthrough time, Tbt, when the front reaches the end of the
reservoir at x = 1 from:

Tbt =
1

f ′(Sf )
. (4.30)
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4.2 Solution for counter-current spontaneous im-

bibition

While the Buckley-Leverett solution for forced imbibition has been known for a long
time, and is well established, a general analytical solution for SI has been missing
up until fairly recently. The Lucas-Washburn equation (Lucas, 1918; Washburn,
1921) predicted that the process of spontaneous imbibition scales with

√
t in time.

Despite this early insight and substantial research efforts into SI and scaling groups
spanning over 90 years, the exact nature of SI time scaling was not sufficiently un-
derstood until Schmid and Geiger (2012, 2013) published a general scaling group
based on previous work by McWhorter and Sunada (1990). In the meantime, several
analytical solutions and scaling groups were presented. They all came with addi-
tional assumptions that meant lack of generality and limited applicability. Schmid
and Geiger (2012) gave a comprehensive overview of non-general solutions and scal-
ing groups with inherent limitations. Examples of limiting assumptions are specific
functional forms for relative permeabilities and capillary pressure (Fokas and Yort-
sos, 1982; Philip, 1960; Chen, 1988; Kashchiev and Firoozabadi, 2003) or piston-like
displacement (Li et al., 2003).

4.2.1 Relevant equations

We now consider 1D, horizontal flow of oil and water in a homogeneous porous
medium with capillary pressure included and no gravity term. The previously de-
rived conservation equation for water is repeated for convenience:

φ
∂sw
∂t

+
∂uw
∂x

= 0. (4.31)

The water flux, uw, can be written (Dake, 1983; Helmig, 1997):

uw = fwuT + λofw
dpc
dsw

∂sw
∂x

, (4.32)

where fw is the same fractional flow function that was used in the Buckley-Leverett
solution:

fw = (1 +
kroµw
krwµo

)−1 (4.33)

For the counter-current case, we have uw = −uo which leads to uT = 0. Hence, the
first term in eq. (4.32) is zero for this case. Combination of (4.31) and (4.32) then
yields:

φ
∂sw
∂t

=
∂

∂x

[
D(sw)

∂sw
∂x

]
, (4.34)
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where the capillary diffusion coefficient D(sw) has been introduced. It has units of
length squared over time and is defined as follows:

D(sw) = −λofw
dpc
dsw

. (4.35)

The capillary diffusion coefficient describes the capillary-hydraulic properties of the
porous media-fluid system, and thus controls the flow that results from the capillary
pressure gradient. Mathematically rigorous derivations of solutions to eq. (4.34) can
be found in the works of McWhorter and Sunada (1990) and Schmid et al. (2011). It
is outside the scope of this work, where the focus is on implementing the analytical
solutions for comparison against numerical solutions.

In their original paper, McWhorter and Sunada (1990) derived solutions for
co- and counter-current displacement of non-wetting and wetting phases. They also
included solutions for radial flow. In the following, the main results that are relevant
for the case considered in this thesis (i.e. purely counter-current displacement of a
non-wetting phase) are presented, and the procedure for solving the equations is
outlined.

4.2.2 Solution in integral form

For our horizontal reservoir with one end open to imbibition we consider the following
boundary and initial conditions:

sw(x = 0, t) = s0, (4.36)

sw(∞, t) = si, (4.37)

sw(x, 0) = si, (4.38)

where the use of∞ signifies that the solution was derived for an infinite medium, and
thus for a finite medium the solution will only be valid until it reaches the closed end
boundary. The saturation condition at the inlet, s0, represents the maximum water
saturation that can be reached during spontaneous imbibition. In our case this will
be equal to 1 − sor, since for a strongly water-wet material, we assume a positive
capillary pressure for the whole saturation range where oil is mobile. The initial
water saturation, si will be equal to the irreducible or residual water saturation,
swr. McWhorter and Sunada (1990) made no limiting assumptions regarding the
physics or on the capillary-hydraulic properties of the system that are contained in
D(sw). Instead they specified an extra boundary condition that describes the inflow
at the open end as

u0 = uw(x = 0, t) = At−1/2, (4.39)

where A is referred to as the inflow parameter, and for a given system is a constant
that describes the system’s ability to imbibe water. In short, the solution was found
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through a variable transformation of the form η = xt−1/2. This made it possible to
rewrite the problem as a non-linear first order differential equation, which is solvable
using an iterative procedure (March et al., 2016).

The inflow parameter A can then be found from

A2 =
φ

2

∫ s0

si

(sw − si)D(sw)

F (sw)
dsw, (4.40)

and is related to the total volume of water imbibed , Qw, by

Qw(t) =

∫ t

0

uw(0, t)dt = 2At1/2. (4.41)

F (sw) represents a fractional flow function for counter-current spontaneous imbibi-
tion and can be regarded as the capillary counterpart to fw(sw) (Schmid and Geiger,
2013; March et al., 2016). It is defined as:

F (x, t) =
uw(x, t)

u0(t)
, (4.42)

meaning it describes the ratio of water flux at some x, t to the water flux at the inlet,
u0 (i.e. the maximum water flux). F (sw) can be obtained by solving the implicit
integral equation

F (sw) = 1−
[ ∫ s0

sw

(β − sw)D(β)

F (β)
dβ
]
·
[ ∫ s0

si

(sw − si)D(sw)

F (sw)
dsw

]−1
, (4.43)

where the integration variable β represents water saturations and has only been used
to avoid confusion with sw in the first integral. When F (sw) is known, its derivative
can be found from

F ′(sw) =
[ ∫ s0

sw

D(β)

F (β)
dβ
]
·
[ ∫ s0

si

(sw − si)D(sw)

F (sw)
dsw

]−1
, (4.44)

or alternatively, since F (sw) is known, the derivative can be found by numerical
differentiation. The solution to Eq. (4.34) with the specified boundary conditions
(Eqs. (4.36) - (4.38)) can then be written in terms of the inflow parameter, A, and
the derivative of F (sw), together with the condition on uw(0, t) (McWhorter and
Sunada, 1990):

x(sw, t) =
2A

φ
F ′(sw)t1/2 =

Qw(t)

φ
F ′(sw). (4.45)
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This can be used to construct saturation profiles and to calculate oil recovery, since
the volume of produced oil must be equal to the total amount of imbibed water in
the purely counter-current process considered here.

4.2.3 Computing F (sw) iteratively

Since F (sw) given by Eq. (4.43) depends on itself, it has to be computed using
an iterative procedure as outlined in this section (McWhorter and Sunada, 1990;
Nooruddin and Blunt, 2016). The first step is to calculate the capillary diffusion
coefficient, D(sw) from known relative permeabilities and capillary pressure curves,
as it is part of the implicit integrals to be solved. The iterative computations are
then initiated by assuming a starting value of F (sw) = 1 for all values of sw. Using
this first guess, the integrals can be computed, and an updated F (sw) is found.
The updated F (sw) can then be inserted into the integrals to compute the next
iteration. The iterative process continues until the difference between the updated
and previous value satisfies a specified tolerance condition for convergence.

4.2.4 Time t*, when the solution becomes invalid

As mentioned previously, the analytical solution is only valid as long as the sat-
uration front has not reached the closed end boundary. The time when the front
reaches the end of the core is denoted t∗ and is obtained by setting x(sw, t) = L in
Eq. (4.45), where L is the length of the core/reservoir in question (March et al.,
2016):

t∗ =
( Lφ

2AF ′(swr)

)2
. (4.46)
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Chapter 5

Results and discussion

5.1 Generalized mobility constraints

Under the assumption made for counter-current flow, uw = −uo, we get the following
phase fluxes:

uw = −(λ̂ww + λ̂ow)
[ λ̂ww

(λ̂ww + λ̂ow)
− λ̂ow

(λ̂oo + λ̂ow)

]∂pw
∂x

(5.1)

uo = −(λ̂oo + λ̂ow)
[ λ̂oo

(λ̂ow + λ̂oo)
− λ̂ow

(λ̂ow + λ̂ww)

]∂po
∂x

. (5.2)

The counter-current factor (in square brackets) has a maximum value of unity
when λ̂ow = 0, that is when there is no fluid-fluid interaction. It is however not
directly apparent if the factor can become negative. This would happen if the
second term is larger than the first, and can be expressed as the following inequality
(using the water expression):

λ̂ow

(λ̂oo + λ̂ow)
>

λ̂ww

(λ̂ww + λ̂ow)
(5.3)

If this inequality holds, it would mean that for some combination of inputs, we would
get negative mobilities and therefore negative relative permeabilities. Standnes et al.
(2017) found that certain values of the input parameters resulted in negative values
for relative permeability. This was particularly the case when I was large and one of
the phases had a low saturation, making it sensitive to viscous coupling. While they
worked with the same generalized model, the assumption made for counter-current
flow was pressure gradients of equal magnitude, but opposite directions. In this
work we assume equal, but opposite phase fluxes, a key distinction. Nevertheless,
their results motivate the check performed here.

36



Continuing, we multiply by the denominators and simplify:

λ̂ow(λ̂ww + λ̂ow) > λ̂ww(λ̂oo + λ̂ow) (5.4)

λ̂owλ̂ww + λ̂2ow > λ̂wwλ̂oo + λ̂wwλ̂ow (5.5)

λ̂2ow > λ̂wwλ̂oo (5.6)

The generalized mobility terms are defined as:

λ̂ww =
Sw

2(Ro +R)

RoRw +R(Ro +Rw)
φe, (5.7)

λ̂oo =
So

2(Rw +R)

RoRw +R(Ro +Rw)
φe, (5.8)

λ̂wo = λ̂ow =
SwSoR

RoRw +R(Ro +Rw)
φe. (5.9)

Inserting this into the inequality:

(
SwSoR

RoRw +R(Ro +Rw)
φe)

2 >
Sw

2(Ro +R)

RoRw +R(Ro +Rw)
φe

So
2(Rw +R)

RoRw +R(Ro +Rw)
φe

(5.10)
This simplifies greatly to:

R2 > (Ro +R)(Rw +R) (5.11)

R2 > RoRw +RoR +RwR +R2 (5.12)

0 > RoRw +RoR +RwR (5.13)

Since all the terms on the right hand side of (5.13) are defined to be larger
than or equal to zero, the inequality does not hold. Thus, the conclusion is that
the counter-current scaling factor can not be negative under the assumption for
counter-current flow that is applied in this work.
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5.2 Base case for input parameters

The numerical solutions were proven by Qiao et al. (2018) by matching the exper-
imental results of Bourbiaux and Kalaydjian (1990). To establish a base case for
comparisons, the input parameters from Qiao et al. (2018) have been applied, hence
we can be assured that the base input parameters are in fact realistic values. The
only exception is the parameters used to generate the capillary pressure curve. This
was changed due to quicker computation of the numerical solutions. For this reason,
and due to the fact that gravity is ignored in this work, the results are not directly
comparable to their previous work, which also included gravity.

The parameters for the base case are given in table 5.1, and the capillary pressure
curves are plotted in Fig. 5.1 for comparison. Unless otherwise is indicated, these
input parameters are assumed.

Table 5.1: Input parameters for the base case considered for counter-current SI.

Parameter Value Parameter Value
L 0.29 m Iw 23.26
φ 0.233 Io 2.15
swr 0.4 I 3500 (Pa · s)−1
sor 0.425 α -0.2
µw 1.2 mPa · s β 1.5
µo 1.5 mPa · s a1 0.56
k 118 mD a2 0.66
σ 15.8 mN/m k1 1.25

k2 0.08
c 0.55

Co-current and counter-current relative permeabilities for the base case are plot-
ted in Fig. 5.2. There is a significant difference between the curves. Both end points
have been reduced, as suggested by Eqs. (3.64) and (3.65). For a better illustration
of the differences, the counter-current factors have been plotted in Fig. 5.3. Inter-
estingly, and not obvious from Eqs. (3.62) and (3.63) , the water and oil factors
are equal. Consequently, for a given saturation, the co-current relative permeabil-
ities for both oil and water are scaled down by the same factor when we assume
counter-current flow. For the base case inputs, the factors plot approximately on a
straight line, with a higher reduction in permeability (i.e. lower factor) at low water
saturations.
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Figure 5.1: Comparison of capillary pressure curves. Blue: This work. Magenta: Qiao et al.
(2018), matched to measurements from Bourbiaux and Kalaydjian (1990).
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Figure 5.2: Comparison of generalized co-current and counter-current relative permeability curves
for the base case. Input parameters are given in table 5.1. Left: linear scale, right: log-scale.
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Figure 5.3: Counter-current factors Cw and Co, as given by Eqs. (3.66) and (3.67) for the base
case.

5.3 Effect of input parameters on relative perme-

abilities

This section focuses specifically on the newly derived generalized relative permeabil-
ity curves. Input parameters are varied to investigate the role of each parameter
on the resulting curves. We focus on the fluid-fluid interaction parameter I that
controls viscous coupling, as well as the fluid viscosities µw and µo, as these have a
direct physical interpretation.

5.3.1 Fluid-fluid interaction parameter

The fluid-fluid interaction parameter I controls the magnitude of viscous coupling,
and increasing it should in theory result in a larger difference between co- and
counter-current relative permeabilities. This is due to the idea that viscous coupling
is more important when the fluids flow in opposite directions. From Fig. 5.4 we
can see that this is exactly what happens. The co-current oil curve (blue) changes
curvature and is decreased as I increases. The co-current water curve (red), however,
increases with increased I. We can interpret this as follows: In a co-current flow,
increasing I would lead to a deceleration of oil and an acceleration of the water. We
also note that for the co-current curves there is no change in end points, which is in
line with the equations. Plots of the counter-current factors reveal that as I takes on
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larger values, the difference between co- and counter-current relative permeabilities
is indeed increased, and notably more significantly at lower water saturations.
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Figure 5.4: Top row: Relative permeabilities for I = 100, I = 1000, I = 3500 (base case)
and I = 10000. I has units of (Pa · s)−1. Middle row: Same as top, linear scale. Bottom row:
Corresponding counter-current factors.
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5.3.2 Water viscosity

Fig. 5.5 shows the effect of increasing water viscosity by factors of 2, 10 and 100
relative to the base case. The following trends are observed for larger values of
µw: Co-current oil relative permeability is decreased significantly. Co-current water
relative permeability is increased at low water saturation. The differences between
co- and counter-current relative permeabilities are again more significant at lower
water saturations (i.e. the counter-current factors are lower). The end point for the
counter-current oil curve decreases with increasing water viscosity, in line with Eq.
(3.65), while there is no effect on the end point for water. There is, however, still a
difference between the co-current and counter-current end points for water due to a
non-zero I.
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Figure 5.5: Comparison of relative permeabilities and counter-current factors for increasing water
viscosity. From left to right: µw from base case (used as reference), 2xµw, 10xµw and 100x µw.
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5.3.3 Oil viscosity

We use the same approach as for water viscosity to study the effect of changing oil
viscosity. Relative permeability curves that result from increasing oil viscosity by
factors of 2, 10 and 100 relative to the base case are shown in Fig. 5.6.
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Figure 5.6: Comparison of relative permeabilities and counter-current factors for increasing oil
viscosity. From left to right: µo from base case (used as reference), 2xµo, 10xµo and 100x µo.

For the co-current oil relative permeability, we see an increase across the whole
saturation range as oil viscosity increases. At the extreme case of 100 times the base
viscosity, we actually observe values that are slightly higher than the end point value
for oil. Similar results, although not as extreme were seen in the work of Andersen
et al. (2019). They used a lower value for the fluid-fluid term (I=2500) and the
saturation exponents were α = 0.0, β = 1.0, which could explain the difference. As
with any correlation, there could be other sets of parameters that would produce

43



good match to the original experimental results.
The behaviour seen for the co-current oil curve does not match results by Wang

et al. (2006), who found that both oil and water relative permeability shifted to
lower values as oil viscosity increased. It is possible that certain values of the
saturation exponents α and β should be avoided. In particular, the combination
of β = 1.5 with high oil viscosity produces a questionable looking co-current oil
curve. This corresponds to a Corey-exponent of no = 0.5, whereas a typical value
would be no > 1. While relative permeability curves showing inflection points have
been observed (Muskat et al., 1937; Anderson, 1987; Honarpour et al., 1996), the
behaviour seen here seems rather extreme, and is possibly a result of a too large
value for the saturation exponent, β. This has not been explored in further detail
in this work, as the focus has been on the fluid-fluid interaction term and the fluid
viscosities.

The counter-current oil curve looks to be relatively unaffected by changes in oil
viscosity. The co-current water curve shows a decrease as oil viscosity increases, as
does the counter-current curve. A new behaviour is observed for the counter-current
factors, where we now see progressively lower factors at high water saturations as
oil viscosity is increased.

Further, it is interesting to note that the counter-current factors Cw and Co,
which relate the co- and counter-current curves, are not constants, but vary with
water saturation for a given set of input parameters (if I 6= 0). Thus, the expres-
sions derived here indicate a more complex relationship between co- and counter-
current relative permeabilities than what was suggested by Bourbiaux and Kalay-
djian (1990). As mentioned earlier, they suggested decreasing the oil relative per-
meabilities by 60% of the co-current values, water relative permeabilities by 45%
of their co-current values, or both by around 30%. All of these approaches are
essentially just scaling the co-current curves by a constant.

Viscosity-dependent end points for the counter-current curves is in line with the
results obtained by Standnes et al. (2017), however their expressions also included
the residual saturation of the opposite phase in a non-trivial way. Their expressions
also led to viscosity dependent end points for co-current relative permeabilities,
whereas in this work, the co-current end points are only dependent on the solid-
fluid interaction terms Iw and Io. Variation in co-current end point values with
viscosity were also observed experimentally by Nejad et al. (2011) and Odeh (1959).

The general observation is that when viscous coupling is included (i.e. I 6= 0),
counter-current relative permeabilities are always lower than the corresponding co-
current values for a given set of input parameters. Hence, we have agreement with
the results of previous researchers who found that fluids experience greater flow
resistance, thus lower mobilities when travelling in opposite directions (Babchin
et al., 1998; Bentsen and Manai, 1992; Bourbiaux and Kalaydjian, 1990; Dullien
and Dong, 1996).
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5.4 Forced imbibition (Buckley-Leverett)

5.4.1 Results with base case parameters

In this section, the effect of viscous coupling and variations in fluid viscosities are
studied for the simple Buckley-Leverett case concerning forced imbibition. The
assumptions for the system are those given previously in the description of the
solution (Section 4.1). Since this is a purely co-current flow setting, the generalized
co-current relative permeabilities are used. The base case (Table 5.1) then represents
a system where the end point mobility ratio is much lower than unity, typically
referred to as favourable. Hence, the water will push the oil in front of it in a
piston-like manner, with a sharp saturation jump from Sw = 0 in the unswept
region to Sw = 1 behind the front. As can be seen from Fig. 5.7, there is no S-shape
on the fractional flow function, and as a consequence df/dS is increasing over the
whole saturation range. The saturation profile is shown for T = 0.5, corresponding
to injection of 0.5 PV (pore volumes) and a recovery factor, RF = 0.5.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
Relative Permeability

Normalized Water Saturation

kr
, f

ra
ct

io
n

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Fractional Flow Function

Normalized Water Saturation

f(
S

)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
df/dS and g

Normalized Water Saturation

V
al

ue
s

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Saturation Profile

Dimensionless Distance

N
or

m
al

iz
ed

 W
at

er
 S

at
ur

at
io

n

df/dS
g=(df/dS)*S−f(S)

k
rw
co

k
ro
co

Figure 5.7: Top left: Generalized co-current relative permeabilities for the base case input pa-
rameters. Top right: The corresponding fractional flow function. Bottom left: Saturation profile
at T=0.5 (0.5 PV’s injected). Bottom right: The derivative of the fractional flow function, df/dS
and g, both increasing over the whole saturation range.
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In order to see differences in saturation profiles and oil recovery, we need to
consider cases that do not result in piston-like displacements. If we were dealing
with simple Corey-type relative permeability expressions, where there is no viscosity
dependence, this could be achieved through increasing oil viscosity. A typical result
for such a case is presented in Fig. 5.8, where parameters listed in table 5.2 were used.
Since the fluid-fluid interaction parameter I was set to zero, the relative permeability
expressions become Corey-type with water and oil exponents nw = no = 2:

k̂corw =
S2−α
w

Iw
, k̂coro =

S2−β
o

Io
. (5.14)

Table 5.2: Input parameters for demonstration of standard responses in a BL-case.

Parameter Value Multiplication factors
Iw 23.26 -
Io 2.15 -
I 0 -
α 0 -
β 0 -
µw 1.2 mPa · s -
µo 1.5 mPa · s 1, 5, 10, 50
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Figure 5.8: Illustration of typical response for increases in oil viscosity from a base of 1.5 mPa · s
by factors of 5, 10, 50. Saturation profiles are plotted for the same T=0.5 PV. Input parameters
from Table 5.2 have been used.

We see that as oil viscosity increases, the displacement becomes more inefficient,
seen as a decrease in the shock front saturation and an advance in the shock front
position (earlier breakthrough). This behaviour is standard and expected.
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Table 5.3: Input parameters for increased oil viscosity by a factor of 50 from the base case.

Parameter Value Multiplication factors
Iw 23.26 -
Io 2.15 -
I 3500 -
α -0.2 -
β 1.5 -
µw 1.2 mPa · s -
µo 1.5 mPa · s 50
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Figure 5.9: Unphysical saturation profile at T=0.5 PV. Result of increasing oil viscosity by a
factor of 50 relative to the base case with other parameters unchanged.

However, for the viscosity dependant generalized relative permeabilities we have
from the base case, changing the oil viscosity also affects the relative permeability
curves. Fig. 5.9 presents the results that are produced when increasing oil viscosity
by a factor of 50, relative to the base case. Clearly, the saturation profile is problem-
atic and non-physical. The strange shape of the saturation profile for saturations
above the front saturation is caused by the shape of the fractional flow function.
This is more visible from the plot of df/dS, where we see that the derivative starts
increasing again at approximately Sw > 0.8. The root cause is likely the shape of
the oil relative permeability curve. Here we again have a case with β = 1.5 and high
oil viscosity producing questionable results. There seems to be two plausible solu-
tions: Either β = 1.5 is too high and should be avoided during matching, as alluded
to in the previous section. Alternatively, the unphysical saturation profile should
be modified by constructing a second front behind the shock front using an area

47



balancing argument. The former option should probably be explored first, however
it has not be covered in this work.

Hence, in an effort to obtain results that are interpretable, the oil saturation
exponent, β, was changed to zero. For a case where I = 0, this corresponds to a
more typical Corey exponent of no = 2.

5.4.2 Results with β = 0

After lowering the oil saturation exponent β, we get results that appear to be more
reasonable. Fig. 5.10 shows the impact of increasing oil viscosity for a case where
the fluid-fluid interaction parameter is non-zero. The interpretation is that there
should be exchange of momentum between the phases, where the faster moving phase
should get slowed down and the slower moving phase should speed up. Hence, we
expect to see that water experiences larger flow resistance and shows less tendency
to bypass the oil.

Table 5.4: Input parameters for saturation profiles with non-zero I and for increasing oil viscosi-
ties.

Parameter Value Multiplication factors
Iw 23.26 -
Io 2.15 -
I 3500 -
α -0.2 -
β 0 -
µw 1.2 mPa · s -
µo 1.5 mPa · s 1, 5, 10, 50
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Figure 5.10: Comparison of saturation profiles at T=0.5 PV and fractional flow functions. Result
of increasing oil viscosity by factors of 5, 10, 50 with parameters given in Table 5.4.
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The saturation profiles presented in Fig. 5.10 are distinctly different from those
that resulted from Corey-type relative permeabilities and I = 0 (Fig. 5.8). In
particular, we notice that the curvature of the profiles behind the shock front is
opposite. Thus, when we assume viscous coupling is important (i.e. non-zero I), we
get a more efficient displacement with increased shock front saturation and higher
average saturation behind the front due to the change in profile curvature. These
results are therefore in agreement with the theory of momentum exchange at the
fluid-fluid interface.

Increasing the water viscosity will bring us towards a piston-like displacement,
in which case there is not much insight to be had. Plots of this has not been
included. Instead we can look at what happens if we keep a high oil viscosity while
increasing the fluid-fluid interaction parameter. Fig. 5.11 presents results where the
oil viscosity was set to 50 times the base case value and I was varied between 0 and
35000. Also here we see that increased viscous coupling leads to a more efficient
displacement by increasing the front height and changing the curvature of the profile
behind the shock.

Table 5.5: Input parameters for saturation profiles with varying I and high oil viscosity.

Parameter Value Multiplication factors
Iw 23.26 -
Io 2.15 -
I 3500 0, 1, 5, 10
α -0.2 -
β 0 -
µw 1.2 mPa · s -
µo 1.5 mPa · s 50
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Figure 5.11: Comparison of saturation profiles at T=0.5 PV and fractional flow functions. Result
of increasing I at constant, high oil viscosity. Parameters given in Table 5.5.
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5.5 Counter-current spontaneous imbibition

In this section analytical solutions for counter-current SI are compared to numerical
solutions of the conventional and generalized model.
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Figure 5.12: Top: Saturation profiles for t=10, 50 and 100 hours for the base case. Note
the extended x-axis for t=100 hours to illustrate the difference between analytical and numerical
solutions. Bottom: Oil recovery for the four solutions of the base case. Analytical solutions match
the numerical solutions in the valid time range.

Fig. 5.12 displays the saturation profiles and oil recovery plots for the four
different solutions considered in this work. That is, analytical solutions with co- and
counter-current generalized relative permeabilities and numerical solutions of the
conventional and generalized model. Excellent matches have been obtained, where
the numerical solution of the conventional model matches the analytical solution
with co-current relative permeabilities, and the numerical solution of the generalized
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model matches the analytical solution with counter-current relative permeabilities.
Notice that the x-axis has been extended for t=100 hours to illustrate the difference
between the numerical and analytical solutions after the fronts have reached the
end of the core. If we look at the saturation profiles at t=50 hours, we see that
the analytical solution with co-current relative permeabilities has passed the end of
the core and is therefore strictly no longer valid. However, looking at the plot of
oil recovery, the solutions seem to match up until approximately 60 hours, where
the numerical solution starts dropping off. This will be the same for the analytical
solution with counter-current relative permeabilities, but the divergence from the
numerical solution will come later due to the imbibition process being slower.
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Figure 5.13: Top left: Comparison of fractional flow functions for the analytical solutions with
generalized co- and counter-current relative permeabilities. Top right: dF/dS vs. normalized water
saturation. Bottom: The capillary diffusion coefficient, D, for both sets of relative permeabilities.
Larger values when co-current curves are used indicate higher imbibition rate.
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5.5.1 Effect of the fluid-fluid interaction parameter

To investigate the impact of increased coupling, saturation profiles at a time equal
to 20 hours have been plotted for increasing values of the fluid-fluid interaction
parameter I. The time t = 20h was chosen as both analytical solutions are still
valid at this time for the inputs given in the base case (Table 5.1). That is, the
normalized position of the saturation front is still less than unity for both cases.
Fig. 5.14 shows numerical and analytical saturation profiles for I = 3500, I = 7000
and I = 35000, corresponding to the base case and an increase by factors of 2 and
10, respectively.
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Figure 5.14: Comparison of saturation profiles at t=20 hours. The fluid-fluid interaction param-
eter I is increased from the base case value of 3500 by factors 2 and 10. Left: Numerical solution
of the generalized model and analytical solutions using generalized counter-current relative per-
meabilities. Right: Numerical solution of the conventional model and analytical solutions using
generalized co-current relative permeabilities.

We first note the great match between numerical and analytical solutions for all
the values tested here. Secondly, we see that the behaviour of the saturation profiles
differ distinctly between the conventional and the generalized solution. For the
conventional solution and the matching analytical solution with co-current relative
permeabilities we see that increased fluid-fluid interaction leads to a slowdown of
the process over most of the mobile saturation range. However, for low saturations
(Sw < 0.15), the front is actually faster for higher values of I. From Fig. 5.13 we
notice that the values of dF/dS at low water saturations are higher when co-current
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relative permeabilities are used. Since the position of each saturation depends on
the derivative of the fractional flow function, the phenomenon must be caused by
changes to the shape of dF/dS (i.e. higher values at low water saturations). The
difference in the shape of the derivative curves also explains the more stretched out
profiles of the conventional solutions.

For the numerical solution of the generalized model and the matching analyt-
ical solution with counter-current relative permeabilities, we have a more uniform
slowdown of the imbibition process as the viscous coupling parameter is increased.

5.5.2 Effect of water viscosity

Saturation profiles are again plotted for t = 20h in Fig. 5.15, where we now look at
the effect of increasing water viscosity. The base case is plotted for reference, along
with solutions where the water viscosity has been increased by factors of 2 and 10.
By using the same factors it is also possible to compare the impact of water viscosity
against the impact of the fluid-fluid interaction parameter I. It then becomes clear
that increasing the water viscosity does more to slow down the process than an
equivalent (same factor) increase of I. We also notice that the water viscosity
has similar effects for both the generalized and conventional solutions, whereas the
response to the fluid-fluid interaction parameter was distinctly different.
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Figure 5.15: Comparison of saturation profiles at t=20 hours. Water viscosity is increased from
the base case value of 1.2 mPa·s by factors 2 and 10.
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5.5.3 Effect of oil viscosity

Following the same methodology, Fig. 5.16 shows saturation profiles where the
oil viscosity has been varied. Clearly, the imbibition process is less sensitive to
increases in oil viscosity than to increases in water viscosity, according to both sets
of solutions. For the analytical solution with counter-current relative permeabilities
and the numerical solution of the generalized model, we note that the response to
increased oil viscosity is very similar to the response to increases in I , seen in Fig.
5.14. It should be pointed out that any delay of the saturation front needs to be
considered with

√
t time scaling in mind and is in fact more significant than it might

seem at first.
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Figure 5.16: Comparison of saturation profiles at t=20 hours. Oil viscosity is increased from the
base case value of 1.5 mPa·s by factors 2 and 10.

5.5.4 Oil recovery

Fig. 5.17 displays oil recovery curves, comparing the impact of increasing the fluid-
fluid interaction term, water viscosity and oil viscosity. While higher values result in
reduced imbibition rates for all these parameters, also here it is seen that increasing
the water viscosity leads to the most significant decrease in recovery rate.

For the system considered here, the difference in recovery rate when applying
counter-current vs. co-current relative permeabilities is significant for all the tested
input parameters. The results are in agreement with previous research, indicating
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Figure 5.17: Comparison of oil recovery factors ,RF (fraction of mobile oil), corresponding to the
cases presented as saturation profiles. Base case is to the left. Parameters are increased towards
the right by factors of 2 and 10. Top row: The fluid-fluid interaction term I. Middle row: Water
viscosity µw. Bottom row: Oil viscosity µo.

overestimation of recovery rate if co-current relative permeabilities are used to pre-
dict a counter-current SI process (Bourbiaux and Kalaydjian, 1990). By extension,
there is also agreement with works showing that co-current SI can be faster and
more effective than a counter-current process (Pooladi-Darvish and Firoozabadi,
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1998, 2000; Standnes, 2004; Karimaie et al., 2006).
The excellent matches between analytical and numerical solutions suggest that

the new generalized relative permeability expressions are able to account for viscous
coupling effects seen when the flow mode is changed from co-current to counter-
current. It thus seems like the analytical solutions can serve as effective tools in
predicting oil recovery for different flow settings, if a set of standard, co-current
relative permeabilities is available for matching.

While the results obtained here, together with previous results by Andersen
et al. (2019) and Qiao et al. (2018) are definitely encouraging, they are all based
on matching parameters to a single set of experiments (Bourbiaux and Kalaydjian,
1990). Further testing should be done by matching parameters to other experiments,
particularly with different viscosities and viscosity ratios, but also for varying de-
gree of wettability, as this would likely affect the solid-fluid interaction terms, and
therefore also end point relative permeabilities.
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Chapter 6

Conclusions

The main goal of this thesis was to incorporate the effects of fluid-fluid interactions
(viscous coupling) into analytical solutions for forced and spontaneous imbibition,
and to study the the effects of varying degree of fluid-fluid interaction and fluid
viscosities for cases corresponding to purely co-current and counter-current flow. A
generalized model for two-phase flow, derived from the theory of mixtures (Standnes
et al., 2017; Qiao et al., 2018) was applied. The model explicitly accounts for
momentum transfer between the two fluids and between fluids and the solid porous
medium. It gives rise to generalized relative permeability expressions that depend
on fluid-fluid and fluid-solid interaction parameters, as well as fluid viscosities. Input
parameters were determined by matching against experimental data from Bourbiaux
and Kalaydjian (1990).

In order to incorporate viscous coupling effects into the analytical solution for
spontaneous imbibition (McWhorter and Sunada, 1990), a new set of generalized rel-
ative permeability expressions has been derived, based on an assumption of purely
counter-current flow. The new generalized relative permeabilities for counter-current
flow were used to compute the capillary diffusion coefficient, necessary for the ana-
lytical solution. For the co-current case, generalized expressions for co-current flow,
previously derived in Qiao et al. (2018) and Andersen et al. (2019) were used.

The behaviour of the generalized relative permeabilities was also studied for var-
ious values of the input parameters.

The main findings of this work are as follows:

� The generalized relative permeabilities derived under an assumption of counter-
current flow will always be lower than the corresponding co-current values if
viscous coupling is included (I 6= 0). For I = 0 both sets reduce to traditional
Corey-type expressions.

� The factors relating co- and counter-current relative permeabilities are not
constants, but vary with saturation for a given set of input parameters. This
is a more complicated relation than what was proposed by Bourbiaux and
Kalaydjian (1990).
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� Both co- and counter-current relative permeabilities are viscosity-dependent
when viscous coupling is assumed (i.e. when I 6= 0). Counter-current end
point values are sensitive to the viscosity of the opposite phase, while there is
no viscosity dependence for the co-current end points.

� The co-current, forced imbibition case was solved by applying generalized co-
current relative permeabilities when computing the fractional flow function,
which is the main input to the Buckley-Leverett solution. In this case, in-
creased viscous coupling through increases of the fluid-fluid interaction term,
I, led to a more efficient displacement process, seen as a higher saturation front
and a higher average water saturation behind the front. This is in line with
the theory of momentum exchange between the fluid phases, depending on
their relative velocities. Increased water viscosity had a similar effect, quickly
bringing the process towards a piston-like behaviour. When oil viscosity was
increased, the effect was a less effective displacement, seen as a lower front
saturation and lower average saturation behind the front. It should be noted
that the tests with increased oil viscosity were run with a different saturation
exponent for oil, due to the base case value resulting in an unphysical satura-
tion profile. It is thought that the matched saturation exponent was perhaps
too high, as it resulted in extreme inflection of the oil relative permeability
curve for high oil viscosities.

� For the counter-current SI case, excellent matches between analytical and nu-
merical solutions of both the conventional model and the generalized model
based on mixture theory has been obtained. This suggests that the newly de-
rived generalized relative permeability expressions for counter-current flow can
be used to predict oil recovery in a counter-current setting if co-current rela-
tive permeabilities are known. In this case, increased viscous coupling led to a
slowdown of the imbibition process, as both fluids are decelerated when flow-
ing in opposite directions. Similarly, increasing fluid viscosities led to slower
imbibition rates, however, for the water-wet system considered here, increases
in water viscosity were the most detrimental to the rate of recovery. The
observed behaviour is in line with theoretical predictions of the generalized
model.
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6.1 Suggested future work

� As mentioned in the discussion, the matches obtained between analytical and
numerical solutions for the counter-current SI case are encouraging. Still,
validation against other experiments is required. For validation, it is suggested
that a set of relative permeabilities could be measured for both co-current and
counter-current flow, at different fluid viscosities. This would enable matching
and direct comparison between experimental and analytically or numerically
predicted curves.

� The co-current oil relative permeability that resulted from the combination of
the saturation exponent β = 1.5 and high oil viscosity, proved to be some-
what problematic. More work should be done to understand the role of the
saturation exponents, and to perhaps establish some bounds for reasonable
values.
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Nomenclature

α, β Water/oil-interaction saturation exponents

λ̂o, λ̂w Generalized phase mobilities (m2/(Pa · s))

λ̂T Generalized total mobility (m2/(Pa · s))

λ̂oo, λ̂ww Generalized diagonal mobilities (m2/(Pa · s))

λ̂ow, λ̂wo Generalized cross-term mobilities (m2/(Pa · s))

k̂couri Generalized counter-current relative permeability for phase i

k̂cori Generalized co-current relative permeability for phase i

λo, λw Phase mobilities (m2/(Pa · s))

λT Total mobility (m2/(Pa · s))

µo Oil viscosity (Pa · s)

µw Water viscosity (Pa · s)

φ Standard porosity

φe Effective porosity

ρ Density (kg/m3)

σow Oil/water interfacial tension (N/m)

θ Contact angle related to wettability

A Inflow parameter controlling rate of SI (ms−1/2)

a1, a2, c, k1, k2 Capillary pressure correlation parameters for J-function

Ac Cross-sectional area (m2)

Co Oil counter-current factor, Co = k̂couro / k̂coro

Cw Water counter-current factor, Cw = k̂courw / k̂corw

D Capillary duffusion coefficient (m2/s)
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F Fractional flow function for capillary flow

f Fractional flow function without capillary pressure

I Oil/water interaction parameter (Pa · s)−1

Io Oil/solid interaction parameter

Iw Water/solid interaction parameter

J Dimensionless Leverett J-function for capillary pressure

k Absolute permeability (m2)

kro Oil relative permeability

kmaxro Oil end point relative permeability

krw Water relative permeability

kmaxrw Water end point relative permeability

L Length of reservoir or core sample (m)

no Corey exponent for oil

nw Corey exponent for water

pc Capillary pressure (Pa)

po Oil phase pressure (Pa)

pw Water phase pressure (Pa)

Q Injection rate (m3/s)

Qw(t) Cumulative 1D volume of water imbibed (m)

R Oil/water interaction term (Pa · s/m2)

Ro Oil/solid interaction term (Pa · s/m2)

Rw Water/solid interaction term (Pa · s/m2)

RF Recovery factor of mobile oil

s0 Wetting phase saturation at inlet (x=0)

Sf Normalized front saturation

si Initial wetting phase saturation

So Normalized oil saturation
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so Oil saturation

Sw Normalized water saturation

sw Water saturation

sor Oil residual saturation

swr Water residual saturation

T Dimensionless time in Buckley-Leverett solution

t Time (s)

t∗ Time when analytical solutions for SI stop being valid (s)

Tbt Dimensionless time at water breakthrough

u0 Maximum water flux or Darcy velocity during SI (m/s)

uo Oil flux or Darcy velocity (m/s)

uT Total flux or Darcy velocity (m/s)

uw Water flux or Darcy velocity (m/s)

V Volume of control element (m3)

vo Oil interstitial velocity (m/s)

vw Water interstitial velocity (m/s)

W Generalized mobility term for capillary diffusion (m2/(Pa · s))

x Spatial coordinate along reservoir/core (m)
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Appendices

1 Matlab code for Buckley-Leverett case

% Solution of Buckley Leverett with viscous coupling

% through generalized relative permeabilities.

clear all

% Input

swi = 0.4; % Irreducible water sat.

sor = 0.425; % Irreducible oil sat.

L = 0.29; % Core length (m)

phi = 0.233; % Porosity

K = 1.18e-13; % Absolute permeeability (m^2)

% Time (dimensionless)

T = 0.7; % Equals Pore Volumes

% Interaction parameters

Iw = 23.26; % Solid -water

Io = 2.15; % Solid -oil

I = 3500; % Oil -water

% Saturation exponents

alpha = -0.2; % Water

beta = 1.5; % Oil

% Viscosities

muo = 1.5*0.001 % Oil (Pa*s)

muw = 1.2*0.001 % Water (Pa*s)

M = muw/muo % Viscosity ratio

% Saturation vector

Sstep = 0.0001;

S = 0:Sstep :1; % S is normalized

s = swi+ S*(1-sor -swi); % s is not

% Get generalized kr curves

[krw_co , kro_co , krw_cou , kro_cou , cfw , cfo] = ...

relperm_gen(S, muw , muo , K, Iw , Io, I, alpha , beta);

% End points

kro_end = 1/Io;

krw_end = 1/Iw;
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% Check mobility ratios

mobrat = (krw_end/muw)/( kro_end/muo); % End point ratio

mobrats = (krw_co/muw)./( kro_co/muo);

% Compute fractional flow function

f = ((1+( kro_co ./ krw_co)*(muw/muo)).^(-1));

% Compute derivative of fractional flow function

df= gradient(f)./ gradient(S);

% Plot rel. perm.

subplot (2,2,1)

plot(S,krw_co ,'-r','LineWidth ',2,'DisplayName ','k_{rw}^{

co}');hold on

plot(S,kro_co ,'-b','LineWidth ',2,'DisplayName ','k_{ro}^{

co}');hold on

grid on

title('Relative Permeability ','FontSize ' ,12)

xlabel('Normalized Water Saturation ','FontSize ' ,12)

ylabel('kr , fraction ','FontSize ' ,12)

legend('-DynamicLegend ')

% Plot fractional flow function f(S)

subplot (2,2,2)

plot(S,f,'-r','LineWidth ' ,2);hold on

title('Fractional Flow Function ','FontSize ' ,12)

xlabel('Normalized Water Saturation ','FontSize ' ,12)

ylabel('f(S)','FontSize ' ,12)

grid on

hold on

% Plot f'(S)

subplot (2,2,4)

plot(S,df,'--r','LineWidth ' ,2);hold on

title('df/dS and g','FontSize ' ,12)

xlabel('Normalized Water Saturation ','FontSize ' ,12)

ylabel('','FontSize ' ,12)

hold on

grid on

% Function g for finding front saturation

g=df -(f./S);
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% If no root is found for g, plot lines for piston -like

displacement

if min(g) >=0

'g has no nontrivial root'

subplot (2,2,3)

line([T;T],[1;0],'LineWidth ' ,2);

line ([0;T],[1;1],'LineWidth ' ,2);

title('Saturation Profile ','FontSize ' ,12)

xlabel('Dimensionless Distance ','FontSize ' ,12)

ylabel('Normalized Water Saturation ','FontSize ' ,12)

axis ([0 1 0 1])

grid on

hold on

subplot (2,2,4)

plot(S,g,'-b','LineWidth ' ,2)

ylabel('Values ','FontSize ' ,12)

legend('df/dS','g=(df/dS)*S-f(S)')

return

end

% Plot g

plot(S,g,'-b','LineWidth ' ,2)

ylabel('Values ','FontSize ' ,12)

legend('df/dS','g=(df/dS)*S-f(S)')

% Find last positive g

for i=1:1: length(g) -1

x1=g(i);

x2=g(1+i);

prod=x1*x2;

if prod <0

gzero=i

break

else i=i+1;

end

end

% Front saturation , Sf

Sf=S(gzero)

% Position of front , xf

xpos = (df.*T);

xf = xpos(gzero)
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% Position of saturations above (behind) front saturation

SS=Sf:Sstep :1;

XX=xpos([gzero:end]);

% Plot solution

subplot (2,2,3)

title('Saturation Profile ','FontSize ' ,12)

xlabel('Dimensionless Distance ','FontSize ' ,12)

ylabel('Normalized Water Saturation ','FontSize ' ,12)

axis ([0 1 0 1])

grid on

hold on

plot(XX,SS,'-b','LineWidth ' ,2)

line([xf;xf],[0;Sf],'LineWidth ' ,2);

% Oilrecovery %

% Time for water breakthrough

Tend = 1/df(gzero)

% If T >= Tend , find Sstar , the water saturation that has

been transported

% a distance x=1 for the given T

if T<Tend

RF = T

else

% Find saturation that has reached x=1

for j=1: length(XX)

if XX(j) <=1

index=j

Sstar=S(gzero+index)

break

end

end

% Recovery after breakthrough

RF = Sstar + T*(1 - f(gzero+index))

end
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2 Matlab code for generalized relative permeabilities

function [krw_co , kro_co , krw_cou , kro_cou , cfw , cfo] =

relperm_gen(S, muw , muo , K, Iw , Io , I, alpha , beta)

krw_co = zeros(size(S));

kro_co = zeros(size(S));

%Co -current part

krw_co = (Io.*S.*(1-S).^(beta -1) + I*muw.*S)./(Iw*Io.*S

.^(alpha -1).*(1-S).^(beta -1) + I.*(Iw.*S.^( alpha)*muw

+ Io.*(1-S).^( beta)*muo));

kro_co = (Iw.*(1-S).*S.^(alpha -1) + I*muo.*(1-S))./(Iw*Io

.*S.^(alpha -1).*(1-S).^(beta -1) + I.*(Iw.*S.^( alpha)*

muw + Io.*(1-S).^( beta)*muo));

%Cocurrent Endpoints

krw_co (1) = 0;

krw_co(end) = 1/Iw;

kro_co (1 )= 1/Io;

kro_co(end) = 0;

%Counter -current factors

cfw = ((Io.*(1-S).^(beta -1) + I.*S*muw)./(Io.*(1-S).^(

beta -1) + I.*S*muw + I.*(1-S)*muw)) - ((I.*S.*(1-S)*

muo)./(Iw.*S.^(alpha -1) + I.*(1-S)*muo + I.*S.*(1-S)*

muo));

cfo = ((Iw.*S.^(alpha -1) + I.*(1-S)*muo)./(Iw.*S.^(alpha

-1) + I.*(1-S)*muo + I.*S*muo)) - ((I.*S.*(1-S)*muw)

./(Io.*(1-S).^(beta -1) + I.*S*muw + I.*S.*(1-S)*muw));

%Countercurrent factors at endpoints

cfw (1) = Io/(Io+I*muw); %Water factor at Sw=0

cfw(end)= Iw/(Iw+I*muo); %Water factor at Sw=1

cfo (1)= Io/(Io+I*muw); %Oil factor at Sw=0

cfo(end)= Iw/(Iw+I*muo); %Oil factor at Sw=1

%Countercurrent curves

krw_cou = krw_co .*cfw;

kro_cou = kro_co .*cfo;

end
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3 Matlab code for counter-current SI case

Main script

% This script gets values for A and dF for both sets of

relative

% permeabilities from the functions CCSIco and

CCSIcounter and is

% used to calculate and plot saturation profiles and oil

recovery.

clear

% Input

swi = 0.4; % Irreducible water sat.

sor = 0.425; % Irreducible oil sat.

L = 0.29; % Core length (m)

phi = 0.233; % Porosity

K = 1.18e-13; % Absolute permeability (m^2)

sigma = 15.8*0.001; % IFT (N/m)

si = swi; % Initial water saturation = irreducible

s0 = 1-sor; % Water saturation at inlet

% Calculate recovery at these times (seconds)

times = [0.0001 0.001 0.005 0.01 0.05 0.1 0.3 0.5 0.7 0.9

1:1:200]*3600;

% Interaction parameters

Iw = 23.26

Io = 2.15

I = 3500

% Saturation exponents

alpha = -0.2 %water

beta = 1.5 %oil

% Viscosities

muo = 1*1.5*0.001 %Pa.s

muw = 1*1.2*0.001 %Pa.s

M = muw/muo
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% Saturation vector

Sstep = 0.001;

S = 0:Sstep :1; % Capital S is normalized

s = swi+ S*(1-sor -swi);

% Get values of A and F'(S) for co- and counter -current

rel -perms.

[A_co , dF_co] = CCSIco(K, sigma , phi , swi , sor , muw , muo ,

M, alpha , beta , Iw, Io, I, S, s, L, si, s0, Sstep);

[A_cou , dF_cou] = CCSIcounter(K, sigma , phi , swi , sor ,

muw , muo , M, alpha , beta , Iw, Io, I, S, s, L, si , s0,

Sstep);

n=1;

for t=times;

% Find x-position of saturations after time t

% For kr_co

x_co =(2* A_co/phi)*dF_co*t^(1/2);

xd_co=x_co/L; %Normalized length

% For kr_cou

x_cou =(2* A_cou/phi)*dF_cou*t^(1/2);

xd_cou=x_cou/L; %Normalized length

% Oil recovery , RF , fraction of mobile oil (strictly

only valid before

% front reaches boundary , as the solution is based on an

infinite medium).

% RF from numerical integration of saturation profile

RFco(n)= trapz(s,xd_co)/(1-sor -swi);

RFcou(n)= trapz(s,xd_cou)/(1-sor -swi);

% RF from total volume imbibed

VRFco(n)= 2*A_co*t^0.5/(L*phi*(1-sor -swi));

VRFcou(n)= 2*A_cou*t^0.5/(L*phi*(1-sor -swi));

% Plot saturation profiles at these times

if t==20*3600

figure (2)
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subplot (1,3,1)

plot(xd_co ,S,'-b','LineWidth ' ,2);hold on

plot(xd_cou ,S,'-r','LineWidth ' ,2)

title('Saturation Profile ')

xlabel('Dimensionless Distance ')

ylabel('Normalized Water Saturation ')

grid on

hold on

end

if t==50*3600

figure (2)

subplot (1,3,2)

plot(xd_co ,S,'-b','LineWidth ' ,2);hold on

plot(xd_cou ,S,'-r','LineWidth ' ,2)

title('Saturation Profile ')

xlabel('Dimensionless Distance ')

ylabel('Normalized Water Saturation ')

grid on

hold on

end

if t==100*3600

figure (2)

subplot (1,3,3)

plot(xd_co ,S,'-b','LineWidth ' ,2);hold on

plot(xd_cou ,S,'-r','LineWidth ' ,2)

title('Saturation Profile ')

xlabel('Dimensionless Distance ')

ylabel('Normalized Water Saturation ')

% axis ([0 1 0 1])

grid on

hold on

end

n=n+1;

end

% Find t*, time when front reaches end and solution stops

being valid.

% For kr_co

tstar_co = (L*phi /(2* A_co.*dF_co (1))).^2/3600 %
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Hours

% For kr_cou

tstar_cou = (L*phi /(2* A_cou .* dF_cou (1))).^2/3600 %

Hours

% Plot oil recovery RF

figure (1)

hold on

subplot (2,4,[7,8])

plot(times /3600,RFco ,'-b','LineWidth ',2,'DisplayName ','

Analytical k_r^{co}');hold on

plot(times /3600,RFcou ,'-r','LineWidth ',2,'DisplayName ','

Analytical k_r^{cou}')

xlabel('Time (hours)')

ylabel('Recovery Factor , fraction of mobile oil')

legend('-DynamicLegend ')

hold on

grid on

% Saturation profile at last time

figure (1)

subplot (2,4,4)

plot(xd_co ,S,'-b','LineWidth ' ,2);hold on

plot(xd_cou ,S,'-r','LineWidth ' ,2)

title('Saturation Profile ')

xlabel('Dimensionless distance , fraction ')

ylabel('Normalized water saturation ')

% axis ([0 1 0 1])

grid on

hold on

Capillary pressure function

function [ Pc ] = Capillary(S,sigma , phi , K)

a1 = .56;

a2 = .66;

c = .55;

k1 = 1.25;

k2 = 0.08;

Pc = (a1 ./(1+k1*S)-a2./(1+ k2*(1-S))+c)*sigma*(phi/K)

^0.5;

end
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Computation of co-current A, F(S) and F’(S)

function [A,dF] = CCSIco(K, sigma , phi , swi , sor , muw ,

muo , M, alpha , beta , Iw, Io, I, S, s, L, si , s0 , Sstep

)

% Get capillary pressure curve

Pc = Capillary(S,sigma , phi , K);

% Capillary pressure gradient

dPc = gradient(Pc)./ gradient(s);

% Get rel. perm.

[krw_co , kro_co , krw_cou , kro_cou , cfw , cfo] =

relperm_gen(S, muw , muo , K, Iw , Io , I, alpha , beta)

% Capillary Diffusion coefficient

D = -K.* kro_co/muo .*((1+( kro_co ./ krw_co)*(muw/muo)).^( -1)

).*dPc; %Cocurrent

%Find F iteratively

maxerror = 10 %Error measure to determine

convergence.

Fold = ones(size(s)); %Start with guessing F(s)=1

for all saturations.

i=0; %Iteration counter.

while maxerror > 0.0001 %Iterate until difference

between successive F is less than the specified

condition.

for n = 1: length(s)

sw = s(n);

%Find int1 , the integral from sw to s0 of (s-sw).*D(s

)./F(s) ds

Sindex1= s<=s0 & s>=sw;

fun1 = ((s-sw).*D.* Sindex1 ./Fold);

fun1(isnan(fun1))=0;

int1 = trapz(s,fun1);

%Find int2 , the integral from si to s0 of (s-s0).*D(s

)./F(s) ds

Sindex2= s<=s0 & s>=si;

77



fun2 = ((s-si).*D.* Sindex2 ./Fold);

fun2(isnan(fun2))=0;

int2 = trapz(s,fun2);

Fnew(n) = 1 - (int1/int2);

end

maxerror=max(abs(1-(Fnew./Fold)));

Fold=Fnew;

i=i+1;

errors(i)=maxerror;

end

errors

iterations=i

% Find F'

% Numerical differentiation

dF = gradient(Fnew)./ gradient(s);

% Calculate A for co-current relperm

Sindex3= s<=s0 & s>=si;

fun3 = ((s-si).*D.* Sindex3 ./Fnew);

fun3(isnan(fun3))=0;

int3 = trapz(s,fun3);

A = sqrt((phi /2)*int3)

end
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Computation of counter-current A, F(S) and F’(S)

function [A,dF] = CCSIcounter(K, sigma , phi , swi , sor ,

muw , muo , M, alpha , beta , Iw, Io, I, S, s, L, si , s0,

Sstep)

% Get capillary pressure curve

Pc = Capillary(S,sigma , phi , K);

% Capillary pressure gradient

dPc = gradient(Pc)./ gradient(s);

% Get rel. perm.

[krw_co , kro_co , krw_cou , kro_cou , cfw , cfo] =

relperm_gen(S, muw , muo , K, Iw , Io , I, alpha , beta)

% Capillary Diffusion coefficient

D = -K.* kro_cou/muo .*((1+( kro_cou ./ krw_cou)*(muw/muo))

.^( -1)).*dPc; %Countercurrent

%Find F iteratively

maxerror = 10 %Error measure to determine

convergence.

Fold = ones(size(s)); %Start with guessing F(s)=1

for all saturations.

i=0; %Iteration counter.

while maxerror > 0.0001 %Iterate until difference

between successive F is less than the specified

condition.

for n = 1: length(s)

sw = s(n);

%Find int1 , the integral from sw to s0 of (s-sw).*D(s

)./F(s) ds

Sindex1= s<=s0 & s>=sw;

fun1 = ((s-sw).*D.* Sindex1 ./Fold);

fun1(isnan(fun1))=0;

int1 = trapz(s,fun1);

%Find int2 , the integral from si to s0 of (s-s0).*D(s

)./F(s) ds

Sindex2= s<=s0 & s>=si;

fun2 = ((s-si).*D.* Sindex2 ./Fold);
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fun2(isnan(fun2))=0;

int2 = trapz(s,fun2);

Fnew(n) = 1 - (int1/int2);

end

maxerror=max(abs(1-(Fnew./Fold)));

Fold=Fnew;

i=i+1;

errors(i)=maxerror;

end

errors

iterations=i

% Find F'

% Numerical differentiation

dF = gradient(Fnew)./ gradient(s);

% Calculate A for couunter -current relperm

Sindex3= s<=s0 & s>=si;

fun3 = ((s-si).*D.* Sindex3 ./Fnew);

fun3(isnan(fun3))=0;

int3 = trapz(s,fun3);

A = sqrt((phi /2)*int3)

end
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