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“It is not enough to do your best; you must know what to do, and then do your best. ”

W. Edwards Deming





Abstract

The cocktail party problem, also known as a single-channel multi-talker problem, is
a significant challenge to enhance the performance of automatic speech recognition
(ASR) systems. Most existing speech separation model only concerns the signal-level
performance, i.e., source-to-distortion ratio (SDR), via their cost/loss function, not a
transcription-level performance. However, transcription-level measurement, such as word
error rate (WER) is the ultimate measurement that can be used in the performance of
ASR. Therefore we propose a new loss function that can directly consider both signal
and transcription level performance with integrating both speech separation and speech
recognition system. Moreover, we suggest the generalized integration architecture that
can be applied to any combination of speech recognition/separation system regardless of
their system environment.

In this thesis, first, we review the techniques from the primary signal processing knowledge
to deep learning techniques and introduce the detailed target and challenge in speech
separation problem. Moreover, we analyze the several famous speech separation models
derived from a deep learning approach. Then we introduce the new loss function with
our detailed system architecture, including the step-by-step process from pre-processing
to evaluation.

We improve the performance of the existing model using our training approach. Our
solution enhances average SDR from 0.10dB to 4.09dB and average WER from 92.7% to
55.7% using LibriSpeech dataset.
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Chapter 1

Introduction

1.1 Motivation

Automatic speech recognition (ASR) is one of the most popular research areas in
computers science in past years. As people always have developed new inventions for
a more comfortable life, ASR is also believed as one of the keys to guide us the next
generation of communication between human and machine. Since speech is the most
natural and convenient method for humans to communicate, it is reasonable to apply
this method to make us interact with personal devices such as smartphone, laptop, and
tablet.

Even though the ASR technology has shown human level accuracy these days; the
performance is still not stable in a real-world environment. The main reason is, the ASR
system is developed based on the clean audio source. However, there are few chances
to meet the noise-free circumstance in our daily life; therefore, environmental obstacles
such as noise sound and other’s speech should be handled first. Thus, speech separation
is considered as essential to escalating the performance of the ASR system.

Speech separation task, which is also called a ‘cocktail party problem,’ has been tackled
from signal level traditional method to spectrogram level deep learning. In the speech
separation task, there are various assumptions about the condition of sound. For instance,
the target sound can be interfered by background noise, e.g., cars, birds, and wind. Also,
it can be interfered by other speakers. When there is more than one speaker, sometimes
the number of the speaker is o�ered, sometimes it is not. Therefore, the machine learning
task can be supervised learning task and unsupervised learning task based on prior
knowledge.

1
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In this paper, we focus on the supervised learning situation, which means that the model
knows the number of speakers, furthermore, reference audio (same speaker’s di�erent
speech) is also o�ered. Based on the existing system, we suggest the new loss function
and system architecture that can improve the performance of its original model.

1.2 Problem Definition

In the speech separation task, many researchers use a signal-level loss to train the model.
The main limitation of this approach is, the loss function does not directly represent
the performance of the system. In other words, there is a miss match between loss
and performance. For instance, many signal-level training systems use mean squared
error (MSE) as its loss function to compare the element-wise level di�erence between
original audio and separate audio [1]. However, this way of calculating the loss may
miss some criterion since it does not fully cover all the performance measurements that
are widely used. Usually, signal-level measurements such as source-to-Distortion ratio
(SDR), source-to-Interference ratio (SIR) and source-to-artifact ratios (SAR) are used
the evaluate the speech separation system’s performance, and MSE performs reasonably
for those measurements.

However, transcription-level performances such as word error rate (WER) and character
error rate (CER) are considered the core measurement in the end. Because the primary
purpose of speech separation is to enhance the accuracy of speech recognition, therefore,
even though the separation process achieves high SDR, it does not necessarily mean that
WER is also better. In other words, while the model is training, the performance may
already reach a reasonable point in terms of signal. However, since the loss function does
not directly represent its performance, the model may be over-trained. Furthermore, the
direction that decreases the loss value does not necessarily mean to minimize the error
rates mentioned above. Therefore, the model may converge in unsatisfiable point based
on its loss function.

Thus, in this paper, we propose a new way to define a loss function that can directly
enhance the WER of the speech separation system. Additionally, we introduce the system
architecture to integrate both speech separation and speech recognition system regardless
of their system environment.
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1.3 Usecases/Examples

The speech separation system can also be called, speech enhancement or voice filter
system because the main idea is generating better speech sound from the noisy sound.
As personal devices are provided widely, the importance of digital assistant is also
rising. Many devices have its own voice assistant system such as Siri from Apple, Bixbi
from Samsung and Alexa from Amazon. The speech recognition performance has been
improved drastically; however, it is still limited by many environmental conditions such
as a noisy situation. Therefore, it is unavoidable to enhance the user’s speech quality
regardless of its environmental factors. In that manner, our speech separation has
tremendous potential for the ultimate voice assistant.

1.4 Challenges

There are two challenges that we mainly focus on. First of all, proposing new loss function
that can consider both signal-level and transcription-level is the main challenge. The loss
function should be reasonable with su�cient theoretical evidence. Secondly, integrating
two systems (speech separation and speech recognition) with minimizing the training
performance is also our primary task. Moreover, since each system depends on its own
system configuration, it is vital to structure the environment-free integration.

1.5 Contributions

In this paper, we investigate the research area of speech separation from scratch to
state-of-the-art technology and propose a new technique that can directly improve the
word error rate.

First, we review the speech separation area, including audio processing itself and conven-
tional blind speech separation techniques comprehensively. Secondly, we introduce the
standard evaluation measurement for both signal-level and transcription-level. Thirdly,
we briefly review the deep learning technology and the way to apply to a speech separation
system, moreover, analyze the role of each network’ in the separation system architecture.

In the end, we integrate two systems to suggest our solution. The main challenge is to
relate the loss function and WER directly through the training process. Therefore, we
integrate speech recognition system next to the speech separation process. We choose
‘Deep speech’ introduced [2] as a speech recognition system, and for the speech separation
system, we use ‘Voicefilter’ from [3]. Since the purpose of the thesis is, experimenting
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with the e�ect of transcription-level loss for the speech separation over the spectrogram-
level loss, we fix the performance of the speech recognition system using pre-trained
model. A detailed description of those two systems will be introduced later. Furthermore,
our system integration approach is generalized regardless of the system environment.
Therefore our proposed system architecture can be applied to any other combination of
speech recognition and separation system.

1.6 Outline

The paper consists of seven chapters, including this introduction. In chapter 1, we
introduce our task and define the problem. In chapter 2, we cover the background
literature for both signal processing and deep learning. However, since the range can
be varied, we mainly focus on the theory and techniques that are highly relevant to our
topic. In chapter 3, we review the speech separation task using deep learning techniques
with the existing system; additionally, we introduce some research that can theoretically
support our solution. In chapter 4, the model that we are using as a reference is deeply
analyzed, and we propose our solution. In chapter 5, the experiment process and result
are described, and we discuss our result in chapter 6. Finally, we conclude the result and
suggest the future direction for further improvement in chapter 7.



Chapter 2

Literature Background

2.1 Automatic Speech Recognition (ASR) systems

Figure 2.1: Subdomains of ASR

There are four subdomains to improve the ASR system’s performance, as shown in
Fig.2.1. The speaker diarization is the mechanism to find “Who Spoke When?”.
The speaker change detection sounds similar to speaker diarization; however, is
the process to mainly focus on the moment that di�erent speaker starts to talk. The
speaker recognition is to identify the speaker; in other words, it is highly related to
the voice print. Lastly, speech separation, which is our main topic, takes one part of
these preprocessing parts. Those four mechanisms are a vital component to build the
outperforming ASR system regardless of the performance of a speech recognition system
itself. Moreover, these four mechanisms are intertwined; therefore, it will improve the

5
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overall performance strongly if we consider and implement all the domains. However, in
this thesis, we only focus on the speech separation process.

2.2 Speech Separation: Cocktail Party Problem

Speech separation problem is also known as ‘Cocktail Party Problem’ which is named
initially from [4] in 1953. As we can notice from the name, it demonstrates the situation
where many sounds are existing concurrently in natural auditory environments. The
cocktail party problem is a task to extract or separate the target sound from mixed
or noisy sounds. The synonym of the cocktail party problem is ‘cocktail party e�ect’
which describes the human ability that we can concentrate on only the sound that we
are interested in. Based on [5], when human intend to focus on one speaker, the auditory
system restores the representation of target speaker while suppressing irrelevant noisy
speech. However, when the task moves to the computer, this starts to be a challenge.

To adapt human behavior into the computer, two challenges should be considered [6].
First challenge is, as we mentioned all along, how to separate sounds from the mixed
sounds. Humans can concentrate on one or two target sound. However, since the
computer has uncomparable multi-tasking ability, in the last case, it should be possible
to separate all the sounds from the mixed version. Secondly, it is essential to trace and
hold the target speaker, especially in conversation situation or long speech, and as we
describe above in 2.1, this is also related to other subdomains.

In our project, we focus on the first challenge, and the way to tackle this problem from
the perspective of the computer is described in Chapter .

2.3 Background in Audio Processing

Before we dive into audio processing in deep learning, it is essential to understand the
fundamental signal processing theory and concept. In this section, we will briefly explore
the characteristics of sound and its representation.

2.3.1 Audio Representation

There are two main domains in audio data, often used in most deep learning technology.
One is the time domain, and the other one is the frequency domain information. If we
represent the audio wave using only the time domain with its amplitude envelope of a
varying waveform level of a sound wave over time, it can be shown as in Fig.2.2.
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Figure 2.2: Audio wave plot

It is unchallenging to detect ‘when-to-speak’ from the wave plot; however, this information
is missing essential details. For instance, since the amplitude represents the loudness of
the audio at that moment, the same magnitude does not necessarily mean the same sound.
In other words, the amplitude-time domain cannot distinguish between two di�erent
speech. Therefore, time-amplitude data miss essential information, and time-amplitude
only data is challenging to be used in speech audio.

Figure 2.3: Frequency plot

Therefore, many research use frequency domains as core information to di�erentiate the
characteristic of sound. Discrete Fourier Transform (DFT) is widely used to extract the
frequency data from the signal. As shown in Fig.2.3, we can plot the amplitude-frequency
plot, and we can e�ciently distribute the signal based on its frequency.

Xk =
N≠1ÿ

n=0
xn · e≠ i2fi

N kn

=
N≠1ÿ

n=0
xn · [cos(2fikn/N) ≠ i · sin(2fikn/N)],

(2.1)

To highlight the e�ect of using the frequency domain, we test a simple example. We test
single word audio files from the same speaker. One word is ‘eight’ and the other word is
‘right’. The reason that we use the same speaker’s speech is since male and female have a
di�erent frequency range of their ordinary utterance. Therefore sometimes, the same
gender mixture is considered as another level of challenge in speech separation task [7].
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(a) Eight

(b) Right

Figure 2.4: Amplitude-Time plot

First of all, the Amplitude-Time plot shown in Fig.2.4, does not show the consistent
shape from the same word. Therefore, some graph may look similar even if they are a
di�erent word.

(a) Eight

(b) Right

Figure 2.5: Amplitude-Frequency plot

On the other hand, in the Amplitude-Frequency plot shown in Fig.2.5, we can observe
some patterns. First of all, the same word shows the consistent pattern, which means,
even though the timing of speaking is di�erent in the end they use a similar frequency to
sound the same word or character. Secondly, it shows a clear di�erence between ‘eight’
and ‘right’. If we analyze it visually, in ‘eight’ utterances, the highest pick is normally
third or fourth one in the plot. However, in the ‘right‘ utterances the highest peak is the
first one. We can summarize as ‘right’ has more low-frequency sound than ‘eight’.

However, frequency only information also has a limitation. Since DFT loses the time
domain, this information is not helpful when the speech is longer than a certain length.
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Moreover, since speech is not a stationary signal, the time domain should be considered
simultaneously [8].

2.3.2 Short Time Fourier Transform

Many researchers use the Short Time Fourier Transform (STFT) to obtain both time and
frequency domain. Especially when we use deep learning techniques, we use an STFT
spectrogram as a front-end in ASR.

X(m, Ê) =
Œÿ

n=≠Œ
x[n]w[n ≠ m]e≠jÊn (2.2)

The Eq.2.2, shows the way to obtain both time and frequency domain using STFT.
Where

x[n] = input signal at time n

w[n ≠ m] = length m window function (e.g., Hamming)

X(m, Ê) = DTFT of windowed data centered about time m.

If we increase m, the window function w will move to the right; then we compute Fourier
transform for the frame x[n]w[n ≠ m]. In other words, STFT is the repeated Fourier
transform using Eq.2.1 for each frame that is shifted by the window function. Therefore,
X(m, Ê) obtain both time and frequency domain [9].

To visualize the signal source, we use spectrogram, which is the spectrum of the frequency
of the signal aligned by time. Although we use the spectrogram only to confirm the
overall progress in this paper, the spectrogram can be the direct input source for some
speech research area. Because the machine learning task can be transformed into image
processing and it is more researched area than sound processing [10–12].

(a) Target Audio (b) Noise Audio (c) Mixed Audio

Figure 2.6: Spectrogram after STFT of audio sources

In Fig.2.6, three di�erent examples of STFT spectrogram are presented. The mixed audio
2.6(c), which we will discuss the detail later, is generated by element-wise additive between
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target audio 2.6(a) and noise audio 2.6(b). And the color represents the magnitude of
each Time-Frequency bin while dark color means silent.

2.3.3 Soft Masks

(a) Signal spectrogram (b) Mask on dominating signal

Figure 2.7: Signal separation in the spectrogram

Before we describe the mask concept, we prepare a simple example that can intuitively
help to understand the needs of mask in speech separation. In Fig.2.7, we demonstrate
the situation when two speech is mixed. The original audio is represented as a dashed line
(red and green), and both speakers have di�erent frequency zone since one is female and
the other is male. The blue showed the frequency pattern of mixture audio, the notable
symptom in this figure is when we mix the audio the information of lower amplitude
speech is becoming obsolete. Therefore, it can generate the mask, as shown in the right
image, we can separate the corresponding frequency information. And this is the main
observation of using soft mask in speech separation [13]. Note that this is a DFT plot,
not the STFT plot; therefore, there is no time information.

In order to reconstruct the specific source from the mixed version, many studies use soft
mask method [14, 15]. The ideal mask can be generated under the circumstance that all
the sources such as target, noise, and mixed are known. There are several versions of
masks [16–19], and the most basic mask is binary mask [20].

As denoted in Eq.2.3, the ideal binary mask (IBM) can be generated by comparing
between target and mixed source. If the signal-to-noise ratio (SNR) is higher than a
certain threshold, it assumes that the T-F unit is derived from the original target source.
Therefore, that unit will be 1, and the others will be 0.

IBM =

Y
]

[
1 if SNR(t, f) > threshold
0 otherwise

(2.3)
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Now, if we compute the element-wise multiplication between the noise source and IBM,
then only corresponding T-F bin will remain, and this will be considered as an original
sound. If we visualize the IBM of Fig.2.6, it can be shown as Fig.2.8.

Figure 2.8: IBM Spectrogram

Although IBM is the simplest way to generate mask and its reasonably e�ective, IBM
has significant limitation in terms of speech quality and intelligibility [21, 22]. Especially
when the noise is another speech, not the background noise or stationary sound, the
performance degrades drastically [23].

To overcome the limitation of IBM, many research starts to use the ideal ratio mask (IRM)
as their soft mask [17]. As shown in Fig.2.4, the IRM can be generated by element-wise
division between target source (S(t, f)) and mixed source (Y (t, f)). The constraint of
IRM is 0 Æ IRM(t, f) Æ Œ, however, the majority of the T-F units are in the range of
0 Æ IRM(t, f) Æ 1 based on many experiments [6]. Therefore, it is possible to estimate
the IRM using several activation functions such as softmax, sigmoid, and ReLu at the
end of deep neural network.

IRM(t, f) = |S(t, f)|
|Y (t, f)| (2.4)

Figure 2.9: IRM Spectrogram

Unlike IBM, IRM uses T-F units assigned the ratio of energy between target and mixed
sources; it is more robust against the reverberant condition. The spectrogram in Fig.2.9
shows the IRM from the same sources used for IBM above.
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There are variations of IRM, called Ideal Amplitude Mask (IAM) and Spectral Magnitude
Mask (SMM). However, in this paper, we stick with the IRM that we describe above.

Although IRM shows the excellent performance to reconstruct the original source from
the mixed version, it does not consider the di�erence of phase between each source.
Therefore, phase sensitive mask (PSM) is proposed by [18, 24]. PSM is an extended
version of IRM. In Eq.2.5, cos◊ denotes the phase di�erence between target and mixed
sources. Furthermore, it has been proven that the PSM leads to higher SNR and is able
to generate better clean audio from the mixed audio than IRM [18].

PSM(t, f) = |S(t, f)|
|Y (t, f)|cos◊ (2.5)

Although PSM is known to have better performance than IRM, we decide to use IRM
due to its simplicity in terms of implementation.

2.4 Performance Measurements

In speech separation, there are several types of measurements that are widely used,
and they can be divided into two main categories. First of all, there are signal-level
measurements to evaluate performance, especially for speech separation task.

2.4.1 Signal-level Performance Measurements

Traditionally, to compare the quality of the signal when it is exposed to the noise, SNR
is widely used. However, to diversify the measurement of the performance, several
performance criteria have been introduced for speech separation in [25], more precisely,
measurements for the blind audio source separation (BASS).

Before we describe the measurements, there are several terms that we are using as
following:

• Sestimated: Estimated source

• Strue: Original source

• Sinterfere: Noise source due to mis-separation

• Sartifcat: Noise source due to the reconstruction algorithm itself.
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The estimated source after the separation can be rewritten as shown in Eq.2.6.

Sestimated = Strue + Sinterfere + Sartifact (2.6)

The measurements for the performance evaluation can be written as following three
equations[2.7, 2.8, 2.9].

SDR = 10log10
ÎStrueÎ2

ÎSinterfere + SartifactÎ2 (2.7)

First of all, source-to-distortion ratio (SDR) is the most common metric to evaluate
the source separation system, and it consists of the source from both the original and
estimated version. It is as an energy ratio between the energy of original audio and the
energy of errors from mixed audio and artifacts in decibel. Therefore, higher SDR means
better performance.

SIR := 10log10
ÎStrueÎ2

ÎSinterfereÎ2 (2.8)

SAR := 10log10
ÎStrue + SinterfereÎ2

ÎSartifactÎ2 (2.9)

Source to interferences ratio (SIR) is the energy ratio between the original source
and the non-original source, in this case, the mixing audio. Source to artifact ratio

(SAR) is the ratio between the original source and artifact.

Although all the measurements are meaningful in the di�erent types of audio data, in
our task, we mainly focus on SDR to compare easily with the other research.

2.4.2 Transcription-level Performance Measurements

While the measurements mentioned above represent signal-level, there are also transcription-
level metrics that should be measured. The Word Error Rate (WER) which is derived
from the Levenshtein distance [26] can be denoted as shown in Eq.2.10.

WER = Insertion + Deletion + Substitution
Number of words (2.10)

For example, the WER between the sentences below is WER = 1+1+2
9 = 0.44.
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• The quick brown fox jumps over the lazy dog.

• The quick red fox jump over the duck’s house.

Also, there is a similar measurement to WER called character error rate (CER). CER
uses the same equation as WER except for the fact that it uses the number of characters.

However, these transcription-level measurements cannot be the absolute standard when
we evaluate the performance of speech separation task, because WER can be varied
based on the performance of the speech recognition system. Therefore, the WER will
be used to evaluate the relative di�erence or improvement during the experiment. The
detailed usage is described in Chapter 5.

2.5 Deep Neural Networks

To understand the fundamental of deep learning technology and how it can be applied
to the signal based data, it is crucial to comprehend underlying network architectures.
In this section, we will describe several di�erent models related to the neural networks.

2.5.1 Logistic Regression

Weight

Blood
pressure

Figure 2.10: Sample graph between blood pressure and weight

Linear regression is the method to estimate the optimal regression coe�cient that can
represent the relationship between the numerical input variable and the dependent
variable the most. For example, if we plot the blood pressure based on several features
such as age, height, and weight of an individual people. With known data, we can
make a linear equation that shows the relationship between input variables (in this case
weight) and blood pressure as shown in Fig.2.10. Later if we assign the unseen data with
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same input features we can estimate the possible blood pressure. If we formulate this
relationship it can be written as in Eq.2.11.

y = —0 + —1x1 + —2x2 + · · · + —pxp + ‘ (2.11)

However, if we use the same approach to classify the potential heart attack, the graph will
be like Fig.2.11. Therefore, it is not suitable to use linear regression for the categorical
dependent variable. This is why logistic regression is suggested as a classifying algorithm.

Weight

Heart

Attack

Yes

No

Figure 2.11: Sample graph between heart attack and weight

The core concept in logistic regression is how to represent the non-linear relation as a
function. Because many real-world phenomena are following S-curve not linear, sigmoid

function is proposed (y = 1
1+e≠x ), also shown in Fig.2.12.

Figure 2.12: Sigmoid Function

To derive the logistic regression mathematically, first, we need to define odds, which are
the ratio of the probability that an event A occurs compared to A will not occur.

odds = P (A)
P (Ac) = P (A)

1 ≠ P (A) (2.12)
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Now we adjust the output range to [≠Œ, Œ] when the input range is [0, 1] with assigning
logarithm on Eq.2.12 then we can formulate the function as Eq.2.13 called logit

logit(p) = ln P (A)
1 ≠ P (A) (2.13)

In logistic regression, the result of the logit transformation is the same as the linear
function of x; therefore, the equation can be written

logit(p) = —0 + —1x1 + —2x2 + · · · + —pxp + ‘ (2.14)

ln pi

1 ≠ pi
= — · Xi (2.15)

Thus, the probability that a dependent variable belongs to a category of 1 with given
the particular independent variable x we want to find is

pi = logit≠1(— · Xi) = 1
1 + e≠—·Xi

. (2.16)

Now we finally derive a sigmoid function. And this is highly related to the neural
networks fundamental model that we will describe later in Sec.2.5.3.

2.5.2 Cost/Loss Function

After we decide the model either linear or logistic regression for a particular task, the
following question is, “How can we find the optimal line that can represent the relationship

between input and output the most?”. Therefore, we need a mathematical formula called
loss/cost function to estimate the error between our prediction and real value.

For linear regression, it is simple to build the loss function. If we formulate the linear
regression function as h◊(xi) = ◊1x + ◊0, also called hypothesis, the main task is finding
the optimal ◊1 and ◊0. Then we only need to average the di�erence between the estimated
value and real value, as shown in Eq.2.17. If the loss is lower, it means our hypothesis
represents the relationship better.

J(◊1, ◊2) = 1
m

mÿ

i=1
(h◊(xi) ≠ yi)2 (2.17)

In order to find the minimum loss value from J(◊1, ◊2), a straightforward way is calculating
all the possible combination and finding the combination of ◊1 and ◊2 that minimize the
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cost. However, this approach is computationally expensive, especially in modern machine
learning that requires tons of data.

Therefore, we need to calculate the minimum loss using a more mathematical and compu-
tational approach called gradient descent algorithm. It uses the derivative characteristic
of a function, in other words, if we derivative a function from a certain point (e.g.,
◊1 = 1,◊2 = 1), we can find the gradient from that point so that we can estimate the next
move that can reduce the further loss. Fig.2.13 shows a simple example.

Figure 2.13: Gradient descent simple example

Since there are two parameters (◊0,◊1), partial derivation will be applied for each
parameter, and the process will be repeated until it reaches convergence with the
following equation:

◊j = ◊j ≠ –
ˆ

ˆ◊j
J(◊0, ◊1) (2.18)

where j = 0, i = 1, and – denote the learning rate which decides the distance for the next
iteration. Therefore, if we apply the derivation to the loss function that we introduce in
Eq.2.17, we can formulate the following equation in Eq.2.19.

ˆ

ˆ◊0
J(◊0, ◊1) = ˆ

ˆ◊0

1
2m

mÿ

i=1

1
◊1xi + ◊0 ≠ yi

22
(2.19)

ˆ

ˆ◊1
J(◊0, ◊1) = ˆ

ˆ◊1

1
2m

mÿ

i=1

1
◊1xi + ◊0 ≠ yi

22
(2.20)

Note that it is essential to update the gradient descent simultaneously when we actually
code; otherwise, each parameter’s derivation will a�ect the other parameter’s gradient
calculation. Therefore, the final pseudocode can be written as Alg.2.1.
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Algorithm 2.1 Gradient Descent Simultaneous Update
while Repeat until convergence do

temp 0 Ω ◊0 ≠ – ˆ
ˆ◊0

J(◊0, ◊1)
temp 1 Ω ◊1 ≠ – ˆ

ˆ◊1
J(◊0, ◊1)

◊0 Ω temp 0
◊1 Ω temp 1

end while

One crucial factor is that cost function should not have a local minimum and should be
able to reach the global minimum no matter where the algorithm starts. This type of
function is called a convex function.

There are several types of loss function for the target of the model. Mainly we can
categorize the loss function into two types: regression and classification task.

For the regression task, again, mean squared error (MSE) is the most common loss
function.

MSE = 1
n

nÿ

i=1
(Yi ≠ Ŷi)2 (2.21)

The alternative loss function is mean absolute error (MAE). Unlike MSE, MAE uses the
absolute di�erence between the prediction and real value.

MAE = 1
n

nÿ

i=1

---Yi ≠ Ŷi

--- (2.22)

Lastly, mean bias error (MBE) is the loss function that can consider the direction as well
since it sums the signed di�erence.

MBE = 1
n

nÿ

i=1

1
Yi ≠ Ŷi

2
(2.23)

Each loss function has its own purpose; therefore, we can not naively compare that which
one is better than the others. For example, even though MSE is the most widely-used
one, when the di�erence should be considered accurately, such as in finance, we can argue
that MAE is more suitable loss function.

For the classification task, the most well-known loss function is cross entropy. In the
binary classification task, the loss can be formulated as shown in 2.24, where p and y

denote the probability and the corresponding label.
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cross-entropy =

Y
]

[
≠log(p) if y = 1

≠log(1 ≠ p) if y = 0
(2.24)

= ≠(y log(p) + (1 ≠ y) log(1 ≠ p)) (2.25)

If the task is the multicalss classification, then the function can be generalize as shown
in Eq.2.26.

cross-entropy = ≠
Nÿ

i=1
yi log(pi) (2.26)

We have covered several loss functions in this section. From the next section, we introduce
neural networks concepts and analyze the gradient descent in neural networks.

2.5.3 Neuron and Artificial Neural Networks

The reason that we cover the logistic regression first before we describe the neural
networks is if we add the sigmoid function to each cell in the fully connected layer, that
one cell is the same as the logistic regression. Therefore logistic regression can be seen as
a fundamental of neural networks.

Artificial Neural Networks are inspired by the way the human brain activates the neuron
when human during the learning process. It is widely known that the original Artificial
Neural Network (ANN) is proposed in 1943 [27]. The structural di�erence between ANN
and logistic regression is whether it has a hidden layer or not. The motivation of the
hidden layer is to resolve the huge parameter size issue when the model tries to use
more features as its input to deal with non-linearity. For example, in logistic regression
when the classes are not linearly separable, it takes the additional feature to obtain the
non-linearity hypothesis after combined several features (e.g., x1, x2 ∆ x1x2). However,
this approach will increase the parameter size quadratically. Moreover, if we add more
cases, the computational cost will keep increasing.

Also, one of the necessary processing for machine learning is feature selection. Usually,
human chooses several essential features based on statistical analysis and intuition.
However, it is challenging to discover the ultimate combination of feature if the number
of input features starts to be considered, such as image data. Hence, ANN solves these
issues with a combination of more layers and more neurons.
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Activation
function

Figure 2.14: Neural network cell with activation function

Fig.2.14 shows the simple ANNs with three input features. If we formulate this, the final
output can be written

output = f(w0x0 + w1x1 + w2x2 + b) (2.27)

where f denotes activation function, and wi represents the weight of corresponding
features, also is updated during the training process.

x1

x2

x3

Input Hidden Output

hθ

a1(2)

a2(2)

a3(2)

Figure 2.15: One hidden layer neural networks

If we formulate a bit more complex ANNs as shown in Fig.2.15, which contains one hidden
layer and three nodes inside, and the other configuration is the same. The superscript
on the activation value al

n denotes the layer number l (counting from the input layer),
and the subscript denotes the node number n.

If we mathematically represent the neural networks, first of all, each output from hidden
nodes is:

a(2)
1 = g(�(1)

10 x0 + �(1)
11 x1 + �(1)

12 x2 + �(1)
13 x3) (2.28)

a(2)
2 = g(�(1)

20 x0 + �(1)
21 x1 + �(1)

22 x2 + �(1)
23 x3) (2.29)

a(2)
3 = g(�(1)

30 x0 + �(1)
31 x1 + �(1)

32 x2 + �(1)
33 x3) (2.30)

where �(l≠1)
ij denotes the weight for each corresponding input feature (i=input node

number, j=hidden node number).
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Now the final hypothesis (h�(x)) can be written as :

h�(x) = a(3)
1 = g(�(2)

10 a(2)
0 + �(2)

11 a(2)
1 + �(2)

12 a(2)
2 + �(2)

13 a(2)
3 ). (2.31)

Finally, here we introduce the way that ANNs solve the massive feature problem to
obtain non-linearity that we mentioned at the beginning of this section.

x1

x2

x3

Input Hidden 1 Output

hθ

Hidden 2

a1(3)

a2(3)

a1(2)

a2(2)

a3(2)

Figure 2.16: Two hidden layer neural networks

Fig.2.16 shows two hidden layers ANNs, and we formulate additional nodes in the same
way.

a(3)
1 = g(�(2)

10 a(2)
0 + �(2)

11 a(2)
1 + �(2)

12 a(2)
2 + �(2)

13 a(2)
3 ) (2.32)

a(3)
2 = g(�(2)

20 a(2)
0 + �(2)

21 a(2)
1 + �(2)

22 a(2)
2 + �(2)

23 a(2)
3 ) (2.33)

h�(x) = a(4)
1 = g(�(3)

10 a(3)
0 + �(3)

11 a(3)
1 + �(3)

12 a(3)
2 ) (2.34)

If we apply the sigmoid function and expand the hypothesis,

h�(x) = 1

1 + e
≠ 1

1+e
≠ 1

1+e≠T

(2.35)

where T denotes simplified term for all the specific parameters mentioned above. Even
though, we do not fully expand the all the notation due to its complexity, however,
as we can see from the recursive exponential part all it is complex enough to obtain
non-linearity and deeper network with more nodes will guarantee to handle more complex
non-linearity.

2.5.4 Feed Forward Neural Networks (FNNs)

Now, the rising question is “What is deep learning?”. In terms of networks’ architec-
ture, when there is more than one hidden layer (deep enough), we call the ANNs as deep
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neural networks (DNNs). We have proven mathematically about the e�ect of deeper
networks in Sec.2.5.3, we can also understand more intuitively with the following image
recognition example.

Input

Hidden

Output

Output

8

Hidden

Input

(a) Basic artificial neural networks

Input

Hidden 1

Output

Hidden N

Output

8

Hidden 1

Input

Hidden N

(b) Deep neural networks

Figure 2.17: Basic architectures of artificial neural networks and deep neural networks

Again, the main di�erence between basic ANNs and DNNs is the number of hidden
layers; in other words, the capacity for understanding the pattern. We visualize the
simple handwriting digit image recognition process in Fig.2.17. The DNNs can recognize
a more complicated pattern of an image by passing features to hidden layers, while one
hidden layer only ANN can recognize the partial pattern of the original digit image.

Since the DNNs contains more logits than one logistic regression, minimizing the loss is
also approached di�erently. First, the process of calculating the value from the input layer
to the output layer called forward propagation. Now the same as the previous gradient
descent algorithm mentioned above, DNNs also needs to derivate the corresponding
function to find the gradient descent, and this process is called back propagation.
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If we formulate the loss function using cross-entropy for neural networks,

J(�) = ≠ 1
m

C
mÿ

i=1

Kÿ

k=1
y(i)

k log(h�(x(i)))k + (1 ≠ y(i)
k ) log(1 ≠ (h�(x(i)))k)

D

+

⁄

2m

L≠1ÿ

l=1

slÿ

i=1

sl+1ÿ

j=1
(�(l)

ji )2 (2.36)

where the first half, is the generalized (K classes) term of logistic regression’s cross-entropy
and the second half is the regularization term which is used to avoid the overfitting with
highlighting some features.

Now the task is finding the � that minimizes the J(�) the most. However, unlike
the simple logistic regression, neural networks require more partial derivation since it
consists of many parameters that we have shown in the previous section. Moreover, each
parameter � is formulated by previous layers �; therefore, the calculation should be
chained. This is one of the reasons that DNNs starts to have popularity much later, unlike
their original concepts introduced several decades ago (CNN: 1989 [28], backpropagation:
1986 [29]). However, thanks to hardware improvement (e.g., GPU) and convincing
algorithm such as backpropagation, DNNs became the most powerful machine learning
model now.

The backpropagation algorithm is used to calculate the gradient descent e�ciently in
ANNs. Unlike logistic regression, the gradient descent cannot be calculated at once. If
we observe the Eq.2.32 again, the activation al values in a certain layer are decided by
the previous layer’s activation values recursively. Therefore, backpropagation uses the
chain rule to calculate the gradient descent.

In ANNs, the training process is following two steps.

1. Forward propagation: feed the input features through the network and decide
the output. Then, calculate the error between the target value and the estimated
value.

2. Backpropagation: backpropagate the error to each node in neural networks.

Now, backpropagation is processed. For each node, we can calculate the error (”l
j)

of node j in layer l, e.g., ”4
j = a4

j ≠ yj . Then compute, ”(3) =
1
�(3)

2T
”(4). ú g

Õ(z(3)),

”(2) =
1
�(2)

2T
”(3). ú g

Õ(z(2)), where �(l) is the vector of parameters for the layer l ,and
g

Õ(z(l)) is the derivative of the activation function g. Therefore, g
Õ(z(l)) = a(l). ú (1 ≠ a(l)).
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After finishing above process until the innermost layer we compute the average:

D(l)
ij := 1

m”(l)
ij + ⁄�(l)

ij if j ”= 0
D(l)

ij := 1
m”(l)

ij if j = 0
(2.37)

Finally, we can show that each D is equal to the following

ˆ

ˆ�(l)
ij

J(�) = D(l)
ij . (2.38)

However, unlike the most in logistic regression reach the global minimum (convex),
however, most situations in DNNs, the loss function is not convex shape; therefore, it
can often end up in local minimum.

There are several algorithms to solve this issue called optimizer. As we mentioned above,
the computation cost is too big to calculate all the loss. Therefore, we use a mini-batch
concept in DNNs. Stochastic gradient descent (SGD) is the basic algorithm that checks
gradient descent based on its batch size. However, SGD is sensitive to the learning rate,
in other words, if the learning rate is low, it takes a long time to reach the minimum and
if the rate is too high SGD cannot find the minimum.

Therefore, there are two types of approach to enhance SGD. First of all, the momentum
approach [29] is using the momentum mechanism in physics. Thus, when the momentum
based optimizer moves like SGD first, then it moves further to the direction that it moved
before. The other approach is considering the step size. For example, when Adagrad
[30] decides the next step, if the region in the loss function has been visited, it moves
using small step, and if the location is newly visited, it moves using bigger steps than
usual. In the end, Adam optimizer [31] is using the best of both world; in other words, it
considers both the direction and the step size at the same time to decide the next step.
In our project, we use Adam as our optimizer.

2.5.5 Activation Function

The key concept that drives the neural network is the activation function. As we
mentioned above in many classification tasks, it is challenging to handle the non-linear
data set. Therefore, the logistic regression is appeared to overcome this limitation of
linear regression. And this non-linearity characteristics can be controlled by activation
functions. In neural networks, each cell’s output is wrapped by a specific activation
function. There are several accessible activation functions such as sigmoid that we
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mentioned earlier, hyperbolic tangent (tanh), and rectified linear unit (ReLU) and all
functions show di�erent shape as shown in 2.18.

(a) Sigmoid, y = 1
1+e≠x (b) tanh, y = 2

1+e≠2x ≠ 1 (c) ReLU,y = max(0, x)

Figure 2.18: Di�erent types of activation function

The tanh activation function is appeared to solve the limitation of the sigmoid activation
function. Since all the output of sigmoid is a positive value [0, 1], when it calculates
the gradient descent, there are several directions that it cannot reach. This condition
constraint the direction to find the minimum value; thus, it degrades the convergence
speed. To overcome this issue, tanh moves its middle point to 0; therefore, the possible
range is [-1,1] now the moving direction of gradient descent is not constrained. However,
both activation functions face the gradient vanishing problem. Because as shown in
Fig.2.18(a) and Fig.2.18(b), if the input values are far right or far left in the graph, their
gradient descent values are almost 0. Therefore, ReLU partially solves this issue using
the shape in Fig.2.18(c); however, for the negative x it also faces the same problem.
Leaky ReLU solves this issue by giving little gradient descent to the negative input parts.

2.5.6 Recurrent Neural Networks (RNNs)

Input t

Hidden

Output t

Input t+1

Hidden

Output t+1

Input t+2

Hidden

Output t+2

Input

Hidden

Output

Figure 2.19: Recurrent neural networks

While FNNs show exceptional performance for the image recognition task, several
challenges are di�cult to be handled by FNNs. One case is when the data is highly
related to the sequence or time series, e.g., natural language, speech, and values varying
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by the time. Since we feed the entire data at once, the networks do not understand the
sequence in the data. In order to do that, the input layer should change the number of
nodes every time there is a new sequence to be trained. This is an impractical approach
to scale up the model. To deal with this issue, the recurrent neural networks are used.
The recurrent neural networks (RNN) are based on [29] and the underlying architecture is
almost the same with the regular ANN except that the hidden layer takes the additional
feature from the former state of itself. The networks can be visualized in two ways, as
shown in Fig.2.19. The input will be sequentially fed into the networks (t, t+1, t+2...)
and the corresponding outputs will be generated by taking an additional feature from
the previous hidden node state.

ht = ‡h(Whxt + Uhht≠1 + bh) (2.39)

yt = ‡y(Wyht + by) (2.40)

The equation of RNNs can be formulated as shown in 2.39. ‡ represents the activation
function, and W denotes weights of each node while U means the vector representation
from the input x. And b denotes bias like basic neural networks. The reason we use t

instead of l in the equation is to highlight that the previous value is coming from the
former state (t ≠ 1), not of the prior layer (l ≠ 1). In the end, the output yt is calculated
by multiplication of weight and hidden stated with additional bias.

There are several variations of RNNs, such as Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU). The primary motivation of those two models is to resolve
the vanishing and exploding gradient problem of regular RNNs [32]. Because the gradient
quickly becomes zeros from all range since the repeated multiplication of the activation
function in naive RNNs.

The inner architecture of LSTM cell is expressed in Fig.2.20. One significant di�erence
between LSTM and regular RNN is the addition operation, unlike RNNs’ multiplication
operation. This element-wise addition will prevent vanishing gradient problem that
multiplication occurs in regular RNNs. The LSTM can be formulated as shown in
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Figure 2.20: LSTM cell architecture

Eq.2.41.

ft = ‡g(Wf xt + Uf ht≠1 + bf ) (2.41)

it = ‡g(Wixt + Uiht≠1 + bi) (2.42)

ot = ‡g(Woxt + Uoht≠1 + bo) (2.43)

ct = ft ¶ ct≠1 + it ¶ ‡c(Wcxt + Ucht≠1 + bc) (2.44)

ht = ot ¶ ‡h(ct) (2.45)

RNNs shows the excellent performance for the temporal data; in the meantime, there is
a rise of a need for the neural networks, which has a better understanding in terms of
spatial information.

2.5.7 Convolutional Neural Networks (CNNs)

FNNs and RNNs only consist of fully connected layers, and they often face the overfitting
problem. Moreover, due to this ‘fully-connectedness’, they are easily fell into ‘curse-of-
dimensionality’ problem. For example, if they use 1024 by 1024 pixels image with RGB,
the parameters size easily reach 3 million. Also, FNNs cannot naturally consider the
depth information (e.g., RGB color), either we use grayscaled version, or we have to
extend the input feature with each color manually. Either way, we will lose some essential
local spatial information.

Furthermore, in the image recognition task, FNNs uses all the input features themselves.
However, If the object is rotated, cropped, or scaled, it is challenging to recognize the
target object. To overcome this problem, human has to generate extra dataset during the
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pre-processing stage manually. Therefore, it is preferred to use the network model that
can extract the information from the pattern rather than the pixel itself. This pattern
extraction was often the task from human-side; however, CNNs automated this task.

The performance of CNNs is successfully proven in ‘ImageNet Classification with Deep
Convolutional Neural Networks’ [33]. CNNs create a feature map that highlights the
unique characteristics of the image. And the characteristic map is an input for the FNNs
to classify the label that image belongs to. Therefore, the FNNs used in CNN is also
called a classified neural network. To summarize, CNN can be said as a structure that
the feature extraction neural network and the classified neural network are connected in
series.

Figure 2.21: Example of CNNs architecture

Fig.2.21 shows the example of CNNs architecture, and there are several important
concepts to understand the CNNs.

Convolutional is a mathematical combination of element-wise matrix multiplication
and summation. If we formulate the process then the equation can be written as Eq.2.46
where K = Kernel, I = Image.

S(i, j) = convolution(I, K)(i, j) =
ÿ

m

ÿ

n

K(i + m, j + n)I(m, n) (2.46)

However, it is not intuitively clear how it is used in CNNs. Therefore, if we visualize the
process, it can be shown as Fig.2.22.

The red box is the kernel layer, and the yellow box is the first input layer. The value inside
the kernel layer is updated through the training process; we will describe that part more
precisely later. While the kernel travels the image matrix to both axes, the element-wise
multiplication will calculate the new value from the original matrix. Therefore, based
on kernels value some values will be highlighted, and some values will be diminished,
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Figure 2.22: Convolutional process on 4x4 image using 3x3 kernel

and the decision is up to the target of the task. Finally, the summation of the newly
calculated value will be assigned to the corresponding field in the next layer.

There are several configurations, also called hyperparameters during the convolutional
process. First of all, as shown in Fig.2.22, after the convolutional process, the dimension
decreases in the receptive fields from 4x4 to 2x2. However, sometimes, it is necessary to
keep the original dimension; therefore, we use an additional operation called padding.
the padding process is surrounding the original matrix with the zero-valued pad, as shown
in Fig.2.23. The number of padding is adjustable on the intention of the convolution
process; thus we can control the output volume.
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Figure 2.23: Padding

Secondly, we can also adjust the number of step for the convolutional layer while it
is moving. The stride parameter decides how many pixels will be skipped for every
traversal. The Fig.2.24 shows how 2-stride assigns the value from input fields to receptive
fields while Fig.2.22 and Fig.2.23 show 1-stride movement.

The motivation of using stride higher than 1 is downsampling by reducing the overlapping
pixels from the image or matrix [34].

Lastly, the convolutional process also contains the depth configuration also called kernel

size for the output. This is one of the reasons that CNNs can learn more information
from the less amount of dataset than regular FNNs. For example, if we set the output
depth to 10 from 3 depth image (RGB), the output volume will be as Fig.2.25 (no
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Figure 2.24: Stride

padding and one striding). The benefits of expanding the depth from the original input
are learning a more various pattern from the previous layer. In other words, di�erent
neurons along the depth of output will be activated by di�erent patterns such as edge,
color, or orientation.

Figure 2.25: Depth

Therefore, we can calculate the output volume by considering these three hyperparameters:
padding (P), striding (S), and depth (K) by following Eq.2.47.

Output Volume = K
W ≠ F + 2P

S
+ 1 (2.47)

Additionally, dilation parameter is introduced in [35]. The motivation of dilation is since
most CNNs had been originally developed to tackle the image classification task (only
needs to di�erentiate). However, it is not the optimal model for the other task such as
semantic segmentation which requires to understand the content in the image in the
pixel level. To achieve the semantic segmentation, localization and detection should
be followed after image classification to obtain additional spatial information such as
the location of the object. In the end, the inferring the label for corresponding content
in the image also called dense-prediction so that the model can segment each target
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object. The reason previous CNNs’ approach is considered ine�cient for this task is,
to gain the semantic information, it requires pixel-wise information from the bigger or
global perspective. However, the only way to obtain that information is, rescaling and
resampling the same pixels several times with di�erent configuration. Therefore, instead
of analyzing the multiple rescaled image, dilation concept is proposed.

1-dilated convolution 2-dilated convolution 3-dilated convolution

Corresponding feature Filter

Figure 2.26: Dilation

The main idea of dilation is obtaining a bigger view of the filter while having the same
size as the filter, as shown in Fig.2.26. When we use a 3x3 filter, and the red dots
represent the corresponding pixel between the original image and filter. The left image
shows our regular CNNs’ behavior, and the middle image is 2-dilated CNN’s behavior.
As we can see, the corresponding pixels are 1 pixel further then 1-dilated CNNs and
same as the third image (3-dilated CNNs). And this is why dilated CNNs o�er a bigger
view of the same size filter.

The dense prediction is highly related to our soft mask estimation in speech separation
process [36]; therefore, in our project, we also use dilated CNNs to spectrogram.

Pooling is the process of reducing the dimension. When the features pass the pooling
layer, it extracts the specific feature in the filter size. For example, if we use a 3x3 filter,
nine feature will be selected from the previous layer, and they will be reduced into one
feature based on pooling policy. The most common pooling policies are Max pooling

and Average pooling. As we can assume based on the name itself, Max pooling select
the highest value from those nine features and average pooling calculate the average
of viewed features and pass the average value to the next layer as shown in Fig.2.27.
Therefore, using pooling layer can reduce the number of parameters and computational
cost than using the original dimension size.
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Figure 2.27: Example of pooling process

2.5.8 Embedding

Embedding is one of the successful feature derived from deep learning techniques. The
primary motivation for using embedding is transforming the discrete value to continuous
value. Unlike image recognition, which consists of a pixel-based dataset, many advanced
techniques are challenging to be digested directly to DNNs models. For example, In
natural language process (NLP), many researchers found the di�culty of representing
the language data to the matrix or vector representation. The main obstacle is the
curse-of-dimensionality. If we naively represent the one sentence as a vector such as "deep
learning is fun", we can vectorize them into the vector shown in Fig.2.28. However, if we
add the one more word to the sentence like "deep learning is very fun", we have to add
one more row into the existing vector. More and more newly discover word will keep
expanding the vector space.

“deep learning is fun” =

S

WWWU

deep
learning

is
fun

T

XXXV (2.48)

“deep learning is very fun” =

S

WWWWWU

deep
learning

is
very
fun

T

XXXXXV
(2.49)

Figure 2.28: Example of vectorizing the words

Furthermore, if we have a word “learning”, and if we vectorize it using the same way with
assigning binary value, the vector representation is , and it is called one-hot-encoding.
One-hot encoding representation is traditionally used to handle the non-continuous
variable. However, it has several limitations. First of all, it does not represent the
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“learning” =

S

WWWU

0
1
0
0

T

XXXV (2.50)

Figure 2.29: One-hot encoding

relationship between one word to the other word. If we have three words, cat, dog, and
computer, the vector representation becomes

S

WWWU

cat
dog

science

T

XXXV =

S

WWWU

S

WWWU

1
0
0

T

XXXV

S

WWWU

0
1
0

T

XXXV

S

WWWU

0
0
1

T

XXXV

T

XXXV .

Intuitively, cat and dog should show more similarity than with science; however, one-hot
encoding cannot represent this relationship. Secondly, the matrix or vector will be sparse,
meaning that the matrix size should cover all the non-corresponding word to represent
the single word, as shown in Fig.2.29. Therefore, the one-hot encoding approach can
easily face the curse-of-dimensionality. In order to solve these limitations, we use dense
representation (Fig.2.30), and this way of vectorizing the variable is called embedding.

S

WU
cat
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science

T
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S

WU

S

WU
0.5
0.3
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XV
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0.2
0.7

≠0.7

T

XV
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WU
≠0.3
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0.9

T

XV

T

XV ,

Figure 2.30: Dense representation

There are three main benefits of using embedding. First of all, we can find the nearest
neighbors in embedding space; therefore it can be used for association and clustering
task. Secondly, the embedding itself can be used as an input of the machine learning task
while avoiding the curse-of-dimensionality problem. Lastly, it is visualizable to express
the relationship between the entities using a specific algorithm such as T-distributed
stochastic neighbor embedding (t-SNE).

We have only described the word related example; however, this embedding concept is
widely used in many other areas. For instance, in the speaker verification task, which
requires to identify the corresponding speaker based on their speech, many research use
embeddings called i-vector or d-vector. It is not simple to di�erentiate the speaker’s voice
from the audio signal; therefore, the task also requires representative embedding space.

The embedding can be directly trained for a particular task (e.g., word2vec [37]). However,
also generating embedding does not require any unique technique beyond the deep learning
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process, because the embedding has been generated indirectly during the training process
in any neural networks.

SoftMax
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Figure 2.31: Simple neural network for image recognition task

In Fig.2.31, we introduce simple image recognition task. If the model is trained enough,
the model will generate the di�erent value right before it passed the softmax layer, which
calculates the probability for the possible class. Then, if the weights in the hidden layer
are trained enough, the multiplied result with input feature will indirectly represent the
input itself. This group of weights in the final layer can also be seen as an embedding
space since they can represent any types of input with a fixed dimension. The usage of
embedding in our project will be introduced in the next section.
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Related Works

In this chapter, we introduce more related techniques to the speech separation in deep
learning. First, we describe the overall learning process, and then we review three popular
systems in speech separation task. In the end, we finish this chapter by introducing the
three research that inspires our solution.

3.1 Conventional Techniques for Speech Separation

Before deep learning techniques start to be applied, there were several conventional
approaches to tackle this problem. For instance, computational auditory scene analysis
(CASA), the technique inspired by human’s behavior to separate the speech [38], Non-
negative matrix factorization (NMF) which is a data-driven approach using matrix
decomposition [39], and Gaussian mixture model-hidden Markov model (GMM-HMM)
[40] based generative models which have overcome the previous models’ limitation such
as temporal dynamics. Although, those techniques are not directly applied in modern
technology, however, most of the foundations of current deep learning based approach
are built from those conventional techniques.

3.2 Deep Learning in Speech Separation

3.2.1 Understanding the Task

First, if we denote the mixed signal, y[t] =
qS

s=1 Xs[t], where t is time index and Xs[t]
are each signal from di�erence sources (s œ {1, 2, · · · , S}). Now the goal of the speech
separation is separating individual Xs[t] from mixed y[t]. As mentioned in Sec.2.3.2,

35



Abbreviations Chapter 3 Related Works

Mixed Audio

DNN/CNN/RNN

Separated audio 1 Separated audio 2

Original audio 1 Origianl audio 2

Total Error

Error 1 Error 2

(a) Source Estimation

Mixed Audio

DNN/CNN/RNN

Separated audio 1 Separated audio 2

Original audio 1 Origianl audio 2

Total Error

Error 1 Error 2

Mask 1 Mask 1

Mixed Audio

(b) Mask Estimation

Figure 3.1: Source/mask estimation architecture to separate the original source

STFT is used as a main resources to represent audio data in many research, therefore,
the task can be rewritten as recovering Xs(t, f) from Ys(t, f) in the T-F domain for every
time index t and frequency bin f .

However, since there is an infinite number of combination to obtain the same mixed
signal, it is infeasible to separate the individual signal based on only combined signal
information itself. To tackle this issue, the process should recognize the hidden pattern
that can be seen a reasonable division of each source, therefore, this is why deep learning
technology is considered as a core technique of the cocktail party problem.

Then, the task can be reformulated as a multiclass classification or regression. Even
though the purpose of modeling is di�erent, the reason that both can obtain the same
task goal (separation) is, the task can be di�erentiated based on the soft mask that we
are using as mentioned in Sec.2.3.3. If we plan to use IBM, the task can be considered
as a binary classification model since all values will be either 0 or 1 for each time t and
frequency f index. On the other hand, if we use di�erent soft masks such as IRM, the
task can be seen as a regression problem.

Even though we use soft mask estimation as our training target, however, it is also
possible to train to estimate the individual source. However, many research has proven
that the performance is better when the model estimates the soft mask instead of the
target source itself [17, 19].

As shown in Fig.3.1, there are two approaches to apply DNN in source separation task.
First approach is separating the target directly from the mixed audio (Fig.3.1(a)). We
feed the mixed audio as an input of the network, and DNN estimates the target sources
based on how much it trained. Then, the loss (e.g., MSE) will be calculated by comparing
their original audio, which is part of audio that consists of mixed audio. In the end, the
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final error will be summed by individual error, and the network will be trained to reduce
the loss. The more similar estimation has a lower error.

The second approach is, as shown in Fig.3.1(b), the network can be trained to estimate
the mask instead of the target source itself. Again, if we estimate the mask, we can
reconstruct the source X̂(t, f) = M̂(t, f) ¢ Y (t, f) where ¢ is the element-wise product
and X̂, M̂ denotes estimated version. The reason that masks estimation is preferred over
the direct target estimation in the last years is, masks are more constrained and more
robust to input variabilities caused by the non-normalized di�erence between signals
such as energy di�erences than the target itself [6].

However, the mask estimation may have controversy since it is calculating between
target audio and estimated audio not from between masks. For example, intuitively,
it is reasonable to formulate the cost function like the following equation (F denotes
Frobenius norm).

Cost = 1
T · F · S

Sÿ

s=1

...M̂s ≠ Ms

...
2

F
(3.1)

T = total time frames

F = total frequency frames

S = total number of sources

However, directly optimizing mask estimation has two problems [6]. First of all, the mask
is di�cult to be defined when both mixed and original source has a silence segment at the
same time period (e.g., |X(t, f)| = 0,|Y (t, f)| = 0). Secondly, the error between masks
does not guarantee the same amount of error between sources after its reconstruction.
Therefore, many researchers [17, 19] proposed source based loss functions as shown in
Eq.3.2.

Cost = 1
T · F · S

Sÿ

s=1

...X̂s ≠ Xs

...
2

F
(3.2)

= 1
T · F · S

Sÿ

s=1

...M̂s ¢ Ys ≠ Xs

...
2

F
(3.3)

If we summarize this basic concept of speech separation using DNN, there are two main
points. Firstly, DNN will be trained to generate a soft mask that can reconstruct the
target source from the mixed source. Secondly, the loss or cost function will be derived
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by the target and estimated source, not masks themselves. The variety of techniques can
be obtained by additional input, augmented feature, or network architectures. However,
the fundamental of most DNN based speech separation tasks is the same as above.

3.2.2 Label Permutation Problem

The model that we are proposing later in this paper has a reference that the model
can target the speech. In other words, we o�er an explicit reference that the model
can identify the target that should be separated from the mixed source. However, this
condition is not o�ered in most cocktail party problems.

The label permutation problem is a well-known issue in blind source separation task.
Assume that the mixed audio contains two speakers, X1 and X2. Since we have no
identifiable information of each speaker during the training process it is not possible to
assign correct target for each speaker. In other words, X̂1 can be compared with X2 and
vice versa. If there are more speakers than two, the combination grows quadratically.

Some past research [41] shows that DNN can learn its way to handle this ambiguous
problem eventually. However, it is inevitable to o�er the advanced front-end to the model
to match the right target during training to improve both performance and training
speed.

From the next section, we review three techniques in speech separation that solves the
label permutation problem.

3.2.3 Deep Clustering

Deep clustering (DPCL) is proposed by [13] in 2016, and the first well-known techniques
to address the permutation invariant problem using deep learning. The main idea of
DPCL is instead of considering the task as class-based learning; they approach it as
partition-based learning. To understand DPCL clearly, it is essential to understand the
motivation that they approach the problem into partition-based over classed based. The
class-based learning is training from the known labeled object while partition-based is
learning label without having the labeled object. It can be also seen as the di�erence
between supervised learning and unsupervised learning. However, the speech separation
is still supervised learning task since it has the clean audio that can aim to train.

The benefit of partition-based learning is that it can segment unknown objects. Even
though the class-based approach is straight forward and has been successful in my di�erent
area, however, in a real-world situation, it is often di�cult to know the precisely the label
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or it has a large number of possible labels. For example, signal data is not possible to
have an explicit representation. Therefore, to simplify the learning process, DPCL uses
deep learning to derive embedding features instead of using specially designed features
that can represent the speaker. This embedding space is not intuitively explainable;
however, as covered in Sec.2.5.8, it vectorizes the features to represent unstructured data.

DPCL assumes that each T-F bin of the mixed speech belongs to only one speaker.
Therefore, the mixture spectrogram is segmented into clusters for each speaker. If we
define the given mixture audio as Yi = gi(y), (i œ {1, 2, . . . , N}), where i is the T-F
bin (t,f), DNNs are trained to generate the D-dimensional embeddings (V ) from input
signal (Y ), V = f◊(Y ) œ RN ·D, where each row vector |vi| = 1 has unit norm. Now the
embeddings V can be used to estimate N by N a�nity matrix V V T . Then we generate
the target a�nity matrix EET , which is created by using labeled indicator such as IBM
from Sec.2.3.3. Now the loss function can be written as:

Loss =
...V V T ≠ EET

...
2

F
(3.4)

=
...V T V

...
2

F
≠ 2

...V T E
...

2

F
+

...ET E
...

2

F
(3.5)

where Î·Î2
F denotes the squared Frobenius norm. DNNs will be trained to reduce the

di�erence between V V T and EET .

Mixed Audio

DNN/RNN

EmbeddingError

Mask

Ideal Mask / 
K-means

Separated audio

Figure 3.2: DPCL system architecture.

In the inference stage, first, we generate the embeddings from mixture Y and cluster them
into individual sources using K-means. Assigning ‘0’ and ‘1’ to the corresponding spectral
bins of each cluster will form the ideal binary mask. Then element-wise multiplication
between estimated binary mask and mixture will extract the individual audio. The entire
process is shown in Fig.3.2.



Abbreviations Chapter 3 Related Works

3.2.4 Deep Attractor Network

Deep Attractor Network (DANet) is introduced to improve several limitations and
ine�ciency of DPCL [42]. One of the main drawbacks of DPCL is the absence of end-to-
end mapping. In other words, DPCL is optimizing the a�nity matrix of embeddings,
not the separated audio itself.

DANet is inspired by the perceptual magnet e�ect [43], which is the human perceptual
ability that can warp the stimulus space to pull the closest sounds. Therefore, they
use the concept called attractor in their architecture. The principle of the attractor is
setting the reference point for each source in the embedding space which pulls all the
T-F bins to itself. Then, the similarity between embedded point and each attractor (per
source) is used to estimate the mask for each source.

(a) Location of attractor points in the embedding
space using the first three principal components

(b) Location of T-F bins in the embedding space
using the first three principal components where
colors distinguish the power of speakers

Figure 3.3: PCA result of speech embedding space, figure from [42]

It is more evident if we check Fig.3.3. Each dot represents each audio, and they are located
using the first three principal components from the embedding vector generated from the
neural networks, in this case, LSTM. In Fig.3.3(a), we can observe two distinct attractor
pairs A1 and A2. If we visualize the T-F bins with two speakers in the embedding space,
we can also observe the two clusters, and two attractor points are marked as X.

The attractors A œ RS·K can be formulated with embedding space V œ RF ·T ·K and
dominant source membership E œ RF ·T ·S as following:

As,k =
q

t,f Vk,ft · Es,ftq
t,f Es,ft

(3.6)

where s,f ,t and k denote the number of speakers, frequency, time and embedding
dimension respectively.
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Then, the mask can be estimated by softmax of the embedding space and attractors as

Mf,t,s = Softmax
A

ÿ

K

As,k · Vft,k

B

. (3.7)

Now if we formulate the loss function using the estimated mask, the loss function can be
written as

L =
ÿ

f,t,s

ÎXf,t,s ≠ Yf,t · Mf,t,sÎ2
2 . (3.8)

Mixed Audio

LSTM

Total Error

EmbeddingAttractors

Mask

Ideal Mask / 

K-means

Separated audioOrigianl audio

Figure 3.4: DANet System Architecture

Unlike the DPCL, as shown in Fig.3.4, DANet calculates the loss between the separated
source and the target source. However, DANet is still the extended version of DPCL;
therefore, it cannot solve the limitation that it needs to know the number of speaker in
the mixture.

3.2.5 Permutation Invariant Training (PIT)

PIT is introduced to tackle the label permutation problem di�erently, and it can directly
minimize the separation error [24]. The main idea of PIT is shown in the dashed box
in Fig.3.5. There are two output stages. First of all, as we demonstrate in Fig.3.1(b),
estimate the individual mask for each speech and reconstruct the clean speech (output 1).
Then, the pairwise MSE is calculated using ground-truth audio and reconstructed audio
for any possible assignment (e.g., X1 = X̂1, X2 = X̂2 or X1 = X̂2, X2 = X̂1). Next, the
model chooses the pair that shows the least MSE error, which can be seen as the right
match. After deciding the least MSE pair, the model is trained for the further reducing
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Figure 3.5: PIT System Architecture

of the assigned loss function shown in Eq.3.9:

MSE = 1
F · T · S

min
sÕœpermu(S)

Sÿ

s=1

...
---X̂s

--- ≠ |Xs|
...

2

2
(3.9)

where permu(S) is the permutation of speakers 1 to S.

Figure 3.6: SDR improvements for di�erent speech separation system using WSJ0-2MIX
dataset, the figure from [6]

Fig.3.6 shows the performance comparison of speech separation models using the same
dataset (WSJ0-2MIX). Unlike the other two systems (DPCL and DANet), PIT can
perform well even in the closed condition, which is not knowing the prior knowledge
about the speaker (e.g., number of speakers). Therefore, although DANet+ shows slightly
better performance (10.5) than PIT (10.0), PIT can is more practical in a real-world
situation. Moreover, the simplicity of implementation can help to integrate the other



Abbreviations 43

method. Therefore, most recent works are based on PIT’s architecture with minor
modifications [3, 44–46].

We have reviewed three popular models from their architecture and the approach to solve
the label permutation problem. Even though we express as the PIT is the better models
than others, all the models are still used as a foundation of much ongoing research [47].

3.3 Inspirational Works and Theory

In this section, we introduce several studies that can theoretically support our suggestion.
First of all, we review the joint training system, which consists of speech separation and
speech recognition. Secondly, to support our dynamic weighting loss function approach,
we review the reweighting loss function related works, thirdly, we review the speech
recognition system that uses WER into their loss function.

3.3.1 Joint Training with speech recognition system

Figure 3.7: Joint training architecture using both speech separation and speech recogin-
tion, the figure from [48]

First of all, many researchers have suggested that integrating speech separation system
with speech recognition can achieve further improvement [3]. Because the automatic
speech recognition (ASR) requires speech separation system to perform correctly in a
real-world environment, in the same manner, the speech separation system also requires
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ASR to confirm its separated output with the transcription-level. Although these two
systems can be trained separately and used after that, it is a reasonable idea to train
both systems jointly.

The first fully jointed training technique is introduced in [48]. The most significant point
of this architecture 3.7, it manages to build the end-to-end training process even with
the integration of many systems. For the speech separation part, they use DPCL with
chimera++ [49], and for the speech recognition part, hybrid of attention and CTC model
introduced in [50] is used.

To integrate two systems, moreover, each system is also a combination of di�erent
techniques, it is important to combine the loss functions properly. The loss functions are
shown from Eq.3.10 to Eq.3.15

First, we formulate the loss function for DPCL and Chimera++ network. Unlike the
loss function that is originally proposed in Sec.3.2.3, they use the improved version [51]
as shown in Eq.3.10.

LDC,W (V, Y ) = D ≠ tr((V T V )≠1V T Y (Y T Y )≠1Y T V ) (3.10)

LMI,tPSA,L1 = min
fiœP

ÿ

a

...M̂c ¢ |Y | ≠ T |Y |
0 (

---Sfi(c)
--- ¢ cos(◊Y ≠ ◊fi(c)))

...
1

(3.11)

Now, if we combine two loss functions above it can be written as:

Lss = –DCLDC,W (V, Y ) + (1 ≠ –DC)LMI,tP SA,L1 , (3.12)

where –DC is the hyperparameter to adjust the relative importance of each loss.

pctc(C|X) =
ÿ

Z

Ÿ

t

p(zt|zt≠1, C)p(zt|X)p(C) (3.13)

patt(C|X) =
Ÿ

l

p(cl|c1, · · · , cl≠1, X) (3.14)

For the speech recognition systems, the loss function can be written as in 3.15. pctc is
likelihood for CTC based speech recognition system, likewise patt is for attention based
model. Same as Eq.3.12, the combined loss function can be written as:

LASR = ≠(⁄ log pctc(C|X) + (1 ≠ ⁄) log patt(C|X)), (3.15)

where ⁄ is the hyperparameter to regulate the importance of each log-likelihood.
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Therefore, the final loss function will be

LSS+ASR = LSS + –ASRLASR (3.16)

where –ASR is hyperparameter to adjust the importance of LASR.

It is remarkable work that they manage to combine two systems in end-to-end architecture.
However, since there are four di�erent types of loss function, the training process is
challenging to be analyzed to improve the specific part further. Even though the
end-to-end model is e�cient to train, the di�culty of implementation is the drawback.

3.3.2 Minimum Word Error Rate Training

Lastly, as we point out several times, in ASR area, there is a gap between the performance
measurement and loss function. This problem is also pointed out in the speech recognition
system [52]. Most sequence-to-sequence (e.g., attention-based) model based speech
recognition systems use cross-entropy as their training criterion. However, the final
measurement is WER or CER. Therefore, they propose a new training method to narrow
this mismatch.

In the speech recognition task, we denote the set of input features in utterances as:
x = (x1, x2, · · · , xT ), where xi œ Rd. The corresponding ground-truth is denoted as:
yú = (yú

0, yú
1, yú

2, · · · , yú
L+1, ), where yú

i œ G (G is the graphemes: the smallest unit of
words [53]). Then we assume G contains the two special labels ÈsosÍ and ÈeosÍ mean the
start of sentence and the end of sentence respectively. Now, the common loss function
for attention based speech recognition system is

LCE =
ÿ

(x,yú)

L+1ÿ

u=1
≠ log P (yú

u|yú
u≠1, · · · , yú

0 = ÈsosÍ , x). (3.17)

The training criterion is maximizing the log-likelihood for the training dataset. Therefore,
to directly minimize the WER, they propose a modified loss function using WER. First,
Eq.3.18, shows the expected number of word errors over training dataset.

Lwerr(x, yú) = E [W (y, yú)] =
ÿ

y

P (y|x)W (y, yú) (3.18)

where W (y, yú) denotes the number of word errors in the hypothesis. However, since
there will be too much computational cost to calculate the possible word errors for the
entire datasets, they use two approximation method called sampling and N-best. As
their name suggests, sub-sampling the potential number of word errors from di�erent
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approaches. However, since we do not use the sampling method, we do not dive into the
detailed methodology here. Finally, the joint loss function that they suggested is

L =
ÿ

x,yú
Lsample

werr (x, yú) + ⁄LCE (3.19)

where ⁄ is the hyperparameter to adjust the importance of cross-entropy loss. With
several experiments, this new loss function can improve 8.2% WER.

Therefore, we expect that a similar approach will improve the performance of the speech
separation task as well.

3.3.3 Reweighting the loss function

Finally, as we have mentioned several times, our solution is updating weights of loss
function dynamically using WER. However, most research use weighted loss function,
do not change the weight dynamically since the primary purpose of using weighted loss
function is to handle the imbalanced dataset. They analyze the distribution of dataset
and fix the importance of each class in the initial stage. Therefore we investigate the
related works that prove that dynamical reweighting can applicable in DNNs.

Figure 3.8: Diagram of reweighting algorithm, figure from [54]

In [54], they introduce the learning algorithm that can assign weights to training datasets
based on their gradient directions. As shown in Fig.3.8, the basic training process is the
same as regular DNNs. However, the main di�erence is that the loss of the validation
process is involved in the training process. Therefore, the model is outperforming compare
to the regular algorithm when the training dataset is imbalanced, or the labeling is
corrupted. The detailed mathematical proof is not covered in this paper; however, the
main idea is they calculate the similarity between input data and validation data, and if
they show the same gradient descent direction they up-weight the corresponding label,



Abbreviations 47

otherwise they down-weight. Therefore, the gradient descent is following the route the
shows the consistent performance for both training and validation dataset.

We can reframe the above approach to ours. When both SDR and WER show better
performance, we reduce the weight of corresponding audio, and the other case, we
increase the weight. Therefore, the training process can perform more sensitively to the
(performance-wise) mismatched dataset. The comprehensive approach is described in
the next chapter.





Chapter 4

Solution Approach

4.1 Introduction

Before we analyze the existing approach and propose our solution, it is necessary to clarify
our task again, because speech separation task has various constraints and assumption
such as speaker dependency, the number of speakers, length of utterance and etc.

First of all, the model is under the speaker dependent situation; in other words, we
have the necessary information that the model can identify the target to segregate. The
details about the reference will be described more precisely in the following subsection.

Secondly, the number of speakers is constrained to two. Even though final inference
can perform with more than two simultaneous speakers, to compare with other research
under the same condition, we limit the number of speakers intentionally.

Thirdly, the model separates only the targeted speech, not the other noisy speech.
Therefore, this task can also be called speech enhancement.

Lastly, the final architecture is not an end-to-end model, which means that the training
process is not starting and finishing internally. The model is combined with other systems
which trained separately.

4.2 Existing Approaches/Baselines

4.2.1 Ideal Ratio Mask

As mentioned in Sec.2.3.3, IRM is the best case that speech separation system can
generate through training. However, it is not realistic to create the same soft mask as
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IRM through the model. We use IRM for reconstructing the target audio and evaluate
the performance. Therefore this performance will be the oracle system of our model.

4.2.2 VoiceFilter

Figure 4.1: VoiceFilter System Architecture from [3]

Voicefilter is proposed in 2019 from Google [3]. This system is speaker conditioned
separation. In other words, the system requires additional information related to the
target speaker that we want to separate from the mixed audio. In the paper, they use
d-vector, which is introduced in the speaker verification task [55].

The entire architecture of Voicefilter is shown in Fig.4.1. The model requires three audio
files. First, the clean audio is the target or can be called the ground truth that should
be separated from the noisy audio. The audio file will be transformed into spectrogram
using STFT.

Second, the input data for the networks is noisy audio. The way to generate this noisy
audio will be described more precisely later in Sec.5.1.3. Same as the clean audio, the
spectrogram will be generated first. Then the spectrogram is fed into networks to train
the model.

The last audio file is reference audio. This audio file is used in a separated system,
which called speaker encoder. The purpose of this LSTM (red box in Fig.4.1, is to
generate the embedding called d-vector.

The idea of d-vector is finding the vectorized representation of a certain speaker. It
is originally used for the speaker verification task (Who is speaking?). The speaker
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verification task is a classification task in machine learning [56–58], therefore, there can
be many types of network architectures such as FNNs, CNNs, and RNNs. The d-vector

is the average of the activation vectors in the last hidden layer as shown in Fig.4.2.

Hidden Layers

d-vector
average of activation vectors

Input Layer Output Layer

Figure 4.2: The location of d-vector in the neural networks

This speaker representation can also be seen as a voice print [55]. Once the model is
trained to reach enough equal error rate (EER), in the paper 3.55%, the model can be
used to generate the d-vector of the target speaker using the reference audio.

In the actual training process (blue box in Fig.4.1), first the network convolute the
spectrogram to increase the volume of the original feature and the final layer pass the
data into LSTM. Now the LSTM will be trained using both d-vector and convoluted
spectrogram. This is the main di�erence between regular PIT and Voicefilter. As we
mentioned above in Sec.3.2.5, PIT decides the target using K-means clustering, however,
the speaker is targeted by this d-vector in Voicefilter. Therefore, Voicefilter does not face
the label permutation problem that mentioned in Sec.3.2.2.

Finally, the soft mask will be generated in the last two fully connected layers, and the loss
between target spectrogram and estimated spectrogram is calculated. Again, the loss,
such as MSE and L2-loss, is not calculated by the di�erence between the estimated mask
and IRM. It is calculated by the di�erence between target spectrogram and reconstructed
spectrogram. Note that the reconstructed spectrogram is the result of element-wise
multiplication of noisy spectrogram and estimated mask.

The separation networks are based on [59], and it consists of eight convolutional layers,
one LSTM/BLSTM layer and two fully connected layers. The detailed information is in
Table.4.1.
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Layer
Padding Kernel Dilation

Filters / Nodestime freq time freq time freq
CNN1 0 3 1 7 1 1 64
CNN2 3 0 7 1 1 1 64
CNN3 2 2 5 5 1 1 64
CNN4 4 2 5 5 2 1 64
CNN5 8 2 5 5 4 1 64
CNN6 16 2 5 5 8 1 64
CNN7 32 2 5 5 16 1 64
CNN8 - - 1 1 1 1 8
LSTM - - - - - - 400
FC1 - - - - - - 600
FC2 - - - - - - 600

Table 4.1: Parameters of the VoiceFilter, table from [3]

In the original paper [59] that VoiceFilter refers to the architecture, the optimal net-
work configuration is decided by Vizier parameter optimizer [60], which is attempting
many possible combinations of hyperparameters and recommend the best performing
combination. Since the configuration is an experimental result, therefore it is not clear to
define the role of each layer, (like other complex architectures), however, we can explain
the motivation of the design from the higher level of view. First, CNNs expands the
dimension from the original spectrogram so that we can obtain more information. The
interesting fact from CNN1 and CNN2 is, each kernel focuses more on time and frequency
domain, respectively, as shown in Fig.4.3. From CNN3 to CNN7, it is dilated CNNs

Frequency based

Time based

Figure 4.3: Time and frequency focused kernel size

for time domain that we have described in Sec.2.5.7. Since in speech data, the time
domain is relatively more important than other stationary signals, therefore to obtain a
bigger view of time-domain the dilation rate keeps increasing through the deeper layers.
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Layer1

Layer2

Layer8

Reference
Audio

Mixed
Audio

d-vector

S

Spectrogram

Convolution
Concatenation

duplicated
d-vector

BLSTM

FC1, FC2

Sigmoid

Soft mask

Figure 4.4: Layer-level training process

The layer level training process is shown in Fig.4.4. The dimension of the last layer is [8,
time, freq], the batch size is one, and 8 is the depth of the last layer. Then, we change
the dimension to [time, 8*freq] before we pass the value to the LSTM layer. Later then,
we concatenate the result of CNNs and d-vector from the reference audio. Finally, this
concatenated tensor will be fed into LSTM. Since we use Bidirectional LSTM, the result
dimension is [time,2*lstm-dimension ]. After pass through two fully connected layers, we
estimate the softmask using the sigmoid function for each corresponding pixel ([time,
freq]). The label permutation problem is solved in this LSTM layer when the speech is
trained together with reference d-vector.

4.3 Proposed Solution

In this section, finally, we introduce our novel approach. There are two significant
contributions, first of all, we propose the loss function that can consider both transcription-
level and signal-level performance. Secondly, we suggest our generalized integration
architecture that applies to any other systems.

4.3.1 Performance Based Weighted Loss Function

As we have mainly highlighted loss functions in Sec.2.5.2, and Chapter 2.2, our core
solution is also based on the modified loss function that can dynamically reflect the
transcription-level performance.

There are several studies that we have mentioned in Sec.3.3, and our solution is inspired
by them. The primary motivation is, there is a gap between the loss function and the
final performance measurement in ASR research as many researchers have pointed out.
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Again, WER is the performance measurement; however, the loss function is based on
log-likelihood. Even though there is a high correlation between those two measurements,
it is still sub-optimal. Likewise, the major performance measurements of the speech
separation task are SDR, SIR, and STOI, however, many models still use regular MSE
or L2-loss function.

Therefore, we propose the new loss function,

WMSE = 1
n

nÿ

i=1
(– + WERi)(Yi ≠ Ŷi)2 (4.1)

where – is the hyperparameter, and we choose 0.3 based on our experiment.

The primary motivation of the proposed loss function is that the model can directly
consider both signal-level and transcription-level performance. To do that, we use the
weighted loss function mechanism, which is mostly used to tackle the imbalance dataset
problem [61–64] . If we have a smaller dataset for the particular class, by multiplying
higher weight to that class than other classes, we can adjust the loss function to react
more strongly for the lacking class. In our case, the weight is calculated using WER;
therefore, speech that has higher transcription-level error will be penalized more than its
original signal-level di�erence. In other words, our loss function is raising the correlation
between loss and WER more than existing solution VoiceFilter.

The hyperparameter – is used based on our two assumptions. First, we add – to
di�erentiate the performance between the original model and our proposed from the
early stage, because when training starts, in the early stage, most separated speech’s
WER is 1.0 which means it will follow the original model’s learning process. Therefore,
to penalize additionally, from the beginning of the training process, we add extra value.
Secondly, when WER becomes lower, this additional penalty will highlight the di�erence
between well-separated speech and poorly-separated speech. We assume the convergence
will occur later than the original model. In other words, our proposed model will converge
at a lower point than the existing solution.

4.3.2 Generalized Pipelining with Speech Recognition System

The end-to-end training system has the benefit in terms of simplicity of system architecture
and training process. However, it is di�cult to integrate with the external system because
every component should be implemented into the internal system architecture [65]. Even
though there are many open sourced project with state-of-the-art machine learning
techniques, most of the original authors do not open their source code for some reasons.
Therefore, either we have to implement by ourselves or use the uno�cial private source.
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Even if we find the applicable code, it does not guarantee that they are implemented
using the same framework since there are several deep learning frameworks such as
Pytorch and Tensorflow. In this section, we introduce the architecture that is easily
scalable and integrable with any other project.

In our project, the main challenge in implementation is the integration between existing
speech separation (VoiceFilter) and speech recognition system (Deep speech) while
minimizing the training performance degradation. The inspiration has come from Google
speech-to-text API, which is RESTful API [66] and can be easily used, regardless of
the system environment. Therefore, we load our speech recognition model on top of
the API server implemented by the Flask framework as shown in Fig.4.5. The first

VoiceFilter
1 batch = 8 files

#5
Flask + Deep Speech
http://localhost:8084

#6
Flask + Deep Speech
http://localhost:8085

#7
Flask + Deep Speech
http://localhost:8086

#8
Flask + Deep Speech
http://localhost:8087

#1
Flask + Deep Speech
http://localhost:8080

#2
Flask + Deep Speech
http://localhost:8081

#3
Flask + Deep Speech
http://localhost:8082

#4
Flask + Deep Speech
http://localhost:8083

Figure 4.5: Simultaneous request for speech recognition

reason that it is beneficial to load the model and to build the RESTful API is, we do not
have to consider the time until the model is loaded. For example, naively implemented
inference code is mainly for one sample test data; therefore, if we want to inference
multiple test dataset, we have to load the trained model every time. Sometimes it takes
a longer time than the actual inferencing process. Note that the inference process can be
continued without reloading the model if we implement the inference code the way that
training process works such as using batch concept. However, the inference process is
still sequential. Typically, while we are training the model, one batch contains several
datasets, if we naively generate the transcription, the training time will be increased
linearly, and this is constraining the batch training concept. In other words, we cannot
increase the batch size. Moreover, compared to the GPU process, calculating WER can
consume abnormally longer time than its core training time. Therefore we solve this
issue with running multiple RESTful API servers that can generate the transcription.
From the core training process’s point of view, it can simultaneously request the WER
value. Therefore, the batch size can be increased as much as GPU memory can load
them since the time to calculate the WER for one file is the same as the multiple files.

Furthermore, the strength of our architecture is it can become exchangeable with other
systems quickly without considering the system environment. Therefore, the training
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PIT
(Tensorflow)

DPCL
(Matlab)

Google 
Speech-to-Text

Amazon Transcribe

VoiceFilter
(Pytorch) Deep Speech

Speech Separation
Systems

Speech Recognition
Systems

Figure 4.6: Exchangeable architecture with other systems

approach can be applied to any other speech separation systems (e.g., DPCL and PIT)
likewise, WER scores can be calculated using other promising systems such as Google
speech-to-text and Amazon Transcribe.

4.3.3 System Architecture

Mixed Audio Separated 
Audio

Target
Spectrogram

STFT

STFT

Inverse
STFT

CNN Estimated
Soft Mask

Loss
Function

RNN FC

Trainable Speech Separation System

Clean Audio

Estimated
Spectrogram

Input
Spectrogram

Speech
Recognition

Pre-trained Speech 
Recognition System

Speech
RecognitionSpeech

RecognitionSpeech
RecognitionSpeech

RecognitionSpeech
Recognition

Figure 4.7: System Architecture

Our solution is based on the architecture of VoiceFilter [3]. Note that we do not include
the reference audio part in this diagram 4.7, because this loss function and training
approach can be applied to any other speech separation model.

In the training process, first, the mixed audio is transformed into spectrogram using
STFT and pass the model, which consists of CNN, RNN, and fully connected layer
(blue box). Then the model estimates the IRM based soft mask, and it is used to
reconstruct the target audio by element-wise multiplication with a mixed spectrogram.
This estimated spectrogram is transformed as an audio file (WAV) after inverse STFT.



Abbreviations 57

Now, our pre-trained speech recognition system Deep speech (green box) generates the
transcription. This newly created transcription is used to calculate the WER with the
transcription that we produced earlier using the clean audio. Again, we do not use the
ground-truth transcription of Librispeech dataset to avoid the dependency of the speech
recognition system. Finally, the loss is calculated with three components: clean audio
spectrogram, estimated audio spectrogram, and calculated WER by Eq.4.1 (red box),
and repeat the training process.





Chapter 5

Experimental Evaluation

In this chapter, we demonstrate our experiment. In the first section, we introduce our
dataset with detailed information. Then the pre-processing and audio mixture generation
process is following. Moreover, we present our speech recognition system to be integrated
into our architecture by comparing its performance to Google speech-to-text. All the
necessary software and library information are introduced later. In the second section,
we compare our result with VoiceFilter model.

5.1 Experimental Setup and Data Set

5.1.1 Dataset

subset hours female male total

dev-clean 5.4 20 20 40
test-clean 5.4 20 20 40
dev-other 5.3 16 17 33
test-other 5.1 17 16 33

train-clean-100 100.6 125 126 251
train-clean-360 363.6 439 482 921
train-other-500 496.7 564 602 1166

Table 5.1: The LibriSpech corpus dataset table from [67]

In this paper, we use LibriSpeech corpus, which is part of the LibriVox project [67]. The
data contain 2,451 speakers and total 982.1hours of audio. Moreover, each audio file has
its corresponding transcription, which can be used as a ground-truth text. Additionally,
LibriSpeech corpus supports detailed information about the speaker such as gender
as shown in Table.5.2, therefore, this can be used to generate many di�erent types of
situation.
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ID SEX SUBSET MINUTES NAME
14 F train-clean-360 25.03 Kristin LeMoine
16 F train-clean-360 25.11 Alys AtteWater
17 M train-clean-360 25.04 Gord Mackenzie
. . . . . . . . . . . . . . .

Table 5.2: Detailed information for each speaker

The combination of the mixture audio is the same as the [3]. The training dataset consists
of 2,338 speakers with 281,241 combinations, and test dataset is 73 speakers with 5,567
combinations.

• Training Dataset: 281,241 (2,338 speakers), 234 hours (3 seconds each)

• Validation Dataset: 80 (80 speakers), 4 minutes (3 seconds each)

• Test Dataset: 5,567 (73 speakers), 14 hours (3-15 seconds)

The distribution of the number of words in the test dataset is shown as a histogram in
Fig.5.1, and most files contain between 10 to 20 words.

Figure 5.1: Histogram of test files by the number of words

5.1.2 Preprocessing

There are several preprocessing to enhance learning performance. First of all, all the
silent part of audio files in both head and rear will be trimmed. As shown in 5.2, the
head and rear part of the original audio is a silent part. If the amplitude of both edges is
below a certain level, (in our case 20dB) we remove that part.

Secondly, the training audio datasets are cut into three seconds from its head part. If the
original audio file is shorter than three seconds, we discard it. Even though the training
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(a) Before trimming (b) After trimming

Figure 5.2: Spectrogram level di�erence between before and after trimming

process uses short length, the model can still inference the more extended audio since
the spectrogram can be generated with the same dimension regardless of the audio file’s
length using phase information of mixture.

x̂(t, f) = 1.0 +

Y
____]

____[

0.0 if x(t, f)/100.0 Ø 0,

≠1.0 if x(t, f)/100.0 Æ ≠1.0,

x(t,f)
100.0 otherwise.

(5.1)

Thirdly, as a part of the normalization process, all the amplitude (feature) will be scaled
into 0.0 to 1.0. Therefore, the gradient descent will converge faster than using the
original data [68]. The scaling equation is shown in Eq.5.1, we divide the original STFT
spectrogram by 100.0, and if the minimum and maximum value will be -1.0 and 0.0
respectively. The di�erence before and after scaling is visualized in 5.3

(a) Before normalization (b) After normalization

Figure 5.3: Spectrogram level di�erence between before and after normalization

5.1.3 Generating Audio Mixture

One way to generate the mixture dataset is manually recording the mixed and separated
audio; however, this is an impractical approach. Therefore, most research produces mixed
audio using direct summing of individually recorded audio, as shown in Fig.5.4. This
approach can generate an infinite number of the combination. In the machine learning
task, the mixed audio can be seen as input data, and the clean audio can be seen as a
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Figure 5.4: Training dataset generating process

ground-truth. Moreover, since we have speaker and gender labeled data, we can test
many virtual situations.

5.1.4 Generating new ground-truth transcripts

In our system, we use a speech recognition system called DeepSpeech from [2] to calculate
WER. Choosing a di�erent speech recognition system will generate a di�erent transcript.
Therefore, we do not use the original transcript from the Librispeech corpus; we regenerate
the new ground-truth text using our system. There are two benefits to this approach.
First of all, as long as we are using newly generated ground-truth, the entire system
is not dependent on the performance of the speech recognition system. Because, even
though the system recognizes incorrectly from the original audio, it will generate a
consistent result. Secondly, since we cut the original audio file into three seconds length,
the original transcript is challenging to be used. We have no time-domain information in
the transcripts; therefore, it is practical to generate the new text.

To validate the performance of the chosen speech recognition system, we calculate the
WER from Google Speech-to-Text system which is known as the best in this area.

Mean WER Median WER

Deep Speech (ours) 9.6% 5.8%
Google Speech-to-Text 12.3% 9.0%

Table 5.3: Speech recognition performance comparison

We test 5,567 test dataset, and the performance is shown in table.5.3. The reason that
our system is outperforming is, the model is mainly trained with Librispeech corpus.
Therefore, our test dataset must be the subset of its training dataset. The model can
be seen overfitted to the Librispeech corpus. However, since the main purpose of this
speech recognition system is generating consistent transcripts, this overfitting is not a
problem in our case. Also, the Google speech recognition system uses di�erent syntax
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model. Therefore, there is a minor word di�erence which has the same meaning, such
as ‘Mr’ and ‘Mister’. We do not correct this di�erence, and this also a�ects the lower
accuracy of the Google system.

5.1.5 Software/Hardware and Libraries Specification

Our speech separation system is based on [69]’s implementation. Therefore, Pytorch [70]
is used as a deep learning framework. For the audio processing related task such as STFT,
inverse STFT, generating audio mixture, and etc., Librosa [71] library is mainly used.
To calculate the SDR value we use python mir_eval libaray [72]. We choose DeepSpeech

as a speech recognition system is the implementation and pre-trained data are from [73].

Core software and libraries that are used to build our system is listed in Table.5.4.

Purpose Title etc. License Ref.

Speech Separation VoiceFilter PyTorch Apache 2.0 [69]
Speech Recognition DeepSpeech MPL 2.0 [73]
Audio Processing Librosa ISC [74]

Evaluation mir_eval SDR MIT [75]
jiwer WER Apache 2.0 [76]

Web Framework Flask BSD 3-Claus [77]

Miscellaneous
Numpy tensor operation BSD 3-Clause [78]

Matplotlib plot, chart PSF [79]
TensorboardX training observation MIT [80]

Table 5.4: List of libraries

Note that we train our model using ‘NVIDIA Tesla V100 PCIe 32 GB’.

5.1.6 Hyperparameters and System Configuration

We introduce hyperparameters and configuration for pre-processing, training, and network
itself that we use in our system in this section.

In training perspective, first of all, the batch size is 8 for the training process; therefore,
each iteration eight audio files (24 seconds) are fed into the networks. Secondly, as an
optimizer, Adam is used with a learning rate of 0.001. Thirdly, the checkpoint is every
1000 iteration, which means every 8000 audio files (6.6 hours). Therefore, the evaluation
results (loss, WER, and SDR) are saved every 1000 iteration.

In the perspective of the network, we are following VoiceFilter’s architecture. Therefore,
there is no di�erence between Table.4.1.



Abbreviations Chapter 5 Experimental Evaluation

5.1.7 Training and Testing Policy

To compare our system to the original VoiceFilter, we fix training and testing policies.
First of all, unlike most training process, we do not shu�e the training dataset. The
primary motivation is since the dataset is over 280,000, and the training process takes
a long time until it reaches the convergence, we cannot permanently wait for the best
performance model. Note that, we have trained over ten days with early-stopping
policy; however, the validation loss kept decreasing. Therefore, the dataset is trained in
the same order for both our system and Voicefilter; then we compare both systems at
every checkpoint. Secondly, since our proposed loss function is di�erent from MSE, the
comparing loss is not meaningful in our task. Therefore, the performance comparison is
based on WER and SDR.

5.2 Experimental Results

In this section, we describe the result of two di�erent systems. SDR and WER are
considered as our primary measurement the same as other research. The final result is
based on 80,000 iterations for both systems.

5.2.1 SDR and WER Comparison

First of all, in Fig.5.5, we compare the SDR improvement during the training process
for both systems. As we mentioned earlier, since we are using the same sequence of
the training dataset, we minimize the uncertainty of performance di�erence base on the
training dataset. Therefore, as we can see from iteration 0 to around 7,000, both systems
show almost the same pattern.

From the range between iteration 7,000 to 30,000, we can argue that our system is
outperforming than original VoiceFilter. However, it starts to shows a similar performance
with the original system between iteration 30,000 to 60,000. Then our systems show
the steady pattern from iteration 70,000 to the end. Even though we cannot use this
performance as our absolute evaluation since they only use 80 audio files to validate, it
is crucial to confirm that our loss function is not showing abnormal behavior so that we
can continue the training process.

WER improvement is also showing a similar pattern with SDR. As shown in Fig.5.6, in
the early stage, both WER values are aligning on the same line (iter. 0-7,000). Then the
di�erence starts to be seen; however, unlike the SDR pattern, it is not clear to decide
which systems show better performance. However, in the range between iteration 7,000
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Figure 5.5: SDR improvement during training

to 30,000, we can say that our method reveals a more stable pattern, unlike the original
VoiceFiter’s frequent up-down peak.

Figure 5.6: WER improvement during training

From iteration 30,000 to 60,000, WER is also showing a similar pattern with SDR; it
means both system’s performance is not that di�erent. However, after this iteration, our
system shows visible lower WER (55%-65%).

Now the final performance comparison is shown in Table.5.5. First, the first row shows
the mixtures speech’s SDR and WER values. Since it thoroughly mixed version, therefore,
SDR values are low for both mean and median value. At the same time, WER is also
showing almost 100% error rate. The last low is the upper bound using directly calculated
IRM. Therefore, we call it as an Oracle system. As we can see from both SDR and WER
outperforming values compared to the rest of the rows.
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SDR(dB) WER(%)

System Mean Median Mean Median
Before 0.10 0.13 92.7 100.0

VoiceFilter 3.99 4.85 59.2 60.0
Ours 4.09 4.41 55.7 56.1

Oracle 13.60 13.14 5.8 0.0

Table 5.5: Performance comparison

Now, if we compare the systems between ours and the original VoiceFilter, as we expect,
the average WER value is improved 3.5% point, and median WER is also 3.9% point.
However, our proposed approach has not enhanced only WER but also SDR evaluation
than original VoiceFilter. The average SDR is 0.1(dB) improved than the original system.

5.2.2 Performance by Di�erent Number of Words

Figure 5.7: WER per di�erent number of word in speech

In Fig.5.7, we also demonstrate the WER di�erence per the number of words in the
audio files. Both systems show better WER when there are more words in the audio
file. Notably, our model is outperforming than original VoiceFilter in all the most of the
range.

The entire implementation and demo can be found in Appendix A. And, more result
about the spectrogram and training process can be found in Appendix B and Appendix
C respectively.
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Discussion

6.1 Performance Analysis

6.1.1 Evaluation Measurement Analysis

Even though the final result shows that our solution is showing better performance,
however, the result is not from the converged stage; therefore, the result can be seen as
preliminary. To support our achievement, we calculate the performance di�erence in
every iteration.

First, we calculate the SDR di�erence between two systems and plot them in Fig.6.1.

Figure 6.1: SDR di�erence during training

Since higher SDR means the better performance, points located on the positive side
(y-axis) represent the stage that our model shows higher SDR. Out of 89 checkpoints,
there are 69 points that the proposed model is outperforming. Moreover, if we average the
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di�erence for each case, then the evidence is more clear. The average SDR di�erence when
our model is performing better is 0.273, while the other case is -0.15 (|0.273| > |≠0.156|).

WER is also showing a similar pattern shown in Fig.6.2. In WER comparison, lower
value means better performance; therefore, the graph shows more negative points. Our
model performs better in 62 checkpoints while the original model is outperforming only
27 points while the average di�erence is 0.013 and -0.021 (|0.013| < |≠0.021|).

Figure 6.2: WER di�erence during training

6.1.2 Relationship between SDR and WER

One question we keep having during the project is, “Is the improvement of SDR highly

relevant to the performance of WER?”. In theory, its higher SDR means lower noisy
and interfere source; therefore, it is reasonable to assume that if we achieve the higher
SDR, the WER will relatively increase. Therefore we calculate the correlation coe�cient
between SDR improvement and WER improvement for each iteration.

Correlation coe�cient

Measurement Ours VoiceFilter

SDR vs. Loss -0.988 -0.986
WER vs. Loss 0.960 0.956
SDR vs. WER -0.967 -0.970

Table 6.1: The correlation coe�cients between the three measurements during the
training for validation dataset

As we can see from Table.6.1, there is a small di�erence between two systems, however,
since both coe�cients are close to |coef| = 1, it is not considerable. WER and SDR are
also highly correlated; therefore, we may think the training approach that improving
the signal-level performance will improve the transcription-level performance. However,
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since they are an average of 80 datasets, and regardless of each audio’s original SDR,
we only measure the improved SDR, it is not strong evidence. Moreover, we also have
observed some case that shows better WER while SDR decreased. Therefore this time
we calculate the correlation coe�cient based on individual improvement as shown in
Tab.6.2

Correlation coe�cient

Measurement Ours VoiceFilter

SDR imprv. vs. WER imprv. -0.046 -0.032

Table 6.2: The correlation coe�cients between improvement SDR and WER for each
audio

As we can see, both coe�cients show almost 0 correlation; in other words, even though
SDR improves, it does not necessarily guarantee better WER.

We do not investigate further for this discovery; however, this can be interesting future
work for choosing the appropriate signal-level measurement for the transcription-level
measurement.

6.2 Limitations

6.2.1 Dataset

There is one limitation to compare the performance to other research directly. This is
why we cannot o�er comparable result to the other speech separation research. In the
original paper of VoiceFilter [3], the SDR and WER that they state are 17.9dB, 23.4%
respectively, and it has a big di�erence with our result (4.09dB and 55.7%). However,
the original paper’s test dataset already has high SDR and low WER values (10.1db
and 55.9%) even before the separation. First time when we could not reach the similar
performance we suspect our foundation code or pre-processing, however when we calculate
the SDR and WER value (before separation) with the test dataset that they published
we could not get the same result as they published. Therefore, we contacted the original
author Quan Wang, and we are confirmed that the final result is calculated with a big

batch of three seconds segments, and it can have some randomness. The way they generate
the final test set is illustrated in Fig.6.3

For example, if the clean audio is 15 seconds, and the noise audio is 5 seconds, rest 10
seconds is technically the clean audio. Then, if we segment using 3 seconds windows (red
box), the rear part of the test data is still clean audio. This is why their performance
before the separation is already high. Therefore, it is not possible to generate the
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Figure 6.3: Sampling for evaluation

same mixture that they used; likewise, it is di�cult to compare to the state-of-the-art
result since the segmentation information is not public. We could have experimented
with using other datasets such as WSJ0mix; however, this dataset is not open source
(membership-based).

6.2.2 Training Time

As we mentioned above, our system requires longer training time than conventional
end-to-end speech separation system. Therefore, it is challenging to train with many
di�erent hyperparameter setting. Moreover, even though we trained for 12 days, we
could not reach the convergence of our model performance. Fig.6.4, shows the di�erence

Figure 6.4: Training time comparison

in the training process in time-wise. To train the same number of iteration, the original
VoiceFilter needs one day (blue line), unlike our model (red line), which requires ten
days. Even though the training time is not the main performance criteria for the machine
learning process since once a model is trained the inferencing time is not di�erent, this
time consumption problem should be improved for the more diverse training approach.



Abbreviations 71

GPU

Operation

GPU

Operation

Load/Unload from

GPU

WER

Calculation

(parallel)

audio file

Generation

(sequental)

VoiceFilter

Ours

1 sec 2 secs7 secs

1 sec

Figure 6.5: Training time comparison per iteration

Fig.6.5 shows the time-consumption per iteration. The main consuming part is when we
generate the audio file from the spectrogram. Unlike the WER calculation is operating
parallelly, the generation part is a sequential operation; therefore this process needs to
be improved. For example, if we can calculate the WER without generating the audio
file, the process can be much faster.





Chapter 7

Conclusion and Future Directions

In this thesis, we have introduced a new approach to training for the speech separation
task. There are two main contributions to enhance the existing speech separation model.

First of all, we have proposed the new loss function for the separation task, which can
associate both the signal-level and transcription-level performance measurement directly.
Therefore, we have improved WER from 59.7% to 55.7%; moreover, even SDR is elevated
from 3.99dB to 4.09dB compared to the existing model. This result proves that applying
WER to loss-function can improve the separation performance from both signal and
transcription perspective. Secondly, our generalized integration architecture can be used
for any other systems without being constrained by the system environment. Therefore,
we can propose a more diversified combination of speech separation and recognition
systems.

This experiment can be improved by having several adjustments. Firstly, we can train
on bigger batch size so that we can shorten the training time and try a more diverse
experiment. Secondly, combining di�erent systems such as PIT and DPCL with Google
speech-to-text and Amazon Transcribe can prove our approach more strongly. Lastly,
investigating the relationship between word length and performance can also be an
interesting topic.
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Appendix A

Implementation and Demo

The implementation of our system can be found in our Github repository: https:
//github.com/thejungwon/mwetss.

The detailed installation process is described in README.md. The speech recognition
implementation is based on [73], and the speech separation code is based on [69].

Our demo is available in: https://master-thesis-a24e7.firebaseapp.com/.

Figure A.1: Speech separation demo generated by our model
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Appendix B

Spectrogram Results

Figure B.1: Mixture Spectrogram

Figure B.2: Target Spectrogram

Figure B.3: Separated Spectrogram
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Figure B.4: Estimated Mask Spectrogram

Figure B.5: Error-di�erence Spectrogram



Appendix C

Training Process

The red line indicates our model, while the pink line shows the original model.

Figure C.1: SDR improvement during training

Figure C.2: WER improvement during training
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Figure C.3: Validation loss during training

Figure C.4: Training loss during training

Figure C.5: Training WER during training
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