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Abstract

The world of business management is largely populated with data warehouses as
a single source of truth. However, in recent years a shift towards the data ori-
gin known as data streams have arisen. Corporater, which is one of the leading
companies in delivering business management solutions, acknowledges this trend
and wants to investigate their possibilities in supporting data streams. The data
streams are most valuable when they are processed and analyzed by a stream pro-
cessor. This is because the singular events by them selves are less meaningful than a
collection of manipulated events. Hence, part of the investigation includes finding
the most suitable stream processor for Corporater. Further, it also must be proven
that it is possible for stream processors to integrate with Corporater’s systems and
values.

Through this thesis, we aim to provide this investigation for Corporater. We achieve
this by evaluating and developing a prototype which abides Corporater’s require-
ments and environment. Furthermore, the evaluation provides a general overview
of the leading architectures and processors for data streams from a business per-
spective, which conclusively recommends a solution for Corporater. Additionally,
the generality of this evaluation allows for beneficial value of other businesses in a
similar situation.

Based on the recommendation from the evaluation, we create the prototype. This
prototype is largely focused around one of Corporater’s core concepts. This is the
‘Business-In-Control’ concept, which involves having the business experts manip-
ulate and visualize data without the need of a developer. Thus, we implement the
prototype in a generalized way that enables configuration from a different environ-
ment. This generality enables the prototype to be compatible with any type of GUI
or API that are able to send configuration to the prototype. We test the prototype
by performing an experiment. The experiment proves to be successful in creating
an end-to-end connection with the data streams and Corporater’s software. Hence,
also proving that it is possible for today’s stream processors to integrate with Cor-
porater’s system and values.
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Chapter 1

Introduction

1.1 Motivation

Businesses around the world have huge amounts of data constantly being stored
and analyzed in large databases. All this data is of huge value for the company to
see progress and discover issues. In many of these cases, analyzing all this data
takes a considerable amount of time. Consequently, some businesses have no time
to act on the analyzed data before its too late. Data streams and stream processing
can in these cases become the solution.

Data streams can be as an unbounded flow of information. This information can
vary in both size and number, where businesses such as Amazon, Google and
LinkedIn can use this information for acquiring insight from a certain environ-
ment or system. There exist two different types of streams (i) Event streams, where
the stream can be separated into separate events, such as a user clicking on a web
page, or (ii) Continuous stream, where it is not possible to separate the stream,
such as a continuous flow of sensor readings. Furthermore, different systems exists
for reading these streams efficiently. These systems are known as ‘Stream Proces-
sors’ and have become a hot topic in recent years. Stream Processors are able to
provide quick results for the user to act upon. Usual calculations can be filter-
ing, aggregation and joining. Additionally, some of the stream processors can also
provide machine learning libraries such as forecasting or predictions on the data
streams. In current stream processing technologies, there is a lot of changes and
improvements constantly happening. The increasing need of quick results in the
business world, will require numerous businesses to integrate stream processing
into their systems.

The company Corporater wishes to explore this topic and integrate compatibil-
ity for their system in the future. Corporater delivers a Business Management
Platform (BMP) where business experts can build their own business objects that
perform complex calculations and visualizations. The objects are based on the
‘Business-In-Control’ concept. That is, the business experts can perform config-
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2 CHAPTER 1. INTRODUCTION

urations without involving typical programmers (the concept might also be called
‘no-code’ in some businesses). The business experts assume to have an easy way
of setting up the calculation’s data sources, and even support precalculations and
aggregations. Until now they have only supported batching data where they are
potentially updated once a day, week or month, but are now realizing that data
streams are part of the new future of business management.

Their platform is intended for medium and large companies, that take use of these
complex calculations and visualizations to analyze their data towards improving
performance or progress to a goal. Examples of such companies are ‘Johnson &
Johnson’, ‘Airbus’ and ‘Aker BP’. These companies are all customers of Corporater,
which makes them all a possible use case for our system. With a large spectrum
of use cases, the platform needs to cooperate with many different technologies,
where forms and sizes of the data are diverse. Thus this ability of compatibility
and flexibility is also desired for real time data, that are increasingly demanded by
customers.

1.2 Problem Definition

Typical large enterprise businesses have competent business experts that analyze
data and perform management actions when necessary. In many of these cases,
new data is only accumulated once per day, week or month. However, new data
can also be accumulated in shorter intervals such as seconds, minutes and hours
through data streaming. This would enable business experts to make real-time de-
cisions for the business. For example, being able to know about a systems failure at
the moment it happens rather than getting a report about it the next week. A large
enterprise will typically have real-time production systems to handle it. However,
the data events do not aggregate to the business management systems until the
week or month is complete. The business would be able order a new module on
the same day and save at least a week of production silence. With this example it is
easy to see that the value of knowledge is higher the earlier it is received, and the
businesses could largely increase profit by incorporating data streams into their
systems. Although, these types of data are often not available for the business ex-
pert since correct processing of data streams are complicated and technical.

On the other side of the spectrum is the developers, they have extensive technical
background that allows them to use data streams with ease. However, in many
cases they do not know which data segments can be of value for the business,
and are essentially possessing this information without knowing its business value.
This leads back to the same problem as in the previous paragraph, which states that
the business is not able to draw value from the data streams.

From these two different view points, it is clear that both the business expert and
the developer can benefit of each other’s knowledge. Thus, from a developers per-
spective this thesis will focus on solving this issue for Corporater through finding
and evaluating the best solutions and further recommend the most beneficial ap-
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proach. Additionally, based on the recommendation, a prototype is developed to
serve as a proof of concept. With this prototype in place, it would enable busi-
ness experts to utilize data streams through an understandable and generalized
configuration that emphasizes the possibilities of streaming data through stream
processing.

In later chapters the prototype will be introduced. However, the values of a busi-
ness are not necessarily the same everywhere and Corporater is no exception. To
figure out Corporater’s needs and values, we create a survey. This survey and its
resulting requirements will be introduced for the rest of this section.

1.2.1 Questionnaire

Requirements of the system are important to be identified in the early stages of
development, such that the system can be pointed in the right direction from the
start. To do this, a survey was made for a selected group of Corporater employees
to participate in. The group contained 5 employees each in their respected fields
to ensure a diverse knowledge base for the questions. The questions were as fol-
lows:

1. What are the basic achievements and goals of the system?

2. What kind of roles will be involved in...

(a) The administration and configuration of the system?

(b) The end usage and consumers of the system?

3. Will the roles typically be clearly separated regarding to organizational struc-
ture?

4. What are the concerns about this type of system?

5. Will the system need to integrate with any other type of software?

6. What operating system will the system be used in?

7. What data streams are the system supposed to work with?

8. The simplicity of installation?

9. What types of filtering or calculations must the system be able to do?

The survey was answered in one meeting, where each member of the group could
speak their opinions and wishes to such a system. After the survey, their answers
were narrowed down to specific requirements defined in the next part.

1.2.2 Requirements

In this part the requirements of the system will be defined. These requirements are
based upon the survey made previously.
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The system is intended to function as a micro-service compatible with Corporater’s
BMP and will make this platform become closer to OI (Operational Intelligence)
data sources. It will either open up the platform to dock existing OI solutions into
it, or provide a lightweight framework for connecting data sources directly. Fur-
thermore, Business experts are expected to utilize these data sources without rely-
ing on a developer, neither on implementation or changes. Corporater’s primary
goal is to provide an environment for business execution that relinquishes the need
for a programmer. However, the business experts are trained in the system and will
have access to extensive documentation through Corporater’s Academy.

Corporater values flexibility of its platform and are already supporting a large va-
riety of customers in many different fields. This means that the system needs to
support as many types of data streams as possible such that all the customers can
benefit of its service. Moreover, in many cases Corporater would prefer not to re-
quire a customer to purchase another company’s license when committing to BMP.
This is to avoid needing a third-party license when customers choose Corporater.
Software such as Microsoft Azure Stream Analytics [1] and Amazon Kinesis [2] are
examples of such systems that would require external licensing.

As of now, Corporater supports Linux and Windows, and this system should do
the same. However, the platform’s cloud strategy makes this less relevant. Fur-
thermore, the installation is done through a plain and easy wizard that has its own
control center to setup general configurations. When BMP is initialized, a business
development tool called Configuration Studio is utilized to configure Corporater
objects. Moreover, it is intended that the system administrator takes care of the in-
stallation and configuration. Further, the business users will utilize Configuration
Studio to configure their version of BMP. There is no developer or programming
needed in any of these stages. Thus, this system should function the same way,
where some of the configuration is done in the control center and the rest in Con-
figuration Studio.

The BMP is not meant to be a critical system that needs on time alerts and updates.
This means that the users can tolerate some delay, and not so frequent updates.
Corporater’s requirement is at least hourly updates, but the option for more fre-
quent updates is not discouraged. On the other hand, the prototype should be
able to handle high throughput which would otherwise limit the use cases for an
eventual integration.

In most cases batch data will be paired together with data streams. Thus, using
the same API for both batch and streaming would be most beneficial. In fact, the
beneficial value for Corporater of this feature is higher than other disadvantages
that can come with it. Moreover, the users should also be able to do advanced
aggregations, even though the majority of calculations are simple. Additionally, it
is also desirable to have as many calculations as possible.
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1.3 User Stories

A user story describes a feature of the system from the users perspective. These
stories are short and straight to the point of what a user should be able to do with
the system. By utilizing this concept we are able to describe certain use cases for
our system in a way that will highlight the systems features. There are several
possible use cases for such a system. Thus, this section will introduce different
user stories that represent the end goal of the system. We will utilize a call cen-
ter as a hypothetical scenario in which a user of our system is accumulating data
from.

• As a business expert I would like to have access to current events from the
call center without the aid of a programmer.

• As a business expert I would like to visualize current status of the call center
in any chart of my choosing.

• As a business expert I would like to aggregate most recent data from the call
center.

• As a business expert I would like to select information of my importance from
the call center.

• As a business expert I would like to setup a new call center connection with-
out the need of a programmer.

• As a business expert I would like to aggregate and visualize the last 3 hours
of my performance metrics.

With these user stories in place, it should be extended clarity of the systems goals
and possibilities for the users.

1.4 Challenges

Most similar management systems like Corporater’s BMP rely on data warehouses
to provide data to their system. However, Corporater sees a trend where the old
‘single source of truth’ are starting to shift towards the data origin itself or where
the data event happened. This creates a new domain where not much work has
been done before.

In the stream processing world, there exists a large amount of stream processing
software. All of these have different advantages and limitations that are crucial to
know about when appointing a stream processor to integrate with. There is a huge
challenge in navigating though these to find the most beneficial stream processor
for Corporater’s scenario.

Because of the large customer base of the BMP, there are several different use cases
which our system must abide for. Keeping the system generalized and flexible to
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this degree is a challenging effort to complete.

1.5 Contributions

In this thesis we provide an evaluation of the leading architectures and processors
within data streaming from a business perspective. This perspective enables other
evaluation metrics to be highlighted in a way few other evaluations do. It is mostly
focused around Corporater’s scenario. However, because of its broad overview of
the architectures and processors differences, it can also be applicable for other busi-
nesses that wishes to implement OI into their systems. Based on this evaluation,
we also provide a generalized prototype that can be applied under any type of GUI
or API that is able to send configuration. This prototype brings us one step closer
to enabling business experts to utilize data streams without the need for a devel-
oper. Furthermore, both the evaluation and prototype aids Corporater’s research
in providing data stream support for their customers.

1.6 Outline

Chapter 2: Background Presents the technical background required for this the-
sis, including an introduction to related measurements of relevant stream
processors performance.

Chapter 3: Solution Approach Introduces different stream processor setups uti-
lized in the evaluation, and an overview of the components of the developed
prototype.

Chapter 4: Evaluation Provides an evaluation of relevant architectures and stream
processors where we conclusively present a recommendation for Corporater’s
scenario.

Chapter 5: Proof of Concept Utilizing the previous recommendation, we present
and analyze a prototype based on Corporater’s values.

Chapter 6: Conclusion & Further Directions Concludes the thesis and suggests
further directions.



Chapter 2

Background

Before introducing an evaluation of different data streams and constructing a pro-
totype. We will present relevant background material of stream processing con-
cepts, architectures and software. Additionally, some business knowledge is also
required, such as the difference between Operational Intelligence (OI) and Business
Intelligence (BI). Throughout this chapter, these subjects will be introduced one by
one, starting with what different architectures stream processors fit into. Further-
more, the information presented here is utilized across all further chapters.

2.1 Architectures

There exists several different architectures for streaming systems. These architec-
tures can be thought of as a template for how data streaming should be imple-
mented. By utilizing these architectures enables organization and simplification
of complex systems, which aids to an easier workflow and quick deployments of
the overall system. In this section some of these architectures will be introduced.
However, the main focus will be on the Lambda and Kappa architectures, which
will be utilized in further chapters.

2.1.1 Lambda Architecture

The Lambda Architecture, is a generalized structure of how data can be processed
in different layers. It was created by Nathan Marz that later produced a book with
this architecture called Big Data [3]. Moreover, it is an architecture that describes
the relationship between batch and stream-processing methods [3]. The core idea
behind it, is to separate the different data processors into different layers: Batch,
Serving and Speed layer. Both the Batch and Speed layer are processing the same
data. However, the Speed layer delivers quicker and less accurate results, whereas
the Batch layer uses more time and are more accurate. Furthermore, this archi-

7



8 CHAPTER 2. BACKGROUND

tecture is the description of how these layers interact with each other, which is
illustrated in Figure 2.1.

(a) Separate Lambda Architecture.

(b) Combined Lambda Architecture.

Figure 2.1: Lambda Architectures.

From Figure 2.1a it is possible to see that the Speed layer works on its own to
handle queries and responses without going through the Serving layer, while the
Batch layer works with the Serving layer. This is not necessarily the case in every
architecture. For instance the Serving layer can also handle queries and responses
from the Speed layer, thus combining the other two layers in one common serving
interface, which is shown in Figure 2.1b. Choosing between one or the other can be
different for every implementation, and it really depends on what fits best in each
use case.

2.1.2 Kappa Architecture

The Kappa Architecture is a simplification of the Lambda Architecture. Essentially,
it can though of as the Lambda Architecture without the Batching layer. It was first
introduced by Jay Kreps in 2014 [4] who meant it was much simpler to work with
this type of architecture. In most cases, the Lambda Architecture needs two code
bases, one for streaming and one for batching, whereas the Kappa Architecture
only needs one, which handles both batching and streaming. This simplifies and
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reduces the code and makes it easier to do changes, and knowing their effects in-
stantly [5].

In other chapters, a deeper discussion of the two will be conducted, where more of
their differences are highlighted in order to draw a recommendation of architecture
to the prototype.

2.1.3 Others

The architectures explained previously in this section are the most popular archi-
tectures to implement stream processing with. However, there also exists other less
popular architectures. One of these architectures is the Butterfly architecture. This
architecture aims to provide a unified data store that supports all analytical work-
loads. Compared to the others this architecture does not have any layers, which
might be a benefit in some cases. However, it is relatively new and few existing
applications [6].

Another architecture that is described in Nathan Marz’s book [3] is the Incremental
architecture. This architecture is considered to be a description of a system with no
architecture, where all of the system features are incrementally appended to one
code base. This architectural approach, could increase the complexity of the system
and cause a unnecessarily complicated development and maintenance job.

2.2 Stream Processing

Stream Processing is a useful tool for processing multiple streams of data. Users
can expect quick results from the processor, with up to date information of the
current state of the system. It is popularized by Apache Storm, that is similar to
Hadoop but can give results faster [7]. Still there exists many other contenders in
this topic, with different approaches to the problem.

There is vast amounts of use cases for Stream Processing, and with the develop-
ment of IoT (Internet of Things) it only becomes larger and more important. It is
most useful in cases where detection of a problem is possible and an answer must
be given in a short amount of time. Moreover, it plays a key role in data-driven
organizations. Some applications for stream processing are listed below [8].

• Health informatics

• Astronomy

• Telecommunications

• Electric grids and energy

• Geography

• Transportation

Stream Processing introduces some new concepts that play a key role in analysing
incoming data. The concepts are: Windowing and Joins, it is correct that Joins al-
ready exist in batch processing. However certain intricacies requires modifications
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to the well known concept, which makes it a new term within streaming. Both
Windowing and Joins will be further introduced in the following parts.

2.2.1 Windowing

A window is an input size that defines the number of events that can be stored in
working memory. There exists two different types of Windows, Sliding Windows
and Batch Windows, where each has a special way of storing the events.

Time

(a) Sliding Windows.

Time

(b) Batch Windows.

Figure 2.2: Different types of Windows.

When an event happens with Sliding Windows, the new event will replace the old-
est event in the window, and send an update with calculations on the new window
to the clients. This means that for every event happening, a new message will be
sent to the clients. On the other hand, when an event happens with Batch Win-
dows, the new event will be stored in the window until it is filled up. When the
window is filled up, calculations on the window will be updated to the clients. This
reduces the number of updates sent compared to the Sliding Windows, and could
be better to implement in cases where network resources are limited.

Number of events are not the only size the window can be based upon, time can
also function as a window size [9]. This enables users to get data from the stream
within a recent time frame such as a minute or 15 minutes. Furthermore, both of
the two window types discussed above can be used for time, where it then will be
a ‘Sliding Time Window’ for sliding window, and ‘Batch Time Window’ for Batch
Window.

Using windowing opens up more opportunities for analyzing data streams, such
as stock market technical analysis, prediction of next value and multiple moving
averages or medians (e.g. 1 minute, 5 minutes and 15 minutes). For the rest of this
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thesis we will only utilize batch windows. Thus, when ‘window’ is mentioned it
will be considered as a batch window.

2.2.2 Joins

Joins functions similarly as in SQL, where two tables are joined together based on
a common key. Streams can be considered as infinite long tables, but the time it
would take to join something infinite is infinite, which is a problem. Windowing
can help with this problem by looking only at a part of the stream. It is then
possible to join the streams piece by piece. To do this, at least one stream must
implement a window that can compare the incoming values from the other stream.
With windows on each stream the whole window can be joined at once. These two
scenarios are illustrated in Figure 2.3.

Window

Window

S1

S2

Compare 

Hit 

Window

S1

S2

Hits 

Compare 

One Window Join

Two Window Join

Figure 2.3: Different ways of Joining two streams.

With Joins it is possible to combine two different streams and look at their differ-
ences. Usually this is done by converting the window to a table and joining it with
the same key. Database tables can also be joined together with the stream. This can
be quite useful in occasions where ID’s, provided through the stream, can be com-
plemented with other information from a table lookup in the database. Another
use case for this, can be for incoming production data where the production status
is compared to yesterday’s production.
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2.3 Streaming SQL

Streaming SQL is a term within Complex Event Processing (CEP), that enables
users to do complex calculations on incoming events. As the name deducts, Stream-
ing SQL makes it possible to do SQL queries on streams, and get quick results back
with the most recent events.

Regular streaming processing requires a lot of code to get the desired output of
the stream. While with Streaming SQL, enables actual SQL queries to be executed
on the stream. This reduced the required code length drastically. However, unlike
SQL, Streaming SQL has no standard syntax. This means that different languages
exists for Streaming SQL. Two examples of such languages are Siddhi Streaming
SQL and Kafka KSQL, that are SQL based but for example the queries have some
differences one must be aware of before use:

Siddhi KSQL

Select bid, from BoilerStream[t > 350] Select bid, from BoilerStream Where t > 350

In this example there exists a boiler that has a sensor for measuring its temperature.
The sensor will function as a stream of temperature measurements, where we want
to detect temperatures greater than 350°C. In both languages the system is asked
to ‘select events from BoilerStream with property t greater than 350’. From the
table it can be shown that the ‘Where’ statement in KSQL is excluded in Siddhi.
This is because Siddhi is more compact and have the ‘Where’ statement within
‘BoilerStream[t > 350]’. The other operators are written in the same way for both
of the two languages.

2.4 Streaming Technologies

A wide variety of technologies that supports streaming are available and can be
used for this project. Some of these can also be used together to form a stronger
service. Relevant technologies are introduced in this section, these will be later
evaluated according to Corporater’s requirements.

2.4.1 Apache Kafka

Apache Kafka[10] was originally used as an interface between data sources and
data processors. Its key components at that time was being able to connect to
any type of source, persisting events in queues, and sending them to any type of
system.

These components are still quite important to this day, yet additional features are
implemented together with this structure. This enables Kafka to do simple stream
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processing through the library Kafka Streams, and also support Streaming SQL
with their own SQL language called Kafka SQL (KSQL).

Kafka uses Zookeeper as its coordinator that manages coordination and failure re-
covery of the brokers. The brokers are nodes that handles topics, stores events, and
does the processing. This is illustrated in Figure 2.4.

Figure 2.4: Kafka Architecture.

The figure shows that there can be multiple brokers and topics, where the topics
can be across multiple brokers. A topic can be considered as a hub, where some
systems write to the hub and others listen. This enables Kafka to streamline the
processing of events, such that a producer can write to one topic, process it through
Kafka Streams, write to another topic and output the topic through a consumer.
Intuitively, Producers write events into the Kafka cluster while the Consumers read
from the cluster.

Kafka can guarantee ‘Exactly-once Semantics’, which is the guarantee that an event
is processed exactly once. On the other hand, this requires a lot of management
from the system which slows the process down drastically. However, since this
is a relatively new addition to Kafka it will hopefully be improved in the future.
Otherwise, Kafka is quite flexible by allowing other semantics in to the picture such
as ‘At most once Semantics’, which guarantees that an event is processed at most
once, and ‘At least once Semantics’, which guarantees that an event is processed at
least once.

2.4.2 Apache Storm

Apache Storm[11] is a distributed real time data analytics system for processing
data streams. The system is quite flexible and can work in many different situ-
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ations. It is fault-tolerant, horizontally scalable, and has one of the highest data
ingestion rates. Similarly to Kafka, Storm uses Zookeeper to keep track of their
nodes, which is why Kafka and Storm can sometimes work well together with a
common Zookeeper instance. Besides this, there are some extra components in
Storm as illustrated in Figure 2.5.

Nimbus

Zookeeper

Zookeeper

Supervisor

Supervisor

Worker 

Worker 

Figure 2.5: Storm Architecture.

This figure shows that there can be multiple instances of Zookeeper, Supervisor
and Worker, in which all of them communicate hierarchically with each other. To-
gether they form the Storm cluster, where stream data can be sent through Spouts
and Bolts, which are illustrated in Figure 2.6.

Spout

Spout

Bolt Bolt

Bolt Bolt

Figure 2.6: Spouts and Bolts in Storm.

Spouts are the stream input, similar to producers in Kafka, while Bolts are the
stream processing engines. The Bolt’s functionality is similar to how MapReduce is
in Hadoop, where the Bolt has the ability to be both Map or Reduce. Moreover, the
workload of the Spouts and Bolts are distributed across all the workers in the archi-
tecture to ensure maximum performance. On the other hand, it cannot guarantee
‘Exactly-once Semantics’ without incorporating the high-level API called Trident,
which is based on mini-batching. Although, Storm core comes with ‘At least once
Semantics’ built in, which is more than enough in most cases.

Storm is one of the most used Stream processing systems, and has the same stable
presence here as Hadoop has for batch processing. Mostly this is because of its low
latency and immense community that few others can match.
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2.4.3 Apache Flink

Apache Flink[12] is a processing engine for stateful computations over unbounded
and bounded data. It was originally called ‘Stratosphere’ before it became part of
the Apache Software Foundation, and it was made to support both batching and
streaming in the same infrastructure. The previous mentioned software is more
lightweight compared to Flink that enables more advance computations with a
simple framework. Its architecture is illustrated in Figure 2.7.

Flink Program

Client

Job Mananger

Actor
System

Task Manager

Actor
System

Task Manager

Actor
System

Actor
System

Scheduler

Task Slots Task Slots

Checkpoint
Coordinator

Figure 2.7: Flink Architecture.

The architecture of Flink is completely different in terms of naming and hierarchy
compared to Storm and Kafka, it is simpler and contains less components in the
overall system. However, the general architecture is similar where there are worker
nodes (Task Managers) that compute results, and a Coordinator (Job Manager) that
schedules and coordinates jobs to the worker nodes.

Flink is still a bit of a newcomer in the streaming world, but the features that Flink
has to offer is sometimes more than its competitors, also it is widely accepted by
large companies like Uber and Alibaba [13]. Lastly, Flink can guarantee ‘Exactly-
once Semantics’ together with the underlying categories ‘At least once Semantics’
and ‘At most once Semantics’, which is one of the features that Flink offers.

2.4.4 Apache Spark

The previous software thus far are native stream processors. Apache Spark[14]
on the other hand is a native batch processor. Spark originated as a successor for
Hadoop, that introduced advance features like Machine Learning, SQL support
and streaming. In this context, the streaming feature will be the focal point, where
the other features are beneficial but not the most important part.
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Spark streaming is a library that enables Spark to support streaming. To emulate
streaming characteristics it uses micro-batching on the stream, where each batch
can contain multiple events or values. Because of its core structure of batching,
it cannot compete with the pure streaming implementations that has much lower
latency. This could mean that Spark is excluded for evaluation on lower latency
required systems. However, data in Spark is processed reliably and can guarantee
‘Exactly-once Semantics’, together with the other underlying categories. With this
and the other features it is still a good contender in streaming systems.

Another library that provides streaming is ‘Spark Structured Streaming’, which
is part of the Spark SQL library. Before Spark 2.x this library did not support
streaming, but since then, this library is a well know library within streaming.
Moreover, Structured Streaming is an attempt on unifying batching and streaming,
with only a few differences in method calls and syntax differentiating them. In
addition, this library provides a simpler way of working with streaming compared
to its predecessor, where Spark is trying to remove unnecessary configuration and
fine tuning from streaming, such as batch size, which now Spark can take care of.
It also allows to write SQL-like syntax on the streams, which can drastically reduce
code length and development time.

The architecture of Spark is quite similar to Flink, where it is a simple structure of
worker nodes (Executors) and a Coordinator (Cluster Manager) that works together
in the system. This structure is illustrated in Figure 2.8.

Spark  
Context 

Cluster 
Manager 

Executor

Executor

Figure 2.8: Spark Architecture.

Even though the architecture and features are similar to Flink, their approach is
completely different. This is mostly because of their initial focus where Spark fo-
cused on batching and then added support for streaming, while Flink focused on
streaming and then added support for batching.

2.4.5 Others

One stream processor that is not included further is Apache Samza [15]. This pro-
cessor is intended to be put on top of Apache Kafka to do stream processing calcu-
lations and aggregations. However, it is beginning to lose traction to the previous
stream processors, in which it cannot keep up in some aspects. Thus, because of
limited evaluation time of these processors, it was not included.
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Another stream processor that is not part of our consideration is Apache Apex [16].
It provides similar features to Spark in many key instances. However, it is a rela-
tively new system which few large companies are utilizing. Additionally, there are
few related benchmarks between Apex and other stream processors, which makes
it hard to pinpoint where their system are in the realm of stream processors.

There also exists other stream processors such as Microsoft Azure Stream Analyt-
ics [1], Amazon Kinesis [2] and Google Cloud Dataflow [17]. However, these are
not open source systems and were not considered further based on Corporater’s
requirements.

2.5 Business Intelligence

Business Intelligence (BI) is an umbrella term for extracting value out of data for
the business [18]. This term is used in many different cases, but was first intro-
duced in this form by Howard Dresner of the Gartner Group in 1989 [19]. BI-data
is usually stored in ‘Data Warehouses’, where subscribers can get updates once a
day, week or month. Extracting business value out of data can be so many things,
for example data mining and text analytics are part of the rising topics within BI.
Usually the data warehouses provide databases that are accessible through SQL
queries, which is where most of BI-value comes from.

BI is at the core of Corporater, where the BMP provides different tools to extract
value. One of the main topics for Corporater within BI is Business Performance
Management (BPM), which will be described next.

2.5.1 Business Performance Management

BPM is a management tool that is used to optimize business strategy. Businesses
that want to improve or expand use this tool to first, define what and where they
want to improve and secondly, track and analyze the business towards these goals.
BI on the other hand, provides tools to improve decision making within organiza-
tions, but have no means of planning, monitoring, controlling and managing goals
and business strategy without BPM [20].

The goals are usually described in Key Performance Indicators (KPI), which are
measurable values of the goals. KPI’s are used to illustrate how effectively a com-
pany is achieving their business strategy. If used correctly KPI’s can be essential
to BPM and the company using it. This requires reliable reporting of current state
of the goals, and often reevaluation of indicators such that they can continue to be
realistic and in the direction of the business strategy.
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Figure 2.9: KPI Dashboard Example [21].

Figure 2.9 1 shows an example of some KPI’s in a typical dashboard, for instance
histograms and graphs are typical. A KPI can be illustrated in many different ways,
and choices of formats can be based on what the KPI is meant to represent or some-
times preference.

2.6 Operational Intelligence (OI)

Operational Intelligence (OI) is about giving value to the business through analyz-
ing and handling real-time events. This enables the company to react quickly on
problems and opportunities in the daily operation of the business. Typically, the
data analysis part is automated, such that only alerts require an action. With this
tool, employees can take faster action with more knowledge about the situations
arising [22].

Further benefits of OI can give accurate and reliable results from the current state
of the system, where otherwise human error can be a factor. OI can also accelerate
continuous improvement of the business, where alerts can be adjusted as the busi-
ness improves. Moreover, OI analytics can also take use of KPI’s in the same way
as BI but of course in a smaller daily scale [23].

While OI handles short term day-to-day operations, BI handles the analytics for
forward planning that OI cant. Both of these intricate parts can complement each
other to form a complete picture of the business at hand. Implementing OI into the
BMP is something Corporater is reviewing as an expansion to the platform.

1This image is approved by Corporater to use for this thesis.
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2.7 The Business Management Platform (BMP)

The Business Management Platform (BMP) is a comprehensive management sys-
tem created by Corporater, which is largely focused around BI and BPM solutions.
This system can bind several business disciplines such as risk, strategy, operations,
quality, projects, processes, HR, and finance together in one platform. Further-
more, this allows for top-ranking executives to control the entirety of their busi-
ness, which enables the whole business to follow one strategical direction towards
a common goal. An example of their web interface is shown in Figure 2.10.

Figure 2.10: BMP web interface example.

From this figure it is possible to see that there are different tabs for each discipline.
In our case we are in the performance management tab that can show the status
of for example recent financial status. Furthermore, the platforms core concept is
called ‘Business-In-Control’. This concept is based around keeping the business
users in control of the system, which allows for configuration and modification
without the need of a programmer. The programmer is relinquished by provid-
ing more than 250 business objects that are configurable through a GUI called
‘Configuration Studio’. An example of these objects within Configuration Studio is
illustrated in Figure 2.11.
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Figure 2.11: The Configuration Studio.

These objects are displayed in the left part of Figure 2.11, which allows the user to
store, modify and display important information on the web to maximize BI value.
One key feature of their system is that this important information is unified with
BPM, which allows easy follow up on current goals and status of the business.

2.8 Related Works

No other papers have investigated this for Corporater. It is unique case where not
much work is related to it. Although, others have done their analysis of Stream
Processing systems. In this section some of these papers will be presented with
their results. Their analysis is one of the factors that is utilized when choosing the
best Stream Processor for Corporater.

In the late 2015 there was little to none benchmarks comparing the different stream
processors. Yahoo! wanted to know what the best streaming tools are, in order
to provide the best service to their internal customers. They designed a simple
advertisement application which read JSON events to later filter, transform, join
and aggregate linearly through a pipeline. Furthermore, each cluster contained 10
worker nodes, which were ‘homogeneously configured, each with two Intel E5530
processors running at 2.4GHz, with a total of 16 cores (8 physical, 16 hyperthread-
ing) per node. Each node has 24GiB of memory, and the machines are all located
within the same rack, connected through a gigabit Ethernet switch’. With this setup
they tested ‘Storm’, ‘Flink’ and ‘Spark Streaming’ that produced a graph shown in
Figure 2.12 [24].
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Figure 2.12: Latency and Throughput Benchmarks [24].

This figure shows the latency of the respective processors as the throughput is in-
creased. These results shows that Storm and Flink have similar performance in
terms of keeping the latency down when the throughput increases. Spark on the
other hand, shows much higher latency’s but in turn it is expected to handle much
higher throughput’s [24] than what is shown in this graph. Kafka is not mentioned
in this benchmark, however there are other benchmarks [25, 10] that have achieved
latencies around 1-1000ms which is quite similar to Flink’s performance.

Yahoo! was one of the first companies to do a large scale comparison between the
streaming systems, and it has become a well-known benchmark used in industry
to evaluate streaming systems. Although, a multitude of changes have happened
since 2015, such as Spark Streaming 2.0, which is why other benchmarks from
other sources are necessary. In recent years both Spark and Flink developers have
provided their own benchmarks focusing more on throughput rather than latency.
Interestingly, their benchmarks shows different results, which are to be introduced
further in this section.

Spark 2.x introduced a separate technology based on ‘Datasets/DataFrames’, called
‘Structured Streaming’. Additionally, this version also introduced multiple en-
hancements to their other libraries. Following this version, new benchmarks where
conducted by Spark developers, which tried to use the same experiment as in Ya-
hoo!’s benchmark. These benchmarks are shown in Figure 2.13 [26].
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(a) Single core.

(b) Yahoo! environment.

Figure 2.13: Benchmarks from Spark developers [26].

There are two charts in Figure 2.13. The first one shows the comparison of Spark
and Flink’s throughput on a single core system, where it is possible to see that
Spark outperforms Flink by a large margin. Further, in the last figure the replicated
Yahoo! environment is shown, where even a larger margin is in Spark’s favour.
Notice that their version is able to have over 60 million records/second, which is
quite impressive. Additionally, ’Kafka’ is also shown in this figure, but are not even
close to the throughput capabilities of Flink and Spark, which is because of Kafka’s
larger focus on latency rather than throughput [26].

Following the latter benchmark, developers from Flink became sceptic over Spark’s
evaluation, thus they produced their own comparison showing much higher through-
put’s from Flink. As in the previous benchmark, they tried to use the same ex-
periment from Yahoo!’s benchmark, which lead to the chart shown in Figure 2.14
[27].
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Figure 2.14: Benchmarks from Flink developers [27].

This figure shows the single core throughput of Spark and Flink. It is shown that
same numbers from Spark’s benchmarks where achieved in Spark, however a sig-
nificant jump in performance happened in Flink. Although, the throughput of
10 worker nodes is not covered in this benchmark, which allows for speculation
whether Flink outperformed also Spark in this case or if it is much more closer
race [27]. Furthermore, Storm is not covered in neither of Spark and Flink’s mea-
surements, however Storm has done their own benchmark [11] of their system, and
are able to achieve over a million tuples processed per second per node, which puts
it somewhere between Kafka and Flink in performance.

Throughput and latency are not the only types of benchmarks for stream process-
ing. In recent papers resource consumption has become an important evaluation
metric of their analysis. One such paper were conducted last year [25], in which
they analyzed Kafka, Flink and Spark regarding the consumption of CPU-resources
and memory. Storm was not included in this analysis because of it’s low perfor-
mance on their systems. Furthermore, for their analysis they used 10 nodes where
each node contained 16 cores of CPU and 32 GB of memory. The result of this
analysis were comprised into a two charts shown in Figure 2.15.
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(a) CPU usage comparison.

(b) Memory usage comparison.

Figure 2.15: Resource comparison [25].
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Both of these figures shows the resource consumption over time, where Figure
2.15a shows the CPU consumption and Figure 2.15b shows the memory consump-
tion. A commonality between the two, is that Flink has high values of consumption,
whereas the others are quite close to each other. Furthermore, Kafka streams have
the lowest memory consumption, while Spark streaming has the lowest CPU con-
sumption. The last system compared in this figure is the Spark Structured Stream-
ing system, which is similar to both Kafka and Spark streaming in consumption,
however it’s values are a little bit higher. As mentioned before, Storm is not men-
tioned in this research, however another paper [28] presented the resource con-
sumption of Storm, which provided similar results as Spark. Thus in these figures,
Storm can be considered to be in the same region as Spark.

There are still many factors that play in when choosing a stream processor for an
environment. These factors will be presented and evaluated together with these
benchmarks in Chapter 4. Moreover, Table 2.1 is created here to serve as a final
summary for all these related works. Not all numbers in this table are introduced
in this section. However, these are found in their respective papers which measure
them. Additionally, this table will be the reference point of this work for later
chapters to utilize.

Metrics Kafka Storm Spark Flink
Latency < 100ms � 100ms < 1s < 100ms
Throughput 100-800K rec/sec > 1M rec/sec 50-60M rec/sec 10-40M rec/sec
Resource Consumption Low Med Med High

Table 2.1: Summary of related works metrics.
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Chapter 3

Solution Approach

Data streams and stream processing is starting to become a hot topic in today’s
business world, several businesses do not have the knowledge nor the systems to
integrate with. Corporater has started their research in this topic to see if there
is benefit in integrating such data event characteristics inside their BMP software.
However, knowledge is lacking in this field, and assistance is given through this
paper by evaluating different stream processors and further developing a proto-
type. Moreover, this paper serves a recommendation for Corporater’s scenario, and
creates a foundation for further development and investigation. Additionally, the
prototype can be utilized by business experts, which enables them to get an under-
standing of how beneficial data streams actually can be.

In this chapter, there will be presented four different stream processors and their
setup. These stream processor setups will later be used in an evaluation presented
in Chapter 4. Thereafter, a prototype is presented that serves as a proof of concept,
and will be later evaluated in Chapter 5. Finally, some further directions are given,
which serves as an introduction to the later chapters.

3.1 Stream Processors

In the stream processing world, there exists several different stream processors that
are able to perform close to real-time computing. Some of these are more popular
and more used, while some of them are newly created and are just starting to gain
traction. In this section, four of these stream processors have been selected based
on the most resent benchmarks [26, 27, 24] and evaluations [13, 29] for stream pro-
cessors, which suggests them to be one of the best open source stream processors
on the market. These processors are called: ‘Kafka’, ‘Storm’, ‘Flink’ and ‘Spark’,
which are all part of the Apache foundation. Each of these processors have been
introduced in Chapter 2: Background. However, in this section these are explained
more in terms of how they are set up and how this structure is.

27
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A stream processor does also need something to process, and for this thesis a gen-
erator will be used as a source for the data stream. For each processor the same
generator is used, where the connection happens through a TCP socket. Further-
more, the rest of the section will follow the same order as the processors were
mentioned in the previous paragraph.

Kafka requires a low-level implementation where most of the configuration hap-
pens through command line. Furthermore, without implementing a script, there
are also needed multiple command line interfaces (CLIs) in order to have all the
instances running at once. All these instances are illustrated in Figure 3.1.

Generator Producer Brokers

Zookeeper

Consumer

Figure 3.1: Kafka components setup.

From this figure, without counting with the generator, it is possible to see that it
requires at least four different CLIs. Additionally, the Producer needs to be imple-
mented in a programming language such as Java or Python, in order to write data
into the cluster. Furthermore, setting up this environment without any knowledge
prerequisites of this system, requires a high learning curve just for a simple imple-
mentation.

A system similar to Kafka is Storm, which also uses Zookeeper in its architecture.
Storm is also low-level and most of the configuration happens through the com-
mand line. This also means that Storm requires multiple CLIs in order to initiate
the whole architecture. However, Storm is a little bit different from Kafka in terms
of required setup configuration. It uses a topology feature to determine the struc-
ture of the running computations, where Storm distributes the topology out to all
the supervisors in the architecture. Thus, both the cluster and topology must be
created and initialized just for a simple implementation. Both the needed topology
and cluster components are illustrated in Figure 3.2.
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(a) Topology Setup.

Generator Spout Bolt

(b) Background Setup.

Nimbus Zookeeper Supervisor

Figure 3.2: Storm components setup.

Figure 3.2 is separated into two figures, the first figure shows the topology and the
second one shows the necessary cluster components. Furthermore, the topology is
created by using a programming language whereas the Background Setup is cre-
ated using command line inputs. Figure 3.2a shows the most simple topology to
create, which requires at least three Java classes to implement. Additionally, this
structure is separated from the cluster until it is deployed through a ‘StormSubmit-
ter’ within the implementation. Figure 3.2b shows the minimum amount of cluster
components required to deploy Storm. Each of these three components needs their
own CLI, which is in a similar manner as for the Kafka implementation. Another
similarity to Kafka, is the high learning curve for a simple setup. However, it is
a little bit easier for Storm. This is because of detailed tutorials from Storm and
other users [11].

Our next processor is Flink, which is a processor part of the high-level stream pro-
cessors. That is, it only requires one running CLI. The rest of the configuration is
either handled by Flink internals or written in programming code. An illustration
of this implementation is shown in Figure 3.3.

Generator Flink

Figure 3.3: Flink component setup.

This figure shows the required components of a Flink implementation. Compared
to Kafka and Storm it is quite minimalistic, and not much knowledge of the whole
system is required by the user. In fact, the only thing that is required by the user,
is to know Flink’s API and how to push implementations to the cluster. Addi-
tionally, this also limits the number of required Java classes, which simplifies the
implementation drastically.
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The last processor to consider is Spark, which is a processor that is quite similar
to Flink in terms of setup. It only requires one running CLI, where one can either
push implementation to the cluster, or write the implementation directly on the
cluster through the CLI. This setup is shown in figure 3.4.

Generator Spark

Figure 3.4: Spark component setup.

From the figure, there is not a significant difference between Flink and Spark. How-
ever, in reality this is not the case. This will be further discussed later in Chapter
4: Evaluation. Spark requires a low-level of understanding in order to run a simple
job, and there is not much configuration needed in order for the cluster to be im-
plemented. It’s only requirement is the knowledge of Spark’s API and the ability
to push implementations to the cluster, which is also similar to Flink.

3.2 Prototype

In this section, there will be described a prototype. The decisions of architecture
and stream processor will be introduced as recommendations in Chapter 4: Evalu-
ation. Furthermore, this prototype will also be analyzed in an experiment in Chap-
ter 5: Proof of Concept. Moreover, this prototype serves as a proof of concept for
Corporater, in which they can further build upon in the future. The prototype is
an end-to-end connection from the stream source to Corporater’s BMP software,
which allows for BMP users to utilize data streams. In this section, this prototype
will be explained, where all of the components required for end-to-end connection
are included.

It is not only a stream processor that is chosen for this prototype, but also the archi-
tecture. This architecture was also part of the recommendation done in evaluation
chapter. Based on this evaluation, the Lambda architecture with the Speed layer
being separate to the rest of the structure, was selected to be the most beneficial
architecture for Corporater’s system. From this architecture it is required to have
both a Batch layer and a Speed layer. Corporater already had the Batch layer in
place to process data. Thus, only a Speed layer and a Serving layer for the Speed
layer were necessary to implement. These layers are illustrated as segments in Fig-
ure 3.5.
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Stream Generator Stream Processor Serving Layer BMP

Figure 3.5: A diagram of the different segments of the system.

This figure consists of 4 different components: ‘Stream Generator’, ‘Stream Pro-
cessor’, ‘Serving Layer’ and ‘BMP’. They each have their different responsibilities
for the system to function. Except the generator, which can be considered as any
random data stream for this chapter. However, it is discussed more in detail in
Chapter 5: Proof of Concept. Hence, the segments of importance for this section
are the Stream Processor, Serving Layer and BMP. Furthermore, Spark was chosen
as the recommended stream processor, and will be our Stream Processor segment.
Additionally, the Serving Layer segment can be considered as a database that runs
in memory commonly known as ‘in-memory’, which will be explained more in de-
tail in its respective part of this section.

3.2.1 Stream Processor

The main component of the Stream Processor is Spark which handles all calcula-
tions. Communication and configuration is not done in Spark, rather several helper
classes are used to accommodate those needs. The dynamics between the different
classes are illustrated with a diagram shown in Figure 3.6 which is the architecture
of the Stream Processor.

Processor
(Spark) JDBC SinkConfiguration

Schema Handler
Database

Client
Connection

Data Stream

Processed data

User Input

Figure 3.6: Stream Processor Architecture.

Starting from the ‘Configuration’ module in the figure, this module handles all
configuration needed in Spark to process the stream and what calculations to run.
In addition, this module handles information about the connection to the ‘Serving
Layer’, and delivers information about the structure of the stream to the ’Schema
Handler’ module. The Schema Handler takes a structure or sample of the stream
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and converts it into a known Spark structure, Spark can then use this structure to
interpret incoming events from that stream.

On the other end of Spark there are two modules: the ‘Database Client Connection’
and the ‘JDBC Sink’. The first module is not only used to maintain the connection
to the Serving Layer, but also to create a table in which the latter module can write
to. Furthermore, as each processed row is created by Spark, the latter module
writes each row as they appear into the Serving Layer.

SUM COUNT
MAX MIN AVG 

Stream Setup

Data Stream

Select
Expression PivotGroup By

SUM COUNT
MAX MIN AVG 

Group By Pivot

Out 

Out 

Out 

Out 

Out  JDBC Sink

+ - / * 

Out 
+ - / * 

+ - / * 

Figure 3.7: Block diagram of the Processor model.

Lastly is the processor module which contains the Spark environment. The ‘Struc-
tured Streaming’ library is the core component in this environment. Still all cal-
culations that are allowed by Spark can be done here. However, the calculations
‘Select Expression’ and ‘Group By’ are generalized to be utilized by business users.
Additionally, pivot functionality is implemented, which is not something that the
Structured Streaming library currently supports. Figure 3.7 shows the methods
that can be utilized in the different stages of the module. The figure starts off with
the ‘Stream Setup’ where its parameters for connecting to the stream is provided
by the configuration module. From this method, the stream can go through three
different methods:

• Select Expression: Allows the user to write SQL-like queries where different
operators can be incorporated into the expression. Furthermore, multiple
expression are possible within the same method call, which enables the user
to do diverse calculations on the columns.
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• Group By: In this method the user can group on different columns. The win-
dow size must be part of the grouping to avoid infinite-time computations.
After the grouping, the user can then extract more meaning of the events
through aggregation.

• Pivot: Contains a two step process to achieve pivoting of columns. The user
can select the column to pivot and provide a set of all unique inputs in that
column, what column to group on and what aggregations to do. This will
in turn give a new table with the correct columns in each window batch.
However, further improvements are required to use this functionality in a
generalized environment.

Additionally to all these methods, it is possible to also do filtering before or after
each method. Another interesting fact can be seen in Figure 3.7, the Select Expres-
sion is the only method that can be called multiple times and also before the other
two methods. This is because there is no grouping of data in this method, and
Spark allows such methods to run multiple times.

3.2.2 Serving Layer and BMP Additions

The Serving layer consists of a simple implementation of a H2 database. This
database runs in-memory that enables quick reads and writes into its tables. Not
much code is required for a runnable implementation and it is quick and easy to
setup. Moreover, H2 is a database that the BMP segment supports. This makes it
easier for the BMP to reach into the stream without any large implementation at
that end. However, some implementation is required.

In BMP, connection to streams have previously been impossible. It is tailored for
batched data and their smallest time value is days. Thus, when implementing this
feature, finding reusable components and connections is key to avoid further com-
plications. Fortunately, several components were reusable and only an implemen-
tation of a stream table was required. Furthermore, this table extends other fea-
tures, such as charts, which makes it possible to visualize the stream. Visualizing
the stream in a chart, enables the user to draw even more information out of the
stream. Thus, giving it even more analyzing capabilities.

3.3 Further Directions

This chapter has been separated into two different sections: Stream Processors and
Prototype. In the Stream Processor part there were four processors introduced.
It was shown how the setup of these processors are, and what was required to
implement an instance of them. Later, the Prototype was introduced, which serves
as a proof of concept for Corporater. Furthermore, this prototype created an end-
to-end connection between the data stream and BMP, which allowed for BMP users
to utilize data streams.
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In the next chapters, the same separation, as with Stream Processor and Prototype,
is separated into two chapters: Chapter 4: Evaluation and Chapter 5: Proof of Con-
cept. In the Evaluation chapter the stream processors are evaluated based on a set
of metrics. These metrics are defined in the Evaluation chapter. After each pro-
cessor is evaluated on these metrics, they are combined to look at the most fitting
processor for Corporater’s scenario. Additionally, an evaluation is done of the dif-
ferent architectures to also later recommend the most fitting in this scenario. Fur-
ther in the Proof of Concept chapter, the prototype is first used in an experiment,
and later analyzed based on the prototypes capabilities. The experiment will use
the same stream generator as in this chapter, only that it will be introduced more
properly. After the experiment, some results will be shown that is later analyzed
upon certain conditions.



Chapter 4

Evaluation

The BMP software is utilized by several businesses around the world. In order
to keep customer satisfaction high and also provide new functionality for them,
careful consideration and evaluation of available software is essential. This is also
the case when integrating with systems that provide stream processing. Thus in
this chapter, we will provide an in-dept evaluation of the leading architectures
and stream processors introduced in Chapter 3: Solution Approach. Based on the
requirements through the survey in Chapter 1: Introduction, we will find and rec-
ommend the most beneficial solution for Corporater.

4.1 Architectures

As introduced in Chapter 2: Background, there are two different architectures to
evaluate: Lambda and Kappa. These two architectures are templates or philoso-
phies to go by when developing a system for processing multiple types of data
sources. In this section the limitations and advantages of these architectures will
be introduced separately. Further to illustrate their differences, these two architec-
tures are brought together in a table that also serves as a summary of this evalua-
tion.

Lambda Architecture

The Lambda architecture is generalized term which assigns different layers with
different tasks. These layers are called Batch, Streaming and Serving layer, which
all aids developers in simplifying the complexity of the traditional iterative ar-
chitecture [3]. Furthermore, the Lambda architecture ensures low probability of
errors even if the system crashes. This is done through the Batch layer which pro-
vides a fault tolerant distributed storage for the historical data. Additionally, this
architecture is highly scalable for data processing, which is important in today’s
systems that need to alter their size upon demand. Another benefit of the Lambda

35
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architecture, is the good balance between speed and reliability, which enables cal-
culations to be as fast as possible without causing the reliability of the system to
decrease. Lastly, the ability of reprocessing data, is one of the key challenges of
stream processing, which the Lambda architecture handles through running a new
job in the batch layer. However, if the same calculations are done in the Speed
layer, reprocessing of historical data may not be necessary unless changes to the
code have happened [4, 30].

There are also some further disadvantages with this architecture. One of these is
the multiple layers needed for a proper implementation. As stated in the previous
paragraph, the layers reduce complexity in the system. However, in most cases
this will result in multiple code bases, which can sometimes be equally difficult to
manage. Additionally, this also makes the system difficult to migrate or reorganize
since it would require going through the multiple code bases to get the job done.
Another disadvantage of this architecture is the inevitable overhead between lay-
ers, which is not required in a layer-less system. Thus, because of this overhead,
more data is running through the system creating larger throughput requirements
for the same job done in a layer-less system [4, 30].

Kappa Architecture

The Kappa architecture is a simplification of the Lambda architecture, where the
batch layer is removed from the system. The biggest advantage of this architec-
ture is that reprocessing is only done when the code changes. This is done through
creating a new streaming job which reads the historical data with the new com-
putational changes. Furthermore, Kappa requires less resources in the overall sys-
tem compared to Lambda that is running the batch layer in parallel. Additionally,
only one code base is required for data processing, which lessens the complexity of
the system drastically. Lastly, this architecture can be deployed with fixed mem-
ory, where for example only the past 30 days are stored rather than all the data
[4].

There are also some disadvantages with this architecture. One of the most pro-
found issues is a little bit of the same as its advantage. This is the simplification
of the data processing layers into one Speed layer. For instance, when reprocess-
ing the data with recent code changes, it requires having temporarily two times the
storage space such that the historical data can catch up with the data stream. Addi-
tionally, this reprocessing technique requires that the receiving database support
large amounts of writes at once, which is something not all databases supports.
Similarly to the Lambda architecture, the Kappa architecture does also have the
same overhead between layers, which layer-less systems do not have. Lastly, it is
possible that the absence of the batch layer can cause errors during data processing
or while updating the database [4, 30].
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Summary

Now that the advantages and disadvantages are established of these well developed
architectures. They can be highlighted in a table, such that their differences are
more clear and intuitive. This table is shown in Table 4.1.

Lambda Kappa
Code bases 2 1
Reprocessing frequency All the time Upon code change
Extra storage No Upon reprocessing
Overhead between layers Yes Yes
Layers of data processing More Less
Resource consumption More Less

Database requirements None
High write through-
put

Reorganization and migra-
tion difficulty

High Lower

Probability of errors Low Higher
Balance between speed and
reliability

Good Good

Fixed memory No Yes

Table 4.1: Overview of the differences between Lambda and Kappa architectures.

Based on these difference it is not clear what architecture is the overall best solu-
tion. Thus, for each new situation, these architectures must be evaluated to find
the best fit for the current situation. However, the key differences between them is
that the Kappa architecture is about simplicity of development where only one pro-
cessing framework is needed for all types of data. On the other hand, the Lambda
architecture is more fault tolerant and can essentially function in any type of situ-
ation, compared to the Kappa architecture that is most effective where active per-
formance of the batch layer is not necessary for meeting the requirements of the
system [30].

4.2 Stream Processors

Stream processors are the corner-stone of data streaming, without them the benefit
of data streaming would be minimal. Thus, choosing the most optimal processor
for a given environment is essential for drawing any value of data streaming. In this
section, the stream processors ‘Kafka’, ‘Storm’, ‘Flink’ and ‘Spark’ will be evaluated
based on the requirements established in Chapter 1. It is assumed that general
knowledge about these stream processors are known by now, and it’s not necessary
to be repeated in this section. Furthermore, some of these requirements have been
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narrowed down into metrical measurements which will aid in the evaluation pro-
cess. Although, some general measurements have been used. While the others are
specifically tailored metrics to fit in Corporater’s innovation strategy:

• Latency

• Throughput

• Resource Consumption

• API

• Ease of Programming

• Input Support

• Output Support

• Ease of Setup

• Architecture Support

Note that, not all on this list are based upon the requirements. This is done to
give a broader understanding of the stream processors differences. Further in this
section there will be introduced combinations of these metrics that emphasizes and
highlights their differences even more

the stream processors differences. In these combinations of metrics, each metric
will be introduced separately. After this introduction, each of the stream processors
will be evaluated against the metric at hand. When all of the metrics are introduced
and evaluated, there will be a summary that highlights the best performer in each
combination of metrics.

4.2.1 API and Architecture Support

For many businesses it is important to combine stream and batch data. In fact,
for some of them it is essential to have batch enrichments on the data stream. In
these situations, it can be valuable to have good API support for batch data, prefer-
ably within the same API as the stream. The API metric will highlight this factor
and see what type of stream processors have the closest connection to batch data
through their API. Moreover, it is possible that some of them do not even have a
supporting API for batch data, which in some cases can be quite crucial to have for
a business.

Some of our processors do not support batch processing, these are Kafka and Storm
which do not have support for batch data in their respective API’s [31, 32]. Their
focus are solely on data streams in which the API is developed well for. Although, it
is still possible to use batching data in these systems, the batch would then have to
be converted into a data stream. However, it would be lacking efficiency compared
to a processor that supports batch data, which is more optimized for high through-
put processing. Furthermore, in terms of the API metric, these stream processors
are in the lower region of the spectrum.

Above Kafka and Storm is Flink, which have batch data support but do not have it
in the same API as streaming data. Thus, programmers using Flink with both batch
and stream processing would need two separate API’s to be able to use both batch
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and streaming data [33]. Flink is much closer to a more unified API than Kafka
and Storm, however batch and streaming are still divided which is why Flink is
considered as mid-tier in the API metric.

At the top of these processors is Spark, which has unified both batch and streaming
data under one API [34]. Although, there are still some lingering differences be-
tween the usages of batch and streaming, it is still currently the closest to a unified
API of them all. An example of these differences can be the command for read-
ing batch data ‘read’ versus the command for reading stream data ‘readStream’.
Another example is that not all calculations on batch data can be done on stream-
ing data, such as ‘pivot’ which is supported for batch data but not streaming data.
However, pivoting is not supported by any other stream processors to this day.
Since Spark is the closest to a unified API of all these stream processors, it is con-
sidered to be in the top-tire of the API metric.

In terms of Architecture, the processors needs to both support batch and stream-
ing data in order to implement the Lambda architecture fully. On the other hand,
batch support is not required for the Kappa architecture. Thus, the Kappa archi-
tecture is less strict for stream processors which easily implementable for them.
Furthermore, if a stream processor implements the Lambda architecture it also
implements the Kappa architecture since it only need to use the streaming part
of their processor to be compatible. This necessarily does not mean that the API
metric rating is high for all stream processors that implements the Lambda archi-
tecture, however if the API rating is high then most likely this processor supports
the Lambda architecture. This is shown in Figure 4.1.

API

Kappa Lambda

Low

Med

High

Storm
Kafka

Flink

Spark

Architecture 

Figure 4.1: API versus Architecture Support.
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From this figure, it is possible to see that both Kafka and Storm is in the lower
tiers in terms of both Architectural support and API. This means that they have
both limitation on Architecture and API which other processors don’t, and is rated
poorly in this combination of metrics. On the other side of the spectrum is Flink
and Spark. Both of them support both batch and stream processing in one environ-
ment, thus implementing the Lambda architecture. However, Flink has lower API
rating which gives Spark a higher overall rating. Thus, Spark is clearly the better
performer in this combination of metrics.

4.2.2 Ease of Setup and Programming

To setup and optimize a stream processor might take considerable amount of time.
For some businesses this is not an option. They require a quick deployment with-
out much time consuming optimizations. In these situations choosing a stream
processor with a simple setup is crucial. Additionally, this could also reduce costs
for the business, by curtailing the developers workload enabling a more rapid im-
plementation. The Ease of Setup metric will highlight these factors in each of our
stream processors. Furthermore, by highlighting these factors it should be clear
what the advantages and disadvantages are in each of the processors.

One of the most time consuming and complex setups is Kafka. This processor re-
quires multiple ‘Command Line Interfaces’ (CLIs) in order to implement a simple
setup. This is because of the low-level nature of Kafka, which allows for control
and tuning capabilities that other stream processors cannot. Furthermore, Kafka
does also require a third party software called Zookeeper that coordinates the jobs
for the brokers. Utilizing a third party software in this way increases the complex-
ity for the user. Thus, the user must be able to handle both Kafka and Zookeeper
in order to run the stream processor. Additionally, since Kafka is low-level, it can
be integrated in essentially any deployment technology, such as Docker, Mesos or
YARN [35]. Although, in terms of this metric, it is considered to be in the lower-
tier.

A processor which is similar to Kafka in this metric is Storm. It is low-level, where
multiple CLIs are required for a simple setup. Another similarity to Kafka is the
use of Zookeeper. Here it is also used as its coordinator in the cluster, which in-
creases the complexity for the user in the same way as for Kafka. However, with
the use of topologies in Storm, allows the processor to do some of the optimization
of the running calculations. Still not much is lost in terms of control and tuning
from the users perspective. Additionally, the large user base and several of exam-
ple setups, allow for an easier way of implementation than Kafka. Because of these
reasons, Storm can be considered to be in the mid-tier of this metric.

Spark on the other hand, is less complex than Storm in terms of setup, which gives
it an edge in this metric. Spark is a cluster framework, where not much knowl-
edge about the underlying system is required for a simple setup. Furthermore,
Spark does not require any third party system in its cluster, which is something
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the previous processors utilized. Additionally, it only requires one CLI, in which it
is possible to also develop all data stream handling. This is something none other
of our stream processors have. However, it is still possible to develop in the tra-
ditional way. On the other hand, the complexity of configuration could have been
improved, since it requires the user to know which nodes are the slaves and which
node is the master. Thus, based on these reasons, Spark is considered to be just in
the middle of the top and mid-tier of this metric.

Flink is quite like Spark in this metric. This is because, they both are cluster frame-
works, where not much knowledge about the system is required by the user. How-
ever, Flink is a little less complex than Spark, since it requires less from the user in
terms of configuration. In the same manner as Spark, Flink only requires one CLI
and do not use any third party systems. Furthermore, this processor requires least
amount of configuration and setup implementation of our processors. Thus, it is
considered to be in the top-tier of this metric. As a summary, these processors are
shown in the Figure 4.2, which shows the processors in their respective tiers.

Low Med Top Setup

SparkStormKafka Flink

Figure 4.2: Ease of Setup summary.

Businesses with multiple programmers developing and improving a system re-
quires the programming to be as easy as possible. This is not only needed to have
quick deployment of the software, but also to have a good and understandable code
that a developer can quickly get into. Furthermore, understandable code strength-
ens the durability of the system, where fewer confusions and errors can be made.
By choosing a processor with less complexity in the code can reduce these issues,
which is what the Ease of Programming metric aims to measure. During the setup
phase of each environment there were also some programming. Not only was the
programming used to set up the environment but also to evaluate this metric in
each respective processor.

One of the lowest performers in this metric is Kafka. As mentioned before, this
processor is quite low-level, which requires the user to explicitly define how the
flow of data happens. Thus, much more programming is required in order to de-
scribe the whole system rather then only defining the calculations. A simple code
example of such an implementation is illustrated in Listing 4.1.

public class Producer(){
private static int port = 9999;
private static String hostname = ”localhost”;

public static void main(String[] args) {
Socket socket = new Socket(hostname, port);
BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
Properties props = new Properties();
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props.put(ProducerConfig.BOOTSTRAP SERVERS CONFIG, ”localhost:9000”);
props.put(ProducerConfig.CLIENT ID CONFIG, ”kafka”);
props.put(ProducerConfig.KEY SERIALIZER CLASS CONFIG,

LongSerializer.class .getName());
props.put(ProducerConfig.VALUE SERIALIZER CLASS CONFIG,

StringSerializer .class .getName());
Producer<Long, String> producer = new KafkaProducer<>(props);

String line ;
Long index = 0;
while((line = in.readLine()) != null){

producer.send(new ProducerRecord<>(”simulation”, index++, line.trim()));
}
producer.close() ;
}
}

public class Consumer(){
public static void main(String[] args) {

Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP SERVERS CONFIG,

”localhost:9000”);
props.put(ProducerConfig.CLIENT ID CONFIG, ”kafka”);
props.put(ProducerConfig.KEY SERIALIZER CLASS CONFIG,

LongSerializer.class .getName());
props.put(ProducerConfig.VALUE SERIALIZER CLASS CONFIG,

StringSerializer .class .getName());
Consumer<Long, String> consumer = new KafkaConsumer<>(props);

consumer.subscribe(Collections.singletonList(”simulation”));
while(true) {

ConsumerRecords<Long,String> consumerRecords = consumer.poll(1000);
if (consumerRecords.count()==0){

break;
}
consumerRecords.forEach(record −> {

System.out.printLine(record.key() + ” ” + record.value() ) ;
}) ;
}
consumer.close();
}
}

Listing 4.1: Kafka example.

This listing shows two Java classes, one for writing the stream to a Kafka topic
called ‘simulation’ and one for reading from the same topic. In this example, no
computations are done on the records, which means that the data is only flowing
through Kafka. In order to incorporate efficient computations, a third class is re-
quired, which uses the Kafka Streams library. However, it is not needed in order
to illustrate how complex a simple topology is in Kafka. Moreover, there are few
other libraries that can be utilized in Kafka. For example, Machine Learning and
Graph Analytics are not supported. On the other hand, there is support for SQL
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and a connection API which enables connection to different sources. Additionally,
because of its low-level approach, Kafka is compatible with several different pro-
gramming languages. This can allow the developers to program in their preferred
language, which can increase the productivity of the development process. For
these reasons Kafka is considered to be in the lower-tier of this metric.

A quite similar processor in this metric as well is Storm. Thus, it is also one of
the low-level processors where more programming is required. However, Storm
requires more structure in its programming. This is done through the Topology
analogy, where there exists a main file with all ‘Spouts’ and ‘Bolts’ gathered to
form a topology. This is code structure is illustrated in Listing 4.2.

public class Spout extends BaseRichSpout {
private SpoutOutputCollector collector;
private BufferedReader in;
public void open(Map map, TopologyContext ctx, SpoutOutputCollector collector) {

this . collector = collector ;
String host = ”localhost”;
int port = 9999;
try {

Socket s = new Socket(host, port);
in = new BufferedReader(

new InputStreamReader(s.getInputStream()));
} catch (IOException e) {

e.printStackTrace();
}

}
public void nextTuple() {

try {
String jsonString = in.readLine();

if (jsonString == null) {
throw new SocketException();

}

collector .emit(new Values(jsonString));

} catch (IOException e) {
e.printStackTrace();

}
}
public void declareOutputFields(OutputFieldsDeclarer decl) {

decl.declare(new Fields(”field”)) ;
}

}
public class Bolt extends BaseBasicBolt {

private int counter = 1;
public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector) {

String text = tuple.getString(0) ;
basicOutputCollector.emit(new Values(text));
System.out.println(String.valueOf(counter) + ”: ” + text ) ;
counter++;

}
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public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields(”field”)) ;

}
}
public class Topology {

public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(”Spout”, new Spout());
builder.setBolt(”Bolt”, new Bolt()).shuffleGrouping(”Spout”);

Config config = new Config();
config.setNumWorkers(20);
config.setMaxSpoutPending(5000);

StormSubmitter stormSubmitter = new StormSubmitter();
try {

stormSubmitter.submitTopology(”simulation”, config, builder.createTopology());
} catch (Exception e) {

e.printStackTrace();
}

}
}

Listing 4.2: Storm example.

In this listing there are three Java classes: Spout, Bolt and Topology. The Spout
is writing in to the topology and the Bolt is reading from the topology. Further-
more, the Topology class creates the connection from Spout to Bolt. Compared to
Kafka there are more code and classes required to do a similar type of job. How-
ever, if more calculations are required, it wouldn’t necessarily need another class
such as Kafka. On the other hand, with only the support of streaming SQL, Storm
contains the least amount of supporting libraries, which can make it less useful in
some situations. Another similarity to Kafka is its multitude of supporting pro-
gramming languages, where virtually any programming language can be utilized.
Storm is on the lower-tier of this metric, based on the aforementioned advantages
and disadvantages.

Flink on the other hand, handles the topology and flow for the user. This makes
Flink one of the higher-level processors for streams, where much less programming
is required by the developer. Since all of the optimisation and topology logic is
handled by Flink, only the calculations are needed to run an implementation. One
such implementation is illustrated in Listing 4.3.

public class Flink {
public static void main(String[] args) throws Exception {

final StreamExecutionEnvironment env = StreamExecutionEnvironment.
getExecutionEnvironment();

DataStream<String> stream = env.socketTextStream(”localhost”, 9999);
DataStream<String> stream = applyCalculations(stream);
stream.print() ;
env.execute();

}
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}

Listing 4.3: Flink example.

Based on this listing, it is clear how much simpler programming is in Flink com-
pared to Kafka and Storm. With only one variable it allows users to create and ac-
cess the cluster. Thus, only one Java class is actually required to implement Flink.
This is much smaller than Kafka and Storm which required at least two or three
classes for an implementation. However, there are minimal language support for
programmers. In fact, Flink supports only Scala, Java and Python. Even though
these are the few of the most essential languages in programming, it is limited in
comparison to the previous processors. Additionally, similar low library support
is provided by this processor. Where only the CEP and SQL library is supported
for streaming. Even though the internal programming is at a high level, the other
functionalities around it is quite limited. Which is why Flink is considered to be in
the mid-level of this metric.

Spark is in the same level of programming as Flink. Thus, programming hap-
pens in a high-level and most of the optimisation and topology logic is handled
by Spark. Given that Spark is in the same level as Flink, it is logical that similar
amount of code required by Flink is also required by Spark. An example of such
an implementation of Spark is shown Listing 4.4.

public class Main {
public static void main(String[] args) throws IOException {

SparkSession spark = SparkSession.builder()
.master(”local[3]”)
.appName(”simulation”)
.getOrCreate();

Dataset<Row> stream = spark.readStream()
.format(”socket”)
.option(”host”, ”localhost”)
.option(”port”, 9999)
.load() ;

Dataset<Row> stream = applyCalculations(stream);
stream.writeStream()

.outputMode(”append”)

.format(”console”)

. start ()

.awaitTermination();
}

}

Listing 4.4: Spark example.

At first glance this listing might not look similar to Flink. However, with a closer
look it is possible to detect similar structure between the two. For instance, both
of them are initiating an environment/session and reading the stream through the
environment/session. Furthermore, both of them are applying calculations in the
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same manner, and writes the output through the stream variable. Although, in
Spark’s case, the code is more generalized where the method input parameters dic-
tates the behaviour of the method at a greater scale than in Flink. Furthermore,
with this generalization, it is clear that more inputs are required by the user in
order to do the same job as Flink, which might increase the programming time
required to implement it. However, there are less methods required to keep track
on which can reduce the programming time. One could argue for either Flink or
Spark on this topic, where both of them are good contenders for a high rating in
the Ease of Programming metric. However, Spark has an edge on Flink in terms of
programming language and library support. This processor supports Java, Python,
Scala, SQL and R as programming languages, which is slightly more supportive
than Flink. While on the library support, Spark is the only of our stream pro-
cessors that supports Machine Learning and Graphical Analytics out of the box.
Which is why Spark is considered to be in the top-tier for this metric.

To summarize this metric, we present our findings in a chart. This chart is a com-
bination with the Ease of Setup metric, which allows for a better overview and
similarities between them. The chart is shown in Figure 4.3.
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Figure 4.3: Ease of Setup versus Ease of Programming.

From this figure, it is possible to see that Spark and Flink have high measurements
in both of these metrics. Both of them are rated quite high in both of the metrics.
However, Spark has an edge in benefits that often makes it worth the little extra
time and complexity with setup. Thus, Spark is the better performer in this com-
bination of metrics. On the other hand, for situations where more control of the
pipeline is required, then neither Flink or Spark is recommended. These processors
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handle more of the pipeline for the programmer. Thus, it would be working against
these systems in such situations. On the other hand, a more beneficial choice can be
either Kafka or Storm. Since both of them use a low-level programming approach
that enables developers to control the pipeline.

4.2.3 Latency, Throughput and Resource Consumption

A commonality between the Latency, Throughput and Resource Consumption met-
rics, is that they are all numerical measurements that can be found in Table 2.1.
Furthermore, it is possible that some of these measurements are not up to date
with the most resent release. Although, we are still able to categorize them and find
the best performers given that they are somewhere around these previous bench-
marks.

Latency is one of the most important metrics within stream processing. This is
because it shows how real-time a stream processor actually is. For instance, there
are many businesses out there that rely heavily on getting the newest information
as quickly as possible. For these businesses having lower latency than their con-
tenders can give them an edge in a brutal market. Latency is measured in the time
difference between when an event enters the stream processor until it exits. Not
all stream processors perform the same way in this metric. This might be because
of how their internal architecture is structured or how each event is processed.
Thus, some processors are able to achieve millisecond latencies where others have
seconds.

Spark is one of the latter once, which have latencies around the 1 second mark.
Mostly this is due to the basic principle in Spark, which considers streaming as
a special case of batching. This means that all streaming data is converted into
batches, in fact, micro-batches that contains multiple events. Thus, when one event
exits, multiple other events also exit. Spark is considered as one of the stream
processors with the highest latencies, and is in the lower-tier of this metric.

Above Spark is Kafka and Flink, these processors are able to achieve latencies
around the 100ms mark. In these processors, streaming is not considered as a
special case of batching, and each event is processed as they arrive. Additionally,
in order to provide fault tolerance and messaging guarantees such as ‘Exactly-once
Semantic’, these processors use backwards acknowledgements and check-pointing,
which increases overhead and processing time, thus increasing latency. The achiev-
able latencies of Kafka and Flink puts them in the mid-tier of this metric, which
can be good enough for most use cases.

At the top is Storm, which can provide latencies under the 100ms mark. Similarly
to Flink and Kafka, Storm does not consider streaming as a special case of batch
allowing it to achieve subsecond latencies. Additionally, Storm can turn off back-
wards acknowledgements that allows it to outperform Flink and Kafka, which is
why it is considered as top-tier processor in this metric. However, this low latency
comes at a cost, which is little to non fault tolerance and no messaging guaran-
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tees. These disadvantages may be too high of a cost for businesses to pay, which is
why it is important to be aware of these. Figure 4.4 shows each processor in their
respective tiers, and serves as a summary of this metric.

Low Med Top Latency

Flink &
KafkaSpark Storm

Figure 4.4: Latency metric summary.

A different, yet just as important, metric is the Throughput metric. This metric
illustrates how many events can be pushed through the processor at once. Also
this metric can be quite valuable from a business perspective, since it essentially
shows how much value the business can draw out of the processor at once. Thus,
some businesses might value higher throughput rather than lower latency. Simi-
larly to the Latency metric, not all processors perform equally in this metric. These
different performances will be highlighted in a similar manner as the previous met-
ric.

One of the lowest performers in this category is Kafka. It has a throughput around
100-800K records per second, which is low compared to our other processors. Not
only is this because of its inner architecture but also because of a different metric
called Resource Consumption, which will be introduced later in this section. Kafka
was one of the better performers in the previous metric, however in this metric it
is considered in the lower-tier.

A processor with better performance than Kafka in this metric is Storm, which is
able to achieve over 1 million records per second. Storm also had the highest rat-
ing in the Latency metric, which is quite impressive to additionally have this high
throughput. Flink was also quite close to Storm in the Latency metric, however
in this metric Flink outperforms Storm. Flink can achieve a throughput around
10-40 million records per second, which in some cases can make up for not having
the same or higher latency as Storm. Furthermore, both Storm and Flink can be
considered to be around the mid-tier level for this metric.

The processor with the highest throughput capabilities is Spark, which is able to
achieve a throughput around 50-60 million records per second. Considering that
it was the worst performer in the previous metric, it is clear that throughput is a
larger focus for Spark. Furthermore, from an architectural standpoint it is logical
that Spark is at the top of this metric, since Spark is based on batch processing
which is more optimized to handle large throughputs. Thus, Spark is considered
to be at the top-tier of this metric. A summary of these performances are shown in
Figure 4.5.
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Low Med Top Throughput
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Figure 4.5: Throughput metric summary.

The last metric in this combination is the Resource Consumption metric. This met-
ric is not one of the most focused metrics in other benchmarks. However it should
be just as important as the other two metrics. For instance, a business can reduce
the operational budget of a stream processor by choosing a processor that uses less
resources to do the same job as another stream processor with much higher re-
source consumption. Furthermore, these savings can be used in other systems or
projects that can give more value to the business. In the same manner as the previ-
ous metrics, each processor must be evaluated to find the best performer.

The highest consumer of resources is Flink, which was one of the highest perform-
ers in the previous metrics combined. This seems to be rather fitting that also Flink
is a low performer at one of these metrics. Furthermore, it also hints to the exis-
tence of a trade-off between the three, where one metric is hampered for the benefit
of the others. Based on this high consumption of resources, Flink is considered to
be in the lower-tier.

Two processors that are similar in this metric is Storm and Spark, which both out-
performs Flink. However, the leading performance of our last processor makes
them both to be in the mid-tier of this metric. Interestingly, they perform well in
separate other metrics. Spark performs well in the Throughput metric, whereas
Storm performs well in the Latency metric. This further hints to the existence of a
trade-off between the three metrics.

Kafka on the other hand performs excellent in this metric. Although, the perfor-
mance is mediocre in the other metrics, it makes up for it here. Thus, it is clear that
Kafka has chosen to focus on keeping the resource consumption to a minimum,
which is why the performance in the other metrics are compromised. However,
for this metric, it is considered as part of the top-tier. Additionally, this does also
strengthen the claim that there exists a trade-off between these three metrics.

Based on these evaluations a radar chart was created to give a better overview of
these metrics and show how they affect each other. This chart is illustrated in
Figure 4.6.
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Figure 4.6: Overview over the metrics.

From this figure it is clear that there is no stream processor that outperforms all
the other processors in every single metric, and one would have to select which of
these are most important for each situation. For instance, if a lightweight stream
processor with little resource consumption is needed then Kafka might be the best
solution. Another scenario could be if a stream processor needs the lowest possi-
ble latency, then Storm might be the best solution. One could also look at it the
other way around and find which of these metrics are least important for the given
scenario. For instance, if resource consumption is least important, then probably
Flink is the best option. Alternatively, if latency is the least important then possibly
Spark is the best solution.

4.2.4 Input and Output Support

When a business is choosing a stream processor, some may need many connec-
tions to other systems. For quick deployment in these situations, it is crucial to
have built-in input and output connectors in order to lessen implementation time.
However, few stream processors support this, and even less have a broad spectrum
of these. In this part, each processor will be evaluated based on how many input
and output connectors they have. Later these findings are presented in a graph,
which illustrates clearly what each processor contributes with.
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One of our most flexible stream processors is Kafka, which is able to connect to ev-
erything from databases and HDFS to stream sources and applications [10]. How-
ever, connecting to these systems requires a developer to create a ‘Producer’ for
input data and a ‘Consumer’ for output data. Thus there are no built in connec-
tors in Kafka, except for a console producer and consumer, which allows reads and
writes to happen through the console [10]. A similar system in this regard is Storm,
which requires an implementation of a ‘Spout’ for the input data, and a ‘Bolt’ for
the output data. However, since it is one of our most used stream processors, many
of these connectors are already implemented in other open source systems which
allows for reuse in other implementations. Additionally, Storm developers have
different guides and examples on how to create connections to all kinds of systems
such as HDFS, Amazon Kinesis and Elasticsearch [36]. Still, this would have to be
implemented in each new Storm instance, thus there are no built-in connectors in
this processor as well. In conclusion, both Kafka and Storm is considered to be
around the lower-tier of both the input and output metric.

A processor that outperforms both Kafka and Storm in this metric is Spark, which
has input and output support for Kafka and File [34]. Furthermore, there is also
input support for Socket connections. Spark does not have the largest support
of built-in connections. However, there is at least some that can be utilized out
of the box, which is more than what the previous stream processors can provide.
Thus, Spark is considered to be around the mid-tier for both the input and output
metric.

A dominant processor in these metrics is Flink, which has the largest support in
both input and output support. This is achieved through a package called ‘Con-
nectors’ which is included in the initial installation of Flink. Furthermore, this
package includes connectors such as Elasticsearch, RabbitMQ and Amazon Kine-
sis, which allows for easy setup and connection that can reduce time and resource.
Thus, with this package, Flink is considered to be at the top-tier of both of the met-
rics in this evaluation. Moreover, the total evaluation is illustrated more clearly in
Figure 4.7.
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Figure 4.7: Input and Output support.

In this figure, both the Input and Output metrics have their own reference line,
which refers to how many inputs and outputs a processor has built-in to their sys-
tems. Furthermore, it shows that Kafka and Storm are the lowest performers and
are tightly followed by Spark which has a few connectors in both categories. On the
other side is Flink, which has the largest support of connectors to other systems,
thus making it a clear winner in this combination of metrics. However, even though
both Kafka and Storm are among the lowest performers, it can still be possible to
have a quick implementation of them. This is because of the many open source
implementations and integrations for them, which generally contains the current
most used inputs and outputs. Additionally, since Spark has a built-in connection
to Kafka, it can also benefit from Kafka’s open source solutions.

4.3 Summary and Recommendations

In this chapter, there have been two different evaluations, one evaluation of archi-
tectures and one of stream processors. In the architecture evaluation, the architec-
tures Kappa and Lambda were compared with each other. These architectures were
quite similar, however, the main difference is that the Lambda architecture has a
separate Batch layer whereas the Kappa architecture only has a Speed layer. Fur-
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thermore, Kappa focuses more around simplicity of development, whereas Lambda
is more fault tolerant. In the stream processors evaluation, nine different metrics
were introduced. Most of them are of importance to Corporater, whereas the oth-
ers are provided for a better overall view of the stream processors. These metrics
functioned as a separator of all the stream processors differences. Furthermore,
this approach narrowed down the spectrum of differences into more manageable
sizes, which allowed to focus on each important difference one at a time.

These evaluations provides us with enough knowledge to recommend a solution
for Corporater. Not only are the recommendation based on their requirements
introduced in Chapter 1, but also their scenario as well. Furthermore, not all re-
quirements by Corporater are intended for this chapter. Thus, only the once rele-
vant will be discussed. Moreover, there are two requirements that are covered on
all possible system implementations. The first one is that the system should not
need any other licensing from other vendors. Since all systems mentioned here are
open source, this requirement is implicitly fulfilled. The second one is that the sys-
tem should support both Linux and Windows operating systems. Additionally, the
stream processor should also support cloud deployment. From the processors re-
spective websites [10, 33, 32, 14], it is shown that this requirement is also fulfilled
for all possible system implementations.

In the same manner as the first requirement, this is also implicitly fulfilled. Fur-
ther in this section, each evaluation will be compared to Corporater’s remaining
requirements and scenario.

4.3.1 Architecture Recommendation

One evaluation without a requirement is the Architecture evaluation. Based on
the survey, it was not possible to draw out such a requirement. However, from
their scenario it is possible to deduce a recommendation. By now it is known that
Corporate delivers a software called BMP. This software is integrated with batch
processing, which can be considered as a Batch layer. Furthermore, it is intended
that data stream processing is to be included in this software. Thus, in order for
a smooth integration with the rest of the system, it is recommended to use the
Lambda architecture.

If the Kappa architecture was implemented completely in this scenario. It would
require all of the batch integrations to be ported over to the Speed layer. This would
mean a revolutionary change in their system, which will come at a huge cost to the
company. Furthermore, using Kappa would also mean putting a requirement on
customers databases, that would need the ability to handle high write throughputs.
Although, by choosing the Lambda architecture it does not mean that the Kappa
architecture can never be implemented in this system. This architecture can al-
ways be implemented in the future. By first using the Lambda architecture the
conversion can happen more gradually, where piece by piece of the Batch layer is
converted into the Speed layer. Thus, the Lambda architecture is probably the best
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choice for the present and future of Corporater.

4.3.2 Stream Processor Recommendation

There are multiple requirements from Corporater for the stream processor. All
these requirements have been covered by the evaluation of the different metrics.
Thus for this recommendation each requirement will be introduced separately. In
order to find the best fit for the requirement, the corresponding metrics will be
utilized. Further, all these requirements will be combined into a final recommen-
dation for Corporater.

One of these requirements is the large input and output support of the stream
processor. This requirement is based upon the already large variety of customers
that Corporater has. Thus, a useful stream processor for them should be able to
support all these customers. From the evaluation of input and output support,
there were quite few highly supportive processors. In fact, Flink might be the only
processor that can support all the customers of Corporater. On the other hand,
it is possible to use the other stream processors by discovering their respective
library extensions. This enables them to have the same or higher support than
Flink. However, these processors might need more development time in order to
be properly implemented.

Two other requirements for the stream processor are as many calculations as pos-
sible, and ability of advance aggregations. These requirements are based on the
flexibility of the existing BMP, that can be utilized in all different kinds of use
cases. Thus, the stream processor should do the same. There is one metric that can
be used for these requirements, this is the Ease of Programming metric. Not only
does this metric show how it is to program in each of the systems but also what
calculations and libraries that can be utilized. Spark is the highest rated stream
processor in this metric, which makes it an excellent choice in this regard. How-
ever, it is more complex to setup compared to Flink, which is important to be aware
of. Since it could cost more development time in the setup phase of the implemen-
tation.

A high throughput is important for Corporater. This is based on the limited use
cases one would have for the BMP with a low throughput stream processor. Ad-
ditionally, to have a broad spectrum of utilization capabilities would be highly
valuable. Thus, this requirement is rated heavily compared to other requirements.
The corresponding metric to this requirement is the Throughput metric. This met-
ric shows that both Flink and Spark are highly compatible. However, based on
Figure 4.6, they excel in separate other metrics which can be the deciding factor
between the two. For Corporater’s scenario, it is clear that latency is not a priority
in their system. Thus, it is more valuable to chose a processor that is superior in
the Resource Consumption metric. Spark has better performance in that metric,
thus surpassing Flink in terms of this requirement fulfilment.

The final requirement from Corporater is that the processor needs to have a close
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connection to batch data through its API. This requirement is based upon the value
of enriching the stream with batched data. Furthermore, it also enables more func-
tionalities to happen between them, such as comparing today’s current status with
the same day last year. The one metric fitting this requirement is the API met-
ric. From the evaluation of this metric, it is known that Spark is the highest rated
processor. This is because of the ‘Structured Streaming’ library that enables to
use the same library on both batch and streaming data. Furthermore, no other
stream processor have this support. Thus, for this requirement Spark is the best
solution.

There are several factors to consider when choosing a stream processor. Most likely
not all of these factors are included in this evaluation. However the most important
once for Corporater are present. Based on these factors, the most fitting stream
processor for Corporater is Spark. This processor scores the highest in the most
valuable metrics. Furthermore, it comes with a lot of extra features that other
processors can not compete with. Even though the input and output support is
not optimal for this processor, it compensates with being an excellent choice in the
other requirements. However, by utilizing another system like Kafka, which Spark
has native support to, enables adequate input and output support for the overall
system. Additionally, Spark is able to support the Lambda architecture completely.
This also enables future batch implementations to be done in Spark. Thus, unifying
batch and streaming data, without the need to convert to the Kappa architecture.
On the other hand, this does not mean that Spark is the most optimal choice for
every scenario. For instance, Spark would not be recommended when latency is
important, or when control of the pipeline is required. In these situations it might
be best to use either Kafka or Storm. Another example where Spark might not be
the best choice, is when ease of setup is important or multiple connections to other
systems is highly required out of the box. For this instance Flink might be the
best choice. However, for Corporater’s scenario Spark is the most beneficial stream
processor for them.
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Chapter 5

Proof of Concept

From the previous chapter, an architecture and a stream processor have been rec-
ommended. In chapter 3: Solution Approach, these two were injected into a pro-
totype. However, this prototype was not tested or analyzed in any way. Thus, it is
not known whether Corporater’s requirements are fulfilled or not. In this chapter,
our prototype will be put to the test through an experiment of a typical scenario
for Corporater. This experiment will serve as a proof of concept, and show what
is possible to implement in Corporater’s system. Before the prototype is tested,
there will be a thorough explanation of how this experiment is configured and set
up. Additionally, the stream generator will be properly explained, which was only
introduced as a generator in previous chapters.

5.1 Stream Generator

Since there was no data available for simulating a data stream, it had to be created.
This was done through a generator which is meant to emulate a call center where
customers call in for information or help. The call center is handling calls for
multiple businesses where all calls go through the same stream. The customer flow
is illustrated in Figure 5.1.

Queue Customer handling Ended

Company 1

Company 3

Company 5

Company 4

Company 2

Figure 5.1: Customer Flow of Call Center.
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Following Figure 5.1 from the left, shows that a customer must first enter a queue
before talking with an operator. Each time the customer enters the queue a times-
tamp is logged, this happens also when the customer handling process starts and
when the phone call has ended. The generator does not have random customers
that end their phone call in the queue, which means that all customers are even-
tually handled. When a customer ends the call an event is created in JSON format
which is sent out on a TCP port. This event consists of:

• PhoneNbr: Phone number of customer.

• CompanyID: ID of the current company.

• Operators: Operators on the job.

• Enter: Timestamp of customer entering the queue.

• Handling: Timestamp of when the customer starts being handled.

• Ended: Timestamp of when the phone call ended.

Initially this generator was more complex and realistic, however the events were
not happening fast enough. Thus it was re-implemented with a much simpler de-
sign which achieved much higher throughput, in addition the throughput became
controllable to keep it within manageable parameters of the prototype.

5.2 Experimental Setup

In Chapter 3 a prototype was introduced. This prototype is integrated with the
BMP software and provides an end-to-end connection to the data streams. In this
section there will be explained an experimental setup of this prototype. This is
done through a series of three parts. In the two first parts there will be explained
some example configuration of Spark through BMP. Moreover, the first part will
focus on the general configuration and setup of the data stream inside Spark. The
second part of the explanation is focused around the calculation pipeline, where
each mutational step of the stream is explained. The third part explains the over-
all architecture of the setup and hardware specifications. Furthermore, the stream
generator from the previous section will be utilized as a data source for this exper-
iment.

5.2.1 General Configuration Steps

For this experiment the prototype is intended to function as a micro service within
BMP. This is not necessarily the only use case for this prototype. It can also function
on its own, where for example a simple GUI is created on top for non-developers
to configure. However, in this experiment we will utilize Corporater’s systems as
an example of how this could be done. This also means that Spark will be booted
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up together with the BMP, and its startup configurations are already set by a hypo-
thetical system administrator. Thus, when a stream needs to be created we know
that Spark is running and only require the stream configuration in order to start
calculations on the stream.

To initiate a stream through BMP, it is necessary to create a resource that contains
all required configurations for Spark. The general configuration required at this
point are shown in the list below.

• Host & Port: Defines the location of the data source through IP address and
port number, which Spark can connect to and process events. In our case this
is the IP address and port number of the stream generator.

• Stream Name: Defines the name of the stream. This name is utilized as a
table name not only in Spark internals but also in the H2 Serving layer. In our
case we will call our stream ‘PhoneEvents’ as a fitting name for this stream.

• Stream Sample: Defines the structure of the stream. This is a necessity for
Spark in order to properly convert the JSON string into row format. Another
solution for this, is that the user defines the whole structure by hand. How-
ever, this might be too much for the user to configure. Additionally, it takes
more time than just pasting a sample of the stream. In our case, we use a
sample with the same structure as defined in the stream generator.

• Window Size: Defines the time window in seconds for grouping events to-
gether. In most cases there will be grouping of data in such a system. Thus, it
is necessary to have a time window specified in order to prevent never ending
groupings.

These configurations are essential in order for Spark to process the stream properly.
A potential configurational interface for these metrics and the respective resource
inside Configuration Studio are shown in Figure 5.2.

Figure 5.2: General Configuration Example in BMP.

From this figure it is possible to see that it requires no programming in order to
setup the most general configuration required for the stream. Using this type of
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interface, it would not be necessary to include a developer, rather a simple business
user could do this job. In the next part, there will be introduced more configuration
examples in the same type of interface, that could tell Spark what to calculate on
the stream.

5.2.2 Calculation Pipeline

The calculations in the pipeline are meant to simulate a typical scenario for Corpo-
rater. Thus, advanced aggregations and calculations will be one of its main focuses.
Based on the call center in the generator, it could be interesting to look at averages
of how long a customer stays in the queue and how long the conversations are.
Additionally, it is also interesting to see how many operators are present on each
average measurement. An illustration of this pipeline is shown in Figure 5.3. Fur-
thermore, mutations that are uncontrollable by regular users will not be shown
here, as they are necessary mutations for the system to function properly. An ex-
ample of such a mutation is the step of converting the JSON string into a table
row.

Stream

Select Expression

Step 1

User Input

[ * ,
(Handling - Enter) as WaitingTime ,

(Ended - Handling) as Duration
]

Group By

Step 2

User Input

[
CompanyID

]

Aggregation

Step 3

User Input

{
WaitingTime: avg ,

Duration: avg ,
Operators: min

}

Output Stream

Figure 5.3: Calculation Pipeline.

The first step in this pipeline is the ‘Select Expression’ method. As mentioned in
Chapter 3, this method allows SQL-like queries as input. This is done by convert-
ing the different selections from the user into an array that is fed into the method.
Furthermore, by selecting the difference between the ‘Handling’ and ‘Enter’ pa-
rameters, the waiting time for this particular event is created. The same type of
difference is also done between ‘Ended’ and ’Handling’ in order to find the phone
call duration for the same event. Additionally, to keep all the other columns from
the stream with us, we utilize SQL term ‘ * ’ to select all these events. One potential
configuration can be created through the interface shown in Figure 5.4.

Figure 5.4: Select Expression Example in BMP.
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The second step is a ‘Group By’ method. This method allows the user to group
rows together based on one or more columns. For this case, we want to group by
the CompanyID’s such that this can further be separated into different tables and
charts for each respective company. Additionally, a second grouping is happening
under the covers. This is the window grouping that prevents never ending group-
ing calculations. A potential configuration can be created through the interface
shown in Figure 5.5.

Figure 5.5: Group By Example in BMP.

In order to complete the grouping, some aggregations are required. This is covered
by the third step in our figure. In this step, the user provides the aggregations of
desire. These are further converted into a hash map that is fed into the aggregation.
For our case, we want to have the average of the waiting time and phone call du-
ration. Additionally, we include the minimum of operators for this grouping that
provides the number of operators on each average measurement. One potential
configuration can be created through the interface shown in Figure 5.6.

Figure 5.6: Aggregation Example in BMP.

Based on these calculational steps, we have created the measurements of interest.
Additionally, a potential way to configure these calculations has been shown solely
using the BMP software. This means that it can be possible for regular business
users to configure data streams through a simple GUI, where no programming is
required.

5.2.3 Overall Setup and Hardware Specifications

Achieving a certain performance of the system is not a requirement from Corpo-
rater. Thus, simplicity of the overall setup is chosen for this particular setup. An
illustration of the running nodes in this prototype is shown in Figure 5.7.
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Figure 5.7: Overall Setup.

In this figure, there are two nodes. The first one is running the BMP software and
the second one is running the stream generator, Spark as the stream processor and
H2 as the Serving layer. This setup mimics a potential setup for Corporater, where
the BMP is not concerned about how the data stream is processed and only needs
to send configuration to the processor. Furthermore, these two nodes are not the
same in terms of hardware. This is illustrated in Table 5.1.

Node 1 Node 2
RAM 16 GB 32 GB
Cores 2 4
Base Frequency 2.4 GHz 3.6 GHz
Operating System Windows Windows

Table 5.1: Hardware specifications of nodes.

This table shows the specifications of the two nodes shown in 5.7. Based on this ta-
ble, it is logical that Node 2 has more processes running since it is the most power-
ful computer of the two. With this setup, we are able to achieve a throughput of 300
records per second, which is more than enough for a testing environment.

5.3 Experimental Result

At the end of the calculation pipeline, the calculated events are sent to the H2
database. As mentioned in previous chapters, this database serves as the Serving
layer for our prototype, and is the connection between the stream processor and
BMP. Thus, when the events are sent to H2 it is also available to be captured by the
BMP. Further in this section there will be described how these events are captured
and further mutated into visible objects in the BMP web interface.

In order to capture the Serving layer’s events a connection must be established
between the two. This is done through a resource in Configuration Studio called
SQL resource. An implementation of this resource and its respective inputs are
shown in Figure 5.8.
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Figure 5.8: Connection to Serving Layer.

From this figure, it is possible to see that only the most basic connection config-
uration is required in order to connect to H2. This connection can be utilized by
other objects to retrieve desired information from the Serving layer through SQL
queries. Thus, having a connection to the real-time calculated values from Spark.
We created one such object which we named ‘Stream Table’. This is a tailored ta-
ble designed to read the Spark entries in H2. An implementation of this object is
shown in Figure 5.9.

Figure 5.9: Stream Table Object Configuration.

This figure shows a typical Stream Table configuration. In this figure there are
three configuration columns. The two first columns are the required resources that
needs to be setup in order to read from the Serving layer. The third column is the
SQL query that is sent to H2 though the respective resource connection. In our
case, we want the last 10 minutes of our two calculated averages ‘Waiting Time’
and ‘Duration’ which is shown in the Query input field. With this query, the Serv-
ing layer will respond with the requested table. Moreover, this table serves as a
reference point for displayable objects in the web. These objects can show this in-
formation in several different charts or tables that can aid the business experts to
find the use full information quickly. Two such objects are created in Configura-
tion Studio to read from this table. These objects are shown in the web interface
illustrated in Figures 5.10 5.11.
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These figures illustrates a typical web interface in BMP. However, instead of hav-
ing the chart and table connected to a batching source they connect to the data
stream itself, which continuously updates the table. This can be shown by looking
at the different timestamps in the two figures, where the newest value in Figure
5.10 is one of the oldest values in Figure 5.11. Furthermore, with these real-time il-
lustrations together with the already existing features of BMP, allows the business
experts to see quick changes in their systems and act upon them through other
objects in BMP.

5.4 Analysis

The main goal of this prototype, is to provide an interface for business experts into
data streams. Without the need for programming, these business experts would be
able to configure these data streams. The resulting stream should then be displayed
in a table or chart of the business expert’s choosing. This goal was deduced through
Corporater’s requirements introduced in Chapter 1. In this section we will look
into the prototype’s fulfillment of this goal and analyze its limitations.

Based on the results in the previous section, it is clear that Business experts are
able to get processed stream data into BMP. Furthermore, calculations could be set
in Configuration Studio that is forwarded to Spark for execution. This is achieved
by generalizing methods in Spark to such a degree that the configuration can be
set in a different environment. Thus, the concept goal is proven by this prototype.
However, sending configuration from BMP to Spark is not implemented thus far.
The configurational examples shown in Section 5.2 are only how it could happen.
In reality these configurations are set in a static class that Spark can request when
needed in the calculational pipeline. This class is a separate component where all
the calculational configuration in the pipeline exists. Thus, the concept of gener-
alizing methods in Spark to the degree of setting configuration in a different envi-
ronment still holds. This means that it is possible for Corporater to integrate with
this system, and our proof still holds.

Limitations

A different subject in this analysis is the limitations of our prototype. From the
evaluation chapter, it is known that Spark’s latency is considerably higher than
our other stream processors. Additionally, it has limited support towards inputs
and outputs. These and other limitations were considered in the previous chapter,
where Spark’s benefits over-weighted these limitations. However, when develop-
ing this prototype there were more limitations of the system appearing. One of
the most profound issues discovered is that ‘Spark Analytics’, which analyzes the
calculational pipeline before execution, does not allow nested aggregations. This
means that more complex combinational aggregations are not possible in the same
pipeline. One solution to this problem could be to first do one aggregation then
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output the result to a message receiver system. This system could then feed the
output into Spark again through a different streaming instance that would do the
second aggregation. Unfortunately, because of the time constraint of this thesis,
this was not possible to test. Furthermore, this might not be the most optimal
solution, but it is one solution that probably can enable nested aggregations.
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Chapter 6

Conclusion & Future Directions

In this thesis, we wanted to investigate and develop a prototype that enabled busi-
ness experts to utilize data streams without the need of a developer. With integra-
tional support for Corporater’s systems, this prototype should also perform ade-
quately to their requirements and scenario.

We provided the investigation through an evaluation. From this evaluation we were
able to recommend an architecture and stream processor that suffices Corporater’s
needs. Additionally, this evaluation provides a general overview of the leading
architectures and stream processors differences. This allows for other businesses
in a similar situation to draw beneficial value from its generality.

Based on the recommendation, we created a prototype. By implementing it in a
generalized way, enabled compatibility with any type of GUI or API that are able
to send configuration to the prototype. Further, we created an experiment utiliz-
ing our prototype. This created an end-to-end connection from the data source
into Corporater’s Business Management Platform (BMP). With this experiment we
have proven that it is possible for business experts to visualize and configure data
streams without the need of a developer.

Corporater has now been provided with crucial insight to the stream processing
landscape. The research proves that today’s stream processors have the integra-
tional capacity to support Corporater’s requirements, which enables future devel-
opment of integrating stream processing support into their systems.
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6.1 Future Directions

More Functionality and Generalization

There is definitely a need for more functionality in the system. For instance, utiliz-
ing a SQL parser to convert user configuration to SQL would enable less develop-
ment in Spark. It would only be necessary to send the converted query directly to
it and Spark could correctly execute this query. Furthermore, improving the gener-
alization of the pivot method within Spark would provide a new feature few other
systems can provide to their users.

Utilizing the machine learning library is also a possible extension to the system.
By generalizing this library, would provide configuration and modifications of cru-
cial real-rime predictions and forecasting to business users. This is also a rarity
among business experts and could further give them an edge in a competitive mar-
ket.

Kafka and Spark

An interesting software extension to Spark is Kafka. Surrounding Kafka around
Spark can enable more security, fault tolerance, input and output support. With
this implemented, it would be interesting to see whether Spark could run small
batch jobs on the stream instead. This would enable all the functionality of the
batch such as pivoting to be utilized on the stream. Additionally, this could also
solve the limitation of nested aggregations, which would allow for more complex
combinational aggregations to take place. Another interesting possibility with this
setup, is to have some simple preprocessing done in Kafka. This would enable
Spark to only focus on the most time consuming jobs and possibly increase the
overall performance.

Spark Continuous Processing

Continuous processing is a new mode introduced in Spark 2.3 that branches away
from the micro-batch approach. It is an experimental feature within the Structured
Streaming library that enables Spark to achieve millisecond latency [37]. This is
done through launching a set of long-running tasks that continuously read, pro-
cess and write data. Furthermore, this feature enables Spark to compete with the
other low-latency systems out there such as Flink, Kafka and possibly even Storm.
Utilizing this feature within our prototype would enable more use cases for the
system. The business users could then be even closer to real-time processing and
possibly give them a larger edge in the market.

Apache Druid

Apache Druid is a high performing analytics database that specializes in features
around event streams [38]. It is not considered a data warehouse. However, they
are utilizing architectural ideas from the data warehouses such as column-oriented
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storage. By creating a separate prototype utilizing Druid instead of Spark we would
be able to evaluate their differences. Further, it would be interesting to see whether
Druid is able to provide the same features and functionalities as Spark.

Apache Beam

Apache Beam is a system that provides a model which unifies both batch and
stream data processing [39]. In our case it can be considered as an advanced
Serving layer, that is able to send configurations down to one of their supporting
pipeline runners (stream processors). Currently they are supporting Spark, Flink,
Apex, Samza, Gearpump, and Google Cloud Dataflow. By switching out our H2
Serving layer, it would be interesting to see if the ‘Business-In-Control’ concept is
more straightforward with this system compared to the current prototype.
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Appendix A

Github Repository

The link to relevant code and environment that is implemented for our thesis is
provided in this link:
https://github.com/nicolai-vs/datmas
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