

 FACULTY OF SCIENCE AND TECHNOLOGY

 MASTER’S THESIS

Study program/ Specialization:
Cybernetics and Signal Processing

Spring semester, 2019

Open / Confidential

Author:
Anders Kregnes

…………………………………………
(signature author)

Programme coordinator: Professor Kjersti Engan

Supervisors(s): Professor Kjersti Engan, PhD Candidate Rune Wetteland

Title of Master’s Thesis:
Myocardial Segmentation in LGE-CMR Images Using Deep Neural Networks

ECTS: 30

Subject headings:
Myocaridal infarction, deep learning, deep
neural networks, LGE-CMR images, myocardial
segmentation

 Pages: 70

 + attachments/other: 5 + attached zip file

 Stavanger, 29th of June, 2019
 Date/year

MYOCARDIAL SEGMENTATION IN LGE-CMR
IMAGES USING DEEP NEURAL NETWORKS

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE

BY

ANDERS KREGNES

Master’s Thesis
JUNE 2019

Under the supervision of Professor Kjersti Engan and PhD Candidate
Rune Wetteland

Abstract

Cardiovascular diseases are the number one cause of death globally. 85% of these
deaths are related to acute myocardial infarction or stroke.

One of the methods that are used to diagnose patients affected by myocardial infarc-
tion is myocardial segmentation in Late Gadolinium-Enhancement Cardiac Magnetic Res-
onance (LGE-CMR) images. The myocardial segmentation is today performed by an ex-
perienced cardiologist, manually or semi-automatically. The work is difficult and time-
consuming, due to indistinct boundaries and variable pixel intensities.

The primary objective of this thesis was to develop a method for automatic segmenta-
tion of the myocardium, using deep neural networks, to aid the cardiologists. The proposed
method uses the architecture of a Fully Convolutional Network. The network is trained on
images and masks given by The Department of Cardiology at Stavanger University Hos-
pital.

Two experimental layouts have been used; binary- and multiclass segmentation. In
the binary experiments, masks consisting of two classes were used; the background and
the myocardium. In the multiclass experiment, masks were divided into three classes; the
background, healthy myocardium and myocardial scar tissue. The network was trained on
2006 images with corresponding masks, with the best model tested on 244 images from 30
patients. The predicted masks were compared to masks made by cardiologists at Stavanger
University Hospital to evaluate the performance of the models.

The best developed model gave a Dice coefficient score of 0.705 with a standard devia-
tion of 0.15. Considering the observations in this thesis, there is assumed further develop-
ment of deep neural networks can improve the performance of myocardial segmentation.

i

Preface

This thesis marks the end of my M.Sc degree in Robotics and Signal Processing at the
University of Stavanger, Department of Electrical Engineering and Computer Science.

I would like to express my gratitude to my head supervisor, Professor Kjersti Engan,
for her exceptional guidance and valuable contributions during this semester. I would also
like to direct my appreciation to my co-supervisor, PhD candidate Rune Wettedal, for his
excellent feedback and support.

I am grateful that I have been the given opportunity to write my thesis within a field of
study that fascinated me and is developing rapidly.

Finally, I thank my family, friends, and girlfriend for encouraging me throughout my
five years of studies, culminating in this thesis.

ii

Table of Contents

Abstract i

Preface ii

Table of Contents v

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Motivation and Problem Description . 1
1.2 Related Work . 2
1.3 Thesis Objective . 3
1.4 Thesis Outline . 3

2 Background 5
2.1 Medical Background . 5
2.2 Deep Learning . 5

2.2.1 Biological and Artificial Neural Networks 7
2.2.2 Activation Functions . 8
2.2.3 Convolutional Neural Networks 10
2.2.4 Convolutional Layers . 10
2.2.5 Pooling Layers . 11
2.2.6 Fully Connected Layers . 12
2.2.7 Loss Functions . 12
2.2.8 Backpropagation and Gradient Descent 14
2.2.9 Optimizers . 15
2.2.10 Epochs and Batch Size . 16

iii

2.2.11 Regularization . 17
2.2.12 Hyperparameter Optimization 20
2.2.13 PyTorch . 21

2.3 Performance Evaluation . 22
2.3.1 Confusion Matrix . 22
2.3.2 Dice Coefficient . 23
2.3.3 The Jaccard Similarity Index . 23

2.4 Preprocessing . 24
2.4.1 Data Normalization . 24
2.4.2 Data Augmentation . 24

3 Data Material 27

4 Proposed Methods 31
4.1 Overview of the Proposed Methods . 31
4.2 Preprocessing . 32
4.3 Training . 35

4.3.1 Data Loading . 35
4.3.2 Network Architecture . 35
4.3.3 Choice of Hyperparameters . 36

4.4 Testing . 38
4.5 Implementations . 39

5 Experiments and Results 41
5.1 Finding the Best Model . 41
5.2 Experiment One - Binary Segmentation 42

5.2.1 Grid search . 42
5.2.2 Random Search . 46
5.2.3 Overfitting . 48
5.2.4 Random Search with Dropout 49

5.3 Experiment Two - Multiclass Segmentation 51
5.3.1 Grid Search . 52
5.3.2 Search Using Bayesian Optimization 54
5.3.3 Evaluation of Multiclass Segmentation 56
5.3.4 Comparison Between Experiment 1 and 2 57
5.3.5 Verification of Best Model . 57

6 Discussion 61
6.1 Model Performance . 61

6.1.1 Experiment One - Binary Segmentation 61
6.1.2 Experiment Two - Multiclass Segmentation 61
6.1.3 Comparisons Between Binary- and Multiclass Segmentation . . . 62

6.2 Comparisons With Related Work . 62
6.3 Limitations . 62
6.4 Future Work . 63

6.4.1 New Network Architectures . 63

iv

6.4.2 More Data Material . 63
6.4.3 Training of the Deep Neural Networks 63

7 Conclusion 65

Appendices 71

A Results of Experiments 72
A.1 Results of Inital Grid Search in Experiment One 72
A.2 Images From Best Found Model . 73
A.3 Training- and Validation Plots for the Best Model Found 74

B Algorithms 75
B.1 Matlab . 75
B.2 Python . 76

v

vi

List of Tables

3.1 Distribution of data . 29

5.2 Choice of hyperparameters based on grid search 46
5.3 Best performing model for ADAM and SGD with random search 48
5.4 Hyperparameters for random search with the use of dropout 49
5.5 Performance of models trained with ADAM and SGD the use of random

search with dropout. 50
5.7 Multiclass segmentation - Grid search 54
5.8 Results for multiclass segmentation using Bayesian optimization. 56
5.9 Results for best model found in multiclass segmentation 57
5.10 Hyperparameters and validation performance for best binary and multi-

class model . 58
5.11 Hyperparameters and performance for the best found model. 58

vii

viii

List of Figures

1.1 Blocked coronary artery . 2

2.1 Segmentation of myocardium . 6
2.2 Biological neuron . 7
2.3 Artificial neuron . 8
2.4 ReLU activation function. 9
2.5 CNN used for classification . 10
2.6 3 x 3 Convolution . 11
2.7 Max-pooling . 12
2.8 Gradient descent . 15
2.9 Overfitting . 18
2.10 Feed forward neural network with and without dropout 19
2.11 Confusion matrix and formulas used to calculate performance. 23

3.1 LGE-MRI images of a patient . 28
3.2 Image of the myocardium and binary- and multiclass masks 28

4.1 System overview . 32
4.2 System overview of the preprocessing. 32
4.3 Preprocessed images and masks . 34
4.4 System overview of the training process 35
4.5 U-Net arcitecture . 36
4.6 U-Net with dropout . 38
4.7 System overview of the testing process 38

5.1 Binary mask of the myocardium . 42
5.2 Validation- loss and accuracy for ADAM and SGD with cross-entropy loss

function . 43
5.3 Validation- loss and accuracy for ADAM and SGD with Dice loss function 44
5.4 Dice score for ADAM with the use of cross-entropy- and Dice loss. . . . 45
5.5 Dice score for SGD with the use of cross-entropy- and Dice loss. 45

ix

5.6 Comparison between ADAM and SGD with the use of Dice loss. 46
5.7 Random search with ADAM . 47
5.8 Random search with SGD . 47
5.9 Validation- and training graphs with the use of ADAM and Dice loss . . . 48
5.10 ADAM with dropout . 49
5.11 SGD with dropout . 50
5.12 Bubble plots . 51
5.13 Multiclass mask of the myocardium . 52
5.14 ADAM and SGD multiclass with cross-entropy loss 53
5.15 Multiclass Dice loss . 54
5.16 ADAM and SGD multiclass Bayesian 55
5.17 Samples from predicted masks performed by the best found multiclass

model. 56
5.18 Visual comparison between binary and multiclass segmentation 57
5.19 Visual comparison of predicted masks and ground truth masks 59
5.20 Visual inspection of masks predicted by the best found model 59
5.21 Confusion matrix for best model found 60

A.1 Performance of ADAM and SGD with use of cross-entropy 72
A.2 Visual comparison of predicted masks and ground truth masks for one subject 73
A.3 Validation- and training graphs for best found model 74

x

Abbreviations

MI = Myocardial Infarction
GBCA = Gadolinium-Based Contrast Agents
SRNN = Shape Reconstruction Neural Network
AI = Artificial Intelligence
ILSVRC = ImageNet Large Scale Visual Recognition Challenge
NN = Neural Network
ANN = Artificial Neural Network
CNN = Convolutional Neural Network
FCNN = Fully Convolutional Neural Network
STD = Standard Deviation
GPU = Graphics Processing Unit
CPU = Central Processing Unit
CVD = Cardiovascular Disease
WHO = World Health Organization
LGE-CMR = Late Gadolinium Enhancement Cardiac Magnetic Resonance
ADAM = Adaptive Moment Estimation
GD = Gradient Descent
SGD = Stochastic Gradient Descent

xi

xii

Chapter 1
Introduction

This chapter introduces the medical condition acute myocardial infarction (MI) and the
problems with diagnosis and effective treatment of patients affected by this disease. The
problem of segmenting images of the myocardial muscle through images and insight into
earlier research concerning this problem will be explored. The motivation for how this
thesis can be a step towards developing methods for automatic segmentation of the my-
ocardial muscle is presented, as well as the thesis objectives and an outline for the project.

1.1 Motivation and Problem Description
Cardiovascular diseases (CVDs) are said to be the number one cause of death globally,
according to the World Health Organization (WHO) [1]. WHO estimates that in 2016,
approximately 17.9 million people died from CVDs, 31% of the total number of deaths.
85% of those who died from CVDs died from either MI or stroke. For patients at risk
of developing MI, and for those patients already affected, medical treatment is vital for
prognosis and quality of life.

MI is a medical condition restricting blood supply to the cardiac muscle, also called
myocardium [2]. Within a short time, the myocardium is damaged, and the cells that do
not receive enough blood will die. After MI, myocardial scar tissue forms in the affected
part of the heart, at the location where the artery was blocked. The size of this scar tissue
is affected by the time that passes until medical treatment is administered. In Figure 1.1,
we can see an illustration of a blocked artery causing an MI.

Late gadolinium-enhancement cardiac magnetic resonance (LGE-CMR) imaging is
one of the methods used to diagnose patients affected by MI. By doing segmentation in
images of the myocardium, cardiologists can determine the structure and functionality
of the damaged muscle. These observations can be used to offer prognosis and provide
guidelines for further treatment of the patient.

Today the segmentation of the myocardium is performed either manually or semi-
automatically by an experienced cardiologist. The segmentation is difficult and time-
consuming. With the development of new technology in image processing, computer vi-

1

Chapter 1. Introduction

sion, and deep learning, new methods have been proposed (see section 1.2). The purpose
is to assist the cardiologist in the segmentation task and to hopefully develop ways that
can make the segmentation fully automatic.

Figure 1.1: Illustration of how a blocked coronary artery causes myocardial infarction. The artery
restricts blood flow to the muscle, leading to damage in the muscle tissue1[3].

1.2 Related Work

Recently, in June 2019, Q. Yue et al. proposed a method called SRSCN, for cardiac seg-
mentation. SRSCN is built as a shape reconstruction neural network (SRNN) combined
with a spatial constraint network (SCN) [4]. The method incorporates the shape and spa-
tial priors of the myocardium. The structure of the SRSCN is an enhanced U-Net. By
comparison, the network structure in this thesis is founded on the original proposed U-Net
by O. Ronneberger et al. [5].

In November 2018, S. Moccia et al. at Universita Politecnica Delle Marce published
their research which focused on the segmentation of the myocardial scar tissue [6]. The
approach was to use a Fully Convolutional Neural Network (FCNN) to perform segmen-
tation of scar tissue in LGE-CMR images.

The University of Stavanger and the Department of Cardiology at Stavanger Univer-
sity Hospital have been cooperating to develop technology for the segmentation of the
myocardial muscle. The most recent work was published by K. Engan et al. in 2015 [7],
presenting a method for performing an automatic segmentation of the endocardium (inner
layer of the myocardium). In 2013 the same researchers published a method for automatic
segmentation of the epicardium (outer layer of the myocardium) [8]. The methods de-
veloped are based on the usage of an algorithm for finding a posteriori probability map,
categorizing the probability of a pixel to be included in the myocardium. The use of known
prior information about typical heart sizes and that the blood pool and the myocardial mus-

1Image by Blausen Medical Communications, Inc., used under Creative Commons Attribution 3.0 Unported
lisence

2

1.3 Thesis Objective

cle is approximately circular are exploited. The algorithms provided promising results and
performed better than some traditional methods with marker-controlled watershed [9, 10].

1.3 Thesis Objective

The methods developed in this thesis will use deep neural networks (DNN) to approach
the problem of performing segmentation of the myocardium automatically. The goal is to
produce a model that can perform automatic segmentation of the myocardium of patients
that have been affected by MI and evaluate the performance. Different metrics will mea-
sure the performance of the model by comparing the predicted masks with the masks made
by an experienced cardiologist. Techniques for finding the best performing model will be
applied and evaluated.

Two different approaches for segmentation are tested. One is using annotated masks
of the myocardium, and the other is using annotated masks of healthy myocardium and
myocardial scar tissue. The developed DNNs are trained end-to-end on images and manu-
ally segmented masks provided by the Department of Cardiology at Stavanger University
Hospital.

1.4 Thesis Outline

Chapter 2: Background
In this chapter, some of the theoretical concepts within the field of deep learning
will be described. The data material given by the University Hospital of Stavanger
will be presented, and an introduction to how the data was used in the development
of a DNN.

Chapter 3: Data Material
In this chapter, some of the theoretical concepts within the field of deep learning
will be described. The data material given by the University Hospital of Stavanger
will be presented, and an introduction to how the data was used in the development
of a DNN.

Chapter 4: Proposed Methods
The approach to the thesis objective will be explained in this chapter, providing
information and descriptions on how the system is developed and the process from
beginning to end.

Chapter 5: Experiments and Results
This chapter will present how the experiments have been carried out, a presentation
of the results and the performance of the final model.

Chapter 6: Discussion
The results will be discussed in this chapter, with an analysis of how well the method
performed and suggestions for further improvements.

3

Chapter 1. Introduction

Chapter 7: Conclusion
The last chapter will give an overall evaluation and thoughts acquired from work
done in this thesis

.

4

Chapter 2
Background

This chapter will provide theory behind MI, deep learning, and preprocessing of images.

2.1 Medical Background

The myocardium is the muscle making the contractions that ensure the distribution of
blood to the body. The myocardium is positioned between the outer layer, the epicardium,
and the inner layer, the endocardium. The endocardium separates the myocardium from
the blood in the heart chambers, and the epicardium separates the myocardium from or-
gans. An illustration of the marked myocardium, endocardium, and epicardium can be
seen in Figure 2.1.

During an MI, the myocardium takes damage, and muscle cells die as a consequence
of the reduced blood supply. After an MI, the doctors are using LGE-CMR imaging to
analyze and categorize the myocardium. Gadolinium-Based Contrast Agents (GBCA)
is inserted in the blood to make the scar tissue visible. Since there is no blood flow in
dead tissue, the scar tissue will stand out from the healthy myocardium. In LGE-CMR
images, tissue with low blood flow appears bright, and tissue with high blood flow appears
dark. By inspecting the images, it is possible to find the size and location of the scars, by
looking at which parts of the myocardium that are represented by high pixel values. These
images provide essential information used for the prognosis and treatment of the patients.
Treatments that are used include different medical treatment, angioplasty, and coronary
artery bypass graft (CABG) surgery, where coronary arteries are replaced by blood vessels
from another part of the body [11].

2.2 Deep Learning

Machine learning is a subfield of artificial intelligence (AI), where the purpose is to make
algorithms learn by the use of data. By detecting patterns in the data, the algorithms can
distinguish different types of data from one another. A simple example of this can be to

5

Chapter 2. Background

Figure 2.1: Image showing segmentation of the myocardium made by a cardiologist. The outer
green contour marks the epicardium, the blue contour marks the endocardium, and the red contour
marks the scar tissue. The area inside the blue contour is the blood pool, and the area between the
two green lines marks the myocardium.

classify if one animal is a dog or a cat by making the algorithms learn from features such
as weight, height, and color. These algorithms are an example of machine learning used
for classification, where a label is assigned to the different classes. Another method in
machine learning is to use features such as location, number of bedrooms, the size, and
the year built to give a prediction of how much an apartment is worth. In this example, the
predicted outcome is a continuous variable. Techniques predicting continuous variables
are called regression. The features are the key to make these models since they are the
objective factors distinguishing the objects. For making good models, it is vital to have
sufficient data material.

Deep learning is a subfield of machine learning. Many consider deep learning as new
technology, but the field of study has been developed under different terms from the birth
in the 1940s [12]. Interest in deep learning has varied from the launch to present day, and
the term deep learning was introduced in 2006. Formerly the area of study was included
in the terms cybernetics and later connectionism. With the development of DNN and the
use of multiple convolutional layers that can extract more high-level features (See 2.2.4),
the term deep learning became natural to use. One of the vital resources for success in
deep learning is the great development of powerful hardware, such as Graphics Processing
Units (GPUs). Unlike Central Processing Units, GPUs use parallel computing. Parallel
computing is well suited for matrix-vector multiplications, a key component in the con-
struction of DNN. Another critical factor is the increasing access to data made available
for model creation. The data size is a crucial part of developing deep learning models with
good performance, as the more samples the DNN is exposed to during training, the better
it can be at performing on new, unseen data. Through the development of more powerful
hardware, improved algorithms, and access to more data, the impact of DL in society is
likely to grow.

In recent years the implementation of DNN has been focused on various applications
such as image classification, image segmentation, and natural language processing. In the

6

2.2 Deep Learning

annual arranged ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [13], a
team from the University of Toronto made a DNN that outperformed traditional methods
used in image processing. The challenge was to classify objects in images with and without
localization and the team from Toronto achieved a winning top-5 test error rate of 15.3%
with the use of DNN. The top-5 test error rate measures how efficiently the system predicts
a class to be among the top five predicted classes. An error rate of 15.3% suggests that the
correct class was not among the top five classes in 15.3% of the tested images. The second
best contestant used methods from traditional image processing and achieved a top-5 test
error rate of 26.3% [14].

2.2.1 Biological and Artificial Neural Networks

Inspiration for the first learning algorithms in deep learning was based on how we believe
biological learning happens in the brain of an animal [12]. The biological neural system
contains billions of connected neurons, communicating through electrical impulses. These
can be activated by internal processes in the body or external sources that stimulate the
human-bodies senses. The neurons create new connections between one another to adapt
to stimuli the brain is exposed to, and the creation of paths enables the brain to memorize.
If the brain is exposed to the same stimuli multiple times, long-term paths of connections
are created.

A biological neuron, as seen in Figure 2.2, is built by dendrites receiving electric sig-
nals from the axons terminals, called boutons, from other neurons, and sending messages
from its boutons to dendrites in different neurons. We can regard the signals received in
the dendrites as inputs and the signals sent from the boutons as outputs.

Figure 2.2: Illustration of the biological neuron1[15].

1Image used under Creative Commons Zerop CCO 1.0 Universal licence. The image has been edited by
adding text

7

Chapter 2. Background

Artificial neurons (See Figure 2.3), also called perceptrons, are inspired by the design of
the biological neuron [16]. The inputs can be compared to the dendrites and the output to
the boutons.

Figure 2.3: Illustration of the artificial neuron.

DNN’s are a commonly used term for deep learning, as a result of the mentioned inspi-
ration of the biological neural network. The algorithms are thought to mimic organic
learning. However, today, our understanding of the brain structure is not sufficient enough
to categorically define the functionality of the brain due to its complexity. Mapping the
activity in the neural system is very challenging; therefore, the approach used today is to
see DNN as a model of learning, inspired by the brain, without creating a clone. We can
draw an analogy between the creation of DNN and the invention of airplanes. In the be-
ginning, we aimed to model the way birds fly, but eventually, we developed machines that
fulfilled the purpose in a different and more powerful way.

2.2.2 Activation Functions
Activation functions are nonlinear transformation done on the input signals of an artificial
neuron. The functions control the activation of different nodes in a layer. The choice and
use of activation functions are essential for creating well-performing models. From Figure
2.3 we saw that the formula for the output is determined by the sum of the weights multi-
plied by the input plus bias: f(·) =

∑N
j wk,j +b. The calculation determines if the neuron

fires or not, or if the output should be strong or weak. The weights and bias are learnable
model parameters, updated during the training of the DNN. It is important to acknowledge
that activation functions must be differentiable in order to execute backpropagation (see
section 2.2.8).

8

2.2 Deep Learning

ReLU Activation Function

The Rectified linear unit (ReLU) activation function is one of the most used activation
function in DL today. In Figure 2.4, we can see that the neuron is activated when the
calculations of input result in a positive output. The strength of the output is proportional
to the value of the output. The advantage of using the ReLU activation function is that
it constrains the number of neurons that fire, thus making the network more efficient and
less computational heavy to train. Additionally, its properties make it efficient to update
the weights when performing backpropagation (See section 2.2.8). ReLU is in general
recommended for us in hidden layers in CNN’s.

f(x) = max(0, x)

Figure 2.4: ReLU activation function.

Softmax

The softmax activation function is commonly used in the output layer of a DNN used for
classification or segmentation. The function gives a probability distribution where each
class is assigned a decimal between zero and one, and where the probabilities are equal to
one. The decimal represents the likelihood for the output to belong to the respective class.
In classification problems, the prediction becomes the label given the highest probability
by the softmax function. In segmentation problems, each pixel is predicted by choosing the
class given the highest probability for the specific pixel. In segmentation networks, each
class is represented by a channel. The pixels in each channel are given a probability by the
softmax function, which lays the foundation for which label is assigned to the pixels in the
predicted map. The predicted map is, in most cases a one-channel image, where each pixel
is labeled as the class given the highest probability by the softmax function. In Equation
2.1 the equation for the softmax is given.

f(xj) =
exj∑N
i=1 e

xi

, for j = 1, 2, 3..., Nclasses (2.1)

9

Chapter 2. Background

2.2.3 Convolutional Neural Networks
An example of an ANN is the Convolutional neural network (CNN) (See Figure 2.5). A
CNN consists of an input layer, a chosen number of hidden layers, and an output layer.
Each layer has a set of neurons. When all neurons in a layer connected to all the neurons
in the next and previous layer, the layer is called a fully connected layer.

Figure 2.5: A CNN used for classification. The network takes an image as input and predicts the
label of the object in the image.

2.2.4 Convolutional Layers
Convolutional layers are the components in an ANN that are making feature maps for
extracting information on different levels in an image, such as edges, corners, shapes,
etc. Kernels (also called filters) stride across the image, making convolutional operations
(see Equation 2.3). The operation is comparable to sliding a flashlight over a surface.
These convolutional operations map new values to a new matrix, called a feature map.
The kernel contains specific learnable values, also called weights, that being updated by
the model during training. In the first layers, the kernels can be used to extract low-level
features such as horizontal or vertical edges. In the next layers, the kernels can find mid-
level features such as corners, color, and gradient orientation. In deeper layers, high-level
features such as noses, eyes, wheels, roads, poles, cells, and other structures can be found.

When applying convolutional operations on an RGB-image, which has three channels,
three kernels are used, one for each channel. The operation of the dot product on the three
channels results in one single feature map as output. So if a convolution is performed with
six kernels, the result will be six separate feature maps. Adding bias to the operation is
often used to determine the threshold of activation.

An illustration of a convolution operation made by a 3x3x1 kernel on a 9x9x1 image
can be seen in Figure 2.6. The kernel, marked in red, strides across the image and applies a
mathematical operation by taking the sum of an element-wise multiplication on the pixels
in each window (see Equation 2.3). The output is added to a feature map, and the green
pixel is the result of the first operation. The kernel moves a defined step at a time. In this
example, each step is equal to one (stride=1), making the input image become a feature
map of size 7x7. If a step size of two was used (stride=2), the feature map would have been
of size 5x5. To determine the size of the resulting feature map padding can be applied.
The use of padding adds pixels in the border of the input and makes it possible to maintain
or increase the dimension of the resulting feature map, as well as retaining information

10

2.2 Deep Learning

from the corner pixels of the input. The most common technique for padding in CNN’s is
zero padding. The operation adds zeros in the border of the input, making us able to get
the desired resolution of the output. The output size is described by:

Output width =
W − Fw + 2P

Stridew
+ 1

Output height =
H − Fh + 2P

Strideh
+ 1

(2.2)

Equation 2.2: W = width of the input, H = height of the input, Fw = width of the kernel, Fh = height
of the kernel, P = padding size, Stridew = horizontal stride, Strideh = vertical stride

Figure 2.6: Illustration of a 3 x 3 convolution on an image. The kernel showed in this example is
called a Prewitt filter, used for vertical edge-detection.

g(x, y) = ω ∗ f(x, y) =

a∑
s=−a

b∑
t=−b

ω(s, t)f(x− s, y − t) (2.3)

Equation 2.3: Mathematical equation for the convolutional operation. f(x, y) is the input image, ω
is the filter and g(x, y) is the resulting feature map after the convolution.

2.2.5 Pooling Layers
It is common to use pooling layers after some of the convolutional layers in a CNN. Pool-
ing layers are used for reducing the dimension of the inputs in the hidden layers. The use
of pooling layers is an example of nonlinear sampling. The pooling makes the represen-
tations less computational heavy and easier to process. Additionally, in many cases, it is
beneficial to make a more abstract representation of the input to help with the learning

11

Chapter 2. Background

process. Two types of pooling commonly applied are average pooling and max-pooling.
The pooling is performed by a kernel sliding over the input and extracting a value that is
mapped to an output. Average pooling computes the average value of all pixels within the
window covered by the kernel and assigns this value to the new feature map. The max-
pooling operation consists of identifying the maximal value in the window and assigning
it to the feature map. Max-pooling is the most used pooling operator in DNN because the
operation discards noisy parts of the input. The pooling operations are illustrated in Fig.
2.7. The input is a matrix of size 6 x 6, and the output of size 2 x 2. The kernel is of size 3
x 3, and the stride is set to 3.

Figure 2.7: Figure showing a max-pooling operation with 3x3 kernel and stride 3.

2.2.6 Fully Connected Layers

Fully connected layers are put at the end of the network and use the high-level features
from the convolutional and pooling layers to make a prediction. In DNN used for classifi-
cation, the output will be the prediction of which class the input image represents, and the
fully connected layer makes the decision based on the high-level features received from
all neurons in the previous layer.

2.2.7 Loss Functions

A loss function is used to evaluate the performance of a DNN by determining how well
the algorithms fit the data. The loss function takes the output of a model and compares
it with the target we want to predict. It calculates a value showing how far the predicted
output deviates from the target, which is used to update the weights of the network in the
next phase. The goal is to minimize the loss and optimize the performance.

In DNN’s, two main categories of loss functions are used; regression loss functions and
classification loss functions. Classification loss functions are often used for object detec-
tion in images and segmentation problems when we have N number of labels. Regression
loss functions are used when we are predicting real value quantities, such as the price of
goods. In this thesis, two different loss functions have been used; the cross-entropy loss
function and dice loss.

12

2.2 Deep Learning

Cross-entropy Loss Function

The cross-entropy loss function is widely used in DL today. The function compares pixel-
wise the predicted probability for each class with the label in the target. The scores for
the pixels are summed and averaged. Due to the calculation of the average, the loss is
distributed equally for all the pixels; thus, class imbalance is not taken into account. When
working with unbalanced data, the weighted cross-entropy function is commonly used.
Each class is assigned a weight, which scales the contribution from each class to the total
loss. This makes it possible to penalize misclassification of classes that are more of interest
to predict. The formulas for the cross-entropy loss function and the weighted cross-entropy
loss function are given in Equations 2.4 and 2.5 [17].

loss(x, class) = − log

(
exp(x[class])∑

j exp(x[j])

)
= −x[class] + log

∑
j

exp(x[j])

 (2.4)

Equation 2.4: Cross-entropy loss function

loss(x, class) = weight[class]

−x[class] + log

∑
j

exp(x[j])

 (2.5)

Equation 2.5: Weighted cross-entropy loss function

Dice Loss Function

The use of Generalized Dice overlap is a popular loss function to implement in DNN
for segmentation in medical images [18]. In medical images, the pixels of objects of
interest, are often underrepresented, representing a small fraction of the total image. Dice
loss uses the measurement of the Dice Similarity Coefficient (DSC) (see section 2.3.2).
During training, the algorithm seeks to optimize performance by minimizing (1 - DSC).
The formula for calculating the dice loss can be seen in Equation 2.6.

13

Chapter 2. Background

DL = 1−
∑N

n=1 pnrn + ε∑N
n=1 pn + rn + ε

−
∑N

n=1(1− pn)(1− rn) + ε∑N
n=1 2− pn − rn + ε

N = number of images
rn = voxel values for the ground truth
pn = voxel values for the predicted probabilistic map of the foreground
ε = constant to avoid dividing by zero

(2.6)

Equation 2.6: Equation for calculating the Dice loss over N images [18].

2.2.8 Backpropagation and Gradient Descent
The training process is targeted to make use of the error between the target value and out-
put value, enabling a change to the weights and biases to reduce the error and increase the
performance. This is achieved by using gradient-optimization in a process often referred to
as gradient descent (GD). For the gradient-optimization process, algorithms called back-
propagation are used to calculate the gradients, which are used to update the parameters
in the DNN [19]. The algorithms use the error calculated by the loss function. When a
signal initialized by feeding the network with an input has propagated through the entire
network, the next step is to utilize the result given by the loss function to backpropagate
through the network and update the weights, layer by layer. The idea is to calculate the
gradients at a given point in order to identify the gradient that would decrease the error the
most, enabling the performance of the model to increase.

Figure 2.8 is an illustration of how GD optimization works in a 2-dimensional space.
The operation can be compared to a ball rolling down a hill where the goal is for the ball
to reach the lowest point in the valley. Along the y-axis we find the cost J(w) and along
the x-axis, we find the weights w. The landscape illustrates the different configurations
of the weights. It is optimal when the weights are configured such that the cost is at its
minimum. This configuration is called the global minimum. GD uses the calculation of the
gradients, of the configuration of weights, at a given point. The gradient is the derivative of
the slope at that time. When the steepest (most negative) gradient is calculated, the system
will make a step in that direction and update the weights to lower the error. The ”valley”
contains suboptimal configurations of weights, also known as local minimums. These are
configurations where the system does not improve with further training, even though the
optimal solution is not found. In Figure, 2.8 three different learning rates are illustrated as
curves in red, blue, and green.

14

2.2 Deep Learning

Figure 2.8: Illustration of the gradient-optimization. The process is comparable to a ball rolling
down a valley trying to reach the lowest position, where the cost is at its minimum. The curves in
red, blue, and green illustrate the learning rates. By finding the optimal learning rate, the global
minimum can be found.

Learning Rate

The learning rate (η), or the step size, is a parameter used for determining how extensively
the weights should be updated. η is multiplied by the calculated gradient, making it possi-
ble to scale how much wi+1 should be adjusted (See Equation 2.7). For example, setting
η = 0.1 is giving a value equal to 10% of the original gradient.

wi+1 = wi − η ·
∂

∂wi
J(wi) (2.7)

Equation 2.7: Formula for updating weights

In Figure 2.8 we can intuitively see that η determines how quickly the weights are updated
in the direction of the gradient. In this simple example, too high η (red) is not optimal - the
weights are adjusted too much per iteration, and the loss does not converge. Too low η is
not optimal - the weights are adjusted insufficiently in each iteration, and the configuration
concludes with a local minimum. The optimal η (green) adjusts the weights appropriately,
and the configuration reaches a global minimum.

2.2.9 Optimizers
Optimizers are algorithms designed to update the weights to minimize the loss calculated
by the loss function. The optimizer uses η as a parameter to decide on which scale the
weights should be updated. In some optimizing algorithms, the parameter momentum is
added as a hyperparameter. Momentum can be thought of as a factor that accelerates the

15

Chapter 2. Background

GD in the steepest direction of a curve. An analogy can be drawn to Figure 2.8 where the
ball gains momentum whilst rolling down a hill. To update the weights, algorithms with
momentum exploit the existing steps gradients and gradients from earlier steps. The idea
is to make the loss converge faster and find the best model parameters in less time.

One conventional algorithm for doing the optimization in the learning process and find
the minimum loss is the stochastic gradient descent (SGD). Most optimizers used in DL
today are based on SGD, which are proven to perform well. Two variants are the classic
SGD and the modified variant ADAM optimizer introduced by Kingma et al. in 2014 [20].
The ”classic” SGD-optimizer and the ADAM optimizer have been explored in this thesis.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an optimizer using a stochastic approximation of
the gradient descent optimization [21]. It is called stochastic because it uses a randomized
selection of samples to calculate the gradients. The algorithm performs weight updates
for each training sample and is often combined with momentum for making use of the
gradients calculated in previous steps.

Adaptive Moment Estimation

Adaptive Moment Estimation (ADAM) is an optimizing algorithm designed to compute
adaptive learning rates for each parameter [20]. It makes use of the first and second mo-
ment of the gradient and uses an exponential moving average of the gradients to scale the
learning rates. ADAM is an efficient algorithm that requires little use of memory.

2.2.10 Epochs and Batch Size
Epochs are the number of times a full training set is propagated through a DNN, with
corresponding updates of weights. The risk of overfitting (See section 2.2.11) increases
as more epochs one run since the complexity of the model rises, and the weights are
excessively altered to fit the training data. A technique to manage this is an implementation
of saving the best model. Saving the best model means to save the weights only if the
validation loss calculated after an epoch is lower than the lowest registered validation loss
from previous epochs (see Algorithm 1). Saving the weights can also be done when finding
a new top validation accuracy. The measurement used often depends on the objective.
The batch size indicates the number of training samples that are passed through the DNN
for each weight-update. This is also a hyperparameter and is often determined by the
limitation of the memory on the GPU.

16

2.2 Deep Learning

Algorithm 1 Saving of best model
Initialization: Initialize epochs, patience, best val loss
forall epochs do

Train model
validate model
if current val loss < best val loss then

best val loss← current val loss
overwrite best model

else
patience← patience + 1

end
if patience > limit then

stop training
end

end

2.2.11 Regularization

Overfitting

A lack of data is a common problem when training DNN’s. With limited accessible data,
the network overfits the training data prematurely, making it difficult to achieve good re-
sults. When the training set is small, the network will quickly learn the features in the data
fast, and therefore perform poorly when exposed to new data. Another issue when training
a network is the model complexity, which is a factor of how deep the network is, in other
words, how many hidden layers there are. With many convolutional layers, the network
may become too complex, reducing the performance. It is, therefore, vital to balance the
quantity of data and depth of the DNN when designing a system. Regularization is a set
of techniques that are often applied to prevent overfitting.

17

Chapter 2. Background

Figure 2.9: Illustration of overfitting. The complexity of the model increases whilst training. After
some time the model learns features that are specific for the training data, adjusting excessively to
the training data and becomes less capable of recognizing general features, or in other words, we
can say that the model fits the training data. It is important to find the weights when the validation
loss is at its lowest, before it diverges from the training loss, to find the best performing model. The
area below best model in the plot is the range of optimal complexity.

Dropout

Dropout is a method that is used for avoiding overfitting and generalizing the data when
training a DNN. A. Krizhevsky et al., at the University of Toronto, have shown that by
introducing dropout to DNN’s the performance can be improved significantly in differ-
ent applications, such as analysis of computationally biological data, object classification
and digit recognition [22]. The idea behind the technique is to drop nodes in the net-
work, and the connections to other nodes, randomly. The implementation of dropout is
performed by setting a parameter that defines the probability of how many nodes are ran-
domly skipped in a layer during one forward- and backward pass. To ignore a node, the
weights are multiplied with zero. When running multiple forward- and backward passes,
different combinations of nodes will be skipped at each run, and different sub-networks
of the original network architecture are created. By introducing dropout, random noise is
added to the network, enhancing the models capacity to learn general features in the data,
and possibly improving the quality of the features. When looking at the n hidden units in
a layer, and introducing a probability p for skipping a unit, the number of units that will be
present in the layer are n(1-p). When applying dropout, another hyperparameter is intro-
duced that must be tuned. The dropout rate, in combination with other hyperparameters,
such as learning rate and choice of optimizer and loss function, increases the complexity
of finding the best model.

The number of hidden units n needs to be considered when searching for an optimal
drop-rate p. Dropping many nodes might increase the training time and result in underfit-
ting. On the contrary, dropping too few nodes may not avoid overfitting. The size of the
dataset also plays a part. Krizhevsky et al. tested datasets of different sizes and found that

18

2.2 Deep Learning

with limited or vast datasets, the use of dropout gave little or no effect. A downside of ap-
plying dropout is the subsequent increase in training time. Krizhevsky et al. experienced
that typically training would take between two to three times longer.
When testing the performance of trained networks on unseen data, dropout is not used.
When predicting the test data, the weights in the network are scaled by multiplying the
weights with the same p initialized during training. This multiplication is used to counter-
act the effect the use of dropout made in the training process. The outputs will then be the
same as the expected predicted outputs during training.

Figure 2.10: The figure shows an example of applying dropout to a DNN with three hidden layers
and four hidden nodes in each layer. The units in the original network will be dropped with a
probability of p=0.25.

Batch normalization

Batch normalization BN is a technique that has become popular to use in DNN’s [23]. S.
Ioffe et al. have shown that implementing BN in their DNN’s has improved the training
speed and performance [24]. The method builds on the same principle as normalizing
the input samples that are fed into the network (see section 2.4.1). BN is applied to a
batch before a layer, providing a common distribution for pixels in the input. Each node

19

Chapter 2. Background

in a layer is transformed to have a mean of zero and a variance of one. Compared to
the calculation done when normalizing the images in the preprocessing (see section 2.11),
there are used learnable parameters that scale and shift the normalized values. Introducing
such learnable parameters is necessary since the parameters in the layers change during
training and shifts the distributions of parameters passed on to the next layers. Using BN
has proved to make DNN’s more robust, therefore by adjusting hyperparameters, such as
the learning rate, does not considerably affect the performance. It has been found that by
using BN, the implementation of dropout does not necessarily improve performance since
the BN introduces noise to the network [12, 24]. X. Li et al. experienced through their
research that using a combination of dropout and BN might even decrease the performance
of the DNN [25]. They suggest that by modifying where the dropout layers are inserted
and different scale of variance, might be beneficial to improve performance. The formula
for normalizing a pixel in an image, with the use of learnable parameters can be seen in
Equation 2.8.

y =
x− E[x]√

Var[x] + ε ∗ γ + β
(2.8)

Equation 2.8: Formula for normalizing a pixel. y is the output, γ and β are learnable parameters
used to scale and shift the distribution, and ε is a constant added for numerical stability.

2.2.12 Hyperparameter Optimization
Hyperparameter optimization, or hyperparameter tuning, is the search for finding the best
as possible combinations of hyperparameters for a model. The aim is to determine the set
of hyperparameters that provide the best result when testing the models on a validation
set. The hyperparameters are all tunable variables, such as the optimization function, the
loss function, the use of weighted loss, network architecture, data augmentation, and the
number of epochs run. These parameters will here forth, be referred to as x. For a learning
algorithm A, the objective is to find parameters x, such that a loss function f is minimized.
This is performed by evaluating f against different sample values of x. The way the hy-
perparameters are combined is essential for the performance of a DNN. The search is per-
formed experimentally by training multiple combinations of parameters and evaluate the
performance of the different models. Different strategies have been developed for finding
the optimal hyperparameters, such as grid search, random search, and Bayesian optimiza-
tion. In general, hyperparameter optimization can be described as xopt = argmin

x∈X
f(x),

where xopt is the optimal set of x. X is the domain of the possible hyperparameters.

Grid Search

Grid search is a popular strategy used for hyperparameter tuning. The technique is applied
by using a preset structure of parameters to be tested and evaluating the performance of the
trained models against different combinations. The model with the best performance, often
in terms of validation accuracy, is considered to be the best. A downside of grid search

20

2.2 Deep Learning

is the quantity of possible interchanging combinations. By adding one more variable, the
combinations expand exponentially, thus increasing time-consumption. Using grid search
consequently becomes impractical in many circumstances.

Random Search

Random search is another strategy for hyperparameter optimization and is often preferred
over grid search. J. Bergstra et al. has shown through research that when training DNN,
random search finds the best models in most cases, and in a shorter time compared to the
use of grid search [26]. The method is implemented by defining a distribution of desired
hyperparameters and randomizing the values on each combination.

Bayesian Optimization

Bayesian optimization is an approach to hyperparameter optimization by using previous
observations of f, or performance P, for some models M, to determine a new set of hy-
perparameters Θ to utilize f or P [27]. The intention is to use a more sophisticated and
automatic method compared to grid search and random search, to find the optimal hyper-
parameters in less time. Bayesian optimization is the idea of making a probability model
of an objective function f, selecting the most promising hyperparameters, and evaluating
the result in the true f.

The technique uses a description of f as a Gaussian process to return a mean and
variance of a normal distribution over possible values of f. Pseudo-code for Bayesian op-
timization is shown in Algorithm 2 and reprinted from research published by P. I. Frazier
[27].

Algorithm 2 Pseudo-code for Bayesian optimization
Place a Gaussian process prior on f
Observe f at n0 points according to an initial space-filling experimental design. Set
n = n0.
while n ≤ N do

Update the posterior probability distribution on f using all available data
Let xn be a maximizer of the acquisition function over x, where the acquisition func-
tion is computed using the current posterior distribution. Observe yn = f(xn).
Increment n

end
Return a solution: Either the point evaluated with the largest f(x), or the point with the
largest posterior mean.

2.2.13 PyTorch
PyTorch is an open-source framework used for machine learning and deep learning, de-
signed for the programming language Python, and based on the library Torch. The frame-
work was developed and is maintained by Facebook AI Research, but has many other
contributors from companies and individuals. PyTorch is, among others, used by Stanford

21

Chapter 2. Background

University, IBM, Apple and Siemens for education, research and business. PyTorch is
primarily a tool built for handling tensors. Tensors are similar to multidimensional arrays,
which are well suited for handling various data, such as images. With the use of PyTorch,
tensors can easily and efficiently be moved back and forth from the CPU to the GPU.

2.3 Performance Evaluation
Performance evaluation is the process, through which analysis is performed, to determine
the best performing model. Often data validation sets are evaluated to tune hyperparame-
ters. The validation data set contains ”unseen” data, i.e., any data not used to update the
weights. This performance-evaluation can then be used as the basis for further develop-
ments. Evaluating performance is not straightforward and largely depends on the problem.

2.3.1 Confusion Matrix
One of the most used methods to evaluate the performance is the confusion matrix. The
confusion matrix gives scores for each class/label that is present in the problem. In Figure
2.11, we see an example of a confusion matrix for a two-class problem. For example,
one class is labeled one and the other zero. True positive corresponds to how many actual
ones have been predicted as one, whereas true negative corresponds to how many actual
true zeros have been predicted as zero, whilst false positive corresponds to how many true
zeros have been predicted as one, and false negative corresponds to how many ones have
been predicted as zero.

With the confusion matrix forming the framework, it is possible to calculate different
scores of interest. Which performance metrics that give a good description, depends on
the actual problem. Precision for a class tells the ratio for how many samples are correctly
predicted of the total number of predicted samples representing the class. Recall describes
how many samples are correctly classified of the total number of true labels for the specific
class. F1-score is a combination of precision and recall and is often used as a measurement
when the data is unbalanced, meaning one or more classes are over-represented compared
to other classes.

22

2.3 Performance Evaluation

Figure 2.11: Confusion matrix and formulas used to calculate performance.

2.3.2 Dice Coefficient
The Dice coefficient, or Dice score, is a popular metric for evaluating performance in
problems within object detection in images and image segmentation when comparing an
output of some algorithm with the ground truth. The dice coefficient in image processing
can be seen as a ratio of how much an image A overlaps another image B. This is done
by calculating the intersection between A and B, multiply with 2, and divide by the total
number of pixels. In binary segmentation tasks, the Dice coefficient and the F1-score
are the same. In multiclass segmentation, the dice score can be calculated for each class
separately. The range of the index goes from zero to one. If the score is zero, there is no
overlap, and if the score is one, the images overlap completely. The calculation of the Dice
score is seen in Equation 2.9

Dice(A,B) = 2 · |A| ∩ |B|
|A|+ |B|

(2.9)

Equation 2.9

2.3.3 The Jaccard Similarity Index
The Jaccard similarity index, also known as Intersection over Union score (IoU), is another
metric often used when working with image segmentation problems. The calculation is
similar to the calculation of the Dice coefficient, except that when using IoU, the true pos-
itives are only counted once. The range of the index goes from zero to one, where a higher
number gives a better performance, the same as the Dice coefficient. The calculation of
the Jaccard index is seen Equation 2.10

23

Chapter 2. Background

Jaccard(A,B) =
|A| ∩ |B|
|A| ∪ |B|

(2.10)

Equation 2.10

2.4 Preprocessing

2.4.1 Data Normalization
Before feeding images to the input of a DNN, it is common practice to normalize the input
images. One way of doing this is to calculate the mean and standard deviation for the
values of each pixel in the total number of samples in the training set. In the next step,
the mean is subtracted from the pixel-values and divided by the standard deviation in each
image when it is uploaded. The purpose is to scale the images to a common distribution,
making it easier for the network to find patterns and extract relevant features. The con-
vergence of the loss in the training process will by this improve. The distributions of the
total samples are often made as a Gaussian distribution with zero mean. The equation for
normalizing a pixel is shown in Equation 2.11

y =
x− E[x]√

Var[x]
(2.11)

Equation 2.11: Equation for normalization of a pixel in an image. The output y is the result of
subtracting the mean for the total number of pixels from the pixel x and divide by the standard
deviation.

2.4.2 Data Augmentation
Data augmentation is a set of operations that are used in DNN’s for making the most of the
available data set. One problem we might encounter is that the training-data appear very
similar. An example can be when we use a CNN to classify two different types of cars in a
set of images. One of the cars is always faced to the left, and the other car is always faced
to the right. Even though the data set is large, the network will have difficulties classifying
the cars in unseen images. The vehicles might appear faced in new directions or positions.

Another problem could be if we have a data set of small size, where the potential for
overfitting is large. Data augmentation can be used to increase the data set by modifying
the original data to appear in different ways. The use of data augmentation has shown
to improve the performance in multiple problems [28]. Commonly used operations are
to rotate, flip, crop, translate, mirror, or scale images. Besides, a method called elastic
deformation has shown to improve models [29]. Elastic deformation is a technique for
making a change of shape and contours of objects in an image.

Two different methods of data augmentation are often used. The first is to do offline
data augmentation before we start to train the DNN. The augmented data is added to the
original data, and we have increased the data set. The other method is called online data

24

2.4 Preprocessing

augmentation. The technique is to do randomized augmentation of the samples during
training, for each batch that is loaded.

25

Chapter 2. Background

26

Chapter 3
Data Material

The Department of Cardiology at Stavanger University Hospital gave the data material
used in this thesis. The content consists of LGE-CMR images of patients who have been
affected by MI and associated segmentation masks made manually by a cardiologist. CMR
was performed using 1.5 T Phillips Intera R 8.3, with a pixel size of typical 0.8×0.8mm2,
slices of 15mm thickness, without interslice gaps. The images were given as DICOM-files
(Digital Imaging and Communication in Medicine), in 512 x 512 resolution. The DICOM-
format is the standard format for handling and working with digital medical images. The
segmented masks were given as MAT-files and contained pixel coordinates of the manually
marked regions of interests (ROIs). The marked areas were the myocardium, endocardium,
epicardium and the myocardial scars. For each patient, there were taken images at four
different points; after one day, one week, one month and one year. The images used
were MRI-images taken after one month and after one year because the scars have not the
permanent shape after one week. LGE-MRI slices of a patient, taken one year after the
MI, can be seen in Figure 3.1. In Figure 3.2, it is shown one slice, and the corresponding
masks of the myocardium and the scar tissue.

27

Chapter 3. Data Material

Figure 3.1: LGE-MRI slices taken of the heart of one patient with a myocardial scar. The im-
ages are showing the heart from different depths. The blood pool is the circular and bright area
approximately in the middle of a slice. The myocardium is the dark area surrounding the blood
pool. The myocardium in a healthy subject would have appeared as a complete ring, but a damaged
myocardium has a bright part visualizing the scar tissue. The myocardial scar tissue appears bright
due to reduced blood flow.

(a) Original image of one pa-
tient.

(b) Mask of the myocardium. (c) Mask of the myocardial
scar.

Figure 3.2: The figure shows one slice of the myocardium of a patient, with the corresponding
masks of the myocardium and the scar tissue.

Data from 272 patients were used, with an average of approximately nine image-slices
of the myocardium for each patient. The total number of images was 2523. The data was
split in a training set X, a validation set Y, and a test set Z, in a the ratio 80 %, 11 %, and
9%, respectively, as seen in 3.1

One of the significant issues explored during this project is how to handle the unbal-
anced distribution of the classes in the images. The background is overrepresented by
appearing as 96.8% of the total number of pixels, averaged over all images. The healthy

28

myocardium is represented by 2.7% of the pixels and the myocardial scar as 0.5%.

Table 3.1: Split of data set

Distribution of data
Dataset Patients Images Percentage
Training-set, X 214 2006 80%
Validation-set, Y 28 273 11%
Test-set, Z 30 244 9%
Total 272 2523 100%

Images of the same patient were used exclusively in either dataset X, Y, or Z. It is of
importance to do this separation for avoiding a biased evaluation of the models. If one
uses images from the same patient during training and validation, it might learn features
specific for the training-set rather than features in the general distribution of data.

29

Chapter 3. Data Material

30

Chapter 4
Proposed Methods

4.1 Overview of the Proposed Methods
The proposed method is to divide the experimental part into two. The first experiment will
be to use binary masks as a two-class segmentation problem. The masks will then be the
segmented myocardium without scar tissue. The second experiment will be to approach
the problem as a multiclass segmentation. The myocardium is then split into healthy tissue
and scar tissue.

When doing segmentation of the myocardium, the interest is to locate both the healthy
myocardium and the myocardial scar. Finding the myocardium is one step towards finding
both, and there exist post-processing methods for this. In this thesis, the main objective
is to find the epicardium and endocardium contours. By approaching the problem in two
different ways, it might be precise, which is the most promising.

In Figure 4.1, we can see an overview of the layout for the process. The process is split
into three parts; preprocessing, training and testing

31

Chapter 4. Proposed Methods

Figure 4.1: Overview of the approach for myocardial segmentation using DNN.

4.2 Preprocessing

Figure 4.2: System overview of the preprocessing.

The preprocessing of the data was done in MATLAB and Python. The University of
Stavanger provided some of the algorithms that were used; these were produced during
the research by Engan et al.[7]. Additionally, algorithms were made by the author, used in
combination with the provided algorithms. It was necessary to apply to preprocess on the
given data for the implementation in the DNN. The images were converted from DICOM-
format to PNG Portable Network Graphics, which allowed visualizing the images during
the preprocessing easily. An alternative could have been to save the data as MAT-files.
These files take less storage on the disk and give faster uploading to the program made for
DNN in Python, but cannot be visualized instantly as images. Due to the use of powerful

32

4.2 Preprocessing

hardware and relatively small size of the data, the consideration was that the size of the
files did not have a significant impact on the computational time when training the models.

Algorithms for finding the heart center and for cropping the images and masks were
used to get the data on the desired format. The intention was to make the images con-
centrate around the myocardial muscle, removing information that is irrelevant for the
segmentation procedure. In this process, the manually marked coordinates of the segmen-
tation masks were combined with the images to create binary masks of the myocardium,
endocardium, epicardium, and the myocardial scar. The resolution of the images after the
cropping was 232 x 232. To make the images applicable to the created NN architecture,
they were rescaled to resolution 512 x 512. Due to noise in the original images, a Gaus-
sian filter was used for smoothing. See Algorithm 3 for pseudocode and Figure 4.3 for the
preprocessed image and masks.

Algorithm 3 Preprocessing images and masks
Initialization:
1: Image, I
2: Patient, p
3: Slice, j
forall p do

forall Ijp,DICOM (x, y) do
1: Crop and scale→ Ijp(x, y)C,S

2: Gaussian smoothing (kernel = 2)→ Ijp(x, y)S
3: Extract masks→Myocardjp(x, y), Scarjp(x, y)

end
end
Result: Ijp(x, y),Myocardjp(x, y), Scarjp(x, y)

33

Chapter 4. Proposed Methods

(a) Original image. (b) Preprocessed image.

(c) Preprocessed binary mask. (d) Preprocessed multiclass mask.

Figure 4.3: One LGE-CMR slice of a subject, showing the original image, the preprocessed image,
and the binary- and multiclass masks. All images are in grayscale format. The pixel values in the
binary mask are zero for the background and on for the myocardium. The pixel values in the multi-
class mask are zero for the background, one for the healthy myocardium and two for the myocardial
scar.

34

4.3 Training

4.3 Training
This section presents an overview of the training of the models. An illustration is shown
in Figure 4.4

Figure 4.4: System overview of the training process.

4.3.1 Data Loading
During the training, there was performed zero-mean normalization and online data aug-
mentation on the training-set, X. The applied data augmentation was to randomly rotate or
flip the images and masks with a ratio of 0.3. With a batch size of 10, this gives an average
of 3.3 augmented samples in each batch.

4.3.2 Network Architecture

U-Net
The architecture that has been used in this thesis is an FCNN called U-Net. The network
was developed at the University of Freiburg in 2015 and was designed for the biomedical
image segmentation of neuronal structures [5]. The network has become popular for many
applications in segmentation problems due to the well-proven performance in terms of
precision and training- and segmentation-time [6, 4]. Compared to several other network-
structures used on segmentation tasks, the U-Net does not need as much training samples.
For this reason, the U-Net is often used in problems working with biomedical images; the
data available is often limited.

The architecture of the U-Net can be seen in Figure 4.5. The network consists of a con-
tracting part (reducing the resolution), and an expansive part (increasing the resolution).
The contracting part of the network is often referred to as the encoder and the expansive
part as the decoder. The encoder is capturing the desired features, and the decoder enables
the localization of the features.

The U-Net consists of convolutional layers with 3x3 convolutional operations followed
by batch normalization and a ReLU activation function (green arrows). 2x2 max-pooling
layers are used for downsampling (red arrows). In the expansive part of the network,
up-convolution is used (blue arrows). The yellow arrows indicate the copies of feature
maps from the contracting part that are merged with the feature maps with the same size
at the expansive part. This merging operation is used for making the network better at

35

Chapter 4. Proposed Methods

determining where the features of interest are located. The total number of convolutional
layers is 23, and the number of max-pool layers is four. The U-Net does not have any fully
connected layers.

The original U-Net has been slightly modified in the program developed in this thesis.
The resolution is 512x512 for both the input and the output. The modification is done
for practical reasons and was performed by using padded convolutions. In the multiclass
segmentation, the output is changed to consist of three channels. Additionally, experiments
are done with implementing dropout in the architecture (see section 4.3.3).

Figure 4.5: The figure is illustrating the U-Net architecture. The network in the figure takes a
grayscale image as input and gives a segmentation map of two or three channels as output.

4.3.3 Choice of Hyperparameters
Adjustment of the hyperparameters has been made experimentally by training multiple
models with different combinations of optimizers, loss functions, learning rates, weighted
loss, and dropout. The performance for each model was evaluated by testing the model on
the validation set.

Grid search and random search were used as strategies for hyperparameter optimiza-
tion in the experiment with binary segmentation. In the multiclass segmentation, grid
search and Bayesian optimization were used.

Optimizers and Learning Rate

The optimizers that have been used are ADAM and SGD. The momentum was set to 0.9
with the use of SGD. The learning rates were set in the initial grid search, and further
adjustments of the learning rates were performed based on the observed results.

36

4.3 Training

Loss Functions

The cross-entropy loss function and Dice loss have been used in the experiments in this
thesis. Experiments have been performed to evaluate the functionality and performance.
Weighted cross-entropy loss (see section 2.2.7) was used to train some models, to penal-
ize miss classifications of the myocardial muscle and the myocardial scar. On average,
96.8% of the pixels are background, 2.7% pixels are myocardium, and 0.05% pixels are
the myocardial scar, making the dataset highly unbalanced. A weight was assigned to
each class in the experiments using cross-entropy loss. The weight is multiplied by the
contribution of the loss for the specific class. A larger weight means in practice that the
misclassifications of a given class are penalized more, and provides a higher contribution
to the total loss. The equation for the weighted cross-entropy is shown in Equation 4.1,
and the equation used to calculate the weights is presented in Equation 4.2.

loss(x, class) = w[class]

−x[class] + log

∑
j

e(x[j])

 (4.1)

Equation 4.1: Calculation of weighted loss

c1 = 0.968, c2 = 0.027, c3 = 0.005

scale ∈ [0, 1]

w[1] = scale
c1

w[2] = w[3] = 1−scale
c2+c3

(4.2)

Equation 4.2: Calculation of the weights used in the cross-entropy loss function. c1, c2, c3 is the
ratio of the different classes represented in the ground truth masks. w[1], w[2], and w[3] are the
weights calculated for each class. The scale is set to a decimal between 0 and 1. If the scale is
large, the penalization of miss classifying class 2 and class 3 gets bigger. For the binary problem
two weights are calculated, one for the background and one for the myocardial muscle (c1 = 0.97,
c2 = 0.03)

Dropout

Dropout was implemented in the last experiments of the binary segmentation, to explore
if the technique could reduce overfitting, and increase the performance. Dropout was
implemented in eight convolutional layers, after batch normalization and ReLU. The new
hyperparameter, dropout rate, was set to be a decimal between 0.05 and 0.5, based on
observations made by A. Krizhevsky et al. [22], and X. Li et al. [25]. The enhanced
architecture can be seen in Figure 4.6.

37

Chapter 4. Proposed Methods

Figure 4.6: U-Net with dropout

4.4 Testing
An overview of the process of testing is shown in 4.7. To evaluate the produced mod-
els, they are tested on the validation data set, and the performance is compared. The
performances of the models are used to choose the hyperparameters for the proceeding
experiments.

The best-obtained model is evaluated on the test data set. The test data set is used to
provide an unbiased evaluation of the model. Although the validation data set is not used
to update the weights, it is used for finding the best model. The choice of hyperparameters
is based on the performance measured on the validation data set. For that reason, using
the validation set to report the final result, is not valid. The test data set consists of unseen
data with the same representation as to the data used for training. It is only used once, on
a completely trained model.

Figure 4.7: System overview of the testing process

38

4.5 Implementations

4.5 Implementations
Matlab was used as the software for the preprocessing part [30]. Algorithms produced
by K. Engan et al. [7] was combined with self-made code. The programming language
used for designing the DNN was python in combination with the DL framework PyTorch
[31] [17]. The developed program was made as a combination of embedded, external, and
self-made code. An overview of the implementation of the methods can be seen in Table
4.1

Table 4.1: Implementation of algorithms1

Implemented algorithms
Method Embedded External Self made
Preprocessing X X
Load data X X
Training X X
Data augmentation X
Optimizers and loss func-
tions

X X

U-Net X X (modified)
Testing X
Performance metrics X X

1Some code was reused or inspired by ugent-korea from their project unet-pytorch-segmentation, found on
GitHub, and used under the MIT lisence.

39

Chapter 4. Proposed Methods

40

Chapter 5
Experiments and Results

This chapter presents experiments and the results obtained in this thesis. The objective
was to develop a DNN model for myocardial segmentation, and find hyperparameters that
give the best performance. Binary- and multiclass segmentation have been explored.

Results from the best found binary- and multiclass models are presented, and the
choices of hyperparameters are discussed. The verification of the best performing model
is done by testing the model on the test data set.

The presentation of the results in the graphs is given as pixel-wise accuracy (see equa-
tion accuracy in Figure 2.11), logged during validation in the training process. Addi-
tionally, histograms are presented for the saved models tested on the validation set. The
performance is measured as Dice score.

5.1 Finding the Best Model
For developing the best DNN model, multiple combinations of hyperparameters have been
tested. Due to the many possible combinations, some of the variables were fixed. The U-
Net architecture (see section 4.3.2) has been used throughout all experiments, with and
without the implementation of dropout. All experiments were run with a maximum of 100
epochs. From experience, the models did not further improve after this limit. The batch
size was kept consistent top ten, due to memory limitations on the GPU.

Optimizer, loss function, learning rate, weighted loss, and dropout were tuned. The
best model for each set of hyperparameters was saved. The training was stopped when the
validation loss did not converge any further. The patience was set to ten, meaning to finish
the training if there has not been any improvement in the last ten epochs. The weights
were saved only if the present validation loss was lower than the previous lowest. A full
overview of the hyperparameters can be seen in table ??

Dice similarity coefficient and the Jaccard similarity index was used to calculate the
performance in the binary segmentation. In the multiclass segmentation, F1-score for class
one and class two were calculated as well.

41

Chapter 5. Experiments and Results

Combinations of hyperparameters
Hyperparameter Fixed Variants

Learning rate No [1× 10−5 − 2]
Optimizer No ADAM and SGD with fixed momentum (0.9)
Loss function No Cross-entropy loss and Dice loss
Weighted loss No Scaled by class
Drop rate No [0.05-0.5]
Network architecture No With and without dropout
Data augmentation Yes Random roation, horizontal and vertical flip
Batch size Yes 10
Epochs Yes Hard limit of 100 epochs
Patience Yes 10 epohs

5.2 Experiment One - Binary Segmentation
The first experimental layout was to use a binary approach to the segmentation task. The
ground truth masks were made by merging the mask with the healthy myocardium with
the mask representing the scar tissue. With this, the pixel values in the ground truth
masks are divided into two classes; background (class one) and myocardium (class two).
Background-pixels are set to values of zero value, and the myocardium-pixels are set to
values of one. Figure 5.1 visualize a ground truth mask used for binary segmentation.

Figure 5.1: Binary mask of the myocardium

5.2.1 Grid search
Grid search was initially used to search for combinations of learning rates, optimizers, and
loss functions, to get guidance for choices in further experiments. The range of learning
rates was set from 1×10−5 to 2 with the use of SGD. For the ADAM optimizer, the range
was set from 1× 10−5 to 0.1. The initialization was based on recommendations presented
by Y. Bengio [32] and I. Goodfellow et al. [12]. The weighted loss was used with scales
of 0.2, 0.5, and 0.8. The calculation of weights is shown in Equation 4.2. Table 5.1 shows
a review of the used hyperparameters.

42

5.2 Experiment One - Binary Segmentation

Table 5.1: Hyperparameters when doing grid search

Combinations of hyperparameters
Optimizers Learning rate Loss functions Scaling
ADAM 1× 10−5 - 0.1 Cross-entropy and Dice loss 0.2, 0.5, 0.8
SGD 1× 10−5 - 2 Cross-entropy and Dice loss 0.2, 0.5, 0.8

Cross-Entropy Loss

Experiments with cross-entropy loss in combination with ADAM and SGD were per-
formed. In Figure 5.2, we can see the curves of the validation- loss, and accuracy for
the two best performing models for each of the optimizers.

The results of experiments with weighted loss gave significantly worse results with the
tested parameters. The performance of all tested combinations with cross-entropy as loss
function, with and without the use of weighted loss, can be seen in Appendix A.1.

Figure 5.2: Validation- loss and accuracy when using cross-entropy loss in combination with ADAM
and SGD. The plot shows the two best models found for both optimizers.

Dice Loss

The same experiments, as described in the previous section, were performed with the use
of the Dice loss function. All other hyperparameters were kept the same. In Figure 5.3,
plots of validation- loss, and accuracy during training are presented.

43

Chapter 5. Experiments and Results

Figure 5.3: Validation- loss and accuracy when using Dice loss in combination with ADAM and
SGD. The two best models found are shown.

Comparisons Between Cross-Entropy Loss and Dice Loss
The results of the grid search shows a tendency that the Dice loss function performs
slightly better than the cross-entropy loss function in average. This can be seen in Fig-
ures 5.4 and 5.5.

The Dice loss functions give better results for both the use of ADAM and SGD. These
results led to the choice of dropping further experiments using cross-entropy loss in exper-
iment one.

44

5.2 Experiment One - Binary Segmentation

Figure 5.4: Dice score for ADAM with the use of cross-entropy- and Dice loss.

Figure 5.5: Dice score for SGD with the use of cross-entropy- and Dice loss.

There is no evident optimizer that gives the best result in the initial grid search. SGD
performs better with higher learning rates (0.1 to 1.5), while ADAM performs better with
lower learning rates (0.0001 to 0.001). From the observations made, it was decided to
make use of both ADAM and SGD in the following experiments. A comparison of Dice
score for SGD and ADAM with the use of Dice loss can be seen in Figure 5.6.

45

Chapter 5. Experiments and Results

Figure 5.6: Comparison between ADAM and SGD with the use of Dice loss.

5.2.2 Random Search

Table 5.2: Choice of hyperparameters based on grid search

Hyperparameters used in random search
Optimizers Learning rate Loss functions
ADAM Rand [1× e−5 - 0.005] Dice loss
SGD [0.1 to 1.5] Dice loss

Experiments with the random search were done to explore the possibility of finding better
performing models. The random search was performed with Dice loss in combination
with ADAM and SGD. Bar graphs of the performance are presented in Figures 5.7 and
5.8. By looking at the results, we see that the use of ADAM again performs slightly better
compared to the use of SGD, in terms of average Dice score and best Dice score. Notice
that scaling of the axis differs, which might give the impression that the models trained
with SGD are more stable in performance. The results for the best performing model for
both optimizers can be seen in Table 5.3.

46

5.2 Experiment One - Binary Segmentation

Figure 5.7: Random search with ADAM

Figure 5.8: Random search with SGD. In the graph, we can see an outlier, in the model trained
with learning rate 0.188. The initialization of weights is most likely to be the reason for the poor
performance. The consequence is that the model reaches a local minimum.

47

Chapter 5. Experiments and Results

Table 5.3: Best performing model for ADAM and SGD with random search

ADAM SGD
Loss function Dice Dice
Learning rate [4× 10−5 − 0.0015] [0.058-1.4624]
Number of models 22 33
Best Dice 0.686 (0.18) 0.683 (0.17)
Average Dice 0.677 0.670

5.2.3 Overfitting
In Figure A.3, we can see graphs for the training process of the best model in the initial
tests; ADAM optimizer, Dice loss, and learning rate = 0.0001. The model is overfitting.
The validation loss converges when the training loss keeps decreasing. The same is the
case for the accuracy; validation accuracy converges when the training accuracy increases.
Overfitting was observed in all experiments with the use of grid search and random search,
for all combinations of hyperparameters. These observations make it reasonable to apply
some form of regularization to prevent the models from overfitting the training data. The
technique used is dropout, which follows in section 5.2.4.

Figure 5.9: Validation- and training graphs with the use of ADAM and Dice loss, learning
rate=0.0001

48

5.2 Experiment One - Binary Segmentation

5.2.4 Random Search with Dropout
The final experiments for the binary segmentation were to implement dropout in the U-Net
architecture, to see if the use of dropout potentially could reduce overfitting (see section
4.3.3 for a description of the enhanced architecture). The experiments were done using
both ADAM and SGD, in combination with Dice loss. The determined range for the
learning rates was based on observation from the previous experiments. The range of
the drop rate was set to 0.05 - 0.5, upon recommendation by X. Li et al. [25] and A.
Krizhevsky et al. [22]. An overview of the parameters can be seen in Table .

Table 5.4: Hyperparameters for random search with the use of dropout

Hyperparameters used in random search with dropout
Optimizers Learning rate Loss function Drop rate
ADAM Rand [1× e−5 - 0.005] Dice loss Rand [0.05− 0.5]
SGD Rand [0.1− 1.5] Dice loss Rand [0.05− 0.5]

Figures 5.10 and 5.11 presents the performance of the trained models with the use of
dropout. The models trained with ADAM perform better on average than models trained
with SGD. Compared to the results obtained with random search, the average performance
is the same for ADAM, and slightly worse for SGD. An overview of the results is presented
in Table 5.5.

Figure 5.10: ADAM with dropout

49

Chapter 5. Experiments and Results

Figure 5.11: SGD with dropout

Table 5.5: Performance of models trained with ADAM and SGD the use of random search with
dropout.

ADAM SGD
Loss function Dice loss Dice loss
Learning rate [9× 10−5 − 1.4× 10−4] [0.05− 2]
Drop rate [0.05− 2] [0.05− 0.31]
Number of models 29 24
Best Dice 0.691 (0.17) 0.683 (0.17)
Average Dice 0.677 0.666
Best Jaccard 0.550 (0.175) 0.539 (0.30)
Average Jaccard 0.537 0.522

In Figure 5.12, we can see bubble plots for evaluating the use of dropout. The learning rate
is along the x-axis, and the drop rate is along the y-axis. The colors of the bubbles indicate
performance measured in Dice score. A brighter color means better performance. The
size of the bubbles indicates the performance measured as the Jaccard index, where large
bubbles mean better performance. From observations, it is difficult to see any correlation
between learning rate, drop rate, and performance.

50

5.3 Experiment Two - Multiclass Segmentation

(a) Bubble plot for ADAM optimizer.

(b) Bubble plot for SGD optimizer.

Figure 5.12: Bubble plots for evaluating learning rate and drop rate. Brighter and larger bubbles
means better performance.

5.3 Experiment Two - Multiclass Segmentation
The second experimental layout was multiclass segmentation, with ground truth masks
consisting of three classes; the background (class one), healthy myocardium (class two)
and the myocardial scar (class three). Pixel values for class one are set to zero, pixel values
for class two are set to one, and pixel values for class three are set to two. In Figure 5.13,
we see one example of the ground truth masks used.

51

Chapter 5. Experiments and Results

Figure 5.13: Multiclass mask of healthy myocardium and myocardial scar tissue.

5.3.1 Grid Search
Initially, grid search was used for hyperparameter optimization. ADAM- and SGD were
used as optimizers, and cross-entropy and Dice loss were used as loss functions. As in
experiment one, the objective was to search for the best initial combinations of these hy-
perparameters. Additionally, it was performed tests with weighted cross-entropy loss. The
purpose was to penalize misclassification of class two and class three, due to the unbalance
of the classes in the ground truth. The values of the scales were increased, based on the
observations in experiment one.

Table 5.6: Hyperparameters for grid search in experiment two

Combinations of hyperparameters
Optimizers lr Loss functions Scaling
ADAM 1× e−5 - 0.1 Cross-entropy and Dice loss 0.85, 0.90, 0.95
SGD 1× e−5 - 2 Cross-entropy and Dice loss 0.85, 0.90, 0.95

Cross-entropy Loss

Initially, experiments with the use of cross-entropy loss in combination with ADAM and
SGD were performed. The results can be seen as bar charts in Figure 5.14. Two differ-
ent approaches were performed to evaluate the performance. The thesis objective was to
compare the binary segmentation with the multiclass segmentation. For that reason, the
predicted multiclass masks were merged to form binary masks by defining the healthy
myocardium and the scar tissue as one class. Dice score was used to evaluate the perfor-
mance, as in the binary segmentation. Additionally, the results of multiclass segmentation
were evaluated with F1-score for class one and class three.

52

5.3 Experiment Two - Multiclass Segmentation

In the bar charts in Figure 5.14, we see the results for the initial grid search. The best
result performed with the use of ADAM was Dice 0.683 (0.17). The best result achieved
with the use of SGD was Dice 0.681 (0.17). An overview of the results is presented in
Table 5.5.

(a) ADAM and cross-entropy loss.

(b) SGD and cross-entropy loss.

Figure 5.14: Grid search - performance of the models trained with ADAM and SGD, in combination
with cross-entropy loss

53

Chapter 5. Experiments and Results

Table 5.7: Multiclass segmentation - Grid search

ADAM SGD
Loss function Cross-entropy Cross-entropy
Learning rate [1× 10−5 − 0.1] [0.001− 1.5]
Scale [0.85, 0.90, 0.95] [0.85, 0.90, 0.05]
Number of models 20 28
Best Dice 0.683 (0.17) 0.681 (0.17)
Average Dice 0.65 0.61

Dice Loss

To obtain satisfactory results using Dice loss proved to be difficult with multiclass seg-
mentation. We can see from Figure 5.15 that the DNN struggles to pinpoint classes two
and three. Based on these observations, performance with Dice loss was not explored in
the following experiments. The Dice loss function used the average Dice coefficient for
class one and class two to calculate the loss.

Figure 5.15: Figures from the validation of multiclass segmentation with the use of Dice loss. The
predicted masks are made with a model trained with ADAM and learning rate 0.0001

5.3.2 Search Using Bayesian Optimization
The final experiments were performed with Bayesian optimization. Bayesian optimization
was implemented by using the results from grid-search as prior observations. The algo-
rithms were created to make a probability model of an objective function made to optimize
the performance. Measurements of the Dice coefficient was chosen to be optimized, by
implementing a minimizing function taking (1 - Dice coefficient) as input argument.

54

5.3 Experiment Two - Multiclass Segmentation

From the search for best hyperparameters, the objective function ended training mul-
tiple models with learning rate 0.0001, and scale around 0.90, when using ADAM. With
the use of SGD, the objective function ended up using learning rates around 1.30 and scale
in the range of 0.90 to 0.97. The results for the experiments performed with Bayesian
optimization are presented in bar graphs in Figure 5.16.

An overview of the hyperparameters used and the measured performance can be seen
in Table 5.8

(a) Bayesian optimization with ADAM

(b) Bayesian optimization with SGD

Figure 5.16: Performance of ADAM and SGD with Bayesian optimization.

55

Chapter 5. Experiments and Results

Table 5.8: Results for multiclass segmentation using Bayesian optimization.

ADAM SGD
Loss function Cross-entropy Cross-entropy
Learning rate [1× 10−5 − 0.01] [0.5− 1.5]
Scale [0.85− 0.99] [0.85− 0.99]
Number of models 30 23
Best Dice 0.683 (0.17) 0.681 (0.17)
Average Dice 0.65 0.61

5.3.3 Evaluation of Multiclass Segmentation
In Figure 5.13, it is shown samples from the predicted masks performed by the best found
multiclass model. The predictions were generated by testing the model on the validation
data set. As we can see, the model has difficulties distinguishing between the healthy
myocardium and the myocardial scar in Figure (a), and it does not detect the scar tissue in
Figure (b). In Figure (c) and (d), we see predictions where the model performs better and
localizes some of the scar tissue. An overview of the hyperparameters and results for the
best found model is presented in Table 5.9.

(a) Multiclass segmentation a (b) Multiclass segmentation b

(c) Multiclass segmentation c (d) Multiclass segmentation d

Figure 5.17: Samples from predicted masks performed by the best found multiclass model.

56

5.3 Experiment Two - Multiclass Segmentation

Table 5.9: Results for best model found in multiclass segmentation

Multiclass
Optimizer ADAM
Loss function CE
Learning rate 0.00017
Scale 0.92
Drop rate None
Dice myocardium 0.686 (0.17)
Jaccard myocardium 0.544 (0.19)
F1-score class 2 0.667 (0.18)
F1-score class 3 0.289 (0.27)

5.3.4 Comparison Between Experiment 1 and 2
In Figure 5.18, we can see a comparison between the best binary and multiclass model,
tested on the validation set. The two LGE-CMR images are slices of the same subject. We
see that in one of the predictions, the binary model performs best, and in the other, the
multiclass gives the best result. The hyperparameters and validation performance for each
model are shown in Table 5.11

(a) Binary segmentation one (b) Multiclass segmentation one

(c) Binary segmentation two (d) Multiclass segmentation two

Figure 5.18: Samples from predicted masks with the best found binary- and multiclass model. From
(a) and (b) we can clearly see that multiclass segmentation performs better than binary segmentation.
In (c) and (d) we witness the opposite

5.3.5 Verification of Best Model
The best model was found with the use of binary segmentation. The hyperparameters and
performance of the model are listed in Table 5.11. The model obtained the Dice score
0.705 (0.15) when tested on the test data set.

57

Chapter 5. Experiments and Results

Table 5.10: Hyperparameters and validation performance for best binary and multiclass model

Binary Multiclass
Optimizer ADAM ADAM
Loss function Dice CE
Learning rate 0.0074 0.00017
Scale None 0.92
Drop rate 0.17 None
Dice 0.691 (0.17) 0.686 (0.17)
Jaccard 0.550 (0.18) 0.544 (0.19)

Table 5.11: Hyperparameters and performance for the best found model.

Best found model
Optimizer ADAM
Loss function Dice
Learning rate 0.00074
Scale None
Drop rate 0.17
Epochs 57
Training time 2:45:31
Dice 0.705 (0.15)
Jaccard 0.560 (0.16)

Samples from predicted masks can be seen in Figure 5.19. In the Figure, two examples
of myocardial segmentation with good performance, and two examples with bad perfor-
mance are shown. In Figures 5.20 and we see a comparison between samples of predicted
masks and manually segmented masks. All slices, for a patient, with manual notation and
predicted masks, are presented in Appendix A.2. Results presented as a confusion matrix
is displayed in Figure 5.21

58

5.3 Experiment Two - Multiclass Segmentation

(a) Prediction one (b) Prediction two

(c) Prediction three (d) Prediction four

Figure 5.19: Samples from predicted masks tested on the test set with the best found model.

(a) Good performance (b) Good performance

(c) Poor performance (d) Poor performance

Figure 5.20: Samples from predicted masks performed by the best found model. Images (a) and (b)
show examples of good performance, and images (c) and (d) show examples of poor performance.
Manually marked masks are shown with green contour, predicted masks are shown with red contour.

59

Chapter 5. Experiments and Results

Figure 5.21: Confusion matrix for the best model found.

60

Chapter 6
Discussion

This chapter will give a review of Chapter 5. Achieved results, comparisons with related
work, encountered limitations, and possible improvements will be discussed. Suggestions
for future work will also be presented.

6.1 Model Performance
This chapter summarizes and discusses the experiments, and results obtained in Chapter
5.

6.1.1 Experiment One - Binary Segmentation
In the initial grid search, it was found that using Dice loss overall gave better results
compared to using cross-entropy loss. These results led to the choice of not using cross-
entropy loss in the following experiments. Regardless, with different use of scaling, one
should not exclude the possibility that the cross-entropy loss function could have given the
best model if further explored.

Regarding the optimizers, it is difficult to establish, which produces the best perfor-
mance. Overall, ADAM performed slightly better.Howaver, there are too many variables
to be considered for making a definite conclusion.

In general, the implementation of dropout did not significantly impact the performance
of the models. No patterns of optimal combinations for learning rate and drop rate were
identified. The results implied that using dropout did not prevent overfitting. The best
model was found with the implementation of dropout, but this is likely to be a coincidence.

6.1.2 Experiment Two - Multiclass Segmentation
The initial experiments showed that the use of the implemented Dice loss function gave
poor performance. The models had problems with separating the healthy myocardium and
the myocardial scar, hence Dice loss was not used in the following multiclass experiments.

61

Chapter 6. Discussion

Experiments with grid search and Bayesian optimization showed that models trained
using weighted cross-entropy loss in overall performed better than not using weights. The
observations are reasonable due to the class imbalance.

Testing of the best model proved that, on average, segmentation of the myocardial scar
tissue performed poorly, despite it managing to localize parts of the scar tissue in some
images.

6.1.3 Comparisons Between Binary- and Multiclass Segmentation
The best binary model proved to perform slightly better than the best performing multi-
class model. On average the models trained on binary masks performed better than mod-
els trained on multiclass masks. Nevertheless, it is challenging to affirmatively conclude
which approach is desirable. The best multiclass model obtained the Dice score 0.686
(0.17) for segmentation of the myocardium when tested on the validation data set. In
comparison, the best binary model achieved a Dice score of 0.691 (0.17).

6.2 Comparisons With Related Work
Q. Yue et al. proposed in June 2019 a method for myocardial segmentation, using a tech-
nique called SRSCN [4]. The method uses an enhanced version of the U-Net and a com-
bination of cross-entropy loss and dice loss as the loss function. By performing data aug-
mentation, they obtained a data set of 20 405 images and masks. The experiments found
that SRSCN outperformed the use of U-Net, by 0.08 in generalized Dice score. SRSCN
obtained a Dice score of 0.758 (0.227) for myocardial segmentation, with data collected
from 45 patients.

S. Moccia et al. reported in 2018 a result of 0.71 median Dice for segmentation of
myocardial scars. The method used an FCNN with comparable architecture as the U-Net.

In 2015, K. Engan et al. reported a result of mean Dice 0.87 for segmentation of the
endocardium, and mean Dice 0.90 for segmentation of the epicardium, when using the
methods mentioned in section 1.2.

The best performing model produced in this thesis gave mean Dice of 0.705 (0.15)
and mean Jaccard 0.560 (0.16). The research by Q. Yue et al. might make for the best
comparison of the related work presented, even though direct comparisons must not be
drawn since the data sets are distinct. The results by S. Moccia et al., and K. Engan
et al. are not fully transmissible to the results presented in this thesis as the targets for
segmentation were different.

6.3 Limitations
The data set applied for this thesis contains 2526 images, with corresponding masks, from
272 patients. For training DNN, this data set is considered small and is likely to limit per-
formance. A challenge of using a small data set is the increased possibility of overfitting,
making it harder for the DNN to learn the necessary features to perform effectively on
unseen data. Online data augmentation was implemented to expose the DNN to images in

62

6.4 Future Work

different ways. For each loaded batch, 33 % of all images and masks in the training set
were either flipped or rotated. This is considered a narrow use of data augmentation and
might have limited the performance.

For the training of the DNN, the data set was divided into a training data set, a vali-
dation data set, and a test data set. This division might not be fortunate to provide robust
results. The risk of getting biased results increases as the features in the images might
be specific for each data set. The DNN might, therefore, have problems learning general
features. Cross-validation could be used as an alternative method. However, the testing of
the best model on the validation data and test data produced similar results, indicating that
the verification of the model is reliable.

6.4 Future Work
This chapter presents recommendations of techniques that might be worth exploring in
future work.

6.4.1 New Network Architectures
U-Net has been used in all experiments in this thesis. Experiments with different network
architectures could be utilized to develop better models. A wider range of hyperparameters
could be explored, and other methods for handling the imbalance of the classes in the data
might be beneficial.

6.4.2 More Data Material
One of the essential issues when training a DNN is the amount of data available. By
retrieving more data, the likelihood is substantial for improving the performance of the
models.

An alternative way of creating a bigger data set could be to perform further data aug-
mentation, in addition to randomized rotation and flipping. Techniques that can be used
are randomized mirroring, adding noise, cropping, and elastic deformation. This can be
done by, for instance, adding noise to the images, and apply random elastic deformation
to the data. Elastic deformation is commonly used and was implemented by Ronneberger
et al. in the original U-Net [5].

6.4.3 Training of the Deep Neural Networks
In this thesis, the data material has been split into three data sets; training, validation, and
test. K- fold cross validation is an alternative method that could be used, which might
give a more robust and less biased estimation of the models [33]. Transfer learning is
a technique that might be worth exploring. The method is based on using pre-trained
DNNs, trained on large data sets. The pre-trained DNNs could further be trained on the
LGE-CMR images.

63

Chapter 6. Discussion

64

Chapter 7
Conclusion

The objective of this thesis was to propose a method for automatic myocardial segmenta-
tion in LGE-CMR images. The developed method was using an FCNN architecture and
was trained end-to-end with a training set consisting of 2006 images and masks from 214
patients affected by MI.

Experiments with two different approaches were performed. Experiment one was to
train the DNN with masks of the myocardium, and experiment two was using masks with
the healthy myocardium and myocardial scar tissue to train the DNN.

The best model was obtained by binary segmentation. The model got a final result of a
mean Dice score 0.705 with a standard deviation of 0.15, and a mean Jaccard index 0.560
with a standard deviation of 0.16. The model was evaluated using 244 images from 30
patients affected by myocardial infarction.

When evaluating the obtained results in this thesis, it is considered that the use of DNN
for myocardial segmentation is a promising method worth exploring further.

65

Chapter 7. Conclusion

66

Bibliography

[1] World Health Organization. Cardiovascular diseases (CVDs). [Online; accessed
April 30, 2019]. 2017. URL: https://www.who.int/news-room/fact-
sheets/detail/cardiovascular-diseases-(cvds).

[2] Kristian Thygesen et al. “Fourth universal definition of myocardial infarction (2018)”.
In: European Heart Journal 40.3 (Aug. 2018), pp. 237–269. ISSN: 0195-668X. DOI:
10.1093/eurheartj/ehy462. eprint: http://oup.prod.sis.lan/
eurheartj/article-pdf/40/3/237/28457750/ehy462.pdf. URL:
https://doi.org/10.1093/eurheartj/ehy462.

[3] Inc. Blausen Medical Communications. Myocardial Infarction or Heart Attack.
URL: https://commons.wikimedia.org/wiki/File:Blausen_
0463_HeartAttack.png. (accessed: 09.05.2019).

[4] Qian Yue et al. “Cardiac Segmentation from LGE MRI Using Deep Neural Net-
work Incorporating Shape and Spatial Priors”. In: arXiv preprint arXiv:1906.07347
(2019).

[5] O. Ronneberger, P. Fisher, and T.Brox. “U-Net: Convolutional Networks for Biomed-
ical Image Segmentation”. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI). Vol. 9351. LNCS. (available on arXiv:1505.04597 [cs.CV]).
Springer, 2015, pp. 234–241. URL: http://lmb.informatik.uni-freiburg.
de/Publications/2015/RFB15a.

[6] Sara Moccia et al. “Automated Scar Segmentation From Cardiac Magnetic Resonance-
Late Gadolinium Enhancement Images Using a Deep-Learning Approach”. In: Dec.
2018. DOI: 10.22489/CinC.2018.278.

[7] Kjersti Engan et al. “Segmentation of LG Enhanced Cardiac MRI”. In: Jan. 2015,
pp. 47–55. DOI: 10.5220/0005169200470055.

[8] K. Engan et al. “Automatic segmentation of the epicardium in late gadolinium
enhanced cardiac MR images”. In: Computing in Cardiology 2013. Sept. 2013,
pp. 631–634.

67

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://doi.org/10.1093/eurheartj/ehy462
http://oup.prod.sis.lan/eurheartj/article-pdf/40/3/237/28457750/ehy462.pdf
http://oup.prod.sis.lan/eurheartj/article-pdf/40/3/237/28457750/ehy462.pdf
https://doi.org/10.1093/eurheartj/ehy462
https://commons.wikimedia.org/wiki/File:Blausen_0463_HeartAttack.png
https://commons.wikimedia.org/wiki/File:Blausen_0463_HeartAttack.png
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
https://doi.org/10.22489/CinC.2018.278
https://doi.org/10.5220/0005169200470055

BIBLIOGRAPHY

[9] Fernand Meyer. “Meyer, F.: Topographic distance and watershed lines. Signal Pro-
cess. 38, 113-125”. In: Signal Processing 38 (July 1994), pp. 113–125. DOI: 10.
1016/0165-1684(94)90060-4.

[10] Soille Pierre. ”Morphological image analysis : principles and applications”. En-
glish. 2nd ed., corrected. Previous ed.: 1999. Berlin : Springer, 2004. ISBN: 3540429883
(alk. paper).

[11] Winnie Yu Brindles Lee Macon and Lauren Reed-Guy. Acute Myocardial Infarc-
tion. URL: https://www.healthline.com/health/acute-myocardial-
infarction. (accessed: 18.06.2019).

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://
www.deeplearningbook.org. MIT Press, 2016, pp. 12–20, 255–264.

[13] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI:
10.1007/s11263-015-0816-y.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: Neural Information Process-
ing Systems 25 (Jan. 2012). DOI: 10.1145/3065386.

[15] Max Pixel. Dendrites Soma Axon Brain Nerve Neuron Cell. URL: https://www.
maxpixel.net/Dendrites-Soma-Axon-Brain-Nerve-Neuron-
Cell-1294021.

[16] Maximilian Riesenhuber and Tomaso Poggio. “Hierarchical models of object recog-
nition in cortex”. In: Nature Neuroscience 2 (1999), pp. 1019–1025.

[17] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: (2017).

[18] Carole H. Sudre et al. “Generalised Dice Overlap as a Deep Learning Loss Func-
tion for Highly Unbalanced Segmentations”. In: Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support. Ed. by M. Jorge
Cardoso et al. Cham: Springer International Publishing, 2017, pp. 240–248. ISBN:
978-3-319-67558-9.

[19] H. Leung and S. Haykin. “The complex backpropagation algorithm”. In: IEEE
Transactions on Signal Processing 39.9 (Sept. 1991), pp. 2101–2104. ISSN: 1053-
587X. DOI: 10.1109/78.134446.

[20] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (Dec. 2014).

[21] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In:
CoRR abs/1609.04747 (2016). arXiv: 1609.04747. URL: http://arxiv.
org/abs/1609.04747.

[22] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958.
URL: http://jmlr.org/papers/v15/srivastava14a.html.

[23] Johan Bjorck, Carla P. Gomes, and Bart Selman. “Understanding Batch Normal-
ization”. In: CoRR abs/1806.02375 (2018). arXiv: 1806.02375. URL: http:
//arxiv.org/abs/1806.02375.

68

https://doi.org/10.1016/0165-1684(94)90060-4
https://doi.org/10.1016/0165-1684(94)90060-4
https://www.healthline.com/health/acute-myocardial-infarction
https://www.healthline.com/health/acute-myocardial-infarction
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3065386
https://www.maxpixel.net/Dendrites-Soma-Axon-Brain-Nerve-Neuron-Cell-1294021
https://www.maxpixel.net/Dendrites-Soma-Axon-Brain-Nerve-Neuron-Cell-1294021
https://www.maxpixel.net/Dendrites-Soma-Axon-Brain-Nerve-Neuron-Cell-1294021
https://doi.org/10.1109/78.134446
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1806.02375
http://arxiv.org/abs/1806.02375
http://arxiv.org/abs/1806.02375

BIBLIOGRAPHY

[24] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167
(2015). arXiv: 1502.03167. URL: http://arxiv.org/abs/1502.
03167.

[25] Xiang Li et al. “Understanding the Disharmony between Dropout and Batch Nor-
malization by Variance Shift”. In: CoRR abs/1801.05134 (2018). arXiv: 1801.
05134. URL: http://arxiv.org/abs/1801.05134.

[26] James Bergstra and Yoshua Bengio. “Random Search for Hyper-parameter Opti-
mization”. In: J. Mach. Learn. Res. 13.1 (Feb. 2012), pp. 281–305. ISSN: 1532-
4435. URL: http://dl.acm.org/citation.cfm?id=2503308.
2188395.

[27] Peter I Frazier. “A tutorial on Bayesian optimization”. In: arXiv preprint arXiv:1807.02811
(2018).

[28] Luis Perez and Jason Wang. “The Effectiveness of Data Augmentation in Image
Classification using Deep Learning”. In: CoRR abs/1712.04621 (2017). arXiv: 1712.
04621. URL: http://arxiv.org/abs/1712.04621.

[29] Sebastien C. Wong et al. “Understanding data augmentation for classification: when
to warp?” In: CoRR abs/1609.08764 (2016). arXiv: 1609.08764. URL: http:
//arxiv.org/abs/1609.08764.

[30] MATLAB. version 9.6.0.1062519 (R2019a). Natick, Massachusetts: The MathWorks
Inc., 2019.

[31] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde
en Informatica Amsterdam, The Netherlands, 1995.

[32] Yoshua Bengio. “Practical recommendations for gradient-based training of deep
architectures”. In: CoRR abs/1206.5533 (2012). arXiv: 1206.5533. URL: http:
//arxiv.org/abs/1206.5533.

[33] Sudhir Varma and Richard Simon. “Bias in Error Estimation When Using Cross-
Validation for Model Selection.fffdfffdfffd BMC Bioinformatics, 7(1), 91”. In: BMC
bioinformatics 7 (Feb. 2006), p. 91. DOI: 10.1186/1471-2105-7-91.

69

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1801.05134
http://arxiv.org/abs/1801.05134
http://arxiv.org/abs/1801.05134
http://dl.acm.org/citation.cfm?id=2503308.2188395
http://dl.acm.org/citation.cfm?id=2503308.2188395
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
https://doi.org/10.1186/1471-2105-7-91

BIBLIOGRAPHY

70

BIBLIOGRAPHY

Appendices

71

Appendix A
Results of Experiments

A.1 Results of Inital Grid Search in Experiment One

Figure A.1: The performance of the ADAM and SGD optimizers with the use of cross-entropy loss
function. The models are trained with the learning rates 1× e−5, 0.0001, 0.001, 0.01, 0.1, with and
without weighted loss (Scales 0.2, 0.5, 0.8).

72

A.2 Images From Best Found Model

A.2 Images From Best Found Model

Figure A.2: Predicted masks from slices of an example patient. Masks in green contour are made
by a cardiologist, predicted masks hare shown in red contour.

73

Chapter A. Results of Experiments

A.3 Training- and Validation Plots for the Best Model Found

Figure A.3: Validation and- training grapsh for the best found model.

74

Appendix B
Algorithms

B.1 Matlab

Get images and masks.m

The script preprocesses the images and the corresponding masks; healthy myocardium
and myocardial scar, and saves them to a local folder. It uses external algorithm created
by K. Engan et al. for loading DICOM-files and .MAT files of annotations, finding heart
center, and cropping. If desired, the masks for the endocarium and epicardium can also be
extracted. The main scripts are listed under. The subscripts of these can be found in the
attached zip file.

External:

• dbread.m

• organizeimage.m

• crop heart v2016.m

• Segment prob 2016.m

Self-made:

• get images and masks.m

• figures.m

75

Chapter B. Algorithms

B.2 Python
The following packages were required for scripts produced:

• Pytorch

• Numpy

• OS

• DateTime

• PIL

• Pandas

• Sckit-learn

• Matplotlib

• CSV

Scripts

• normalization.py
Calculates mean and standard deviation for all pixels in the data set. The mean and
standard deviation are used to normalize the pixels when the images are loaded in
the script loader.py

• calc balance.py
Calculates the average distributions of the classes in ground truth masks.

• loader.py
Loads the images and masks from folders, converts from numpy to tensors. flip.py
is called randomly to flip and rotate images and masks.

• dice loss.py
Dice loss function.

• main.py
Script for training the DNN.

• unet.py
Architecture of U-Net.

• unet dropout.py
Enhanced U-Net with implemented dropout.

• modules.py
Script used for training.

76

B.2 Python

• test.py
Script for testing the performance of produced models.

• metrics.py
Script for calculating Dice score, Jaccard index, F1-score, and confusion matrix.

77

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation and Problem Description
	Related Work
	Thesis Objective
	Thesis Outline

	Background
	Medical Background
	Deep Learning
	Biological and Artificial Neural Networks
	Activation Functions
	Convolutional Neural Networks
	Convolutional Layers
	Pooling Layers
	Fully Connected Layers
	Loss Functions
	Backpropagation and Gradient Descent
	Optimizers
	Epochs and Batch Size
	Regularization
	Hyperparameter Optimization
	PyTorch

	Performance Evaluation
	Confusion Matrix
	Dice Coefficient
	The Jaccard Similarity Index

	Preprocessing
	Data Normalization
	Data Augmentation

	Data Material
	Proposed Methods
	Overview of the Proposed Methods
	Preprocessing
	Training
	Data Loading
	Network Architecture
	Choice of Hyperparameters

	Testing
	Implementations

	Experiments and Results
	Finding the Best Model
	Experiment One - Binary Segmentation
	Grid search
	Random Search
	Overfitting
	Random Search with Dropout

	Experiment Two - Multiclass Segmentation
	Grid Search
	Search Using Bayesian Optimization
	Evaluation of Multiclass Segmentation
	Comparison Between Experiment 1 and 2
	Verification of Best Model

	Discussion
	Model Performance
	Experiment One - Binary Segmentation
	Experiment Two - Multiclass Segmentation
	Comparisons Between Binary- and Multiclass Segmentation

	Comparisons With Related Work
	Limitations
	Future Work
	New Network Architectures
	More Data Material
	Training of the Deep Neural Networks

	Conclusion
	Appendices
	Results of Experiments
	Results of Inital Grid Search in Experiment One
	Images From Best Found Model
	Training- and Validation Plots for the Best Model Found

	Algorithms
	Matlab
	Python

scripts/matlab_scripts/external/areaopen.m

function imout=areaopen(im,N)

Thmax=max(im(:));

[f,c]=size(im);

pilaopenings=zeros(f,c,Thmax+1);

for k=0:Thmax

 pilaopenings(:,:,k+1)=double(bwareaopen(double(im)>=k,N)).*double(k);

end

imout=uint8(max(pilaopenings,[],3));

scripts/matlab_scripts/external/centro_morfologico.m

function imout=centro_morfologico(im,se)

% ime=im;

 imout=im;

 D=imout;

 while (sum(D(:))~= 0)

 fi1=imopen(imclose(imopen(imout,se),se),se);

 fi2=imclose(imopen(imclose(imout,se),se),se);

 imaux=imout;

 imout=min(max(imout,fi1),fi2);

 D=abs(imout-imaux);

 end

scripts/matlab_scripts/external/close_holes.m

function imout=close_holes(im)

% function imout=close_holes(im)

[f,c]=size(im);

 mrk=zeros(f,c);

 mrk(:,1)=255;

 mrk(:,c)=255;

 mrk(1,:)=255;

 mrk(f,:)=255;

 im=double(im);

 imc=255-im;

 mrk=min(mrk,imc);

 imout=255-(imreconstruct(mrk,imc));

 imout=uint8(imout);

scripts/matlab_scripts/external/CMF3D_Cut_KE.m

function [u, erriter, i, timet] = CMF3D_Cut_KE(varargin)
%
% Performing the continuous max-flow algorithm to solve the
% continuous min-cut problem in 3D
%
% Usage: [u, erriter, i, timet] = CMF3D_Cut;
%
% Inputs: there is no input. All data and parameters can be
% changed within the program
%
% Outputs:
% - u: the final results u(x) in [0,1]. As the following paper,
% the global binary result can be available by threshholding u
% by any constant alpha in (0,1):
%
% Nikolova, M.; Esedoglu, S.; Chan, T. F.
% Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models
% SIAM J. App. Math., 2006, 66, 1632-1648
%
% - erriter: it returns the error evaluation of each iteration,
% i.e. it shows the convergence rate. One can check the algorithm
% performance.
%
% - i: gives the total number of iterations, when the algorithm converges.
%
% - timet: gives the total computation time.
%
% Example:
% >> [u, erriter, i, timet] = CMF3D_Cut;
%
% >> us = max(u, beta); % where beta in (0,1)
%
% >> figure, loglog(erriter,'DisplayName','erriterN');figure(gcf)
%
% >> isosurface(u,0.5), axis([1 rows 1 cols 1 heights]), daspect([1 1 1]);
%
%
% The original algorithm was proposed in the following papers:
%
% [1] Yuan, J.; Bae, E.; Tai, X.-C.
% A Study on Continuous Max-Flow and Min-Cut Approaches
% CVPR, 2010
%
% [2] Yuan, J.; Bae, E.; Tai, X.-C.; Boycov, Y.
% A study on continuous max-flow and min-cut approaches. Part I: Binary labeling
% UCLA CAM, Technical Report 10-61, 2010
%
% The mimetic finite-difference discretization method was proposed for
% the total-variation function in the paper:
%
% [1] Yuan, J.; Schn{\"o}rr, C.; Steidl, G.
% Simultaneous Optical Flow Estimation and Decomposition
% SIAM J.~Scientific Computing, 2007, vol. 29, page 2283-2304, number 6
%
% This software can be used only for research purposes, you should cite ALL of
% the aforementioned papers in any resulting publication.
%
% Please email cn.yuanjing@gmail.com for any questions, suggestions and bug reports
%
% The Software is provided "as is", without warranty of any kind.
%
%
% Version 1.0
% https://sites.google.com/site/wwwjingyuan/
%
% Copyright 2011 Jing Yuan (cn.yuanjing@gmail.com)
%

if isempty(varargin)
 nfi_data = load_nii('IM_0190_frame_01.nii');
 ur = double(nfi_data.img)/255;
 Grad=[];
elseif nargin==1
 ur=double(varargin{1})./double(max(max(max(varargin{1}))));
 Grad=[];
else
 ur=double(varargin{1})./double(max(max(max(varargin{1}))));
 Grad=double(varargin{2});
 a=1;
 b=0.4;
end

[rows, cols, heights]=size(ur);
szVol = rows*cols*heights;

% define the required parameters:
%
% - alpha: the penalty parameter to the total-variation term.
% For the case without incorporating image-edge weights, alpha is given
% by the constant everywhere. For the case with image-edge weights,
% alpha is given by the pixelwise weight function:
%
% For example, alpha(x) = b/(1 + a*| nabla f(x)|) where b and a are positive
% constants and |nabla f(x)| gives the strength of the local gradient.
%
% - cc: gives the step-size of the augmented Lagrangian method.
% The optimal range of cc is [0.2, 3].
%
% - errbound: the error bound for convergence.
%
% - numIter: the maximum iteration number.
%
% - steps: the step-size for the graident-projection step to the
% total-variation function. The optimal range of steps is [0.07,
% 0.12].
%

if isempty(Grad)
 alpha = 0.2*ones(rows,cols,heights);
else
 alpha=b./(1+a.*Grad);
end
cc = 0.35;
errbound = 5e-4;
numIter = 300;
steps = 0.11;

ulab(1) = 0.2;
ulab(2) = 0.7;

% build up the priori L_2 data terms
Cs = abs(ur - ulab(1));
Ct = abs(ur - ulab(2));

% set the starting values
u = double((Cs-Ct) >= 0);
ps = min(Cs, Ct);
pt = ps;

pp1 = zeros(rows, cols+1, heights);
pp2 = zeros(rows+1, cols, heights);
pp3 = zeros(rows, cols, heights+1);
divp = - pp2(1:rows,:,:) + pp2(2:rows+1,:,:) + pp1(:,2:cols+1,:) ...
 - pp1(:,1:cols,:) + pp3(:,:,2:heights+1) - pp3(:,:,1:heights);

erriter = zeros(numIter,1);

%tic
for i = 1:numIter

 % update the spatial flow field p = (pp1, pp2, pp3):
 % the following steps are the gradient descent step with steps as the
 % step-size.

 pts = divp - (ps - pt + u/cc);
 pp1(:,2:cols,:) = pp1(:,2:cols,:) + steps*(pts(:,2:cols,:) - pts(:,1:cols-1,:));
 pp2(2:rows,:,:) = pp2(2:rows,:,:) + steps*(pts(2:rows,:,:) - pts(1:rows-1,:,:));
 pp3(:,:,2:heights) = pp3(:,:,2:heights) + steps*(pts(:,:,2:heights) - pts(:,:,1:heights-1));

 % the following steps give the projection to make |p(x)| <= alpha(x)

 gk = sqrt((pp1(:,1:cols,:).^2 + pp1(:,2:cols+1,:).^2 + ...
 pp2(1:rows,:,:).^2 + pp2(2:rows+1,:,:).^2 + ...
 pp3(:,:,1:heights).^2 + pp3(:,:,2:heights+1).^2)*0.5);

 gk = double(gk <= alpha) + double(~(gk <= alpha)).*(gk ./ alpha);
 gk = 1 ./ gk;

 pp1(:,2:cols,:) = (0.5*(gk(:,2:cols,:) + gk(:,1:cols-1,:))).*pp1(:,2:cols,:);
 pp2(2:rows,:,:) = (0.5*(gk(2:rows,:,:) + gk(1:rows-1,:,:))).*pp2(2:rows,:,:);
 pp3(:,:,2:heights) = (0.5*(gk(:,:,2:heights) + gk(:,:,1:heights-1))).*pp3(:,:,2:heights);

 divp = - pp2(1:rows,:,:) + pp2(2:rows+1,:,:) + pp1(:,2:cols+1,:) ...
 - pp1(:,1:cols,:) + pp3(:,:,2:heights+1) - pp3(:,:,1:heights);

 % updata the source flow ps

 pts = divp - u/cc + pt + 1/cc;
 ps = min(pts, Cs);

 % update the sink flow pt

 pts = - divp + ps + u/cc;
 pt = min(pts, Ct);

 % update the multiplier u

 erru = cc*(divp + pt - ps);
 u = u - erru;

 % evaluate the avarage error

 erriter(i) = sum(sum(sum(abs(erru))))/szVol;

 if (erriter(i) < errbound)
 break;
 end
end

%toc
%timet = toc

%msg = sprintf('number of iterations = %u. \n', i);
%disp(msg);

%isosurface(lambda,0.5), axis([1 100 1 100 1 100]), daspect([1 1 1]);

scripts/matlab_scripts/external/crop_heart_v2016.m

function [cpD]=crop_heart_v2016(inD)
%----------------
%
%
%---------------- written by: Kjerst Engan
%
%last changes: March 2016 , incase no deliniation, check
% for field Mmyo in inD.
%
%--
plot =1; % if plot ==1, some results are plotted for illustration
% if no wish to plot, set to 0.

%
%
%--- We wish removing some areas around the edge of the image to
% focus on the heart. this is calledcropping The parameter is set here.
crop_method=1;
cco=128;

%%--------------------------------

nosl=length(inD.X);
[r,c]=size(inD.X{1});
emptyslice=zeros(nosl,1);
if isfield(inD,'Mmyo')

 minx=zeros(nosl,1);
 maxx=zeros(nosl,1);
 miny=zeros(nosl,1);
 maxy=zeros(nosl,1);

 for i=1:nosl
 [x,y]=find(inD.Mmyo{i});
 if isempty(x)
 emptyslice(i)=1;
 minx(i)=r/2;
 miny(i)=r/2;
 maxx(i)=c/2;
 maxy(i)=c/2;
 else
 minx(i)=min(x);
 miny(i)=min(y);
 maxx(i)=max(x);
 maxy(i)=max(y);
 end
 end
 minpt=[min(minx) min(miny)];
 %maxpt=[max(maxx) max(maxy)];

 if crop_method==1
 if cco>min(minpt)
 disp('Crop Error!')
 elseif cco > (r-max(maxx))
 disp('Crop Error!')
 elseif cco > (c-max(maxy))
 disp('Crop Error!')
 end
 end
end

if crop_method==1
 nr=r-2*cco;
 nc=c-2*cco;
 cpD.X=zeros(nr,nc,nosl);
 if isfield(inD,'Mmyo')
 cpD.Mmyo=zeros(nr,nc,nosl);
 cpD.Minf=zeros(nr,nc,nosl);
 end

 for i=1:nosl
 cpD.X(:,:,i)=inD.X{i}(cco+1:r-cco,cco+1:c-cco);
 if isfield(inD,'Mmyo')
 cpD.Mmyo(:,:,i)=inD.Mmyo{i}(cco+1:r-cco,cco+1:c-cco);
 cpD.Minf(:,:,i)=inD.Minf{i}(cco+1:r-cco,cco+1:c-cco);
 cpD.cent{i}(1)=inD.cent{i}(1)-cco;
 cpD.cent{i}(2)=inD.cent{i}(2)-cco;
 end
 end

else

end

scripts/matlab_scripts/external/dbread.m

function [Pt,drecs,bytes]=dbread(filepath)

d=dir(filepath);

N=length(d);

j=0;

for i=1:N

 idx=findstr('_',d(i).name);

 if isempty(idx)

 % d(i).name

 else

 j=j+1;

 Pt{j,1}=d(i).name(1:idx(1)-1);

 drecs{j,1}=d(i).name;

 bytes(j,1)=d(i).bytes;

 end

end

Pt=unique(Pt);

%drecs;

scripts/matlab_scripts/external/descfilt.m

function y=descfilt(FD,fc)

% y=descfil(FD,fc)

% Función que dado un descriptor de Fourier, elimina las altas frecuencias del

% mismo por encima de una frecuencia de corte fc. y devuelve el

% contorno suavizado.

% Sirve para evitar pequeñas rugosidades del contorno.

N=length(FD);

f=(0:(N-1))/N;

ind=find(f>0.5);

f(ind)=f(ind)-1;

ind=find(abs(f)>fc);

y=FD;

y(ind)=y(ind)*0;

y=ifft(y);

scripts/matlab_scripts/external/DS_JC_EndoEpi.m

function [DS,JC]=DS_JC_EndoEpi(out,Mmyo,MmyoEpi,MmyoEndo)

 [nr,nc,nsl]=size(Mmyo);

 SegMyo=(out.EpiMFD-out.EndoMFD);
 DS.MyoFDtot = EvaluaImagenDice(Mmyo(:,:,1:nsl),SegMyo(:,:,1:nsl));
 JC.MyoFDtot = EvaluaImagenJaccard(Mmyo(:,:,1:nsl),SegMyo(:,:,1:nsl));
 for i=1:nsl
 DS.MyoFD(i)=EvaluaImagenDice(Mmyo(:,:,i),SegMyo(:,:,i));
 JC.MyoFD(i) = EvaluaImagenJaccard(Mmyo(:,:,i),SegMyo(:,:,i));
 end

 %DS.Epitot = EvaluaImagenDice(MmyoEpi(:,:,1:nsl),out.EpiM(:,:,1:nsl));
 %JC.Epitot = EvaluaImagenJaccard(MmyoEpi(:,:,1:nsl),out.EpiM(:,:,1:nsl));
 DS.EpiFDtot = EvaluaImagenDice(MmyoEpi(:,:,1:nsl),out.EpiMFD(:,:,1:nsl));
 JC.EpiFDtot = EvaluaImagenJaccard(MmyoEpi(:,:,1:nsl),out.EpiMFD(:,:,1:nsl));

 for i=1:nsl
 %DS.Epi(i)=EvaluaImagenDice(MmyoEpi(:,:,i),out.EpiM(:,:,i));
 %JC.Epi(i) = EvaluaImagenJaccard(MmyoEpi(:,:,i),out.EpiM(:,:,i));
 DS.EpiFD(i)=EvaluaImagenDice(MmyoEpi(:,:,i),out.EpiMFD(:,:,i));
 JC.EpiFD(i) = EvaluaImagenJaccard(MmyoEpi(:,:,i),out.EpiMFD(:,:,i));
 end

 %DS.Endotot = EvaluaImagenDice(MmyoEndo(:,:,1:nsl),out.EndoM(:,:,1:nsl));
 %JC.Endotot = EvaluaImagenJaccard(MmyoEndo(:,:,1:nsl),out.EndoM(:,:,1:nsl));
 DS.EndoFDtot = EvaluaImagenDice(MmyoEndo(:,:,1:nsl),out.EndoMFD(:,:,1:nsl));
 JC.EndoFDtot = EvaluaImagenJaccard(MmyoEndo(:,:,1:nsl),out.EndoMFD(:,:,1:nsl));

 for i=1:nsl
 %DS.Endo(i)=EvaluaImagenDice(MmyoEndo(:,:,i),out.EndoM(:,:,i));
 %JC.Endo(i) = EvaluaImagenJaccard(MmyoEndo(:,:,i),out.EndoM(:,:,i));
 DS.EndoFD(i)=EvaluaImagenDice(MmyoEndo(:,:,i),out.EndoMFD(:,:,i));
 JC.EndoFD(i) = EvaluaImagenJaccard(MmyoEndo(:,:,i),out.EndoMFD(:,:,i));

 end

scripts/matlab_scripts/external/EndoEpi_v2014_04.m

function [out]=EndoEpi_v2014_04(X,Xorig,ubp,rcen,ccen,freq,PixSize)
%----------
% EndoEpi: finds Endocardium and epicardium masks and perimeters.
% calls: RadialEval2 (finds epicardium), RadialEndocard2 (finds
% endocard)
% Is called by: SegmentProb2.m
%
% Input: X From Iterative prob.map. scheme
% rcen: row center coordinates for the slices
% ccen: column center coordinates for the slices.
%
% [EpiPeri,EpiMask,EndoPeri,EndoMask]=EndoEpi_v2014_02(XtotF,X,rcen,ccen);

%out = EndoM % struct ut som inneholder disse bildene:
% EpiM
% EndoP
% EpiP
% EndoMFD
% EpiMFD
% EndoPFD
% EpiPFD
%
%
%-------
Smooth=2;
seFD=strel('square',4);

[nr,nc,nsl]=size(X);
sizeX=size(X);
Xu8=X./max(max(max(X)));
Xu8=uint8(Xu8.*255);
Xch=zeros(nr,nc,nsl);
XchO=zeros(nr,nc,nsl);
XO=zeros(nr,nc,nsl);
XOCl=zeros(nr,nc,nsl);

out=struct('EndoM',zeros(sizeX),'EpiM',zeros(sizeX),'EndoP',zeros(sizeX),...
 'EpiP',zeros(sizeX),'EndoMFD',zeros(sizeX),'EpiMFD',zeros(sizeX),...
 'EndoPFD',zeros(sizeX),'EpiPFD',zeros(sizeX));

for i=1:nsl
 Xch(:,:,i)=close_holes(Xu8(:,:,i));
 % Xh(:,:,i)=Xch(:,:,i)-Xu8(:,:,i);
 Ots_th2=multithresh(Xch(:,:,i),4);
 XchO(:,:,i)=imquantize(Xch(:,:,i),Ots_th2);

 Ots_th=multithresh(Xu8(:,:,i),4);
 XO(:,:,i)=imquantize(Xu8(:,:,i),Ots_th);
end

[out]=RadialEval2_2014_04(XchO,rcen,ccen,Smooth,ubp,Xorig);

%[out.EpiM,test,test2]=RadialEval2_2014_03(XchO,rcen,ccen,Smooth,ubp,Xorig);
% her er test = ind_asm (fra Radial_Eval)
%[ubp2D,ubp]=bp_GraphCut(Xorig,rcen,ccen,PixSize);

%[out.EpiM,test]=RadialEval2_2014_01(XchO,rcen,ccen,Smooth);
% her er test = test... (fra Radial_Eval)

%[EpiMask,cnew]=Epi_pol(XchO,rcen,ccen);

%[EpiMask_u,EpiPFD,EpiMask]=EpiMask_v2014_01(Xoriplg,XchO,rcen,ccen);

%[X00,pos]=RadValXch_v2014_01(XchO,rcen,ccen);
%weight=3;
%[EpiMask,EpiPFD,EpiFDMask]=EpiMask_GraphCut_v01(Xorig,XchO+X00.*weight,rcen,ccen);

%[out]=EpiMask_GraphCut_v01(Xorig,Xch,XchO,rcen,ccen,PixSize,probim);

%-------- Remove outliers
[rr,cc]=find(sum(out.EpiM,3)==1);
for k=1:length(rr)
 out.EpiM(rr(k),cc(k),:)=0;
end

[rr,cc]=find(sum(out.EpiM(:,:,2:(nsl-1)),3)==(nsl-2));
for k=1:length(rr)
 out.EpiM(rr(k),cc(k),2:(nsl-2))=1;
end

%-------------------

%
% se6=strel('disk',1);
 for i=1:nsl
 out.EpiP(:,:,i)=bwperim(out.EpiM(:,:,i),8);
% XOCl(:,:,i)=imclose(XO(:,:,i),se6);
 end
%
% %XendoOr=Xorig.*uint8(EpiMask);
% Xendo=XOCl.*out.EpiM;
% %[EndoPeri,EndoMask]=RadialEndocard(Xendo,MaxN,rcen,ccen,EpiMask);
% [out.EndoM]=RadialEndocard2_2014_v01(Xendo,ubp,rcen,ccen,Smooth);
%
%-------- Remove outliers Endo
[rr,cc]=find(sum(out.EndoM,3)==1);
for k=1:length(rr)
 out.EndoM(rr(k),cc(k),:)=0;
end
[rr,cc]=find(sum(out.EndoM(:,:,2:(nsl-1)),3)==(nsl-2));
for k=1:length(rr)
 out.EndoM(rr(k),cc(k),2:(nsl-2))=1;
end

%------------------
for i=1:nsl
 out.EndoP(:,:,i)=bwperim(out.EndoM(:,:,i),8);
end

for i=1:nsl
 out.EpiPFD(:,:,i)=logical(fourier_descritorfilt_KE(double(out.EpiP(:,:,i)),freq));
 out.EndoPFD(:,:,i)=logical(fourier_descritorfilt_KE(double(out.EndoP(:,:,i)),freq));
 EpiPFDTemp=imdilate(out.EpiPFD(:,:,i),seFD);
 EpiPFDTemp=imfill(EpiPFDTemp,'holes');
 out.EpiMFD(:,:,i)=imerode(EpiPFDTemp,seFD);
 EndoPFDTemp=imdilate(out.EndoPFD(:,:,i),seFD);
 EndoPFDTemp=imfill(EndoPFDTemp,'holes');
 out.EndoMFD(:,:,i)=imerode(EndoPFDTemp,seFD);
end

out.Xpm=X;
out.Xorig=Xorig;
out.ubp=ubp;

scripts/matlab_scripts/external/EvaluaImagenDice.m

function DS = EvaluaImagenDice(imagetrue,imageautomatica)

%

% Función que calcula el coeficiente de Dice, Si DS=1, la segmentacion

% es perfecta y si es cero la segmentacion no se parece en ningun pixel

% con la manual.

%

interseccion=0;

x=0;

y=0;

i=1;

while i<=length(imagetrue(:,1))

 j=1;

 while j<=length(imageautomatica(1,:))

 if imagetrue(i,j)>=1 || imageautomatica(i,j)>=1

 if imagetrue(i,j)==imageautomatica(i,j)

 interseccion=interseccion+1;

 end

 if imagetrue(i,j) == 1

 x=x+1;

 end

 if imageautomatica(i,j) == 1

 y=y+1;

 end

 end

 j=j+1;

 end

 i=i+1;

end

DS = 2*interseccion/(x+y);

end

scripts/matlab_scripts/external/EvaluaImagenJaccard.m

function JC = EvaluaImagenJaccard(imagetrue,imageautomatica,mm)

%

% Función que calcula el coeficiente de Jaccard, Si JC=1, la segmentacion

% es perfecta y si es mayor que 0.8 ya es bastante buena. Cero la

% segmentacion no se parece en ningun pixel con la manual.

%

%

interseccion=0;

x=0;

y=0;

i=1;

while i<=length(imagetrue(:,1))

 j=1;

 while j<=length(imageautomatica(1,:))

 if imagetrue(i,j)>=1 || imageautomatica(i,j)>=1

 if imagetrue(i,j)==imageautomatica(i,j)

 interseccion=interseccion+1;

 elseif imagetrue(i,j) == 1

 x=x+1;

 else

 y=y+1;

 end

 end

 j=j+1;

 end

 i=i+1;

end

JC = interseccion/(interseccion+x+y);

end

scripts/matlab_scripts/external/FindHeartCenter_2016.m

function [out]=FindHeartCenter_2016(in)

%----- scaling
out=in;

out.X=double(in.X);

if isfield(in,'GausSmooth')==0
 in.GausSmooth=1;
end

if in.GausSmooth==1
 if isfield(in,'h')==0
 in.h=7; end
 if isfield(in,'sigma')==0
 in.sigma=1.5; end
 h=fspecial('gaussian',in.h,in.sigma);
 out.X=imfilter(out.X,h);
end
MaxX=max(max(max(out.X)));
out.X=uint8((out.X./double(MaxX)).*255);

[rn,cn,nosl]=size(out.X);

%----- Preprocessing and Circulart Hough Transform

se=strel('square',10);
seg=strel('ball',3,3);
N=200;

max_met_gac=zeros(nosl,1);
Xac=uint8(zeros(rn,cn,nosl));
Icirc_met=zeros(rn,cn);
Gac_tot=zeros(rn,cn);
Gac=zeros(rn,cn,nosl);

for i=1:nosl

 Xcm=centro_morfologico(out.X(:,:,i),se); % morphological noise removal
 Xao=areaopen(Xcm,N);
 Xac(:,:,i)=Xao;

 Gac(:,:,i)=imdilate(Xac(:,:,i),seg)-imerode(Xac(:,:,i),seg);
 Gac(:,:,i)=imclearborder(Gac(:,:,i)); % remove all edges connected to the borders..
 Gac_tot=Gac_tot+double(Gac(:,:,i));

 % --- Circular Hough TRansform
 edgethreshold_value = 0.5;
 sensitivity_value = 0.99;
 [cen_gac1, radi_gac1, met_gac1] = imfindcircles(Gac(:,:,i),[20 35],'ObjectPolarity','dark', 'Sensitivity', sensitivity_value,'EdgeThreshold',edgethreshold_value);
 [cen_gac2, radi_gac2, met_gac2] = imfindcircles(Gac(:,:,i),[20 35],'ObjectPolarity','bright', 'Sensitivity', sensitivity_value,'EdgeThreshold',edgethreshold_value);
 [cen_gac3, radi_gac3, met_gac3] = imfindcircles(Gac(:,:,i),[35 50],'ObjectPolarity','dark', 'Sensitivity', sensitivity_value,'EdgeThreshold',edgethreshold_value);
 [cen_gac4, radi_gac4, met_gac4] = imfindcircles(Gac(:,:,i),[35 50],'ObjectPolarity','bright', 'Sensitivity', sensitivity_value,'EdgeThreshold',edgethreshold_value);
 cen_gac{i}=[cen_gac1; cen_gac2; cen_gac3 ; cen_gac4];
 met_gac{i}=[met_gac1; met_gac2; met_gac3; met_gac4];
 radi_gac{i}=[radi_gac1; radi_gac2; radi_gac3; radi_gac4];

 %-- OBS coordinates in cen_gac are in the form : column, row

 %-- Adding the metric of the circular hough transform at their actual
 %position making an image of added metrics as we propagate through the
 %slices. ----

 for j=1:length(met_gac{i})
 Icirc_met(floor(cen_gac{i}(j,2)),floor(cen_gac{i}(j,1)))=Icirc_met(floor(cen_gac{i}(j,2)),floor(cen_gac{i}(j,1)))+met_gac{i}(j);
 end;

 max_met_gac(i)=max(met_gac{i});
end

se_cm=strel('disk',5);
se_2=strel('disk',1);
Icm_close=imclose(Icirc_met,se_cm);
Icm_open=imopen(Icm_close,se_2);
Imfinal=imclearborder(Icm_open);
out.Imfin_sc=Imfinal./max(max(Imfinal)); % Scaled probability area for heart center
%[mr, mc]=find(Imfinal_sc==1); % The most probable points

%%-----------

[nr,nc,nsl]=size(out.X);
out.ProbHC=zeros(nr,nc,nsl);

for i=1:nsl
 out.ProbHC(:,:,i)=out.Imfin_sc.*double(out.X(:,:,i));
 [rr{i},cc{i}]=find(out.ProbHC(:,:,i)==max(max(out.ProbHC(:,:,i))));
 out.rcenter(i)=rr{i}(1);
 out.ccenter(i)=cc{i}(1);
end

%% ------ Plotting result if plotRes = 1
if isfield(in,'plot')==0
 in.plot=0;
end
if in.plot==1;
 for i=1:nsl
 figure(1);
 subplot(round(sqrt(nsl)),ceil(sqrt(nsl)),i)
 imshow(out.X(:,:,i),'Displayrange',[])
 hold on
 plot(out.ccenter(i),out.rcenter(i),'r*')

 end
end

scripts/matlab_scripts/external/fourier_descritorfilt_KE.m

function Maskfilt=fourier_descritorfilt_KE(Mask,freq)

%Mask is binary [0,1]

% freq = 0.04;

Maskfilt=zeros(size(Mask));

if isempty(find(Mask,1))

else

 B=mvbound(Mask);

 B=B{1};

 l1=length(B);

 if l1<5

 else

 l=2^nextpow2(l1);

 z1=remuestv(B,l);

 [nr,nc]=size(Mask);

 Z1=fft(z1);

 p1=descfilt(Z1,freq);

 P1(:,2)=max(1,min(round(imag(p1)),nc));

 P1(:,1)=max(1,min(round(real(p1)),nr));

 for(i=1:length(P1))

 Maskfilt(P1(i,1),P1(i,2))=1;

 end

 end

end

scripts/matlab_scripts/external/imgaussian.m

function I=imgaussian(I,sigma,siz)

% IMGAUSSIAN filters an 1D, 2D color/greyscale or 3D image with an

% Gaussian filter. This function uses for filtering IMFILTER or if

% compiled the fast mex code imgaussian.c . Instead of using a

% multidimensional gaussian kernel, it uses the fact that a Gaussian

% filter can be separated in 1D gaussian kernels.

%

% J=IMGAUSSIAN(I,SIGMA,SIZE)

%

% inputs,

% I: The 1D, 2D greyscale/color, or 3D input image with

% data type Single or Double

% SIGMA: The sigma used for the Gaussian kernel

% SIZE: Kernel size (single value) (default: sigma*6)

%

% outputs,

% J: The gaussian filtered image

%

% note, compile the code with: mex imgaussian.c -v

%

% example,

% I = im2double(imread('peppers.png'));

% figure, imshow(imgaussian(I,10));

%

% Function is written by D.Kroon University of Twente (September 2009)

%if(~exist('siz','var')), siz=sigma*1; end

if(sigma>0)

 % Make 1D Gaussian kernel

 x=-ceil(siz/2):ceil(siz/2);

 H = exp(-(x.^2/(2*sigma^2)));

 H = H/sum(H(:));

 % Filter each dimension with the 1D Gaussian kernels\

 if(ndims(I)==1)

 I=imfilter(I,H, 'same' ,'replicate');

 elseif(ndims(I)==2)

 Hx=reshape(H,[length(H) 1]);

 Hy=reshape(H,[1 length(H)]);

 I=imfilter(imfilter(I,Hx, 'same' ,'replicate'),Hy, 'same' ,'replicate');

 elseif(ndims(I)==3)

 if(size(I,3)<4) % Detect if 3D or color image

 Hx=reshape(H,[length(H) 1]);

 Hy=reshape(H,[1 length(H)]);

 for k=1:size(I,3)

 I(:,:,k)=imfilter(imfilter(I(:,:,k),Hx, 'same' ,'replicate'),Hy, 'same' ,'replicate');

 end

 else

 Hx=reshape(H,[length(H) 1 1]);

 Hy=reshape(H,[1 length(H) 1]);

 Hz=reshape(H,[1 1 length(H)]);

 I=imfilter(imfilter(imfilter(I,Hx, 'same' ,'replicate'),Hy, 'same' ,'replicate'),Hz, 'same' ,'replicate');

 end

 else

 error('imgaussian:input','unsupported input dimension');

 end

end

scripts/matlab_scripts/external/mask_data.m

function [Mmyokard,Minf,Mask]=mask_data(imS,xy,xys);

%-----------------------------------

% Input:

% imS er vektor med st�rrelsen p� bildet (image size).

% xy er cellestruktur som inneholder konturene, de innplottede punktene

% (cell structure with the points marked by the cardiologists for each slice)

% xys er cellestruktur som inneholder konturene, spline interpolert fra xy

% (spline interpolated contoures from the points marked by the cardiologists)

%

% Mmyokard er masken til hjertemuskel (binary mask of myocardium)

% Minf er masken til infarktomr�det (binary mask of infarction)

%-------------------------------------

N=imS(1);

M=imS(2);

Mask{1}=zeros(N,M);

Mask{2}=zeros(N,M);

Mask{3}=zeros(N,M);

Mmyokard=zeros(N,M);

Minf=zeros(N,M);

[ant_kont1 ant_kont2]=size(xy);

if max(ant_kont1, ant_kont2) < 2

else

 if ant_kont1<ant_kont2

 ant_kont=ant_kont2;

 t=1;

 else

 ant_kont=ant_kont1;

 t=0;

 end

 %Mask=cell(ant_kont,1);

 mi=0;

 if t==0

 for i=1:ant_kont

 [trash st]=size(xy{i});

 if st<5

 continue;

 end

 mi=mi+1;

 Mask{mi}=roipoly(N,M,xys{i}(1,:),xys{i}(2,:));

 end

 Mmyokard=Mask{1}-Mask{2};

 if mi==2

 Minf=zeros(N,M);

 elseif isempty(find(Mmyokard.*Mask{3}))

 Minf=Mmyokard;

 elseif mi==3

 Minf=Mask{3};

 else

 for j=3:mi

 Minf=Minf+Mask{j};

 end

 end

 Minf=Minf.*Mmyokard;

 else

 % [trash test]=size(xy{2});

 % if (sum(abs(xy{2}(:,1)-xy{2}(:,2)))==0) && (test == 2)

 % Mmyokard=roipoly(N,M,xys{1}(1,:),xys{1}(2,:));

 % xys_k=xys{1};

 %

 % else

 Mask{1}=roipoly(N,M,xys{1}(1,:),xys{1}(2,:));

 Mask{2}=roipoly(N,M,xys{2}(1,:),xys{2}(2,:));

 Mmyokard=Mask{1}-Mask{2};

 xys_k=xys{2};

 %end

 r(1,:)=(xys_k(1,:) -xys{3}(1,1));

 r(2,:)=(xys_k(2,:) -xys{3}(2,1));

 [trash index1]=min(sum(abs(r)));

 r(1,:)=(xys_k(1,:) -xys{3}(1,end));

 r(2,:)=(xys_k(2,:) -xys{3}(2,end));

 [trash index2]=min(sum(abs(r)));

 kont_inf=xys{3};

 ant= abs(index2-index1)-1;

 if index2>index1

 index=index2

 else

 index=index1;

 end

 for i=1:ant

 kont_inf=[kont_inf xys_k(:,index1-i)];

 end

 Mask{3}=roipoly(N,M,kont_inf(1,:),kont_inf(2,:));

 Minf=Mask{3}.*Mmyokard;

 end

end

% min(min(Minf))

% max(max(Minf))

% min(min(Mmyokard))

% max(max(Mmyokard))

Minf=abs(Minf);

Mmyokard=abs(Mmyokard);

scripts/matlab_scripts/external/mvbound.m

function [boundary, nparts] = mvbound(inputimage, neighborhood)

% MVBOUND Odredivanje kontura dijelova binarne slike.

% P = MVBOUND(BW, N) vra?ca niz P granica svakog objekta

% na slici. N odreduje povezanost to?caka, a mo?ze biti

% 4 ili 8. Ako je izostavljen, podrazumijeva se 8.

% [P, N] = MVBOUND(BW, N) vra?ca i broj objekata N za koje

% je odredena granica.

ni = nargin;

no = nargout;

error(nargchk(1,2,ni));

% Odredi susjedstvo (podrazumijeva se 4-susjedstvo)

if 2 == ni

 if ((4 ~= neighborhood) & (8 ~= neighborhood))

 error('Dozvoljeno je 4 ili 8 susjedstvo.');

 end

else

 neighborhood = 8;

end

% Postavi smjerove i pomak

if 8 == neighborhood

 direction = [[0 1]; [-1 1]; [-1 0]; [-1 -1];

 [0 -1]; [1 -1]; [1 0]; [1 1]];

 skip = 2;

else

 direction = [[0 1]; [-1 0]; [0 -1]; [1 0]];

 skip = 1;

end

% Ozna?cavanje nepovezanih dijelova

[labeled, nparts] = bwlabel(inputimage, neighborhood);

[x y] = size(labeled);

for i = 1 : nparts

 % Stvaramo matricu ve?cu za 2 reda i stupca

 image = zeros(x+2, y+2);

 % Uzimamo samo i-ti povezani dio

 image(2:x+1, 2:y+1) = (i == labeled);

 % Tra?zimo prvi element

 index = find(image);

 if ~isempty(index)

 % Element postoji

 n = 1;

 d = neighborhood - 1;

 [a b] = ind2sub(size(image),index(1));

 P(n) = a + b*sqrt(-1);

 % Provjeravamo da li se radi o izoliranoj to?cci

 notisolated = (1 ~= 1);

 for j = 1 : neighborhood

 next = [a b] + direction(j,:);

 if (1 == image(next(1), next(2)))

 notisolated = (1 == 1);

 break;

 end

 end

 % Pra?cenje granice

 while notisolated

 % Provjeravamo susjedstvo zadnje to?cke

 % Zakora?cimo vani

 d = mod(d + neighborhood - skip, neighborhood);

 for j = 1 : neighborhood

 % Odredimo koordinate susjeda u odabranom smjeru

 next = [a b] + direction(d + 1,:);

 % Provjeravamo da li je to?cka (p,q) ozna?cena

 if (1 == image(next(1),next(2)))

 % Nova to?cka je pronadena

 a = next(1);

 b = next(2);

 n = n + 1;

 P(n) = a + b*sqrt(-1);

 break;

 end

 % Ra?cunamo sljede?ci smjer

 d = mod(d + 1, neighborhood);

 end

 % Provjeravamo da li smo zatvorili konturu

 if (n > 2) & (P(n) == P(2)) & (P(n-1) == P(1))

 n = n - 2;

 break;

 end

 end

 boundary{i} = P(1:n) - 1 - sqrt(-1);

 end

end

scripts/matlab_scripts/external/organizeimage_KE.m

function out = organizeimage_KE(filepath,filepathDel,Pt, Exists)

%%% detecting the capture position of the images to select the columnar

%%% ones, sort the images based on the time that they have been taken

%%% according to SOPInstanceUID, which is a worldwide unique ID consist of

%%% date, time and other numberings to make it unique for each image.

% Inputs:

% filepath - file path for the images

% filepathDel - file path for the doctor's delineation files

% PatientN - list of all patient name and number of corresponding images

% PtNumber - Number of the patient to organise the images for

% Output: structure (out) with different fields:

% out.X - Image slices

% out.Mmyo - Image slices, myocardium mask

% out.Minf - Image slices, infarct mask

% out.Mask - Image slices, endocardium, epicardium, and infarct mask

% out.intersectpoint - Position of intersection point between endocardium and epicardium [xi, yi]

% out.patient - Pt

% %%% ----- created by Mahdieh Khanmohammadi and modified, January 2016. ------

%

% -----------

% -- Modified by K. Engan jan 2016,

% feb 2016

% mars 2016 - out.PixSize=PixSize(:,ind2);

% 15 mars 2016 - bugfix

% --------

% Some of the DICOM headers don't include the creation date in the

% SOPInstanceUID, for them Start and End is used:

Start = 40; % start of the time of acqusition in the string MediaStorageSOPInstanceUID

End = 49; % end of the time of acqusition in the string MediaStorageSOPInstanceUID

filename = dir(filepath);

Pnames = {filename.name};

%Pt = cell2mat(PatientN(1,PtNumber));

if iscell(Pt)

 Pt=cell2mat(Pt);

end

[indl]=strmatch([Pt,'_'],Pnames);

imList = Pnames(indl);

filename = Pt;

imageposition = [];

infoAll=[];

time=[];

number=[];

repeated = [];

filenameDel = dir(fullfile(filepathDel,'*.mat'));

filenameDel = {filenameDel.name};

if ~isempty(strfind(Pt,'_'))

 index = strfind(Pt,'_');

 Pt = Pt(1:index-1);

end

[inddel]=strmatch([Pt,'.'],filenameDel);

if ~isempty(inddel)

 load([filepathDel,Pt,'.mat']);

end

for i= 1:length(imList)

 tmp = [filepath,cell2mat(imList(i))];

 Y = dicomread(tmp);

 info = dicominfo(tmp);

 imageposition = [imageposition;info.InPlanePhaseEncodingDirection];

 t = info.MediaStorageSOPInstanceUID; % SOPInstanceUID is a worldwide unique ID consist of date, time and other numberings to make it unique for each image.

 if length(t)>=62

 str = info.InstanceCreationDate;

 indtime = strfind(t,str);

 t = str2num(t(indtime+8:end));

 elseif length(t)<62

 t = str2num(t(Start:End));

 end

 time= [time;t];

 number = [number;info.InstanceNumber];

 repeated = [repeated; info.LowRRValue];

end

indp = strmatch('COL', imageposition);% checking for the direction of the images to discard columnar images

time(indp) = [];

repeated(indp) = [];

mr = mode(repeated);% finding the repeated images to be discarded

indr = find(repeated ~= mr);

time(indr) = [];

[s,ind]= sort(time);% sorting the images based on their SOP Instance UID

i = 1:length(imList);

i(indp)= [];

i(indr)= [];

out.Exists = 0;

for j = 1:length(ind)

 tmp = [filepath,cell2mat(imList(i(ind(j))))];

 if ~isempty(inddel)

 list=who;

 [inddelname]=strmatch(imList(i(ind(j))),list);

 if ~isempty(inddelname)

 display('delineation Exists!')

 eval(['bn=',list{inddelname},';']);

 [Mmyokard{j},Minf{j},Mask{j}]=mask_data(bn.imS,bn.xy,bn.xys);% adding the doctor's delineation if they exist.

 X{j}=dicomread(tmp);

 info= dicominfo(tmp);

 PixSize(:,j)=info.PixelSpacing;

 xi = bn.xi;

 yi = bn.yi;

 intersectpoint{j} = [xi,yi];

 xcc{j}=bn.xcc; % added by KE

 end

 out.Exists = 1;

 elseif isempty(inddel)

 display('delineation is Empty!')

 X{j}=dicomread(tmp); % changed march 2016 --

 [nr,nc]=size(X{j});

 if nr==256

 X{j}= imresize(X{j}, [512 512]);

 out.resize=1;

 end

 info= dicominfo(tmp);

 PixSize(:,j)=info.PixelSpacing; % changed march 2016 --

 end

end

if ~isempty(inddel)

 indicator=zeros(1,length(Mask));

 for i=1:length(Mask)

 indicator(i)=isempty(Mask{i});

 end

 ind2=find(indicator==0);

 out.X = X(ind2);

 out.Mask = Mask(ind2);

 % ------ added feb 2016 -----

 % because for some data the 256x256 images are upsampled to 512 x 512 prior to manual deliniation.

 [nr,nc]=size(out.X{1});

 [nrm, ncm]=size(out.Mask{1}{1});

 if nr ~= nrm

 for i = 1:length(ind2)

 out.X{i}= imresize(out.X{i}, [nrm ncm]);

 out.resize=1;

 end

 end

 % -----------

 out.Mmyo = Mmyokard(ind2);

 out.Minf = Minf(ind2);

 out.intersectpoint = intersectpoint(ind2);

 out.cent=xcc(ind2);

 out.PixSize=PixSize(:,ind2); % changed march 2016 --

else

 ind=2:1:(length(X)-1);

 out.X=X(ind);

 out.PixSize=PixSize(:,ind);

end

%out.X = X(2:end); %If the doctor's delineation does not exist only the image will be saved in the output

%if ~isempty(inddel)% If the doctor's delineation exists image, Myokard mask and scar mask will be saved in the output

% out.Mask = Mask(2:end);

% out.Mmyo = Mmyokard(2:end);

% out.Minf = Minf(2:end);

% out.intersectpoint = intersectpoint(2:end);

% out.cent=xcc(2:end);

%end

out.patient=Pt;

scripts/matlab_scripts/external/plotHeart_2016.m

function plotHeart_2(X)
figure
if iscell(X)
 nsl=length(X);
 for i=1:nsl
 subplot(round(sqrt(nsl)),ceil(sqrt(nsl)),i)
 imshow(double(X{i}(:,:)),'Displayrange',[])
 end
else
 nsl=size(X,3);
for i=1:nsl
 subplot(round(sqrt(nsl)),ceil(sqrt(nsl)),i)
 imshow(double(X(:,:,i)),'Displayrange',[])
end
end

scripts/matlab_scripts/external/ProbPriorHeart.m

function [probim] = ProbPriorHeart(sizeX,rc,cc,varargin)
%UNTITLED4 Summary of this function goes here
% Detailed explanation goes here

%rc % rowindex, center
%cc % coulumn index, center

probim=zeros(sizeX(1),sizeX(2));

raddefault=30;
sigmadefault=sizeX(1)/10;

if nargin > 3
 rad=varargin{1};
else
 rad=raddefault;
end

if nargin > 4
 sigma=varargin{2};
else
 sigma=sigmadefault;
end

%---------------------

 for r=1:sizeX(1)
 for c=1:sizeX(2)

 d=sqrt((r-rc).^2+(c-cc).^2);
 probim(r,c)=normpdf(d,rad,sigma);
 end
 end
 probim=probim./max(max(probim));

% figure(9)
% imshow(probim,'Displayrange',[])

scripts/matlab_scripts/external/ProbPriorHeart_BP.m

function [probim] = ProbPriorHeart_BP(sizeX,rc,cc,varargin)
%UNTITLED4 Summary of this function goes here
% Detailed explanation goes here

%rc % rowindex, center
%cc % coulumn index, center

probim=zeros(sizeX(1),sizeX(2));

raddefault=0;
%sigmadefault=sizeX(1)/6;
sigmadefault=30;

if nargin > 3
 rad=varargin{1};
else
 rad=raddefault;
end

if nargin > 4
 sigma=varargin{2};
else
 sigma=sigmadefault;
end

%---------------------

 for r=1:sizeX(1)
 for c=1:sizeX(2)

 d=sqrt((r-rc).^2+(c-cc).^2);
 probim(r,c)=normpdf(d,rad,sigma);
 end
 end
 probim=probim./max(max(probim));

scripts/matlab_scripts/external/RadialEval2_2014_04.m

function [out]=RadialEval2_2014_04(X,rcen,ccen,SmoothParam,ubp,Xorig)
%---------------
% Finding Epicardium mask (output BW is endocardium mask for all slices)
% Is called by: EndoEpi.m
%
% X: Output from probability map image
% rcen: row center coordinates for the slices
% ccen: column center coordinates for the slices.
% SmoothParam: postprocparameter
%----------------

%SmoothParam =4;
[nr,nc,nsl]=size(X);
fact=359; % for illustrasjonens skyld endret fra 400 til 359
fi=0:2*pi/fact:2*pi;
lf=length(fi);
%Rfac=0.1;
Rfac=1;
rad=(0:Rfac:150);
Xtest=zeros(nr,nc,nsl);
%Xtest2=zeros(nr,nc,nsl);
BW=zeros(nr,nc,nsl);
RadInd=zeros(nsl,lf);
RadInd(:,1)=400;
RadInd2=RadInd;
RadIndbp=RadInd;
test=ones(length(fi),nsl);
test_ps=ones(length(fi),nsl);
%xind=zeros(nsl,length(fi));
%yind=zeros(nsl,length(fi));
ch=cell(nsl,1);
test2=zeros(length(fi),nsl);
minFac=30/Rfac;
RadVal=zeros(length(rad),length(fi));
RV_ubp=zeros(length(rad),length(fi));
RV_X=zeros(length(rad),length(fi));
RadIndEndo=zeros(nsl,lf);
testEndo=zeros(length(fi),nsl);
minEndoFac=20/Rfac;
MinMyoWidth=6;
MaxMyoWidth=12;

for i=1:nsl
 for j=1:length(fi)

 [xx,yy]=pol2cart(fi(j),rad);
 xr=round(xx);
 yr=round(yy);
 for l=1:length(xr)
 xrowind=max(1,min((yr(l)+rcen(i)),nr));
 xcolind=max(1,min((xr(l)+ccen(i)),nc));
 RadVal(l,j)=X(xrowind,xcolind,i);
 RV_ubp(l,j)=ubp(xrowind,xcolind,i);
 RV_X(l,j)=Xorig(xrowind,xcolind,i);
 end
 RV_X(:,j)=smooth(RV_X(:,j),10);
 %RadVal(:,j)=diag(X(yr+rcen(i),xr+ccen(i),i));
 for k=1:(length(RadVal(:,j))-1)
 if (RadVal(k+1,j)-RadVal(k,j)) < 0
 RadInd(i,j)=k+1;
 RadInd2(i,j)=k+1;
 RadIndbp(i,j)=k+1;
 test(j,i)=0; % setter test=0 når haar finnet kandidat punkt
 break;
 end
 end
 if (i>1 && test(j,i)==1)
 if test(j,i-1)==0
 RadInd(i,j)=RadInd(i-1,j);
 % test_ps(j,i)=0;
 test(j,i)=0;
 end
 end
 indbp=find(RV_ubp(:,j)>0.5,1,'last');
 if indbp>minEndoFac
 if test(j,i)==0
 if indbp>(RadInd(i,j)-MinMyoWidth)
 RadIndEndo(i,j)=RadInd(i,j)-MinMyoWidth;
 elseif indbp<(RadInd(i,j)+MaxMyoWidth)
 RadIndEndo(i,j)=RadInd(i,j)-MaxMyoWidth;
 else
 RadIndEndo(i,j)=indbp;
 end
 else
 RadIndEndo(i,j)=indbp;
 end
 elseif test(j,i)==0
 RadIndEndo(i,j)=RadInd(i,j)-MinMyoWidth;
 else
 RadIndEndo(i,j)=minEndoFac;
 testEndo(j,i)=1;
 end
 if test(j,i)==1
 %indbp=find(RV_ubp(:,j)>0.5,1,'last');
 if indbp>minFac
 RadIndbp(i,j)=indbp;
% [px,ip]=findpeaks(RV_X(:,j));
% sval=RV_X(1,j);
% mval=min(RV_X(1:floor(90/Rfac),j));
% ii=find((px<(sval+mval)*0.5),1,'first');
% if isempty(ii)
% ii=find((ip>indbp),1,'first');
% if isempty(ii)
% RadInd2(i,j)=RadIndbp(i,j);
% else
% RadInd2(i,j)=ip(ii);
% end
% else
% RadInd2(i,j)=ip(ii);
% end
 RadInd(i,j)=RadIndbp(i,j);
 RadIndEndo(i,j)=RadInd(i,j)-MinMyoWidth;
 test(j,i)=0;
 test2(j,i)=1;
 end
 end
 end

 %RadIndOrig(i,:)=RadInd(i,:);

 [ind]=find(test(:,i)==0);
 medRI=median(RadInd(i,ind));
 for j=1:length(fi)
 if RadInd(i,j)==0
 RadInd(i,j)=medRI;
 end
 end
 RadInd(i,:)=smooth(RadInd(i,:),SmoothParam);

 [indEn]=find(testEndo(:,i)==0);
 medRIEn=median(RadIndEndo(i,ind));
 for j=1:length(fi)
 if testEndo(j,i)==1
 RadIndEndo(i,j)=medRIEn;
 end
 end
 RadIndEndo(i,:)=smooth(RadIndEndo(i,:),SmoothParam);

end
%RadIndSm=RadInd;
RInd=RadInd;

[stest]=sum(test');
ind_asm=find(stest==nsl); % ingen kandidatpunkt for noen slicer for de
ind_rest=find(stest<nsl);
for i=1:nsl
 for j=1:length(fi)
 if test(j,i)==1 && stest(j)<nsl
 ind0= test(j,:)==0;
 if i==1
 RInd(i,j)=mean(RadInd(ind0,j))-15;
 elseif i==2
 RInd(i,j)=mean(RadInd(ind0,j))-10;
 else
 RInd(i,j)=mean(RadInd(ind0,j));
 end

 end
 end

% for j=1:length(fi)
% [xind(i,j),yind(i,j)]=pol2cart(fi(j),Rfac.*RInd(i,j)); % Used to be RadInd
% rowind=max(1,min((round(yind(i,j)+rcen(i))),nr));
% colind=max(1,min(round(xind(i,j)+ccen(i)),nc));
% Xtest(rowind,colind,i)=1;
% end
% Props=regionprops(Xtest(:,:,i),'convexhull');
% ch{i}=Props.ConvexHull;
% BW(:,:,i)=roipoly(Xtest(:,:,i),ch{i}(:,1),ch{i}(:,2));
end
RInd2=RInd;
for i=1:nsl
 for k=1:length(ind_asm) % vinkler uten kandidatpunkt for noen slicer
 ii=ind_asm(k);
 [vm,im]=min(abs(ind_rest-ii));
 RInd2(i,ii)=RInd(i,ind_rest(vm));
 end
 for j=1:length(fi)
 [xind,yind]=pol2cart(fi(j),Rfac.*RInd2(i,j)); % Used to be RadInd
 %rowind=max(1,min((round(yind+rcen(i))),nr));
 %colind=max(1,min(round(xind+ccen(i)),nc));
 %Xtest(rowind,colind,i)=1;
 repi(j)=max(1,min((round(yind+rcen(i))),nr));
 cepi(j)=max(1,min(round(xind+ccen(i)),nc));
 [xind,yind]=pol2cart(fi(j),Rfac.*RadIndEndo(i,j)); % Used to be RadInd
 rendo(j)=max(1,min((round(yind+rcen(i))),nr));
 cendo(j)=max(1,min(round(xind+ccen(i)),nc));

 end
 %Props=regionprops(Xtest(:,:,i),'convexhull');
 %ch{i}=Props.ConvexHull;
 %BW(:,:,i)=roipoly(Xtest(:,:,i),ch{i}(:,1),ch{i}(:,2));

 cepi=smooth(cepi,10);
 repi=smooth(repi,10);
 CHindEp=convhull(cepi',repi');

 cendo=smooth(cendo,10);
 rendo=smooth(rendo,10);
 CHindEn=convhull(cendo',rendo');
 out.EndoM(:,:,i)=roipoly(ubp(:,:,i),cendo(CHindEn)',rendo(CHindEn)');
 out.EndoP(:,:,i)=bwperim(out.EndoM(:,:,i));
 out.EpiM(:,:,i)=roipoly(ubp(:,:,i),cepi(CHindEp)',repi(CHindEp)');
 out.EpiP(:,:,i)=bwperim(out.EpiM(:,:,i));

end

%[Modell]=SliceCompSegm(BW);
%save Epitest_ RadIndOrig RadIndSm RInd2 Xtest rcen ccen test fi

scripts/matlab_scripts/external/remuestv.m

function z=remuest(B,n)

% z=remuest(y)

% Función para remuestrear el contorno ordenado de una figura con n puntos

% El primero NO está repetido

% los puntos del contorno estarán ordenados por la función bordea.m

% EL número de puntos debería ser potencia entera de 2 para calcular luego la FFT.

% y mayor que el perímetro de la máxima figura

% z: Es de lo que se debe calcular la FFT para hallar el descriptor de Fourier.

% El remuestreo se hace con longitudes de segmento iguales.

%y(:,1)=round(real(B));

%y(:,2)=round(imag(B));

%%z=y(:,1)+j*y(:,2);

B2=zeros(length(B)+1,1);

B2(1:length(B))=B;

B2(length(B)+1)=B(1);

z=zeros(1,n);

% perim=0;

% d=ones(length(B));

% for (i=1:length(B)-1)

% if (and((y(i+1,1)~=y(i,1)),(y(i+1,2)~=y(i,2))))

% d(i)=sqrt(2);

% perim=perim+sqrt(2);

% else

% perim=perim+1;

% end

% end

%B2=B(1:length(B)-1);

d=abs(diff(B2));

perim=sum(d);

salto=perim/(n-1);

z(1)=B(1);

porig=1;

for(k=2:n-1)

 %z(k-1)

 %z(porig+1)

distancia=abs(z(k - 1)-B2(porig+1));

%distancia

%pause

%k

%pause

if (distancia > salto)

% Pi_sig esta en la recta que une Pi_act con el Por_sig:

 fase = angle(B2(porig+1)-B2(porig));	

 inc_x = salto*cos(fase);

 inc_y = salto*sin(fase);

 z(k) = z(k-1) + (inc_x+j*inc_y);

else

 nuevosalto = salto - distancia;

 %if (nuevosalto > d(porig + 1))

 % nuevosalto = nuevosalto - d(porig+1);

 % porig=porig+1

 %end

 fase = angle(B2(porig+2)-B2(porig+1));

 inc_x = nuevosalto*cos(fase);

 inc_y = nuevosalto*sin(fase);

 %inc_x = salto*cos(fase);

 %inc_y = salto*sin(fase);

 	 z(k)=B(porig+1)+ inc_x+j*inc_y;

 porig = porig +1;

end

%z(k)

%pause

end

z(n)=z(1);

 end

scripts/matlab_scripts/external/Resize.m

function [Res]=Resize(cpD)

L = size(cpD.X)

for i = 1:L(3)
 Res.X{i} = imresize(cpD.X(:,:,i), [512 512]);
 Res.Minf{i} = imresize(cpD.Minf(:,:,i), [512 512]);
 Res.Mmyo{i} = imresize(cpD.Mmyo(:,:,i),[512 512]);

 Res.Minf_inv{i} = imcomplement(Res.Minf{i});
 Res.Mmyo{i} = imcomplement(Res.Minf{i});
end

scripts/matlab_scripts/external/Segment_prob_2016.m

 function [out]=Segment_prob_2016(in)
%[Mmyo,DS, JC,out] = Segment_prob3_v2014_03(Pt,sigma_prior,fx,freq,TrueHeart,WS,HC,Plot,rcen,ccen)
%
% Segment_prob_2016(cpD,hcD);
%
% ... Segment_prob3 : bruker ikke info fra f�rste og siste slice i det hele
% tatt annet enn til � finne heart center-
%
% Calls: Find_heartcenter(Pt); centro_morfologico(); ProbPriorHeart();
%
%-------- Parameters -----
% Parameter for fourier_descriptor smoothing of countures.
%
%
%
% written by K.Engan
%
% .. Last changes: March 2016
%
SumTest=0;
seprep=strel('square',3); % preprosesserings strucuturing el.
seFD=strel('square',4);

sigma2=0.5; % parameter for 3D gauss filt.
factor = 6; % parameter for 3D gauss filt.

pind=0.15; % parameter for midling over slicer

sigma_prior=15;
%fpi=2; % factor for prior prob im
if isfield(in,'fx')==0
 fx=2; % factor for prior X / no it,.
else
 fx=in.fx;
end
out.fx=fx;
if isfield(in,'freq')==0
 freq=0.01; % factor for prior X / no it,.
else
 freq=in.freq;
end
out.freq=freq;
%freq=0.01;
%seotsu=strel('square',3);
%secm=strel('disk',2);

%----------

%if nargin < 10

% if strcmp(HC,'GLC')
% [rcen,ccen,X,Mmyo]=Find_heartcenterV(Pt);
% else
% [rcen,ccen,X,Imfin_sc,T,Gac,Mmyo,PixSize]=Find_heartcenter_v2014_01(Pt);
% end
%else
% [X,Mmyo,PixSize]=pre_crop_v2014_01(Pt);
%end

X=in.X;
[nr,nc,nsl]=size(X);
if isfield(in,'Mmyo')
 Mmyo=in.Mmyo;
end

if isfield(in,'PixSize')==0
 PixSize=ones(2,nsl).*0.7422;
else
 PixSize=in.PixSize;
end

X=X(:,:,2:(nsl-1));

if isfield(in,'Mmyo')
 Mmyo=Mmyo(:,:,2:(nsl-1));
end
 rcen=in.rcenter(2:(nsl-1));
 ccen=in.ccenter(2:(nsl-1));
PixSize=PixSize(:,2:(nsl-1));
[nr,nc,nsl]=size(X);

% ---------Finn Myo masker for sammenligning
%se5=strel('disk',5);
if isfield(in,'Mmyo')
MmyoEpi=zeros(nr,nc,nsl);
MmyoEndo=zeros(nr,nc,nsl);
MmyoEpiP=zeros(nr,nc,nsl);
MmyoEndoP=zeros(nr,nc,nsl);
for i=1:nsl
 MmyoEpi(:,:,i)=imfill(Mmyo(:,:,i),'holes');
 if length(find(Mmyo(:,:,i)-MmyoEpi(:,:,i)))<100;
 TT=regionprops(Mmyo(:,:,i),'ConvexImage','BoundingBox');
 MmyoEpi(ceil(TT.BoundingBox(2)):ceil(TT.BoundingBox(2))+TT.BoundingBox(4)-1, ...
 ceil(TT.BoundingBox(1)):ceil(TT.BoundingBox(1))+TT.BoundingBox(3)-1,i)=TT.ConvexImage;
 end
 Labt=bwlabel(MmyoEpi(:,:,i)-Mmyo(:,:,i));
 if max(max(Labt))>1
 MmyoEndo(:,:,i)=Labt==Labt(rcen(i),ccen(i));
 else
 MmyoEndo(:,:,i)=Labt;
 end
 MmyoEpiP(:,:,i)=bwperim(MmyoEpi(:,:,i),8);
 MmyoEndoP(:,:,i)=bwperim(MmyoEndo(:,:,i),8);
end

%--- Test med SANN HJERTESENTER ---
%
if isfield(in,'TrueHeart')==0
 in.TrueHeart=0;
end
if in.TrueHeart==1
 for i=1:nsl
 Tepi=regionprops(MmyoEpi(:,:,i),'centroid','EquivDiameter');
 cepi(i,:)=Tepi.Centroid;
 end
 rcen=round(cepi(:,2)');
 ccen=round(cepi(:,1)');
end
end
% --

Xcm=zeros(nr,nc,nsl);
for i=1:nsl
 Xcm(:,:,i)=centro_morfologico(X(:,:,i),seprep);
end
maxXcm=max(max(max(Xcm)));
Xcmsc=double(Xcm)/double(maxXcm);
Xpre_inv=ones(nr,nc,nsl)-Xcmsc; % Invers av preprosessert inn-bilde

%%
% Use GraphCut 3D to find bloodpool based on previously found heart center.
% Find improved heartcenter based on this.
%

sizeX=size(X);
Xtemp=zeros(sizeX);
probim_bp=zeros(sizeX);
sigmaBP=ones(nsl,1).*50;
sigmaBP(1)=30;
sigmaBP(2)=40;
sigmaBP=sigmaBP.*(0.7422 ./ PixSize(1,:)');
for i=1:nsl
 [probim_bp(:,:,i)] = ProbPriorHeart_BP(sizeX,rcen(i),ccen(i),0,sigmaBP(i));
 Xtemp(:,:,i)=double(Xcm(:,:,i)).*probim_bp(:,:,i);
end
[ubp] = CMF3D_Cut_KE(Xtemp); % 3D graph cut for bloodpool area (maybe including scar)

Totbp=sum(ubp,3);
TT=Totbp>2;
TTBW=bwlabel(TT);
for j=1:max(max(TTBW))
 Temp=(TTBW==j);
 Arealbp(j)=sum(sum(Temp));
end
[Sizbp,Indbp]=max(Arealbp);
TT2=(TTBW==Indbp);
se=strel('disk',3);
BPMask=imdilate(TT2,se);
for i=1:nsl
 ubp(:,:,i)=ubp(:,:,i).*BPMask;
 SBP(i)=sum(sum(ubp(:,:,i)>0.3));
 if SBP(i)<1200
 bpTest(i)=0;
 else
 bpTest(i)=1;
 end
end

if sum(bpTest)>2
 for i=1:nsl
 [r,c]=find(ubp(:,:,i)>0.3);
 rcen2(i)=round(mean(r));
 ccen2(i)=round(mean(c));
 end
 rcm=floor(mean(rcen2(bpTest>0)));
 ccm=floor(mean(ccen2(bpTest>0)));
 ind=find(bpTest==0);
 rcen2(ind)=rcm;
 ccen2(ind)=ccm;
 rcen=rcen2;
 ccen=ccen2;
end

%%

%------------------
% Prior Probability
%------------------
%sigma=nr/8;
%rad=ones(nsl,1).*40;
%rad(1:5)=[15 20 25 30 35]';
%rad(nsl)=35;
sigma=sigma_prior; % typisk 15
rad=ones(nsl,1).*37;
rad(1:4)=[24 29 32 35]';

% 0.7422 er typisk pixel st�rrelse.
% korrigerer her tilfelle denne ikke stemmer.
rad=rad.*(0.7422 ./ PixSize(1,:)');

probim=zeros(sizeX);
for i=1:nsl
 [probim(:,:,i)]=ProbPriorHeart(sizeX,rcen(i),ccen(i),rad(i),sigma);
end

%-----------------
% Iterativ med gaussfiltrering i hver iterasjon
%-----------------

Xprob3D=probim;
for j=1:fx
 Xprob3D=Xprob3D.*Xpre_inv;
 Xprob3D=imgaussian(Xprob3D,sigma2,factor*sigma2);
 Xprob3D=Xprob3D./max(max(max(Xprob3D)));
end

%-----------------
% Iterativt med � ta hensyn til slicen foran og bak (men ikke filtrering i
% slicen
%-----------------

Xprob=probim;
Xprob2=Xprob;
for j=1:fx
 Xprob=Xprob.*Xpre_inv;
 Xprob2(:,:,1)=(1-pind)*Xprob(:,:,1)+pind*Xprob(:,:,2);
 for i=2:nsl-1
 Xprob2(:,:,i)=(1-2*pind)*Xprob(:,:,i)+pind*Xprob(:,:,i-1)+pind*Xprob(:,:,i+1);
 end
 Xprob2(:,:,nsl)=(1-pind)*Xprob(:,:,nsl)+pind*Xprob(:,:,nsl-1);
 Xprob2=Xprob2./max(max(max(Xprob2)));
 Xprob=Xprob2;
end

%-------------------
% Ikke ta hensyn til slicen foran og bak, bare forsterk modellen
% Med og uten 3D filtrering til slutt.
%-------------------

Xs=probim.*Xpre_inv.^fx;
Xs=Xs./max(max(max(Xs)));
%XsF=imgaussian(Xs,sigma2,factor*sigma2);

% Xscar=probim.^fpi.*Xcmsc.^fx;
% Xscar=Xscar./max(max(max(Xscar)));
% XscarF=imgaussian(Xscar,sigma2,factor*sigma2);

%---------------
% Legg sammen (Xs og Xprob), med og uten 3D filtrering
%---------------

Xpp=Xprob./(max(max(max(Xprob))));
Xss=Xs./(max(max(max(Xs))));
Xtot=Xpp+Xss;
Xtot=Xtot./max(max(max(Xtot)));
%--- 3D gauss filt

sigma3=1;
XtotF=imgaussian(Xtot,sigma3,factor*sigma3);
XtotF=XtotF./max(max(max(XtotF)));
%-----------

%--------- Finding Endo and epi from radial evaluation of prob.im.
%---

% [EpiFDPeri,EpiFDMask,EpiMask,EndoPeri,EndoMask]=EndoEpi_v2014_01(XtotF,X,rcen,ccen,PixSize,probim);

%%% pr�ve noe mer inne i denne,,, (16juli2014)
%[out,test]=EndoEpi_v2014_03(XtotF,X,ubp,rcen,ccen,freq,PixSize);
%%%
 [out]=EndoEpi_v2014_04(XtotF,X,ubp,rcen,ccen,freq,PixSize);

%
% if WS~=0
% if WS==1
% [EndoMaskWatersh]=Segment_watersh_comp(Pt,rcen,ccen,X,EpiFDMask);
% elseif WS==2
% [EndoMaskWatersh]=Segment_watersh_comp(Pt,rcen,ccen,XtotF.*255,EpiFDMask);
% end
% for j=1:nsl
% EndoWSPeri(:,:,j)=bwperim(EndoMaskWatersh(:,:,j));
% EndoWSFDPeri(:,:,j)=logical(fourier_descritorfilt_KE(double(EndoWSPeri(:,:,j)),freq));
% temp=imdilate(EndoWSFDPeri(:,:,j),seFD);
% EndoWSFDtemp=imfill(temp,'holes');
% EndoWSFDMask(:,:,j)=imerode(EndoWSFDtemp,seFD);
%
% end
% end
%

if isfield(in,'Mmyo')
 [out.DS,out.JC]=DS_JC_EndoEpi(out,Mmyo,MmyoEpi,MmyoEndo);
end
%[DS2,JC2]=DS_JC_EndoEpi(out2,Mmyo,MmyoEpi,MmyoEndo);
%[DSx,JCx]=DS_JC_EndoEpi(outx,Mmyo,MmyoEpi,MmyoEndo);

%if WS ~= 0
% DS.EndototWatershed=EvaluaImagenDice(MmyoEndo(:,:,1:nsl),EndoMaskWatersh(:,:,1:nsl));
% JC.EndototWatershed=EvaluaImagenJaccard(MmyoEndo(:,:,1:nsl),EndoMaskWatersh(:,:,1:nsl));
% DS.EndoWSFDtot=EvaluaImagenDice(MmyoEndo(:,:,1:nsl),EndoWSFDMask(:,:,1:nsl));
% JC.EndoWSFDtot=EvaluaImagenJaccard(MmyoEndo(:,:,1:nsl),EndoWSFDMask(:,:,1:nsl));
% for i=1:nsl

% DS.EndoWatershed(i) = EvaluaImagenDice(MmyoEndo(:,:,i),EndoMaskWatersh(:,:,i));
% JC.EndoWatershed(i) = EvaluaImagenJaccard(MmyoEndo(:,:,i),EndoMaskWatersh(:,:,i));
% DS.EndoWSFD(i) = EvaluaImagenDice(MmyoEndo(:,:,i),EndoWSFDMask(:,:,i));
% JC.EndoWSFD(i) = EvaluaImagenJaccard(MmyoEndo(:,:,i),EndoWSFDMask(:,:,i));
% end

%end
end

scripts/matlab_scripts/self_made/figures.m

clc

clear all

close all

%%%%%%%%%%%%% SEGMENTED HEART %%%%%%%%%%%%%%%%%%%%%%

%{

mask_epic = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/v3/Masks/Epicard/AEA063v3_epic_0004.png');

mask_endo = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/v3/Masks/Endocard/AEA063v3_endo_0004.png');

mask_mmyo = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/v3/Masks/Mmyo/AEA063v3_mmyo_0004.png');

mask_minf = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/v3/Masks/Minf/AEA063v3_minf_0004.png');

%}

%%

%{

pic2 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063v3_8bit_0004.png');

mask_epic = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/v3/Epicard/AEA063v3_epic_0004.png');

mask_endo = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/v3/Endocard/AEA063v3_end_0004.png');

mask_mmyo = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/v3/Mmyokard/AEA063v3_mmyo_0004.png');

mask_minf =

imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/v3/Minf/AEA063v3_minf_0004.png');

%}

clc

close all

image = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Matlab/Merged/Image_140.png');

pred = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Matlab/Merged/mask_140.png');

gt = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Matlab/Merged/GT_140.png');

%{

image = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Results/TAGv3/TAG009v3_00010.png');

gt = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Results/TAGv3/TAG009v3_minf_00010.png');

pred = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Results/TAGv3/mask_243.png');

%}

pred = rgb2gray(pred);

pred_tresh= pred;

pred_tresh(pred>100) = 1;

pred_tresh(pred<100) = 0;

pred = pred_tresh;

io = image;

iob_gt = bwperim(gt, 8);

iob_pred = bwperim(pred,8);

green = zeros(size(io, 1),size(io,2),3);

green(:,:,2) = 2;

red = zeros(size(io, 1), size(io,2),3);

red(:,:,1) = 2;

%blue = zeros(size(io, 1), size(io, 2), 3);

%blue(:,:,3) = 2;

figure, imshow(io);

hold all

h = imshow(green);

k = imshow(red);

%l = imshow(blue);

set(h,'AlphaData',iob_gt);

set(k,'AlphaData',iob_pred);

%set(l,'AlphaData',iob_pred);

%%%%%%%%%%%%%%%%%% IMAGES OF PATIENT %%%%%%%%%%%%%%%%%%%%%%%

%%

img1 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S1.png');

img2 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S2.png');

img3 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S3.png');

img4 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S4.png');

img5 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S5.png');

img6 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S6.png');

img7 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S7.png');

img8 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S8.png');

img9 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S9.png');

img10 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Binary_TAG009/S10.png');

%figure, imshow(img3);

%{

img1 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063_8bit_0001.png');

img2 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063_8bit_0002.png');

img3 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063_8bit_0003.png');

img4 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063_8bit_0004.png');

img5 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063_8bit_0005.png');

img6 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063_8bit_0006.png');

img7 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063_8bit_0007.png');

img8 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Images/8bit/AEA063_8bit_0008.png');

%}

%{

img1 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0001.png');

img2 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0002.png');

img3 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0003.png');

img4 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0004.png');

img5 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0005.png');

img6 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0006.png');

img7 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0007.png');

img8 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0008.png');

img9 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_0009.png');

img10 = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Images/8bit/HL064v3_00010.png');

%}

%multi = cat(3,img1,img2,img3,img4, img5, img6, img7, img8);

%montage(multi, 'Size', [2,4]);

figure, montage({img1, img2, img3, img5, img5, img6, img7, img8, img9, img10}, 'Size', [2,5]);

%%

%%%%%%%%%% GET SINGLE IMAGE %%%%%%%%%%%%%

%{

mmyo = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/Dataset_v3andv4/Dataset_v3_v4/Trainv3_v4/Masks/AEA063v3_minf_0005.png');

minf = imread('/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/PM/dataset/Train/Masks_grey_8/PM016_minf_0004.png');

mmyo = '/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/v3/Masks/Mmyo/'

minf = '/nfs/prosjekt/EKG/users/kregnes/Master/Data/Filer/Cropped/v3/Masks/Minf

figure, imshow(img, []);

%}

scripts/matlab_scripts/self_made/get_images_and_masks.m

%%% Smooth, crop, find heart center, scale
close all
clear all
clc

filepath='/nfs/prosjekt/EKG/data/wmri/';
filepathDel='/nfs/prosjekt/EKG/data/wmri/erlend/';

folderImg = 'Save images';
folderMinf = 'Save minf masks';
folderMmyo = 'Save mmyo masks';

[Pt,drecs,bytes]=dbread(filepath);

for i = 3:255 %number of IDs
 ID = string(Pt(i))
 inD = organizeimage_KE(filepath,filepathDel,Pt(i));

 %Crop files
 [cpD]=crop_heart_v2016(inD);

 %Find Epicardium and Endocardium - masks
 out=Segment_prob_2016(hcD);

 % IMAGES
 LX = size(cpD.X);
 for j = 1:LX(3)
 img = cpD.X(:,:,j);

 %Smooth and scale
 Ig = imgaussfilt(img,1.5);
 Res = imresize(Ig, [512 512]);
 %Save images
 baseFileName = sprintf(ID + '_000' + j + '.png', j);
 fullFileName = fullfile(folderImg, baseFileName);
 pic8 = uint8(Res);
 imwrite(pic8, fullFileName, 'png');
 end

 %Get minf
 LMinf = size(cpD.Minf);
 for k = 1:LMinf(3)
 minf = cpD.Minf(:,:,k);
 Res_minf = imresize(minf, [512 512]);
 baseFileNameMinf = sprintf(ID + '_minf_000' + k + '.png', k);
 fullFileNameMinf = fullfile(folderMinf, baseFileNameMinf);
 imwrite(Res_minf, fullFileNameMinf, 'png');
 end

 %Get Mmyo
 LMmyo = size(cpD.Mmyo);
 for l = 1:LMmyo(3)
 mmyo = cpD.Mmyo(:,:,l);
 Res_mmyo = imresize(mmyo, [512 512]);
 baseFileNameMmyo = sprintf(ID + '_mmyo_000' + l + '.png', l);
 fullFileNameMmyo = fullfile(folderMmyo, baseFileNameMmyo);
 imwrite(Res_mmyo, fullFileNameMmyo, 'png');
 end

 %{
 %Get epicardium
 LEpic = size(out.EpiMFD);
 for m = 1:LEpic(3)
 epic = out.EpiMFD(:,:,m);
 baseFileNameEpic = sprintf(ID + '_epic_000' + m + '.png', m);
 fullFileNameEpic = fullfile(folderEpic, baseFileNameEpic);
 imwrite(epic, fullFileNameEpic, 'png');
 end

 %Get Endocardium
 LEndo = size(out.EndoMFD);
 for n = 1:LEndo(3)
 endo = out.EndoMFD(:,:,n);
 baseFileNameEndo = sprintf(ID + '_endo_000' + n + '.png', n);
 fullFileNameEndo = fullfile(folderEndo, baseFileNameEndo);
 imwrite(endo, fullFileNameEndo, 'png');
 end
 %}

end

scripts/python_scripts/calc_balance.py

import numpy as np
from PIL import Image
import os

target_folder = '../Dataset'

class1_tot = 0
class2_tot = 0
class3_tot = 0
total_pix = 0
for element in os.listdir(target_folder):
 im = Image.open(target_folder + element)
 np_mask = np.asarray(im)
 np_mask = np.asarray(np_mask).copy()

 class1 = np.sum(np_mask == 0)
 class2 = np.sum(np_mask == 1)
 class3 = np.sum(np_mask == 2)

 class1_tot += class1
 class2_tot += class2
 class3_tot += class3

 total = 512 * 512
 total_pix += total

class1_y = class1_tot / total_pix
class2_y = class2_tot / total_pix
class3_y = class3_tot / total_pix

print(class1_y)
print(class2_y)
print(class3_y)

scripts/python_scripts/dice_loss.py

import torch
import torch.nn as nn
import numpy as np
#
class Dice(nn.Module):
 def __init__(self):
 super(Dice, self).__init__()

 def forward(self, output, target):
 smooth = 1

 num = output * target
 num = torch.sum(num, dim=3) #b,c,h
 num = torch.sum(num, dim=2) #b,c

 den1 = output * output
 den1 = torch.sum(den1, dim=3) #b,c,h
 den1 = torch.sum(den1, dim=2) #b,c

 den2 = target * target
 den2 = torch.sum(den2, dim=3) #b,c,h
 den2 = torch.sum(den2, dim=2) #b,c

 dice = (2*num + smooth) / (den1 + den2 + smooth)

 dice_loss = 1 - dice.mean()

 return dice_loss

https://github.com/rogertrullo/pytorch/blob/rogertrullo-dice_loss/torch/nn/functional.py#L708

scripts/python_scripts/loader.py

import torch
import numpy as np
import glob
from random import randint
from PIL import Image
import torch.utils.data as utils_data
from prepross import *

class DataLoad(utils_data.Dataset):

 def __init__(self, img_dir, mask_dir, train=False):

 # File Names
 self.img_dir = sorted(glob.glob(img_dir + str("/*png")))
 self.mask_dir = sorted(glob.glob(mask_dir + str("/*png")))
 self.train = train
 def __getitem__(self, index):
 ### Normalize ###
 mean = 0.199
 std = 0.144

 image = Image.open(self.img_dir[index])
 tmask = Image.open(self.mask_dir[index])

 np_image = np.asarray(image) / 255
 np_image = np.subtract(np_image, mean)
 np_image = np.true_divide(np_image, std)

 np_mask = np.asarray(mask).copy()
 np_mask[np_mask == 1] = 1
 np_mask[np_mask == 2] = 1

 ####### AUGMENTATION TRAINING########
 if self.train == True:
 # Flip and rotate
 num = randint(0, 8)
 np_image = flip(np_image, num)
 np_mask = flip(np_mask, num)

 np_image = np.expand_dims(np_image, axis=0)

 ### DICE ###
 # np_mask = np.expand_dims(np_mask, axis=0)

 t_image = torch.from_numpy(np_image).float()
 t_mask = torch.from_numpy(np_mask).long()

 ### DICE ###
 # t_mask = torch.from_numpy(np_mask).float()

 return t_image, t_mask

 def __len__(self):
 return len(self.img_dir)

scripts/python_scripts/main.py

import torch
import torch.optim as optim
import os
import random
from datetime import datetime
from loader import DataLoad
from utils import *
from UNet import *
from UNet_dropout import *
from skopt.space import Real\

from skopt import gp_minimize

################# LOAD DATA ####################
DATASET
image_train = '../Dataset_ferdig/Train/Images'
mask_train = '../Dataset_ferdig/Train/Masks'
#
image_val = '../Dataset_ferdig/Val/Images'
mask_val = '../Dataset_ferdig/Val/Masks'

############# PARAMETERS ##################
learning_rate = [0.1, 0.01, 0.001, 0.0001, 1e-5]

BAYESIAN
space = [Real(0.5, 1.5,
 name='lr'),
 Real(0.85, 0.99, name='scale')]

def objective(param):
 lr = param[0]
 scale = param[1]
 val = run(lr, scale) #run = main when doing bayesian optimization
 return val

def main(lr, i, drop):

 ### Initialize GPU ###
 def initialize_GPU():
 GPU = '2'
 os.environ['CUDA_VISIBLE_DEVICES'] = GPU

 if torch.cuda.is_available():
 device = torch.device("cuda")
 numb_devices = torch.cuda.device_count()
 print("\nNetwork will be run on cuda: {}".format(GPU))
 print("Network will be run on {} devices".format(numb_devices))

 else:
 device = torch.device("cpu")
 print("\nNetwork will be run on CPU")

 return GPU, device, numb_devices

 GPU, device, numb_devices = initialize_GPU()

 ###### CALCULATE WEIGHTS WHEN USING CROSS_ENTROPY######
 scale = [0, 0.5, 0.2, 0.8]
 if i == 0:
 weight = None
 scale = 0
 else:

 c1 = 0.97
 c2 = 0.03
 w1 = scale[i]/ c1
 w2 = (1 - scale[i]) / (c2)
 weights = [w1, w2]
 weight = torch.tensor(weights).to(device)
 scale = scale[i]

 ############# DIRECTORIES #################

 ### Without scaling ###
 Opt = "ADAM"
 model_dir_ver = '../ADAM/binary_{}_{}'.format(Opt,lr)
 model_name = "/ADAM_{}_{}.pth".format(Opt, lr)
 val_name = '/ADAM_val{}_{}.csv'.format(Opt, lr)
 train_name = '/ADAM_train_{}_{}.csv'.format(Opt, lr)
 model_number = '/ADAM_model_{}_{}.csv'.format(Opt, lr)

 # ### With scaling ###
 # Opt = "ADAM"
 # model_dir_ver = '../Binary_ADAM_new/binary_{}_{}_{}'.format(Opt,lr, scale)
 # model_name = "/binary_model_{}_{}_{}.pth".format(Opt, lr, scale)
 # val_name = '/binary_val_{}_{}_{}.csv'.format(Opt, lr, scale)
 # train_name = '/binary_train_{}_{}_{}.csv'.format(Opt, lr, scale)
 # model_number = '/binary_model_{}_{}_{}.csv'.format(Opt, lr, scale)
 #
 # ### With dropout ###
 # Opt = "ADAM"
 # model_dir_ver = '../ADAM_dropout_smaller_lr/binary_{}_{}_{}'.format(Opt,lr, drop)
 # model_name = "/drop_{}_{}_{}.pth".format(Opt, lr, drop)
 # val_name = '/val_{}_{}_{}.csv'.format(Opt, lr, drop)
 # train_name = '/train_{}_{}_{}.csv'.format(Opt, lr, drop)
 # model_number = '/model_{}_{}_{}.csv'.format(Opt, lr, drop)
 #

 try:
 os.makedirs(model_dir_ver)
 print("Creation of directory succeeded")
 except OSError:
 print("Creation of directory failed")

 train_name = model_dir_ver + train_name
 val_name = model_dir_ver + val_name
 model_number = model_dir_ver + model_number
 model_dir = model_dir_ver

 weight = None

 ### LOAD DATA ###
 train_set = DataLoad(image_train, mask_train, train = True)
 val_set = DataLoad(image_val, mask_val)

 train_loader = torch.utils.data.DataLoader(dataset = train_set, batch_size = 10, shuffle = True, num_workers = 4)

 val_loader = torch.utils.data.DataLoader(dataset = val_set,
 batch_size = 4, shuffle = True, num_workers = 2)

 ############### CHECK LOADERS ##################
 #
 # for i, (image, target) in enumerate(val_loader):
 # image = image.cpu()
 # npimg = npimg[0, 0, :, :]
 # target = target.cpu()

 # nptarget = target.numpy()
 # nptarget = nptarget[0, 0, :, :]
 # f, ax = plt.subplots(1,2)
 # ax[0].imshow(npimg)
 # ax[1].imshow(nptarget)
 # plt.show()

 ############# MODEL - LOSS FUNCTION - OPTIMIZER ##############
 n_class = 2 # Number of classes
 if weight == None:
 weight = weight
 else:
 weight = torch.tensor([weight]).to(device)

 weight = torch.tensor([weight]).to(device)

 model = UNet(1, n_class).to(device)

 optimizer = optim.Adam(model.parameters(), lr=lr)
 # optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, nesterov=True)

 # criterion = nn.CrossEntropyLoss(weight=weight)
 criterion = Dice()

 # ### DROP ###
 # model = UNet_drop(1, n_class, drop_rate=drop).to(device)
 # optimizer = optim.Adam(model.parameters(), lr=lr)
 # criterion = nn.CrossEntropyLoss()

 ### WITHOUT WEIGHTS ###
 # print("Start training, epochs: {}, lr: {}, dropout: {}".format(epochs, lr, drop))
 print("Start training, epochs: {}, lr: {}".format(epochs, lr))

 start_train = datetime.now()
 start_epoch = datetime.now()

 patience = 0
 val_loss_best = 100000000
 for epoch in range(epochs):
 model.train()

 train_loss, train_acc = train_model(model, train_loader, criterion, optimizer)

 end_epoch = datetime.now()
 total_epoch = end_epoch - start_epoch

 print('''Epoch {}, Train Loss {:.3f}, Train Acc {:.3f}, Elapsed time {}'''.format(epoch+1, train_loss,
 train_acc, total_epoch))
 ##SAVE HISTORY##
 values_train = [epoch + 1, train_loss, train_acc, total_epoch]
 history(values_train, train_name)

 if (epoch + 1) % 1 == 0:
 val_loss, val_acc = val_model(model, val_loader, criterion)
 print('''Epoch {}, Val_loss: {:.3f}, Val_acc{:.3f}'''.format(epoch+1, val_loss, val_acc))
 if val_loss < val_loss_best:
 patience = 0
 val_loss_best = val_loss
 save_model(model, optimizer, model_dir, epoch, model_number, model_name)
 elif val_loss >= val_loss_best:
 patience += 1

 ##SAVE HISTORY##
 values = [epoch + 1, val_loss, val_acc, total_epoch]
 history(values, val_name)

 if patience == 10:
 print("\nTraining stopped due to early stopping")
 break

 end_train = datetime.now()
 total_train = end_train - start_train

 print("Finished training, elapsed time: {}".format(total_train))

if __name__ == "__main__":
 epochs = 100
 scale = [0.2, 0.5, 0.8]
 for i in range(0, 10):
 lr = random.randint(1, 1000)*1e-6
 dropout = round(random.randint(5, 50) * 1e-2, 2)
 main(lr, dropout)

 ### BAYESIAN ###
 ### PRIOR ###
 x = [[0.5, 0.85], [0.5, 0.90], [0.5, 0.95],
 [1, 0.85], [1, 0.90], [1, 0.95],
 [1.5, 0.85], [1.5, 0.90], [1.5, 0.95],
]

 y = [0.41, 0.399, 0.386,
 0.4312, 0.427, 0.367,
 0.43, 0.40, 0.37,
]

 # objective(space)
 epochs = 100
 res_gp = gp_minimize(objective, space, n_calls=50, random_state=0, x0=x, y0=y)

scripts/python_scripts/metrics.py

import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score
from Confusion_matrix import *

def dice(output, target):
 output, target = output.data.cpu(), target.data.cpu()
 npoutput, nptarget = output.numpy(), target.numpy()

 npoutput = npoutput.flatten()
 nptarget = nptarget.flatten()

 intersection = np.logical_and(nptarget, npoutput)
 A = np.sum(npoutput)
 B = np.sum(nptarget)

 dice = 2 * (intersection.sum() + 1) / (A + B + 1)

 return dice

def jaccard(output, target):
 output, target = output.data.cpu(), target.data.cpu()
 npoutput, nptarget = output.numpy().astype(np.bool), target.numpy().astype(np.bool)

 intersection = np.logical_and(npoutput, nptarget)
 union = np.logical_or(npoutput, nptarget)
 jacc = intersection.sum() / float(union.sum())
 return jacc

def F1(output, target):
 output, target = output.data.cpu(), target.data.cpu()
 npoutput, nptarget = output.numpy().astype(np.bool), target.numpy().astype(np.bool)
 nptarget = nptarget.flatten()
 npoutput = npoutput.flatten()

 f1 = f1_score(nptarget, npoutput, average=None)
 return f1

def Conf(output, target):
 output, target = output.data.cpu(), target.data.cpu()
 npoutput, nptarget = output.numpy().astype(np.bool), target.numpy().astype(np.bool)
 nptarget = nptarget.flatten()
 npoutput = npoutput.flatten()
 conf = confusion_matrix(nptarget, npoutput)
 # print(conf)

 return conf

scripts/python_scripts/modules.py

import torch
import numpy as np
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matplotlib
import csv
from PIL import Image

def train_model(model, train_loader, criterion, optimizer):
 '''

 :param model: DNN
 :param train_loader: Training-samples
 :param criterion: Loss-function
 :param optimizer: Optimizer
 :return: train loss and train accuracy
 '''
 train_loss = 0.0
 acc = 0.0
 tot = 0.0
 for batch, (image, target) in enumerate(train_loader):
 tot += 1

 image, target = Variable(image.cuda()), Variable(target.cuda())
 optimizer.zero_grad() # Reset gradients
 output = model(image)# Predicted mask made by model
 loss = criterion(output, target) # Get loss, arguments: predicted mask and ground truth

 loss.backward() # Backward propagation, update weights
 optimizer.step()
 train_loss += loss.item() # Add loss for each sample in batch

 ######### ACCURACY ###########
 target_acc = target[:,0,:,:] #DICE
 # target_acc = target #CROSS

 _, preds = torch.max(output, 1)
 total = target.nelement()
 correct = torch.sum(preds == target_acc.data.long()).item()
 acc += 100 * (correct / total)

 train_acc = acc / tot # Get accuracy for the batch
 train_loss = train_loss / tot #Get train loss for the batch

 return train_loss, train_acc

def val_model(model, val_loader, criterion):
 '''
 :param model: DNN
 :param val_loader: Validation-samples
 :param criterion: Loss-function
 :return: val loss and val accuracy
 '''
 model.eval()
 val_loss = 0.0
 acc = 0.0
 tot = 0.0
 for batch, (image, target) in enumerate(val_loader):
 tot += 1
 image, target = Variable(image.cuda()), Variable(target.cuda())
 output = model(image)
 loss = criterion(output, target)
 # print(loss.item())
 val_loss += loss.item()

 ######### ACCURACY AND LOSS ###########
 target_acc = target[:,0,:,:]
 # target_acc = target
 _, preds = torch.max(output, 1)
 total = target.nelement()
 correct = torch.sum(preds == target_acc.data.long()).item()
 acc += 100 * (correct / total)

 epoch_acc = acc / tot
 epoch_loss = val_loss / tot

 return epoch_loss, epoch_acc

def history(values, file_name):
 with open(file_name, mode='a') as f:
 writer = csv.writer(
 f,
 delimiter=',',
 quotechar='"',
 quoting=csv.QUOTE_MINIMAL)
 writer.writerow(values)

def save_model(model, optimizer, model_save_dir, epoch, model_number, save_name):
 state = {'epoch': epoch+1,
 'model_dict': model.state_dict(),
 'optim_dict': optimizer.state_dict()}
 save_path = model_save_dir

 with open(model_number, mode='a') as file:
 writer = csv.writer(
 file,
 quotechar='"',
 quoting=csv.QUOTE_MINIMAL)
 writer.writerow(str(epoch+1))

 torch.save(state, save_path + save_name)

def save_images(img, target, pred, max, img_save, batch):

 img, target, pred, max = img.cpu(), target.cpu(), pred.cpu(), max.cpu()

 npimg = img.numpy()
 npimg = npimg[0, 0, :, :]

 # nptarget = np.transpose(target.numpy(), (1,2,0))
 # nptarget = nptarget[:, :, 0]
 #
 # nptarget = target.numpy()
 # nptarget = nptarget[0, 0, :, :]
 nptarget = np.transpose(target.numpy(), (2,3,1,0))
 nptarget = nptarget[:, :, 0, 0]

 nppred = pred.detach().numpy()
 nppred = nppred[0, 0, :, :]

 npmax = max.detach().numpy()
 npmax = npmax[0, :, :]

 f, ax = plt.subplots(1,4)
 ax[0].imshow(npimg)
 ax[0].set_title('Image')

 ax[1].imshow(nptarget)
 ax[1].set_title('Ground truth')

 ax[2].imshow(nppred)
 ax[2].set_title('Predicted')

 ax[3].imshow(npmax)
 ax[3].set_title('Max')

 f.savefig(img_save + '''/Image_{}.png'''.format(batch))
 plt.clf()

def visualize(img, target, pred, max = None):

 img, target, pred, max = img.cpu(), target.cpu(), pred.cpu(), max.cpu()

 npimg = img.numpy()
 npimg = npimg[0, 0, :, :]

 # nptarget = np.transpose(target.numpy(), (1,2,0))
 # nptarget = nptarget[:, :, 0]
 #
 # nptarget = target.numpy()
 # nptarget = nptarget[0, 0, :, :]

 nptarget = np.transpose(target.numpy(), (2,3,1,0))
 nptarget = nptarget[:, :, 0, 0]

 nppred = pred.detach().numpy()
 nppred = nppred[0, 0, :, :]

 npmax = max.detach().numpy()
 npmax = npmax[0, :, :]

 f, ax = plt.subplots(1,4)
 ax[0].imshow(npimg)
 ax[0].set_title('Image')

 ax[1].imshow(nptarget)
 ax[1].set_title('Ground truth')

 ax[2].imshow(nppred)
 ax[2].set_title('Predicted')

 ax[3].imshow(npmax)
 ax[3].set_title('Max')

 f.suptitle('RESULTS')
 plt.show()

def save_image(image, target, predicted, max, img_save=None, epoch=None, batch=None):
 predicted, target_data = predicted.data, target.data
 img, target, pred, max = image.cpu(), target.cpu(), predicted.cpu(), max.cpu()

 npimg = img.numpy()
 npimg = npimg[0, 0, :, :]

 nptarget = np.transpose(target.numpy(), (1,2,0))
 nptarget = nptarget[:, :, 0]

 nppred = np.transpose(pred.detach().numpy(), (2,3,1,0))
 nppred = nppred[:, :, 0, 0]

 npmax = max.detach().numpy()
 npmax = npmax[0, :, :]

 matplotlib.image.imsave(img_save + "mask_{}.png".format(batch), npmax)

 img = Image.open('image.png').convert('LA')
 img.save('greyscale.png')

scripts/python_scripts/normalization.py

import numpy as np
from PIL import Image
import glob

def normalization(path):
 img_dir = sorted(glob.glob(path + str("/*png")))
 mean = 0
 std = 0
 print(len(img_dir))
 for images in enumerate(img_dir):
 img = Image.open(images[1])
 np_image = np.asarray(img) / 255
 mean += np.mean(np_image, axis=(0,1))
 std += np.std(np_image)

 mean = mean / len(img_dir)
 std = std / len(img_dir)
 return mean, std

if __name__ == "__main__":
 path = '/zfs1/home/kregnes/Dataset_ferdig/Train/Images'
 mean, std = normalization(path)
 print(mean, std)

scripts/python_scripts/performance.py

import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score
from Confusion_matrix import *

def dice(output, target):
 '''
 :param output: prediction
 :param target: ground truth
 :return: dice score
 '''
 output, target = output.data.cpu(), target.data.cpu()
 npoutput, nptarget = output.numpy(), target.numpy()

 npoutput = npoutput.flatten()
 nptarget = nptarget.flatten()
 intersection = np.logical_and(nptarget, npoutput)
 A = np.sum(npoutput)
 B = np.sum(nptarget)

 dice = 2 * (intersection.sum() + 1) / (A + B + 1)

 return dice

def jaccard(output, target):
 '''
 :param output: prediction
 :param target: ground truth
 :return: jaccard index
 '''
 output, target = output.data.cpu(), target.data.cpu()
 npoutput, nptarget = output.numpy().astype(np.bool), target.numpy().astype(np.bool)
 intersection = np.logical_and(npoutput, nptarget)
 union = np.logical_or(npoutput, nptarget)
 jacc = intersection.sum() / float(union.sum())

 return jacc

def F1(output, target):
 '''
 :param output: prediction
 :param target: ground truth
 :return: F1-score
 '''
 output, target = output.data.cpu(), target.data.cpu()
 npoutput, nptarget = output.numpy().astype(np.bool), target.numpy().astype(np.bool)
 nptarget = nptarget.flatten()
 npoutput = npoutput.flatten()
 f1 = f1_score(nptarget, npoutput, average=None)

 return f1

def Conf(output, target):
 '''
 :param output: prediction
 :param target: ground truth
 :return: Confusion matrix
 '''
 output, target = output.data.cpu(), target.data.cpu()
 npoutput, nptarget = output.numpy().astype(np.bool), target.numpy().astype(np.bool)
 nptarget = nptarget.flatten()
 npoutput = npoutput.flatten()
 conf = confusion_matrix(nptarget, npoutput)

 return conf

scripts/python_scripts/prepross.py

import numpy as np

def flip(image, num):
 '''
 :param image: image or mask to be augmented
 :param num: random number between 0 and 9
 :return: augmented image/mask
 '''

 if num == 0:
 #vertical
 image = np.flip(image, axis=0).copy()

 elif num == 1:
 #horizontal
 image = np.flip(image, axis=1).copy()

 elif num == 2:
 #vertical & horizontal
 image = np.flip(image, axis=0).copy()
 image = np.flip(image, axis=1).copy()

 else:
 #no change
 image = image

 return image

scripts/python_scripts/test.py

import torch
import os
import csv
import numpy as np
import matplotlib.pyplot as plt
from loader import DataLoad
from loader_dice import DataLoad_dice
from utils import *
from torch.autograd import Variable
from UNet import *
from UNet_dice import *
from UNet_dice_dropout import *
from performance import *

Initialize GPU
GPU = '0'
os.environ['CUDA_VISIBLE_DEVICES'] = GPU

if torch.cuda.is_available():
 device = torch.device("cuda")
 numb_devices = torch.cuda.device_count()
 print("\nNetwork will be run on cuda: {}".format(GPU))
 print("Network will be run on {} devices".format(numb_devices))
else:
 device = torch.device("cpu")
 print("\nNetwork will be run on CPU")

####### DIRECTORIES ##########
images_test = '../Dataset_ferdig/Test/Images' # Directory for test images
masks_test = '../Dataset_ferdig/Test/Masks' # Directory for test masks

images_val = '../Dataset_ferdig/Val/Images' # Directory for val images
masks_val = '../Dataset_ferdig/Val/Masks' # Directory for val masks

dir = '../ADAM_dice/' # Directory for folders with models

img_save = dir + 'masks_test'

files = []
for element in os.listdir(dir):
 files.append(element)
files_s = sorted(files)

def main(i):

 folder = files_s[i]
 name = folder[7:]
 lr = name.split('_')
 lr = lr[1] # learning rate
 drop = float(name[-3:]) #Drop rate
 print(lr)

 model_path = folder + '/dice_model_' + name +'.pth' #Path for model
 model_dir = dir + model_path
 perf_scores = '/validation_model.csv'

 file_name = dir + perf_scores

 test_set = DataLoad(images_test, masks_test)
 test_loader = torch.utils.data.DataLoader(dataset = test_set,
 batch_size = 1, shuffle = False, num_workers = 2)

 n_class = 2
 model = UNet_dropout(1, n_class,drop_rate=drop).to(device)
 # model = UNet(1, n_class).to(device)

 checkpoint = torch.load(model_dir)
 model.load_state_dict(checkpoint["model_dict"])
 model.eval()

 acc = []
 tot = 0.0
 dice_sum = []
 jaccard_sum = []
 Conf_sum = 0.0
 F1_c1 = []
 F1_c2 = []

 for batch, (image, target) in enumerate(test_loader):
 tot += 1
 image, target = Variable(image.cuda()), Variable(target.cuda())
 output = model(image)

 ## PIXEL ACCURACY ##
 _, preds = torch.max(output, 1)
 total = target.nelement()
 correct = torch.sum(preds == target.data.long()).item()
 acc.append(100 *(correct/total))

 ## DICE SCORE ###
 dice_score = dice(preds, target)
 dice_sum.append(dice_score)

 ## JACCARD ##
 jacc_score = jaccard(preds, target)
 jaccard_sum.append(jacc_score)

 ## F1 SCORE ##
 F1_score = F1(preds, target)
 F1_c1.append(F1_score[0])

 if len(F1_score) == 1:
 F1_c2.append(0)
 else:
 F1_c2.append(F1_score[1])

 ## CONFUSION MATRIX ##
 Conf_score = Conf(preds, target)
 Conf_sum += Conf_score

 # visualize(image, target, output, preds)
 # save_images(image, target, preds, img_save, batch)
 # save_image(image, target, output, preds, img_save, batch)

 acc_mean = np.mean(acc)
 acc_std = np.std(acc)
 dice_mean = np.mean(dice_sum)
 print(dice_mean)
 dice_std = np.std(dice_sum)
 jaccard_mean = np.mean(jaccard_sum)
 jaccard_std = np.std(jaccard_sum)
 F1_mean_c1 = np.mean(F1_c1)
 F1_mean_c2 = np.mean(F1_c2)
 F1_std_c1 = np.std(F1_c1)
 F1_std_c2 = np.std(F1_c2)
 Conf_sum = Conf_sum / tot

 values = [name, acc_mean, acc_std, dice_mean, dice_std, jaccard_mean, jaccard_std, F1_mean_c1, F1_std_c1, F1_mean_c2, F1_std_c2, Conf_sum]

 with open(file_name, mode='a') as f:
 writer = csv.writer(
 f,
 delimiter=',',
 quotechar='"',
 quoting=csv.QUOTE_MINIMAL)
 writer.writerow(values)

if __name__ == "__main__":
 #N = number of models in folder
 for i in range(0, N):
 main(i)

scripts/python_scripts/unet.py

import torch.nn as nn
import torch

class UNet(nn.Module):
 def __init__(self, num_ch=1, num_classes=None):
 '''
 :param num_ch: Number of channels in image
 :param num_classes: Number of classes to predict
 '''

 super(UNet, self).__init__()

 ### ENCODER ###
 self.down1 = nn.Sequential(Conv(num_ch, 64))
 self.down2 = nn.Sequential(nn.MaxPool2d(kernel_size=2),
 Conv(64, 128))
 self.down3 = nn.Sequential(nn.MaxPool2d(kernel_size=2),
 Conv(128, 256))
 self.down4 = nn.Sequential(nn.MaxPool2d(kernel_size=2),
 Conv(256,512))
 self.down5 = nn.Sequential(nn.MaxPool2d(kernel_size=2),
 Conv(512, 1024))

 ### DECODER ###
 self.up1 = Upconv(1024, 512)
 self.upconv1 = Conv(1024, 512)
 self.up2 = Upconv(512, 256)
 self.upconv2 = Conv(512, 256)
 self.up3 = Upconv(256, 128)
 self.upconv3 = Conv(256, 128)
 self.up4 = Upconv(128, 64)
 self.upconv4 = Conv(128, 64)

 ### OUTPUT LAYER ###
 self.final = nn.Sequential(nn.Conv2d(64,
 num_classes,
 kernel_size=1))#,
 #nn.Softmax2d()) # When using dice loss

 def forward(self, input):
 down1 = self.down1(input)
 down2 = self.down2(down1)
 down3 = self.down3(down2)
 down4 = self.down4(down3)
 down5 = self.down5(down4)

 up1 = self.up1(down5, down4)
 up1 = self.upconv1(up1)
 up2 = self.up2(up1, down3)
 up2 = self.upconv2(up2)
 up3 = self.up3(up2, down2)
 up3 = self.upconv3(up3)
 up4 = self.up4(up3, down1)
 up4 = self.upconv4(up4)

 output = self.final(up4)
 return output

class Conv(nn.Module):
 def __init__(self, in_feat, out_feat):
 super(Conv, self).__init__()

 self.conv1 = nn.Sequential(nn.Conv2d(in_feat, out_feat,
 kernel_size=3,
 stride=1,
 padding=1),
 nn.BatchNorm2d(out_feat),
 nn.ReLU())
 self.conv2 = nn.Sequential(nn.Conv2d(out_feat, out_feat,
 kernel_size=3,
 stride=1,
 padding=1),
 nn.BatchNorm2d(out_feat),
 nn.ReLU())

 def forward(self, input):
 output = self.conv1(input)
 output = self.conv2(output)
 return output

class Upconv(nn.Module):
 def __init__(self, in_feat, out_feat):
 super(Upconv, self).__init__()

 self.up = nn.UpsamplingBilinear2d(scale_factor=2)
 self.deconv = nn.ConvTranspose2d(in_feat, out_feat,
 kernel_size=2, stride=2)

 def forward(self, input, output_down):
 output = self.deconv(input)
 out = torch.cat([output_down, output], 1)
 return out

scripts/python_scripts/unet_dropout.py

import torch.nn as nn
import torch

class UNet_drop(nn.Module):
 def __init__(self, num_ch=1, num_classes=None, drop_rate=None):
 '''

 :param num_ch: channels of image
 :param num_classes: classes to predict
 :param drop_rate: drop rate
 '''

 super(UNet_drop, self).__init__()
 self.drop = nn.Dropout2d(p=drop_rate)

 self.down1 = nn.Sequential(Conv(num_ch, 64, drop_rate))
 self.down2 = nn.Sequential(nn.MaxPool2d(kernel_size=2), nn.Dropout2d(p=drop_rate),
 Conv(64, 128, drop_rate))
 self.down3 = nn.Sequential(nn.MaxPool2d(kernel_size=2), nn.Dropout2d(p=drop_rate),
 Conv(128, 256, drop_rate))
 self.down4 = nn.Sequential(nn.MaxPool2d(kernel_size=2), nn.Dropout2d(p=drop_rate),
 Conv(256,512, drop_rate))
 self.down5 = nn.Sequential(nn.MaxPool2d(kernel_size=2), nn.Dropout2d(p=drop_rate),
 Conv(512, 1024, drop_rate))

 self.up1 = Upconv(1024, 512)
 self.upconv1 = Conv_up(1024, 512)
 self.up2 = Upconv(512, 256)
 self.upconv2 = Conv_up(512, 256)
 self.up3 = Upconv(256, 128)
 self.upconv3 = Conv_up(256, 128)
 self.up4 = Upconv(128, 64)
 self.upconv4 = Conv_up(128, 64)

 self.final = nn.Sequential(nn.Conv2d(64,
 num_classes,
 kernel_size=1))#, nn.Softmax2d()

 def forward(self, input):
 down1 = self.down1(input)
 down2 = self.down2(down1)
 down3 = self.down3(down2)
 down4 = self.down4(down3)
 down5 = self.down5(down4)

 up1 = self.up1(down5, down4)
 up1 = self.upconv1(up1)
 up2 = self.up2(up1, down3)
 up2 = self.upconv2(up2)
 up3 = self.up3(up2, down2)
 up3 = self.upconv3(up3)
 up4 = self.up4(up3, down1)
 up4 = self.upconv4(up4)

 output = self.final(up4)

 return output

ORIGINAL CONVOLUTIONAL LAYERS
class Conv_up(nn.Module):
 def __init__(self, in_feat, out_feat):
 super(Conv_up, self).__init__()

 self.conv1 = nn.Sequential(nn.Conv2d(in_feat, out_feat,
 kernel_size=3,
 stride=1,
 padding=1),
 nn.BatchNorm2d(out_feat),
 nn.ReLU())
 self.conv2 = nn.Sequential(nn.Conv2d(out_feat, out_feat,
 kernel_size=3,
 stride=1,
 padding=1),
 nn.BatchNorm2d(out_feat),
 nn.ReLU())

 def forward(self, input):
 output = self.conv1(input)
 output = self.conv2(output)
 return output

DROPOUT CONVOLUTIONAL LAYERS
class Conv(nn.Module):
 def __init__(self, in_feat, out_feat, drop_rate):
 super(Conv, self).__init__()

 self.drop = nn.Dropout2d(p=drop_rate)

 self.conv1 = nn.Sequential(nn.Conv2d(in_feat, out_feat,
 kernel_size=3,
 stride=1,
 padding=1),
 nn.BatchNorm2d(out_feat),
 nn.ReLU())
 self.conv2 = nn.Sequential(nn.Conv2d(out_feat, out_feat,
 kernel_size=3,
 stride=1,
 padding=1),
 nn.BatchNorm2d(out_feat),
 nn.ReLU())

 def forward(self, input):
 output = self.conv1(input)
 output = self.drop(output)
 output = self.conv2(output)
 return output

class Upconv(nn.Module):
 def __init__(self, in_feat, out_feat):
 super(Upconv, self).__init__()

 self.up = nn.UpsamplingBilinear2d(scale_factor=2)
 self.deconv = nn.ConvTranspose2d(in_feat, out_feat,
 kernel_size=2, stride=2)

 def forward(self, input, output_down):
 output = self.deconv(input)
 out = torch.cat([output_down, output], 1)
 return out

