

Title page for Master's Thesis
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:
Computer Science

Spring semester, 2019

Open/Confidential

Author: Magnus Særsten Book

…………………………………………
(signature of author)

Faculty supervisor:
Vinay Jayarama Setty

Title of Master’s thesis:
Generating Retro Video Game Music Using Deep Learning Techniques

Credits: 30 ECTS

Keywords:
NES • Music Generation • Biaxial RNN •
LSTM • Deep Learning • Tensorflow •
Theano

 Number of pages: 60
 + supplemental material/other:
 - Zip file attached to PDF

- Source code and generated music

Stavanger, June 15 2019

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Generating Retro Video Game Music
Using Deep Learning Techniques

Master’s Thesis in Computer Science
by

Magnus Særsten Book

Internal Supervisor

Vinay Jayarama Setty

June 15, 2019

“The time will come when diligent research over long periods will bring to light things
which now lie hidden. A single lifetime, even though entirely devoted to the sky, would
not be enough for the investigation of so vast a subject... And so this knowledge will be
unfolded only through long successive ages. There will come a time when our descendants
will be amazed that we did not know things that are so plain to them... Many discoveries
are reserved for ages still to come, when memory of us will have been effaced.”

- Lucius Annaeus Seneca

Abstract

Music generation using deep learning is a widely studied field. This thesis focuses on
music generation in a constrained and novel environment; retro video game music. The
constraints imposed by the environment creates many unique challenges for the generation
of musical compositions. In addition, the dataset consists of multi-instrument music,
which is rarely studied due to its complexity. An extension to an existing architecture;
the Biaxial RNN is presented in order to extend its capabilities to allow for generating
multi-instrument arrangements. The resulting implementation is somewhat successful
at fulfilling the proposed solution, although one component could not be implemented
within the time limit. The result is not pleasant music, but it does give a view into the
complex process of multi-instrumental music generation.

viii

Acknowledgements

I would like to sincerely thank my supervisor Vinay Setty for his input and guidance
on the project. In addition, I would also like to thank my family and friends for always
supporting me and lending an ear through their kindness. Everyone mentioned have all
been interested in the project, and have provided ideas and encouragement throughout
the process. Among my friends and fellow students, I would especially acknowledge
Tobias Helgeland for providing his expert guidance in the field of music, and the NES
Synthesizer. His work was also the inspiration for the problem tackled in this thesis.

CONTENTS ix

Contents

Abstract vi

Acknowledgements viii

Abbreviations xi

Symbols xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 1
1.3 Use Cases . 2
1.4 Challenges . 2
1.5 Contributions . 3
1.6 Outline . 3

2 Background 5
2.1 Music Theory . 5

2.1.1 Timing . 5
2.1.2 Pitch . 6
2.1.3 Velocity . 6
2.1.4 Timbre . 6

2.2 NES Synthesizer . 7
2.2.1 Pulse Waves . 7
2.2.2 Triangle Wave . 8
2.2.3 Noise . 8
2.2.4 Advanced Compositional Techniques 8

2.3 Music Representation . 9
2.3.1 MIDI . 9
2.3.2 Piano Roll . 10

2.4 Deep Learning . 10
2.4.1 Feedforward Neural Networks . 10

2.4.1.1 Activation Functions . 11
2.4.1.2 Architecture . 11

x CONTENTS

2.4.1.3 Learning . 12
2.4.2 Recurrent Neural Networks . 14
2.4.3 Long Short-Term Memory Neural Networks 16

2.5 Related Work . 17

3 Solution Approach 21
3.1 Existing Approach . 21
3.2 Analysis . 23
3.3 Proposed Solution . 24

4 Experimental Evaluation 27
4.1 Experimental Setup and Data Set . 27
4.2 Experimental Results . 28

5 Discussion 33
5.1 Results . 33
5.2 Architecture . 34
5.3 Implementation . 35

6 Conclusion and Future Directions 37

List of Figures 38

List of Tables 41

Bibliography 43

ABBREVIATIONS xi

Abbreviations

GAN Generative Adverserial Network

LSTM Long Short-Term Memory

MIDI Musical Instrument Digital Interface

NES Nintendo Entertainment System

NES-MDB Nintendo Entertainment System DataBase

RL Reinforcement Learning

RNN Recurrent Neural Network

TPU Tensor Processing Unit

SYMBOLS xiii

Symbols

symbol name

σ sigmoid function

Chapter 1 Introduction 1

Chapter 1

Introduction

1.1 Motivation

Composers are faced with creating complex music that often has many instruments
harmonizing together. Developing tools to help the creative process in this regard could
help inspire composers through the ability to generate artificial compositions. In the
case of video games, there has been a recent trend for independent developers to develop
games in a retro style. Because of this, the composers could benefit from artificially
generated music that work within the retro limitations.

Another motivation is to further develop existing deep learning techniques. These
developments could potentially be used for deep learning projects in fields outside music
generation.

The biggest motivator is to see if this artificial intelligence is able to come close to
mimicking music made by humans. This would push the boundary of artificial intelligence
closer to that of human intelligence within the field of art.

1.2 Problem Definition

This thesis seeks to explore music generation for retro video game music using deep
learning. In order to accomplish this, a corpus of existing music must be preprocessed to
a format suitable for a neural network.

An architecture for the neural network must be decided on and developed. After the
preprocessing step is finished, the network must be able to learn from the input data.

2 Chapter 1 Introduction

Finally, after the network has trained on the musical compositions long enough, the
resulting network must have the ability to generate a new and distinct composition based
on some seeded starting point.

1.3 Use Cases

If music generation of this type were to become sufficiently proficient, it could see use
in numerous ways. The most obvious way is for people to generate their own music
to use for their own purposes, whether for listening, sharing, or incorporating it into a
soundtrack.

Another use case, as mentioned earlier, is for composers to be inspired by tracks they
generate. For example, a composer could provide a section of a composition and let
the network propose a continuation. Around this, tools could be created to this process
easier for the musicians using it, by also allowing them to manually edit the generated
parts. While editing, the network could present various alternatives for the next notes
based on what it has learned.

1.4 Challenges

This project focuses on a music with four instruments. At this time, music with multiple
instruments is the biggest challenge within the field of music generation. It is challenging
since all instruments need to sound good while accompanying each other.

To overcome this challenge, a network architecture that is able to handle interaction
between instruments must be developed. Here, each instrument needs to generate their
own progression; deciding which note to play at what time. Finally, the possibilities all
instruments deem the most likely must be combined to create good interplay between
them.

Making generated notes more dynamic is another big challenge. This requires things like
the volume of a note being altered over time to make it less bland.

All this also requires a lot of computing time due to the dimensionality of the data.

Chapter 1 Introduction 3

1.5 Contributions

This thesis contributes a novel architecture partially based on previous work within
single-instrument music generation; adapted to generate music with multiple instruments.
This is applied to a dataset consisting of music from the NES video game console, which
has not been used for any major projects at the time of writing.

Alongside the proposed solution, other possible solutions for generating multi-instrumental
music are discussed.

1.6 Outline

The following list gives an outline of the contents from all the following chapters:

Chapter 2 provides all the background information necessary to understand the
architecture proposed in this thesis. It also serves to provide a short introduction
to the necessary music theory, as well as the synthesizer, file formats utilized, and
fundamental deep learning techniques. Lastly, a summary of related works is given;
in order to give an idea of the current state of research around the topic.

Chapter 3 describes the approach behind the music generation. It lays a foundation
by introducing a work that is heavily utilized within the proposed solution of this
project. Afterwards, this approach is analyzed, and areas of potential improvement
are explored. Finally, the proposed solution is described.

Chapter 4 presents the experimental setup, as well as the dataset used in the training
of the proposed model. Finally, the results of generating music using the model is
provided.

Chapter 5 serves as a discussion about the results, architecture, and, the implementa-
tion.

Chapter 6 concludes the thesis by summarizing the results and what has been learned
from this project, as well as pointing to possible future directions and improvements.

Chapter 2 Background 5

Chapter 2

Background

This chapter aims to introduce all background topics relevant to the topic presented
by the thesis. Included is some basic music theory, an introduction to the Nintendo
Entertainment System (NES) synthesizer, as well as an explanation of the deep learning
techniques used in the thesis.

2.1 Music Theory

For the purpose of understanding the method described in this thesis, some basic principles
and terminology will be introduced in this section. This introduction will also serve as
the foundation for understanding the NES Synthesizer as described in Section 2.2.

2.1.1 Timing

One of the most important topics in music theory is timing. There are rules that dictate
when a note should be played. Table 2.1 shows the most commonly used note symbols.
The name of the note indicates for how long it should be sustained. As an example, a
half note is half as long as a whole note.

Note Name Whole note
, Half Note
C Quarter note�
� Eighth note©
� Sixteenth note

Table 2.1: Relevant notes

6 Chapter 2 Background

Every arrangement is divided into measures, often called bars. Each bar should be filled
with notes or rests so as to satisfy a time signature.

Time signatures allow for defining a rhythmic structure for an arrangement. The most
common time signature is written like this: 44. Here, the lower number represents which
note is a beat, while the upper number gives how many such notes are in a bar. For
example, the 44 time signature indicates that there are four quarter notes in a bar.

2.1.2 Pitch

The pitch of a note is determined from the frequency of the sound wave. A higher
frequency gives a ”higher” note. On the other side of the spectrum is a ”lower” note,
which has more bass.

Certain pitches correspond to notes on a scale. It is traditionally represented by the first
seven letters of the Latin alphabet; A-F. Going from one note to another is often called
a whole-step. There are also half-steps between all notes except for between E and F.
This is most often denoted by the symbol, for example with C. All these notes define
pitch classes, this is because there are many pitches that produce the same note.

Octaves are defined as being the interval between a pitch and the doubled pitch. Notes
that are exactly one or multiple octaves are denoted by the same letter, which means
they are in the same pitch class.

2.1.3 Velocity

Another important term is velocity. Traditionally, this denotes how quickly a piano key
is pressed down. Velocity determines how soft the resulting sound is. However, in digital
music, velocity usually determines the volume of the sound.

2.1.4 Timbre

All musical instruments have a unique timbre. Timbre is an indication of the color
or quality of the sound. The timbre of an instrument is determined by the physical
mechanics that produce the sound. For example, a piano can play the same notes as an
organ, but they still sound very distinct from each other.

NES Synthesizer • Pulse Waves 7

Figure 2.1: Pulse waves with varying duty cycles [1]

2.2 NES Synthesizer

A synthesizer is an electronic musical instrument. It is able to transform signals from
some input and output sound. On a conceptual level, the NES synthesizer is very simple
due to hardware constraints around the time of release. It contains five channels; two
pulse wave channels, a triangle wave channel, noise channel, and a sample channel. The
last channel will not be discussed, as it was rarely used by composers.

Later in the console’s lifespan, composers were able to expand the range of possibilities
by developing many techniques to compose more complex arrangements. Some of these
methods will be described briefly to give an indication of their intricacy.

2.2.1 Pulse Waves

Pulse waves have a rectangular shape, which was previously illustrated in Figure 2.1.
These waves can be modified by adjusting the duty cycle1; thus changing the timbre of
the sound. In addition, velocity determines the volume of the resulting sound.

Composers usually used the pulse waves to create the melody of an arrangement. With
two of these channels they could use both waves to create a deeper melody by playing
the same notes in different octaves or forming chords. Another option was to use one of
the channels for accompaniment by emulating another instrument.

1The NES has four available duty cycles: 12.5%, 25%, 50%, and 75%. It should also be noted that
25% and 75% give the same sound; because 75% is the negation of 25%

8 Chapter 2 Background

Figure 2.2: NES triangle wave [2]

Figure 2.3: NES noise channel [4]

2.2.2 Triangle Wave

The triangle wave creates a deep and iconic sound. Because of this, it is most often used
to emulate bass and bass drum. As seen in Figure 2.2, the wave is shaped like a triangle.

A side effect of the shape is the lack of volume control for this channel. This is because
all amplitudes are used to create the shape.

2.2.3 Noise

There is a pseudorandom noise channel included in the synthesizer. The pattern of
the wave is determined randomly based on an internal system timer. The pitch of the
resulting tone can be changed the same way as the other channels. However, the noise
channel has fewer available pitches to choose from compared to the other channels2.

Figure 2.3 shows one of the possible waves generated by the noise channel. In most cases,
the noise channel is used to emulate percussion by forming patterns of short activation
with different pitches.

2.2.4 Advanced Compositional Techniques

As discussed earlier in this section, the synthesizer provides a very restricted environment
for composers due to the limitations of the hardware. Nonetheless, over the life span

2The pulse and triangle channels can use 109 pitches, while the noise channel only has access to 17 [3]

Music Representation • MIDI 9

of the NES, the composers were able to develop techniques to make more complicated
music than what seemed possible.

These techniques, among others, served to better emulate real instruments and their
capabilities. An echo effect could be achieved by having the two pulse channels play the
same sequence with a temporal separation.

Changing the duty cycle while playing a note was also used to create the illusion of
plucking the strings of a string instrument. When this was done rapidly, it also gives the
effect of playing arpeggios3 if done correctly [5].

By bending the pitch of a note while it is being played, the composers were able to
replicate kick drums to create a thicker percussion compared to the noise channel. Using
a similar technique, an echo could be created with a single pulse wave channel by making
the pitch and volume lower over time.

These techniques usually make the arrangements much more complex in terms of compo-
sition and progression as the piece progresses.

2.3 Music Representation

There are many different ways to represent musical compositions; both in terms of file
formats and visual representation. In this section, the two representations used for this
thesis are introduced.

2.3.1 MIDI

A Musical Instrument Digital Interface (MIDI) file is used to store the notes to be played
in a musical arrangement. In contrast to many other audio file formats, MIDI files do
not contain any audio. Instead, they consist of instructions for which note to play at any
given time, thereby making MIDI files much smaller than audio recording formats [6].

Each file can have a maximum of 16 instruments. An instrument track contains MIDI
events that detail which note should in addition to other parameters such as the velocity,
treble and timing of the note.

MIDI files can easily be both read and manipulated due to their structure, thus making
it an ideal format to use for music generation.

3An arpeggio is a chord (multiple notes played at once) played individually in sequence

10 Chapter 2 Background

Figure 2.4: Example of a NES score represented with piano roll [3]

2.3.2 Piano Roll

A common way to represent music is through the use of musical notation. However,
this notation may be confusing for people without a background in music. An alternate
method to visualize an arrangement is to use piano roll.

Piano rolls are long rolls of paper with holes corresponding to the note to be played by a
piano. These rolls were used with automated pianos, and would recreate the arrangement
outlined by the roll. Although the mechanism for replaying these rolls are irrelevant to
this thesis, the format can still be used to intuitively illustrate a musical arrangement.

Figure 2.4 gives an example of a score visualized using piano roll. Here, each instrument
is given a unique color. The pitch of the notes being played are measured using the
vertical axis. Time is depicted by the horizontal axis. This example illustrates how the
piano roll representation is able to convey the pattern of the score in some time interval.

2.4 Deep Learning

Modern artificial intelligence is mostly based on the study of deep learning. Deep learning
is fundamentally based on the inner workings of the human brain. There are many
possible techniques for accomplishing a goal with deep learning. Each of them with their
own advantages and disadvantages. This section aims to provide a basic understanding
of the underlying concepts of the methods used in this thesis.

2.4.1 Feedforward Neural Networks

The most basic form of deep learning is an artificial neural network. As the name
suggests, this concept is based on concepts observed in biological neural networks such

Deep Learning • Feedforward Neural Networks 11

as the human brain. Such a network is made up of neurons in multiple layers, where
each neuron is connected to all neurons in the next layer.

In artificial neural networks, the connections between neurons are called the weights of
the network. Whether or not a neuron fires depends both on the weight and value of the
previous neurons connected to it. The weight of a connection is usually denoted as Wij .
Here, neuron i is the predecessor of j. In other words, the connection can be seen as
going from i to j.

All outputs of the neurons can be calculated using matrix multiplication between the
input and weight matrices. Equation 2.1 defines the previously discussed calculation of
the output Y . Here, the input is denoted by X, while B is the matrix of biases of the
network. This bias serves to change the difficulty of activating certain neurons.

Y = X · W + B (2.1)

2.4.1.1 Activation Functions

To decide if a neuron should be activated, an activation function is applied on the
output. This function usually transforms the input in a non-linear manner. The simplest
example of an activation function is a step function. Here, the neuron will be activated if
Y > threshold. Another activation function more commonly used is the sigmoid function
displayed in Figure 2.5 and defined in Equation 2.2. This function is much more nuanced
compared to the step function, since output can be anywhere between 0 and 1.

σ = ex

ex + 1 (2.2)

Activation functions are an important aspect within neural networks, and the choices
made in this regard may heavily influence the performance of the network.

2.4.1.2 Architecture

Figure 2.6 provides an example of a feedforward neural network architecture. The reason
it is called a feedforward neural network is due to the general direction of the connections
between neurons. All connections point to the next layer of neurons, eventually leading
to the output layer. This example is illustrated with only one hidden layer, but complex
problems may call for additional hidden layers.

12 Chapter 2 Background

−6 −4 −2 0 2 4 6

0.5

1

Figure 2.5: Sigmoid activation function

The input layer performs no computations. It is simply responsible for inserting the data
into the network. For instance, if the input were to be defined by a binary number, each
neuron in the input layer would correspond to one of the binary digits; their output
being the value of their assigned digit.

Hidden layers are where where the network figures out which output to produce based on
the input. The outcome is heavily dependent on the activation function, as well as the
number of layers and the amount of neurons they contain. It can often be a challenge to
tune these parameters to get a more efficient network with acceptable accuracy in its
predictions.

Finally, the output layer represents the final prediction of the network based on the input
data. Much like the input, it could for example represent a binary number. This number
could for instance be a category, if the objective of the network is to classify input into
various categories.

2.4.1.3 Learning

Initially, a neural network is most often given randomized weights. Most likely, these
will not enable the network to make correct predictions. To improve the weights, the
network needs to be trained using data that matches the usecase. The input data needs
to have a correct solution associated with it, called the ground truth.

Training the network occurs in iterations until some condition is met, such as reaching a
certain accuracy or iteration. All the steps for each training iteration are explained in
the following list:

Deep Learning • Feedforward Neural Networks 13

Figure 2.6: Example of a feedforward neural network architecture

1. Feed-Forward: To start off, input is inserted into the network, and is taken
through the network, hence the name of this step. Once the network has produced
an output, it moves onto the next step.

2. Calculate loss: Here, the objective is to determine how close the prediction from
the previous step was compared to the ground truth associated with the input.
Just like there are many activation functions, there are also many loss functions.

A simple example of a loss function is to use loss = |truth − prediction|. The
problem with this approach is that many small errors can end up amounting to a
large sum across the entire dataset. A few large errors could also end up giving the
same sum. One way to solve this issue is to square the absolute error, thus making
big errors have a more substantial impact on the overall error of the network.

The main goal of the neural network is to minimize the chosen loss function, which
means it is a problem of optimization.

3. Calculate the gradient: By performing derivation, the gradient is produced. It
can be used to optimize the loss function by approaching a local minima of the
loss function.

For simplicity, imagine a network with a single weight. In order to minimize this
function, the derivative is calculated to determine if the weight should be increased
or decreased. There are three possible scenarios here:

• If the derivative is 0, the weight does not need to be changed, since a minima
has been reached.

14 Chapter 2 Background

• If it is positive, that means the loss is increasing. Therefore, the weight should
be decreased.

• If it is negative, the loss is decreasing, the weight should be increased.

The same applies applies for gradients, which are multi-dimensional derivatives
that describe the impact on the loss for all weights averaged over the entire training
set. Much like the simple case described earlier, the method consists of increasing
or decreasing each of the weights according to the gradient. This concept is called
gradient descent, and is a central concept within deep learning.

4. Backpropagation: Now that the gradient for the loss function has been calculated,
the network must propagate the changes to the weights through the network.
Starting at the output layer, each training example indicates which neuron should
have the highest activation. In order to come closer to the desired outcome, the
weights connected to this neuron need to be altered to change the output value.

By increasing the weights from neurons with a positive activation, and decreasing
it for negative activations, the activation of the output neuron will increase. The
changes should be made in proportion to the activation of the neuron, in order to
descend towards the minima quicker.

This must also be done for all other neurons in the output layer to decrease their
activation. The sum of all these changes to each weight are taken to determine its
final change for this iteration.

This same logic is then used to propagate further back in the network until the
input layer is reached. When this process is performed across all training data, it
approximates the gradient mentioned earlier.

There are many optimizations and changes that are made to the steps described here,
but these steps serve as the basic intuition of how a neural network learns.

2.4.2 Recurrent Neural Networks

Feedforward neural networks are good at classifying many types of data. However, it
is not optimal when used to predict the next value of a time series. In such a case, the
data point to predict is most likely close to the previous value; following the trend of
earlier data.

To improve learning for applications concerned with temporal data, Recurrent Neural
Networks (RNNs) were developed [7]. The main improvement to the feedforward neural
network is the inclusion of a recurrent connection from the end of the hidden layer to

Deep Learning • Recurrent Neural Networks 15

Figure 2.7: Architecture of a simple recurrent neural network

the beginning. This allows the network to retain information from previous data. Figure
2.7 visualizes how a RNN connects the hidden state from previous time steps with the
hidden state in the current time step.

Although this technique manages to achieve relatively good accuracy on many problems
involving temporal data, there are still some problems. These are the problems of
vanishing and exploding gradients. Both these problems arise because of the recurrent
connection, which makes it so the gradients are constantly being multiplied. Depending
on the values of the gradients, the problem can evolve to vanishing gradients or exploding
gradients.

Exploding gradients occur when weights have a high value. If this is the case, the value
of the weight will explode; as it is continually multiplied. This problem could eventually
lead to an overflow and terminate the model. However, there is a reasonably simple
solution to this problem. By truncating the weight within a certain range, a complete
explosion can be prevented.

Conversely, vanishing gradients occur when weights smaller than 1 are continually
multiplied. Eventually this leads to many weights becoming inconsequential. Figure 2.8
shows how repeated applications of the sigmoid function are affected by the recurrent
connection. There are a few ways to deal with this problem, but the most popular
method is explained in Section 2.4.3.

16 Chapter 2 Background

Figure 2.8: Vanishing gradients illustrated using the sigmoid function [8]

Another benefit from the RNN architecture is the ability to provide different forms
of output. It is possible to output a prediction at each time step, generate multiple
outputs from one input, or classifying multiple data points. This significantly increases
the breadth of problems where the network may be used.

2.4.3 Long Short-Term Memory Neural Networks

As seen in Section 2.4.2, RNNs face the problem of vanishing gradients. The solution
most often implemented is a Long Short-Term Memory (LSTM) neural network. It
introduces a new mechanism to combat the vanishing gradient problem, namely memory
cells.

A schematic for a memory cell is depicted in Figure 2.9. It shows the input node, as well
as three different gates. Each gate can be in either be open or shut at each time step.
In the figure, the blue arrows can be safely ignored, as they are seldom used, and only
contribute to the performance of the architecture.

The input gate determines whether or not new input should be let into the block. If the
forget gate is open, the cell will forget its state. When the output gate is open, it will
output its state; allowing subsequent blocks to read the output.

Each gate has its own, separate set of weights that is adjusted through learning to learn
when it is beneficial to open or close each gate.

Deep Learning • Long Short-Term Memory Neural Networks 17

Figure 2.9: A schematic showing the structure of a single LSTM cell [9]

The reason gates that allow for ignoring input, not producing output, or forgetting the
state is due to enabling learning on different time scales. For example, this could help in
recognizing seasons, and their impact on a time series, while also predicting the next
data point based on the previous.

One of the biggest reasons why this architecture is able to avoid the vanishing gradient
problem is because of the central addition operation. In a regular RNN, the states are
multiplied, while they are added in a LSTM block. In essence, the addition preserves a
relatively constant error in the system, unlike multiplication.

2.5 Related Work

Music generation is a broad topic containing many different problems, each of which
often has its own solution. Some examples are the differences between generating a
melody, accompaniment, or synthesizing a sound. Each of these problems have had
various deep learning architectures applied in order to produce a good result. Table 2.2
gives a brief summary of the related works that involve music generation. Most of the
works mentioned here are also described in the comprehensive literature survey by Briot,
Hadjeres and Pachet [10].

Few related works presented in this section are very closely related to the work presented
in this paper. This is largely because there is a distinct lack of works focusing on music
generation with multiple instruments. However, the related works presented here are

18 Chapter 2 Background

works that stand out in their ability to generate single instrument music. Hence, the
novel feature of the work presented in this thesis is the generation of multi-instrument
music, as well generating music in the genre of retro video game music.

In addition to the works presented in this section, a deeper exploration of a work that
serves as a building block is described in Section 3.1.

Deep Learning • Long Short-Term Memory Neural Networks 19

Title Description

Performance RNN (Si-
mon & Oore, 2017)[11]

Generates music with expressive timing and dynamics by
training on real piano performances. It uses a dataset con-
sisting of performances by skilled human players to attempt
to capture the characteristics of human musicians. A RNN
architecture is used to generate the scores. This work relates
to the architecture presented in this thesis because it uses
RNNs to generate music.

Modelling High-
Dimensional Sequences
with LSTM-RTRBM:
Application to Poly-
phonic Music Gen-
eration (Lyu et al.,
2015) [12]

Combines a LSTM architecture with a Restricted Boltz-
mann Machine (RBM) to improve the performance on high-
dimensional data such as music. The resulting network is
capable of generating music in a variety of genres. Similarly
to this work, this thesis also uses LSTM as a base technology,
but uses a more advanced architecture.

C-RNN-GAN: Contin-
uous recurrent neural
networks with adver-
sarial training (Mogren,
2016)[13]

Uses a Generative Adverserial Network (GAN) to generate
classical piano music. This network uses RNNs for learning
from the corpus. This work can be seen as a counterpoint
to the architecture presented in this thesis, being another
architecture that has potential to generate multi-instrument
music if expanded to provide this feature. GAN networks
have been shown to perform well in many projects where the
goal is to generate novel content.

Tuning Recurrent
Neural Networks With
Reinforcement Learning
(Jaques et al., 2017)[14]

This work proposes a method for tuning the result generated
from a RNN based architecture using Reinforcement Learning
(RL). Using this technique, the network will be incentivized
to follow rules from music theory. This would for instance
prevent large jumps in pitch. This work relates to the thesis
through the use of a RNN based architecture. In addition
to this, it could be an interesting future work to implement
the RL tuning component to make generated arrangements
more musically sound.

DeepBach: a Steerable
Model for Bach Chorales
Generation (Hadjeres et
al., 2017)[15]

Generates convincing pieces based on the compositions of
Johann Sebastian Bach. It is unique in allowing for a user to
steer generation through providing parameters to the model.
It uses two different RNNs; one for predicting backwards
from the future, and one to predict forwards from the past.
It is also able to generate harmonic accompaniment given
a melody. It relates to this thesis by being able to success-
fully generate pleasant classical accompanies to a melody.
Because of this ability, it could be possible to use this model
for generating accompaniment to a generated melody, thus
producing entirely novel music. Another aspect of this work
is the ability to steer the compositions by providing param-
eters to the network. This could be a future feature of the
work presented in this thesis.

Table 2.2: A summary of related works within the field of music generation

Chapter 3 Solution Approach 21

Chapter 3

Solution Approach

The aim of this chapter is to explain both the proposed solution for generating music
from this thesis. First, the underlying neural network architecture that is utilized in the
solution is explained and analyzed. Finally, the architecture of the proposed solution is
described; along with how it is trained.

3.1 Existing Approach

One of the most successful architectures for generating music with a single instrument is
called the Biaxial RNN, proposed by Daniel Johnson [16]. The name of the network
comes from its unique structure of having two networks; one working in the time axis,
the other in the note axis. Figure 3.1 illustrates the structure of a Biaxial RNN. Here,
the note axis is represented in the vertical direction, while the loops represent the time
axis.

As mentioned earlier, each axis is defined by a neural network, specifically, they are
LSTM networks. In each time step, the time network produces an output first, which is
then fed into the note network.

The initial input into the time axis LSTM consists of:

• Position gives the MIDI value of the current note.

• Pitch class is a vector indicating which pitch class the current note belongs to.
It contains 12 values, starting with the A note, and subsequently increasing by a
half-step.

• Previous vicinity provides information on surrounding notes in the previous time
step, ranging from an octave up, to an octave down.

22 Chapter 3 Solution Approach

Figure 3.1: Biaxial RNN schematic [17]

• Previous context indicates how many times a note x was played in the last time
step. It is represented by a vector of size 12 (one value per pitch class), where the
value at index i is defined as (x − i − pitch class) mod 12.

• Beat is a vector containing binary strings, and represents at what beat notes are
played. If using a resolution of sixteenth notes, there will be sixteen digits in the
binary string, each representing whether a note is played at this beat. The example
describes a measure with four beat inputs, represented by the rows, and each time
step equivalent to a column:

1001101000110100

1010101010101010

0001001100100101

0010100110011011

On the other hand, the note axis network iterates through note steps, which are similar
to time steps, but ranging from the lowest note to the highest note. This network takes
the following input:

• Note state is an input directly from the last layer of the time axis LSTM stack.
It is a vector describing the time pattern of the notes.

Chapter 3 Solution Approach 23

• Previous note state is a value that describes if the note in the previous note
step was played (it can be either 0 or 1).

• Previous note attenuation resembles whether the note in the previous note step
was sustained.

After the LSTM networks, there is an output layer that outputs the play probability for
the notes, as well as an articulation probability. In this case, the articulation probability
refers to whether or not a note should be sustained if it is played.

The loss function is a modified version of cross-entropy, which involves calculating the
likelihood of playing the correct note; according to the training sequence.

Training this network is different from many other neural networks. Often, a training
epoch is defined to be a complete iteration on the training dataset. Since music is a
creative process, this type of training could end up with an overfit network. Another
problem is the large amount of data due to the amount of time steps in the data. The
solution used in this network is to randomly sample a song from the training set. From
the selected song, a small sequence is randomly extracted and used as the target for the
training epoch.

When generating a new composition, an existing song not in the training set is used as a
seed. A small section at the start is used as a starting point. The task of the network is
to generate the rest of the song based on the start of the seed.

3.2 Analysis

Listening to some of the music generated by the network from David Johnson’s original
blog post [17], the results are quite convincing. All the generated music uses advanced
timing, sometimes altering it dynamically through the song. In addition to this, it also
generates chords and arpeggios that work together and sound good.

However, there are a few problems that stand out while listening to the samples. When
a long song is generated, there are stretches where the network repeats the same note
or chord for a long time, thereby making some sections monotonous. Another possible
problem is that the network is discouraged from creating new sequences, since it has
to learn from the songs in a dataset. This could possibly make the output somewhat
formulaic; without much experimentation with regards to timing or note choices.

A nice aspect of the Biaxial RNN architecture is a training optimization, allowing for all
the operations of the time axis LSTM stack to be batched together. This results in larger

24 Chapter 3 Solution Approach

matrix operations, which is ideal for making use of a GPU. Despite this optimization
being applicable during training, it is not possible to utilize during generation. This is
because each note must be decided before determining anything about the next time
step.

Even though this network is good at producing polyphonic1 music with a single instrument,
there is no support for multi-instrumental music. When it performs its preprocessing, it
collapses all tracks into one, thus making it impossible to distinguish them later. This is
the main problem for this architecture within the context of this thesis, where the goal is
to generate multi-instrumental music. The proposed solution is described in Section 3.3,
where Biaxial RNNs are used as a sub-component.

3.3 Proposed Solution

Generating a multi-instrumental composition has some challenges that must be overcome
in order for the result to be listenable. Most important of all, is the interplay between
all the instruments of the composition. Figure 3.2 illustrates the architecture of the
proposed system.

The solution integrates multiple Biaxial RNNs; one for each MIDI channel. Each network
is responsible for generating the probabilities for playing each note in the next time step
for its assigned instrument. Theoretically, the networks should be able to adapt to the
play style of their assigned MIDI track.

Although each generated track should be of good quality; as discussed in Section 3.2,
they have no coordination. It may be postulated that there should be some method
of instilling interplay between the generated music tracks. In the architecture, this is
achieved through the use of a neural network; called the composer.

The composer component is a LSTM network responsible for selecting the note com-
binations that compliment each other. It takes the play probability and articulation
probability outputs from all connected Biaxial RNNs. It is trained to recognize good
combinations across the instruments based on what is present in the training set. A
cutoff for play probabilities that are considered is used to promote the inclusion of notes
that have been determined to work with the previous context by the Biaxial RNNs. The
composer is trained together with the Biaxial RNNs by using their predictions as input,
and attempting to predict the correct note combination at that time step.

1The term polyphonic indicates that multiple independent notes can be played simultaneously by an
instrument

Chapter 3 Solution Approach 25

Figure 3.2: Proposed architecture for generating NES music using four Biaxial RNNs
and a composer component to improve interplay between channels

After the composer makes a prediction, it outputs the chosen note at that time step for
each of the channels. Therefore, during generation, the output can be appended to the
generated tracks directly.

Based on the structure and components of the architecture, it should be able to generate
some coherent compositions. The results are presented in Section 4.2, while some
advantages and disadvantages with the network architecture are discussed in Section
5.2.

Chapter 4 Experimental Evaluation 27

Chapter 4

Experimental Evaluation

This chapter presents the results gained from running the project and generating music.
The experimental setup is described to give an indication of how the project was executed.
Afterwards, the dataset is explored; along with preprocessing steps taken before feeding
the data to the model. Finally, the results obtained from the experiment are presented.

4.1 Experimental Setup and Data Set

As seen in Section 3.3, the proposed solution requires a complex architecture. In order
to reduce the time required to train the network and generate music, the network has to
be run on a computer with a fast GPU. For this project, a virtual machine was created
on the Google Cloud platform [18]. It uses a Tesla V100 GPU, which is optimized to
perform common deep learning computations. Ideally, a Tensor Processing Unit (TPU)
would be used, since it has better performance, but the most central operations in this
project have yet to be given TPU support at the time of writing.

Each Biaxial RNN was configured with two layers for each axis. The amount of nodes
per layer in the time axis was 300 for both, while the note layer used 100 in the first layer,
and 50 in the other layer. However, an exception was made for the network responsible
for the noise channel. Since there are a lot fewer possible note values in this channel, the
note layer sizes were set to 50 and 25 respectively. The time axis was left the same as for
the other channels because the note placement is just as complex.

Due to some last-minute difficulties with the implementation, as discussed in Section 5.3,
there was not enough time to run it for as long as planned. The implementation was
trained for approximately 30 hours, completing 3000 epochs. Ideally, it would have been
training for 10000 epochs.

28 Chapter 4 Experimental Evaluation

The dataset used for this project is the NES Music DataBase (NES-MDB) [3]. It consists
of 5278 songs from the soundtracks of 397 games. All songs were scraped and converted
to multiple formats that are easier to work with. They provide MIDI, piano roll, natural
language, and a raw format. For this project, the MIDI format was chosen. This decision
was made since it is the most commonly used format within the field of music generation.
Since the format has been present for a long time, there are also many tools that aid in
conversion and other facets.

Although the MIDI format is made to be played by sound cards, the format is not ideal
for deep learning projects. To solve this, an array of state matrices is computed and
stored on disk during preprocessing. Each track (i.e., instrument) in the MIDI file is
represented by a state matrix. A state matrix is a two dimensional matrix that describes
the state of the track at each time step. In the state dimension, an entry corresponds
to each possible MIDI pitch. If the note is played, the value will be represented as 1;
otherwise, it will be 0.

The state matrix format is also the output of the generation process. Hence, it needs to
be converted back to a playable format. Converting to MIDI is trivial, since it is simply
reversing the process for converting from MIDI to state matrices.

Before running the experiment, the dataset was filtered to remove outliers. An outlier in
this case is a song that does not follow the musical structure of other songs. Most songs
are made to be looped from the end to the beginning, but the dataset contains some
songs that are only meant to play once. These pieces are more characteristic similar
to jingles. An example most games have is a short song played when the player looses.
What these songs have in common is their short length. Because of this, any songs of 10
seconds or less were filtered out of the dataset to make the input to the network more
uniform.

After filtering the dataset, there were 3400 songs left. Out of these, 2000 songs were
converted to the state matrix format through random sampling and used as training
data for the network.

4.2 Experimental Results

As mentioned in Section 4.1, the training had to be cut short due to time constraints.
Nonetheless, the results will be presented in this section, both in terms of the loss of the
model, and some generated music.

Chapter 4 Experimental Evaluation 29

Figure 4.1: Training loss gathered from 3000 epochs, recorded every 200 epochs

Figure 4.1 shows the loss of the model over the 3000 epochs it was run. This plot may
indicate a difference in complexity between the different sound channels. For example,
the noise channel, which has many fewer possible notes starts with a lower loss compared
to the others. Conversely, the primary pulse wave channel starts with a much higher loss.
However, all Biaxial RNNs seem to converge rapidly, indicating it is training effectively.

The song represented in the piano roll format in Figure 4.2 shows a generated composition
after training for 3000 epochs. One thing to notice is the amount of concurrent notes in
the triangle channel. Since the implemented portion of the architecture only gets the
output from the Biaxial RNNs, the notes that are above a threshold of play probability
are all played. This would not be supported by the NES, but it does give some insight
into which notes the network was likely to pick at any time. All of the channels except
for the triangle channel display some competence in terms of note timing, while also
producing some sequences that sound fine when played separately.

For the sake of comparison, the song visualized in Figure 4.3 was generated during
training at 1000 epochs. Here, the second pulse channel is almost empty, perhaps
indicating that the seed did not contain any notes in that channel. Another possible
explanation is a lack of learned note connection for that Biaxial RNN’s note axis. Another
anomaly to notice is the large jumps between notes in the triangle channel, which is most
often not a pleasant sound.

Finally, Figure 4.4 is another song generated after 3000 epochs, which is a lot sparser
and more musically sound compared to the other generated songs shown. Here, the noise
channel creates an interesting rhythm pattern with its percussion. It should also be

30 Chapter 4 Experimental Evaluation

Figure 4.2: Generated composition with many simultaneous notes at 3000 epochs

Figure 4.3: Generated sample after 1000 epochs

noted that this song contains very few simultaneous notes being played compared to the
other samples.

After generating these songs, they can be converted to other formats more portable
formats, such as WAW and MP3. One problem encountered with this conversion, however,
was that the noise channel could not be assigned a percussion instrument. This resulted
in lots of very low notes in the converted audio versions embedded with this thesis.

Chapter 4 Experimental Evaluation 31

Figure 4.4: Sparse generated piece generated after 3000 epochs

Chapter 5 Discussion 33

Chapter 5

Discussion

This chapter aims to discuss multiple topics related to the solution and premise of the
thesis. Results are discussed to provide some reflection and possible explanations for why
the results from Section 4.2 were achieved. Subsequently, the architecture, as presented
in Section 3.3 is discussed; discussing the advantages and disadvantages, as well as
some alternative architectures to be considered. Finally, the implementation will be
discussed, both the original implementation that was abandoned, in addition to the final
implementation.

5.1 Results

From Figure 4.1, all the Biaxial RNN models appear to converge quickly, which is usually
a sign that it may be time to stop training. However, within the field of music generation,
this may not be the case. After 200 epochs, when the models appear to converge, they
have only learned from 200 short samples. It will probably be useful to continue training,
if only for the sake of expanding the repertoire of the models.

Due to the random sampling of the Biaxial RNNs, there is very little danger of overfitting
any of the networks, since there the amount of valid training samples is vast. This is the
reason why the model would ideally run for many more epochs and probably produce
better results.

Since the composer component was never implemented, in addition to lacking a simple
way to select the most probable, the result is not of the expected format. Even so, it can
potentially provide some insight into how the networks learn over time, both in terms of
placing notes, and which notes can be played in sequence for each individual track.

34 Chapter 5 Discussion

Other factors have probably affected the generation and learning processes. One of factor
could be the advanced compositional techniques discussed in Section 2.2.4. Another
factor could be that many songs in the dataset do not use all channels, which could be
misleading; both to the time axis network and note axis network.

Finally, the topic of evaluating results within the field of music generation should be
discussed. There is no way to compute how good a piece of music is, since it is a subjective
experience. Ideally, the best way to evaluate generated music is through the use of a
Turing test [10], where a large quantity are surveyed. Each person could for example
be given two songs; one generated, and one composed by a human. The goal would
be to get the people to a success rate of identifying a generated song as close to 50%
as possible. Such a result would indicate that participants in the survey are unable to
tell the difference. The problem is, however, costly both in terms of time and resources.
Because of this, most researchers opt for providing their own subjective opinion, as well
as providing the generated music to the reader so they may form their own opinion.

5.2 Architecture

As mentioned in Section 3.3, the proposed architecture should produce listenable
sequences given enough training time. Despite this, there are still some disadvantages to
the proposed architecture.

The first problem is a reduction in output complexity that may be undesirable for many
applications. This situation is caused by the composer component, which picks a single
note for each instrument. For the dataset used in this project, this is no issue, since a
channel may only play a single note at any given time. However, if generating music of
another genre, like rock, which can have multiple instruments able to play more than
one note at a time. The composer could possibly be rewritten to accommodate this
difference, or a more flexible method could replace it.

In regards to alternate architectures, there are multiple possible solutions that may be
better or worse than the solution proposed in this thesis. Among them are the possibility
of extending the Biaxial RNN to support multi-instrument generation, and using one or
more GANs in some configuration.

Currently, the main issue with using a single Biaxial RNN for multi-instrument music
generation is the flattening of all instrument tracks into one. This process makes it
impossible to determine which note is played by which instrument. It should be possible
to maintain the mapping between instruments and their notes. However, this would

Chapter 5 Discussion 35

likely require a fundamental shift in the implementation to also take notes played by
other instruments into account, both while training and generating novel music.

Another architecture that may be able to generate a good score would be a solution
involving one or more GANs. A GAN network is primarily focused on content generation;
hence, the generation part of its name. Such a network consists of two networks; a
generator, and a discriminator. Both networks are trained on the same dataset. The
goal of the discriminator is to judge whether or not some input is similar to the dataset.
On the other hand, the goal of the generator is to generate content that tricks the
discriminator judges to be real. This process will eventually train the generator to create
convincing content. By training such a network on music, it will therefore be able to
generate realistic compositions; given time and data. As mentioned in Section 2.5, an
implementation for generating music through a GAN was proposed by Olof Mogren [13].
However, at the time of writing, there does not seem to be any architectures for generating
multi-instrumental music. Such an implementation could either take inspiration from
the solution presented in this thesis, or it could involve creating a larger GAN designed
for training on, and generating music for multiple instruments.

5.3 Implementation

As mentioned earlier, last-minute problems with the implementation caused a shift to
extend an existing implementation for a Biaxial RNN, rather than porting it over. This
was caused by a lack of experience with the machine learning library Theano [19], as
well as with the low-level API for Tensorflow [20].

In order to achieve partial results, it was decided to drop the composer component from
the implementation, and focus on implementing the collection of Biaxial RNN instances.
The Biaxial RNN implementation chosen was written by Yoann Ponti1, which is in turn
based on the original implementation by Daniel Johnson2. The extended implementation
chosen has a more robust structure, as well as easier configuration from the command
line.

To make the project compatible with multi-instrument many aspects had to be changed,
such as parsing and storing the state matrices for all channels in a song, creating multiple
Biaxial RNN instances, training them, and generating songs with all instances at once.

1Improved Biaxial RNN implementation by Yoann Ponti: https://github.com/onanypoint/
epfl-semester-project-biaxialnn

2Original Biaxial RNN implementation by Daniel Johnson: https://github.com/hexahedria/
biaxial-rnn-music-composition

https://github.com/onanypoint/epfl-semester-project-biaxialnn
https://github.com/onanypoint/epfl-semester-project-biaxialnn
https://github.com/hexahedria/biaxial-rnn-music-composition
https://github.com/hexahedria/biaxial-rnn-music-composition

36 Chapter 5 Discussion

In hindsight, the best choice for the implementation would have been to learn Theano and
extend the existing implementation. If this option was chosen, the composer component
would probably also have been finished, and the entire solution could be tested.

Chapter 6 Conclusion and Future Directions 37

Chapter 6

Conclusion and Future Directions

Multi-instrument music generation is an area in an early developmental stage. This
thesis has attempted to explore this new field by further developing existing concepts,
and connecting them in a novel structure. Although the implementation was not fully
successful in reaching the proposed solution, and unforeseen problems left little time for
training the resulting model, there were still interesting results.

The implementation was applied to a unique dataset that has not been explored to
this extent before. Because of the constrained compositional environment of the NES,
the dataset strikes a balance between complexity and simplicity; due to advanced
compositional techniques, and each instrument only being able to play a single note at
any point in time.

Although the results were less than satisfactory, there is a lot of potential in further
developing both the solution, and especially the implementation. The highest priority for
the future would be to implement the composer component from the proposed solution,
thereby allowing the model to generate real music. It would also be interesting to compare
the subjective quality of music generated by four independent Biaxial neural networks to
a model with the composer component; to see if it makes a difference.

Another future development would be to create a working port to a more modern
framework, since Theano is no longer under development. This would likely increase
performance to make both training and music generation faster.

There is currently a lack of multi-instrumental music generation architectures, therefore,
a possible future direction to take this topic would be to create another novel architecture,
either one of the possibilities discussed in Section 5.3, or something entirely different.

There is also the possibility to use a different dataset, thereby possibly requiring a
solution more suited to the chosen dataset.

38 Chapter 6 Conclusion and Future Directions

Finally, there is the direction of making the work more consistent and configurable by
implementing some of the features from other related works, like some of the features
discussed in Section 2.2. An example would be to integrate the RL Tuner to produce a
more musically strict result. There are also many other possible directions, like imple-
menting the project using Magenta [21]. Magenta would enable interactive applications,
where the user can create a starting point for a generated song, or edit the generated
music.

This thesis has hopefully shed some light on an area within music generation that is rarely
explored. The fundamental tools within deep learning should allow for some innovation
within such an underdeveloped topic.

LIST OF FIGURES 39

List of Figures

2.1 Pulse waves with varying duty cycles [1] 7
2.2 NES triangle wave [2] . 8
2.3 NES noise channel [4] . 8
2.4 Example of a NES score represented with piano roll [3] 10
2.5 Sigmoid activation function . 12
2.6 Example of a feedforward neural network architecture 13
2.7 Architecture of a simple recurrent neural network 15
2.8 Vanishing gradients illustrated using the sigmoid function [8] 16
2.9 A schematic showing the structure of a single LSTM cell [9] 17

3.1 Biaxial RNN schematic [17] . 22
3.2 Proposed architecture for generating NES music using four Biaxial RNNs

and a composer component to improve interplay between channels 25

4.1 Training loss gathered from 3000 epochs, recorded every 200 epochs . . . 29
4.2 Generated composition with many simultaneous notes at 3000 epochs . . 30
4.3 Generated sample after 1000 epochs . 30
4.4 Sparse generated piece generated after 3000 epochs 31

LIST OF TABLES 41

List of Tables

2.1 Relevant notes . 5
2.2 A summary of related works within the field of music generation 19

BIBLIOGRAPHY 43

Bibliography

[1] Jordan Dee. Pulse Width Modulation. URL https://learn.sparkfun.com/

tutorials/pulse-width-modulation/duty-cycle.

[2] Glenn Dubois. The More You Know: The FAMICOM/-
NES/2A03 Triangle Channel. URL https://chiptuneswin.com/blog/

the-more-you-know-the-famicomnes2a03-triangle-channel.

[3] Chris Donahue, Huanru Henry Mao, and Julian McAuley. The NES Music Database:
A multi-instrumental dataset with expressive performance attributes. In ISMIR,
2018.

[4] Haroon Piracha. Inverse Phase’s Music From Old Sound Chips. URL http://www.

originalsoundversion.com/inverse-phases-music-from-old-sound-chips.

[5] Christopher J Hopkins. Chiptune music: An exploration of compositional techniques
as found in Sunsoft Games for the Nintendo Entertainment System and Famicom
from 1988-1992. PhD thesis, 2015.

[6] Walt Crawford. MIDI and Wave: Coping with the language. Online, 20(1):86–87,
1996.

[7] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent
neural networks for sequence learning, 2015.

[8] Skymind. A Beginner’s Guide to LSTMs and Recurrent Neural Networks. URL
https://skymind.ai/wiki/lstm.

[9] Nvidia. Long Short-Term Memory (LSTM). URL https://developer.nvidia.

com/discover/lstm.

[10] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. Deep Learning Techniques
for Music Generation - A Survey. CoRR, abs/1709.01620, 2017. URL http:

//arxiv.org/abs/1709.01620.

https://learn.sparkfun.com/tutorials/pulse-width-modulation/duty-cycle
https://learn.sparkfun.com/tutorials/pulse-width-modulation/duty-cycle
https://chiptuneswin.com/blog/the-more-you-know-the-famicomnes2a03-triangle-channel
https://chiptuneswin.com/blog/the-more-you-know-the-famicomnes2a03-triangle-channel
http://www.originalsoundversion.com/inverse-phases-music-from-old-sound-chips
http://www.originalsoundversion.com/inverse-phases-music-from-old-sound-chips
https://skymind.ai/wiki/lstm
https://developer.nvidia.com/discover/lstm
https://developer.nvidia.com/discover/lstm
http://arxiv.org/abs/1709.01620
http://arxiv.org/abs/1709.01620

Bibliography BIBLIOGRAPHY

[11] Ian Simon and Sageev Oore. Performance RNN: Generating Music with Expres-
sive Timing and Dynamics. https://magenta.tensorflow.org/performance-rnn,
2017.

[12] Qi Lyu, Zhiyong Wu, Jun Zhu, and Helen Meng. Modelling high-dimensional
sequences with lstm-rtrbm: Application to polyphonic music generation. In Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

[13] Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial
training. arXiv preprint arXiv:1611.09904, 2016.

[14] Natasha Jaques, Shixiang Gu, Richard E Turner, and Douglas Eck. Tuning recurrent
neural networks with reinforcement learning. 2017.

[15] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable model
for bach chorales generation. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1362–1371. JMLR. org, 2017.

[16] Daniel D. Johnson. Generating polyphonic music using tied parallel networks. In
João Correia, Vic Ciesielski, and Antonios Liapis, editors, Computational Intelligence
in Music, Sound, Art and Design, pages 128–143, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-55750-2.

[17] Daniel Johnson. Composing Music With Recurrent Neu-
ral Networks. http://www.hexahedria.com/2015/08/03/

composing-music-with-recurrent-neural-networks, 2015.

[18] Google. Cloud Computing Services | Google Cloud. https://cloud.google.com,
2019.

[19] Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL
http://arxiv.org/abs/1605.02688.

[20] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/.
Software available from tensorflow.org.

https://magenta.tensorflow.org/performance-rnn
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks
https://cloud.google.com
http://arxiv.org/abs/1605.02688
http://tensorflow.org/

Bibliography 45

[21] Google AI. Make Music and Art Using Machine Learning. https://magenta.

tensorflow.org, 2019.

https://magenta.tensorflow.org
https://magenta.tensorflow.org

	Abstract
	Acknowledgements
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Use Cases
	1.4 Challenges
	1.5 Contributions
	1.6 Outline

	2 Background
	2.1 Music Theory
	2.1.1 Timing
	2.1.2 Pitch
	2.1.3 Velocity
	2.1.4 Timbre

	2.2 NES Synthesizer
	2.2.1 Pulse Waves
	2.2.2 Triangle Wave
	2.2.3 Noise
	2.2.4 Advanced Compositional Techniques

	2.3 Music Representation
	2.3.1 MIDI
	2.3.2 Piano Roll

	2.4 Deep Learning
	2.4.1 Feedforward Neural Networks
	2.4.1.1 Activation Functions
	2.4.1.2 Architecture
	2.4.1.3 Learning

	2.4.2 Recurrent Neural Networks
	2.4.3 Long Short-Term Memory Neural Networks

	2.5 Related Work

	3 Solution Approach
	3.1 Existing Approach
	3.2 Analysis
	3.3 Proposed Solution

	4 Experimental Evaluation
	4.1 Experimental Setup and Data Set
	4.2 Experimental Results

	5 Discussion
	5.1 Results
	5.2 Architecture
	5.3 Implementation

	6 Conclusion and Future Directions
	List of Figures
	List of Tables
	Bibliography

Source/nesgen-theano/utils/dataprep/musescore_api/__init__.py

Source/nesgen-theano/utils/dataprep/__init__.py

Source/nesgen-theano/utils/__init__.py

Generated Music/generated_1.mid

Generated Music/generated_1.mp3

41.273308

Generated Music/generated_2.mid

Generated Music/generated_2.mp3

23.275166

Generated Music/sample_1000.mid

Generated Music/sample_1000.mp3

18.625263

Source/nesgen [Unfinished tensorlow verion]/base/base_model.py

import tensorflow as tf

class BaseModel:
 def __init__(self, config):
 self.config = config
 self.name = "Undefined"
 self.saver = None
 self.init_global_step()
 self.init_current_epoch()

 def save(self, sess):
 print("Saving model...")
 self.saver.save(sess, self.config.checkpoint_dir,
 self.global_step_tensor)
 print("Model saved")

 def load(self, sess):
 latest_checkpoint = tf.train.latest_checkpoint(
 self.config.checkpoint_dir)
 if latest_checkpoint:
 print("Loading model checkpoint {} ...\n".format(latest_checkpoint))
 self.saver.restore(sess, latest_checkpoint)
 print("Model loaded")

 def init_current_epoch(self):
 with tf.variable_scope("current_epoch"):
 self.current_epoch_tensor = tf.Variable(
 0, trainable=False, name="current_epoch")
 self.increment_current_epoch_tensor = tf.assign(
 self.current_epoch_tensor, self.current_epoch_tensor + 1)

 def init_global_step(self):
 with tf.variable_scope("global_step"):
 self.global_step_tensor = tf.Variable(
 0, trainable=False, name="global_step")

 def init_saver(self):
 # just copy the following line in your child class
 # self.saver = tf.train.Saver(max_to_keep=self.config.max_to_keep)
 raise NotImplementedError

 def build_model(self):
 raise NotImplementedError

Source/nesgen [Unfinished tensorlow verion]/base/base_train.py

import tensorflow as tf

class BaseTrain:
 def __init__(self, sess, model, data, config, logger):
 self.model = model
 self.logger = logger
 self.config = config
 self.sess = sess
 self.data = data
 self.init = tf.group(tf.global_variables_initializer(),
 tf.local_variables_initializer())
 self.sess.run(self.init)

 def train(self):
 for _ in range(self.model.current_epoch_tensor.eval(self.sess), self.config.num_epochs + 1, 1):
 self.train_epoch()
 self.sess.run(self.model.increment_current_epoch_tensor)

 def train_epoch(self):
 """
 implement the logic of epoch:
 -loop over the number of iterations in the config and call the train step
 -add any summaries you want using the summary
 """
 raise NotImplementedError

 def train_step(self):
 """
 implement the logic of the train step
 - run the tensorflow session
 - return any metrics you need to summarize
 """
 raise NotImplementedError

Source/nesgen [Unfinished tensorlow verion]/base/__pycache__/base_model.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/base/__pycache__/base_train.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/configs/example.json

{
 "exp_name": "nesgen",
 "num_epochs": 10,
 "validation_split": 0.25,
 "learning_rate": 0.001,
 "batch_size": 3,
 "seq_len": 8,
 "division_len": 16,
 "state_size": [784],
 "max_to_keep":5,
 "t_layer_sizes": [[300, 300], [300, 300], [300, 300], [30,30]],
 "p_layer_sizes": [[100, 50], [100, 50], [100, 50], [30, 15]],
 "dropout": 0.3,
 "data_dir": "data",
 "train_dir": "data/train",
 "sm_dir": "data/statematrices",
 "out_dir": "data/output",
 "lower_bound": 0,
 "upper_bound": 128,
 "quantization": 16,
 "biaxial_names": ["P1", "P2", "TR", "NO"]
}

Source/nesgen [Unfinished tensorlow verion]/data_loader/data_loader.py

import random
import numpy as np
import os
import pickle
import music21 as m21
from tqdm import tqdm
from utils.statematrix import StateMatrixBuilderSimple
from utils.features import FeatureBuilderSimple
import pretty_midi

class DataLoader:
 def __init__(self, config, preprocess):
 self.config = config
 self.feature_builder = FeatureBuilderSimple(
 config.lower_bound, config.upper_bound)
 self.sm_builder = StateMatrixBuilderSimple(
 config.lower_bound, config.upper_bound, config.quantization)
 # load data here
 if preprocess:
 self.pieces = self.generate_statematrices()
 else:
 self.pieces = self.load_statematrices()

 def generate_statematrices(self):
 pieces = {}
 paths = self.get_file_paths(self.config.train_dir)

 print('Performing preprocessing')
 pbar = tqdm(paths)
 if not os.path.exists(self.config.sm_dir):
 os.makedirs(self.config.sm_dir)
 for p in pbar:
 pbar.set_description("Processing {}".format(p))
 sm = []
 piece = m21.converter.parse(p, format="MIDI")
 midi_data = pretty_midi.PrettyMIDI(p)

 # this part deals with missing channels in the data by converting an empty part
 # to a statematrix when a channel does not exist
 instruments = [instrument.name.upper() for instrument in midi_data.instruments]
 part_counter = 0
 for instrument in self.config.biaxial_names:
 if instrument in instruments:
 sm.append(self.sm_builder.part_to_statematrix(piece.parts[part_counter]))
 part_counter += 1
 else:
 sm.append(self.sm_builder.part_to_statematrix(m21.stream.Part()))

 pickle.dump(sm, open(os.path.join(self.config.sm_dir,
 os.path.basename(p).split(".")[0] + ".pkl"), "wb"))
 name = os.path.basename(p)
 pieces[name] = sm

 return pieces

 def load_statematrices(self):
 pieces = {}
 paths = self.get_file_paths(self.config.sm_dir)

 for p in paths:
 name = os.path.basename(p)
 with open(p, "rb") as f:
 pieces[name] = pickle.load(f)

 return pieces

 def get_file_paths(self, directory):
 return [os.path.join(directory, f) for f in os.listdir(directory)]

 def sample_sequence(self):
 # The loop 'assures' the method to return a sequence.
 for i in range(100):
 try:
 piece_output = random.choice(list(self.pieces.values()))
 start = random.randrange(
 0, len(piece_output[0]) - self.config.seq_len, self.config.division_len)
 break
 except:
 pass

 if i == 99:
 raise ValueError("No valid segment found")

 return np.array(piece_output), start

 def get_piece_segment(self, piece_sample, start):
 seg_out = piece_sample[start:start+self.config.seq_len]
 seg_in = self.feature_builder.note_state_matrix_to_input_form(seg_out)

 return seg_in, seg_out

 def next_batch(self):
 input = []
 output = []
 batch = [self.sample_sequence() for _ in range(self.config.batch_size)]
 test = range(len(self.config.biaxial_names))
 for j in range(len(self.config.biaxial_names)):
 i, o = zip(*[self.get_piece_segment(b[0][j], int(b[1])) for b in batch])
 input.append(np.array(i))
 output.append(np.array(o))

 return input, output

Source/nesgen [Unfinished tensorlow verion]/data_loader/__pycache__/data_loader.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/mains/main.py

import tensorflow as tf

from data_loader.data_loader import DataLoader
from models.biaxial import Biaxial
from trainers.trainer import Trainer
from utils.config import process_config
from utils.dirs import create_dirs
from utils.logger import Logger
from utils.utils import get_args

def main():
 try:
 args = get_args()
 config = process_config(args.config)

 except:
 print("Missing or invalid arguments")
 exit(0)

 create_dirs([config.summary_dir, config.checkpoint_dir])
 #sess = tf.Session()
 print("Loading dataset")
 data = DataLoader(config, args.preprocess)
 print("Finished loading dataset")
 data.next_batch()
 model = Biaxial(config)
 logger = Logger(sess, config)
 trainer = Trainer(sess, model, data, config, logger)
 model.load(sess)
 trainer.train()

if __name__ == '__main__':
 main()

Source/nesgen [Unfinished tensorlow verion]/models/biaxial.py

from base.base_model import BaseModel
import tensorflow as tf

class Biaxial(BaseModel):
 def __init__(self, config, data_manager, name):
 super(Biaxial, self).__init__(config)
 index = config.biaxial_names.index(name)
 self.name = self.config.biaxial_names[index]
 self.t_layer_sizes = self.config.t_layer_sizes[index]
 self.p_layer_sizes = self.config.p_layer_sizes[index]
 self.t_input_size = data_manager.feature_builder.feature_count
 self.output_size = self.data_manager.sm_builder.information_count
 self.build_model()
 self.init_saver()

 def build_model(self):
 self.is_training = tf.placeholder(tf.bool)

 def lstm_cell(size, activation=None):
 return tf.keras.layers.LSTMCell(size, activation=activation, dropout=self.config.dropout) if activation else tf.keras.layers.LSTMCell(size, dropout=self.config.dropout)
 self.time_model = tf.keras.layers.StackedRNNCells([lstm_cell(s) for s in self.t_layer_sizes])(tf.keras.Input())
 t_initial_state = t_state = self.time_model.z

 p_input_size = self.t_layer_sizes[-1] + self.output_size
 self.pitch_model = tf.keras.layers.StackedRNNCells([lstm_cell(s, tf.nn.sigmoid if i == len(self.p_layer_sizes) - 1 else None) for i, s in enumerate(self.p_layer_sizes)])

 def loss(self, labels, predictions):
 return tf.losses.log_loss(labels, predictions)

 # not finished
 def setup_predict(self):
 self.predict_seed = tf.Tensor()

 def update(self, input, output):
 pass

 def init_saver(self):
 self.saver = tf.train.Saver(max_to_keep=self.config.max_to_keep)

Source/nesgen [Unfinished tensorlow verion]/models/model.py

import tensorflow as tf
from base.base_model import BaseModel
from models.biaxial import Biaxial

class Model(BaseModel):
 def __init__(self, config):
 super(Model, self).__init__(config)
 self.build_model()
 self.init_saver()

 def build_model(self):
 self.is_training = tf.placeholder(tf.bool)

 self.p1_model = Biaxial(self.config, self.config.biaxial_names[0])
 self.p2_model = Biaxial(self.config, self.config.biaxial_names[1])
 self.tr_model = Biaxial(self.config, self.config.biaxial_names[2])
 self.no_model = Biaxial(self.config, self.config.biaxial_names[3])

 # TODO: Add composer component

 def loss(self, labels, predictions):
 return tf.losses.log_loss(labels, predictions)

 def generate(self, steps_to_simulate, conservativity, generated_seed_input):
 pass

 def init_saver(self):
 self.saver = tf.train.Saver(max_to_keep=self.config.max_to_keep)

Source/nesgen [Unfinished tensorlow verion]/models/__pycache__/biaxial.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/models/__pycache__/model.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/trainers/biaxial.py

import numpy as np
from base.base_train import BaseTrain
from tqdm import trange

class Trainer(BaseTrain):
 def __init__(self, sess, model, data, config, logger):
 super(Trainer, self).__init__(sess, model, data, config, logger)
 scores = data.get_file_paths(self.config.sm_dir)
 split = int(len(scores) * (1- self.config.validation_split))
 self.train_scores = scores[:split]
 self.val_pieces = scores[split:]

 def train(self):
 for _ in trange(self.config.num_epochs):
 self.train_epoch()

 def train_epoch(self):
 losses = []
 accs = []
 for _ in trange(len(scores)):
 loss, acc = self.train_step()
 losses.append(loss)
 accs.append(acc)
 loss = np.mean(losses)
 acc = np.mean(accs)

 current_it = self.model.global_step_tensor.eval(self.sess)
 summaries_dict = {
 'loss': loss,
 'acc': acc
 }
 self.logger.summarize(current_it, summaries_dict=summaries_dict)
 self.model.save(self.sess)

 def train_step(self):
 batch_x, batch_y = next(self.data.next_batch(self.config.batch_size))
 feed_dict = {self.model.x: batch_x, self.model.y: batch_y, self.model.is_training: True}
 _, loss, acc = self.sess.run([self.model.train_step, self.model.cross_entropy, self.model.accuracy], feed_dict=feed_dict)
 return loss, acc

Source/nesgen [Unfinished tensorlow verion]/trainers/trainer.py

from base.base_train import BaseTrain
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import sys
import signal

class Trainer(BaseTrain):
 def __init__(self, sess, model, data, config, logger):
 super(Trainer, self).__init__(sess, model, data, config, logger)

 def validate(self, pieces, repeat=3):
 sub_val = []
 for i in range(repeat):
 sample, start = self.data.sample_sequence()
 xIpt, xOpt = map(np.array, self.data.get_piece_segment(sample, start))
 seed_length = int(len(xIpt) / 2)
 val = self.sess.run(self.model.loss(xOpt[seed_length:seed_length+16],))

 def generate_sample(self, name):
 pass

 def train(self):
 stopflag = [False]

 split = int(len(self.data.pieces) * (1 - self.config.validation_split))
 train_pieces = {k: self.data.pieces[k] for k in list(self.data.pieces.keys())[:split]}
 val_pieces = {k: self.data.pieces[k] for k in list(self.data.pieces.keys())[split:]}

 min_loss = sys.maxsize

 def signal_handler(signame, sf):
 stopflag[0] = True

 old_hanlder = signal.signal(signal.SIGINT, signal_handler)
 for i in tqdm(range(self.config.num_epochs)):
 if stopflag[0]:
 break

 loss = self.model.update(*self.data.next_batch())
 summaries_dict = {"loss": loss}
 self.logger.summarize(i, summaries_dict=summaries_dict)

 if loss < min_loss:
 min_loss = loss
 self.model.save(self.sess)

 if i % 200 == 0:
 validation_loss = self.validate(val_pieces)
 summaries_dict = {"val_loss": validation_loss}
 self.logger.summarize(i, summaries_dict=summaries_dict)
 print("epoch {}: loss {:10.4f}, validation loss {:10.4f}".format(i, float(loss), float(validation_loss)))

 if i % 1000 == 0 or (i % 200 == 0 and i < 1000):
 print("epoch {}, generating".format(i))
 self.generate_sample(self, str(i))

 signal.signal(signal.SIGINT, old_hanlder)

 print("Training complete")

 # def train_epoch(self):
 # loop = tqdm(range(self.config.num_epochs))
 # losses = []
 # accs = []
 # for _ in loop:
 # loss, acc = self.train_step()
 # losses.append(loss)
 # accs.append(acc)
 # loss = np.mean(losses)
 # acc = np.mean(accs)
 #
 # current_it = self.model.global_step_tensor.eval(self.sess)
 # summaries_dict = {
 # 'loss': loss,
 # 'acc': acc
 # }
 # self.logger.summarize(current_it, summaries_dict=summaries_dict)
 # self.model.save(self.sess)
 #
 # def train_step(self):
 # batch_x, batch_y = next(self.data.next_batch(self.config.batch_size))
 # feed_dict = {self.model.x: batch_x, self.model.y: batch_y, self.model.is_training: True}
 # _, loss, acc = self.sess.run([self.model.train_step, self.model.cross_entropy, self.model.accuracy], feed_dict=feed_dict)
 # return loss, acc

Source/nesgen [Unfinished tensorlow verion]/trainers/__pycache__/trainer.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/utils/config.py

import json
from bunch import Bunch
import os

def get_config_from_json(json_file):
 with open(json_file, 'r') as config_file:
 config_dict = json.load(config_file)

 config = Bunch(config_dict)

 return config, config_dict

def process_config(json_file):
 config, _ = get_config_from_json(json_file)
 config.summary_dir = os.path.join("../experiments", config.exp_name, "summary/")
 config.checkpoint_dir = os.path.join("../experiments", config.exp_name, "checkpoint/")
 return config

Source/nesgen [Unfinished tensorlow verion]/utils/dirs.py

import os

def create_dirs(dirs):
 try:
 for dir_ in dirs:
 if not os.path.exists(dir_):
 os.makedirs(dir_)
 return 0
 except Exception as err:
 print("Creating directories error: {0}".format(err))
 exit(-1)

Source/nesgen [Unfinished tensorlow verion]/utils/features.py

import itertools
import numpy as np

modified version of https://github.com/onanypoint/epfl-semester-project-biaxialnn/blob/master/utils/features.py
class FeatureBuilder(object):
 """Used to go from output space to feature space

 Attributes

 lowerBound : int
 The lowest pitch that will be used. Based on the midi scale.
 upperBound : int
 The highest pitch that will be used. Based on the midi scale.
 """

 def __init__(self, lower_bound, upper_bound):
 self.lower_bound = lower_bound
 self.upper_bound = upper_bound

 @property
 def feature_count(self):
 """Return the number of features

 It is used during the model creation. The model cannot infer the size
 of each input before running time.
 Returns

 number: int
 Number of feature for each sample

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

 def build_auxillary_info(self, note, state):
 """Method used to add information beside play and articulations

 Parameters

 note : int
 [description]
 state : array_like
 An array containing the information about the full timestep.
 It should be based on a statematrix (the ouput of the
 `StateMatrixBuilder`.

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

 def note_input_form(self, note, state, time):
 """Return the representation in feature space of a specific pitch

 Preprocess the state (from a statematrix) into feature space. Used to
 augmente the data space into a more usefull format than the simpler
 format found in the statematrix format.

 Parameters

 note : int
 The pitch id (midi pitch - lowerbound)
 state : array_like
 An array containing the information about the full timestep.
 It should be based on a statematrix (the ouput of the
 `StateMatrixBuilder`.
 time: int
 The time (beat number) of the timestep

 Returns

 array_like
 The feature representation of the specified not at the
 specified time based on the actual state.
 """

 def _get_or_default(l, i, d):
 """Return element at index i or d

 Parameters

 l : array_like
 i : int
 Index of element of interest
 d : array_like
 Default output if index does not exist

 Returns

 array_like
 The element at index _i_ or the default
 """
 try:
 return l[i]
 except IndexError:
 return d

 def _build_context(state):
 """Build the context based on the state of the timestep

 The context is a representation of the current state of the timestep
 pitch wise. It gives information about which note are playing at
 that time and how many of each.
 Note

 The full pitch spectrum is collapsed into the chromatic scale
 of 12 pitches.

 Parameters

 state : array_like
 An array containing the information about the full timestep.
 It should be based on a statematrix (the ouput of the
 `StateMatrixBuilder`.

 Returns

 array_like
 the context of the given state
 Example

 Let's say that at the timestep of interest the note A5 A3 and
 B4 are played the returned context will be.

 >>> _build_context(state)
 [0,0,0,0,0,0,0,0,0,0,0,0]

 """
 context = [0]*12
 for note, notestate in enumerate(state):
 if notestate[0] == 1:
 pitchclass = (note + self.lower_bound) % 12
 context[pitchclass] += 1
 return context

 def _build_beat(time):
 """Build time representation

 Build the time representation used as features. It is hardcoded
 to be represented in 4 feature (quantization = 16). It returns
 the binary representation of the time modulo 16 (except that it
 returns -1 instead of 0.

 Parameters

 time : int
 the current time in the sequence

 Example

 >>> _build_beat(10)
 [1,-1, 1,-1]
 >>> _build_beat(113)
 [-1, 1,-1,-1]

 """
 return [2*x-1 for x in [time % 2, (time//2) % 2, (time//4) % 2, (time//8) % 2]]

 position = note
 part_position = [position]

 beat = _build_beat(time)
 context = _build_context(state)

 pitchclass = (note + self.lower_bound) % 12
 part_pitchclass = [int(i == pitchclass) for i in range(12)]

 # part_prev_vicinity is the representation of the surrounding of note.
 # Look one octave in each direction, keep the representation into
 # play / articulations for each surrounding note.
 part_prev_vicinity = list(itertools.chain.from_iterable(
 (_get_or_default(state[:, 0:2], note+i, [0, 0]) for i in range(-12, 13))))
 part_context = context[pitchclass:] + context[:pitchclass]
 part_aux = self.build_auxillary_info(note, state)

 return np.concatenate([part_position, part_pitchclass, part_prev_vicinity, part_context, part_aux, beat, [0]], axis=0)

 def note_state_single_to_input_form(self, state, time):
 """Return the feature representation of the state

 Given the state and the time, return the feature representation for
 each pitch.

 Parameters

 state : array_like
 An array containing the information about the full timestep.
 It should be based on a statematrix (the ouput of the
 `StateMatrixBuilder`.
 time : int
 time of the timestep
 Example

 Let's say that the statematrix representation is 2 "wide" and
 the feature representation 80. In this method we only look at one
 timestep.
 >>> state.shape
 (87, 2)
 >>> f = note_state_single_to_input_form(state, 10)
 >>> f.shape
 (87, 80)
 """
 return [self.note_input_form(note, state, time) for note in range(len(state))]

 def note_state_matrix_to_input_form(self, statematrix):
 """Process statematrix from output space to feature space.

 Note

 Assume that the time state at 0.
 Parameters

 statematrix : array_like
 The statematrix to process in feature space.

 Returns

 array_like
 The feature representation of the statematrix.
 """
 inputform = [self.note_state_single_to_input_form(
 state, time) for time, state in enumerate(statematrix)]
 return inputform

class FeatureBuilderSimple(FeatureBuilder):
 """No auxillary information
 The feature space is the 80 basic feature computed from
 the play/articulations status of each note at each timestep.

 """

 @property
 def feature_count(self):
 return 80

 def build_auxillary_info(self, note, state):
 return []

Source/nesgen [Unfinished tensorlow verion]/utils/logger.py

import tensorflow as tf
import os

class Logger:
 def __init__(self, sess, config):
 self.sess = sess
 self.config = config
 self.summary_placeholders = {}
 self.summary_ops = {}
 self.train_summary_writer = tf.summary.FileWriter(
 os.path.join(self.config.summary_dir, "train"), self.sess.graph)
 self.test_summary_writer = tf.summary.FileWriter(
 os.path.join(self.config.summary_dir, "test"), self.sess.graph)

 def summarize(self, step, summarizer="train", scope="", summaries_dict=None):
 """
 :param step: the step of the summary
 :param summarizer: use the train summary writer or the test one
 :param scope: variable scope
 :param summaries_dict: the dict of the summaries values (tag, value)
 :return:
 """
 summary_writer = self.train_summary_writer if summarizer == "train" else self.test_summary_writer
 with tf.variable_scope(scope):
 if summaries_dict is not None:
 summary_list = []
 for tag, value in summaries_dict.items():
 if tag not in self.summary_ops:
 if len(value.shape) <= 1:
 self.summary_placeholders[tag] = tf.placeholder(
 'float32', value.shape, name=tag)
 else:
 self.summary_placeholders[tag] = tf.placeholder(
 'float32', [None] + list(value.shape[1:]), name=tag)
 if len(value.shape) <= 1:
 self.summary_ops[tag] = tf.summary.scalar(
 tag, self.summary_placeholders[tag])
 else:
 self.summary_ops[tag] = tf.summary.image(
 tag, self.summary_placeholders[tag])

 summary_list.append(self.sess.run(self.summary_ops[tag], {
 self.summary_placeholders[tag]: value}))

 for summary in summary_list:
 summary_writer.add_summary(summary, step)
 summary_writer.flush()

Source/nesgen [Unfinished tensorlow verion]/utils/statematrix.py

import math
import music21 as m21
import numpy as np
import datetime

this file is adapted from https://github.com/onanypoint/epfl-semester-project-biaxialnn/blob/master/utils/statematrix.py
class StateMatrixBuilder(object):
 """Used to go from stream to output space or statematrix space.
 Attributes

 lower_bound : int
 The lowest pitch that will be used. Based on the midi scale.
 upper_bound : int
 The highest pitch that will be used. Based on the midi scale.
 quantization : int
 The quantization scale used to divide the time. It is based on quarter
 length.
 """

 def __init__(self, lower_bound, upper_bound, quantization):
 self.lower_bound = lower_bound
 self.upper_bound = upper_bound
 self.quantization = quantization

 def preprocess_stream(self, stream):
 """
 Preprocess music21.stream object.
 Parameters

 stream : music21.stream
 The stream to process.
 Returns

 music21.stream
 The preprocessed stream.
 """
 raise NotImplementedError()

 @property
 def information_count(self):
 """Return the number of features

 It is used during the model creation. The model cannot infer the size
 of output before running time.
 Returns

 number: int
 Number of output for each sample

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

 def _get_note_tie(self, note):
 """Get the tie of the note or None

 Parameters

 note : music21.Note
 The note object to be checked for tie. Tie can either be
 start, stop, or continue.

 Returns

 string
 the music21.tie.type of the note or None
 """
 if note.tie:
 return note.tie.type
 return None

 def _extract_chord_data(self, fx, c):
 """Extract Chord information
 Parameters

 fx : function
 Function used to extract component information.
 c : m21.chord.Chord
 The chord object to decompose into its components.
 Returns

 array_like
 List of the inner component of the chord.
 """
 values = []
 value = None
 try:
 value = fx(c)
 except AttributeError:
 pass

 if value is not None:
 values.append(value)

 if values == []:
 for n in c:
 value = None
 try:
 value = fx(n)
 except AttributeError:
 break
 if value is not None:
 values.append(value)

 return values

 def stream_to_statematrix(self, stream):
 """Process a music21.stream into a statematrix representation.

 Parameters

 stream : music21.stream

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

 def statematrix_to_stream(self, statematrix):
 """Process a statematrix into a music21.stream.

 Parameters

 statematrix : array_like
 Should be like the output of stream_to_statematrix

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

class StateMatrixBuilderSimple(StateMatrixBuilder):
 """Minimal statematrix builder

 This builder constructs statematrix (or stream) using only the play and
 articulations informations. If going from state to stream, builds a
 music21.stream object with the minimal construction based on a straight
 forward approach.
 """

 @property
 def information_count(self):
 return 2

 def preprocess_stream(self, stream):
 return stream

 def part_to_statematrix(self, part):
 def fy(n): return n.pitch.ps

 s = part.flat

 duration = max(s.highestTime, s.duration.quarterLength)
 quantization_normalized = int(self.quantization / 4)
 duration_quantized = int(math.ceil(duration * quantization_normalized)) + 1
 span = self.upper_bound - self.lower_bound

 statematrix = np.zeros(
 (duration_quantized, span, self.information_count))
 max_time = 0

 for obj in s.flat.getElementsByClass((m21.meter.TimeSignature, m21.note.Note, m21.chord.Chord)):
 valueObjPairs = []
 if isinstance(obj, m21.note.Note):
 valueObjPairs = [(fy(obj), obj)]

 for v, objSub in valueObjPairs:
 numericValue = m21.common.roundToHalfInteger(v)

 if numericValue % 1 != 0:
 print("Warning: note has been rounded from",
 numericValue, "to", int(numericValue))
 numericValue = int(numericValue)

 if (numericValue < self.lower_bound) or (numericValue >= self.upper_bound):
 print("Note {} at time {} out of bounds (ignoring)".format(
 numericValue, objSub.offset))
 pass

 else:
 start = objSub.offset
 length = objSub.quarterLength
 tie = self._get_note_tie(objSub)

 start_quant = int(start * quantization_normalized)
 length_quant = int(length * quantization_normalized)
 end_quant = start_quant + length_quant
 max_time = max(max_time, end_quant)

 if start_quant != end_quant:
 statematrix[start_quant:end_quant,
 numericValue - self.lower_bound, 0] = 1

 if not tie or tie == 'start':
 statematrix[start_quant, numericValue -
 self.lower_bound, 0:2] = 1

 return statematrix[:max_time]

 def statematrix_to_stream(self, statematrix_vector, name='untitled'):
 s = m21.stream.Score()

 s.insert(0, m21.metadata.Metadata())
 s.metadata.title = name
 s.metadata.composer = 'Biaxial neural network'
 s.metadata.date = m21.metadata.DateSingle(
 str(datetime.datetime.now().year))

 for statematrix in statematrix_vector:
 p = self.statematrix_to_part(statematrix)
 s.append(p)

 return s

 def statematrix_to_part(self, statematrix):
 p = m21.stream.Part()

 for i, values in enumerate(statematrix.transpose((1, 0, 2))):
 pitch = i + self.lower_bound

 note = None
 time = 0

 for t, values in enumerate(values):
 play, art = values[0:2]
 dynamics = values[-2:-1]

 if art and play:
 if note:
 note.quarterLength = time/4.0
 p.insert(start/4.0, note)

 note = m21.note.Note(pitch)
 time = 0
 start = t

 if not play and note:

 note.quarterLength = time/4.0
 p.insert(start/4.0, note)
 note = None
 time = 0
 start = None

 if play:
 time = time + 1

 p.makeMeasures(inPlace=True)

 return p

Source/nesgen [Unfinished tensorlow verion]/utils/utils.py

import argparse

def get_args():
 argparser = argparse.ArgumentParser(description=__doc__)
 argparser.add_argument(
 '-c', '--config',
 metavar='C',
 default='None',
 help='The Configuration file'
)
 argparser.add_argument(
 '-p', '--preprocess',
 action='store_true',
 help='Determines if statematrices should be created. This must be done the first time'
)
 args = argparser.parse_args()
 return args

Source/nesgen [Unfinished tensorlow verion]/utils/__pycache__/config.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/utils/__pycache__/dirs.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/utils/__pycache__/features.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/utils/__pycache__/logger.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/utils/__pycache__/statematrix.cpython-37.pyc

Source/nesgen [Unfinished tensorlow verion]/utils/__pycache__/utils.cpython-37.pyc

Source/nesgen-theano/config.ini

[DEFAULT]
pitch_lowerBound=21
pitch_upperBound=108
measure_quantization=16

batch_size=3
seq_len=8
division_len=16

musescore_api_key=YOURAPIKEY

Source/nesgen-theano/main.py

import getopt, sys
import optparse
from argparse import ArgumentParser
import os
import sys
import traceback
import pickle
import music21 as m21
import numpy as np
from tqdm import tqdm
import pretty_midi

def main():
 parser = ArgumentParser()
 sp = parser.add_subparsers()

 preprocess = sp.add_parser("preprocess")
 preprocess.set_defaults(command="preprocess")
 preprocess.add_argument("-d", "--input-directory", help="Directory containing scores to transform to statematrix format.")
 preprocess.add_argument("-o", "--output-file", default="data/music_statematrix.pkl", help="Save statematrix pickle to this location.")
 preprocess.add_argument("-c", "--count", default=None, help="Number of randomly selected scores to process.")

 train = sp.add_parser("train")
 train.set_defaults(command="train")
 train.add_argument("-f", "--statematrix-file", default="data/music_statematrix.pkl", help="File containing statematrix pickel, i.e output of the preprocessing.")
 train.add_argument("-o", "--output-directory", default="output/", help="Where to save meta information during training.")
 train.add_argument("-e", "--training-epochs", type=int, default=10000, help="Number of iterations to run for.")
 train.add_argument("-t", "--t-layer-sizes", default=[[300, 300], [300, 300], [300, 300], [300, 300]], help="List of size for each LSTM layer used for the time model.")
 train.add_argument("-p", "--p-layer-sizes", default=[[100, 50], [100, 50], [100, 50], [50, 25]], help="List of size for each LSTM layer used for the pitch model.")
 train.add_argument("-r", "--dropout", type=float, default=0.5, help="Dropout value")
 train.add_argument("-v", "--validation-split", type=float, default=0.1, help="Percentage of pieces to keep for validation purposes.")
 train.add_argument("-m", "--model-config", default=None, help="Model config (trained weights) to load before starting training.")

 generate = sp.add_parser("generate")
 generate.set_defaults(command="generate")
 generate.add_argument("-t", "--t-layer-sizes", default=[[300, 300], [300, 300], [300, 300], [300, 300]], help="List of size for each LSTM layer used for the time model.")
 generate.add_argument("-p", "--p-layer-sizes", default=[[100, 50], [100, 50], [100, 50], [50, 25]], help="List of size for each LSTM layer used for the pitch model.")
 generate.add_argument("-r", "--dropout", type=float, default=0.5, help="Dropout value")
 generate.add_argument("-s", "--seed", required=True, help="Score to use as seed for generation.")
 generate.add_argument("-l", "--length", type=int, default=80, help="Number of timestep to generate.")
 generate.add_argument("-c", "--conservativity", type=float, default=1, help="Conservativity value, i.e. how much freedom is given to the generation process.")
 generate.add_argument("-m", "--model-config", default="3000", help="Model config (trained weights) to load before starting generation.")
 generate.add_argument("-o", "--output-directory", default="output/", help="Where to save the generated samples.")
 generate.add_argument("-n", "--name", default="generated", help="Name of the generated sample.")

 args = parser.parse_args()

 from utils.data import DataManager
 from utils.features import FeatureBuilderSimple
 from utils.model import Model
 from utils.statematrix import StateMatrixBuilderSimple
 from utils.training import train_piece

 datamanager = DataManager(FeatureBuilderSimple(), StateMatrixBuilderSimple())

 if args.command == 'preprocess':
 dirpath = args.input_directory
 files = [os.path.join(dirpath, fname) for fname in os.listdir(dirpath)]
 print("Processing {} pieces".format(len(files)))
 pieces = datamanager.pieces_to_statematrix(files, args.count)
 with open(args.output_file, 'wb') as o:
 pickle.dump(pieces, o)

 elif args.command == 'train':
 os.makedirs(args.output_directory, exist_ok=True)
 os.makedirs(args.output_directory + 'samples/', exist_ok=True)
 os.makedirs(args.output_directory + 'weights/', exist_ok=True)

 pieces = pickle.load(open(args.statematrix_file, 'rb'))
 model = Model(datamanager, args.t_layer_sizes, args.p_layer_sizes, dropout=args.dropout)
 model.setup()

 if args.model_config:
 model.learned_config = pickle.load(open(args.model_config, 'rb'))

 print("Training")
 train_piece(model, pieces, args.training_epochs, directory=args.output_directory, validation_split=args.validation_split)

 print("Dumping")
 pickle.dump(model.learned_config, open(args.output_directory + 'weights/params_final.p', "wb"))

 elif args.command == 'generate':
 os.makedirs(args.output_directory, exist_ok=True)
 os.makedirs(args.output_directory + 'samples/', exist_ok=True)

 model = Model(datamanager, args.t_layer_sizes, args.p_layer_sizes, dropout=args.dropout)
 model.setup_generate()
 model.load_params(args.model_config)

 try:
 stream = m21.converter.parse(args.seed)
 midi_data = pretty_midi.PrettyMIDI(args.seed)
 midi_instruments = [instrument.name.upper() for instrument in midi_data.instruments]
 matrices = {}
 part_counter = 0
 generated_stream = m21.stream.Stream()
 for instrument in model.instruments:
 if instrument in midi_instruments:
 matrices[instrument] = datamanager.s.stream_to_statematrix(stream.parts[part_counter])
 part_counter += 1
 else:
 matrices[instrument] = datamanager.s.stream_to_statematrix(m21.stream.Part())

 seed_state = matrices[instrument][:1] # get the first set of notes
 seed_feature = datamanager.f.note_state_matrix_to_input_form(seed_state)

 generated_sample = model.biaxial_networks[instrument].generate_fun(args.length, args.conservativity, seed_feature)
 statematrix = np.concatenate((seed_state, generated_sample), axis=0)
 generated_part = model.data_manager.s.statematrix_to_stream(statematrix)
 np.save(args.output_directory + 'samples/{}_{}.npy'.format(instrument, args.name), statematrix)
 if instrument == "NO": # to indicate it is a drum track to get the correct sound
 generated_part.insert(0, m21.instrument.Percussion())
 generated_stream.append(generated_part)
 generated_stream.write('musicxml', args.output_directory + 'samples/{}.xml'.format(args.name))
 mf = m21.midi.translate.streamToMidiFile(generated_stream)
 mf.open(args.output_directory + 'samples/{}.mid'.format(args.name), 'wb')
 mf.write()
 mf.close()
 print("Done generating")
 except:
 print("Error, please try with another seed")

if __name__ == "__main__":
 main()

Source/nesgen-theano/plot.py

import matplotlib.pyplot as plt
import pickle
import numpy as np
import pypianoroll

def create_loss_plot(fpath, title):
 losses_dict = pickle.load(open(fpath, 'rb'))
 length = len(list(losses_dict.values())[0])
 x = np.arange(0, 10001, 200)[:length]
 plt.xlabel("Epoch")
 plt.ylabel("Loss")
 plt.title(title)
 for instrument, losses in losses_dict.items():
 plt.plot(x, losses, label=instrument)

 plt.legend(loc="upper right")

def create_piano_roll(fpath):
 p = pypianoroll.Multitrack(fpath, beat_resolution=16, name=fpath.split("/")[-1])
 return pypianoroll.plot(p)

create_loss_plot("../output/loss_training.p", "Training Loss")
plt.show()
create_loss_plot("../output/loss_validation.p", "Validation Loss")
plt.show()
create_piano_roll("../generated_2.mid")
plt.show()

Source/nesgen-theano/utils/biaxial.py

import theano, theano.tensor as T
import numpy as np
import theano_lstm
from theano_lstm import LSTM, StackedCells, Layer, create_optimization_updates, MultiDropout

def has_hidden(layer):
 """Whetever the layer has a trainable initial hidden state.

 Parameters

 layer : theano_lstm.Layer

 Returns

 boolean
 Whetever the layer as hidden state
 """
 return hasattr(layer, 'initial_hidden_state')

def matrixify(vector, n):
 """Transform a vector or a matrix into a matrix

 Repeate the vector n times in the 0 axis.

 Parameters

 vector : array_like
 Vector (or matrix) to be repreated
 n : int
 Number of repetition

 Returns

 theano.tensor
 A theano tensor corresponding to the n times repeated vector

 Example

 >>>> vect1.shape
 (10,)
 >>>> matrixify(vect1, 5).shape.eval()
 (5,10)
 >>>> vect2.shape
 (10,15)
 >>>> matrixify(vect2, 5).shape.eval()
 (5,10,15)

 """
 return T.repeat(T.shape_padleft(vector), n, axis=0)

def initial_state(layer, dimensions=None):
 """Initialise hidden state

 Used to initialize any layer with reccurrent relation with initial hidden
 state if needed. None is returned if the network is going to return
 something nd thus there is no need to send anything to the next step of the
 recurrence.

 Parameters

 layer : theano_lstm.Layer
 The layer of interest
 dimensions : int, optional
 The dimension of the needed output (the default is None). It is used
 during the creation of the hidden state for the scan function.

 Returns

 theano.tensor
 The initial hidden state of the layer if no dimension are given,
 a matrixified version of the initial hidden state otherwise or None
 if layer has no hidden layer.
 """
 if dimensions is None:
 return layer.initial_hidden_state if has_hidden(layer) else None
 else:
 return matrixify(layer.initial_hidden_state, dimensions) if has_hidden(layer) else None

def initial_state_with_taps(layer, dimensions=None):
 """Optionally wrap tensor variable into a dict with taps=[-1]

 Used during creation of a scan function. Indeed the function need to know
 in which order to process the input. More information on the "taps"
 parameter can be found here:

 - http://deeplearning.net/software/theano/library/scan.html

 Parameters

 layer : theano_lstm.layer
 dimensions : int, optional
 The dimension of the needed output (the default is None). It is used
 during the creation of the hidden state for the scan function.

 Returns

 dict or None
 A dictionary with the relevant state and taps
 """
 state = initial_state(layer, dimensions)
 if state is not None:
 return dict(initial=state, taps=[-1])
 else:
 return None

class PassthroughLayer(Layer):
 """Empty layer

 Used to get the final output of LSTM layers.

 Note

 Should be added to a theano_lstm.StackedCells after a recurrent layer.

 """

 def __init__(self):
 self.is_recursive = False

 def create_variables(self):
 pass

 def activate(self, x):
 return x

 @property
 def params(self):
 return []

 @params.setter
 def params(self, param_list):
 pass

def get_last_layer(result):
 """Get last element (layer)

 Used to return the output of the last layer of theano_lstm.StackedCells
 if it has multiple layer and the output directly if it is a simple layer.

 Parameters

 result : array_like

 Returns

 array_like
 final output of the stackecells or the given layer
 """
 if isinstance(result, list):
 return result[-1]
 else:
 return result

def ensure_list(result):
 """Make sure result is a list

 Parameters

 result : object

 Returns

 array_like
 The input list or the object wrapped in a list
 """
 if isinstance(result, list):
 return result
 else:
 return [result]

class OutputFormToInputFormOp(theano.Op):
 """Theano operation to go from output space to feature space

 More information can be found here:

 - http://deeplearning.net/software/theano/extending/extending_theano.html

 Attributes

 __props__ : tuple
 Properties attribute
 """

 __props__ = ()

 def __init__(self, data_manager, *args):
 self.d = data_manager

 def make_node(self, state, time):
 """Creates an Apply node representing the application of the op on
 the inputs provided.

 Parameters

 state : array_like
 The state to transform into feature space
 time : int
 The current time being processed

 Returns

 theano.Apply
 [description]
 """
 state = T.as_tensor_variable(state)
 time = T.as_tensor_variable(time)
 return theano.Apply(self, [state, time], [T.bmatrix()])

 def perform(self, node, inputs_storage, output_storage):
 """Peform the transformation from output to feature space.

 Defines the Python implementation of the op. It is in charge of doing
 the processing to go from output space (statematrix) to feature space.

 Parameters

 node :
 Reference to an Apply node which was previously obtained via
 the Op‘s make_node() method.
 inputs_storage : array_like
 A list of references to data which can be operated on using
 non-symbolic statements
 output_storage : array_like
 A list of storage cells where the output is to be stored
 """
 state, time = inputs_storage
 output_storage[0][0] = np.array(self.d.f.note_state_single_to_input_form(state, time), dtype='int8')

class Biaxial(object):

 def __init__(self, data_manager, t_layer_sizes, p_layer_sizes, dropout=0):
 print('{:25}'.format("Initializing Biaxial"), end='', flush=True)
 self.t_layer_sizes = t_layer_sizes
 self.p_layer_sizes = p_layer_sizes
 self.dropout = dropout

 self.data_manager = data_manager
 self.t_input_size = self.data_manager.f.feature_count
 self.output_size = self.data_manager.s.information_count

 self.time_model = StackedCells(self.t_input_size, celltype=LSTM, layers=t_layer_sizes)
 self.time_model.layers.append(PassthroughLayer())

 p_input_size = t_layer_sizes[-1] + self.output_size
 self.pitch_model = StackedCells(p_input_size, celltype=LSTM, layers=p_layer_sizes)
 self.pitch_model.layers.append(Layer(p_layer_sizes[-1], self.output_size, activation=T.nnet.sigmoid))

 self.conservativity = T.fscalar()
 self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))

 self.epsilon = np.spacing(np.float32(1.0))

 print("Done")

 @property
 def params(self):
 return self.time_model.params + self.pitch_model.params

 @params.setter
 def params(self, param_list):
 ntimeparams = len(self.time_model.params)
 self.time_model.params = param_list[:ntimeparams]
 self.pitch_model.params = param_list[ntimeparams:]

 @property
 def learned_config(self):
 return [self.time_model.params, self.pitch_model.params,
 [l.initial_hidden_state for mod in (self.time_model, self.pitch_model) for l in mod.layers if
 has_hidden(l)]]

 @learned_config.setter
 def learned_config(self, learned_list):
 self.time_model.params = learned_list[0]
 self.pitch_model.params = learned_list[1]
 for l, val in zip((l for mod in (self.time_model, self.pitch_model) for l in mod.layers if has_hidden(l)),
 learned_list[2]):
 l.initial_hidden_state.set_value(val.get_value())

 def setup(self):
 self.setup_train()
 self.setup_generate()

 def loss_func(self, y_true, y_predict):
 active_notes = T.shape_padright(y_true[:, :, :, 0])
 mask = T.concatenate(
 [T.ones_like(active_notes), active_notes, T.repeat(T.ones_like(active_notes), self.output_size - 2, -1)],
 axis=-1)
 loglikelihoods = mask * T.log(2 * y_predict * y_true - y_predict - y_true + 1 + self.epsilon)
 return T.neg(T.sum(loglikelihoods))

 def setup_train(self):
 print('{:25}'.format("Setup Train"), end='', flush=True)

 self.input_mat = T.btensor4()
 self.output_mat = T.btensor4()

 def step_time(in_data, *other):
 other = list(other)
 split = -len(self.t_layer_sizes) if self.dropout else len(other)
 hiddens = other[:split]
 masks = [None] + other[split:] if self.dropout else []
 new_states = self.time_model.forward(in_data, prev_hiddens=hiddens, dropout=masks)
 return new_states

 def step_note(in_data, *other):
 other = list(other)
 split = -len(self.p_layer_sizes) if self.dropout else len(other)
 hiddens = other[:split]
 masks = [None] + other[split:] if self.dropout else []
 new_states = self.pitch_model.forward(in_data, prev_hiddens=hiddens, dropout=masks)
 return new_states

 def get_dropout(layers, num_time_parallel=1):
 if self.dropout > 0:
 return theano_lstm.MultiDropout([(num_time_parallel, shape) for shape in layers], self.dropout)
 else:
 return []

 # TIME PASS
 input_slice = self.input_mat[:, 0:-1]
 n_batch, n_time, n_note, n_ipn = input_slice.shape
 time_inputs = input_slice.transpose((1, 0, 2, 3)).reshape((n_time, n_batch * n_note, n_ipn))

 time_masks = get_dropout(self.t_layer_sizes, time_inputs.shape[1])
 time_outputs_info = [initial_state_with_taps(layer, time_inputs.shape[1]) for layer in self.time_model.layers]
 time_result, _ = theano.scan(fn=step_time, sequences=[time_inputs], non_sequences=time_masks,
 outputs_info=time_outputs_info)
 self.time_thoughts = time_result

 last_layer = get_last_layer(time_result)
 n_hidden = last_layer.shape[2]
 time_final = get_last_layer(time_result).reshape((n_time, n_batch, n_note, n_hidden)).transpose(
 (2, 1, 0, 3)).reshape((n_note, n_batch * n_time, n_hidden))

 # PITCH PASS
 start_note_values = T.alloc(np.array(0, dtype=np.int8), 1, time_final.shape[1], self.output_size)
 correct_choices = self.output_mat[:, 1:, 0:-1, :].transpose((2, 0, 1, 3)).reshape(
 (n_note - 1, n_batch * n_time, self.output_size))
 note_choices_inputs = T.concatenate([start_note_values, correct_choices], axis=0)

 note_inputs = T.concatenate([time_final, note_choices_inputs], axis=2)

 note_masks = get_dropout(self.p_layer_sizes, note_inputs.shape[1])
 note_outputs_info = [initial_state_with_taps(layer, note_inputs.shape[1]) for layer in self.pitch_model.layers]
 note_result, _ = theano.scan(fn=step_note, sequences=[note_inputs], non_sequences=note_masks,
 outputs_info=note_outputs_info)

 self.note_thoughts = note_result

 note_final = get_last_layer(note_result).reshape((n_note, n_batch, n_time, self.output_size)).transpose(1, 2, 0,
 3)

 self.cost = self.loss_func(self.output_mat[:, 1:], note_final)

 updates, _, _, _, _ = create_optimization_updates(self.cost, self.params, method="adadelta")
 self.update_fun = theano.function(
 inputs=[self.input_mat, self.output_mat],
 outputs=self.cost,
 updates=updates,
 allow_input_downcast=True)

 print("Done")

 def _predict_step_note(self, in_data_from_time, *states):
 hiddens = list(states[:-1])
 in_data_from_prev = states[-1]
 in_data = T.concatenate([in_data_from_time, in_data_from_prev])

 if self.dropout > 0:
 masks = [1 - self.dropout for layer in self.pitch_model.layers]
 masks[0] = None
 else:
 masks = []

 new_states = self.pitch_model.forward(in_data, prev_hiddens=hiddens, dropout=masks)
 probabilities = get_last_layer(new_states)

 shouldPlay = self.srng.uniform() < (probabilities[0] ** self.conservativity)
 shouldArtic = shouldPlay * (self.srng.uniform() < probabilities[1])

 chosen = T.stack([T.cast(shouldPlay, 'int8'), T.cast(shouldArtic, 'int8')])
 return ensure_list(new_states) + [chosen]

 def setup_generate(self):
 print('{:25}'.format("Setup Generate"), end='', flush=True)

 self.generate_seed_input = T.btensor3()
 self.steps_to_simulate = T.iscalar()

 def step_time_seed(in_data, *hiddens):
 if self.dropout > 0:
 time_masks = [1 - self.dropout for layer in self.time_model.layers]
 time_masks[0] = None
 else:
 time_masks = []

 new_states = self.time_model.forward(in_data, prev_hiddens=hiddens, dropout=time_masks)
 return new_states

 time_inputs = self.generate_seed_input[0:-1]
 n_time, n_note, n_ipn = time_inputs.shape

 time_outputs_info_seed = [initial_state_with_taps(layer, n_note) for layer in self.time_model.layers]
 time_result, _ = theano.scan(fn=step_time_seed, sequences=[time_inputs], outputs_info=time_outputs_info_seed)

 last_layer = get_last_layer(time_result)
 n_hidden = last_layer.shape[2]

 def step_time(*states):
 hiddens = list(states[:-2])
 in_data = states[-2]
 time = states[-1]

 if self.dropout > 0:
 masks = [1 - self.dropout for layer in self.time_model.layers]
 masks[0] = None
 else:
 masks = []

 new_states = self.time_model.forward(in_data, prev_hiddens=hiddens, dropout=masks)

 time_final = get_last_layer(new_states)

 start_note_values = theano.tensor.alloc(np.array(0, dtype=np.int8), self.output_size)
 note_outputs_info = ([initial_state_with_taps(layer) for layer in self.pitch_model.layers] +
 [dict(initial=start_note_values, taps=[-1])])

 notes_result, updates = theano.scan(fn=self._predict_step_note, sequences=[time_final],
 outputs_info=note_outputs_info)
 output = get_last_layer(notes_result)
 next_input = OutputFormToInputFormOp(self.data_manager)(output, time + 1)

 return (ensure_list(new_states) + [next_input, time + 1, output]), updates

 time_outputs_info = (time_outputs_info_seed +
 [dict(initial=self.generate_seed_input[-1], taps=[-1]),
 dict(initial=n_time, taps=[-1]),
 None])

 time_result, updates = theano.scan(fn=step_time,
 outputs_info=time_outputs_info,
 n_steps=self.steps_to_simulate)

 self.predicted_output = time_result[-1]

 self.generate_fun = theano.function(
 inputs=[self.steps_to_simulate, self.conservativity, self.generate_seed_input],
 outputs=self.predicted_output,
 updates=updates,
 allow_input_downcast=True,
 on_unused_input='warn')

 print("Done")

Source/nesgen-theano/utils/data.py

import random
import numpy as np
import configparser
import os
import music21 as m21
import pretty_midi
from tqdm import tqdm

config = configparser.ConfigParser()
config.read('config.ini')

quantization = config.getint('DEFAULT', 'measure_quantization')
batch_size = config.getint('DEFAULT', 'batch_size')
seq_len = config.getint('DEFAULT', 'seq_len') * quantization
division_len = config.getint('DEFAULT', 'division_len')

class DataManager(object):
 """Wrapper around a Feature builder and a StateMatrix Builder

 Enable easy access to both the Feature builder and the state matrix
 builder. Usefull when defining a full pipeline from statematrix generation
 to model creation to generation. It simplify the interaction with the sizes
 of both feature vectors and output vectors.

 Parameters

 quantization : int
 In how many "beat" a measure is divided
 batch_size : int
 How many sequences a training batch will be composed
 seq_len : int
 Length of a sequence
 division_len : int
 Interval minimum between each sequence
 """

 def __init__(self, feature_builder, state_matrix_builder):
 self.f = feature_builder
 self.s = state_matrix_builder

 def pieces_to_statematrix(self, corpus, count = None):
 """Process scores to statematrix

 Use to process a scores (in xml, mid, etc) to a statematrix format.
 Will use the base name of the scores (name of the file) as key in
 the dictionary.

 Parameters

 corpus : array_like
 List of the scores path
 count : int, optional
 Number of scores to transform (the default is None)

 Returns

 dict
 A dictionary of 'file name' : statematrix
 """
 pieces = {}
 instruments = ["P1", "P2", "TR", "NO"]

 if count:
 count = min(len(corpus), int(count))
 corpus = random.sample(set(corpus), int(count))

 pbar = tqdm(total=len(corpus))
 for i, score_path in enumerate(corpus):
 pbar.update(1)
 try:
 stream = m21.converter.parse(score_path)
 midi_data = pretty_midi.PrettyMIDI(score_path)
 midi_instruments = [instrument.name.upper() for instrument in midi_data.instruments]
 processed = self.s.preprocess_stream(stream)
 matrices = {}
 part_counter = 0
 for instrument in instruments:
 if instrument in midi_instruments:
 matrices[instrument] = self.s.stream_to_statematrix(processed.parts[part_counter])
 part_counter += 1
 else:
 matrices[instrument] = self.s.stream_to_statematrix(m21.stream.Part())

 except Exception as e:
 print("Error", score_path, e)
 continue

 name = os.path.basename(score_path)
 pieces[name] = matrices

 pbar.close()

 return pieces

 def get_piece_segment(self, pieces, instrument, random_seed=None):
 """Return input and ouput representation

 Method used to get randomly a sequence (in statematrix form) of
 seq_len length. It will loop until a sequence long enough can be
 found. If after 100 tries still no success will through an error.

 Parameters

 pieces : dict (name:statematrix)
 The dictionary of score in the statematrix form
 verbose : bool, optional
 Print selected range to screen. (the default is False)

 Returns

 seg_in: numpy.array
 Input representation (based on feature builder)
 seg_out: numpy.array
 Ouput representation (based on statematrix given by the dict)

 Raises

 IllegalArgumentError
 Because no valid sequence could be found

 """
 random.seed(random_seed)

 # The loop 'assures' the method to return a sequence.
 for i in range(100):
 try:
 m = random.choice(list(pieces.values()))
 piece_output = m[instrument]
 start = random.randrange(0,len(piece_output)-seq_len,division_len)
 #if verbose: print("Range is {} {} {} -> {}".format(0,len(piece_output)-seq_len,division_len, start))
 break
 except:
 pass

 if i == 99: raise ValueError("No valid segment found")

 seg_out = piece_output[start:start+seq_len]
 seg_in = self.f.note_state_matrix_to_input_form(seg_out)

 return seg_in, seg_out

 def get_piece_batch(self, pieces, instrument):
 """Return input and output representation in batch form.

 Return the input and output representation based on this data manager
 in a batched form. It is used during the training phase. It enables
 the "concatenation" of multiple sequences into a single training sample.

 Parameters

 pieces : dict (name:statematrix)
 The dictionary of score in the statematrix form

 Returns

 tuple(numpy.array, numpy.array)
 The input representation (based on the `FeatureBuilder`) and
 the ouput representation (based on the `StateMatrixBuilder`)

 Examples

 We will use a simple feature builder that return a feature vector
 of length 80 and a statematrix builder which output is 2 "wide". Also
 the batch will be of 3.

 >>> pieces = {'foo': [[[0,0],[1,1],[1,0] ...] ...], 'bar': ...}
 >>> len(pieces)
 10
 >>> pieces['foo'].shape
 (180, 87, 2)
 >>> i,o = get_piece_batch(pieces)
 >>> i.shape
 (3, 180, 87, 80)
 >>> o.shape
 (3, 180, 87, 2)

 """
 i,o = zip(*[self.get_piece_segment(pieces, instrument) for _ in range(batch_size)])
 return np.array(i), np.array(o)

Source/nesgen-theano/utils/dataprep/json_to_csv.py

MODIFIED VERSION FROM https://github.com/vladikk/JSON2CSV/blob/master/json2csv.py
from itertools import chain
import json

def json_to_dicts(json_str):
 objects = json.loads(json_str)

 def to_single_dict(lst):
 result = {}
 for d in lst:
 for k in d.keys():
 result[k] = d[k]
 return result;

 to_keyvalue_pairs(objects[0])

 return [dict(to_keyvalue_pairs(obj)) for obj in objects]

def to_keyvalue_pairs(source, ancestors=[], key_delimeter='_'):
 def is_sequence(arg):
 return (not hasattr(arg, "strip") and hasattr(arg, "__getitem__"))

 def is_dict(arg):
 return hasattr(arg, "keys")

 if is_dict(source):
 result = [to_keyvalue_pairs(source[key], ancestors + [key]) for key in source.keys()]
 return list(chain.from_iterable(result))
 elif is_sequence(source):
 result = [to_keyvalue_pairs(item, ancestors + [str(index)]) for (index, item) in enumerate(source)]
 return list(chain.from_iterable(result))
 else:
 return [(key_delimeter.join(ancestors), source)]

def dicts_to_csv(source):
 def build_row(dict_obj, keys):
 return [dict_obj.get(k, "") for k in keys]

 keys = sorted(set(chain.from_iterable([o.keys() for o in source])))
 rows = [build_row(d, keys) for d in source]

 return keys, rows

def write_csv(file, keys=None, rows=[]):
 if keys :
 file.writerow(keys)

 for row in rows:
 file.writerow([str(c) for c in row])

Source/nesgen-theano/utils/dataprep/metadata.py

from .json_to_csv import *
from .musescore_api.MuseScoreAPI import MuseScoreAPI
from configparser import ConfigParser
import csv
import json

config = ConfigParser()
config.read('config.ini')

Musescore API is not really a package and thus cannot be installed directly
using pip. Instead, we directly import it from the current directory. Also
an api object is created. All the api calls will be done using this object.

client_key=config.get('DEFAULT', 'musescore_api_key')
api = MuseScoreAPI(client_key=client_key)

def get_page(page, params):
 """Query musescore api

 Parameters

 page : int
 the page number to retrieve
 params : dict
 parameter as used for the api call

 Returns

 MuseScoreAPI.MuseScoreResponse
 The query response
 """
 params.update({'page':page})
 return api.request(resource='score', params=params)

def get_default_params(part=None, parts=None, sort='relevance'):
 """Get query parameters

 Parameters

 part : int
 [-1;-128] a midi program number, zero based indexed. Drumset is 128
 and -1 is undefined (the default is None, which does retrieve.
 every part)
 parts : int
 The number of parts in the score. 1 for solo scores. 2 for duo etc…
 (the default is None, which does not impose a number of part).
 sort : str, optional
 How to sort the scores.

 Returns

 dict
 Dictionary containing the different parameters
 """
 if part : assert parts

 params = {}
 if part: params.update({'part':part})
 if parts: params.update({'parts':parts})
 if sort: params.update({'sort':sort})
 return params

def write_batch(batch, file, write_key=False):
 """Write a json to a csv file

 Parameters

 batch : json
 The json two write to csv
 file : csv file writer
 Where to write the csv data
 """
 keys, rows = dicts_to_csv(json_to_dicts(batch))
 if write_key:
 write_csv(file, keys=keys, rows=rows)
 else:
 write_csv(file, rows=rows)

def get_metadata(directory, prefix, part=None, parts=None, retrieve_max=100000):
 """Retrieve musescore score metadata

 This method retreive the musescore score metadata based on the api result.
 It writes directly the retrieved data to disk in a "unrolled" csv where
 the json data is flattened.

 Note

 Round retrieve_max down to the nearest multiple of SCORE_PER_PAGE

 Parameters

 directory : PostfixPath
 The path to where the data should be saved
 prefix : str
 Prefix to use for the file
 part : int, optional
 parts : int, optional
 retrieve_max : int, optional
 maximum number of metadata to retrieve (the default is 100000)
 """
 SCORE_PER_PAGE = 20
 WRITE_THRESHOLD = 500

 retrieve_max = retrieve_max - retrieve_max%SCORE_PER_PAGE
 file = directory/(prefix + '_meta.csv')

 if file.is_file():
 print('File already exists, aborting.')
 return file

 with open(str(file), 'w') as output_file:
 cw = csv.writer(output_file)
 default_params = get_default_params(part, parts)

 print("Requesting...")
 print("At most", max(retrieve_max,SCORE_PER_PAGE),"scores metadata are going to be retrieved")

 def write(results, write_key=False):
 write_batch(json.dumps(results), cw, write_key)
 output_file.flush()
 print('Batch written (iteration {})'.format(i))
 return []

 results = []

 page_count = max(1, int(retrieve_max/SCORE_PER_PAGE))
 for i in range(page_count):
 print('/', end="")
 r = get_page(i, default_params)
 data = json.loads(r.text)

 if not data:
 print('No more data to fetch.')
 break

 results.extend(data['score'])

 if i == 0:
 results = write(results, write_key=True)
 elif i % WRITE_THRESHOLD == 0:
 results = write(results)
 print('Batch written (iteration {})'.format(i))

 if results:
 results = write(results)

 print('Got: {} scores'.format((i+1)*SCORE_PER_PAGE))

 return file

Source/nesgen-theano/utils/dataprep/musescore_api/.gitignore

.DS_Store
*.pyc
credentials.json

Source/nesgen-theano/utils/dataprep/musescore_api/connect.py

from requests_oauthlib import OAuth1Session
import webbrowser
import sys

hostname = "musescore.com"

request_token_url = 'http://api.' + hostname+'/oauth/request_token'
base_authorization_url = 'http://' + hostname+'/oauth/authorize'
access_token_url = 'http://api.' + hostname+'/oauth/access_token'

client_key = 'a4XDHu6s5uiTKN4ez7JTcxKaWim5zDpD'
client_secret='b9rfmRBJZZhtjkPRFd48ioRsdABdXcKU'
resource_owner_key=''
resource_owner_secret=''

if client_key == 'YOUR_CLIENT_KEY' or client_secret == 'YOUR_CLIENT_SECRET':
 print "Please change your client key and secret in connect.py header"
 sys.exit(0)

#obtain a request token
oauth = OAuth1Session(client_key, client_secret=client_secret)
fetch_response = oauth.fetch_request_token(request_token_url)
print fetch_response

resource_owner_key = fetch_response.get('oauth_token')
resource_owner_secret = fetch_response.get('oauth_token_secret')

Obtain authorization
authorization_url = oauth.authorization_url(base_authorization_url)
print 'Please go here and authorize,', authorization_url
webbrowser.open(authorization_url)
redirect_response = raw_input('Press any key when authorized')

Obtain access token
oauth = OAuth1Session(client_key,
 client_secret=client_secret,
 resource_owner_key=resource_owner_key,
 resource_owner_secret=resource_owner_secret)
oauth_tokens = oauth.fetch_access_token(access_token_url)
print oauth_tokens

resource_owner_key = oauth_tokens.get('oauth_token')
resource_owner_secret = oauth_tokens.get('oauth_token_secret')

cred = {"client_key": client_key, "client_secret": client_secret,
 "resource_owner_key": resource_owner_key,
 "resource_owner_secret": resource_owner_secret}

import json
with open('credentials.json', 'w') as outfile:
 json.dump(cred, outfile)

Source/nesgen-theano/utils/dataprep/musescore_api/MuseScoreAPI/constants.py

"""
 Constants For All MuseScore Endpoints

 Version 1.0,EST API.

 URLs for each endpoint are composed of the following pieces:
 PROTOCOL://{subdomain}.DOMAIN/VERSION/{resource}?{parameters}
"""

__author__ = "Nicolas Froment"
__date__ = "April 12, 2014"
__license__ = "MIT"

PROTOCOL = 'http'

DOMAIN = 'musescore.com'

VERSION = 'services/rest'

USER_AGENT = 'python-MuseScoreAPI'

STREAMING_SOCKET_TIMEOUT = 90 # 90 seconds per Twitter's recommendation

REST_SUBDOMAIN = 'api'

REST_SOCKET_TIMEOUT = 5

REST_ENDPOINTS = {
 # resource: (method)
 'me': ('GET',),
 'me/sets': ('GET',),
 'me/scores': ('GET',),
 'me/favorites': ('GET',),
 'me/activities': ('GET',),
 'me/history': ('GET',),

 'user/:PARAM': ('GET', 'POST'), # ID
 'user/:PARAM/score': ('GET',), # ID
 'user/:PARAM/scores': ('GET',), # ID
 'user/:PARAM/favorites': ('GET',), # ID
 'user/:PARAM/followers': ('GET',), # ID
 'user/:PARAM/following': ('GET',), # ID
 'user/:PARAM/groups': ('GET',), # ID
 'user/:PARAM/follow': ('GET',), # ID
 'user/:PARAM/sets': ('GET',), # ID

 'score': ('GET', 'POST'),
 'score/:PARAM': ('GET', 'DELETE'), # ID
 'score/:PARAM/time': ('GET',), # ID
 'score/:PARAM/space': ('GET',),
 'score/:PARAM/favorite': ('GET',), # ID
 'score/:PARAM/comments': ('GET',), # ID
 'score/:PARAM/comment': ('POST',), # ID
 'score/:PARAM/update': ('POST',), # ID

 'set/:PARAM': ('GET', 'DELETE'), # ID

 'groups': ('GET',),
 'groups/:PARAM': ('GET', 'DELETE'), # ID
 'groups/:PARAM/score': ('GET',), # ID

 'resolve': ('GET',)
}

Source/nesgen-theano/utils/dataprep/musescore_api/MuseScoreAPI/MuseScoreAPI.py

__author__ = "Jonas Geduldig"
__date__ = "June 7, 2013"
__license__ = "MIT"

from .constants import *
import json
from requests_oauthlib import OAuth1
from datetime import datetime
import requests
import json
import os.path

class MuseScoreAPI(object):

 LICENSE_ALL_RIGHT_RESERVED = "all-rights-reserved"
 LICENSE_CC_BY = "cc-by"
 LICENSE_CC_BY_SA = "cc-by-sa"
 LICENSE_CC_BY_ND = "cc-by-nd"
 LICENSE_CC_BY_NC = "cc-by-nc"
 LICENSE_CC_BY_NC_SA = "cc-by-nc-sa"
 LICENSE_CC_BY_NC_ND = "cc-by-nc-nd"
 LICENSE_PD = "publicdomain"
 LICENSE_CC_ZERO = "cc-zero"

 """Access REST API or Streaming API resources.

 :param consumer_key: MuseScore application consumer key
 :param consumer_secret: MuseScore application consumer secret
 :param access_token_key: MuseScore application access token key
 :param access_token_secret: MuseScore application access token secret
 :param proxy_url: HTTPS proxy URL (ex. "https://USER:PASSWORD@SERVER:PORT")
 """

 def __init__(
 self,
 credFile=None,
 client_key=None,
 proxy_url=None):
 """Initialize with your MuseScore application credentials"""
 self.proxies = {'https': proxy_url} if proxy_url else None
 auth_type='oAuth1'
 if credFile and os.path.isfile(credFile):
 with open("credentials.json") as json_file:
 cred = json.load(json_file)
 self.auth = OAuth1(cred["client_key"],
 client_secret=cred["client_secret"],
 resource_owner_key=cred["resource_owner_key"],
 resource_owner_secret=cred["resource_owner_secret"])
 elif client_key:
 self.auth = None
 self.client_key = client_key
 else:
 raise Exception('At least a client key is needed')

 def _prepare_url(self, subdomain, path, format):
 return '%s://%s.%s/%s/%s.%s' % (PROTOCOL,
 subdomain,
 DOMAIN,
 VERSION,
 path,
 format)

 def _get_endpoint(self, resource):
 """Substitute any parameters in the resource path with :PARAM."""
 if ':' in resource:
 parts = resource.split('/')
 # embedded parameters start with ':'
 parts = [k if k[0] != ':' else ':PARAM' for k in parts]
 endpoint = '/'.join(parts)
 resource = resource.replace(':', '')
 return (resource, endpoint)
 else:
 return (resource, resource)

 def request(self, resource, params=None, method='GET', files=None, format='json'):
 """Request a MuseScore REST API resource.

 :param resource: A valid MuseScore endpoint (ex. "score")
 :param params: Dictionary with endpoint parameters or None (default)
 :param method: String the method to use. GET (default)
 :param files: Dictionary with multipart-encoded file or None (default)

 :returns: MuseScoreAPI.MuseScoreResponse object
 """
 session = requests.Session()
 if self.auth:
 session.auth = self.auth
 elif self.client_key:
 if not params:
 params = {}
 params['oauth_consumer_key'] = self.client_key
 session.headers = {'User-Agent': USER_AGENT}
 resource, endpoint = self._get_endpoint(resource)
 if endpoint in REST_ENDPOINTS:
 session.stream = False
 methods = REST_ENDPOINTS[endpoint]
 if not method in (name.upper() for name in methods):
 raise Exception('"%s" is not valid endpoint for resource "%s"' % (method, resource))
 url = self._prepare_url(REST_SUBDOMAIN, resource, format)
 timeout = REST_SOCKET_TIMEOUT
 else:
 raise Exception('"%s" is not a valid endpoint' % resource)
 r = session.request(
 method,
 url,
 params=params,
 timeout=timeout,
 files=files,
 proxies=self.proxies)
 return MuseScoreResponse(r, session.stream)

 def postScore(self, title, file, private=1, description="", tags="", license=LICENSE_ALL_RIGHT_RESERVED):
 """Post a score on MuseScore.com REST

 :param title: the title of the piece
 :param file: File path to a mscz file
 :param private: 0 or 1 depending if the score is public or private
 :param description: Description of the score
 :param tags: Comma separated list of tags
 :param license: one of the license from LICENSE_ALL_RIGHT_RESERVED, LICENSE_CC_BY,
 LICENSE_CC_BY_SA, LICENSE_CC_BY_ND, LICENSE_CC_BY_NC, LICENSE_CC_BY_NC_SA,
 LICENSE_CC_BY_NC_ND, LICENSE_PD or LICENSE_CC_ZERO

 :returns: MuseScoreAPI.MuseScoreResponse object
 """
 if not os.path.isfile(file):
 raise Exception('"%s" not found' % file)
 if not os.path.splitext(file)[1].lower() == ".mscz":
 raise Exception('"%s" is not an MSCZ file' % file)
 filename = os.path.basename(file)
 files = {'score_data': (filename, open(file, 'rb'), 'application/octet-stream'),
 "title": ('', title),
 "description": ('', description),
 "private" : ('', str(private)),
 "tags" : ('', tags),
 "license" : ('', license),
 }
 return self.request('score', method="POST", files=files)

class MuseScoreResponse(object):

 """Response from a REST API resource call.

 :param response: The requests.Response object returned by the API call
 """

 def __init__(self, response, stream):
 self.response = response

 @property
 def headers(self):
 """:returns: Dictionary of API response header contents."""
 return self.response.headers

 @property
 def status_code(self):
 """:returns: HTTP response status code."""
 return self.response.status_code

 @property
 def text(self):
 """:returns: Raw API response text."""
 return self.response.text

 def get_iterator(self):
 """:returns: MuseScoreAPI.RestIterator."""
 return RestIterator(self.response)

 def __iter__(self):
 for item in self.get_iterator():
 yield item

class RestIterator(object):

 """Iterate statuses, errors or other iterable objects in a REST API response.

 :param response: The request.Response from a MuseScore REST API request
 """

 def __init__(self, response):
 resp = response.json()
 if hasattr(resp, '__iter__') and not isinstance(resp, dict):
 self.results = resp
 else:
 self.results = (resp,)

 def __iter__(self):
 """Return a score as a JSON object."""
 for item in self.results:
 yield item

Source/nesgen-theano/utils/dataprep/musescore_api/MuseScoreAPI/__init__.py

__title__ = 'MuseScpreAPI'
__version__ = '1.0'
__author__ = 'Nicolas Froment'
__license__ = 'MIT'
__copyright__ = 'Copyright 2014 Nicolas Froment'

try:
 #from .MuseScoreOAuth import MuseScoreOAuth
 from .MuseScoreAPI import MuseScoreAPI, MuseScoreResponse, RestIterator
 #from .TwitterRestPager import TwitterRestPager
except:
 pass

__all__ = [
 'MuseScoreAPI',
 #'MuseScoreOAuth'
 #,
 #'MuseScoreRestPager'
]

Source/nesgen-theano/utils/dataprep/musescore_api/README.md

MuseScore.com - Python API wrapper
==========

This Python package supports MuseScore.com's REST API (version 1.1) with OAuth 1.0. It should work with the latest Python versions in both 2.x and 3.x branches.

Dependencies

* Requests http://python-requests.org
* Requests OAuthLib https://github.com/requests/requests-oauthlib

Some Code Examples

See test.py for more examples.

You can use MuseScoreAPI without authentication. For example to list the last scores on MuseScore.com:

 from MuseScoreAPI import MuseScoreAPI
 api = MuseScoreAPI(client_key="musichackday")
 api.request('score')
 print(r.text)

You can also get OAuth token before with connect.py

 python connect.py

It will store the credentials in credentials.json. And you can then use this token to get user details

 from MuseScoreAPI import MuseScoreAPI
 api = MuseScoreAPI("credentials.json")
 api.request('me')
 print(r.text)

Or you can post a score

 from MuseScoreAPI import MuseScoreAPI
 api = MuseScoreAPI("credentials.json")
 r = api.postScore("Title", "test.mscz", description="Description", license=MuseScoreAPI.LICENSE_CC_ZERO)

Source/nesgen-theano/utils/dataprep/musescore_api/test.py

import codecs
from datetime import datetime
import sys
from MuseScoreAPI import MuseScoreAPI

These two lines enable debugging at httplib level (requests->urllib3->httplib)
You will see the REQUEST, including HEADERS and DATA, and RESPONSE with HEADERS but without DATA.
The only thing missing will be the response.body which is not logged.
import httplib
import requests
import logging
httplib.HTTPConnection.debuglevel = 1

You must initialize logging, otherwise you'll not see debug output.
#logging.basicConfig()
#logging.getLogger().setLevel(logging.DEBUG)
#requests_log = logging.getLogger("requests.packages.urllib3")
#requests_log.setLevel(logging.DEBUG)
#requests_log.propagate = True

try:
 # python 3
 sys.stdout = codecs.getwriter('utf8')(sys.stdout.buffer)
except:
 # python 2
 sys.stdout = codecs.getwriter('utf8')(sys.stdout)

api = MuseScoreAPI("credentials.json")
#api = MuseScoreAPI(client_key="")

TEST_NUMBER = 2

try:
 if TEST_NUMBER == 0:
 r = api.request('me')
 print(r.text)
 r = api.request('me/favorites')
 print(r.text)
 r = api.request('me/set')
 print(r.text)
 r = api.request('me/groups')
 print(r.text)

 if TEST_NUMBER == 1:
 r = api.request('user/:3')
 print(r.text)

 if TEST_NUMBER == 2:
 r = api.request('user/:5/score', format='xml')
 print(r.text)
 r = api.request('user/:5/favorites', format='xml')
 print(r.text)
 r = api.request('user/:5/set')
 print(r.text)
 r = api.request('user/:5/groups')
 print(r.text)

 if TEST_NUMBER == 3:
 r = api.request('score')
 #print(r.text)
 for score in r:
 print score

 if TEST_NUMBER == 4:
 r = api.request('score', {"text": "Promenade"})
 print(r.text)

 if TEST_NUMBER == 5:
 r = api.request('score/:179821')
 print(r.text)

 if TEST_NUMBER == 6:
 r = api.request('score/:179821/space')
 print(r.text)

 if TEST_NUMBER == 7:
 r = api.request('score/:179821/time')
 print(r.text)

 if TEST_NUMBER == 8:
 r = api.request('score/:147837', method="DELETE")
 print(r.text)

 if TEST_NUMBER == 9:
 files = {'score_data': ('test.mscz', open('test.mscz', 'rb'), 'application/octet-stream'),
 "title": ('',' test'),
 "description": ('', 'description'),
 "private" : ('', '1')
 }
 r = api.request('score', method="POST", files=files)
 print(r.text)

 if TEST_NUMBER == 10:
 r = api.postScore("title", "test.mscz", description="description", license=MuseScoreAPI.LICENSE_CC_ZERO)
 print(r.text)

except Exception as e:
 print(e)

Source/nesgen-theano/utils/dataprep/musescore_api/testunit.py

from MuseScoreAPI import MuseScoreAPI
import unittest
import sys

class TestSequenceFunctions(unittest.TestCase):

 def setUp(self):
 self.api = MuseScoreAPI("credentials.json")

 def test_me(self):
 r = self.api.request('me')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('me/sets')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('me/scores')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('me/favorites')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('me/favorites')
 self.assertEqual(r.status_code, 200)

 def test_me_xml(self):
 r = self.api.request('me/sets', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<sets'))

 r = self.api.request('me/scores', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<scores'))

 r = self.api.request('me/favorites', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<scores'))

 r = self.api.request('me/activities', format='xml')
 self.assertEqual(r.status_code, 200)
 print r.text
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<scores'))

 def test_user_read(self):
 r = self.api.request('user/:3')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('user/:3/score')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('user/:3/scores')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('user/:3/favorites')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('user/:3/followers')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('user/:3/following')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('user/:3/groups')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('user/:3/sets')
 self.assertEqual(r.status_code, 200)

 def test_user_read_xml(self):
 r = self.api.request('user/:3/score', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<scores'))

 r = self.api.request('user/:3/scores', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<scores'))

 r = self.api.request('user/:3/favorites', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<scores'))

 r = self.api.request('user/:3/followers', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<users'))

 r = self.api.request('user/:3/following', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<users'))

 r = self.api.request('user/:3/groups', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<groups'))

 r = self.api.request('user/:3/sets', format='xml')
 self.assertEqual(r.status_code, 200)
 self.assertTrue(r.text.startswith('<?xml version="1.0" encoding="utf-8"?>\n<sets'))

 def test_score_read(self):
 r = self.api.request('score')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('score', {"text": "Promenade"})
 self.assertEqual(r.status_code, 200)

 r = self.api.request('score/:46274')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('score/:179821/space')
 self.assertEqual(r.status_code, 200)

 r = self.api.request('score/:179821/time')
 self.assertEqual(r.status_code, 200)

 def test_set(self):
 r = self.api.request('set/:29516')
 self.assertEqual(r.status_code, 200)

def test_score_create_delete(self):
files = {'score_data': ('test.mscz', open('test.mscz', 'rb'), 'application/octet-stream'),
"title": ('',' test'),
"description": ('', 'description'),
"private" : ('', '1')
}
r = self.api.request('score', method="POST", files=files)
self.assertEqual(r.status_code, 200)
score = r.response.json()
score_id = score["score_id"]
#
r = self.api.request('score/:' + score_id, method="DELETE")
self.assertEqual(r.text, "true")
self.assertEqual(r.status_code, 200)
#
def test_favorite(self):
r = self.api.request('score/:46274')
self.assertEqual(r.status_code, 200)
score = r.response.json()
score_id_fav = score["id"]
score_fav = score["user_favorite"]
self.assertEqual(score_fav, 0)
#
r = self.api.request('score/:' + score_id_fav + '/favorite')
self.assertEqual(r.text, "true")
self.assertEqual(r.status_code, 200)
#
r = self.api.request('score/:' + score_id_fav)
score = r.response.json()
score_id_fav = score["id"]
score_fav = score["user_favorite"]
self.assertEqual(score_fav, 1)
#
r = self.api.request('score/:' + score_id_fav + '/favorite')
self.assertEqual(r.text, "true")
self.assertEqual(r.status_code, 200)
#
r = self.api.request('score/:' + score_id_fav)
score = r.response.json()
score_id_fav = score["id"]
score_fav = score["user_favorite"]
self.assertEqual(score_fav, 0)

if __name__ == '__main__':
 suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)
 unittest.TextTestRunner(verbosity=2).run(suite)

Source/nesgen-theano/utils/dataprep/scores.py

import urllib.request
import pandas as pd

def get_filename(id, extension):
 """Get filename based on id

 Parameters

 id : int
 id of the score
 extension : str
 Extension of the file
 """
 return 'ms_score_' + str(id) + "." + extension

def get_score(directory, id, secret, extension):
 """Retrieve one score from musescore api

 Parameters

 directory : PosixPath
 Where to save the data (directory).
 id : int
 ID of the score to retrieve
 secret : str
 Secret of the score to retrieve
 extension : str, optional
 Extension of the file

 Returns

 PosixPath
 Score file
 """
 file = directory/get_filename(id, extension)
 if not file.exists():
 url = 'http://static.musescore.com/{}/{}/score.{}'.format(id, secret, extension)
 urllib.request.urlretrieve(url, str(file))
 return file

def get_scores(df, directory, prefix, extension="mxl"):
 """Retrieve scores from musescore api

 Note

 * Uses a Pandas dataframe containing at least the id and secret for each score
 * Will create a directory if given path does not exist.

 Parameters

 df : pandas.Dataframe
 Dataframe containing the information (miniumum: id, secret) about
 the scores to retrieve
 directory : PosixPath
 Where to save the data (directory).
 extension : str, optional
 Extension of the file (the default is "mxl") mroe extension can be found
 on developer.musescore.com. It is possible that some score are not
 available in all format.

 Returns

 df : pandas.Dataframe
 Dataframe containing the information (id, secret) about the scores
 to retrieve and the relative file path to the file
 """
 directory = directory/prefix
 directory.mkdir(exist_ok=True)

 print("Retrieving")
 print("Total", len(df))

 def get_score_wrapper(row):
 id = row['id']
 secret = row['secret']

 try:
 file = get_score(directory, id, secret, extension="mxl")
 return pd.Series({'file_name': file.name})
 except :
 print("! Error with score : {}".format(id))
 return pd.Series({'file_name': ''})

 df = df.merge(df.apply(lambda row: get_score_wrapper(row), axis=1), left_index=True, right_index=True)
 df.set_index('id', inplace=True)

 return df

Source/nesgen-theano/utils/features.py

import itertools
import configparser
import numpy as np

config = configparser.ConfigParser()
config.read('config.ini')

lowerBound = config.getint('DEFAULT', 'pitch_lowerBound')
upperBound = config.getint('DEFAULT', 'pitch_upperBound')

class FeatureBuilder(object):
 """Used to go from output space to feature space

 Attributes

 lowerBound : int
 The lowest pitch that will be used. Based on the midi scale.
 upperBound : int
 The highest pitch that will be used. Based on the midi scale.
 """

 @property
 def feature_count(self):
 """Return the number of features

 It is used during the model creation. The model cannot infer the size
 of each input before running time.

 Returns

 number: int
 Number of feature for each sample

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

 def build_auxillary_info(self, note, state):
 """Method used to add information beside play and articulations

 Parameters

 note : int
 [description]
 state : array_like
 An array containing the information about the full timestep.
 It should be based on a statematrix (the ouput of the
 `StateMatrixBuilder`.

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

 def note_input_form(self, note, state, time):
 """Return the representation in feature space of a specific pitch

 Preprocess the state (from a statematrix) into feature space. Used to
 augmente the data space into a more usefull format than the simpler
 format found in the statematrix format.

 Parameters

 note : int
 The pitch id (midi pitch - lowerbound)
 state : array_like
 An array containing the information about the full timestep.
 It should be based on a statematrix (the ouput of the
 `StateMatrixBuilder`.
 time: int
 The time (beat number) of the timestep

 Returns

 array_like
 The feature representation of the specified not at the
 specified time based on the actual state.
 """

 def _get_or_default(l, i, d):
 """Return element at index i or d

 Parameters

 l : array_like
 i : int
 Index of element of interest
 d : array_like
 Default output if index does not exist

 Returns

 array_like
 The element at index _i_ or the default

 """
 try:
 return l[i]
 except IndexError:
 return d

 def _build_context(state):
 """Build the context based on the state of the timestep

 The context is a representation of the current state of the timestep
 pitch wise. It gives information about which note are playing at
 that time and how many of each.

 Note

 The full pitch spectrum is collapsed into the chromatic scale
 of 12 pitches.

 Parameters

 state : array_like
 An array containing the information about the full timestep.
 It should be based on a statematrix (the ouput of the
 `StateMatrixBuilder`.

 Returns

 array_like
 the context of the given state

 Example

 Let's say that at the timestep of interest the note A5 A3 and
 B4 are played the returned context will be.

 >>> _build_context(state)
 [0,0,0,0,0,0,0,0,0,0,0,0]

 """
 context = [0]*12
 for note, notestate in enumerate(state):
 if notestate[0] == 1:
 pitchclass = (note + lowerBound) % 12
 context[pitchclass] += 1
 return context

 def _build_beat(time):
 """Build time representation

 Build the time representation used as features. It is hardcoded
 to be represented in 4 feature (quantization = 16). It returns
 the binary representation of the time modulo 16 (except that it
 returns -1 instead of 0.

 Parameters

 time : int
 the current time in the sequence

 Example

 >>> _build_beat(10)
 [1,-1, 1,-1]
 >>> _build_beat(113)
 [-1, 1,-1,-1]

 """
 return [2*x-1 for x in [time%2, (time//2)%2, (time//4)%2, (time//8)%2]]

 position = note
 part_position = [position]

 beat = _build_beat(time)
 context = _build_context(state)

 pitchclass = (note + lowerBound) % 12
 part_pitchclass = [int(i == pitchclass) for i in range(12)]

 # part_prev_vicinity is the representation of the surrounding of note.
 # Look one octave in each direction, keep the representation into
 # play / articulations for each surrounding note.
 part_prev_vicinity = list(itertools.chain.from_iterable((_get_or_default(state[:,0:2], note+i, [0,0]) for i in range(-12, 13))))
 part_context = context[pitchclass:] + context[:pitchclass]
 part_aux = self.build_auxillary_info(note, state)

 return np.concatenate([part_position, part_pitchclass, part_prev_vicinity, part_context, part_aux, beat, [0]], axis=0)

 def note_state_single_to_input_form(self, state, time):
 """Return the feature representation of the state

 Given the state and the time, return the feature representation for
 each pitch.

 Parameters

 state : array_like
 An array containing the information about the full timestep.
 It should be based on a statematrix (the ouput of the
 `StateMatrixBuilder`.
 time : int
 time of the timestep

 Example

 Let's say that the statematrix representation is 2 "wide" and
 the feature representation 80. In this method we only look at one
 timestep.

 >>> state.shape
 (87, 2)
 >>> f = note_state_single_to_input_form(state, 10)
 >>> f.shape
 (87, 80)

 """
 return [self.note_input_form(note, state, time) for note in range(len(state))]

 def note_state_matrix_to_input_form(self, statematrix):
 """Process statematrix from output space to feature space.

 Note

 Assume that the time state at 0.

 Parameters

 statematrix : array_like
 The statematrix to process in feature space.

 Returns

 array_like
 The feature representation of the statematrix.
 """
 inputform = [self.note_state_single_to_input_form(state,time) for time,state in enumerate(statematrix)]
 return inputform

class FeatureBuilderSimple(FeatureBuilder):
 """No auxillary information

 The feature space is the 80 basic feature computed from
 the play/articulations status of each note at each timestep.

 """

 @property
 def feature_count(self):
 return 80

 def build_auxillary_info(self, note, state):
 return []

Source/nesgen-theano/utils/model.py

import numpy as np
import pickle
from utils.biaxial import Biaxial

class Model(object):

 def __init__(self, data_manager, t_layer_sizes, p_layer_sizes, dropout=0):
 print('{:25}'.format("Initializing Model"), end='', flush=True)
 self.biaxial_networks = {
 "P1": Biaxial(data_manager, t_layer_sizes[0], p_layer_sizes[0], dropout),
 "P2": Biaxial(data_manager, t_layer_sizes[1], p_layer_sizes[1], dropout),
 "TR": Biaxial(data_manager, t_layer_sizes[2], p_layer_sizes[2], dropout),
 "NO": Biaxial(data_manager, t_layer_sizes[3], p_layer_sizes[3], dropout),
 }

 self.instruments = ["P1", "P2", "TR", "NO"]
 self.data_manager = data_manager

 print("Done")

 def load_params(self, iteration):
 for name, network in self.biaxial_networks.items():
 network.learned_config = pickle.load(open("output/weights/{}_params_{}.p".format(name, iteration), 'rb'))

 @property
 def params(self):
 return None

 @params.setter
 def params(self, param_list):
 pass

 @property
 def learned_config(self):
 return None

 @learned_config.setter
 def learned_config(self, learned_list):
 pass

 def setup(self):
 for network in self.biaxial_networks.values():
 network.setup()

 def setup_train(self):
 for network in self.biaxial_networks.values():
 network.setup_train()

 def setup_generate(self):
 for network in self.biaxial_networks.values():
 network.setup_generate()

Source/nesgen-theano/utils/statematrix.py

import math
import music21 as m21
import numpy as np
import configparser
import datetime

config = configparser.ConfigParser()
config.read('config.ini')

lowerBound = config['DEFAULT'].getint('pitch_lowerBound')
upperBound = config.getint('DEFAULT', 'pitch_upperBound')
quantization = config.getint('DEFAULT', 'measure_quantization')

assert(quantization % 4 == 0)

class StateMatrixBuilder(object):
 """Used to go from stream to output space or statematrix space.

 Attributes

 lowerBound : int
 The lowest pitch that will be used. Based on the midi scale.
 upperBound : int
 The highest pitch that will be used. Based on the midi scale.
 quantization : int
 The quantization scale used to divide the time. It is based on quarter
 length.
 """

 def preprocess_stream(self, stream):
 """
 Preprocess music21.stream object.

 Parameters

 stream : music21.stream
 The stream to process.

 Returns

 music21.stream
 The preprocessed stream.
 """
 raise NotImplementedError()

 @property
 def information_count(self):
 """Return the number of features

 It is used during the model creation. The model cannot infer the size
 of output before running time.

 Returns

 number: int
 Number of output for each sample

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

 def _get_note_tie(self, note):
 """Get the tie of the note or None

 Parameters

 note : music21.Note
 The note object to be checked for tie. Tie can either be
 start, stop, or continue.

 Returns

 string
 the music21.tie.type of the note or None
 """
 if note.tie:
 return note.tie.type
 return None

 def _extract_chord_data(self, fx, c):
 """Extract Chord information

 Parameters

 fx : function
 Function used to extract component information.
 c : m21.chord.Chord
 The chord object to decompose into its components.

 Returns

 array_like
 List of the inner component of the chord.
 """
 values = []
 value = None
 try:
 value = fx(c)
 except AttributeError:
 pass

 if value is not None:
 values.append(value)

 if values == []:
 for n in c:
 value = None
 try:
 value = fx(n)
 except AttributeError:
 break
 if value is not None:
 values.append(value)

 return values

 def stream_to_statematrix(self, stream):
 """Process a music21.stream into a statematrix representation.

 Parameters

 stream : music21.stream

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

 def statematrix_to_stream(self, statematrix):
 """Process a statematrix into a music21.stream.

 Parameters

 statematrix : array_like
 Should be like the output of stream_to_statematrix

 Raises

 NotImplementedError
 Has to be implemented in children class
 """
 raise NotImplementedError()

class StateMatrixBuilderSimple(StateMatrixBuilder):
 """Minimal statematrix builder

 This builder constructs statematrix (or stream) using only the play and
 articulations informations. If going from state to stream, builds a
 music21.stream object with the minimal construction based on a straight
 forward approach.

 """

 @property
 def information_count(self):
 return 2

 def preprocess_stream(self, stream):
 return stream

 def stream_to_statematrix(self, stream):
 fy = lambda n: n.pitch.ps

 s = stream.flat

 duration = max(s.highestTime, s.duration.quarterLength)
 quantization_normalized = int(quantization / 4)
 duration_quantized = int(math.ceil(duration * quantization / 4)) + 1
 span = upperBound - lowerBound

 statematrix = np.zeros((duration_quantized, span, self.information_count))
 max_time = 0

 for obj in s.flat.getElementsByClass((m21.meter.TimeSignature, m21.note.Note, m21.chord.Chord)):
 valueObjPairs = []
 if isinstance(obj, m21.note.Note):
 valueObjPairs = [(fy(obj), obj)]

 elif isinstance(obj, m21.chord.Chord):
 values = self._extract_chord_data(fy, obj)
 valueObjPairs = [(v, obj) for v in values]

 for v, objSub in valueObjPairs:
 numericValue = m21.common.roundToHalfInteger(v)

 if numericValue % 1 != 0:
 print("Warning: note has been rounded from",
 numericValue, "to", int(numericValue))
 numericValue = int(numericValue)

 if (numericValue < lowerBound) or (numericValue >= upperBound):
 print("Note {} at time {} out of bounds (ignoring)".format(
 numericValue, objSub.offset))
 pass

 else:
 start = objSub.offset
 length = objSub.quarterLength
 tie = self._get_note_tie(objSub)

 start_quant = int(start * quantization_normalized)
 length_quant = int(length * quantization_normalized)
 end_quant = start_quant + length_quant
 max_time = max(max_time, end_quant)

 if start_quant != end_quant:
 statematrix[start_quant:end_quant, numericValue - lowerBound, 0] = 1

 if not tie or tie == 'start':
 statematrix[start_quant, numericValue - lowerBound, 0:2] = 1

 return statematrix[:max_time]

 def statematrix_to_stream(self, statematrix, name='untitled'):
 s = m21.stream.Score()

 s.insert(0, m21.metadata.Metadata())
 s.metadata.title = name
 s.metadata.composer = 'Biaxial neural network'
 s.metadata.date = m21.metadata.DateSingle(str(datetime.datetime.now().year))

 p = m21.stream.Part()

 for i, values in enumerate(statematrix.transpose((1,0,2))):
 pitch = i + lowerBound

 note = None
 time = 0

 for t, values in enumerate(values):
 play, art = values[0:2]
 dynamics = values[-2:-1]

 if art and play:
 if note:
 note.quarterLength = time/4.0
 p.insert(start/4.0, note)

 note = m21.note.Note(pitch)
 time = 0
 start = t

 if not play and note:

 note.quarterLength = time/4.0
 p.insert(start/4.0, note)
 note = None
 time = 0
 start = None

 if play:
 time = time + 1

 p.makeMeasures(inPlace=True)
 s.append(p)

 return s

Source/nesgen-theano/utils/training.py

from tqdm import tqdm, tqdm_notebook
import _pickle as pickle
import numpy as np
import signal
import sys
import configparser
import music21 as m21
import random
import datetime

config = configparser.ConfigParser()
config.read('config.ini')

quantization = config.getint('DEFAULT', 'measure_quantization')
seq_len = config.getint('DEFAULT', 'seq_len') * quantization

def calculate_loss(model, y_true, y_predict):
 """Calculate loss

 Note

 We expand the first dimension to match the number of dimension of
 the training samples. We have to do this because theano not react well
 to ellipses notations.

 Parameters

 model : utils.model.Model
 The model in use
 y_true : array_like
 y_predict : array_like

 Returns

 float
 The loss value
 """
 y_true = np.expand_dims(y_true, 0)
 y_predict = np.expand_dims(y_predict, 0)
 return model.loss_func(y_true, y_predict).eval()

def validate(model, pieces, instrument, random_seed, repeat = 3):
 """Compute validation loss

 Parameters

 model : utils.model.Model
 The model to use
 pieces : dict
 Dictrionary containing statematrixes as values
 repeat : {int}, optional
 Average over (the default is 3)

 Returns

 float
 The validation error average over repeated times.
 """
 sub_val = []
 for i in range(repeat):
 xIpt, xOpt = map(np.array, model.data_manager.get_piece_segment(pieces, instrument, random_seed))
 seed_length = int(len(xIpt)/2)
 val = calculate_loss(model, xOpt[seed_length:seed_length+16], model.generate_fun(16, 1, xIpt[:seed_length]))
 sub_val.append(val)
 return np.mean(sub_val)

def generate_sample(model, pieces, directory, name):
 """Generate a sample and save it to disk

 Note

 Only use the first note just as in the original model

 Parameters

 model : utils.model.Model
 The model to use
 pieces : dict
 Dictrionary containing statematrixes as values
 directory : str
 path to parent folder
 name : str
 specific name of the file, will be append after prefix
 """
 # store a random seed to make sure all tracks get the same piece segment
 random_seed = random.randint(0, sys.maxsize)
 s = m21.stream.Score()
 s.insert(0, m21.metadata.Metadata())
 s.metadata.title = name
 s.metadata.composer = 'Biaxial neural network'
 s.metadata.date = m21.metadata.DateSingle(str(datetime.datetime.now().year))

 for model_name, model in model.biaxial_networks.items():
 xIpt, xOpt = map(np.array, model.data_manager.get_piece_segment(pieces, model_name, random_seed))
 seed_i, seed_o = (xIpt[0], xOpt[0])
 generated_sample = model.generate_fun(seq_len, 1, np.expand_dims(seed_i, axis=0))
 statematrix = np.concatenate((np.expand_dims(seed_o, 0), generated_sample), axis=0)
 s.append(model.data_manager.s.statematrix_to_stream(statematrix).parts[0])
 np.save(directory + 'samples/{}_sample_{}.npy'.format(model_name, name), statematrix)
 pickle.dump(model.learned_config, open(directory + 'weights/{}_params_{}.p'.format(model_name, name), 'wb'))
 s.write('musicxml', directory + 'samples/sample_{}.xml'.format(name))
 mf = m21.midi.translate.streamToMidiFile(s)
 mf.open(directory + 'samples/sample_{}.mid'.format(name), 'wb')
 mf.write()
 mf.close()

def train_piece(model, pieces, epochs, directory , start=0, validation_split=0.1):
 """Train neural networks

 This method is used to train the biaxial neural network. This method will
 train for epochs time and will dump to disk the loss (both error and
 validation) to disk.

 Note

 This method can be stopped gracefully.

 Parameters

 model : utils.model.Model
 The model to use
 pieces : dict
 Dictrionary containing statematrixes as values
 epochs : int
 Number of epoch to train for
 directory : str
 path to parent folder
 start : int, optional
 at which epochs to start training (the default is 0)
 validation_split : float, optional
 Percentage of validation data to use (the default is 0.1)

 Returns

 (array_like, array_like)
 The loss arrays
 """
 stopflag = [False]

 split = int(len(pieces)*(1-validation_split))
 train_pieces = {k: pieces[k] for k in list(pieces.keys())[:split]}
 val_pieces = {k: pieces[k] for k in list(pieces.keys())[split:]}

 errors = {"P1": [], "P2": [], "TR": [], "NO": []}
 validations = {"P1": [], "P2": [], "TR": [], "NO": []}
 lowest_errors = {
 "P1": sys.maxsize,
 "P2": sys.maxsize,
 "TR": sys.maxsize,
 "NO": sys.maxsize
 }

 def signal_handler(signame, sf):
 stopflag[0] = True

 old_handler = signal.signal(signal.SIGINT, signal_handler)

 pbar = tqdm(total=epochs)
 for i in range(start, start+epochs):

 if stopflag[0]:
 break

 # store a random seed to make sure all tracks get the same piece segment
 random_seed = random.randint(0, sys.maxsize)

 for name, n in model.biaxial_networks.items():
 error = n.update_fun(*n.data_manager.get_piece_batch(train_pieces, name))

 if error < lowest_errors[name]:
 lowest_errors[name] = error
 pickle.dump(model.learned_config, open(directory + 'weights/{}_params_lowest.p'.format(name), 'wb'))

 if i % 200 == 0:
 validation_loss = validate(n, val_pieces, name, random_seed)
 validations[name].append(validation_loss)
 errors[name].append(float(error))
 print("{}: epoch {:5d}, error {:10.4f}, validation {:10.4f}".format(name, i, float(error), float(validation_loss)))

 if i % 1000 == 0 or (i % 200 == 0 and i < 1000):
 print("epoch {:5d}, generating".format(i))
 generate_sample(model, pieces, directory, str(i))

 pbar.update(1)

 pbar.close()

 signal.signal(signal.SIGINT, old_handler)

 print("Finish Training")
 pickle.dump(errors, open(directory + 'loss_training.p', 'wb'))
 pickle.dump(validations, open(directory + 'loss_validation.p', 'wb'))

 return errors, validations

