

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study program/specialization:

Information Technology -

Automation and Signal Processing

Spring semester, 2019

Open / Confidential

Author:

Vebjørn Kaldahl Bottenvik

…………………………………………
(Signature of author)

Supervisor(s): Hein Meling, Trygve C. Eftestøl, Ståle Freyer.

Title of master’s thesis:

Biometric Authentication from ECG Signals on Wearable Devices.

Norwegian title:

Biometrisk autentisering fra EKG-signal på kroppsnære enheter.

Credits: 30

Keywords:

Biometrics,

Authentication,

Electrocardiogram (ECG),

Machine Learning

 Number of pages: 69

+ supplemental material/other: 21 +

zipped file

 Stavanger, 14th of June 2019

 date/year

University of Stavanger

Department of Electrical Engineering and
Computer Science

Master Thesis in Automation and Signal Processing

Biometric Authentication from ECG Signals
on Wearable Devices

Author:
Vebjørn Kaldahl Bottenvik

Supervisor(s):
Hein Meling

Trygve C. Eftestøl
Ståle Freyer

June 14, 2019

Abstract

Biometric authentication is currently being used for numerous devices; such as mobile phones,
computers, etc. However, for now, the only authentication methods for wearable devices are
those of passwords and pin codes. The newest instance of the Apple Watch series 4. has an
integrated Electrocardiogram (ECG) recording possibility that could be used for biometric
authentication. Having the possibility for biometric authentication on wearable devices could
potentially provide seamless authentication applications as the wearable device is always on
standby.

The objective of this thesis was to test biometric authentication based on ECG signals
recorded on wearable/mobile devices. By collecting data from a set of volunteers with
recordings performed under different circumstances such as; resting heart rate, increased
heart rate after exercise, and noisy signals while in motion. By performing denoising and
feature extraction, various machine learning models were trained and evaluated to provide
a classification model that performed well on the variety of ECG signals. The classification
model was further used to present a biometric authentication system.

The biometric authentication system presented in this thesis was tested on three differ-
ent sets of acquired ECG data. Biometric authentication based on ECG signals recorded
with resting heart rates correctly authenticated 17/19 subjects, resulting in an acceptance
rate of 89.5%. For the recordings after physical activity and in motion, the authentication
system correctly authenticated 52.6% (10/19) and 31.6% (6/19) of the subjects. An addi-
tional subject that had been excluded from the system did not get authenticated for either
of the different recordings. Overall, no subjects were misclassified as other subjects.

i

Acknowledgements

This thesis was written at the Department of Electrical Engineering and Computer Science,
University of Stavanger. I would like to thank my Supervisors; Hein Meling, Trygve C.
Eftestøl, and Ståle Freyer for their advice and feedback through this thesis. I would also
like to thank all of my 20 volunteers, for “gladly” running four floors of stairs to provide the
dataset needed for this thesis. Finally, I would like to thank my fellow students for all the
long coffee breaks, and my family and friends for their support through this semester.

ii

List of Figures

1.1 Block chart presenting a simplified overall progression of this thesis. 3

2.1 Labeled illustration of the human heart 1[1]. This figure illustrates the four chambers
of the heart and their connections to the rest of the body. 5

2.2 Illustration of a typical P-QRS-T complex for a single heartbeat with annotations
of waves and intervals [2]. 7

2.3 Illustration of the different angles that are being monitored in a 12 lead ECG. The
blue arrows describe the bipolar and augmented limb leads, and the red arrows
illustrates the precordial leads2[3]. 8

2.4 The Apple watch series 4 with one electrode on the back, and one electrode at the
crown3[4]. 9

2.5 Biometric process with enrollment and matching. Figure is an adaption from [5]. . . 10
2.6 Confusion matrix showing the relationship between predicted class and actual class. 14
2.7 RR interval between two heartbeats in the ECG signal [6]. 16

3.1 Flow chart for the proposed method for this thesis, containing data acquisition,
pre-processing and classification. 17

3.2 Alive Bluetooth Heart and Activity Monitor with connections for two electrodes. . . 18
3.3 Proposed collection protocol. The complete data collection protocol has been placed

in Appendix C. 19
3.4 Collected data from an arbitrary volunteer. The three plots show the R, HRV and

the M datasets. 20
3.5 Anonymization procedure used for this project. This example illustrates how one

subject based on the chosen number get shuffled into the dataset based on the com-
plete list of subjects. 21

3.6 Pre-processing flow chart . 23
3.7 Flow chart of the dynamic Gaussian smoothing method. 25
3.8 Scaled Gaussian windows for σ = 3 and σ = 0.2. 25
3.9 Modified Pan-Tompkins QRS detection algorithm. Adaption from [7]. 27
3.10 Illustration of the keypoins for a given P-QRS-T complex. (1) Pon (2), PP eak (3),

Poff (4), QP it (5), RP eak (6), SP it (7), Soff (8), Ton (9), TP eak (10), Toff 29
3.11 Simplified fiducial feature extraction algorithm. 30
3.12 The changes on the different aspects of the heartbeat with elevated heart rate. . . . 31

iii

3.13 ROC-curve providing the relationship between sensitivity and 1-specificity. Point B
illustrates the point where sensitivity is equal to 1-specificity4[8]. 33

3.14 (a) Illustration of the confusion matrix used to display how the different individ-
uals got classified in relation to each other. (b) Confusion matrix illustrating the
classification of known individuals and unknown individuals. 35

3.15 Extraction of five heartbeats for each tenth heart rate interval. 36
3.16 Flow chart of the implemented biometric authentication system. 36

4.1 Box plot illustrating how the algorithms compare to each other after hyper parameter
tuning with 10-fold cross validation . 39

4.2 Micro-average ROC curves for the different classifiers. Training and validation data
from the R dataset on single heartbeats. 40

4.3 Micro-average ROC curves for the different classifiers. Training from the R dataset,
and validation from the HRV dataset for single heartbeats 40

4.4 Micro-average ROC curves for the different classifiers. Both the training and vali-
dation data consists of the HRV datasets with taking the majority voting after five
heartbeats. 41

4.5 Confusion matrix for single beat identification for the R dataset. 42
4.6 (a) Confusion matrix for HRV single beat identification without HRV training data.

(b) Confusion matrix for HRV single beat identification with 50% HRV training data. 42
4.7 (a) Confusion matrix for M single beat identification without HRV training data.

(b) Confusion matrix for M single beat identification with 50% HRV training data. . 43
4.8 (a) Confusion matrix for the identification test with the R-ECG dataset (b) Con-

fusion matrix for the identification process illustrating the amount of test being
classified as unknown subject, and the unknown subject classified as a known subject. 44

4.9 Authentication with 0% HRV. (a)-(b) consists of R, (c)-(d) consists of HRV, and
(e)-(f) consists of the M dataset. 45

4.10 Authentication with 25% HRV. (a)-(b) consists of R, (c)-(d) consists of HRV, and
(e)-(f) consists of the M dataset. 46

4.11 Authentication with 50% HRV. (a)-(b) consists of R, (c)-(d) consists of HRV, and
(e)-(f) consists of the M dataset. 47

A.1 Algorithms comparison with 10-fold cross validation 58
A.2 Parameter grid used for the grid search . 59
A.3 Predicted probability experiment for the Logistic Regression classifier with the R

validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five heartbeats. 61
A.4 Predicted probability experiment for the Logistic Regression classifier with the HRV

validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five heartbeats. 62
A.5 Predicted probability experiment for the Linear Discriminant Analysis classifier with

the R validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five
heartbeats. 63

A.6 Predicted probability experiment for the Linear Discriminant Analysis classifier with
the HRV validation set. (a) and (c) are from one heartbeat. (b) and (d) are from
five heartbeats. 64

A.7 Predicted probability experiment for the K-Nearest Neighbors classifier with the R
validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five heartbeats. 65

A.8 Predicted probability experiment for the K-Nearest Neighbors classifier with the
HRV validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five
heartbeats. 66

A.9 Predicted probability experiment for the Naive Bayes classifier with the R validation
set. (a) and (c) are from one heartbeat. (b) and (d) are from five heartbeats. 67

A.10 Predicted probability experiment for the Naive Bayes classifier with the HRV vali-
dation set. (a) and (c) are from one heartbeat. (b) and (d) are from five heartbeats. 68

A.11 Predicted probability experiment for the Multilayer Perceptron classifier with the R
validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five heartbeats. 69

A.12 Predicted probability experiment for the Multilayer Perceptron classifier with the
HRV validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five
heartbeats. 70

A.13 Predicted probability experiment for the Support Vector Machine classifier with the
R validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five
heartbeats. 71

A.14 Predicted probability experiment for the Support Vector Machine classifier with the
HRV validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five
heartbeats. 72

A.15 Predicted probability experiment for the Random Forest classifier with the R vali-
dation set. (a) and (c) are from one heartbeat. (b) and (d) are from five heartbeats. 73

A.16 Predicted probability experiment for the Random Forest classifier with the HRV
validation set. (a) and (c) are from one heartbeat. (b) and (d) are from five heartbeats. 74

List of Tables

2.1 The different types of cell found in the heart with descriptions [9]. 6
2.2 Table over the different aspects that makes a signal valid for biometric systems. . . . 11
2.3 Example of some biometric standards with static features. 11
2.4 Example of some biometric standards with dynamic features. 12

3.1 Heartbeats for each data set for the average individual. The training data can further
be divided into training and validation or be used for k-fold validation. 19

3.2 Frequency regions for typical ECG signals . 22
3.3 Full list of features used for this project. The list is an adaptation from the feature

list by Biel et al. [10]. 26
3.4 List of different Machine learning models tested for this project. 32

4.1 Relationship between found and retained heartbeats for the three datasets for each
of the 20 subjects in this project. 38

4.2 Mean accuracy and standard deviation for the 10-fold cross validation of the different
classification models listed in Table 3.4. 39

4.3 Evaluation metrics for the different classifiers where only R data was used for vali-
dation. The ROC curve from this test has been displayed in Figure 4.2 39

4.4 Evaluation metrics for the different classifiers where both R and HRV data was used
for validation. The ROC curve from this test has been displayed in Figure 4.3. . . . 41

4.5 Model evaluation with HRV and R evaluation and training data. The ROC curve
for this test has been displayed in Figure 4.4. 41

4.6 Accuracy and number of subjects identified from single beat identification. Test
1 consisted of training on only the R dataset and test 2 included additional HRV
training data. 43

4.7 Results from the 0% HRV test. 48
4.8 Results from the 25% HRV test. 48
4.9 Results from the 50% HRV test. 48

A.1 Results before the grid search, values from figure A.1. 60
A.2 Results after the grid search, as illustrated in figure 4.1. 60

vi

Glossary
interindividual Interindividuality refers to variability between people. 12

intraindividual Intraindividuality refers to variability in one person. 12

lead Imaginary line between two electrodes. 7

Acronyms
ACC Accuracy. 15

AUC Area Under the Curve. 33

AV Atrioventricular. 6

ECG Electrocardiogram. i, 1

EER Equal Error Rate. 33

FN False Negative. 15

FP False Positive. 15

HRV-ECG Heart Rate Variety ECG. 19

HRV Heart Rate Variability. 10

ICA Independent Component Analysis. 13

M-ECG Moving ECG. 19

ML Machine Learning. 13

OVR One-vs-Rest. 32

PCA Principal Component Analysis. 13

QTc Corrected QT interval. 31

R-ECG Resting ECG. 19

ROC Receiver Operating Characteristics. 33

SA Sinoatrial. 5

TN True Negative. 15

TP True Positive. 15

bpm beats per minute. 10

Contents

Abstract i

Acknowledgements ii

Figure List iii

Table List v

Abbreviation vii

1 Introduction 1
1.1 Previous Work . 1
1.2 Problem Description . 2
1.3 Thesis Outline . 3

2 Theory 4
2.1 Electrocardiogram . 4

2.1.1 The Heart . 4
2.1.2 The Cardiac Cycle . 5
2.1.3 Recording the ECG . 6
2.1.4 Noise . 9
2.1.5 Heart Rate Variability . 10

2.2 Biometrics . 10
2.2.1 Common Biometric Standards . 11
2.2.2 Biometric Data Encryption . 12
2.2.3 ECG as Biometrics . 12

2.3 Machine Learning . 13
2.3.1 Supervised Learning . 13
2.3.2 Unsupervised Learning . 13
2.3.3 Feature Scaling . 14
2.3.4 Training and Validation . 14
2.3.5 Tuning . 15

2.4 ECG Signal Processing . 15
2.4.1 QRS Detection . 15
2.4.2 Wave Delineation . 15

viii

2.4.3 Heart Rate Estimation . 16

3 Method 17
3.1 Data . 18

3.1.1 Recording device . 18
3.1.2 Data Acquisition . 19
3.1.3 Anonymization . 20

3.2 Pre-processing . 22
3.2.1 Denoising . 22
3.2.2 Feature Extraction . 26
3.2.3 Heart Rate Normalization . 31

3.3 Machine Learning . 32
3.3.1 Classification Model . 32
3.3.2 Classifier Evaluation Method . 33

3.4 Identification . 34
3.4.1 Biometric Authentication System . 35

4 Results 37
4.1 Preprocessing . 37
4.2 Model verification . 38
4.3 Single Beat Identification . 42
4.4 Biometric Authentication . 44

4.4.1 Authentication Experiment 1 . 44
4.4.2 Authentication Experiment 2 . 44

5 Discussion 49
5.1 Analysis of the Results . 49
5.2 Reflections on the Method . 50

5.2.1 Pre-processing . 50
5.2.2 Classification and Evaluation Methods . 50

5.3 Threats to Validity . 51
5.4 Conclusion . 51
5.5 Future Work . 52

Bibliography 53

A Experiments 58
A.1 Grid Search . 58
A.2 Predicted Probability Experiment . 61

B Software 75
B.1 The Dataset . 75
B.2 Preprocessing.py . 75
B.3 Features.py . 75

B.4 MachineLearning.py . 75
B.5 Randomizer.bat . 75

C Data Collection Protocol 76

Chapter 1

Introduction

In recent years the use of biometric data for authentication has become popular and is
increasingly replaced the need for pin codes and passwords in many consumer devices. Bio-
metric data, such as fingerprints and face morphology, can be acquired by most of the newest
devices that are currently being launched. Despite increasingly taking over for pin codes on
mobile phones, this trend has yet to reach the domain of wearable devices. Wearable de-
vices do not contain the hardware required to acquire most of the common biometric data
used for authentication purposes. However, the latest wearable devices such as the Apple
Watch series 4 comes with the possibility to record Electrocardiogram (ECG) signals. The
availability of biometric authentication applications for wearable devices could take over for
some of today’s mobile authentication applications, as a wearable device is more accessable
than mobile devices.

1.1 Previous Work

The use of ECG for biometric identification and authentication of individuals has been the
motivation for a variety of publications over the last 20 years, with an increase of publications
for the last few years. One of the first to investigate the possibility of ECG biometrics was
Biel et al. [10]. They used the medical grade ECG recorder and classical Machine Learning
algorithms. Following their work, publications using different methods for pre-processing,
ECG acquisition and classification methods have been published. Most of the research has
been performed on ECG signals from large databases such as; MITDB [11] and the ECG-ID
[12]. These databases contain ECG signals recorded on medical grade equipment and pro-
vide higher resolution than those recorded on mobile devices.

A 2016 study by Choi et al. explored the possibility of using noisy signals from a mobile
ECG sensor [13]. They found that biometric identification could be accomplished with re-
sults comparable to those of medical grade ECG recorders. However, the signal obtained by
the mobile sensor was noisier than the data found in MITDB; thus, additional work on pre-

1

Introduction 2

processing had to be accomplished. The result lead to an identification accuracy of 95.99%.
A more recent and less explored classification method for ECG biometrics is performed by
Neural Networks. Salloum and Jay Kuo proposed using this method to identify individuals
from both the MITDB and ECG-ID datasets and ended up with a maximum 100% classifi-
cation score [14]. Lugovaya [15] used a combination of Neural Networks and simple template
matching to achieve 100% accuracy as well.

Although publications have accomplished accurate identification rates based on signals ac-
quired with a resting heart rate, there are a few that has investigated the effect increased
heart rates had for identification. A 2014 study by Pathoumvahn et al. [16] tested the
robustness of biometric identification with increased heart rate and found that the accuracy
decreased with up to 20% for a 20% increase in heart rate and up to 70% for heart rate
increased by 40%.

Although the ECG signals for biometric identification and authentication purposes have
shown promising results in most studies, more methods and generalizations have not yet
been fully explored. Pinto et al. published a paper June 2018 [17] where they evaluated
a variety of published work on the field. They proposed that some additional factors that
should be considered to give a realistic estimate of the overall ECG identification accuracy.
Some of these considerations have been used as motivation for the proposed method in
Chapter 3.

1.2 Problem Description

The goal of this thesis is to investigate the possibility to perform biometric authentication
from ECG signals acquired under different conditions from wearable or mobile devices. The
data should be acquired by a set of volunteers and should be recorded under different con-
ditions to provide data with increased heart rates, and increased noise. The project can
be decomposed into three main steps. The first step is to develop a robust pre-processing
method for noisy ECG signals. The second step is to find a suitable classification method
that provides accurate identification for the different ECG signals acquired. The third step
is to use this classifier to develop a biometric authentication system. The biometric system
should be tested on ECG signals acquired under the different conditions to evaluate how
changes in heart rate and noise affects a biometric authentication system.

The process of this thesis can be listed as follows:

1. Collect data from a set of volunteers.

2. Implement a robust pre-processing algorithm based on the research of noisy ECG
signals.

Introduction 3

3. Fiducial feature extraction.

4. Classifier evaluation.

5. Test biometric authentication based on the best performing classification model.

Figure 1.1: Block chart presenting a simplified overall progression of this thesis.

1.3 Thesis Outline

Chapter 2: Theory

This chapter provides relevant background information of Electrocardiogram, Biometrics,
Machine learning and finally some usefull ECG signal processing techniques.

Chapter 3: Method

This chapter goes through the pre-processing system. The system includes adaptive denois-
ing, feature extraction based on fiducial marks, classifier evaluation and an experimental
setup.

Chapter 4: Results

This chapter presents the results obtained by the pre-processing, classifier evaluation and
the final biometric authentication experiments.

Chapter 5: Discussion

This chapter discusses results and method, presents some threats to validity, some concluding
remarks and finally some directions for future work.

Chapter 2

Theory

This chapter contains the required background information needed for this thesis. The
theory consists of background information about the electrocardiogram, biometrics, machine
learning, and some beneficial electrocardiogram signal processing methods.

2.1 Electrocardiogram

The ECG is a measurement of the electrical activity of the heart and describes the voltage
variation of the different cardiac cells that build up the heart [18]. Today electrocardiography
is an essential part of an initial evaluation of cardiac complaints and offers a non-invasive
and cost-effective tool to evaluate different heart diseases and arrhythmias [19].

2.1.1 The Heart

The heart is a muscle that provides oxygen-rich blood to the body. The heart can be di-
vided into four chambers, consisting of two sides. The two “mirrored” sides of the heart
are connected to different circular systems. However, they both pump in a rhythmic and
synchronized manner. The chambers are; the right and left atrium, which is where the blood
enters, and the left and right ventricles, where the blood is forced out through the body for
blood circulation [18]. Figure 2.1 illustrates how the left and the right side are connected to
different vessels, where the right side circulate blood to the lungs, and the left side circulates
blood to the rest of the body.

The heart consists of cardiac cells, which, in their resting state, are electrically polarized.
What this essentially means is that the outside of the cell is positively charged, while the
inside is negatively charged. This charge is maintained by ions being pumped into the cells
through individual ion channels in the cell membranes. The cardiac cells can lose their
internal charge in a depolarization process. Depolarization is the process in which creates
the heartbeat, and for some of the cardiac cells, this is a process that happens spontaneously,

4

Theory 5

Figure 2.1: Labeled illustration of the human heart 1[1]. This figure illustrates
the four chambers of the heart and their connections to the rest of the body.

while some cells must be “forced” into this state. After the depolarization process is complete,
the cells go back to their original state through a process called repolarization. These two
states of the cardiac cells are what makes the heart beat continuously, as will be explained
in chapter 2.1.2. The cardiac cells can be divided into three different types [9], as shown in
table 2.1.

2.1.2 The Cardiac Cycle

The heartbeat is the action that makes the heart pump the blood through the body. Each
heartbeat consists of a series of events in which the cells are being depolarized. These events
start in a dominant group of pacemaker cells called the Sinoatrial (SA) node. For simplicity,
the heartbeat can be divided into three different events that generate the characteristic
waveforms of the ECG, containing the P-wave, the T-wave, and the QRS complex [9].

1. Atrial Depolarization:
The SA node starts its periodical depolarization; this will spread across the electrical
conducting cells and to the myocardial cells. The atrial depolarization results in a
small “burst” of electrical activity in the heart and is noticeable on the ECG reading
as the P-wave.

2. Ventricular Depolarization:
1CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode

Theory 6

When the atrium is fully depolarized, it will activate the Atrioventricular (AV) node.
The AV node function as the coupling between the atrium and the ventricles and will
put the electrical activity to rest. This results in the PR-segment seen in Figure 2.2 and
lasts for a small fraction of a second before beginning the ventricular depolarization.
The ventricular consists of two sets of bundles. The left and the right bundle are
both divided into multiple small branches called Purkinje fibers. The left side is larger
than the right side, and the contractions of these results in the iconic QRS-complex.
Because the ventricles consist of more muscle mass than the atrium, the QRS-complex
results in a larger burst of electrical energy than the atrial depolarization, hence the
QRS-complex has a larger amplitude than the P-wave. This also explains the fact that
it is impossible to see atrial repolarization because this is happening simultaneously
with the ventricular depolarization.

3. Ventricular Repolarization:
As the ventricular depolarization has been completed, there is a small pause in the
electrical activity of the heart resulting in the ST-segment as seen in Figure 2.2, before
the ventricles are repolarized. The repolarization of the ventricles is a slow process
relative to the depolarization. Hence the T-wave generated from this event is wider
than the QRS-complex.

The events can be seen in Figure 2.2.

Cell type Function
Pacemaker cells The pacemaker cells are cells that are in a continu-

ously depolarization/repolarization process. Normally
this happens at a rate of 60 to 100 times per minute.
However, this rate changes depending on the activity of
the autonomic nervous system.

Electrical conducting cells The “wiring” of the heart. These cells will lead the de-
polarization from the pacemaker cells to the myocardial
cells. Both the atrium and the ventricles have a “con-
ducting system” made up of these cells.

Myocardial cells. The contracting cells of the heart. These are the domi-
nant cells in the heart. It is the process of depolarization
and repolarization of these cells that result in a heart-
beat.

Table 2.1: The different types of cell found in the heart with descriptions [9].

2.1.3 Recording the ECG

As explained, the ECG is the measurement of electrical activity in the heart. The electrical
activity can pinpoint the current activity of the heart and is most commonly used for medical
analysis purposes. The recording device itself consists of electrodes and simple electronic

Theory 7

Figure 2.2: Illustration of a typical P-QRS-T complex for a single heartbeat with
annotations of waves and intervals [2].

components to compare the voltage potential in the electrodes. Different devices use two,
three, or ten electrodes to measure electrical activity, where additional electrodes provide
additional views of the heart. A typical recording device found in hospitals has ten electrodes
covering all the limbs; left arm, right arm, left leg and right arm, six electrodes placed on
the patient’s chest and one placed on the right leg as a reference. This gives a full 360°view
of the heart, in both vertical and horizontal direction as seen in Figure 2.3.

Based on the number of electrodes used, and the placement of the electrodes, different leads
can be found. A lead is an imaginary line between two electrodes, used to illustrate the
electrical activity for the different views of the heart [20]. ECG recording can be separated
into three different categories where there are six limb leads and six precordial leads. Each
lead provides a new “view” of the heart and might include information that cannot be seen
in the other leads. In total, all these leads add up to 12 different views of the heart [9].

1. The bipolar limb leads
The leads denoted as I, II, and III in Figure 2.3. These can be recorded using two
electrodes and depends on placement. The electrodes can be connected to; left arm
(LA), right arm (RA), or the left leg (LL). The leads are then calculated as follows:

I = VLA − VRA (2.1)

II = VLL − VRA (2.2)

Theory 8

Figure 2.3: Illustration of the different angles that are being monitored in a 12
lead ECG. The blue arrows describe the bipolar and augmented limb leads, and
the red arrows illustrates the precordial leads2[3].

III = VLL − VLA = II − I (2.3)

As seen in Figure 2.3 lead I, described in Equation 2.1 provides a 0°view of the heart,
where lead 2 and 3, described in Equation 2.2 and 2.3 describes the electrical activity
with 60°and 120°orientations.

2. The augmented unipolar limb leads
The leads are denoted as aVR, aVL, and aVF. These are found by using three elec-
trodes, where one is “exploring” while the average of the other two serves as a reference
[18, p. 420].

aV R = VRA − VLA + VLL

2 (2.4)

2CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/legalcode

Theory 9

aV L = VLA − VRA + VLL

2 (2.5)

aV F = VLL − VLA + VRA

2 (2.6)

3. The precordial leads
The leads are denoted V1 through to V6. These are found using six leads placed on
the front left side of the chest and are used for a more detailed view of the heart.

Equations 2.1 - 2.6 from [18].
Various ECG devices provide different possibilities when it comes to recording the ECG.
Professionals are using a full 12-lead ECG recorder to provide high-resolution ECG with 12
different views of the heart. Medical grade ECG can be used to discover numerous diseases
related to the heart. Newer consumer devices provide two electrodes, thus resulting in a
single lead ECG recording. This has been implemented in the newest instance of the Apple
Watch, shown in Figure 2.4. The use of single-lead ECG can be used for real-time analysis
and provides analytic tools that can discover arrhythmia [21].

Figure 2.4: The Apple watch series 4 with one electrode on the back, and one
electrode at the crown3[4].

2.1.4 Noise

A common problem with recording and monitoring of weak electrical signals is handling noisy
signals. The common factors for noise originate from muscle movement, power line noise, and
high-frequency noise [22]. A mobile device that is running on batteries will not experience
the same level of power line noise. However, there is no escaping the noise generated from
muscle movement and the high-frequency noise. Most ECG equipment today have built-in
filters to handle most of the different types of noise. Denoising of a noisy signal is always a

3CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/legalcode

Theory 10

compromise. The “cleaner” the signal, the more information will get lost. For the problem
of identification, one can allow some loss of information. However, excessive denoising might
erase the differences that make identification impossible. It is therefore crucial that as much
as possible of the characteristics and information of the signals stay unfiltered. The denoised
signal gives a more accurate feature extraction and provides a more precise identification
result.

2.1.5 Heart Rate Variability

Heart Rate Variability (HRV) is a phenomenon in which the intervals between the heartbeats
do not come at a predictable interval [18]. If a subject has a heart rate at 60 beats per minute
(bpm), this means that there might not be one heartbeat each second. However, these might
vary. If the intervals at a certain heart rate are nearly constant, the HRV value is low, and
if the variety between heartbeat intervals changes from one heartbeat to another, with an
approximate constant heart rate, the HRV value is high.

2.2 Biometrics

Biometrics is the collection of biological patterns that characterizes a person based on
physical- or behavioral characteristics. Biometric data represent physical attributes and is,
therefore, unique. The property of being unique allows biometric data to be used for meth-
ods of identification and authentication. Biometric identification is the process of finding
the identity of an individual based on some biometric data. The biometric data is then com-
pared against others, to find whom the biometric data belongs to. Biometric authentication
is the process of verifying an individual’s identity based on biometric data. Implementation
of biometric authentication can be the use of fingerprints as a replacement for pin codes
or passwords. Biometric authentication systems require protocols for identity proofing and
encryption protocols, while biometric identification provides simple matching [23]. For the
biometric data to be valid for either identification or authentication, some requirements listed
in Table 2.2 has must be fulfilled [24].

Verification
Enrollment

Acquisition

AcquisitionFeature
extraction

Feature
extraction Matching Decision

Template
database

True/
False

Claimed identity

Figure 2.5: Biometric process with enrollment and matching. Figure is an adap-
tion from [5].

Theory 11

Characteristic Description
Universal The signal can be found for all individuals.
Unique The signal is different from one individual to another.

Permanent The signal is permanent. However, allowing changes
over time.

Recordable The signal must be voluntarily recordable and cannot
be recorded without the individual’s consent.

Measurable The signal can easily be measured from some sort of
recording device.

Forgery-proof The signal cannot be forged.

Table 2.2: Table over the different aspects that makes a signal valid for biometric
systems.

2.2.1 Common Biometric Standards

Today biometrics to verify identity are broadly used in multiple applications. Biometric
methods can be divided into two categories, static and dynamic. Biometrics based on static
features use scanners or images to identify individuals, where some of the methods are listed
in Table 2.3. Biometrics based on dynamic features uses recordings over time in order to
identify individuals. This requires recordings over time and adds a layer of security based
on the “aliveness factor” to be identified. Some methods have been listed in Table 2.4. Both
the tables contain information from a 2019 biometric review by Rui and Yan [25].

Method About
Fingerprint Fingerprints have, for a long time, been the most com-

mon biometric standard for identification and authenti-
cation. The method has been proven to be stable, and
fingerprints have proven to be unique for individuals.

Face ID Facial recognition software has proven to be capable of
using facial structures to identify individuals due to dif-
ferent features such as spacing between eyes etc. A prob-
lem with face recognition is that some structures of the
face are similar between individuals. Another problem
is different camera angles and illumination, and it can
cause a high rejection rate.

Iris Recognition The iris has been proven to be unique for each person.
However, the hardware required for iris scanners is more
than those of face-ID. Therefore, this is not a broadly
used biometric standard for mobile devices.

Table 2.3: Example of some biometric standards with static features.

Theory 12

Method About
ECG Biomedical signals such as the ECG has proven to be

unique enough to be used for identification and provides
“aliveness detection”.

Voice Recognition Using a person’s voice to identify a person has proved
to be a simple and efficient method. However, it has
been proven that these recordings can be fooled without
difficulties.

Keystroke and Touch Dynamics Using a person’s keystroke pressure and dynamics to
identify the individual.

Table 2.4: Example of some biometric standards with dynamic features.

2.2.2 Biometric Data Encryption

Authentication to gain access to locations, devices, and web services is something that hap-
pens daily for most people. Access cards and passwords are perhaps the most common
method for authentication for everyday use. Every day people lose their passwords etc. due
to hacking and theft, however, this is easily fixed by changing passwords or gaining new
access cards. Biometric data, however, does not provide a simple solution if lost. Therefore,
it is important that biometric data gets encrypted such that data on individuals does not
get lost. For mobile devices, local encryption has been used to avoid third-party access to
biometric data. The mobile device thus only gives the authentication result instead of the
biometric template itself [26]. Biometric data can also contain sensitive information, such
as diseases from ECG signals and iris scanning. It is therefore important that the data does
not get in the wrong hands but stay encrypted.

2.2.3 ECG as Biometrics

From table 2.4 it is stated that the ECG signal is a dynamic biometric feature. For ECG to be
a valid metric for biometrics, it must fulfill all the standards in Chapter 2.2. The uniqueness
of ECG signals comes from age, sex, height, weight, body mass index, ethnicity; and much
more [27]. These factors provide interindividual variability [28], however giving that time-
varying factors such as increased heart rate and stress also affects the ECG, thus providing
intraindividual variability. Most of the biometrics being used for everyday applications is
adaptive and is always updating the collected template4 to compensate for the change over
time that is expected for biological recordings. However, the additional short time effects
e.g. due to increased heart rate, and stress makes ECG biometrics difficult under certain
circumstances.

4A template is a collection of extracted features.

Theory 13

2.3 Machine Learning

Machine Learning (ML) is perhaps one of the fastest growing areas of computer science,
with numerous of various applications. ML can be used to perform advanced and complex
computations [29]. By having access to large sets of data, ML uses the provided data to
learn from the past and based on the presented data make predictions on future data. The
data consist of two or more classes and is trained based on feature vectors. Each feature in
the feature vectors provide one dimension, thus having feature vectors with length n creates
a n-dimensional feature space. To train a classification model, the learning method depends
on if the feature vectors have been labeled or not and can be divided into supervised and
unsupervised learning.

2.3.1 Supervised Learning

Supervised learning is performed when the actual state, also known as the label, for a set of
data is known. Consequently, the data is used to train a classifier by dividing the different
sets of data based on their actual state. When new data that is not labeled is presented
to the classifier, it will, based on different metrics provide the state which has the highest
score. The metrics used to estimate which state the new data belongs vary from model to
model [29]

2.3.2 Unsupervised Learning

Unsupervised learning is the method where only the data is known, hence the actual state,
or label, of each of the classes, are unknown. Unsupervised learning is done by clustering
methods or associations, where the likelihood of the samples is used to group the samples
into classes [7]

Component Analysis

Component Analysis is an unsupervised method of finding directions in the feature space
and use these directions to generate new features. The algorithms have different goals and
can be used to find features that describe different aspects of the feature space and use
features that do not provide relevant information to lower the dimension of feature space.
Principal Component Analysis (PCA) projects the data into dimensions that describe the
variance of the features, thus can be used to reduce features that are correlated to each
other. Independent Component Analysis (ICA) is used to find the directions of the feature
space that show the independence of the signals [30].

Theory 14

2.3.3 Feature Scaling

For most ML models the need for feature scaling provides more accurate classifiers. Hence,
feature scaling is a common step in the pre-processing algorithm. Feature scaling can be
accomplished with different methods, where feature normalization and feature standardiza-
tion are two of them [31]. Feature standardization is performed by estimating the mean and
variance for each of the features in the feature vector. Then, for each feature, calculate the
scaling according to Equation 2.7.

x̂ = x− µ

σ
(2.7)

Another known method for feature scaling is by performing feature normalization. Feature
normalization scales the features based on the maximum and minimum values of each feature.
This can be calculated according to Equation 2.8. This method is more sensitive to outliers
and can provide un-even scaling.

x̂ = x− µ

max(x) −min(x) (2.8)

2.3.4 Training and Validation

Training the classifier is done in order to make the classifier learn the patterns of the given
data, either supervised or unsupervised. To find the best classification for the provided data,
multiple different classification models should be evaluated. The “No Free Lunch” theorem
states that there are no context-independent nor usage-independent reason to favor one clas-
sifier over another [30]. Validation of a a machine learning model is done by testing some
data that was not introduced under training are tested on the model.

Figure 2.6: Confusion matrix showing the relationship between predicted class
and actual class.

Validation of the classification model is done by performing prediction on the validation
data. Validation data is data that is labeled and used to verify that the classifier predicts

Theory 15

the true label. For a binary classification problem5 the predictions will be one of two classes.
If the first class is positive, and the second class is negative, the different predictions are as
illustrated in Figure 2.6. The predictions consist of True Positive (TP) and True Negative
(TN) if the correct classes have been predicted, and False Positive (FP) and False Negative
(FN) if the class is predicted as the wrong class [32]. From this the Accuracy (ACC) can
be calculated as shown in Equation 2.9.

ACC = TP + TN

TP + TN + FP + FN
(2.9)

2.3.5 Tuning

Different classifiers require different parameters to generate the decision boundaries for the
classifier. By setting up a grid with different parameters, the model can be trained with
different parameters. The parameters that provide the best ACC for the classification model
is then used. Though hyperparameter estimation with grid search is a time-consuming
process, it can provide better classification models. Random search, like grid search, tests
different parameters. However, does provide random parameters. Both the methods are
being used with cross-validation to give a generalized result [33].

2.4 ECG Signal Processing

The ECG signal has for many years been used for medical analysis, resulting in numerous
toolboxes and libraries in both Matlab and Python. Some of the most important and vali-
dated methods for even-detection6. In Python, multiple open source libraries are available,
where Biosppy [34] is one example that can be used for ECG filtering and QRS detection.

2.4.1 QRS Detection

Analysis of ECG signals starts by detecting the QRS complex. This is a crucial task, as
false detection of R-peaks can cause problems further down the ECG analysis. Since noise
and some physiological origins can cause suppressed R-peaks and increased T- and P-waves,
robust QRS detection should therefore be implemented, and should include a decision rule
[18]. In this thesis, the QRS detection algorithm due to Pan and Tompkins has been used [35].

2.4.2 Wave Delineation

Wave delineation is the method of determining the boundaries for each of the different waves
in the PQRST complex. This can further be used to calculate the duration of the different

5A binary classification model only handles two classes.
6The detection of certain events in the ECG. This includes peaks and waves.

Theory 16

waves and events in the signal. Hence it is of interest to have a robust wave delineation
method. The standard definition of wave delineation is where a wave reaches a certain
threshold. Though, in noisy ECG signals, this required threshold may never be satisfied.
A suggested approach is to use the changing slope of the differentiated signal to determine
a threshold [18], then use the acquired threshold to find the delineation. The method is
sensitive to high-frequency noise, and it is therefore suggested to use a low pass filtered
differentiated signal.

2.4.3 Heart Rate Estimation

Heart rate estimating is usually accomplished by finding the average RR interval within a
given period, then based on the sampling frequency find the estimated heart rate. In the case
where ECG is recorded under or after exercise, the heart rate is changing thus averaging the
RR intervals does not result in an accurate heart rate estimate. On the other hand, using
short time windows gives HRV and ectopic beats7 more leverage regarding the heart rate
estimation [30].

Figure 2.7: RR interval between two heartbeats in the ECG signal [6].

7An ectopic beat is a disturbance in the cardiac cycle, and is heartbeats that are generated from a focus
other than the SA node [9].

Chapter 3

Method

The Method used for this project can be divided into 3 main categories:

1. Data acquisition

2. Data pre-processing

3. Machine Learning/Classification

4. Biometric authentication

A flow chart of the method is as shown in Figure 3.1. The pre-processing step consists of de-
noising and feature extraction, and the classification step consists of training and evaluation
of machine learning models.

Figure 3.1: Flow chart for the proposed method for this thesis, containing data
acquisition, pre-processing and classification.

17

Method 18

3.1 Data

This section contains information about the recording device and explains the data acqui-
sition and anonymization process. The data used for this thesis was collected from a set of
20 volunteers, where each volunteer was recorded under three different circumstances. The
different circumstances consisted of a one-minute recording where the volunteer was relaxed
and had a resting heart rate, a two-minute recording after physical activity, and a 20-second
recording where the volunteer was in motion.

3.1.1 Recording device

The recording device used for this project was the Alive Bluetooth Heart and Activity
Monitor as shown in Figure 3.2. This is a wireless health and fitness monitor that can be
used for identification of atrial fibrillation, heart failure, etc. The device provided a single
lead recording, and has a sampling rate at 300 Hz, 8-bit resolution, and a dynamic range of
5.3 mV p-p1 [36].

Figure 3.2: Alive Bluetooth Heart and Activity Monitor with connections for two
electrodes.

From this information the time step ∆t and quantification level ∆x could be calculated from
Equations 3.2 and 3.1.

∆x = 5.3mV
28 − 1 = 0.0208mV (3.1)

∆t = 1
300s = 30e−3s = 30ms (3.2)

1Peak to peak.

Method 19

3.1.2 Data Acquisition

Data acquisition was planned accordingly to the flow chart shown in Figure 3.3. As intro-
duced earlier, the test consisted of three separate recordings for each of the volunteers. The
first recording provided the Resting ECG (R-ECG) dataset, which provides the basis for
this project, and was a one-minute recording with a resting heart rate. The second recording
was done after a brief physical exercise and provided the Heart Rate Variety ECG (HRV-
ECG)2 dataset. This dataset was recorded over two minutes and provided ECG signals
with a continually decreasing heart rate. The physical activity used for this recording was
running in starts, as it provides a fast increase in heart rate. The third recording was per-
formed while the volunteer was in motion and provided the Moving ECG (M-ECG) dataset.
This was done by making the volunteer walk approximately 15 meters at a slow pace. This
recording provided ECG signals with extreme baseline drift and muscle noise. The three
different recordings for one of the volunteers has been shown in Figure 3.4. Further, these
datasets have been denoted as the R, HRV and M datasets.

Figure 3.3: Proposed collection protocol. The complete data collection protocol
has been placed in Appendix C.

In total, this data acquisition method provided approximately 270 heartbeats for each of the
volunteers. These are divided into training and testing data, where 20% of the data is used
for testing. The M dataset was used exclusively for testing.

ECG Dataset Heartbeats Training Heartbeats Testing
R-ECG 40 10

HRV-ECG 150 50
M-ECG - 20

Table 3.1: Heartbeats for each data set for the average individual. The training
data can further be divided into training and validation or be used for k-fold
validation.

The data collected from the recording device is unfiltered, thus a general filtering method
that can handle the different noise components for the different data sets needed to be

2Not to be confused with Heart Rate Variability.

Method 20

implemented. This is described in Section 3.2.1.

Figure 3.4: Collected data from an arbitrary volunteer. The three plots show the
R, HRV and the M datasets.

3.1.3 Anonymization

Biometric data is regarded as sensitive and protected data by the EU and GDPR. Data sub-
ject rights [37] states that the subject always should have the authority to access or delete
their data from the collection and has strict guidelines when it comes to the collection and
storing of said sensitive data. ECG data is bio-medical data that can be used to analyze
the healthiness of a person’s heart and might reveal different cardiac deceases, which raises
moral questions on how to manage this information.

Biometric identification does not require any prior information about age, sex, height, weight,
etc. and it is therefore of no interest in keeping personal information for any of the indi-
viduals. This gave the possibility to use anonymous data for the project, thus avoiding the
strict guidelines from the GDPR [38].

The anonymization process used in this project consisted of a simple script that gave each of
the subjects a possibility to choose their subject number. As the number had been decided,
a new folder was generated, which contained the subject’s ECG data. When the data ac-
quisition process had been finished the folders were renamed from 01-20, as shown in Figure
3.5.

Method 21

Figure 3.5: Anonymization procedure used for this project. This example illus-
trates how one subject based on the chosen number get shuffled into the dataset
based on the complete list of subjects.

Method 22

3.2 Pre-processing

This chapter presents the pre-processing methods used for this project. The pre-processing
can be decomposed into three main steps:

1. Denoising

2. Feature extraction

3. Heart rate normalization and feature space reduction

To generate data for each of the heartbeats, it was crucial to find and implement denoising
that maximized the amount of valuable data that could be used for further feature extraction.
Feature extraction methods based on fiducial features in the ECG signal are susceptible to
noisy signals. Thus, ECG signals acquired from a mobile device requires robust denoising
methods.

Event Frequency region [Hz]
Heart rate 0.67-3.33
P wave 0.67-5

QRS-complex 10-50
T wave 1-7

Baseline drift 0-1.5
Muscle noise 5-50

Power line noise 50-60
High frequency noise 100-500

Table 3.2: Frequency regions for typical ECG signals

Table 3.2 Contains the different frequency regions expected for the waves and the noise
components in the ECG signal [22]. The frequency domains some noise components and
signal components overlap, which makes filtering only the noise alone a difficult task.

3.2.1 Denoising

Denoising has an essential function in pre-processing for all types of data, included biomed-
ical signals. One problem with denoising ECG signals is that by definitionthat, the distinct
waves and the QRS complex are considered to be noise for the filters. By incorrectly de-
termining cut-off frequencies, these components would be removed from the filtered signal.
Therefore, it is essential to study the different frequency regions of a typical ECG signal be-
fore designing filters. It is also recommended using linear- or zero phase filters to avoid phase
distortion; which can be accomplished by using either FIR filters or backward-forward IIR
filtering [18]. In this project, the need for real-time filtering was not important; therefore,
the additional delay caused by the FIR filter did not provide further disadvantages.

Method 23

The different noise components found in ECG signals from Chapter 2.1.4 can be compen-
sated for by implementing a bandpass filter followed by a smoothing filter. The process has
been illustrated with a flow chart in Figure 3.6.

Figure 3.6: Pre-processing flow chart

Adaptive Baseline Wander Removal

Low-frequency noise due to wire movement and respiration affects the ECG signal by mak-
ing a non-zero and dynamic baseline. High pass filters have been used to remove the low-
frequency baseline drift. The baseline drift mostly comes from respiration and wire move-
ment. In most cases, the use of a high pass filter with cut-off frequencies at approximately
0.5 Hz removes the baseline, as the baseline components usually are in a range below 0.5 Hz
[18]. Though, in this project, different datasets with excessive baseline wander were present.
Using a higher cut-off frequency would overlap with the frequencies of the P- and T-wave as
they have low-frequency components. This problem was solved by the implementation of a
FIR time-variant baseline filter like the one proposed by Sörmo [39]. This filter uses a cut-off
frequency that is proportional on the heart rate, thus making it inversely proportional to the
RR interval. This was implemented to preserve as much as possible from the ECG signal;
however, at the same time, remove the baseline drift. Limitations on 50 and 180 bpm were
set to limit the cut-off frequencies produced by this method. The filter was implemented

Method 24

as a FIR filter with a filter length of 1145, thus providing 20 dB stopband attenuation [18].
Estimation of heart rate was done according to Equations 3.3.

HRi = 60 · fs

Ri+1 −Ri

(3.3)

The heart rate in Equation 3.3 is 60 times the sampling frequency divided by the number
of samples between two detected R-peaks. the cut-off frequency range for the filter was set
between 0.5 HZ and 3 Hz, and were used on heart rates of 50 bpm and 180 bmp respectively.
This filter was used to estimate the baseline, and was thereafter subtracted from the signal.

High Frequency Filter

From Table 3.2, the highest frequency of interest is up to 50 Hz. Thus, higher frequencies
than 50 Hz does not contribute to more information but provides noise. To remove these
noise components, a FIR lowpass filter with a cut-off at 45 Hz was implemented. In addition
to the baseline filter described previously, they formed a cascade time-variant bandpass filter.
It could also be used as a bandstop filter, to estimate the baseline with additional noise, and
could thereafter be subtracted from the input signal.

Muscle Filter and Smoothing

Noise because of muscle tension, in contrast to other types of noise in the ECG signal, cannot
be removed by narrowband [18]. This is because the frequency components of muscle noise
are in the range of 5-50 Hz. A standard method for filtering this kind of noise is by signal
averaging; in which, multiple heartbeats are necessary. Another technique for muscle noise
filtering is by using dynamic Gaussian functions [40]. This was implemented by using QRS
detection to locate the QRS-complex, and after that, using Gaussian smoothing on the parts
of the signal not containing QRS-complex. The flow chart is shown in Figure 3.7. In addition
to filtering the muscle noise this filter compensates for the noise due to low quantification.

The smoothing windows were created from a FIR window filter design by providing a window
of 51 samples generated with different sigma values. Also, smoothing requires the area under
the window to sum up to one. Thus the Gaussian functions have been scaled accordingly.
The two Gaussian windows created are as shown in Figure 3.8

Method 25

Figure 3.7: Flow chart of the dynamic Gaussian smoothing method.

Figure 3.8: Scaled Gaussian windows for σ = 3 and σ = 0.2.

Method 26

3.2.2 Feature Extraction

Feature extraction is a crucial part of supervised learning3 where points that provide unique
characteristics for the different classes of input signals are being used. From Section 2.1,
some significant points of the ECG signal based on the various aspects of the heartbeat has
been explained. These amplitudes and intervals are some of the key features used in ECG
analysis, as they can provide valuable information about the health of the heart.

Feature
R Amplitude
Q Amplitude
S Amplitude
P Amplitude
T Amplitude
ST Elevation
QR Slope
RS Slope
P Interval
P+ Interval
P- Interval
T Interval
PR Segment
QTc Interval
QRS Onset
QRS Interval

Table 3.3: Full list of features used for this project. The list is an adaptation
from the feature list by Biel et al. [10].

QRS Detection

A QRS detection algorithm is conceivably an essential tool for ECG signal processing, as
most analysis starts with detecting the heartbeats. From Section 2.4.1, it was suggested that
the implementation of QRS detection in this thesis would be the method due to Pan and
Tompkins.

The modified Pan-Tompkins method proposed by Sathyapriya et al. uses a moving average
filter4 as a replacement for the integration step [7].
The different parameters used for the algorithm is as follows:

• Band Pass filtering with 5-15 Hz passband.
3Some classification methods such as neural networks perform feature selection, therefore manual feature

extraction is not necessary.
4Moving average filters averages the n nearest samples, thus provides smoothing the signal.

Method 27

Figure 3.9: Modified Pan-Tompkins QRS detection algorithm. Adaption from
[7].

• Forward-Backward MA-Filter with a window size of 15 samples.

• Adaptive threshold to identify peaks.

• Decision rule based on prior knowledge of the QRS complex and time intervals.

The decision rule for the QRS detection algorithm applies two thresholds to decide if the
current peak is from noise or is, in fact, the R-peak. The thresholds are continuously changing
with the signal to get the best estimate for the level of noise in the signal. The decision
method used for this thesis is an adaption of the Matlab implementation by Sedghamiz [41].
The method provides the modified Pan-Tompkins method, where an additional search-back
function for detecting missed peaks has been implemented. The decision function can mainly
be divided into a four-step process:

1. Detect peaks.

2. Search for missed peaks.

3. Elimination of multiple detections.

4. T-wave discrimination.

The algorithm starts with a one and a half seconds of training time to find the maximum
peak to provide a signal threshold and takes one-third of the meaned signal to provide a

Method 28

threshold for the noise. As the algorithm proceeds, the thresholds for signal and noise are
continuously being updated as a new peak for either signal or noise was located. Time limits
on 200ms and 360ms were implemented to avoid classifying a T wave or another peak as an
R-peak. Since the refactorization time of a heartbeat has a minimum of 200ms, no beats
closer to 200ms were added to the list of peaks, and if the time was lower than 360ms the
possibility for the signal to be a T-peak was high. This was handled by not allowing the
decreased threshold unless 360ms had passed.

Heartbeat Segmentation

Before feature extraction was performed, each of the recordings was separated into single
heartbeats. The motivation for heartbeat segmentation was to only provide the P-QRS-
T complex in each of the signals; thus, more general feature extraction methods could be
performed. The changing heart rate provides a different length for each of these complexes.
Therefore, the length of each segmented heartbeat was decided from the RR intervals found
from the QRS detection algorithm. The QT-Interval for each heartbeat corresponds to
approximately 40% of the RR intervals [9]. However, additional margins were desirable
to locate the T-wave ending point. Therefore, the final heartbeat segmentation for the RR
intervals became 40% of the RR interval for the signal before the R-peak, and 60% of the RR
interval for the signal after the R-peak. The rest of the signal was zero-padded to introduce
constant signal length for each of the heartbeats, and providing that the R-peak had the
same index for all the segmented heartbeats.

Points of Interest

Each of the heartbeats does contain three main points of interest. These points are the
P-wave, QRS complex, and the T-wave. The location of these points is used to calculate
the full feature list in Table 3.3. The location of peaks was done by prior knowledge of the
ECG signal, and could, therefore, be accomplished as illustrated in Figure 3.11. At first, the
fiducial feature extraction presented by Choi at el. [13] was tested. However, it was desirable
to locate the onset and offset of the P, S and T waves, thus wave delineation as presented in
Chapter 2.4.2 was added to the algorithm.

Key Points and Feature Computation

The feature extraction algorithm placed ten points for each of the heartbeats. These points
were used to produce the feature vectors for each of the subjects. Figure 3.10 represents all
the significant points found from QRS detection and wave delineation.
Combinations of indexes and amplitudes of each of the ten fiducial points were after that
used to find and calculate the 16 different features found in table 3.3.

Method 29

Figure 3.10: Illustration of the keypoins for a given P-QRS-T complex. (1) Pon

(2), PP eak (3), Poff (4), QP it (5), RP eak (6), SP it (7), Soff (8), Ton (9), TP eak (10),
Toff

Method 30

Figure 3.11: Simplified fiducial feature extraction algorithm.

Method 31

3.2.3 Heart Rate Normalization

Extracting fiducial features from ECG signals makes the features notably conditioned on
the heart rate. To make a generalized classifier that could tell each of the subjects apart, it
was beneficial to normalize the extracted features for the estimated heart rate. Heart rate
normalized features could enhance the robustness of ECG signals for the cases of increased
heart rates.

Figure 3.12: The changes on the different aspects of the heartbeat with elevated
heart rate.

Some changes due to various heart rates have been illustrated in Figure 3.12. The amplitudes
of the R- and S-peak decreases as the heart rate increases, and the QT interval got shifted
towards the QRS complex as the heart rate increased.

Corrected QT Interval

The QT interval is the interval of ventricular de- and repolarization. As the heart beats
faster, this period gets shorter. Therefore, the QT-interval changes with increased heart
rate. Identification based on intervals that change with increased heart rate causes additional
intraindividual variance for each of the subjects, which can contribute to a reduction in
classification accuracy. However, a variety of methods for QT-interval correction has been
proposed. Calculation of the Corrected QT interval (QTc) is a challenging task, as it has
been found from regression analysis that the QR-RR ratio differs with age and sex. In
practice, this means that all the methods for QTc corrections provide some error to the QTc
interval. A 1992 study proposed “Framingham’s method” to be more reliable than other
methods [42]. The result of their study is given in Equation 3.4.

QTC = QT + 0.154(1 −RR) (3.4)

Method 32

3.3 Machine Learning

ML provides powerful tools to find patterns in data, as explained in Section 2.3. In this
project, the data consists of 20 different classes and 60 datasets. The desired result was to
find a classifier that could provide sufficient accuracies for the 20 classes on all the datasets;
however, only providing data from the R datasets to train the classification model. Machine
learning in Python is accomplished by using the Scikit Learn library [43]. This library
provides a powerful toolbox with various ML models, feature scaling and much more.

3.3.1 Classification Model

For this project, a handful of different classification models have been tested. The models
have been listed in Table 3.4. The model consists of a mixture of different models, where
most are based on models used by Choi et al. in their study with noisy ECG signals [13].

Most of the classification models are made for binary classification. However, using One-vs-
Rest (OVR) classification methods provide one classifier for each of the 20 classes. This is
accomplished by training one class at the time against each of the other classes. In Scikit
Learn this was accomplished using the OnevsRest classifier [44].

In this project, it was decided that only the R dataset would be used to find and train the
classification model that would be used for authentication. From the Scikit Learn library
[43] the different classification models were trained and validated by performing 10-fold
cross validation. Given the size of the dataset this was a reasonable way to estimate the
accuracy for the different classification models on a relatively5 small dataset. In addition,
the hyperparameters for the classification models were found by performing a grid search,
as explained in Section 2.3.5

Model Name
LR Logistic Regression
LDA Linear Discriminate Analysis
KNN K Nearest Neighbour
CART Classification And Regression Trees
NB Naive Bayes
SVM Support Vector Machine
MLP Multilayer perception
RF Random Forest

Table 3.4: List of different Machine learning models tested for this project.

5ML requires a large scale of data, hence in a small dataset 10-fold cross validation is a simple, yet
effective way to “expand” the dataset

Method 33

3.3.2 Classifier Evaluation Method

Evaluation of the different classifiers to decide the best fit for an identification algorithm,
some factors needed to be considered. The number of TP, TN, FP, and FN can be used to
calculate additional evaluation metrics than ACC and was used for evaluation of the different
classifiers.

TPR = TP

TP + FN
= 1 − FNR (3.5)

TNR = TN

TN + FP
= 1 − FPR (3.6)

FPR = FP

TN + FP
= 1 − TNR (3.7)

FNR = FN

TP + FN
= 1 − TPR (3.8)

In addition to the ACC, other factors of interest were the true positive rate (sensitivity)
from Equation 3.5, and the true negative rate (specificity) from Equation 3.6 and their op-
posites, from Equation 3.7 and 3.8 describing the fall-out rate and miss rate respectively [32].

Figure 3.13: ROC-curve providing the relationship between sensitivity and
1-specificity. Point B illustrates the point where sensitivity is equal to 1-
specificity6[8].

The Receiver Operating Characteristics (ROC) curve provides insight in the decision bound-
ary. and can distinguish operationally between discriminability and decision bias [30]. By
calculation of Area Under the Curve (AUC) and Equal Error Rate (EER), where the latter
is the sensitivity or 1-specificity in point B from figure 3.13. For this project, the ROC curves
for each of the classification models must be averaged, as each class in the OVR classifier
has its own classifier.

6CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode

Method 34

For these evaluation metrics to be used for a multiclass classifier, the metrics for each of
the individual classes had to be found and averaged. However, only calculating the mean of
the already calculated values produces the macro-average, and it provides little information
about class imbalance. Micro-average was used to take the class imbalance into account.
[45].

Precisioni = Mii∑
j Mji

(3.9)

Recalli = Mii∑
j Mij

(3.10)

F1i = 2 · Precisioni ·Recalli
Precisioni +Recalli

(3.11)

Using the combined measurements for the classifiers gave a full view of how the classifiers
compared to each other. The most crucial metrics for identification is perhaps the F1-score,
which is a combination of precision and recall. Calculation for precision, recall and F1-score
for an arbitrary class i have been done according to Equations 3.9, 3.10 and 3.11. In addi-
tion to F1-score and ACC, identifying the prediction probability for the correct and wrong
classifications provided insight into the certainty of the classifiers.

In addition to estimating the model for single heartbeats, it was of interest to find how addi-
tional heartbeats could provide better accuracies for the classifiers. This was accomplished
by taking the sum of the predicted probabilities7 for multiple heartbeats. After that, the
OVR classifier is using the maximum of these probabilities to present the predicted class.
This provided additional information that was lost in the ROC curves if either the sensitivity
or specificity reached zero or one. Providing box-plots on the correct and wrong classifica-
tions provides estimates of mean and variance for the decision probabilities for the validation
data.

3.4 Identification

The identification experiment for this project was performed by looking into each of the
datasets individually. By analyzing the datasets individually, the accuracy for the different
recording conditions could be calculated. The identification procedure was first tested on
the single heartbeat case, where each of the datasets was tested before and after additional
training data was supplemented. Identification for the 20 individuals in the datasets has
been presented as multiclass confusion matrices. The confusion matrices are presented as

7The predicted probability is the probability each of the classification models in the OVR classifier
predicts. The classifier with the highest prediction probability gets decided. Some classification models such
as; RF and MLP also provides predicted probabilities.

Method 35

illustrated in Figure 3.14a, where the perfect results are provided with all classifications
placed on the diagonal.

(a) (b)

Figure 3.14: (a) Illustration of the confusion matrix used to display how the
different individuals got classified in relation to each other. (b) Confusion matrix
illustrating the classification of known individuals and unknown individuals.

3.4.1 Biometric Authentication System

The final experiment was performed by the implementation of a simple authentication sys-
tem. The authentication system was first tested with only data from the R dataset. By
analyzing the predicted probabilities received from the classifier evaluation procedure, a
threshold was set. In these experiments, 19 of the 20 individuals had been used to generate
the classifier, and one had been excluded. This was done to evaluate how the unknown class
would be handled in the authentication process. To illustrate this, a new confusion matrix
was produced. This confusion matrix handled the 19 known classes as the positive state,
and the unknown class as the negative state. The confusion matrix has been illustrated in
Figure 3.14b. For this experiment, the unknown getting identified as a known subject is
denoted as a type II error, and a known subject getting referred to as an unknown subject is
referred to as type I error. This confusion matrix does not discriminate between the known
subjects but sees the known subjects as the positive class, and the unknown subject as the
negative class.

For the second part of this experiment, the authentication of all the collected datasets was
used with the same conditions as earlier. However, a new decision threshold was found from
the HRV validation test. Also, an increasing amount of the HRV dataset was used for train-
ing. The HRV training data was sorted by heart rate as illustrated in Figure 3.15, this was
desired to keep the R dataset as the basis of the classifier and use the additional data to
extend the “limits”. This part was performed with 0%, 25% and 50% of the HRV dataset as
training.

Method 36

Figure 3.15: Extraction of five heartbeats for each tenth heart rate interval.

Figure 3.16: Flow chart of the implemented biometric authentication system.

The authentication system allowed each of the individuals to provide up to five heartbeats.
In the case where the predicted probability did not exceed the set threshold had not been
satisfied within this time, the individual was classified as unknown and had to possibility to
try again. The authentication system has been illustrated in Figure 3.16.

Chapter 4

Results

This chapter manifests the results obtained from the method presented in Chapter 3. This
chapter has been decomposed into four primary results. First, some results on the prepro-
cessing method, have been presented; after that, some results from the model verification.
The two last sections provide results obtained from single beat identification and finally, the
results from the biometric authentication system.

4.1 Preprocessing

The preprocessing algorithm was developed to handle the different types of recorded ECG
signals. The feature extraction method was strict and needed some requirements to add the
given heartbeat to the list of features, and required that the denoising, QRS detection, and
wave delineation provided the expected results. As the data has been collected during this
project, the number of valid heartbeats was unknown. The ratio calculated is, therefore,
the number of heartbeats located vs. the number of heartbeats kept after the strict feature
extraction algorithm had proceeded. These results have been listed in table 4.1 and pro-
vide the number of heartbeats kept for each of the 20 individuals for all the three different
datasets. The table is denoted such that the “true” value is the amount of QRS complexes
found by the algorithm, and the kept rate is the percentage of heartbeats that was kept after
the fiducial feature extraction algorithm.

From the table a relatively high rate of heartbeats was kept for most of the 20 subjects
in the dataset. With a minimum at 90% for subject 20 in the R dataset, 90% for subject 18
in the HRV dataset, and 86% for subject 10 in the M dataset.

• 99.4% for the R dataset.

• 98,4% for the HRV dataset.

• 96,95% for the M dataset.

37

Results 38

Subject R true R kept[%] HRV true HRV kept [%] M true M kept [%]
01 69 100 246 100 25 100
02 47 100 120 98 13 100
03 67 100 227 100 29 93
04 81 100 261 96 29 100
05 57 100 189 99 29 100
06 56 100 195 100 27 96
07 53 100 160 100 21 100
08 72 100 175 100 23 100
09 55 100 170 100 11 90
10 55 100 235 96 22 86
11 71 100 226 94 27 100
12 57 100 180 100 16 100
13 61 98 156 100 17 94
14 70 100 225 96 38 100
15 69 100 149 100 16 93
16 65 100 198 100 30 100
17 76 100 138 99 30 100
18 96 100 251 90 33 87
19 58 100 185 100 19 100
20 60 90 208 100 25 100

Table 4.1: Relationship between found and retained heartbeats for the three
datasets for each of the 20 subjects in this project.

From table 4.1 it has been shown that the different subjects provided different amounts of
heartbeats for each of the tests. This is a result of different heart rates and possibly poor
performance of the QRS detection algorithm.

4.2 Model verification

Verification of which classifiers had the potential to provide accurate biometric identification
the classifiers were tested and validated with a 10-fold cross validation method. The param-
eters for the classifiers were found by the experiment in Appendix A.1. The classifiers were
provided with parameter grids and were used to find which of the parameters provided the
highest accuracy. The results from cross validation have been provided in Figure 4.1 and
Table 4.2.

In addition to accuracy, evaluation metrics such as; EER, AUC, and F1-score was calculated,
and the micro-average ROC curves for the classifiers plotted. For this case, the training pro-
vided further splitting to generate 70% training and 10% validation data.

Figure 4.2 shows the micro-average ROC curves for the different classifiers for the R dataset.
The performance metrics are listed Table 4.3. The highest performance for single beat

Results 39

Model Mean Accuracy Standard Deviation
LR 0.897 0.044
LDA 0.859 0.061
KNN 0.893 0.031
CART 0.711 0.056
NB 0.935 0.029
SVM 0.888 0.043
MLP 0.950 0.019
RF 0.933 0.032

Table 4.2: Mean accuracy and standard deviation for the 10-fold cross validation
of the different classification models listed in Table 3.4.

Figure 4.1: Box plot illustrating how the algorithms compare to each other after
hyper parameter tuning with 10-fold cross validation

LR LDA KNN CART NB SVM MLP RF
ACC 0.555 0.449 0.823 0.381 0.660 0.600 0.872 0.551
AUC 0.978 0.969 0.972 0.785 0.971 0.979 0.992 0.988
EER 0.074 0.083 0.033 0.039 0.090 0.083 0.039 0.060
F1 score 0.718 0.623 0.853 0.538 0.795 0.740 0.910 0.707

Table 4.3: Evaluation metrics for the different classifiers where only R data was
used for validation. The ROC curve from this test has been displayed in Figure
4.2

classification was with the MLP classifier.
Figure 4.3 shows the micro-average ROC curves for the different classifiers for the R and
HRV datasets. The performance metrics are listed Table 4.4. The highest performance for
the single beat classification was with the MLP classifier. Also, the micro-average ROC
curve for five heartbeats was found. This has been shown in Figure 4.4, and the evaluation
metrics for the classifiers have been listed in Table 4.5.

Results 40

Figure 4.2: Micro-average ROC curves for the different classifiers. Training and
validation data from the R dataset on single heartbeats.

Figure 4.3: Micro-average ROC curves for the different classifiers. Training from
the R dataset, and validation from the HRV dataset for single heartbeats

.

The presented evaluation metrics did not provide enough certainty for which of the classifiers
that would provide the best results for both the R and HRV datasets. To decide, all the
classification models except for the CART classifier was tested for one and five heartbeats.
By storing the predicted probabilities for both correct classifications and false classifications
it was possible to see how big the difference in predicted probabilities was for both correct
and wrong classifications. The full experiment has been placed in Appendix A.2. The results

Results 41

LR LDA KNN CART NB SVM MLP RF
ACC 0.393 0.341 0.622 0.253 0.402 0.414 0.607 0.335
AUC 0.929 0.930 0.913 0.709 0.923 0.912 0.951 0.941
EER 0.152 0.141 0.060 0.043 0.159 0.186 0.111 0.142
F1 score 0.546 0.504 0.684 0.395 0.575 0.564 0.685 0.488

Table 4.4: Evaluation metrics for the different classifiers where both R and HRV
data was used for validation. The ROC curve from this test has been displayed
in Figure 4.3.

Figure 4.4: Micro-average ROC curves for the different classifiers. Both the
training and validation data consists of the HRV datasets with taking the majority
voting after five heartbeats.

LR LDA KNN CART NB SVM MLP RF
ACC 0.431 0.431 0.724 0.353 0.517 0.474 0.672 0.371
AUC 0.957 0.960 0.936 0.708 0.964 0.942 0.975 0.966
EER 0.114 0.117 0.050 0.019 0.114 0.138 0.084 0.099
F1 score 0.590 0.602 0.771 0.503 0.697 0.633 0.759 0.541

Table 4.5: Model evaluation with HRV and R evaluation and training data. The
ROC curve for this test has been displayed in Figure 4.4.

from this test showed that the Random Forest classifier produces the best limits between
predicted probabilities for correct and wrong classifications. Therefore, the RF classifier was
used for the next experiments.

Results 42

4.3 Single Beat Identification

This section provides the result from the identification experiment proposed in Section 3.4.
The test was performed on single heartbeats, and the experiment included two different
training sets. The first test was performed where only the test data from the R dataset was
used for training. The second test consisted of both the R dataset, and 50% of the HRV
dataset for training. The goal of this experiment was to establish how the use of additional
training data based on ECG signals with increased heart rate and increased noise could
potentially improve accuracy for the single heartbeat identification.

Figure 4.5: Confusion matrix for single beat identification for the R dataset.

(a) (b)

Figure 4.6: (a) Confusion matrix for HRV single beat identification without HRV
training data. (b) Confusion matrix for HRV single beat identification with 50%
HRV training data.

Results 43

(a) (b)

Figure 4.7: (a) Confusion matrix for M single beat identification without HRV
training data. (b) Confusion matrix for M single beat identification with 50%
HRV training data.

Figures 4.5, 4.6 and 4.7 show how the accuracy for single beat identification increases by
including additional HRV data for training. Percentages of accuracy before and after addi-
tional training data has been provided in Table 4.6

R HRV test 1 HRV test 2 M test 1 M test 2
Accuracy [%] 91.8 47.1 82.9 40.1 45.9
Identified 20 18 20 15 18

Table 4.6: Accuracy and number of subjects identified from single beat identi-
fication. Test 1 consisted of training on only the R dataset and test 2 included
additional HRV training data.

By additional training data from the HRV data set the accuracy and number of correctly
identified subjects increased drastically for the HRV dataset. The M dataset increased as
well. However, did not have the same effect as for HRV.

Results 44

4.4 Biometric Authentication

The biometric authentication has, as explained in Section 3.4.1, been divided into two sepa-
rate authentication experiments. The first experiment only tests on the R dataset, and the
second experiment uses the R, HRV and M datasets. The thresholdsh have been found from
Appendix A.2.

4.4.1 Authentication Experiment 1

This experiment evaluated how the recorded R ECG signals recorded from the set of in-
dividuals was handled by the authentication system. From Appendix A.2 in Figure A.15
it was shown that a threshold on 0.7 should, based on the HRV validation data, not give
misclassifications.

(a) (b)

Figure 4.8: (a) Confusion matrix for the identification test with the R-ECG
dataset (b) Confusion matrix for the identification process illustrating the amount
of test being classified as unknown subject, and the unknown subject classified
as a known subject.

Figure 4.8a displays the ratio of subjects classified, from the figure it is shown that 17/19
individuals got classified as themselves, one known individual got classified as another known
individual. However, the unknown individual did not get classified as a known subject, and
12% of the tests on known subject got classified as an unknown subject. These numbers are
shown in Figure 4.8b.

4.4.2 Authentication Experiment 2

This experiment evaluated how the recorded R, HRV and M ECG signals perform with a
varying amount of HRV training data. In this experiment, the threshold value was found
from Appendix A.2. Figure A.16 gave reason to believe that a threshold at 0.75 should avoid
misclassifications. The results have been presented in confusion matrices.

Results 45

0% HRV-ECG Training Data

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Authentication with 0% HRV. (a)-(b) consists of R, (c)-(d) consists
of HRV, and (e)-(f) consists of the M dataset.

Figure 4.9 shows how the authentication process performed without additional training data.

Results 46

25% HRV-ECG Training Data

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Authentication with 25% HRV. (a)-(b) consists of R, (c)-(d) consists
of HRV, and (e)-(f) consists of the M dataset.

Figure 4.10 shows how the authentication process performed with 25% additional training
data from the HRV dataset.

Results 47

50% HRV-ECG Training Data

(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Authentication with 50% HRV. (a)-(b) consists of R, (c)-(d) consists
of HRV, and (e)-(f) consists of the M dataset.

Figure 4.11 shows how the authentication process performed with 50% additional training
data from the HRV dataset.

Results 48

Summary of Authentication Experiment 2

Dataset Correct Wrong Type I Error[%] Type II Error[%]
R 16/19 0 24 0

HRV 4/19 0 74 0
M 4/19 0 84 0

Table 4.7: Results from the 0% HRV test.

Dataset Correct Wrong Type I Error[%] Type II Error[%]
R 16/19 0 15 0

HRV 8/19 0 51 0
M 5/19 0 82 0

Table 4.8: Results from the 25% HRV test.

Dataset Correct Wrong Type I Error[%] Type II Error[%]
R 17/19 0 16 0

HRV 10/19 0 43 0
M 6/19 0 81 0

Table 4.9: Results from the 50% HRV test.

From Tables 4.7, 4.8 and 4.9 it has been shown that an increasing amount of training data
for the HRV provides a higher acceptance rate for the HRV dataset. It also increased the
accuracy for the authentication of the R dataset. The increase of HRV data did slightly
provide better authentication results for the M dataset as well. Not including HRV data
provided a low number of authenticated subjects for the HRV and M datasets. However, no
type II error was found in any of the experiments.

Chapter 5

Discussion

This chapter discuss the results and the method. Further some threats to validity, future
work and some concluding remarks.

5.1 Analysis of the Results

The results obtained for this thesis has been provided over a handful of experiments. The
results obtained by the classification model evaluation indicated that the Multilayer Percep-
tron classifier would give the desired results “hinted at” in the introduction. However, by
validation over one and five heartbeats, the decision probabilities proved to be uncertain for
validation of the HRV dataset. Thus, the Multilayer Perceptron classifier did not provide
satisfactory results for a biometric authentication system. Further analysis of the predicted
probability for the different classifiers, it was found that the Random Forest increased the
certainty distinguished between the different individuals for the R and HRV dataset.

Identification from single heartbeats provided compelling results, revealing how the Ran-
dom Forest classifier provided reasonable identification accuracies for both the HRV and M
datasets. Without using any of these datasets for training, accuracies of 47.1% and 40.1%
respectively were obtained. After additional training data had been appended to the train-
ing set for the classifier, accuracies of 82,9% and 45.9% were achieved for the HRV and M
datasets respectively. Further analysis of the prediction probabilities achieved for correct
and wrong classification, unfortunately, revealed that, even though the individuals got cor-
rectly classified, the predicted probabilities that was obtained from the classification model
was rather low.

The biometric authentication system was tested under three different conditions where dif-
ferent amounts of the HRV datasets were provided as additional training data, where 0%,
25%, and 50% were tested. First, by only testing on the R dataset with a threshold of 0.7
provided a correct classification of 16 of the subjects, and avoided classifying a subject that

49

Discussion 50

had been excluded from the dataset as another subject, thus resulting in 0% type II error.
Further testing on the HRV dataset found that the authentication, with strict thresholds,
had 0% type II error. However, without additional training data, the system performed
poorly, only correctly classifying four subjects. Additional training provided eight and ten
correctly classified subjects for the 25% and 50% cases respectively. The M dataset provided
four, five, and six correct classifications for the cases of 0%, 25% and, 50% respectively.
However, like for the R and HRV dataset no type II error was found.

5.2 Reflections on the Method

5.2.1 Pre-processing

The pre-processing methods used for this thesis have been adaptions of different adaptive
methods used for the pre-processing of ECG signals under noisy conditions. The different
filters and feature extraction methods have not been implemented for real-time systems,
however, it was used for offline analysis. The adaptive filtering methods for baseline wander
and muscle noise provided reasonable results. The QRS detection algorithm implemented
did not detect all the peaks in some of the ECG signals acquired. The QRS algorithm based
its decision on the slopes of the ECG signal. Although, for some of the recorded signals
in the database, the slopes did not produce high enough amplitudes in the moving average
signal. This resulted in some peaks not being identified and made the estimated heart rate
for the signals less accurate. This could potentially have provided the wrong scaling of the
QTc intervals.

5.2.2 Classification and Evaluation Methods

The classification methods tested for this thesis was used as OVR classifiers. The OVR
classification provides one trained classifier for each of the classes provided. The problem
with using OVR is that each of the classifiers is trained against each other; this means that
this method requires at least two classes to produce one classifier. This type of classification
model would perhaps not be desirable for authentication applications on wearable devices
where there is most likely only one user. A more suitable solution would preferably be inde-
pendent of other classes.

For evaluation, the provided metrics did not provide the anticipated differences; therefore,
an additional test to find the difference in prediction probabilities were implemented. This
could potentially have been solved by introducing additional evaluation metrics. Evalua-
tion metrics that include threshold in their evaluation could have provided the results from
Appendix A.2 on a more professional standard.

Discussion 51

5.3 Threats to Validity

This thesis was originally aimed at Apple Watch series 4. However, Apple did not want to
provide API1 for ECG signal extraction. Different equipment with a similar sample rate
and quantification was found, however, due to price and lack of accessible APIs for data
extraction, his project had to proceed on equipment that provided a lower sampling rate
and quantification. The recorder provided lower precision and included more noise. This
provided smaller differences in both amplitudes and intervals, and may, therefore, have re-
sulted in smaller interindividual variance between the subjects.

For data acquisition, a set of 20 individuals have been used. The volunteers were mostly
male and were around the same age. The dataset did, therefore not provide the diversity
desired. A generalized approach can therefore not confidently propose, as the data does not
represent a broad enough population. This could be solved by additional data collection in
a broader spread of individual’s age, sex, etc.

5.4 Conclusion

This thesis examined the possibility of implementation of a robust ECG biometric authenti-
cation system for wearable/portable devices. The motivation was to find a model that could
provide reasonable results for ECG signals recorded with resting heart rate, increased heart
rate after physical activity, and noisy ECG signals recorded during motion. By performing
adaptive denoising and fiducial feature extraction, various classification models were trained
and evaluated to find a classification model that could be used for a biometric authentica-
tion system. Finally the Random Forest classification model was found to provide the best
results, and was therefore used for the experiments executed in this project.

Results in this thesis indicated that an ECG based biometric authentication procedure pro-
vided that 17/19 subjects got authenticated, corresponding to 89.5% accepted individuals.
This was reduced to 52.6% (10/19) and 31.6% (6/19) for ECG signals acquired after phys-
ical activity and during motion, respectively. By only providing ECG signals recorded with
a resting heart rate to train the biometric authentication system, the acceptance rate was
reduced to 84.2% for resting heart rate, and 21.1% for ECG signals after physical activity
and while in motion. The last subject who had been excluded from the system did not get
accepted for any of the three recordings provided. Additionally, no misclassification between
the known subjects occurred. The test on single heartbeat identification provided accura-
cies of 91.8%, 82.9% and 45.9% for the different recordings. This indicates that a higher
acceptance rate could be obtainable.

1Application Programming Interface.

Discussion 52

Overall the results obtained from this project indicate that biometric authentication on wear-
able devices potentially could provide the desired accuracy for a biometric authentication
system. However, it would require new and more robust methods in order to be generalized
for ECG signals obtained under different conditions.

5.5 Future Work

Many different methods for classification and feature extraction have been left for future
work. The lack of API access for ECG signals collected on the Apple Watch resulted in
alternative equipment. The use of Apple Watch for data collection would have been of
significant interest as it provides high-quality data. For the feature extraction method pre-
sented in Chapter 3 it should be considered using features from the frequency domain rather
than those of the time domain, as used for this thesis. Also, alternative methods for QRS
detection and filtering should be tested, as it may give more accurate QRS detection. The
amount of noise found in the different recording of the ECG signals provided more noise
than what could be filtered, which made accurate fiducial feature extraction difficult.

For the classification method, it could be considered using outlier detection as a classification
method that would be independent of the other classes. The generalization of the outlier
detection algorithm for the HRV and M datasets could potentially be problematic, thus
reversing the heart rate normalization algorithm to simulate heartbeats with increased heart
rate could be a potential solution. Additionally, using multiple methods for increased decision
certainty may boost the acceptance rate.

Bibliography

[1] Wapcaplet, “Diagram of the human heart, created by Wapcaplet in Sodipodi.
Cropped by Yaddah to remove white space (this cropping is not the same as
Wapcaplet’s original crop).” Jun. 2006, accessed: 29.4.2019. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg

[2] E.-P. s. E.-P. s. S. s. C. b. Agateller, “Schematic diagram of normal sinus rhythm for a human
heart as seen on ECG, two periods forming a RR-interval.” Sep. 2009, accessed: 7.5.2019.
[Online]. Available: https://commons.wikimedia.org/wiki/File:ECG-RRinterval.svg

[3] Npatchett, “English: Spatial orientation of EKG leads,” Mar. 2015, accessed: 4.6.2019.
[Online]. Available: https://commons.wikimedia.org/wiki/File:EKG_leads.png

[4] aconcagua, “Deutsch: Apple Watch, 40mm AluminiumEnglish: Apple Watch, 40mm
AluminumFrançais: Apple Watch, 40mm Aluminium,” Sep. 2018, accessed: 28.3.2019.
[Online]. Available: https://commons.wikimedia.org/wiki/File:Apple_Watch_Series_4_
40mm_space_gray_Aluminum.jpg

[5] A. Lumini and L. Nanni, “Overview of the combination of biometric matchers,”
Information Fusion, vol. 33, pp. 71–85, Jan. 2017, accessed: 17.1.2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253516300446

[6] S. s. C. b. Agateller, “Schematic diagram of normal sinus rhythm for a human heart
as seen on ECG (with Czech labels).” Sep. 2009, accessed 10.3.2019. [Online]. Available:
https://commons.wikimedia.org/wiki/File:ECG-PQRST%2Bpopis.svg

[7] L. Sathyapriya, L. Murali, and T. Manigandan, “Analysis and detection R-peak detection us-
ing Modified Pan-Tompkins algorithm,” in 2014 IEEE International Conference on Advanced
Communications, Control and Computing Technologies, May 2014, pp. 483–487.

[8] Masato8686819, “English: ROC curve image,” Nov. 2013, accessed: 4.5.2019. [Online].
Available: https://commons.wikimedia.org/wiki/File:ROC_curve.svg

[9] M. S. Thaler, The only EKG book you’ll ever need, 7th ed. Wolters Kluwer/Lippincott
Williams & Wilkins, 2012.

[10] L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG analysis: a new approach in human
identification,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 3, pp.
808–812, Jun. 2001.

53

BIBLIOGRAPHY 54

[11] G. B. Moody and R. G. Mark, “MIT-BIH Arrhythmia Database,” 1992, type: dataset.
[Online]. Available: https://physionet.org/physiobank/database/mitdb/

[12] T. Lugovaya, “The ECG-ID Database,” 2011, type: dataset. [Online]. Available:
https://physionet.org/physiobank/database/ecgiddb/

[13] H. Choi, B. Lee, and S. Yoon, “Biometric Authentication Using Noisy Electrocardiograms
Acquired by Mobile Sensors,” IEEE Access, vol. 4, pp. 1266–1273, 2016.

[14] R. Salloum and C.-J. Kuo, “ECG-based biometrics using recurrent neural networks,” in 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar.
2017, pp. 2062–2066.

[15] T. S. Lugovaya, “Biometric Human Identification based on ECG,” Jun. 2005, accessed:
17.1.2019. [Online]. Available: https://www.physionet.org/pn3/ecgiddb/biometric.shtml

[16] S. Pathoumvanh, S. Airphaiboon, and K. Hamamoto, “Robustness study of ECG
biometric identification in heart rate variability conditions,” IEEJ Transactions on Electrical
and Electronic Engineering, vol. 9, no. 3, pp. 294–301, 2014. [Online]. Available:
http://onlinelibrary.wiley.com/doi/abs/10.1002/tee.21970

[17] J. R. Pinto, J. S. Cardoso, and A. Lourenço, “Evolution, Current Challenges, and Future
Possibilities in ECG Biometrics,” IEEE Access, vol. 6, pp. 34 746–34 776, 2018.

[18] L. Sõrnmo and P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Appli-
cations. Elsevier Academic Press, 2005.

[19] M. AlGhatrif and J. Lindsay, “A brief review: history to understand fundamentals of
electrocardiography,” Journal of Community Hospital Internal Medicine Perspectives, vol. 2,
no. 1, Apr. 2012, accessed: 5.6.2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3714093/

[20] L. Potter, “Understanding an ECG,” Mar. 2011, accessed: 14.6.2019. [Online]. Available:
https://geekymedics.com/understanding-an-ecg/

[21] Apple, “Using Apple Watch for Arrhythmia Detection December 2018,” 2018.

[22] C. Watford, “Understanding ECG Filtering | EMS 12 Lead,” Mar. 2014, accessed: 9.4.2019.
[Online]. Available: http://ems12lead.com/2014/03/10/understanding-ecg-filtering/

[23] A. Goode, “Biometric Identification or Biometric Authentica-
tion?” Jul. 2018. [Online]. Available: https://www.veridiumid.com/blog/
biometric-identification-and-biometric-authentication/

[24] “Biometric authentication (What is biometrics?) | 2018 Review.” [Online]. Available:
https://www.gemalto.com/govt/inspired/biometrics

[25] Z. Rui and Z. Yan, “A Survey on Biometric Authentication: Toward Secure and Privacy-
Preserving Identification,” IEEE Access, vol. 7, pp. 5994–6009, 2019.

BIBLIOGRAPHY 55

[26] M. Korolov, “What is biometrics? And why collecting biometric data is risky,” Feb.
2019, accessed: 21.5.2019. [Online]. Available: https://www.csoonline.com/article/3339565/
what-is-biometrics-and-why-collecting-biometric-data-is-risky.html

[27] M. G. Adams-Hamoda, M. A. Caldwell, and N. A. Stotts, “Factors to consider when
analyzing 12-lead electrocardiograms for evidence of acute myocardial ischemia,” AMERICAN
JOURNAL OF CRITICAL CARE, vol. 12, no. 1, p. 9, 2003, accessed: 28.2.2019. [Online].
Available: http://ajcc.aacnjournals.org/content/12/1/9.full.pdf

[28] B. J. A. Schijvenaars, G. van Herpen, and J. A. Kors, “Intraindividual variability in
electrocardiograms,” Journal of Electrocardiology, vol. 41, no. 3, pp. 190–196, May 2008.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022073608000447

[29] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory
to Algorithms. Cambridge: Cambridge University Press, 2014. [Online]. Available:
http://ebooks.cambridge.org/ref/id/CBO9781107298019

[30] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, second edition ed. Canada:
Wiley-Interscience, 2001.

[31] Wikipedia, “Feature scaling,” Jun. 2019, accessed: 4.6.2019. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Feature_scaling&oldid=899790585

[32] ——, “Sensitivity and specificity,” May 2019, accessed: 13.6.2019. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Sensitivity_and_specificity&oldid=895891646

[33] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” p. 25, Feb.
2012.

[34] C. Carreiras, A. P. Alves, A. Lourenco, F. Caneto, and H. Silva, “Biosignal
Processing in Python.” Apr. 2019, accessed: 28.4.2019. [Online]. Available: https:
//github.com/PIA-Group/BioSPPy

[35] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE Transactions
on Biomedical Engineering, vol. BME-32, no. 3, pp. 230–236, Mar. 1985. [Online]. Available:
http://ieeexplore.ieee.org/document/4122029/

[36] “Alive Bluetooth Heart & Activity Monitor,” accessed: 28.3.2019. [Online]. Available:
https://www.alivetec.com/pages/alive-bluetooth-heart-activity-monitor

[37] “Key Changes with the General Data Protection Regulation – EUGDPR,” accessed:
24.4.2019. [Online]. Available: https://eugdpr.org/the-regulation/

[38] D. Ross, “Processing biometric data? Be careful, under the GDPR.” [Online]. Available:
https://iapp.org/news/a/processing-biometric-data-be-careful-under-the-gdpr/

[39] L. Sörnmo, “Time-varying digital filtering of ECG baseline wander,” Medical and Biological
Engineering and Computing, vol. 31, no. 5, p. 503, Sep. 1993. [Online]. Available:
https://doi.org/10.1007/BF02441986

BIBLIOGRAPHY 56

[40] A. Hashemi, M. Rahimpour, and M. R. Merati, “Dynamic Gaussian filter for muscle noise
reduction in ECG signal,” in 2015 23rd Iranian Conference on Electrical Engineering, May
2015, pp. 120–124.

[41] H. Sedghamiz, “Matlab Implementation of Pan Tompkins ECG QRS
Detector.” p. 3, Mar. 2014, acessed: 28.05.2019. [Online]. Avail-
able: https://www.researchgate.net/profile/Hooman_Sedghamiz/publication/
313673153_Matlab_Implementation_of_Pan_Tompkins_ECG_QRS_detector/data/
5ac701130f7e9bcd51932f19/Sedghamiz-2014-Pan-Tompkins-Matlab.pdf

[42] A. Sagie, M. G. Larson, R. J. Goldberg, J. R. Bengtson, and D. Levy, “An improved method
for adjusting the QT interval for heart rate (the Framingham Heart Study),” The American
Journal of Cardiology, vol. 70, no. 7, pp. 797–801, Sep. 1992.

[43] “scikit-learn: machine learning in Python.” Apr. 2019, accessed: 28.04.2019. [Online].
Available: https://github.com/scikit-learn/scikit-learn

[44] “sklearn.multiclass.OneVsRestClassifier — scikit-learn 0.20.3 documentation,” accessed:
4.05.2019. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
multiclass.OneVsRestClassifier.html#examples-using-sklearn-multiclass-onevsrestclassifier

[45] V. V. Asch, “Macro-and micro-averaged evaluation measures [[BASIC DRAFT]],” Sep.
2013.

[46] “sklearn.linear_model.LogisticRegression — scikit-learn 0.20.3 documentation,” accessed:
3.05.2019. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
linear_model.LogisticRegression.html

[47] “sklearn.discriminant_analysis.LinearDiscriminantAnalysis — scikit-learn 0.20.3 documen-
tation,” accessed: 3.05.2019. [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html

[48] “sklearn.neighbors.KNeighborsClassifier — scikit-learn 0.20.3 documentation,” accessed:
3.05.2019. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier

[49] “sklearn.tree.DecisionTreeClassifier — scikit-learn 0.20.3 documentation,” accessed:
3.5.2019. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
tree.DecisionTreeClassifier.html

[50] “sklearn.naive_bayes.GaussianNB — scikit-learn 0.20.3 documentation,” accessed: 3.5.2019.
[Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.
GaussianNB.html

[51] “sklearn.svm.SVC — scikit-learn 0.20.3 documentation,” accessed: 3.05.2019. [Online].
Available: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

BIBLIOGRAPHY 57

[52] “sklearn.neural_network.MLPClassifier — scikit-learn 0.20.3 documentation,” accessed:
3.05.2019. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
neural_network.MLPClassifier.html

[53] “sklearn.ensemble.RandomForestClassifier — scikit-learn 0.20.3 documentation,” accessed:
3.05.2019. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

Appendix A

Experiments

A.1 Grid Search

From the table 3.4 all the models that was tested to find the best classifier for this project
has been listed. By feeding all the R training data into these models with 10-fold cross
validation the accuracy for each classifier is as illustrated in figure A.1 and listen in table
A.1.

Figure A.1: Algorithms comparison with 10-fold cross validation

58

Experiments 59

Figure A.2: Parameter grid used for the grid search

Experiments 60

Model Mean Accuracy Standard Deviation
LR 0.888 0.049
LDA 0.859 0.061
KNN 0.841 0.045
CART 0.733 0.048
NB 0.935 0.029
SVM 0.886 0.039
MLP 0.919 0.027
RF 0.911 0.027

Table A.1: Results before the grid search, values from figure A.1.

To tune the classifiers to give the best possible classifier, the grid search method as explained
in chapter A.1 is used. By generating grids based on input values from the Scikit learn
documentation page for the classifiers [46, 47, 48, 49, 50, 51, 52, 53]

Model Mean Accuracy Standard Deviation
LR 0.897 0.044
LDA 0.859 0.061
KNN 0.893 0.031
CART 0.711 0.056
NB 0.935 0.029
SVM 0.888 0.043
MLP 0.950 0.019
RF 0.933 0.032

Table A.2: Results after the grid search, as illustrated in figure 4.1.

Comparing table A.1 and A.2 shows that the RF and MLP classifiers have gotten higher
accuracy’s after hyper parameter tuning using grid search.

Experiments 61

A.2 Predicted Probability Experiment

In this experiment the validation data for both the R and HRV datasets were tested for
single heartbeat identification and for five heartbeats identification. The goal of this experi-
ment was to visually inspect the identification, and in addition find the mean and standard
deviation for the correct predictions and wrong predictions to find which classifiers provides
the highest certainty in the predictions. The box plot shows the true predictions in label 2,
and false predictions in label 1.

Logistic Regression

(a) (b)

(c) (d)

Figure A.3: Predicted probability experiment for the Logistic Regression classifier
with the R validation set. (a) and (c) are from one heartbeat. (b) and (d) are
from five heartbeats.

Experiments 62

(a) (b)

(c) (d)

Figure A.4: Predicted probability experiment for the Logistic Regression classifier
with the HRV validation set. (a) and (c) are from one heartbeat. (b) and (d) are
from five heartbeats.

Experiments 63

Linear Discriminant Analysis

(a) (b)

(c) (d)

Figure A.5: Predicted probability experiment for the Linear Discriminant Anal-
ysis classifier with the R validation set. (a) and (c) are from one heartbeat. (b)
and (d) are from five heartbeats.

Experiments 64

(a) (b)

(c) (d)

Figure A.6: Predicted probability experiment for the Linear Discriminant Anal-
ysis classifier with the HRV validation set. (a) and (c) are from one heartbeat.
(b) and (d) are from five heartbeats.

Experiments 65

K-Nearest Neighbors

(a) (b)

(c) (d)

Figure A.7: Predicted probability experiment for the K-Nearest Neighbors clas-
sifier with the R validation set. (a) and (c) are from one heartbeat. (b) and (d)
are from five heartbeats.

Experiments 66

(a) (b)

(c) (d)

Figure A.8: Predicted probability experiment for the K-Nearest Neighbors clas-
sifier with the HRV validation set. (a) and (c) are from one heartbeat. (b) and
(d) are from five heartbeats.

Experiments 67

Naive Bayes

(a) (b)

(c) (d)

Figure A.9: Predicted probability experiment for the Naive Bayes classifier with
the R validation set. (a) and (c) are from one heartbeat. (b) and (d) are from
five heartbeats.

Experiments 68

(a) (b)

(c) (d)

Figure A.10: Predicted probability experiment for the Naive Bayes classifier with
the HRV validation set. (a) and (c) are from one heartbeat. (b) and (d) are from
five heartbeats.

Experiments 69

Multilayer Perceptron

(a) (b)

(c) (d)

Figure A.11: Predicted probability experiment for the Multilayer Perceptron clas-
sifier with the R validation set. (a) and (c) are from one heartbeat. (b) and (d)
are from five heartbeats.

Experiments 70

(a) (b)

(c) (d)

Figure A.12: Predicted probability experiment for the Multilayer Perceptron clas-
sifier with the HRV validation set. (a) and (c) are from one heartbeat. (b) and
(d) are from five heartbeats.

Experiments 71

Support Vector Machine

(a) (b)

(c) (d)

Figure A.13: Predicted probability experiment for the Support Vector Machine
classifier with the R validation set. (a) and (c) are from one heartbeat. (b) and
(d) are from five heartbeats.

Experiments 72

(a) (b)

(c) (d)

Figure A.14: Predicted probability experiment for the Support Vector Machine
classifier with the HRV validation set. (a) and (c) are from one heartbeat. (b)
and (d) are from five heartbeats.

Experiments 73

Random Forest

(a) (b)

(c) (d)

Figure A.15: Predicted probability experiment for the Random Forest classifier
with the R validation set. (a) and (c) are from one heartbeat. (b) and (d) are
from five heartbeats.

Experiments 74

(a) (b)

(c) (d)

Figure A.16: Predicted probability experiment for the Random Forest classifier
with the HRV validation set. (a) and (c) are from one heartbeat. (b) and (d) are
from five heartbeats.

Results

From visual inspection on the predicted probabilities for correct and false classification for
both the R and HRV validation sets, it showed that though most of the models had a clear
separation in the predicted probabilities, only the Linear Discriminant Analysis and Random
Forest classifiers had the desired results for this project. However, as the Random forest had
better separation in both the R and HRV validation sets, the Random Forest classifier was
evaluated to be the best fit for this project. The predicted probabilities have been calculated
from the validation sets. Therefore, some additional certainty should be considered before
using the highest prediction probability for false classifications as a threshold for the test
sets.

Appendix B

Software

The code used for this thesis and the dataset collected has been embedded into this thesis
in the "attachment.zip" file.

B.1 The Dataset

The dataset for this thesis consists of 20 subjects, where each of the subject has a recording
for the R, HRV and M data.

B.2 Preprocessing.py

Preprocessing.py is a class which contains static methods for preprocessing the ECG signals.

B.3 Features.py

Features.py is a class which contains static method for heartbeat extraction, feature extrac-
tion and more.

B.4 MachineLearning.py

MachineLearning.py is the code which is used for training the classifiers, performing grid
search, ROC-curves and the identification/authentication based on input parameters.

B.5 Randomizer.bat

Randomizer.bat is a file that allows the subject to choose a random number between 0 and
99, such that his or her data is saved as this folder number.

75

Appendix C

Data Collection Protocol

This Chapter contains the data collection protocol.

76

Biometric authentication from ECG signals

Responsible: Vebjørn Kaldahl Bottenvik

Date: 12.03.2019

Place: University of Stavanger

Purpose:
The purpose of the project is to determine if a person’s ECG signal can be used for biometric

authentication. The data collected for this study will be used to generate and test an algorithm for

such biometric authentication. The collected data will be anonymized and cannot be used to identify

any individual taking part in the study.

Anonymization Procedure:
The anonymization procedure will contain a method to ensure the anonymity of each participant.

1. The data of each participant will be collected as explained in the collection Procedure.

2. The data will be saved to a temporary local folder.

3. The participant will run a script that gives the possibility save the data to a new folder that

will be named based on the user input. If the folder already exists, user will be asked to try

again.

4. When data from all the participants has been collected all the folders will be renamed in a

chronological order from “1” and up.

5. The data in the temporary folder will manually be deleted.

6. The data is now fully randomized.

The reasoning for this method is the fact that the data only will contain the ECG signal itself. There is

therefore no personal information saved. This method has the purpose of randomizing the order of

the data collected.

Collection Procedure:
1. The participant will measure the ECG sitting still, having approximately a resting heart rate.

This measurement will go on for 1 minute.

2. The participant will disconnect from the ECG electrodes, walk over to the stairs where the

participant will run up and down 3 times to get an elevated heart rate.

3. The participant will again measure ECG sitting down. This time the signal will be measured as

it goes from a high heart rate. This will go on for 2 minutes.

Data Collection Protocol 77

Protocol

Data Collection Protocol 78

Flow Chart

	Abstract
	Acknowledgements
	Figure List
	Table List
	Abbreviation
	Introduction
	Previous Work
	Problem Description
	Thesis Outline

	Theory
	Electrocardiogram
	The Heart
	The Cardiac Cycle
	Recording the ECG
	Noise
	Heart Rate Variability

	Biometrics
	Common Biometric Standards
	Biometric Data Encryption
	ECG as Biometrics

	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Feature Scaling
	Training and Validation
	Tuning

	ECG Signal Processing
	QRS Detection
	Wave Delineation
	Heart Rate Estimation

	Method
	Data
	Recording device
	Data Acquisition
	Anonymization

	Pre-processing
	Denoising
	Feature Extraction
	Heart Rate Normalization

	Machine Learning
	Classification Model
	Classifier Evaluation Method

	Identification
	Biometric Authentication System

	Results
	Preprocessing
	Model verification
	Single Beat Identification
	Biometric Authentication
	Authentication Experiment 1
	Authentication Experiment 2

	Discussion
	Analysis of the Results
	Reflections on the Method
	Pre-processing
	Classification and Evaluation Methods

	Threats to Validity
	Conclusion
	Future Work

	Bibliography
	Experiments
	Grid Search
	Predicted Probability Experiment

	Software
	The Dataset
	Preprocessing.py
	Features.py
	MachineLearning.py
	Randomizer.bat

	Data Collection Protocol

Attachments/ECG_data2/01/HRV-ECG.edf

Attachments/ECG_data2/01/M-ECG.edf

Attachments/ECG_data2/01/R-ECG.edf

Attachments/ECG_data2/02/HRV-ECG.edf

Attachments/ECG_data2/02/M-ECG.edf

Attachments/ECG_data2/02/R-ECG.edf

Attachments/ECG_data2/03/HRV-ECG.edf

Attachments/ECG_data2/03/M-ECG.edf

Attachments/ECG_data2/03/R-ECG.edf

Attachments/ECG_data2/04/HRV-ECG.edf

Attachments/ECG_data2/04/M-ECG.edf

Attachments/ECG_data2/04/R-ECG.edf

Attachments/ECG_data2/05/HRV-ECG.edf

Attachments/ECG_data2/05/M-ECG.edf

Attachments/ECG_data2/05/R-ECG.edf

Attachments/ECG_data2/06/HRV-ECG.edf

Attachments/ECG_data2/06/M-ECG.edf

Attachments/ECG_data2/06/R-ECG.edf

Attachments/ECG_data2/07/HRV-ECG.edf

Attachments/ECG_data2/07/M-ECG.edf

Attachments/ECG_data2/07/R-ECG.edf

Attachments/ECG_data2/08/HRV-ECG.edf

Attachments/ECG_data2/08/M-ECG.edf

Attachments/ECG_data2/08/R-ECG.edf

Attachments/ECG_data2/09/HRV-ECG.edf

Attachments/ECG_data2/09/M-ECG.edf

Attachments/ECG_data2/09/R-ECG.edf

Attachments/ECG_data2/10/HRV-ECG.edf

Attachments/ECG_data2/10/M-ECG.edf

Attachments/ECG_data2/10/R-ECG.edf

Attachments/ECG_data2/11/HRV-ECG.edf

Attachments/ECG_data2/11/M-ECG.edf

Attachments/ECG_data2/11/R-ECG.edf

Attachments/ECG_data2/12/HRV-ECG.edf

Attachments/ECG_data2/12/M-ECG.edf

Attachments/ECG_data2/12/R-ECG.edf

Attachments/ECG_data2/13/HRV-ECG.edf

Attachments/ECG_data2/13/M-ECG.edf

Attachments/ECG_data2/13/R-ECG.edf

Attachments/ECG_data2/14/HRV-ECG.edf

Attachments/ECG_data2/14/M-ECG.edf

Attachments/ECG_data2/14/R-ECG.edf

Attachments/ECG_data2/15/HRV-ECG.edf

Attachments/ECG_data2/15/M-ECG.edf

Attachments/ECG_data2/15/R-ECG.edf

Attachments/ECG_data2/16/HRV-ECG.edf

Attachments/ECG_data2/16/M-ECG.edf

Attachments/ECG_data2/16/R-ECG.edf

Attachments/ECG_data2/17/HRV-ECG.edf

Attachments/ECG_data2/17/M-ECG.edf

Attachments/ECG_data2/17/R-ECG.edf

Attachments/ECG_data2/18/HRV-ECG.edf

Attachments/ECG_data2/18/M-ECG.edf

Attachments/ECG_data2/18/R-ECG.edf

Attachments/ECG_data2/19/HRV-ECG.edf

Attachments/ECG_data2/19/M-ECG.edf

Attachments/ECG_data2/19/R-ECG.edf

Attachments/ECG_data2/20/HRV-ECG.edf

Attachments/ECG_data2/20/M-ECG.edf

Attachments/ECG_data2/20/R-ECG.edf

Attachments/Features.py

import numpy as np
from matplotlib import pyplot as plt
import pyedflib
from biosppy import ecg
from scipy.signal import savgol_filter, butter, lfilter, filtfilt
from Preprocessing import Preprocess
from sklearn.linear_model import LinearRegression
from pywt import wavedec
from scipy.stats import norm
from scipy.signal import find_peaks
import math
import random
import os
import matplotlib
matplotlib.rcParams.update({'font.size': 20})

class Features(object):
 """
 Vebjørn Kaldahl Bottenvik - 10.06.19

 requirements:
 biosppy
 scipy
 Preprocessing [The other class made for this project]
 (numpy, pandas, matplotlib)

 This class includes the static methods created for this project.
 -> QRS detection. [Adaption from Pan and tompkins]
 -> R peak correction.
 -> Dictionary manipulation for the various heartbeats + heartrates:
 -> Dictionary merge
 -> Dictionary split
 -> Sort heartrate
 -> Merge heartbeats
 -> Feature Extraction

 """

 @staticmethod
 def r_peaks_bio(signal, fs=300): # Returns list of R-peak indexes
 temp_ham = ecg.hamilton_segmenter(signal, fs)
 temp_cor = ecg.correct_rpeaks(signal, temp_ham['rpeaks'], fs)
 return temp_cor['rpeaks']

 @staticmethod
 def r_peak_correction(signal, rpeaks, tolerance=5):
 """ Correction of R peaks based on local max for the input signal. window size 2*tolerance"""
 corrected_peaks = []
 for peak in rpeaks:
 try:
 local_max = np.argmax(signal[peak-tolerance:peak+tolerance])
 except ValueError as e:
 print(e)
 else:
 temp_peak = local_max + peak - tolerance
 corrected_peaks.append(temp_peak)
 return corrected_peaks

 @staticmethod
 def r_peaks_test2(signal, fs=300): # Returns list of R-peak indexes Pan-Topkins

 v_peaks = Features.r_peaks2(signal)

 filtered = Preprocess.lowpass(signal, cutoff=15)
 filtered = Preprocess.highpass(filtered, cutoff=5)

 diff = np.diff(filtered)
 squared = [math.pow(i, 2) for i in diff]
 meaned = Preprocess.MA_filter(np.flip(squared), (int(fs / 20))) * 100
 meaned = Preprocess.MA_filter(np.flip(meaned), (int(fs / 20))) * 10
 meaned = np.roll(meaned, 15)
 peak_threshold = 1.1
 mean_threshold = 0.10 # First threshold
 temp_peak = -1
 peaks = []
 estimated_peaks = []
 peak_loc = 0
 correction_loc = 0
 temp_conf = 0
 last_peak = -1
 lastlast_peak = -1
 loc = 0
 time_limit = 99
 set_thresh = np.mean(meaned) * 1.2
 for i in range(20, len(meaned)):
 # if (meaned[i] > mean_threshold and i > last_peak+int(time_limit)*0.9) or meaned[i] > set_thresh:# thresholded or very certain
 if meaned[i] > set_thresh and (
 (i > last_peak + time_limit * 0.95 and i < last_peak + 1.3 * time_limit) or last_peak == -1) or \
 meaned[i] > set_thresh * 1.8:
 if signal[i] > signal[i - 1]:
 loc = i

 else:
 if filtered[loc] > temp_conf and signal[loc] > temp_peak and loc > 0:
 temp_peak = signal[loc]
 temp_conf = filtered[loc]
 peak_loc = loc
 # print(loc)

 elif (temp_peak != -1 and peak_loc != 0) and (peak_loc - last_peak > 99 or last_peak == -1):
 temp_conf = 0

 if lastlast_peak != -1 and (peak_loc - last_peak > (last_peak - lastlast_peak) * 1.75):
 temp_peak = -1
 # print(peak_loc)
 try:
 mean_threshold = max(meaned[(last_peak + 99):(peak_loc - 99)]) / 2 + (set_thresh / 5)
 except ValueError as e:
 mean_threshold = 1 # something wrong..
 # print(mean_threshold)
 # print(np.mean(meaned[(last_peak+80):(peak_loc-80)]))
 if mean_threshold > np.mean(meaned[(last_peak + 80):(peak_loc - 80)]):

 for j in range(last_peak + 80, peak_loc - 80):

 if (meaned[j] > mean_threshold):
 if signal[j] > signal[j - 1]:
 loc = j
 else:
 if signal[loc] > temp_peak:
 temp_peak = signal[loc]
 correction_loc = loc

 peaks.append(correction_loc)
 peaks.append(peak_loc)
 correction_loc = 0
 lastlast_peak = last_peak
 last_peak = peak_loc
 temp_peak = -1
 peak_loc = 0
 loc = 0
 else:
 peaks.append(peak_loc)
 correction_loc = 0
 lastlast_peak = last_peak
 last_peak = peak_loc
 temp_peak = -1
 peak_loc = 0
 loc = 0

 elif peak_loc - last_peak >= 100 or last_peak == -1: # -1 to show that no peak has been before
 peaks.append(peak_loc)

 time_limit = int((peak_loc - last_peak) * 0.75)
 if time_limit < 100:
 time_limit = 100

 if not peak_loc + time_limit > len(meaned):
 estimated_peaks.append(peak_loc + time_limit)

 if last_peak == 0:
 mean_threshold = 0.1
 else:
 try:
 if not peak_loc + time_limit + int(time_limit / 6) > len(meaned):
 mean_threshold = (max(meaned[peak_loc + time_limit - int(time_limit / 6)
 :peak_loc + time_limit + int(time_limit / 6)]) / 2)
 if mean_threshold < 0.05:
 mean_threshold = 0.05
 except IndexError as e:
 print(e)
 except ValueError as a:
 print(a)

 if not last_peak == 0:
 lastlast_peak = last_peak

 last_peak = peak_loc
 temp_peak = -1
 peak_loc = 0
 loc = 0
 else:
 temp_peak = -1
 peak_loc = 0
 loc = 0
 temp_conf = 0
 if False:
 fig, ax = plt.subplots(2, 1, sharex=True, sharey=True)
 # plt.subplot(2,1,1)
 ax[0].set_title('Modified Pan-Tompkins. number of peaks: {}'.format(len(peaks)))
 ax[0].plot(meaned)
 ax[0].plot(signal)
 ax[0].plot(filtered)
 ax[0].plot(peaks, signal[peaks], '*')
 # ax[0].plot(estimated_peaks, signal[estimated_peaks],'o')
 ax[0].plot([set_thresh for k in range(len(meaned))])

 ax[1].set_title('biosppy R-peak detection. number of peaks: {}'.format(len(v_peaks)))
 ax[1].plot(signal)
 ax[1].plot(v_peaks, signal[v_peaks], 'r*')
 plt.show()
 if False:
 print('my peaks {} vs biosppy {}'.format(len(peaks), len(v_peaks)))

 return Features.r_peaks2(signal)

 @staticmethod
 def r_peaks(signal, fs=300): # Returns list of R-peak indexes Pan-Topkins

 """
 This function is an adaption of the QRS detection algorithm originally developed by Pand and Tompkins.
 The decision rule used for this function has been based on the threshold values for signal and noise.
 However some of the decisions for "R-peak" or "noise" has been implemented by me.
 """

 v_peaks = Features.r_peaks_bio(signal)

 signal = signal - np.mean(signal)
 '''Pre-processing'''
 # Bandpass
 filtered = Preprocess.lowpass(signal, cutoff=12, order=90)
 filtered = Preprocess.highpass(filtered, cutoff=5, order=90)

 '''Low-Pass filter'''
 # Filter coefficiants from Pan-Tompkins.
 # b = [0 for i in range(37)]
 # b[0] = 1
 # b[16] = -2
 # b[36] = 1
 # a = b.copy()
 # filtered = lfilter(b, a, signal)

 '''High-Pass Filter'''
 # b = [0 for i in range(33)]
 # b[0] = -1
 # b[16] = 32
 # b[32] = 1
 # a = [1, 1]
 # filtered = lfilter(b, a, filtered)

 #noise = Preprocess.highpass(signal, cutoff=40)

 diff = np.diff(filtered)
 squared = [math.pow(i, 2) for i in diff]
 meaned = Preprocess.MA_filter(np.flip(squared), (int(fs / 10))) * 100
 meaned = Preprocess.MA_filter(np.flip(meaned), (int(fs / 10))) * 10
 meaned = np.roll(meaned, (int(fs / 10))) # Rolling to compensate for shortened signal

 '''Some time limits'''
 min_limit = 0.85
 max_limit = 1.16
 missed_limit = 1.66
 refactor_time = int(0.2*fs) # 200ms

 peaks = []
 noise = []

 potensial_peak = []

 #peaks2 = []
 #noise2 = []

 starttime = 100
 traintime = 300
 update_coeff = 0.125
 update_coeff2 = 0.25
 average_rr = 0

 temp_peaks = find_peaks(meaned[traintime:])[0]
 peak_values = np.array([meaned[t_peak + traintime] for t_peak in temp_peaks])
 peak_values2 = np.array([filtered[t_peak + traintime] for t_peak in temp_peaks])

 '''Detect one certain R peak from the training period'''
 firstpeak = np.argmax(meaned[starttime:traintime])+starttime

 '''Threshold Values for Integrated Signal'''
 thr_signal = meaned[firstpeak] * 1 / 2
 thr_noise = np.mean(meaned[:traintime]) * 1 / 2

 thn = []
 ths = []
 thst = []
 thnt = []

 ths.append(thr_signal)
 thn.append(thr_noise)
 thnt.append(0)
 thst.append(firstpeak)

 '''
 Threshold Values for Filtered Signal
 - This feature was not implemented, but can be used in order to implement additional confidence.
 '''

 #thr_signal2 = meaned[firstpeak] * 1 / 2
 #thr_noise2 = np.mean(meaned[:traintime]) * 1 / 2

 #thn2 = []
 #ths2 = []
 #thst2 = []
 #thnt2 = []

 #ths2.append(thr_signal)
 #thn2.append(thr_noise)
 #thnt2.append(0)
 #thst2.append(firstpeak)

 for i in range(len(temp_peaks)):
 peak = temp_peaks[i] + traintime
 value = peak_values[i]
 #value2 = peak_values2[i]

 try:
 last_peak = peaks[-1]
 rr = peak - last_peak
 except IndexError:
 last_peak = 0
 rr = 0

 if len(peaks)>=2:
 overall_average_rr = np.mean(np.diff(peaks))
 else:
 overall_average_rr = 0

 if peak - last_peak > refactor_time:
 # The peak is inside the refactor time window.

 '''Search for peaks in Integrates signal'''
 if value > thr_signal*0.85:
 peaks.append(peak)
 thr_signal = update_coeff*value*0.9 + (1-update_coeff)*thr_signal
 ths.append(thr_signal)
 thst.append(peak)
 potensial_peak.clear()

 if average_rr != 0:
 average_rr = (average_rr + rr)/2
 else:
 average_rr = rr

 elif value > thr_signal*0.425 and rr > average_rr*min_limit and rr != 0 and rr > (0.36*fs):
 peaks.append(peak)
 thr_signal = update_coeff2 * value + (1 - update_coeff2) * thr_signal
 ths.append(thr_signal)
 thst.append(peak)
 potensial_peak.clear()
 if average_rr != 0:
 average_rr = (average_rr + rr)/2
 else:
 average_rr = rr
 #elif value > thr_signal*0.4 and rr > average_rr*min_limit and rr != 0 and value > 2*thr_noise:
 # peaks.append(peak)
 # thr_signal = update_coeff * value*0.4 + (1 - update_coeff) * thr_signal
 # ths.append(thr_signal)
 # thst.append(peak)
 # if average_rr != 0:
 # average_rr = (average_rr + rr) / 2
 # else:
 # average_rr = rr

 #elif value > thr_signal*0.1 and rr > average_rr*min_limit and rr != 0 and value > 3*thr_noise:
 # peaks.append(peak)
 # thr_signal = update_coeff * value*0.4 + (1 - update_coeff) * thr_signal
 # ths.append(thr_signal)
 # thst.append(peak)
 # if average_rr != 0:
 # average_rr = (average_rr + rr) / 2
 # else:
 # average_rr = rr

 #elif rr > average_rr*missed_limit and average_rr != 0:
 # temp_peak = np.argmax(meaned[300+last_peak+refactor_time:peak-refactor_time+300])
 # temp_peak += last_peak
 # peaks.append(temp_peak)
 # temp_value = meaned[temp_peak+300]
 # thr_signal = update_coeff * temp_value + (1 - update_coeff) * thr_signal
 # ths.append(thr_signal)
 # thst.append(peak)
 # average_rr = (average_rr + (temp_peak-last_peak)) / 2

 # '''Peak classified as noise'''
 else:

 if value > thr_noise*2:
 potensial_peak.append(peak)
 thr_noise = update_coeff * value + (1 - update_coeff) * thr_noise
 thn.append(thr_noise)
 thnt.append(peak)
 else:
 noise.append(peak)
 thr_noise = update_coeff*value + (1-update_coeff)*thr_noise
 thn.append(thr_noise)
 thnt.append(peak)

 #if average_rr != 0 and rr > average_rr*missed_limit:
 # temp_max = 0
 # for ppeak in potensial_peak:
 # if meaned[starttime+ppeak] > temp_max:
 # temp_peak = ppeak

 # average_rr = (average_rr + (temp_peak - peaks[-1]))/2
 # peaks.append(temp_peak)
 # thr_signal = update_coeff2 * value + (1 - update_coeff2) * thr_signal
 # potensial_peak.clear()

 if average_rr != 0 and rr > average_rr*missed_limit:
 temp_max = 0
 for ppeak in potensial_peak:
 average_rr = (average_rr + (ppeak - peaks[-1])) / 2
 peaks.append(ppeak)
 thr_signal = update_coeff2 * value + (1 - update_coeff2) * thr_signal

 potensial_peak.clear()

 #if rr > average_rr*missed_limit:
 # np.argmax(meaned[traintime + peaks[-1]+60: 300+peak-60])

 #if average_rr < rr/2 and average_rr != 0:
 #print('weird')
 #print(rr)
 #print(average_rr)

 #print('Signal thr: {}'.format(thr_signal))
 #print('Noise thr: {}'.format(thr_noise))

 peaks = Features.r_peak_correction(signal, peaks, 10) # correcting the peak location
 if False:
 fig, ax = plt.subplots(2, 1, sharex=True, sharey=True)
 # plt.subplot(2,1,1)
 ax[0].set_title('Modified Pan-Tompkins. number of peaks: {}'.format(len(peaks)))
 ax[0].plot(meaned)
 ax[0].plot(signal)
 # ax[0].plot([thr_noise for a in range(len(signal))])
 ax[0].plot(filtered)
 ax[0].plot(peaks, signal[peaks], '*')
 ax[0].plot(thnt, thn, 'b--')
 ax[0].plot(thst, ths, 'r--')
 #ax[0].plot(noise, signal[noise], 'o')
 # ax[0].plot(estimated_peaks, signal[estimated_peaks],'o')
 # ax[0].plot([set_thresh for k in range(len(meaned))])

 ax[1].set_title('biosppy R-peak detection. number of peaks: {}'.format(len(v_peaks)))
 ax[1].plot(signal)
 ax[1].plot(v_peaks, signal[v_peaks], 'r*')
 #plt.show()
 if False:
 print('my peaks {} vs biosppy {}'.format(len(peaks), len(v_peaks)))

 return peaks

 @staticmethod
 def dictionary_splitter(dictionary, split_size=0.20, randomize=False): # before features are found

 items = list(dictionary.keys()) # duct keys does not support indexing..

 train_dictionary = dict()
 test_dictionary = dict()

 try:
 if len(items) > 2:
 raise ValueError

 except ValueError as e:
 print(e)

 else:
 temp_hb = dictionary[items[0]]
 temp_hr = dictionary[items[1]]

 if randomize == True:

 temp_full = list(zip(temp_hb, temp_hr))
 random.shuffle(temp_full)

 shuffled_hb, shuffled_hr = zip(*temp_full)

 slice_ind = int((1 - split_size) * len(temp_hb))

 train_hb = shuffled_hb[:slice_ind]
 test_hb = shuffled_hb[slice_ind:]

 train_hr = shuffled_hr[:slice_ind]
 test_hr = shuffled_hr[slice_ind:]
 else:
 slice_ind = int((1 - split_size) * len(temp_hb))

 train_hb = temp_hb[:slice_ind]
 test_hb = temp_hb[slice_ind:]

 train_hr = temp_hr[:slice_ind]
 test_hr = temp_hr[slice_ind:]

 train_dictionary[items[0]] = train_hb
 train_dictionary[items[1]] = train_hr
 test_dictionary[items[0]] = test_hb
 test_dictionary[items[1]] = test_hr

 finally:
 return train_dictionary, test_dictionary

 @staticmethod
 def heartbeats(signal, rpeaks): # Turns the signal into heartbeats based on their RR interval.
 heartbeats = []
 heartrates = []
 temp_signal = []
 rr = np.diff(rpeaks)
 signal = signal.tolist()
 if rpeaks[0] < 150: # Testing to check if there is enough data for the first heartbeat.
 n = 1
 else:
 n = 0
 if rpeaks[-1] > len(signal)-300:
 m = 2
 else:
 m = 1
 intervall = rr[n]
 for i in range(n, len(rpeaks)-m):
 temp_heartbeat = []
 peak = rpeaks[i]
 temp_interval = rr[i]
 if abs(temp_interval-intervall) > 50:
 temp_interval = intervall
 else:
 intervall = rr[i]
 ints = [int(round(0.4*intervall)), int(round(0.6*intervall))]
 zeropad = [180-ints[0], 270-ints[1]] # limited by 40-180 HR
 temp_signal = signal[peak-ints[0]:peak+ints[1]]
 temp_heartbeat = [0 for m in range(0, zeropad[0])] + temp_signal
 temp_heartbeat = temp_heartbeat + [0 for m in range(0, zeropad[1])]
 nonzero = np.nonzero(temp_heartbeat)
 dc = 0 - temp_heartbeat[nonzero[0][-1]] # TODO: check if this might be something
 temp_heartbeat[nonzero[0][0]:nonzero[0][-1]] = \
 (np.array(temp_heartbeat[nonzero[0][0]:nonzero[0][-1] + 1]) + dc).tolist()
 heartbeats.append(temp_heartbeat)
 if True:
 if i == 0 or i == len(rr)-1:
 temp_hr = (60*300/(rr[i]))
 elif i == 0 or i == len(rr)-2:
 temp_hr = (60 * 300 / ((rr[i - 1] + rr[i] + rr[i + 1]) / 3))
 else:
 temp_hr = (60 * 300 / ((rr[i-2]+rr[i-1]+rr[i]+rr[i+1]+rr[i+2])/5))
 heartrates.append(temp_hr)
 else:
 heartrates.append(60*300/(rr[i]))

 dictionary = {
 "heartbeats": heartbeats,
 "heartrates": heartrates
 }

 return dictionary

 @staticmethod
 def feature_merge(feature_vector, labels, start, end):
 temp_features = []
 label = labels[0]
 for i in range(start, end+1):
 temp_features.append(feature_vector[i,:])

 output_features = (sum(np.array(temp_features))/len(temp_features))

 return output_features

 @staticmethod
 def extract_features(inn_dictionary, subject_name='subject 1', QT_test=False): # Extracting features.

 out_dictionary = dict()
 templates = inn_dictionary["heartbeats"]
 heartrates = inn_dictionary["heartrates"]

 r = []
 p = []
 q = []
 s = []
 t = []
 HR = []
 p_int = []
 p_plus = []
 p_minus = []
 pr_segment = []
 t_int = []
 qr_slope = []
 rs_slope = []
 qrs_int = []
 qrs_onset = []
 QT = []
 qtc = []
 st_segment = []
 st_elevation = []
 subject = []

 if len(templates) == 450: # TODO: write this like im NOT 9.. :(
 temp = templates
 hr = heartrates
 templates = []
 heartrates = []
 templates.append(temp)
 heartrates.append(hr)

 for ind in range(0, len(templates)):
 template = templates[ind]
 heartrate = heartrates[ind]

 if type(template) == list:

 diff = np.diff(template)
 diffdiff = np.diff(diff)
 dc = np.mean(template)

 #plt.figure()
 #plt.plot(template)
 #plt.plot(diff)
 #plt.plot([dc for i in range(0, len(template))])
 #plt.show()

 q_reg = template[165:180]
 q_reg2 = diff[165:180]

 for index in range(1, len(q_reg2)):
 now = q_reg2[index]
 last = q_reg2[index-1]

 if now > 0 and last <0:
 q_ind = index + 165
 else:
 q_ind = np.argmin(q_reg)+165
 try:
 if template[180] > 0.8:
 raise ValueError
 elif heartrate < 30 or heartrate > 180:
 raise ValueError

 #zeros = np.where(q_reg2 == 0)
 #q_ind = zeros[0][-1]+165

 #_,temtemp = Preprocess.wavelet(template, 'haar', level=2)

 s_reg = template[180:205]
 s_reg2 = diff[180:205]

 #s_ind = np.argmin(s_reg)+180
 s_found = False
 for i in range(1, len(s_reg2)):
 if s_reg2[i] > -0.002 and s_reg2[i-1] < -0.002:
 s_ind = i + 180
 s_found = True
 break

 if s_found == False:
 raise ValueError

 s_reg3 = np.diff(diff[s_ind:205])

 s_end = np.argmin(s_reg3) + s_ind

 nonzero = np.nonzero(template)

 #dc = 0 - template[nonzero[0][-1]] #TODO: check if this might be something

 #template[nonzero[0][0]:nonzero[0][-1]] = (np.array(template[nonzero[0][0]:nonzero[0][-1]+1]) + dc)\
 # .tolist()

 p_reg = template[nonzero[0][0]:q_ind]
 p_reg2 = diff[nonzero[0][0]:q_ind]
 p_reg3 = diffdiff[nonzero[0][0]:q_ind]

 t_reg = template[s_end:nonzero[0][-1]]
 t_reg2 = diff[s_end:nonzero[0][-1]]

 t_reg3 = diffdiff[s_end:nonzero[0][-1]]

 #_,p_wave = Preprocess.wavelet(p_reg, 'db4', level=5, regions=1)
 #_,t_wave = Preprocess.wavelet(t_reg, 'db4', level=5, regions=1)

 #template[80:q_ind] = p_wave
 #template[s_ind:320] = t_wave

 #nonzero_p = np.nonzero(np.array(p_wave).clip(min=0))
 if False:
 print('k')
 else:
 #temp_diff = np.diff(nonzero_p)
 #p_start = nonzero[0][0] + (nonzero_p[0][np.argmax(temp_diff) + 1])
 #p_end = nonzero[0][0] + nonzero_p[0][-1]
 #p_ind = np.argmax(p_wave)
 #p_index = nonzero[0][0] + np.argmax(p_wave)

 p_ind = 0
 p_value = -1
 for i in range(1, len(p_reg2)-15):
 if p_reg2[i] < 0 and p_reg2[i-1] > 0:
 if p_reg[i] > p_value*0.7:
 p_ind = i
 p_value = p_reg[p_ind]
 p_index = nonzero[0][0] + p_ind

 if p_ind == 0:
 raise ValueError

 p_start = 0
 for i in range(p_ind-10, 0, -1): # avoid fake intervals
 if p_reg2[i] > 0.00005 and p_reg2[i-1] < 0.00005:
 p_start = i
 break

 p_end = 0
 for i in range(p_ind, len(p_reg)):
 if (p_reg[i] < p_reg[p_start]) or (p_reg2[i-1]<-0.002 and p_reg2[i]>-0.002):
 p_end = i
 break
 if p_end == 0:
 raise ValueError

 p_start += nonzero[0][0]
 p_end += nonzero[0][0]

 #nonzero_t = np.nonzero(np.array(t_wave).clip(min=0))
 #temp_diff = np.diff(nonzero_t)
 #t_start = s_ind + (nonzero_t[0][np.argmax(temp_diff) + 1])
 #t_end = s_ind + nonzero_t[0][-1]
 t_ind = 0
 t_start = 0
 #temp_start = []
 t_value = -1
 for i in range(1, len(t_reg2)):

 if t_reg2[i] < 0 and t_reg2[i - 1] > 0:
 if t_reg[i] > t_value:
 t_ind = i
 t_value = t_reg[t_ind]

 #if t_reg2[i] > 0 and t_reg2[i - 1] < 0:
 # temp_start.append(i)

 #for num in temp_start:
 #if num < t_ind:
 # t_start = num
 if t_value > 1:
 raise ValueError

 t_start = 0
 for i in range(t_ind - 18, 0, -1): # avoid fake intervals
 if t_reg2[i] > 0.0001 and t_reg2[i - 1] < 0.0001:
 t_start = i
 break

 t_end = 0
 for i in range(t_ind + 18, len(t_reg)):
 if t_reg2[i] > -0.002 and t_reg2[i - 1] < -0.002:
 t_end = i
 break
 if t_end == 0:
 t_end = i
 #nonzero_t = np.nonzero([0 if (element <= 0) else element for element in t_reg])

 t_start += s_end
 t_end += s_end

 if t_ind == 0 or t_start == 0:
 raise ValueError

 #t_ind = np.argmax(t_wave)
 t_index = s_end + t_ind
 #t_value = t_reg[t_ind]

 #t_end = np.argmin(t_reg[t_ind:])+t_ind
 #t_cut = t_reg[t_start]
 #nonzero_t2 = np.nonzero([0 if (element < t_cut) else element for element in t_reg])
 #t_end = nonzero_t2[0][-1]

 #plt.figure()
 #plt.subplot(1, 2, 1)
 #plt.plot(p_wave)
 #plt.plot(p_reg)
 #plt.plot(p_reg2)
 #plt.subplot(1, 2, 2)
 #plt.plot(t_wave)
 #plt.plot(t_reg)
 #plt.plot(t_reg2)

 #plt.figure()
 #plt.plot(template)
 #plt.plot(p_index, template[p_index], '*')
 #plt.plot(p_start, template[p_start], '*')
 #plt.plot(p_end, template[p_end], '*')
 #plt.plot(t_index, template[t_index], '*')
 #plt.plot(t_start, template[t_start], '*')
 #plt.plot(t_end, template[t_end], '*')

 #plt.show()

 #nonzero_t = np.nonzero(np.array(t_reg).clip(min=0))
 #temp_diff = np.diff(nonzero_t)
 #t_start = s_ind + (nonzero_t[0][np.argmax(temp_diff) + 1])
 #t_end = s_ind + nonzero_t[0][-1]

 qt = ((s_end + t_end)-q_ind)*300/60
 #qt = (t_index - q_ind) * 300 / 60
 rr = ((300*60)/(heartrate))*300/60
 #temp_qtc = (qt /math.pow(rr,0.47))
 #temp_qtc = (qt/(math.sqrt(rr)))
 temp_qtc = qt+0.154*(1-rr)
 #temp_qtc2 = (qt/(math.sqrt(rr)))

 #_,p_temp = Preprocess.wavelet(p_reg, wavelet='db2', level=4, regions=1)
 #p_temp = Preprocess.smoothing_savgol(p_reg, window=25, order=10)

 #t_ind = np.argmax(t_reg)+s_ind

 q_value = template[q_ind]
 s_value = template[s_ind]
 #t_value = template[t_ind]
 r_value = template[180]

 # Raise exeption based on non-valid values
 if (t_end - t_start) < 2:
 raise ValueError

 #if subject_name == 'subject 45':
 if False:
 plt.figure()
 plt.subplot(2, 2, 1)
 plt.plot(p_reg)
 plt.plot(p_reg2)
 #plt.plot(p_ind, p_value, '*')
 ##plt.plot([np.mean(p_wave) for i in range(0, len(p_wave))])
 plt.title('p')
 plt.subplot(2, 2, 2)
 plt.plot(q_reg)
 plt.plot(q_reg2)
 plt.title('q')
 plt.subplot(2, 2, 3)
 plt.plot(s_reg)
 plt.plot(s_reg2)
 plt.title('s')
 plt.subplot(2, 2, 4)
 plt.plot(t_reg)
 plt.plot(t_reg2)
 #plt.plot(t_ind, t_value, '*')
 #plt.plot(t_start, t_reg[t_start], '*')
 #plt.plot(t_end, t_reg[t_end], '*')
 #plt.plot([np.mean(t_wave) for i in range(0, len(t_wave))])
 plt.title('t')

 adjust = 0.01
 madjust = 0.02

 time = np.linspace(0, len(template)/300, len(template))

 plt.figure()
 plt.title('Hearbeat with QRS detected')
 plt.plot(time, template)
 plt.plot(180/300, template[180], 'r*')
 plt.xlabel('Time [s]')
 plt.ylabel('Amplitude [V]')

 plt.figure()
 plt.title('P and Q region')
 plt.plot(time[:180], template[:180])
 plt.xlabel('Time [s]')
 plt.ylabel('Amplitude [V]')

 plt.figure()
 plt.title('S and T region')
 plt.plot(time[180:], template[180:])
 plt.xlabel('Time [s]')
 plt.ylabel('Amplitude [V]')

 plt.figure()
 plt.title('Hearbeat with QRS detected')
 plt.plot(time, template)
 plt.xlabel('Time [s]')
 plt.ylabel('Amplitude [V]')

 plt.figure()
 plt.plot(time,template)
 #plt.plot(np.diff(template)*5)
 #plt.plot(np.diff(np.diff(template))*5)
 plt.plot(180/300, template[180], 'r*')
 plt.text(180/300, template[180]+adjust, 5)
 plt.plot(s_ind/300, s_value, 'r*')
 plt.text((s_ind+5)/300, s_value, 6)
 plt.plot(q_ind/300, q_value, 'r*')
 plt.text(q_ind/300, q_value-madjust, 4)
 plt.plot(s_end/300, template[s_end], 'r*')
 plt.text((s_end+5)/300, template[s_end]-0.01, 7)
 plt.plot(p_index/300, p_value, 'r*')
 plt.text(p_index/300, p_value+adjust, 2)
 plt.plot(p_end/300, template[p_end], 'r*')
 plt.text(p_end/300, template[p_end]+adjust, 3)
 plt.plot(p_start/300, template[p_start], 'r*')
 plt.text(p_start/300, template[p_start]+adjust, 1)
 plt.plot(t_index/300, t_value, 'r*')
 plt.text(t_index/300, t_value+adjust, 9)
 plt.plot(t_end/300, template[t_end], 'r*')
 plt.text(t_end/300, template[t_end]+adjust, 10)
 plt.plot(t_start/300, template[t_start], 'r*')
 plt.text(t_start/300, template[t_start]+adjust, 8)
 plt.xlabel('Time [s]')
 plt.ylabel('Amplitude [V]')
 #plt.plot(s_end + t_start, template[s_end + t_start], 'o')
 #plt.plot(s_end + t_end, template[s_end + t_end], 'o')
 plt.show()
 except IndexError as e:
 print(e)
 if False:
 #if subject_name == 'subject 45':
 plt.figure()
 plt.subplot(2, 2, 1)
 plt.plot(p_reg)
 plt.plot(p_reg2)
 plt.plot(p_reg3)
 plt.plot(p_ind, p_value, '*')
 #plt.plot([np.mean(p_wave) for i in range(0, len(p_wave))])
 plt.title('p')
 plt.subplot(2, 2, 2)
 plt.plot(q_reg)
 plt.plot(q_reg2)
 plt.title('q')
 plt.subplot(2, 2, 3)
 plt.plot(s_reg)
 plt.plot(s_reg2)
 plt.title('s')
 plt.subplot(2, 2, 4)
 plt.plot(t_reg)
 plt.plot(t_reg2)
 plt.plot(t_reg3)
 plt.plot(t_ind, t_value, '*')
 #plt.plot(t_start, t_reg[t_start], '*')
 #plt.plot(t_end, t_reg[t_end], '*')
 # plt.plot([np.mean(t_wave) for i in range(0, len(t_wave))])
 plt.title('t')

 plt.figure()
 plt.plot(template)
 # plt.plot(np.diff(template)*5)
 # plt.plot(np.diff(np.diff(template))*5)
 plt.plot(180, template[180], '*')
 #plt.plot(s_ind, s_value, '*')
 #plt.plot(q_ind, q_value, '*')
 #plt.plot(s_end, template[s_end], '*')
 #plt.plot(p_index, p_value, '*')
 #plt.plot(t_index, t_value, '*')
 #plt.plot(s_end + t_start, template[s_end + t_start], 'o')
 #plt.plot(s_end + t_end, template[s_end + t_end], 'o')
 plt.show()
 except ValueError as e:
 print(e)
 #plt.figure()
 #plt.plot(template)
 #plt.show()
 if False:
 #if subject_name == 'subject 45':
 plt.figure()
 plt.subplot(2, 2, 1)
 plt.plot(p_reg)
 plt.plot(p_reg2)
 plt.plot(p_reg3)
 plt.plot(p_ind, p_value, '*')
 #plt.plot([np.mean(p_wave) for i in range(0, len(p_wave))])
 plt.title('p')
 plt.subplot(2, 2, 2)
 plt.plot(q_reg)
 plt.plot(q_reg2)
 plt.title('q')
 plt.subplot(2, 2, 3)
 plt.plot(s_reg)
 plt.plot(s_reg2)
 plt.title('s')
 plt.subplot(2, 2, 4)
 plt.plot(t_reg)
 #plt.plot(t_reg2)
 #plt.plot(t_reg3)
 #plt.plot(t_ind, t_value, '*')
 #plt.plot(t_start, t_reg[t_start], '*')
 #plt.plot(t_end, t_reg[t_end], '*')
 # plt.plot([np.mean(t_wave) for i in range(0, len(t_wave))])
 plt.title('t')

 plt.figure()
 plt.plot(template)
 # plt.plot(np.diff(template)*5)
 # plt.plot(np.diff(np.diff(template))*5)
 plt.plot(180, template[180], '*')
 #plt.plot(s_ind, s_value, '*')
 #plt.plot(q_ind, q_value, '*')
 #plt.plot(s_end, template[s_end], '*')
 #plt.plot(p_index, p_value, '*')
 #plt.plot(t_index, t_value, '*')
 #plt.plot(s_end + t_start, template[s_end + t_start], 'o')
 #plt.plot(s_end + t_end, template[s_end + t_end], 'o')
 plt.show()

 else:
 if True:
 r.append(r_value-q_value)
 p.append(p_value-q_value)
 q.append(q_value)
 s.append((q_value-s_value))
 st_segment.append(t_start)
 st_elevation.append(template[t_start]-template[s_end])
 qr_slope.append((r_value-q_value)/(180-q_ind))
 rs_slope.append((r_value-s_value)/(s_ind-180))
 t.append(t_value-q_value)
 p_int.append((p_end-p_start)*300/60)
 p_plus.append((p_end-p_index)*300/60)
 p_minus.append((p_index-p_start)*300/60)
 pr_segment.append((q_ind-p_start)*300/60)
 t_int.append((t_end-t_start)*300/60)
 qrs_int.append((s_end-q_ind)*300/60)
 qrs_onset.append(sum(template[q_ind:s_ind+1]))
 QT.append(qt)
 qtc.append(temp_qtc)
 HR.append(heartrate)
 else:
 r.append(r_value - q_value)
 p.append(p_value - q_value)
 q.append(q_value)
 s.append(q_value - s_value)
 st_segment.append(t_start)
 st_elevation.append(template[t_start] - template[s_end])
 qr_slope.append((r_value - q_value) / (180 - q_ind))
 rs_slope.append((r_value - s_value) / (s_ind - 180))
 t.append(t_value - q_value)
 p_int.append((p_end - p_start) * 300 / 60)
 p_plus.append((p_end - p_index) * 300 / 60)
 p_minus.append((p_index - p_start) * 300 / 60)
 pr_segment.append((q_ind - p_start) * 300 / 60)
 t_int.append((t_end - t_start) * 300 / 60)
 qrs_int.append((s_end - q_ind) * 300 / 60)
 qrs_onset.append(sum(template[q_ind:s_ind + 1]))
 QT.append(qt)
 qtc.append(temp_qtc)
 HR.append(heartrate)

 subject.append(subject_name) # Labeling the data

 if False:
 #plt.figure()
 plt.scatter(HR, QT)
 plt.ylabel('QT interval')
 plt.xlabel('Heartrate')
 #plt.ylabel('QTc interval')
 #plt.xlabel('Heartrate')
 #plt.show()
 if QT_test == False:
 if True:
 out_dictionary = {
 'R': r
 , 'P': p
 , 'Q': q
 , 'S': s
 , 'T': t
 , 'Pint': p_int
 , 'Ppint': p_plus
 , 'Pmint': p_minus
 , 'Tint': t_int
 #, 'STseg': st_segment
 , 'PRseg': pr_segment
 , 'STe': st_elevation
 , 'QRs': qr_slope
 , 'RSs': rs_slope
 , 'QRSint': qrs_int
 , 'QRSo': qrs_onset
 , 'QTc': qtc
 , 'Subject': subject_name
 }
 else:
 out_dictionary = {
 'R': r
 , 'P': p
 , 'Q': q
 , 'S': s
 , 'T': t
 , 'PQ': p_minus
 , 'QS': p_plus
 , 'ST': p_int
 , 'Subject': subject_name
 }

 else:
 out_dictionary = {
 'HR': HR
 , 'QT': QT
 , 'R': r
 , 'T': t
 , 'P': p
 , 'S': s
 }

 return out_dictionary

 @staticmethod
 def find_best(inn_dictionary, N=40):
 out_dictionary = dict()
 heartbeats = inn_dictionary["heartbeats"]
 heartrates = inn_dictionary["heartrates"]
 SNR = []
 for hb in heartbeats:
 snr = Preprocess.SNR(hb)
 SNR.append(abs(snr))

 sorted_hb = [hb for (_, hb) in sorted(zip(SNR, heartbeats))]
 sorted_hr = [hb for (_, hb) in sorted(zip(SNR, heartrates))]

 out_dictionary["heartbeats"] = sorted_hb[:N]
 out_dictionary["heartrates"] = sorted_hr[:N]

 return out_dictionary

 @staticmethod
 def merge_heartbeats(heartbeats, heartrates, multimerge=False, mm_factor=2, overlap=False): # Merges heartbeats
 merged = []
 hr = []
 if type(heartrates) == int:
 heartrates = [heartrates for x in range(0, len(heartbeats))]
 if multimerge == True:
 if overlap == True:
 for n in range(mm_factor, len(heartbeats)):
 merged.append((sum(np.array(heartbeats[n-mm_factor:n]))/mm_factor).tolist())
 hr.append((sum(np.array(heartrates[n-mm_factor:n]))/mm_factor).tolist())
 else:
 for n in range(mm_factor, len(heartbeats), mm_factor):
 merged.append(((sum(np.array(heartbeats[n-mm_factor:n])))/(mm_factor)).tolist())
 hr.append(((sum(np.array(heartrates[n-mm_factor:n])))/(mm_factor)).tolist())

 else: # Heartrate
 merged = (sum(np.array(heartbeats))/(len(heartbeats))).tolist()
 hr = (sum(np.array(heartrates))/(len(heartrates))).tolist()

 template = {
 'heartbeats': merged,
 'heartrates': hr
 }
 return template

 @staticmethod
 def sort_heartrate(inn_dictionary, merge=False, mergefactor=0): # Sort the heartbeats in a dictionary based on their heart rate
 out_dictionary = dict()
 heartbeats = []
 heartrates = []

 hr = inn_dictionary["heartrates"]
 hb = inn_dictionary["heartbeats"]

 sorted_hb = [hb for (_,hb) in sorted(zip(hr, hb))]
 sorted_hr = sorted(hr)

 for value in range(40, 180, 10):
 temp_heartbeats = []
 temp_heartrates = []
 for i in range(0, len(sorted_hr)):
 if sorted_hr[i] > value and sorted_hr[i] < value+10:
 temp_heartbeats.append(sorted_hb[i])
 temp_heartrates.append(sorted_hr[i])
 if len(temp_heartbeats) > 2:

 if merge==True:
 if not mergefactor == 0:
 temp = Features.merge_heartbeats(temp_heartbeats, temp_heartrates,
 multimerge=True, mm_factor=mergefactor)
 heartbeats = (temp["heartbeats"])
 heartrates = (temp["heartrates"])
 else:
 temp = Features.merge_heartbeats(temp_heartbeats, temp_heartrates)

 heartbeats.append(temp["heartbeats"])
 heartrates.append(temp["heartrates"])
 else:
 out_dictionary[str(value)] = {'heartbeats': temp_heartbeats,
 'heartrates': temp_heartrates}

 #out_dictionary["heartbeats"] = heartbeats
 #out_dictionary["heartrates"] = heartrates

 return out_dictionary

Attachments/MachineLearning.py

import pandas as pd
import plotly
import numpy as np
from sklearn import preprocessing, model_selection
from scipy.stats import norm
from pandas.plotting import scatter_matrix
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_curve, precision_recall_curve, auc, make_scorer, recall_score, accuracy_score
from sklearn.utils.fixes import signature
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.decomposition import PCA, FastICA
from sklearn.preprocessing import StandardScaler, label_binarize
from sklearn.covariance import EllipticEnvelope
from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier, OutputCodeClassifier

from sklearn.metrics import jaccard_similarity_score, confusion_matrix, f1_score, brier_score_loss
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC, LinearSVC, OneClassSVM

import pyedflib
import pickle
from biosppy import ecg
from scipy.signal import savgol_filter
import EventClass
import os
from matplotlib import pyplot as plt
import matplotlib
import seaborn as sns
import time
from yellowbrick.classifier import PrecisionRecallCurve
from Preprocessing import Preprocess
from Features import Features
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
plotly.tools.set_credentials_file(username='vekabo', api_key='SKHxZiocipdhscLajpq0')
matplotlib.rcParams.update({'font.size': 18})

"""
This Code is a work in progress.
the four tests are:
Algorith Comparison - "classify"
Gridsearch - "gridsearch"
ROC analysis - "classifyROC"
identify/authenticate - "identify_confusion"

Vebjørn Kaldahl Bottenvik
14.06.2019
"""

def merger(X,Y,class_len, merge_factor):
 tempX = []
 tempY = []

 ind = 0
 prev_ind = 0
 for i in class_len:
 ind += i
 temp_ind = prev_ind
 while temp_ind + merge_factor <= ind:
 tempX.append(sum(X[temp_ind:temp_ind+merge_factor, :]/merge_factor).tolist())
 tempY.append(sum(Y[temp_ind:temp_ind+merge_factor, :]/merge_factor).tolist())
 temp_ind+=merge_factor
 prev_ind = ind

 return np.vstack(tempX), np.vstack(tempY)

"""
 The following function "plot_confusion_matrix" has been found from the Scikit Learb library:

 https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
 2007 - 2019, scikit-learn developers (BSD License)

 Last Accesed: 13. June 2019

"""
def plot_confusion_matrix2(y_true, y_pred, classes,
 normalize=False,
 title=None,
 cmap=plt.cm.Blues,
 fformat='.2f'):

 if not title:
 if normalize:
 title = 'Normalized confusion matrix'
 else:
 title = 'Confusion matrix, without normalization'

 # Compute confusion matrix
 cm = confusion_matrix(y_true, y_pred, classes)
 # Only use the labels that appear in the data
 if normalize:
 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
 where_NaN = np.isnan(cm)
 cm[where_NaN] = 0
 print("Normalized confusion matrix")
 else:
 print('Confusion matrix, without normalization')

 print(cm)

 fig, ax = plt.subplots()
 im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
 ax.figure.colorbar(im, ax=ax)
 # We want to show all ticks...
 ax.set(xticks=np.arange(cm.shape[1]),
 yticks=np.arange(cm.shape[0]),
 # ... and label them with the respective list entries
 xticklabels=classes, yticklabels=classes,
 title=title,
 ylabel='True label',
 xlabel='Predicted label')

 # Rotate the tick labels and set their alignment.
 plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
 rotation_mode="anchor")

 # Loop over data dimensions and create text annotations.
 fmt = fformat if normalize else 'd'
 thresh = cm.max() / 2.
 for i in range(cm.shape[0]):
 for j in range(cm.shape[1]):
 if cm[i, j] > 0:
 ax.text(j, i, format(cm[i, j], fmt),
 ha="center", va="center",
 color="white" if cm[i, j] > thresh else "black")
 else:
 ax.text(j, i, format(cm[i, j], '.0f'),
 ha="center", va="center",
 color="white" if cm[i, j] > thresh else "black")
 fig.tight_layout()
 return ax

rootdir = os.getcwd()+"\\ECG_data2" # Find dataset from current directory + ECG_data2

signal = []
rpeaks = []
subject = []
validation_dataR = []
validation_dataHRV = []
validation_dataM = []
validation_featuresR = []
test_featuresR = []
valR = []
valHRV = []
validation_featuresHRV = []
subject_names = []
trained_subject_names = []
calibrate = []
file_names = ["R", "HRV", "M"]

runmodes = ["classify", # 0
 "gridsearch", # 1
 'classifyROC', # 2
 'identify_confusion'] # 3
runmode = runmodes[3]

model_type = 'ovr'
print(runmode)
subjx = '119'
print_preprocessing = False
include_HRV = True
tabname = 'accHRV22' # Decides which latex table to write to.

testmode = 'validate'

subnum = sum([len(d) for r, d, files in os.walk(rootdir)])

print("There are {} subjects in this folder".format(subnum))

hrv_len = 5 # Amount of heartbeats used for each 10'th heartrate. Use all by setting over 20.

features_dict = dict()

Printing lists...
hbR =[]
Rperc = []
featsR = []
hbHRV = []
HRVperc = []
featsHRV = []
hbM = []
featsM = []
Mperc = []

hrv_factors = [0, 0.25, 0.5, 0.7] # different amount of training data
hrv_trainingfactor = hrv_factors[0]

for subdir, dirs, files in os.walk(rootdir):
 for dir in dirs:
 subx = False

 for file in file_names:
 f = pyedflib.EdfReader(rootdir + "/" + dir + "/" + file + "-ECG.edf")

 raw_signal = f.readSignal(0)

 rpeaks = Features.r_peaks(raw_signal, 300)

 temp_signal = ecg.ecg(raw_signal, 300, show=False)
 signal = Preprocess.muscle_filter2(temp_signal['filtered'], rpeaks)

 rpeaks = Features.r_peak_correction(signal, rpeaks, 10)

 dictionary = Features.heartbeats(signal, rpeaks)

 if file == "R":
 train_dict, test_dict = Features.dictionary_splitter(dictionary, 0.2, randomize=False)
 if runmode == 'prec_recall' or runmode == 'classifyROC' or testmode == 'validate':
 train_dict, val_dict = Features.dictionary_splitter(train_dict, 0.2/0.8, randomize=False)
 if not runmode == 'features':
 features = Features.extract_features(inn_dictionary=train_dict, subject_name=("subject "+str(dir))) # remember to edit
 temp_features = Features.extract_features(inn_dictionary=test_dict,
 subject_name=("subject " + str(dir)))
 val_features = Features.extract_features(inn_dictionary=val_dict,
 subject_name=("subject " + str(dir)))
 else:
 features = Features.extract_features(inn_dictionary=train_dict,
 subject_name=(str(file)))
 temp_features = Features.extract_features(inn_dictionary=test_dict,
 subject_name=(str(file)))
 val_features = Features.extract_features(inn_dictionary=val_dict,
 subject_name=("subject " + str(dir)))
 if not str(dir) == subjx:

 subject.append(features)
 validation_featuresR.append(temp_features)
 valR.append(val_features)
 else:
 subx = True

 validation_dataR.append(temp_features)

 hbR.append(len(dictionary['heartbeats']))
 featsR.append(len(features['R'])+len(temp_features['R'])+len(val_features['R']))
 Rperc.append(((len(features['R'])+len(temp_features['R'])+len(val_features['R']))/
 (len(dictionary['heartbeats'])))*100)

 elif file == "HRV":

 trainfactor = hrv_trainingfactor
 if trainfactor <= 0.95:
 train_dict, test_dict = Features.dictionary_splitter(dictionary, 0.2)
 if runmode == 'prec_recall' or runmode == 'classifyROC' or testmode == 'validate':
 train_dict,val_dict = Features.dictionary_splitter(train_dict, 0.1/0.8)
 train_dict,_ = Features.dictionary_splitter(train_dict, (0.7-trainfactor)/(0.7))
 else:
 train_dict,_ = Features.dictionary_splitter(train_dict, (0.8-trainfactor)/(0.8))
 else:
 train_dic = dictionary
 if True:
 train_dict2 = Features.sort_heartrate(train_dict)
 temp_hb = []
 temp_hr = []
 for key, value in train_dict2.items():
 samples = len(value['heartbeats'])
 if samples > hrv_len:
 samples = hrv_len
 temp_dict = Features.find_best(value, N=samples)
 temp_hb += temp_dict['heartbeats']
 temp_hr += temp_dict['heartrates']

 sortedtrain_dict = {
 'heartbeats': temp_hb,
 'heartrates': temp_hr
 }

 if not runmode == 'features':
 features = Features.extract_features(inn_dictionary=train_dict,
 subject_name=("subject "+str(dir)))
 temp_features = Features.extract_features(inn_dictionary=test_dict,
 subject_name=("subject " + str(dir)))
 val_features = Features.extract_features(inn_dictionary=val_dict,
 subject_name=("subject " + str(dir)))

 elif runmode == 'classifyROC':
 temp_features = Features.extract_features(inn_dictionary=train_dict,
 subject_name=("subject "+str(dir)))
 val_features = Features.extract_features(inn_dictionary=val_dict,
 subject_name=("subject " + str(dir)))

 else:
 features = Features.extract_features(inn_dictionary=sortedtrain_dict,
 subject_name=(str(file)))
 temp_features = Features.extract_features(inn_dictionary=test_dict,
 subject_name=(str(file)))
 #val_features = Features.extract_features(inn_dictionary=val_dict,
 # subject_name=(str(file)))
 if not str(dir) == subjx:
 if include_HRV == True:
 if runmode == 'classifyROC':
 validation_featuresR.append(val_features)
 valHRV.append(val_features)
 else:
 subject.append(features)
 validation_featuresR.append(val_features)
 valHRV.append(val_features)
 else:
 #validation_featuresR.append(Features.extract_features(inn_dictionary=dictionary,
 # subject_name=(str(file))))
 dummy = 'k'
 dummy = 'k'
 else:
 #plt.subplot(3, 1, 2)
 #plt.plot(raw_signal)
 #plt.title("HRV-ECG")
 subx = True
 if include_HRV == True:
 validation_dataHRV.append(temp_features)
 else:
 validation_dataHRV.append(Features.extract_features(inn_dictionary=dictionary,
 subject_name=(str(file))))

 hbHRV.append(len(dictionary['heartbeats']))
 featsHRV.append(len(features['R']) + len(temp_features['R'])+len(val_features['R']))
 HRVperc.append(((len(features['R']) + len(temp_features['R'])+len(val_features['R']))
 / (len(dictionary['heartbeats'])))*100)

 elif file == "M":
 if str(dir) == subx:
 subx = True

 temp_features = Features.extract_features(inn_dictionary=dictionary,
 subject_name=("subject " + str(dir)))
 validation_dataM.append(temp_features)

 hbM.append(len(dictionary['heartbeats']))
 featsM.append(len(temp_features['R']))
 Mperc.append(((len(temp_features['R'])) / (len(dictionary['heartbeats'])))*100)

 if subx == True:
 subject_names.append("subject x")
 else:
 subject_names.append("subject " + str(dir))
 trained_subject_names.append("subject " + str(dir))

''' Some initializing of listes.'''
R = []
R_test = []
R_val = []
HRV = []
HRV_test = []
M = []
M_test = []
M_val = []

feature_list = list(subject[0].keys())

for i in range(0, len(subject)):
 sub = subject[i]
 R.append(pd.DataFrame.from_dict(data=sub))

val_len = []
for j in range(0, len(validation_featuresR)):
 print(j)
 val_r = validation_featuresR[j]
 val_len.append(len(val_r['R']))
 R_val.append(pd.DataFrame.from_dict(data=val_r))

if True:
 dataset_R = pd.concat(R, ignore_index=True)
 validationset_R = pd.concat(R_val, ignore_index=True)

 dis = dataset_R.head(1000)
 print(dis)

 class_count = pd.value_counts(dataset_R['Subject'])
 class_count1 = pd.value_counts(validationset_R['Subject'])
 print(class_count)

 x_r = np.array(dataset_R.drop(['Subject'], 1))
 y_r = np.array(dataset_R['Subject'])

 x_r_test = np.array(validationset_R.drop(['Subject'], 1))
 y_r_test = np.array(validationset_R['Subject'])

 _, m_r = dataset_R.shape

 '''Standarize the data'''
 scaler = StandardScaler()
 scaler.fit(x_r)

 XR_train = scaler.transform(x_r)
 YR_train = y_r

 XR_test = scaler.transform(x_r_test)
 YR_test = y_r_test

 pcacoeff = False

 '''PCA transform'''

 # XR_train = pca.transform(XR_train)
 # XR_test = pca.transform(XR_test)
 # pca = PCA(0.99)
 # pca.fit(XR_train)
 # print(pca.explained_variance_ratio_)

 '''ICA transfom'''
 # ica = FastICA(n_components=16)
 # ica.fit(XR_train)
 # XR_train = ica.transform(XR_train)
 # XR_test = ica.transform(XR_test)

 print(len(XR_train[0, :]))

 seed = 7
 scoring = 'accuracy'

 lr_paramgrid = dict(solver=['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
 multi_class=['ovr', 'auto'])

 lda_paramgrid = dict()

 knn_paramgrid = dict(n_neighbors=[3, 5, 11, 15, 19],
 weights=['uniform', 'distance'],
 metric=['euclidean', 'manhattan'])

 cart_paramgrid = dict(max_depth=range(1, 11),
 min_samples_leaf=range(1, 6),
 max_features=['auto', 'sqrt', 'log2'])

 nb_paramgrid = dict()

 lsvc_paramgrid = dict(C=np.arange(0.01, 100, 10))

 mlp_paramgrid = dict(solver=['lbfgs'],
 max_iter=[1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000],
 alpha=10.0 ** -np.arange(1, 10),
 hidden_layer_sizes=np.arange(10, 15),
 random_state=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
)

 svm_paramgrid = dict(kernel=['linear', 'rbf'],
 C=[1, 0.25, 0.5, 0.75],
 gamma=[1, 2, 3, 'auto'],
 decision_function_shape=['ovo', 'ovr'],
 shrinking=(True, False))

 rf_paramgrid = dict(bootstrap=[True, False],
 n_estimators=800,
 random_starte=range(50, 150, 5)
)

 if runmode == 'gridsearch':
 models = []
 models.append(('LR', LogisticRegression(), lr_paramgrid))

 models.append(('LDA', LinearDiscriminantAnalysis(), lda_paramgrid))

 models.append(('KNN', KNeighborsClassifier(), knn_paramgrid))

 models.append(('CART', DecisionTreeClassifier(), cart_paramgrid))

 models.append(('NB', GaussianNB(), nb_paramgrid))

 models.append(('SVM', SVC(), svm_paramgrid))

 models.append(('MLP', MLPClassifier(), mlp_paramgrid))

 models.append(('RF', RandomForestClassifier(), rf_paramgrid))

 results = []
 names = []

 elif pcacoeff == True:
 models = []
 models.append(('LR', LogisticRegression(multi_class='ovr', solver='newton-cg'),
 lr_paramgrid))
 models.append(('LDA', LinearDiscriminantAnalysis(), lda_paramgrid))
 models.append(('KNN', KNeighborsClassifier(metric='manhattan', n_neighbors=5, weights='distance'),
 knn_paramgrid))
 models.append(('CART', DecisionTreeClassifier(max_depth=10, max_features='auto', min_samples_leaf=2)
 , cart_paramgrid))
 models.append(('NB', GaussianNB(),
 nb_paramgrid))
 models.append(('SVM', SVC(C=1, decision_function_shape='ovo', gamma=1, kernel='rbf', shrinking=True,
 probability=True),
 svm_paramgrid))
 models.append(('MLP', MLPClassifier(alpha=0.1, hidden_layer_sizes=13, max_iter=1000, random_state=5, solver='lbfgs')
 , mlp_paramgrid))
 models.append(('RF', RandomForestClassifier(bootstrap=True, n_estimators=300, random_state=8), rf_paramgrid))
 results = []
 names = []

 else:
 ''' Potential new parameters for PCA or ICA features..'''
 models = []
 models.append(('LR', LogisticRegression(multi_class='auto', solver='newton-cg'),
 lr_paramgrid))
 models.append(('LDA', LinearDiscriminantAnalysis(), lda_paramgrid))
 models.append(('KNN', KNeighborsClassifier(metric='manhattan', n_neighbors=5, weights='distance'),
 knn_paramgrid))
 models.append(('CART', DecisionTreeClassifier(max_depth=10, max_features='log2', min_samples_leaf=2)
 , cart_paramgrid))
 models.append(('NB', GaussianNB(),
 nb_paramgrid))

 models.append(('SVM', SVC(C=1, decision_function_shape='ovo', gamma=1, kernel='linear', shrinking=True,
 probability=True),
 svm_paramgrid))

 models.append(('MLP', MLPClassifier(alpha=0.1, hidden_layer_sizes=10, max_iter=1000, random_state=1, solver='lbfgs')
 , mlp_paramgrid))

 models.append(('RF', RandomForestClassifier(bootstrap=True, n_estimators=300, random_state=8), rf_paramgrid))
 results = []
 names = []

 tresh = 0.7

if runmode == "classify":

 """
 The setup for the algorithm comparison has been motivated by:
 Author: Jason Brownlee
 Date: June 10, 2016
 URL: https://machinelearningmastery.com/machine-learning-in-python-step-by-step/

 Last Accesed: 10.06.2019

 """
 kfold = model_selection.StratifiedKFold(n_splits=10, random_state=seed)
 for name, model, grid in models:
 start = time.time()
 cv_results = model_selection.cross_val_score(OneVsRestClassifier(model), XR_train, YR_train, cv=kfold, scoring=scoring)

 end = time.time()
 print(cv_results)
 cv_results.sort()
 results.append(cv_results[1:len(cv_results)-1])
 names.append(name)
 msg = "%s: mean: %f (std: %f) runtime:[%f]" % (name, cv_results.mean(), cv_results.std(), (end-start))
 print(msg)

 fig = plt.figure()
 fig.suptitle('Algorithm Comparison')
 ax = fig.add_subplot(111)
 sns.boxplot(data=results)
 ax.set_xticklabels(names)

elif runmode == "classifyROC":
 """
 The setup for ROC-micro average curve has been inspired example code from the Scikit Learn website.

 https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py
 © 2007 - 2019, scikit-learn developers (BSD License)

 Last Accesed: 13.06.2019

 """

 plt.figure()
 plt.suptitle('Micro-Average ROC curve for the different classifiers')
 latexdict = dict()

 YR_train = label_binarize(YR_train, classes=subject_names)
 YR_test = label_binarize(YR_test, classes=subject_names)

 XR_test, YR_test = merger(XR_test, YR_test, val_len, 5) #Merge feature vectors for majority voting!

 for name, model, grid in models:

 names.append(name)

 if name != 'RF' or name != 'MLP':
 clf = OneVsRestClassifier(model)
 else:
 clf = model

 clf.fit(XR_train, YR_train)
 #clf.fit(XHRV_train, YHRV_train)

 y_pred = clf.predict(XR_test)
 #score = clf.score(XR_test, YR_test)
 #title = "{}. Score: {}. {} out of {} samples".format(name, round(score, 3),
 # int(round(len(YR_train)*score)), len(YR_train))
 #y_score = clf.decision_function(XR_test)

 y_score = clf.predict_proba(XR_test)
 acc = accuracy_score(YR_test, y_pred)

 f1score = f1_score(YR_test, y_pred, average='micro')

 #brier = brier_score_loss(YR_test, y_score)

 step_kwargs = ({'step': 'post'}
 if 'step' in signature(plt.fill_between).parameters
 else {})

 # Compute ROC curve and ROC area for each class
 fpr = dict()
 tpr = dict()
 fnr = dict()
 tnr = dict()
 thr = dict()
 roc_auc = dict()
 roc_eer = dict()
 #plt.figure()
 #plt.suptitle(name)
 for i in range(subnum):
 fpr[i], tpr[i], _ = roc_curve(YR_test[:, i], y_score[:, i])
 fnr[i] = 1-tpr[i]
 tnr[i] = 1-fpr[i]
 roc_auc[i] = auc(fpr[i], tpr[i])
 roc_eer[i] = fpr[i][np.argmin(np.absolute(fnr[i]-fpr[i]))]

 # Compute micro-average ROC curve and ROC area
 fpr["micro"], tpr["micro"], thr["micro"] = roc_curve(YR_test.ravel(), y_score.ravel())
 fnr["micro"] = 1 - tpr["micro"]
 tnr["micro"] = 1 - fpr["micro"]
 roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
 roc_eer["micro"] = fpr["micro"][np.argmin(np.absolute(fnr["micro"] - fpr["micro"]))]

 # Plot of a ROC curve for a specific class
 #plt.subplot(4, 5, i+1)
 #plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
 #plt.plot([0, 1], [0, 1], 'k--')
 #plt.xlim([0.0, 1.0])
 #plt.ylim([0.0, 1.05])
 #plt.xlabel('False Positive Rate')
 #plt.ylabel('True Positive Rate')
 #plt.title('Receiver operating characteristic example')
 #plt.legend(loc="lower right")

 # Plot ROC curve

 plt.plot(fpr["micro"], tpr["micro"],
 #label='micro-average ROC curve (area = {0:0.2f})'
 # ''.format(roc_auc["micro"]))
 label='ROC curve {}. (area = {})'.format(name,round(roc_auc["micro"],2)))
 #for i in range(subnum):
 # plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})'
 # ''.format(i, roc_auc[i]))

 plt.plot([0, 1], [0, 1], 'k--')
 plt.xlim([0.0, 1.0])
 plt.ylim([0.0, 1.05])
 plt.xlabel('False Positive Rate')
 plt.ylabel('True Positive Rate')
 plt.legend(loc="lower right")

 latexdict[name] = [float(acc), float(roc_auc["micro"]), float(roc_eer["micro"]), float(f1score)] # , float(brier)]

 df = pd.DataFrame(latexdict, index=['ACC', 'AUC', 'EER', 'F1 score'])#, 'Brier loss'])

 with open('C:\\Users\\vekab\\Dropbox\\Apps\\Overleaf\\ECG Biometrics\\Tables\\'+tabname+'.tex', 'w+') as f:
 f.write(df.to_latex(index=True, float_format='%0.3f', bold_rows=True, column_format='|l|c|c|c|c|c|c|c|c|c|')
 .replace('\\toprule', '\\hline')
 .replace('\\midrule', '\\hline')
 .replace('\\bottomrule', '\\hline'))

elif runmode == "gridsearch":
 for name, model, grid in models:
 start = time.time()
 kfold = model_selection.StratifiedKFold(n_splits=10, random_state=seed)

 cv_results = GridSearchCV(model, grid, cv=kfold, scoring='accuracy', n_jobs=-1, iid=True)
 cv_results.fit(XR_train, YR_train)
 end = time.time()
 results.append(cv_results)

 names.append(name)
 print("Runtime: {}".format(end-start))
 print(name)
 print(cv_results.best_params_)
 print(cv_results.best_score_)

elif runmode == 'identify_confusion':

 for name, model, _ in [models[7]]:#[models[0], models[2], models[5], models[6], models[7]]:
 # 0:LR, 1:LDA, 2:KNN, 3:CART, 4:NB, 5:SVM, 6:MLP, 7:RF

 if name == 'MLP' or name == 'RF':
 rf = model
 else:
 if model_type == 'ovr':
 rf = OneVsRestClassifier(model)
 elif model_type == 'ovo':
 rf = OneVsOneClassifier(model)
 else:
 rf = model

 rf.fit(XR_train, YR_train)

 validationsets = [validation_dataR, validation_dataHRV, validation_dataM] # Testset
 #validationsets = [valR, valHRV] # Validationset

 labels = ["R-ECG", "HRV-ECG", "M-ECG"]
 max_len = 13
 time = [k for k in range(0, max_len + 1)]

 for hbs in [1]: # In the case of 1 hb and 5 hb test, set this to be [1, 5]
 for o in range(0, len(validationsets)):
 Y_test = []
 Y_real = []
 Y2_test = []
 Y2_real = []
 validationset = validationsets[o]
 predprob = []
 predprob1 = []
 for i in range(0, len(validationset)):

 true_sub = subject_names[i]
 sub_dict = validationset[i]
 limit = min(len(sub_dict['R']), max_len + 1,)
 temp_df = pd.DataFrame.from_dict(data=sub_dict)
 x = np.array(temp_df.drop(['Subject'], 1))
 y = np.array(temp_df['Subject'])

 temp_index = 0
 upper_limit = 5 # Decide on the time limits for authentication
 lower_limit = 1 # Put both to hbs for the 1 and 5 hb test.
 while temp_index + upper_limit < limit:
 notfound = True
 m = lower_limit

 if true_sub == 'subject x':
 Y2_real.append('Negative')
 else:
 Y2_real.append('Positive')

 while notfound == True:

 predicted = 0
 sbthresh = 0.0
 tresh = sbthresh
 for j in range(temp_index, temp_index+m):
 try:
 x1 = scaler.transform(np.array([x[j, :]]))

 # component analysis
 #x1 = pca.transform(x1)
 #x1 = ica.transform(x1)

 pred = rf.predict(x1)
 prob = rf.predict_proba(x1)
 predicted += prob

 #tresh -= 0.05 # Possibility for decreasing threshold

 except IndexError as e:
 print(e)
 if pred == true_sub:

 predprob.append(np.ceil(max(predicted[0, :])*100)/(100*lower_limit))
 else:
 predprob1.append(np.ceil(max(predicted[0, :]) * 100) / (100*lower_limit))
 try:
 if (max(predicted[0, :]) > tresh*(m) and m < upper_limit+1):
 notfound = False
 Y2_test.append('Positive')
 try:
 prediction = trained_subject_names[np.argmax(predicted[0, :])]
 except IndexError as e:
 print(e)
 Y_test.append(prediction)
 Y_real.append(true_sub)
 elif (max(prob[0, :]) > sbthresh and m < upper_limit+1):
 notfound = False
 Y2_test.append('Positive')
 prediction = trained_subject_names[np.argmax(prob[0, :])]
 Y_test.append(prediction)
 Y_real.append(true_sub)
 elif m >= upper_limit:
 Y_test.append('subject x')
 Y_real.append(true_sub)
 Y2_test.append('Negative')
 notfound = False

 except ValueError as e:
 print(e)

 m+=1
 temp_index+=m

 plot_confusion_matrix2(Y_real, Y_test, trained_subject_names,
 title='Identification of {} with {} to {} heartbeats. "{}"'
 .format(labels[o], lower_limit, upper_limit, name), normalize=False, fformat='.0f')

 plot_confusion_matrix2(Y2_real, Y2_test, ['Positive', 'Negative'],
 title='Known subjects vs excluded subject for {} with {} to {} heartbeats. "{}"'
 .format(labels[o], lower_limit, upper_limit, name), normalize=True)

 #plt.figure()
 #plt.hist(predprob, bins=10, color="lightblue", density=True)
 #plt.hist(predprob1, bins=10, color="pink", density=True)
 #plt.axvline(max(predprob1), color='black')
 #plt.title('Histogram over predicted probabilities for {} heartbeats with {}. Thr = {}'
 # .format(hbs, name, max(predprob1)))
 #plt.xlabel('Predicted probability')
 #plt.ylabel('Nuber of classifications')
 #plt.grid()

 data = [predprob1, predprob]
 sns.set()
 plt.figure()
 #plt.subplot(2,1,1)
 #plt.title('Real')
 #plt.boxplot(predprob, vert=False)
 #plt.subplot(2,1,2)sns.set()
 plt.title('True vs False for {} with {} heartbeats'.format(name, hbs))
 plt.yticks([1, 2], ['False', 'True'])

 plt.boxplot(data, vert=False)

 #thr = max(predprob1)
 #kept = (sum([predval>thr for predval in predprob])/len(predprob))
 print('name: {}, heartbeats: {}, True: mean: {} std: {}'.format(name, hbs, np.mean(predprob)
 , np.std(predprob)))

 print('name: {}, heartbeats: {}, False: mean: {} std: {}'.format(name, hbs, np.mean(predprob1)
 , np.std(predprob1)))

 print('Accuracy: {}'.format(len(predprob)/(len(predprob1)+len(predprob))))

plt.show()

Attachments/Preprocessing.py

from pyedflib import EdfReader
from pywt import wavedec, waverec
import numpy as np
from numpy import fft
from matplotlib import pyplot as plt
from scipy.signal import savgol_filter, convolve, filtfilt
from scipy.ndimage import gaussian_filter1d
from scipy.signal import firwin, butter
from scipy.signal.windows import gaussian
from biosppy import ecg
import math
import matplotlib
#from Features import *
matplotlib.rcParams.update({'font.size': 20})

class Preprocess(object):

 """
 Vebjørn Kaldahl Bottenvik - 10.06.19

 requirements:
 scipy
 [The other class made for this project]
 (numpy, pandas, matplotlib)

 This class includes the static methods created for this project.
 -> HR baseline filter
 -> Muscle filter
 -> ECG filter [combination of baseline]

 """

 @staticmethod
 def wavelet(signal, wavelet='db8', level=9, regions=1):
 # Filter that removes the baseline wander of the signal + possible aliasing
 # indexes is the amount of freq. regions to remove
 wave_coeffs = wavedec(np.array(signal), wavelet=wavelet, level=level)

 wave_coeffs2 = wave_coeffs.copy()

 bands = [i for (i) in range(0, level+1)]

 take_out = bands[:regions]
 for ind in take_out:
 wave_coeffs[ind] = np.zeros_like(wave_coeffs[ind])

 filtered_signal = waverec(wave_coeffs, wavelet=wavelet)

 take_out2 = bands[regions:]
 for ind in take_out2:
 wave_coeffs2[ind] = np.zeros_like(wave_coeffs2[ind])

 baseline = waverec(wave_coeffs2, wavelet=wavelet)

 return filtered_signal, baseline

 @staticmethod
 def bandstop(signal, freq_region=[48, 52], order=2, fs=300):
 # Filter that removes the 40Hz components of the signal.

 filtered_signal, _, _ = ecg.st.filter_signal(signal=signal,
 ftype='FIR',
 band='bandstop',
 order=90,
 frequency=freq_region,
 sampling_rate=fs
)

 return filtered_signal

 @staticmethod
 def HR_baseline3(signal, r_rpeaks=[]):
 #signal = Preprocess.lowpass(signal, cutoff=50, order=90)
 if len(r_rpeaks)==0:
 temp_peaks = ecg.hamilton_segmenter(signal, 300)
 temp_peaks = ecg.correct_rpeaks(signal, temp_peaks["rpeaks"], 300)
 rpeaks = temp_peaks["rpeaks"]
 else:
 rpeaks = r_rpeaks

 #rpeaks = Features.Features.r_peaks(signal,300)
 #plt.figure()
 #plt.plot(signal),
 #plt.plot(rpeaks, signal[rpeaks], '*')
 #plt.show()
 peaks = [[0], rpeaks.tolist(), [len(signal)-1]]
 peaks = sum(peaks, [])
 baseline = signal.copy()
 hr_limits = [40, 180] # Limits for upper and lower heart rate.. can be adjusted
 last_hr = 0
 for i in range(2, len(peaks)-2):

 hr = (60*300/((peaks[i+2]-peaks[i-2])/5))
 if last_hr == 0:
 last_hr = hr
 if hr < hr_limits[0]:
 hr = hr_limits[0]
 elif hr > hr_limits[1]:
 hr = hr_limits[1]
 #hr = (hr+last_hr)/2
 cut = (hr/60)-0.5
 #print(cut)
 temp_signal = 0
 temp_signal = Preprocess.lowpass(signal=signal, cutoff=cut, order=90, fs=300)
 baseline[peaks[i - 2]:peaks[i+2]] = temp_signal[peaks[i - 2]:peaks[i+2]]
 last_hr = hr

 baseline = Preprocess.lowpass(baseline, cutoff=3, order=300)
 #baseline = Preprocess.smoothing_gauss(baseline, 1)

 filtered = signal - baseline

 return baseline, filtered, rpeaks

 @staticmethod
 def HR_baseline(signal, r_rpeaks):
 r_peaks = r_rpeaks.copy()
 if type(r_rpeaks) != type([]):
 r_peaks = r_peaks.tolist()
 rpeaks = [[0], r_peaks, [len(signal) - 1]]
 rpeaks = sum(rpeaks, [])
 y = []
 high = 45
 numtaps = 1143
 window = 'hamming'
 samplefactor = (1 / 300)
 max_fc = 3
 mmin_fc = 0.5
 scale = (max_fc-mmin_fc)/(180-50)
 adjust = 50*scale - mmin_fc

 i = 0
 hr = 60
 for n in range(len(signal)):
 temp_y = 0
 if i < len(rpeaks)-1:
 if n > rpeaks[i] and n < rpeaks[len(rpeaks) - 2]:
 i += 1
 if i == 0:
 ri = (rpeaks[i] - 0)
 ri1 = (rpeaks[i + 1] - rpeaks[i])
 elif i == len(rpeaks):
 ri = (rpeaks[i] - rpeaks[i - 1])
 ri1 = (len(signal) - rpeaks[i])
 else:
 ri = (rpeaks[i] - rpeaks[i - 1])
 ri1 = (rpeaks[i + 1] - rpeaks[i])

 #print(ri)
 if ri == 0:
 hr = 100
 else:
 hr = (300*60)/ri
 #print(hr)
 if hr > 180:
 hr = 180
 elif hr < 50:
 hr = 50

 cut = (hr*scale)-adjust # found from finding scale for 2.5Hz increase for 130bmp.
 b = firwin(numtaps, [cut, 45], pass_zero=False, fs=300, window=window)

 if n < numtaps:
 for j in range(n):
 temp_y += b[j] * signal[n - j]
 else:
 for j in range(len(b)):
 temp_y += b[j] * signal[n - j]

 y.append(temp_y)

 baseline = signal - np.roll(np.array(y), -int(numtaps/2))

 baseline = Preprocess.lowpass(baseline, 0.5, fs=300, order=90) # avoid "additiona waves"

 filtered = signal - baseline
 return baseline, filtered, np.array(r_rpeaks)

 @staticmethod
 def HR_baseline2(signal, r_rpeaks=[]):
 signal = Preprocess.lowpass(signal, cutoff=50, order=90)
 if len(r_rpeaks) == 0:
 temp_peaks = ecg.hamilton_segmenter(signal, 300)
 temp_peaks = ecg.correct_rpeaks(signal, temp_peaks["rpeaks"], 300)
 rpeaks = temp_peaks["rpeaks"]
 else:
 rpeaks = r_rpeaks

 # rpeaks = Features.Features.r_peaks(signal,300)
 # plt.figure()
 # plt.plot(signal),
 # plt.plot(rpeaks, signal[rpeaks], '*')
 # plt.show()
 #peaks = [[0], rpeaks.tolist(), [len(signal) - 1]]
 #peaks = sum(peaks, [])
 baseline = signal.copy()
 hr_limits = [40, 180] # Limits for upper and lower heart rate.. can be adjusted
 heartrates = []
 # Estimating heart rates
 r = []
 hr = []
 i = 0
 samplefactor = (1/300)
 for n in range(len(signal)):
 if n > rpeaks[i] and n < rpeaks[len(rpeaks)-2]:
 i+=1
 if i == 0:
 ri = (rpeaks[i]-0)*samplefactor
 ri1 = (rpeaks[i+1]-rpeaks[i])*samplefactor
 elif i == len(rpeaks):
 ri = (rpeaks[i]-rpeaks[i-1])*samplefactor
 ri1 = (len(signal)-rpeaks[i])*samplefactor
 else:
 ri = (rpeaks[i] - rpeaks[i - 1])*samplefactor
 ri1 = (rpeaks[i + 1] - rpeaks[i])*samplefactor
 hr.append(ri/2)

 r.append(ri + ((ri1-ri)/(ri1))*(n-rpeaks[i]))

 fc = 1/(np.array(r))

 filtered = []
 baseline = []

 #for sample in range(len(signal)):

 # baseline = Preprocess.lowpass(baseline, cutoff=3, order=300)
 # baseline = Preprocess.smoothing_gauss(baseline, 1)

 filtered = signal - baseline

 return baseline, filtered, rpeaks

 @staticmethod
 def lowpass(signal, cutoff=40, order=5, fs=300, highfreq=False):

 filtered_signal, _, _ = ecg.st.filter_signal(signal=signal,
 ftype='FIR',
 band='lowpass',
 order=order,
 frequency=cutoff,
 sampling_rate=fs
)

 if highfreq == False:
 return filtered_signal
 else:
 return filtered_signal, signal - filtered_signal

 @staticmethod
 def highpass(signal, cutoff=1, order=5, fs=300):

 filtered_signal, _, _ = ecg.st.filter_signal(signal=signal,
 ftype='FIR',
 band='highpass',
 order=order,
 frequency=cutoff,
 sampling_rate=fs
)

 return filtered_signal

 @staticmethod
 def MA_filter(inn_signal, N):
 cumsum = np.cumsum(np.insert(inn_signal, 0, 0))
 averaged = (cumsum[N:] - cumsum[:-N]) / float(N)
 return averaged

 @staticmethod
 def dynamic_gaussian(inn_signal, slope_signal, fs=300, M=12):

 K_min = 0.2*10000
 K_max = 8.7*10000
 thrmax = 0.1 #set SS max based on max value found in last 3 seconds?
 thrmin = 0.15*thrmax

 interval = 2*fs*M
 m = fs*M

 K = []
 for i in range(0, len(slope_signal)):
 np.clip(range, 0)
 SS = slope_signal[i]
 KRamp = (SS*(K_max-K_min)/(thrmax-thrmin))
 if SS < thrmin:
 K.append(K_min)
 elif SS > thrmax:
 K.append(K_max)
 else:
 K.append(KRamp*((SS-thrmin)+K_min))

 #K = Preprocess.MA_filter(K, M)

 plt.figure()
 plt.subplot(2, 1, 1)
 plt.plot(inn_signal[100:600])
 plt.subplot(2, 1, 2)
 plt.plot(K[100:600])
 plt.show()

 y = []
 C = []
 for i in range(0, len(inn_signal)):
 #j = [M for M in range(-M, M)]

 looprange = [m for m in range(i-M, i+M+1) if (m >= 0 and m <= len(K)-1)]

 #sigma1 = [math.exp(-K[j] * math.pow((j * fs), 2)) for j in looprange]

 #sigma2 = [(inn_signal[j] * math.exp(-K[j] * math.pow((j * fs), 2))) for j in looprange]

 sigma1 = [math.exp(-K[j]) for j in looprange]

 sigma2 = [(inn_signal[j] * math.exp(-K[j])) for j in looprange]

 sum1 = sum(sigma1)
 sum2 = sum(sigma2)
 try:
 C_temp = 1/(fs*sum1)
 except ZeroDivisionError as e:
 print(e)
 C.append(C_temp)
 try:
 y.append(C[i]*fs*sum2)
 except ZeroDivisionError as e:
 print(e)

 return y

 @staticmethod
 def muscle_filter(inn_signal, rpeaks):
 diff = np.diff(inn_signal)
 absolute = abs(diff)
 absolute = Preprocess.MA_filter(absolute, 10) # Try with 3 first..
 filtered_signal = Preprocess.dynamic_gaussian(inn_signal, absolute)
 #plt.figure()
 #plt.title("sig vs diff")
 #plt.plot(inn_signal)
 #plt.plot(filtered_signal)
 #plt.show()

 filtered_signal = inn_signal
 return filtered_signal

 @staticmethod
 def muscle_filter2(inn_signal, rpeaks, fs=300):

 filtered = Preprocess.lowpass(inn_signal, cutoff=12, order=90)
 filtered = Preprocess.highpass(filtered, cutoff=5, order=90)
 diff = np.diff(filtered)
 squared = [math.pow(i, 2) for i in diff]
 meaned = Preprocess.MA_filter(np.flip(squared), (int(fs / 10))) * 100
 meaned = Preprocess.MA_filter(np.flip(meaned), (int(fs / 10))) * 10
 meaned = np.roll(meaned, (int(fs / 10))+25) # Rolling to compensate for shortened signal
 thr = np.mean(meaned)
 y = []
 numtaps = 51
 scale = 1
 i = 0

 for n in range(len(meaned)):
 if i < len(rpeaks) - 1:
 if n > rpeaks[i] and n < rpeaks[len(rpeaks) - 2]:
 i += 1
 if i == 0:
 ri = (rpeaks[i] - 0)
 ri1 = (rpeaks[i + 1] - rpeaks[i])
 elif i == len(rpeaks):
 ri = (rpeaks[i] - rpeaks[i - 1])
 ri1 = (len(inn_signal) - rpeaks[i])
 else:
 ri = (rpeaks[i] - rpeaks[i - 1])
 ri1 = (rpeaks[i + 1] - rpeaks[i])

 if meaned[n] > thr*1.5 or (rpeaks[i]-n < 15 or n-rpeaks[i-1]<15): # 0.1 seconds QRS interval
 std = 0.2
 scale = 1
 else:
 std = 5
 scale=5
 #std = 0.2

 # # print(ri)
 # if ri == 0:
 # hr = 100
 # else:
 # hr = (300 * 60) / ri
 # # print(hr)
 # if hr > 180:
 # hr = 180
 # elif hr < 50:
 # hr = 50
 #cut = (hr / 60)

 b = gaussian(numtaps, std=std)
 #b = firwin(numtaps, , pass_zero=False, fs=300, window=window)
 temp_y = 0
 if n < numtaps:
 for j in range(n):
 temp_y += b[j] * inn_signal[n - j]
 else:
 for j in range(len(b)):
 temp_y += b[j] * inn_signal[n - j]

 y.append(temp_y/scale)

 y = np.roll(np.array(y), -25)#/4.6

 filtered_signal = Preprocess.lowpass(y, 50) # remove transitionpoints
 if False:
 plt.figure()
 plt.suptitle("Testing muscle filtering")
 plt.subplot(2, 1, 1)
 plt.plot(inn_signal) # [100:700])
 #plt.plot(diff) # [100:700])
 #plt.subplot(3, 1, 2)
 #plt.plot(K) # [100:700])
 #plt.plot(abs(np.diff(K))) # [100:700])))
 plt.subplot(2, 1, 2)
 plt.plot(meaned)
 plt.plot(inn_signal)
 plt.plot(filtered_signal) # [100:700])
 #plt.plot(rpeaks, filtered_signal[rpeaks], '*')
 plt.show()

 return np.array(filtered_signal)

 @staticmethod
 def muscle_filter3(inn_signal, rpeaks):
 diff = np.diff(inn_signal)
 diff = abs(diff)
 diff = Preprocess.MA_filter(diff, 5)
 #maxvalue = diff[np.argmax(diff)]

 K = []
 j = 0
 for i in range(1, len(diff)):
 peak = False
 near_peak = False
 d_range = np.array([i - 450, i + 450]).clip(min=0, max=len(diff)-1)
 if i > rpeaks[j]-30 and i < rpeaks[j]+30:
 peak = True
 if i > rpeaks[j]-10 and i < rpeaks[j]+10:
 near_peak = True
 elif i > rpeaks[j] + 30 and j < (len(rpeaks)-1):
 j += 1

 SS = diff[i]

 maxthr = diff[np.argmax(diff[d_range[0]:d_range[1]])+d_range[0]]*0.65
 #print(np.argmax(diff[d_range[0]:d_range[1]])+d_range[0])
 #print(maxthr)
 minthr = maxthr * 0.45

 a = maxthr/0.2

 if SS < minthr or peak == False:
 K.append(3.2)
 #K.append(3)
 elif (SS > maxthr and peak == True) or near_peak == True:
 #K.append((1/maxthr)/10)
 K.append(0.2)
 elif peak == True:
 #K.append(SS/a)
 K.append(0.2)

 for i in range(1, len(K) - 1): # Remove singles..
 if K[i] != K[i - 1] and K[i - 1] == K[i + 1]:
 K[i] = K[i - 1]

 K = np.array(K)
 # check for random windows..

 indexes = np.nonzero(abs(np.diff(K)))
 indexes =indexes[0]
 filtered_signal = inn_signal.copy().tolist()
 #inn_signal = inn_signal.tolist()

 for i in range(0, len(indexes)+1):

 if i == 0:
 start = 0
 end = int(indexes[0])
 elif i == len(indexes):
 start = int(indexes[i-1])
 end = int(len(K)-1)
 else:
 start = int(indexes[i-1])
 end = int(indexes[i])

 sigma = K[end]

 # Resizing the window, Trial and error process
 resize_factor = 15
 if sigma == 0.2:
 start -= 5
 end += resize_factor
 else:
 start += resize_factor
 end -= 5

 filtered_signal[start:end] = Preprocess.smoothing_gauss(inn_signal[start:end], sigma)
 if False:
 plt.figure()
 plt.suptitle("Testing muscle filtering")
 plt.subplot(3, 1, 1)
 plt.plot(inn_signal)#[100:700])
 plt.plot(rpeaks, inn_signal[rpeaks], '*')
 plt.plot(diff)#[100:700])
 plt.subplot(3, 1, 2)
 plt.plot(K)#[100:700])
 plt.plot(abs(np.diff(K)))#[100:700])))
 plt.subplot(3, 1, 3)
 plt.plot(inn_signal)
 plt.plot(filtered_signal)#[100:700])
 #plt.show()

 filtered_signal = Preprocess.lowpass(filtered_signal, 50) # remove transitionpoints

 return np.array(filtered_signal)

 @staticmethod
 def smoothing_gauss(signal, sigma=2):

 smoothed_signal = gaussian_filter1d(signal, sigma=sigma,)

 return smoothed_signal

 @staticmethod
 def smoothing_savgol(signal, window=17, order=3):
 smoothed_signal = savgol_filter(signal, window, order)

 return smoothed_signal

 @staticmethod
 def ecg_filter(signal, r_rpeaks=[], cutoff=40, order=90, filterorder='hm'):
 baseline, temp_signal, rpeaks = Preprocess.HR_baseline(signal=signal, r_rpeaks=r_rpeaks)
 if filterorder == 'mh':
 temp_signal = Preprocess.muscle_filter2(temp_signal, rpeaks)
 temp_signal2 = Preprocess.lowpass(signal=temp_signal, cutoff=cutoff, order=order)
 else:
 temp_signal = Preprocess.lowpass(signal=temp_signal, cutoff=cutoff, order=order)
 temp_signal2 = Preprocess.muscle_filter2(temp_signal, rpeaks)
 highfreq = temp_signal2-temp_signal
 filtered_signal = Preprocess.smoothing_savgol(signal=temp_signal2) #Todo: new smoothing filter that uses R peaks

 return filtered_signal, baseline, rpeaks

 @staticmethod
 def SNR(signal, axis=0, ddof=0):
 signal = np.asanyarray(signal)
 m = signal.mean(axis)
 sd = signal.std(axis=axis, ddof=ddof)
 return np.where(sd == 0, 0, m / sd)

 @staticmethod
 def FFT(signal): # this method should display the fft.
 freq = fft.fft(signal)
 t = fft.fftfreq(signal.size, 1/300)
 freq_out = freq #20*math.log10(abs(freq))
 return t, freq_out

Attachments/Randomizer.bat

:: Script for randomization
@echo off
MODE CON COLS=999 LINES=999
color 2

echo The data will be converted into a folder named by a number of your choice.
echo If the input is equal to an already existing folder you will be asked for a new number.

:MakeDir
set /p subject= Write a random number between 1-99:

if %subject% LSS 1 GOTO MakeDir
if %subject% GTR 99 GOTO MakeDir

if exist "C:\Users\vekab\Dropbox\ECG_data\%subject%" goto MakeDir

if not exist "C:\Users\vebjorn.bottenvik\Dropbox\ECG_data\%subject%" mkdir "C:\Users\vebjorn.bottenvik\Dropbox\ECG_data\%subject%"

cd "c:\Users\vebjorn.bottenvik\OneDrive - Bouvet Norge AS\Documents\AliveECG applications\AtsConvert"

atsconvert.exe -noprompt -acc -hr -v -b -i "C:\Users\vebjorn.bottenvik\Dropbox\temp_data\1.ats" "C:\Users\vebjorn.bottenvik\Dropbox\ECG_data\%subject%\R-ECG.edf"

atsconvert.exe -noprompt -acc -hr -v -b -i "C:\Users\vebjorn.bottenvik\Dropbox\temp_data\2.ats" "C:\Users\vebjorn.bottenvik\Dropbox\ECG_data\%subject%\HRV-ECG.edf"

atsconvert.exe -noprompt -acc -hr -v -b -i "C:\Users\vebjorn.bottenvik\Dropbox\temp_data\3.ats" "C:\Users\vebjorn.bottenvik\Dropbox\ECG_data\%subject%\M-ECG.edf"

cls

::echo Thank you for participating in my project!

echo """
echo "	 _______ _ _ __ _ _ _ _ _ 	"
echo "	|__ __| | | | / _| | | (_) (_) | | (_) 	"	
echo "	 | | | |__ __ _ _ __ | | __ _ _ ___ _ _ | |_ ___ _ __ _ __ __ _ _ __| |_ _ ___ _ _ __ __ _| |_ _ _ __ __ _ 	"	
echo "	 | | | '_ \ / _` | '_ \| |/ / | | | |/ _ \| | | | | _/ _ \| '__| | '_ \ / _` | '__| __| |/ __| | '_ \ / _` | __| | '_ \ / _` |	"
echo "	 | | | | | | (_| | | | | < | |_| | (_) | |_| | | || (_) | | | |_) | (_| | | | |_| | (__| | |_) | (_| | |_| | | | | (_| |	"
echo "	 |_| |_| |_|__,_|_| |_|_|_\ __, |___/ __,_| |_| ___/|_| | .__/ __,_|_| __|_|___|_| .__/ __,_|__|_|_| |_|__, |	"
echo "	 __/ | | | | | __/ |	"
echo "	 |___/ |_| |_| |___/ 	"
echo """

set /p end=Press enter to exit

