

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:

 Author: Luca Tomasetti

Programme coordinator:

Supervisor(s):

Spring semester, 2019

Open/Confidential

…………………………………………

(signature of author)

 Title of master's thesis:

Credits: 30

Keywords:

Number of pages: 82

 + supplemental material/other: 77 pages
of Appendix A-C in addition to
ThesisCode.7z

 Stavanger, 13/06/2019

Title	page	for	Master's	Thesis	
Faculty	of	Science	and	Technology	

Computer Science	

Professor Kjersti Engang

Professor Kjersti Engang & Professor Kathinka Dæhli Kurz

Perfusion CT, Ischemic stroke, Image
segmentation, Machine Learning, Deep Neural
Network, Convolutional Neural Network, U-
Net.

Segmentation	of	infarcted	regions	in	Perfusion	CT	images	by	3D	deep	learning
	

matlabcode.zip

matlabcode/anotherSkullRemovalTechnique.m

function ImageSkullRemoved = anotherSkullRemovalTechnique(ImageRegistered, patients, SAVE, workspaceFolder)
% ANOTHERSKULLREMOVALTECHINIQUE
% Function to remove the skull from the images of the patients

 ImageSkullRemoved = cell(1,length(ImageRegistered));

 for patient=patients
 ImageSkullRemoved{patient} = cell(1,length(ImageRegistered{patient}));
 for slice=1:length(ImageRegistered{patient})
 ImageSkullRemoved{patient}{slice} = cell(1,length(ImageRegistered{patient}{slice}));
 for image=1:length(ImageRegistered{patient}{slice})
 Im_in = ImageRegistered{patient}{slice}{image};
 normalisert{image} = (img_norm(Im_in, 0, 65535));
 mid{image} = histeq(normalisert{image});
 %% SPECIAL TREATMEANT FOR THE FIRST TIME-SERIES
 if eq(image, 1)
 temp_normalisert{image} = (img_norm(Im_in, 0, 4090));
 temp_mid{image} = histeq(temp_normalisert{image});
 filt{image} = imgaussfilt(temp_mid{image},3);
 [P, Mask{image}] = regiongrowing(filt{image}, [250,250],'tfmean', 'tfsimiplify','tfFillHoles'); %tFMean is slow, but for some patients, it returns better masks.
 end
 end
 Mask = Mask(~cellfun('isempty',Mask));
 %% RESHAPE THE MASKS AND PRE-PROCESSED IMAGES
 B = repmat(Mask,1, length(mid)); %repmat(Mask,1, 30); % Repeat mask for all 30 time-series.

 B = reshape(B,[1,length(ImageRegistered{patient}{slice})]);
 mid = reshape(mid,[1,length(ImageRegistered{patient}{slice})]);

 %% APPLY MASKS TO PRE-PROCESSED IMAGES.
 for j = 1:length(ImageRegistered{patient}{slice})
 Bilde{1,j} = bsxfun(@times, mid{1,j}, cast(B{1,j}, 'like', mid{1,j}));
 ImageSkullRemoved{patient}{slice}{j} = Bilde{1,j};
 end
 end
 end

 if SAVE
 save(strcat(workspaceFolder, 'ImageSkullRemoved.mat'),'ImageSkullRemoved','-v7.3');
 end

end

__MACOSX/matlabcode/._anotherSkullRemovalTechnique.m

matlabcode/start_pre_processing.m

root_folder = '/home/stud/lucat/';

args.directory = strcat(root_folder, 'Patients/');
args.patients = double(2:11);
args.annotatedImagesFolder = strcat(root_folder, 'CT_perfusion_markering_processed/CROPPED/');
args.save = 1;
args.saveRegisteredFolder = strcat(root_folder, 'Registered_images_3.0/');
args.workspaceFolder = strcat(root_folder, 'Workspaces/');

MAIN_PREPROCESSING(args);

__MACOSX/matlabcode/._start_pre_processing.m

matlabcode/improveImagesSkullRemoved.m

function ImageSkullRemovedFiltered = improveImagesSkullRemoved(ImageSkullRemoved, patients, SAVE, workspaceFolder)
% IMPROVEIMAGESSKULLREMOVED
% Function that enhance the contrast in the images without the skull
% in order to augment the different values in the pixels.

 ImageSkullRemovedFiltered = cell(1,length(ImageSkullRemoved));

 for patient=patients
 ImageSkullRemovedFiltered{patient} = cell(1,length(ImageSkullRemoved{patient}));
 for slice=1:length(ImageSkullRemoved{patient})
 ImageSkullRemovedFiltered{patient}{slice} = cell(1,length(ImageSkullRemoved{patient}{slice}));
 for image=1:length(ImageSkullRemoved{patient}{slice})
 Im_in = ImageSkullRemoved{patient}{slice}{image};

 Iblur1 = imgaussfilt(Im_in,2);
 ImageSkullRemovedFiltered{patient}{slice}{image} = histeq(Iblur1);
 ImageSkullRemovedFiltered{patient}{slice}{image} = (img_norm(ImageSkullRemovedFiltered{patient}{slice}{image}, 0, 65535));
 end
 end
 end

 if SAVE
 save(strcat(workspaceFolder, 'ImageSkullRemovedFiltered.mat'),'ImageSkullRemovedFiltered','-v7.3');
 end

end

__MACOSX/matlabcode/._improveImagesSkullRemoved.m

matlabcode/MAIN_PREPROCESSING.m

%% -------------------------------------
%% INITIALIZE PRE_PROCESSING:
% 1) Rearrange the images
% 2) Register the images
% 3) Remove the skull
% 3.5) Improve the brain images
% 4) Get the manually annotated images
% 5) Register the images again (including the manually annotated images)
% 6) Save the images
%% -------------------------------------
function output = MAIN_PREPROCESSING(args)
 %% 0 - Arguments
 directory = args.directory; % Directory of the images
 patients = args.patients; % Array of patients to process
 annotatedImagesFolder = args.annotatedImagesFolder; % Directory of the annotated images
 SAVE = args.save; % Save the workspace? (1=yes, 0=no)
 saveRegisteredFolder = args.saveRegisteredFolder; % Directory for saving the final registered images
 workspaceFolder = args.workspaceFolder; % Directory to save and load the workspaces

 mkdir(workspaceFolder)

 %% 1 - Rearrange the images of all the patients
 Image = rearrangeImages(directory, patients, SAVE, workspaceFolder);
 %% 2 - Image regitration
% load(strcat(workspaceFolder, 'Image.mat'));
 ImageRegistered = reg_ct(Image, patients, 1, SAVE, workspaceFolder, '');
 %% 3 - Skull removal
% load(strcat(workspaceFolder, 'ImageRegistered.mat'));
 ImageSkullRemoved = anotherSkullRemovalTechnique(ImageRegistered, patients, SAVE, workspaceFolder);
 %ImageSkullRemoved = generalSkullRemoval(ImageRegistered, patients, SAVE, workspaceFolder);
 %% 3.5 - Improve the brain images
 %load(strcat(workspaceFolder, 'ImageSkullRemoved.mat'));
 ImageSkullRemovedFiltered = improveImagesSkullRemoved(ImageSkullRemoved, patients, SAVE, workspaceFolder);
 %% 4,5 - Image registration with the images without skull and the manually annotated images.
 %load(strcat(workspaceFolder, 'ImageSkullRemovedFiltered.mat'));
 NewImageRegistered = registerAnnotated(ImageSkullRemovedFiltered, annotatedImagesFolder, patients, SAVE, workspaceFolder);
 %% 6 - Save the images
% load(strcat(workspaceFolder, 'NewImageRegistered.mat'));
 saveRegisteredImages(NewImageRegistered, saveRegisteredFolder, patients);

 output = 1;
end

__MACOSX/matlabcode/._MAIN_PREPROCESSING.m

matlabcode/generalSkullRemoval.m

function ImageSkullRemoved = generalSkullRemoval(ImageRegistered, patients, SAVE, workspaceFolder)
%GENERALSKULLREMOVAL
% Function to remove the skull from the images of the patients

 ImageSkullRemoved = cell(1,length(ImageRegistered));

% disp(strcat('Patients: ', num2str(numPatients)))
 for patient=patients
 ImageSkullRemoved{patient} = cell(1,length(ImageRegistered{patient}));
% disp(strcat("Slices:", num2str(length(ImageRegistered{patient}))))

 for slice=1:length(ImageRegistered{patient})
 ImageSkullRemoved{patient}{slice} = cell(1,length(ImageRegistered{patient}{slice}));
% disp(strcat("Images:", num2str(length(ImageRegistered{patient}{slice}))))

 for image=1:length(ImageRegistered{patient}{slice})
 Im_in = ImageRegistered{patient}{slice}{image};
 [ImageSkullRemoved{patient}{slice}{image},bw] = removeSkull(Im_in); %Trad. edge detection
 %[ImageSkullRemoved{patient}{slice}{image},~] = removeSkull2(Im_in,14); % Wave.coeff thresh.
 end
 end
 end

 if SAVE
 save(strcat(workspaceFolder, 'ImageSkullRemoved.mat'),'ImageSkullRemoved','-v7.3');
 end

end

__MACOSX/matlabcode/._generalSkullRemoval.m

matlabcode/registerAnnotated.m

function NewImageRegistered = registerAnnotated(imageToRegister, annotatedImagesFolder, patients, SAVE, workspaceFolder)
%REGISTERANNOTATED
% Function to register the DICOM images, with the addition of the
% manually annotated image.
 for patient=patients
 if patient<10
 folderPath = ([annotatedImagesFolder '/Patient0' num2str(patient)]);
 else
 folderPath = ([annotatedImagesFolder '/Patient' num2str(patient)]);
 end

 elements = dir(folderPath);
 imagesName = {elements.name}';
 imagesName(ismember(imagesName,{'.','..', '.DS_Store'})) = [];

 for slice=1:numel(imagesName)
 annotatedImageColor = imread([folderPath '/' char(imagesName(slice))]);
 annotatedImageGray = uint16(rgb2gray(annotatedImageColor));

 % Crop the manually annotated image in order to have the same
 % size of the DICOM images
 [h, w] = size(imageToRegister{patient}{slice}{1});
 if h~=512 && w~=512
 [oh, ow] = size(annotatedImageGray);
 ratioH = oh/h;
 annotatedImageGray = imresize(annotatedImageGray, [oh/ratioH ow/ratioH]);
 annotatedImageGray = imcrop(annotatedImageGray, [floor((ow/ratioH - 512)/2) 0 w-1 (oh/ratioH)]);
 end

 % Insert the manually annotated image in the first posi
 imageToRegister{patient}{slice} = [{annotatedImageGray} imageToRegister{patient}{slice}];
 end
 end

 if SAVE
 save(strcat(workspaceFolder, 'NewImageSkullRemoved.mat'),'imageToRegister','-v7.3');
 end

 % Register the manually annotated images + the images without the skull
 NewImageRegistered = reg_ct(imageToRegister, patients, 0, SAVE, workspaceFolder, '_new');
 if SAVE
 save(strcat(workspaceFolder, 'NewImageRegistered.mat'),'NewImageRegistered','-v7.3');
 end
end

__MACOSX/matlabcode/._registerAnnotated.m

matlabcode/pre_processing.py

#!/usr/bin/env python
coding: utf-8

In[1]:

import matlab.engine
import os
import tensorflow as tf

In[2]:

os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)

In[3]:

ROOT_PATH = "/home/stud/lucat/"
CODE_PATH = ROOT_PATH + "SCRIPTS/"
PATIENTS_PATH = "/home/prosjekt/PerfusionCT/"
ANNOTATEDIMAGESFOLDER = ROOT_PATH + "CT_perfusion_markering_png/"
SAVE_REGISTERED_FOLDER = ROOT_PATH + "Registered_images/"

SAVE = 1

In[4]:

Start matlab
engine = matlab.engine.start_matlab()

In[5]:

NUM_PATIENTS = matlab.double([2])

In[6]:

args = {
 'directory': PATIENTS_PATH,
 'patients': NUM_PATIENTS,
 'annotatedImagesFolder': ANNOTATED_IMAGES_FOLDER,
 'save': SAVE,
 'saveRegisteredFolder': SAVE_REGISTERED_FOLDER,
}

In[7]:

res = engine.MAIN_PREPROCESSING(args)
print(res)

In[]:

__MACOSX/matlabcode/._pre_processing.py

__MACOSX/._matlabcode.zip

pythoncode.zip

get_complete_training_data.py

#!/usr/bin/env python
coding: utf-8

Import libraries

In[1]:

import cv2
import time
import glob
import numpy as np
import pandas as pd
import os
import operator
import random

CONSTANTS

In[2]:

ROOT_PATH = "/home/stud/lucat/MASTER_THESIS/"
SCRIPT_PATH = ROOT_PATH + "SCRIPTS/"
ORIGINAL_FOLDER_LOCATION = ROOT_PATH + "CT_perfusion_markering/"
FOLDER_LOCATION = ROOT_PATH + "CT_perfusion_markering_processed/" # CT_perfusion_markering_processed_2.0
LABELLED_IMAGES_FOLDER_LOCATION = FOLDER_LOCATION + "LABELLED_IMAGES/" # COMBINED_GRAYAREA_2.0
SAVE_REGISTERED_FOLDER = ROOT_PATH + "Registered_images_3.0/" # "Registered_images_2.0/"

NUMBER_OF_IMAGE_PER_SECTION = 30 # number of image (divided by time) for each section of the brain
IMAGE_WIDTH, IMAGE_HEIGHT = 512, 512
background:255, brain:0, penumbra:~76, core:~150
LABELS = ["background", "brain", "penumbra", "core"]
dataset, listPatientsDataset, trainDatasetList = {}, {}, list()

In[3]:

DATA_AUGMENTATION = True

In[4]:

M, N = int(IMAGE_WIDTH/32), int(IMAGE_HEIGHT/32) # 32, 32
SLICING_PIXELS = int(M/4)
MAX_NUM_BACKGROUND_IMAGES = 500

Util Classes

Class for the slicing window

In[5]:

class AreaInImage():
 def __init__(self, matrix, label):
 self.imgMatrix = matrix
 self.listOfStartingPoints = []
 self.slicingWindow = {}
 self.label = label

 def appendInListOfStartingPoints(self, points):
 self.listOfStartingPoints.append(points)

Util functions

In[6]:

def initializeLabels(patientIndex):
 global dataset
 dataset = dict() # reset the dataset
 dataset[patientIndex] = dict()

 dataset[patientIndex]["data"] = list()
 dataset[patientIndex]["label_class"] = list()
 dataset[patientIndex]["ground_truth"] = list()

In[7]:

def getLabelledAreas(patientIndex, timeIndex):
 return cv2.imread(LABELLED_IMAGES_FOLDER_LOCATION+"Patient"+patientIndex+"/"+patientIndex+timeIndex+".png", 0)

Function that return the slicing window from `img`, starting at pixels `startX` and `startY` with a width of `M` and height of `N`.

In[8]:

def getSlicingWindow(img, startX, startY, M, N):
 return img[startX:startX+M,startY:startY+N]

Function ofr inserting inside `dataset` the pixel areas (slicing windows) found with a slicing area approach (= start from point 0,0 it takes the areas `MxN` and then move on the right or on the bottom by a pre-fixed number of pixels = `SLICING_PIXELS`) and the corresponding area in the images inside the same folder, which are the registered images of the same section of the brain in different time.

In[9]:

def fillDataset(relativePath, patientIndex, timeFolder):
 global dataset

 timeIndex = timeFolder.replace(SAVE_REGISTERED_FOLDER+relativePath, '').replace("/", "")
 if len(timeIndex)==1: timeIndex="0"+timeIndex

 labelledMatrix = getLabelledAreas(patientIndex, timeIndex)

 numBack, numBrain, numPenumbra, numCore = 0, 0, 0, 0
 startingX, startingY = 0, 0
 tmpListPixels, tmpListClasses, tmpListGroundTruth = list(), list(), list()
 backgroundPixelList, backgroundGroundTruthList = list(), list()

 imagesDict = {} # faster access to the images
 for imagename in np.sort(glob.glob(timeFolder+"*.png")): # sort the images !
 filename = imagename.replace(timeFolder, '')
 if filename != "01.png": # don't take the first image (the manually annotated one)
 image = cv2.imread(imagename, 0)
 imagesDict[filename] = image

 while True:
 if startingX>=IMAGE_WIDTH-M and startingY>=IMAGE_HEIGHT-N: # if we reach the end of the image, break the while loop.
 break

 realLabelledWindow = getSlicingWindow(labelledMatrix, startingX, startingY, M, N)
 binaryBackgroundMatrix = realLabelledWindow>=250
 binaryBrainMatrix = realLabelledWindow>=0
 binaryPenumbraMatrix = realLabelledWindow>=30
 binaryCoreMatrix = realLabelledWindow>=100

 valueClasses = dict()

 # extract the core area but not the brain area (= class 3)
 binaryCoreNoSkull = binaryBackgroundMatrix ^ binaryCoreMatrix # background XOR core
 valueClasses[LABELS[3]] = sum(sum(binaryCoreNoSkull))
 # extract the penumbra area but not the brain area (= class 2)
 binaryPenumbraNoSkull = binaryCoreMatrix ^ binaryPenumbraMatrix # penumbra XOR core
 valueClasses[LABELS[2]] = sum(sum(binaryPenumbraNoSkull))
 # extract the brain area but not the background (= class 1)
 binaryBrainMatrixNoBackground = binaryBrainMatrix ^ binaryPenumbraMatrix # brain XOR penumbra
 valueClasses[LABELS[1]] = sum(sum(binaryBrainMatrixNoBackground))
 # (= class 0)
 valueClasses[LABELS[0]] = sum(sum(binaryBackgroundMatrix))

 # the max of these values is the class to set for the binary class (Y)
 classToSet = max(valueClasses.items(), key=operator.itemgetter(1))[0]

 numReplication = 1
 if classToSet==LABELS[0]: numBack+=1
 elif classToSet==LABELS[1]: numBrain+=1
 elif classToSet==LABELS[2]: numPenumbra+=1
 elif classToSet==LABELS[3]:
 numReplication = 6 if DATA_AUGMENTATION else 1
 numCore+=numReplication

 for data_aug_idx in range(numReplication):
 tmparray = []
 for imagename in np.sort(glob.glob(timeFolder+"*.png")): # sort the images !
 filename = imagename.replace(timeFolder, '')
 if filename != "01.png": # don't take the first image (the manually annotated one)
 image = imagesDict[filename]
 slicingWindow = getSlicingWindow(image, startingX, startingY, M, N)

 if data_aug_idx==1: slicingWindow = np.rot90(slicingWindow) # rotate 90 degree counterclockwise
 elif data_aug_idx==2: slicingWindow = np.rot90(slicingWindow,2) # rotate 180 degree counterclockwise
 elif data_aug_idx==3: slicingWindow = np.rot90(slicingWindow,3) # rotate 270 degree counterclockwise
 elif data_aug_idx==4: slicingWindow = np.flipud(slicingWindow) # flip the matrix up/down
 elif data_aug_idx==5: slicingWindow = np.fliplr(slicingWindow) # flip the matrix left/right

 tmparray.extend(slicingWindow)

 if classToSet==LABELS[0]:
 backgroundPixelList.append(tmparray)
 backgroundGroundTruthList.append(realLabelledWindow)
 else:
 tmpListPixels.append(tmparray)
 tmpListGroundTruth.append(realLabelledWindow)
 tmpListClasses.append(classToSet)

 if startingY<IMAGE_HEIGHT-N: startingY += SLICING_PIXELS
 else:
 if startingX<IMAGE_WIDTH-M:
 startingY = 0
 startingX += SLICING_PIXELS

 print("+++")
 print("\t\t\t Background: {0}".format(numBack))
 print("\t\t\t Brain: {0}".format(numBrain))
 print("\t\t\t Penumbra: {0}".format(numPenumbra))
 print("\t\t\t Core: {0}".format(numCore))
 print("+++")

 indices = random.sample(range(0,len(backgroundPixelList)), MAX_NUM_BACKGROUND_IMAGES)
 newBackgroundPixelList, newBackgroundGroundTruthList = list(), list()
 for index in indices:
 newBackgroundPixelList.append(backgroundPixelList[index])
 newBackgroundGroundTruthList.append(backgroundGroundTruthList[index])

 print("\t\t\t Randomly picked {0} background images.".format(str(MAX_NUM_BACKGROUND_IMAGES)))

 dataset[patientIndex]["data"] = tmpListPixels + newBackgroundPixelList
 dataset[patientIndex]["ground_truth"] = tmpListGroundTruth + newBackgroundGroundTruthList
 dataset[patientIndex]["label_class"] = tmpListClasses + [LABELS[0]]*MAX_NUM_BACKGROUND_IMAGES

Function that initialize the dataset: for each subfolder of the patient (section of the brain), it call the `fillDataset` function to get the pixels, save into the dataset and analyze them later.

In[10]:

def initializeDataset():
 patientFolders = glob.glob(SAVE_REGISTERED_FOLDER+"*/")
 for numFold, patientFolder in enumerate(patientFolders): # for each patient
 train_df = pd.DataFrame(columns=['patient_id', 'label', 'pixels', 'ground_truth']) # reset the dataframe for every patient

 relativePath = patientFolder.replace(SAVE_REGISTERED_FOLDER, '')
 patientIndex = relativePath.replace("PA", "").replace("/", "")
 filename_train = SCRIPT_PATH+"trainComplete"+str(patientIndex)+".h5"
 subfolders = glob.glob(patientFolder+"*/")

 print("\t Analyzing {0}/{1}; patient folder: {2}...".format(numFold+1, len(patientFolders), relativePath))
 for count, timeFolder in enumerate(subfolders): # for each slicing time
 initializeLabels(patientIndex)
 print("\t\t Analyzing subfolder {0}".format(timeFolder.replace(SAVE_REGISTERED_FOLDER, '').replace(relativePath, '')))
 start = time.time()

 fillDataset(relativePath, patientIndex, timeFolder) # insert the data inside the dataset dictionary
 print("\t\t Details:", [(key, len(subdataset)) for key, subdataset in dataset[patientIndex].items()])

 end = time.time()
 print("\t\t Processed {0}/{1} subfolders in {2}s.".format(count+1, len(subfolders), round(end-start, 3)))

 convertDatasetInList()
 print("Preparing partial TRAIN dataframe...")
 tmp = prepareTraining()

 # append the new rows in the dataframe
 for index in range(0, tmp.shape[0]): train_df = train_df.append(tmp.iloc[index])

 print("Saving TRAIN dataframe for patient {1} in {0}...".format(filename_train, str(patientIndex)))
 suffix = "_DATA_AUGMENTATION" if DATA_AUGMENTATION else ""
 train_df.to_hdf(filename_train, key="X_"+str(M)+"x"+str(N)+"_"+str(SLICING_PIXELS) + suffix)

In[11]:

def convertDatasetInList():
 global listPatientsDataset, dataset
 listPatientsDataset = {} # reset the list
 #ID = 0
 for patient_id in dataset.keys():
 listPatientsDataset[patient_id] = []
 for idx, pixels in enumerate(dataset[patient_id]["data"]):
 pixels = np.array(pixels).reshape(NUMBER_OF_IMAGE_PER_SECTION,M,N)
 ground_truth = dataset[patient_id]["ground_truth"][idx]
 label = dataset[patient_id]["label_class"][idx]
 listPatientsDataset[patient_id].append((patient_id, label, pixels, ground_truth))
 #ID += 1

In[12]:

def divideDataForTrainAndTest():
 global listPatientsDataset, trainDatasetList

 for p_id in listPatientsDataset.keys():
 np.random.shuffle(listPatientsDataset[p_id])
 trainDatasetList.extend(listPatientsDataset[p_id])

In[13]:

def prepareTraining():
 global trainDatasetList
 trainDatasetList = list() # reset
 # start the preparation for the training
 divideDataForTrainAndTest()
 tmp_df = pd.DataFrame(trainDatasetList, columns=['patient_id', 'label', 'pixels', 'ground_truth'])
 tmp_df['label_code'] = tmp_df.label.map({LABELS[0]:0, LABELS[1]:1, LABELS[2]:2, LABELS[3]:3})

 return tmp_df

Main

In[14]:

if __name__ == '__main__':
 start = time.time()
 print("Initializing dataset...")
 initializeDataset()
 end = time.time()
 print("Total time: {0}s".format(round(end-start, 3)))

In[]:

__MACOSX/._get_complete_training_data.py

extract_annotation.py

#!/usr/bin/env python
coding: utf-8

Import libraries

In[1]:

get_ipython().run_line_magic('matplotlib', 'inline')

import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
import glob
import pytesseract
import time
import math
from PIL import Image
import imutils

from pprint import pprint

CONSTANTS

In[2]:

ROOT_PATH = "/home/stud/lucat/"

ORIGINAL_FOLDER_LOCATION = ROOT_PATH + "CT_perfusion_markering/"
NEW_FOLDER_LOCATION = ROOT_PATH + "CT_perfusion_markering_png/"
FOLDER_LOCATION = ROOT_PATH + "CT_perfusion_markering_processed_2.0/"

CROPPED_FOLDER_LOCATION = FOLDER_LOCATION + "CROPPED/"
GREEN_AREA_FOLDER_LOCATION = FOLDER_LOCATION + "GREEN_AREA/"
GREEN_BORDER_FOLDER_LOCATION = FOLDER_LOCATION + "GREEN_BORDER/"
RED_AREA_FOLDER_LOCATION = FOLDER_LOCATION + "RED_AREA/"
RED_BORDER_FOLDER_LOCATION = FOLDER_LOCATION + "RED_BORDER/"
COMBINED_AREA_FOLDER_LOCATION = FOLDER_LOCATION + "COMBINED_AREA/"
COMBINED_GRAYAREA_FOLDER_LOCATION = FOLDER_LOCATION + "COMBINED_GRAYAREA/"
TEST = FOLDER_LOCATION + "TEST/"
TEST2 = FOLDER_LOCATION + "TEST2/"

PIXEL_DELTA = 0
ROWS, COLS = 1, 5
CONVERT = False

mappingPatients = {
 "Patient01": {
 "side": "left"
 },
 "Patient02": {
 "side": "right"
 },
 "Patient03": {
 "side": "left",
 "redBorder": ["0313.png"]
 },
 "Patient04": {
 "side": "left"
 },
 "Patient05": {
 "side": "left"
 },
 "Patient06": {
 "side": "right"
 },
 "Patient07": {
 "side": "right",
 "redBorder": ["0713.png"]
 },
 "Patient08": {
 "side": "left"
 },
 "Patient09": {
 "side": "right"
 },
 "Patient10": {
 "side": "right"
 },
 "Patient11": {
 "side": "left",
 "redBorder": ["1114.png"]
 },
}

Create the folder (if needed)

In[3]:

if not os.path.isdir(FOLDER_LOCATION): os.makedirs(FOLDER_LOCATION)
if not os.path.isdir(NEW_FOLDER_LOCATION): os.makedirs(NEW_FOLDER_LOCATION)
if not os.path.isdir(CROPPED_FOLDER_LOCATION): os.makedirs(CROPPED_FOLDER_LOCATION)
if not os.path.isdir(GREEN_BORDER_FOLDER_LOCATION): os.makedirs(GREEN_BORDER_FOLDER_LOCATION)
if not os.path.isdir(RED_BORDER_FOLDER_LOCATION): os.makedirs(RED_BORDER_FOLDER_LOCATION)
if not os.path.isdir(COMBINED_AREA_FOLDER_LOCATION): os.makedirs(COMBINED_AREA_FOLDER_LOCATION)
if not os.path.isdir(COMBINED_AREA_FOLDER_LOCATION): os.makedirs(COMBINED_GRAYAREA_FOLDER_LOCATION)
if not os.path.isdir(TEST): os.makedirs(TEST)
if not os.path.isdir(TEST2): os.makedirs(TEST2)

Utils Functions

Function to extract the green border from the img (manually annotated)

In[4]:

CODE FOUND IN: https://stackoverflow.com/questions/47483951/how-to-define-a-threshold-value-to-detect-only-green-colour-objects-in-an-image/47483966#47483966
def extractBorders(img, imageName, patient):
 imgCopy = img.copy() # for the RED contours
 imgCopy2 = img.copy() # to find the GREEN
 imgCopy3 = img.copy() # for the area
 redBorder = False
 red = np.zeros_like(imgCopy, np.uint8)
 black = np.zeros_like(imgCopy2, np.uint8)
 green = np.zeros_like(imgCopy2, np.uint8)

 if "redBorder" in mappingPatients[patient].keys():
 if imageName in mappingPatients[patient]["redBorder"]: redBorder = True

 if not redBorder:
 ### TO EXTRACT THE GREEN BORDER ONLY IF THE GREEN BORDER EXIST
 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) ## convert to hsv
 ## mask of green (36,25,25) ~ (86, 255,255)
 mask = cv2.inRange(hsv, (40, 40, 40), (70, 255,255))

 # find the contours in the EXTERNAL mask
 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 cnts = imutils.grab_contours(cnts)
 # loop over the contours
 for c in cnts:
 # draw the contour in red
 cv2.polylines(imgCopy, [c], True, (0, 0, 255), 2) # the real image with the different borders
 cv2.polylines(imgCopy2, [c], True, (0, 0, 0), 5) # useful image to exclude the red border from the green mask
 cv2.fillPoly(imgCopy3,[c],(0,0,255)) # draw area in red
 cv2.fillPoly(black,[c],(0,0,255)) # draw area in red

 # Find the green
 hsv = cv2.cvtColor(imgCopy2, cv2.COLOR_BGR2HSV) ## convert to hsv
 mask = cv2.inRange(hsv, (40, 40, 40), (86,255,255))
 imask = mask > 0 ## slice the green

 green[imask] = imgCopy2[imask]

 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 cnts = imutils.grab_contours(cnts)
 # loop over the contours
 for c in cnts:
 # draw the area
 cv2.polylines(imgCopy3,[c], True, (0,255,0), 3) # draw area in green

 hsv = cv2.cvtColor(imgCopy3, cv2.COLOR_BGR2HSV) ## convert to hsv
 mask = cv2.inRange(hsv, (40, 40, 40), (86,255,255))
 imask = mask > 0 ## slice the green

 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 cnts = imutils.grab_contours(cnts)
 for c in cnts:
 # draw the area
 cv2.fillPoly(imgCopy3,[c],(0,255,0)) # draw area in green
 cv2.fillPoly(black,[c],(0,255,0)) # draw area in red

 # Find the red
 hsv = cv2.cvtColor(imgCopy, cv2.COLOR_BGR2HSV) ## convert to hsv
 # lower mask (0-10)
 lower_red = np.array([0,50,50])
 upper_red = np.array([10,255,255])
 mask0 = cv2.inRange(hsv, lower_red, upper_red)

 # upper mask (170-180)
 lower_red = np.array([170,50,50])
 upper_red = np.array([180,255,255])
 mask1 = cv2.inRange(hsv, lower_red, upper_red)

 # join my masks
 mask = mask0+mask1
 imask = mask > 0 ## slice the red
 red[imask] = imgCopy[imask]

 if redBorder:
 # find the contours in the EXTERNAL mask
 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 cnts = imutils.grab_contours(cnts)
 # loop over the contours
 for c in cnts:
 # draw the contour in red
 cv2.fillPoly(imgCopy3,[c],(0,0,255)) # draw area in red
 cv2.fillPoly(black,[c],(0,0,255)) # draw area in red

 return green, red, imgCopy3, black

Function to detect the text inside the img, remove it from the green image containing the annotated area

In[5]:

CODE FOUND IN: https://stackoverflow.com/questions/49777351/how-to-enhance-text-detection-in-image-using-python
def removeTextAndCreateGreenAreaFromImage(img, imageWithBorders, bordersArea, patient):
 scale = 1
 originalImg = cv2.resize(img, None, fx=scale, fy=scale)
 imageWithBorders = cv2.resize(imageWithBorders, None, fx=scale, fy=scale)
 img1 = cv2.cvtColor(originalImg, cv2.COLOR_BGR2GRAY)
 h, w = img1.shape

 for index, border_area in enumerate(bordersArea):
 resized = cv2.resize(border_area, None, fx=scale, fy=scale)
 newImage = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
 # To find text inside the image and mark with rectangles
 letters = pytesseract.image_to_boxes(newImage)
 letters = letters.split('\n')
 letters = [letter.split() for letter in letters]
 if len(letters)>0 and len(letters[0])>0: letters = [l for l in letters if l[0] != "~"]

 # To extrapolate the area inside the border

 for c,r in enumerate(newImage):
 if (sum(r)>0): # there is something to process
 coloredPixels = np.where(r>75)[0] # only the colored pixels

 if len(coloredPixels)>1:

 for letter in letters:
 if len(letter)>0 and len(coloredPixels)>0:
 # if stroke in left side the color is black, if it's in the right side, the color is white
 color = (255,255,255) if mappingPatients[patient]["side"]=="left" else (0,0,0)

 if index==0: color=(0,0,255) #green, thus the filled color is red

 # Fill the text with a colored rectangle
 cv2.rectangle(imageWithBorders, (int(letter[1])-8, h - int(letter[2])-2), (int(letter[3])+8, h - int(letter[4])+2), color, -1)

 cv2.imwrite(TEST2+"test"+str(index)+".png", imageWithBorders)

 return imageWithBorders

Function to resize and crop the image in a MxN image

In[6]:

def resizeAndCropImage(img, h, w, M, N):
 ratioH = h/M
 # Resize the images
 img_resize = cv2.resize(img, (int(w/ratioH), int(h/ratioH)))
 # If we consider (0,0) as top left corner of image called im with left-to-right as x direction
 # and top-to-bottom as y direction. and we have (x1,y1) as the top-left vertex and (x2,y2)
 # as the bottom-right vertex of a rectangle region within that image, then:
 # crop_img = im[y1:y2, x1:x2]
 return img_resize[0:N, int(math.floor(((w/ratioH)/2)-(M/2))):int(math.floor(((w/ratioH)/2)+(M/2)))]

Function that do the following actions:
- Find the green border (manually annotated)
- Detect and delete the text found in the image
- Crop the image to 512x512
- Save the images (: only border, area of the annotation, text found)

In[7]:

def processAndSaveAnnotatedImages(imagesInFolder, showPlot=True):
 X, Y = 512, 512
 listOfGreenBorder = dict()

 for imageName in imagesInFolder:

 if showPlot: fig = plt.figure(figsize=(11,4))
 start = time.time()
 realImageName = imageName.replace(NEW_FOLDER_LOCATION, '')

 patient = realImageName.split("/")[0]
 ## Read
 img = cv2.imread(imageName)
 h, w, _ = img.shape

 green, red, imageWithBorders, black = extractBorders(img, imageName.split("/")[-1], patient)

 graygreen = cv2.cvtColor(green, cv2.COLOR_BGR2GRAY)
 blur = cv2.GaussianBlur(graygreen,(5,5),0)
 _,greenthr = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
 grayred = cv2.cvtColor(red, cv2.COLOR_BGR2GRAY)
 blur = cv2.GaussianBlur(grayred,(5,5),0)
 _,redthr = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

 img_combined = removeTextAndCreateGreenAreaFromImage(img, imageWithBorders, [green, red], patient)

 img = resizeAndCropImage(img, h, w, X, Y)
 green = resizeAndCropImage(green, h, w, X, Y)
 img_combined = resizeAndCropImage(img_combined, h, w, X, Y)
 imageWithBorders = resizeAndCropImage(imageWithBorders, h, w, X, Y)
 black = resizeAndCropImage(black, h, w, X, Y)

 grayimg = cv2.cvtColor(img_combined, cv2.COLOR_BGR2GRAY)
 _,justBrain = cv2.threshold(grayimg,60,255,cv2.THRESH_BINARY_INV)
 justBrain = cv2.cvtColor(justBrain,cv2.COLOR_GRAY2RGB)
 differentClasses = justBrain + black

 differentClassesGray = cv2.cvtColor(differentClasses.copy(), cv2.COLOR_BGR2GRAY)

 if showPlot:
 ## add figure to show
 fig.add_subplot(ROWS, COLS, 1)
 plt.imshow(green)
 plt.axis('off')
 fig.add_subplot(ROWS, COLS, 2)
 plt.imshow(img_green_area)
 plt.axis('off')
 fig.add_subplot(ROWS, COLS, 3)
 plt.imshow(img_red_area)
 plt.axis('off')
 fig.add_subplot(ROWS, COLS, 4)
 plt.imshow(img_combined)
 plt.axis('off')
 fig.add_subplot(ROWS, COLS, 5)
 plt.imshow(img)
 plt.axis('off')

 # Create the folder for the patients if they don't exist
 if not os.path.isdir(CROPPED_FOLDER_LOCATION+patient): os.makedirs(CROPPED_FOLDER_LOCATION+patient)
 if not os.path.isdir(GREEN_BORDER_FOLDER_LOCATION+patient): os.makedirs(GREEN_BORDER_FOLDER_LOCATION+patient)
 if not os.path.isdir(RED_BORDER_FOLDER_LOCATION+patient): os.makedirs(RED_BORDER_FOLDER_LOCATION+patient)
 if not os.path.isdir(COMBINED_AREA_FOLDER_LOCATION+patient): os.makedirs(COMBINED_AREA_FOLDER_LOCATION+patient)
 if not os.path.isdir(COMBINED_GRAYAREA_FOLDER_LOCATION+patient): os.makedirs(COMBINED_GRAYAREA_FOLDER_LOCATION+patient)

 if not os.path.isdir(TEST+patient): os.makedirs(TEST+patient)

 ## save Images in the correct folder location
 cv2.imwrite(CROPPED_FOLDER_LOCATION+realImageName, img)
 cv2.imwrite(GREEN_BORDER_FOLDER_LOCATION+realImageName, green)
 cv2.imwrite(RED_BORDER_FOLDER_LOCATION+realImageName, red)
 cv2.imwrite(COMBINED_AREA_FOLDER_LOCATION+realImageName, differentClasses)
 cv2.imwrite(COMBINED_GRAYAREA_FOLDER_LOCATION+realImageName, differentClassesGray)
 cv2.imwrite(TEST+realImageName, imageWithBorders)

 end = time.time()
 print("Execution time of {0}: {1} s.".format(realImageName, end-start))

 if showPlot:
 plt.subplots_adjust(wspace=0.02, hspace=0.3, top=1, bottom=0.1, left=0, right=1)
 plt.show()

In[8]:

def convertToPNG():
 for subfolder in glob.glob(ORIGINAL_FOLDER_LOCATION+"*/"):
 print("Converting: {0}".format(subfolder))

 newFolderName = subfolder.replace(ORIGINAL_FOLDER_LOCATION, NEW_FOLDER_LOCATION)
 if not os.path.isdir(newFolderName): os.makedirs(newFolderName)

 # Convert the images form jpg to png (if any)
 for jpgImg in glob.glob(subfolder+"*.jpg"):
 im = Image.open(jpgImg)
 pngImg = jpgImg.replace(ORIGINAL_FOLDER_LOCATION, NEW_FOLDER_LOCATION).replace("jpg", "png")
 im.save(pngImg)

Main For-loop to extract the area

In[9]:

if __name__ == '__main__':
 if CONVERT: convertToPNG()
 for subfolder in glob.glob(NEW_FOLDER_LOCATION+"*/"):
 print("Processing: {0}".format(subfolder))
 processAndSaveAnnotatedImages(glob.glob(subfolder+"*.png"), showPlot=False)

In[]:

In[]:

__MACOSX/._extract_annotation.py

run_training.py

#!/usr/bin/env python
coding: utf-8

Imports

In[1]:

import os
import json
import time
import math
import random
import cv2
import glob
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import operator
from tensorflow.keras import layers, models
from tensorflow.keras.models import model_from_json
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import StratifiedKFold
from sklearn.utils import class_weight
from sklearn import metrics

import tensorflow.keras.backend as K
#testing purposes
from tensorflow.keras.datasets import mnist

Constants

Paths

In[]:

ROOT_PATH = "/home/stud/lucat/MASTER_THESIS/"
SCRIPT_PATH = ROOT_PATH + "SCRIPTS/"
SAVED_MODEL_PATH = ROOT_PATH + "SAVED_MODELS/"
SAVED_PLOTS_PATH = ROOT_PATH + "SAVED_PLOTS/"
SAVED_IMAGES_PATH = ROOT_PATH + "SAVED_IMAGES/"
SAVED_TEXT_PATH = ROOT_PATH + "SAVED_TEXT/"
FOLDER_LOCATION = ROOT_PATH + "CT_perfusion_markering_processed/"
LABELLED_IMAGES_FOLDER_LOCATION = FOLDER_LOCATION + "LABELLED_IMAGES/"
SAVE_REGISTERED_FOLDER = ROOT_PATH + "Registered_images_3.0/"
PREFIX_SAVED_IMAGE = SAVED_IMAGES_PATH + "PA"

Global values

In[]:

PATIENT_ID = [x for x in range(2,12)]
PATIENT_TO_TEST = [x for x in range(2,12)]

TEST = True # test the model and save the predicted images
VERBOSE = True
DEBUG = False # use a debug dataset
SAVE = False # flag to save plots and weights

DATA_AUGMENTATION = False
OPTIMIZER = "SGD" #ADAM
TRAIN_AGAIN = False # just to visualize the accuracy percentage again (execute one epoch!)
SUPERVISED_TESTING = True # test with or without the supervised ground truth

Value to set the parameters of the model.

In[]:

M, N = 16, 16
SLICING_PIXELS = int(M/4)
IMAGE_WIDTH, IMAGE_HEIGHT = 512, 512
NUMBER_OF_IMAGE_PER_SECTION = 30 # number of image (divided by time) for each section of the brain
SAMPLES, EPOCHS = 50, 1

LABELS = ["background", "brain", "penumbra", "core"] # background:255, brain:0, penumbra:~76, core:~150

dtypes = ["3D_inout", "3D_complete", "UNET"]
DTYPE = dtypes[2]
model_ID = 1 # id for model function for DTYPE==1: 1-getConvolutionaModel333, 2-getModel, 3-getShrinkModel

SIGMOID_ACT = True # to convert the ground truth in values from [0,1]

In[]:

if SIGMOID_ACT: PREFIX_SAVED_IMAGE+="_SIGM"

Configuration

In[]:

os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"

config = tf.ConfigProto()
#config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.5
session = tf.Session(config=config)

In[]:

if not os.path.isdir(SCRIPT_PATH): os.makedirs(SCRIPT_PATH)
if not os.path.isdir(SAVED_MODEL_PATH): os.makedirs(SAVED_MODEL_PATH)
if not os.path.isdir(SAVED_PLOTS_PATH): os.makedirs(SAVED_PLOTS_PATH)
if not os.path.isdir(SAVED_IMAGES_PATH): os.makedirs(SAVED_IMAGES_PATH)
if not os.path.isdir(SAVED_TEXT_PATH): os.makedirs(SAVED_TEXT_PATH)

Util classes

Class for the logs during the CNN

In[]:

class CollectBatchStats(tf.keras.callbacks.Callback):
 def __init__(self):
 self.batch_losses = []
 self.batch_acc = []

 def on_batch_end(self, batch, logs=None):
 self.batch_losses.append(logs['loss'])
 self.batch_acc.append(logs['acc'])

Util Functions

Funtion that calculates the DICE coefficient. Important when calculates the different of two images

In[]:

def dice_coef(y_true, y_pred):
 """
 Dice = (2*|X & Y|)/ (|X|+ |Y|)
 = 2*sum(|A*B|)/(sum(A^2)+sum(B^2))
 ref: https://arxiv.org/pdf/1606.04797v1.pdf
 """
 intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
 return (2. * intersection + 1) / (K.sum(K.square(y_true),-1) + K.sum(K.square(y_pred),-1) + 1)

Function that calculates the DICE coefficient loss. Util for the LOSS function during the training of the model (for image in input and output)!

In[]:

def dice_coef_loss(y_true, y_pred):
 return 1-dice_coef(y_true, y_pred)

In[]:

def getStringPatientIndex(patient_index):
 p_id = str(patient_index)
 if len(p_id)==1: p_id = "0"+p_id

 return p_id

In[]:

def getSlicingWindow(img, startX, startY, M, N):
 return img[startX:startX+M,startY:startY+N]

For plotting the loss and accuracy of the trained model

In[]:

def plotLossAndAccuracy(history, idFunc, p_id):
 p_id = getStringPatientIndex(p_id)

 # Loss Curves
 plt.figure(figsize=[8,6])
 plt.plot(history.history['loss'],'r',linewidth=3.0)
 plt.plot(history.history['val_loss'],'b',linewidth=3.0)
 plt.legend(['Training loss', 'Validation Loss'],fontsize=10)
 plt.xlabel('Epochs ',fontsize=16)
 plt.ylabel('Loss',fontsize=16)
 plt.title('Loss Curves',fontsize=16)

 plt.savefig(SAVED_PLOTS_PATH+idFunc+"_Loss_"+p_id+"_"+str(SAMPLES)+"_"+str(M)+"x"+str(N)+".png")

 # Accuracy Curves
 key = "acc"
 if DTYPE==dtypes[2]: key = "dice_coef"

 plt.figure(figsize=[8,6])
 plt.plot(history.history[key],'r',linewidth=3.0)
 plt.plot(history.history["val_"+key],'b',linewidth=3.0)
 plt.legend(['Training Accuracy', 'Validation Accuracy'],fontsize=10)
 plt.xlabel('Epochs ',fontsize=16)
 plt.ylabel('Accuracy',fontsize=16)
 plt.title('Accuracy Curves',fontsize=16)

 plt.savefig(SAVED_PLOTS_PATH+idFunc+"_Acc_"+p_id+"_"+str(SAMPLES)+"_"+str(M)+"x"+str(N)+".png")

Save the trained model and its relative weights

In[]:

def saveModelAndWeight(model, idFunc, p_id, filename_model, filename_model_weights):
 p_id = getStringPatientIndex(p_id)
 # serialize model to JSON
 model_json = model.to_json()
 with open(filename_model, "w") as json_file:
 json_file.write(model_json)
 # serialize weights to HDF5
 model.save_weights(filename_model_weights)
 print("Saved model to disk")

Function to test the model `NOT USED OTHERWISE`

In[]:

def initTestingDataFrame():
 patientList = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11"]
 testingList = []
 for sample in range(0, SAMPLES*2):
 if sample<SAMPLES:
 rand_pixels = np.random.randint(0, 50, (NUMBER_OF_IMAGE_PER_SECTION, M, N))
 label = LABELS[0]
 else:
 rand_pixels = np.random.randint(180, 255, (NUMBER_OF_IMAGE_PER_SECTION, M, N))
 label = LABELS[1]

 testingList.append((sample, random.choice(patientList), label, rand_pixels, 100))

 np.random.shuffle(testingList)
 train_df = pd.DataFrame(testingList, columns=['ID', 'patient_id', 'label', 'pixels', 'percentage'])
 train_df['label_code'] = train_df.label.map({LABELS[0]:0, LABELS[1]:1})

 return train_df

Function to lead the saved dataframe based on the type of `DTYPE`.

In[]:

def loadTrainingDataframe(testing_id=None):
 global DTYPE
 train_df = pd.DataFrame(columns=['patient_id', 'label', 'pixels', 'ground_truth', "label_code"])
 if DTYPE==dtypes[1] or DTYPE==dtypes[2]: # "3D_complete", "UNET"
 frames = [train_df]
 for index in PATIENT_ID:
 p_id = getStringPatientIndex(index)
 filename_train = SCRIPT_PATH+"trainComplete"+p_id+".h5"
 if os.path.exists(filename_train):
 print('Loading TRAIN dataframe from {0}...'.format(filename_train))
 suffix = "_DATA_AUGMENTATION" if DATA_AUGMENTATION else ""
 if testing_id==p_id:
 # take the normal dataset for the testing patient instead the augmented one...
 print("---> Load normal dataset for patient {0}".format(testing_id))
 suffix= ""

 tmp_df = pd.read_hdf(filename_train, key="X_"+str(M)+"x"+str(N)+"_"+str(SLICING_PIXELS) + suffix)
 frames.append(tmp_df)
 train_df = pd.concat(frames)
 else:
 filename_train = SCRIPT_PATH+"train.h5"
 if os.path.exists(filename_train):
 print('Loading TRAIN dataframe from {0}...'.format(filename_train))
 train_df = pd.read_hdf(filename_train, "X_"+DTYPE+"_"+str(SAMPLES)+"_"+str(M)+"x"+str(N))

 return train_df

Function to divide the dataframe in train and test based on the patient id; plus it reshape the pixel array and initialize the model.

In[]:

def prepareAndStartModel(train_df, test_patient):
 P_id = getStringPatientIndex(test_patient)

 Y, test_indices = None, None

 train_indices = np.nonzero((train_df.patient_id.values != P_id))[0]

 validate_indices = np.nonzero((train_indices%10 == 0))[0]
 train_indices = np.nonzero((train_indices%10 != 0))

 if TEST and SUPERVISED_TESTING: test_indices = np.nonzero((train_df.patient_id.values == P_id))[0]

 # 3D
 X = np.array([np.array(a).reshape(M,N,NUMBER_OF_IMAGE_PER_SECTION) for a in train_df.pixels.values[train_indices]])
 X_val = np.array([np.array(a).reshape(M,N,NUMBER_OF_IMAGE_PER_SECTION) for a in train_df.pixels.values[validate_indices]])
 if TEST and SUPERVISED_TESTING: Y = np.array([np.array(a).reshape(M,N,NUMBER_OF_IMAGE_PER_SECTION) for a in train_df.pixels.values[test_indices]])

 X = X.reshape((X.shape[0], X.shape[1], X.shape[2], X.shape[3], 1))
 X_val = X_val.reshape((X_val.shape[0], X_val.shape[1], X_val.shape[2], X_val.shape[3], 1))
 if TEST and SUPERVISED_TESTING: Y = Y.reshape((Y.shape[0], Y.shape[1], Y.shape[2], Y.shape[3], 1))

 # Initialize the models
 training, testing = initializeModels(train_df, test_patient, X, train_indices, X_val, validate_indices, Y, test_indices)

 return training, testing

In[]:

def initializeModels(train_df, test_patient, X, train_indices, X_val, validate_indices, Y, test_indices):
 global FUNC_MODELS

 trainingListScores, testingListScores = dict(), dict()

 for func in FUNC_MODELS:
 trainingListScores[func.__name__] = list()
 testingListScores[func.__name__] = list()
 print("Running function model: {0}".format(func.__name__))

 if SUPERVISED_TESTING:
 training_score, testing_score = func(train_df, test_patient, X, train_indices, X_val, validate_indices, Y, test_indices)
 if training_score!=None: trainingListScores[func.__name__].append(training_score)
 if testing_score!=None: testingListScores[func.__name__].append(testing_score)
 else: # unsupervised testing
 for p_id in PATIENT_ID:
 training_score, testing_score = func(train_df, p_id, X, train_indices, X_val, validate_indices, Y, test_indices, test_patient)
 if training_score!=None: trainingListScores[func.__name__].append(training_score)
 if testing_score!=None: testingListScores[func.__name__].append(testing_score)

 return trainingListScores, testingListScores

In[]:

def getScoresModelSGD3DBatchNorm(train_df, test_patient, X, train_indices, X_val, validate_indices, Y, test_indices, unsupervised_patient=None):
 idFunc = DTYPE
 loss_val = None
 training = None

 if DTYPE==dtypes[0]:
 prefix = "getModel"
 elif DTYPE==dtypes[1]:
 if model_ID==1: prefix = "getConvolutionalModel333"
 elif model_ID==2: prefix = "getModel(X)"
 elif model_ID==3: prefix = "getShrinkModel"
 elif DTYPE==dtypes[2]:
 prefix = "getUNETModel"

 idFunc+=("_"+prefix)
 if OPTIMIZER=="ADAM": idFunc+=("_"+OPTIMIZER)

 if SIGMOID_ACT and DTYPE==dtypes[2]: idFunc += "_SIGM"

 suffix = "_DATA_AUGMENTATION" if DATA_AUGMENTATION else ""
 idFunc+=suffix

 training_score, testing_score = None, None
 num_epochs = EPOCHS
 p_id = getStringPatientIndex(test_patient)
 saved_modelname = SAVED_MODEL_PATH+idFunc+"_"+p_id+"_"+str(SAMPLES)+"_"+str(M)+"x"+str(N)+".json"
 saved_weightname = SAVED_MODEL_PATH+idFunc+"_"+p_id+"_"+str(SAMPLES)+"_"+str(M)+"x"+str(N)+".h5"

 if DTYPE==dtypes[1] or DTYPE==dtypes[2]:
 saved_modelname = SAVED_MODEL_PATH+idFunc+"_"+p_id+"_"+str(SLICING_PIXELS)+"_"+str(M)+"x"+str(N)+".json"
 saved_weightname = SAVED_MODEL_PATH+idFunc+"_"+p_id+"_"+str(SLICING_PIXELS)+"_"+str(M)+"x"+str(N)+".h5"

 # Boolean to understand if the model and weight are already saved
 isModelSaved = os.path.isfile(saved_modelname) and os.path.isfile(saved_weightname)

 # Transform the labels in categorical because of the loss function !
 if DTYPE==dtypes[0] or DTYPE==dtypes[1]:
 train_labels = to_categorical(train_df.label_code.values[train_indices], num_classes=len(LABELS))
 validate_labels = to_categorical(train_df.label_code.values[validate_indices], num_classes=len(LABELS))
 if TEST and SUPERVISED_TESTING: test_labels = to_categorical(train_df.label_code.values[test_indices], num_classes=len(LABELS))
 elif DTYPE==dtypes[2]:
 train_labels = np.array([np.array(a).reshape(M,N) for a in train_df.ground_truth.values[train_indices]])
 validate_labels = np.array([np.array(a).reshape(M,N) for a in train_df.ground_truth.values[validate_indices]])
 if TEST and SUPERVISED_TESTING: test_labels = np.array([np.array(a).reshape(M,N) for a in train_df.ground_truth.values[test_indices]])
 if SIGMOID_ACT:
 # convert the label in [0, 1] values
 train_labels = train_labels.astype('float32')
 validate_labels = validate_labels.astype('float32')
 if TEST and SUPERVISED_TESTING: test_labels = test_labels.astype('float32')
 train_labels /= 255.
 validate_labels /= 255.
 if TEST and SUPERVISED_TESTING: test_labels /= 255.

 # Check if the model was already trained and saved
 if isModelSaved:
 # load json and create model
 json_file = open(saved_modelname, 'r')
 loaded_model_json = json_file.read()
 json_file.close()
 model = model_from_json(loaded_model_json)
 # load weights into new model
 model.load_weights(saved_weightname)
 num_epochs = 1 if EPOCHS==50 else EPOCHS
 print('-'*90)
 print("MODEL LOADED FROM DISK!")
 print('-'*90)
 else:
 # Otherwise, initialize the model
 if DTYPE==dtypes[0]:
 model = getModel(X)
 elif DTYPE==dtypes[1]:
 if model_ID==1: model = getConvolutionalModel333(X)
 elif model_ID==2: model = getModel(X)
 elif model_ID==3: model = getShrinkModel(X)
 elif DTYPE==dtypes[2]:
 model = getUNETModel(X)

 if VERBOSE and test_patient==PATIENT_ID[0]: print(model.summary())

 optim = tf.keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
 if OPTIMIZER=="ADAM": optim = tf.keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

 if DTYPE==dtypes[2]:
 model.compile(optimizer=optim, loss=dice_coef_loss, metrics=[dice_coef])
 class_weights = None
 sample_weights = train_df.label.map({LABELS[0]:N_TOT-N_BACKGROUND, LABELS[1]:N_TOT-N_BRAIN, LABELS[2]:N_TOT-N_PENUMBRA, LABELS[3]:N_TOT-N_CORE})
 sample_weights = sample_weights.values[train_indices]
 else:
 model.compile(optimizer=optim, loss='categorical_crossentropy', metrics=['accuracy'])
 if DTYPE==dtypes[0]:
 class_weights = class_weight.compute_class_weight('balanced', np.unique(train_labels[:,0]), train_labels[:,0])
 sample_weights = None
 elif DTYPE==dtypes[1]:
 class_weights = None
 sample_weights = train_df.label.map({LABELS[0]:N_TOT-N_BACKGROUND, LABELS[1]:N_TOT-N_BRAIN, LABELS[2]:N_TOT-N_PENUMBRA, LABELS[3]:N_TOT-N_CORE})
 sample_weights = sample_weights.values[train_indices]

 # Train and save the model only if it was not saved before !
 if not isModelSaved or TRAIN_AGAIN:

 fileToSave = open(SAVED_TEXT_PATH+str(p_id)+"_"+idFunc+".txt", "a+")
 fileToSave.close()

 callback=[batch_stats]
 if SIGMOID_ACT: callback=None

 training = model.fit(X,
 train_labels,
 epochs=num_epochs,
 callbacks=callback,
 shuffle=True,
 validation_data=(X_val, validate_labels),
 class_weight=class_weights,
 sample_weight=sample_weights,
 verbose=VERBOSE)

 key = "acc"
 if DTYPE==dtypes[2]: key = "dice_coef"
 training_score = round(training.history[key][num_epochs-1], 6)

 loss_val = round(training.history["loss"][num_epochs-1], 6)

 # Evaluate the testing score iif the TEST flag is set to True
 if TEST:
 if SUPERVISED_TESTING: testing_score = evaluateModelWithCategorics(model, Y, loss_val, test_labels, training_score, p_id, idFunc)
 if DTYPE==dtypes[1] or DTYPE==dtypes[2]:
 if SUPERVISED_TESTING: predictAndSaveImages(model, p_id, idFunc)
 else:
 if unsupervised_patient!=None:
 unsupervised_patient= getStringPatientIndex(unsupervised_patient)
 predictAndSaveImages(model, unsupervised_patient, idFunc, "_"+p_id)
 # Save the model and weight iif the SAVE flag is set to True
 if SAVE:
 saveModelAndWeight(model, idFunc, test_patient, saved_modelname, saved_weightname)
 # Plot and save the training and testing loss and accuracy iif the isModelSaved flag is set to True
 if training!=None:
 plotLossAndAccuracy(training, idFunc, p_id)

 return training_score, testing_score

Function that creates a model:
- INPUT: an image (M,N,NUMBER_OF_IMAGE_PER_SECTION)
- each layer convolve the image with a kernel of (3,3,3)
- OUTPUT: label (from 0 to len(LABELS))
- based on the number of labels can return:
- 0 [outside], 1 [inside]
- 0 [background], 1 [brain], 2 [penumbra], 3 [core]

In[]:

Function model N. 1
def getConvolutionalModel333(X):
 model = tf.keras.Sequential()
 model.add(layers.Conv3D(16, kernel_size=(3,3,3), activation='relu', input_shape=X.shape[1:], padding='same'))
 model.add(layers.BatchNormalization())
 model.add(layers.Conv3D(32, kernel_size=(3,3,3), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())

 model.add(layers.MaxPooling3D((2,2,2)))
 model.add(layers.Dropout(0.20))

 model.add(layers.Conv3D(32, (3,3,3), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())
 model.add(layers.Conv3D(32, (3,3,3), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())

 model.add(layers.MaxPooling3D((2,2,2)))
 model.add(layers.Dropout(0.30))

 model.add(layers.Conv3D(64, (3,3,3), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())

 model.add(layers.MaxPooling3D(pool_size=(2,2,2)))
 model.add(layers.Dropout(0.40))

 model.add(layers.Flatten())
 model.add(layers.Dense(100, activation='relu'))
 #model.add(layers.BatchNormalization())
 model.add(layers.Dropout(0.50))
 model.add(layers.Dense(len(LABELS), activation='softmax'))

 return model

Function that creates a model:
- INPUT: an image (M,N,NUMBER_OF_IMAGE_PER_SECTION)
- every layer reduce the image by 2 pixels
- OUTPUT: label (from 0 to len(LABELS))
- based on the number of labels can return:
- 0 [outside], 1 [inside]
- 0 [background], 1 [brain], 2 [penumbra], 3 [core]

In[]:

Function model N. 2
def getModel(X):
 model = tf.keras.Sequential()
 model.add(layers.Conv3D(16, kernel_size=(3,3,NUMBER_OF_IMAGE_PER_SECTION), activation='relu', input_shape=X.shape[1:], padding='same'))
 model.add(layers.BatchNormalization())
 #model.add(layers.Conv3D(32, kernel_size=(3,3,NUMBER_OF_IMAGE_PER_SECTION), activation='relu', padding='same'))
 #model.add(layers.BatchNormalization())

 model.add(layers.MaxPooling3D((2,2,2)))
 model.add(layers.Dropout(0.20))

 model.add(layers.Conv3D(32, (3,3,NUMBER_OF_IMAGE_PER_SECTION), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())
 #model.add(layers.Conv3D(32, (3,3,NUMBER_OF_IMAGE_PER_SECTION), activation='relu', padding='same'))
 #model.add(layers.BatchNormalization())

 model.add(layers.MaxPooling3D((2,2,2)))
 model.add(layers.Dropout(0.30))

 model.add(layers.Conv3D(64, (3,3,NUMBER_OF_IMAGE_PER_SECTION), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())

 model.add(layers.MaxPooling3D(pool_size=(2,2,2)))
 model.add(layers.Dropout(0.40))

 model.add(layers.Flatten())
 model.add(layers.Dense(100, activation='relu'))
 #model.add(layers.BatchNormalization())
 model.add(layers.Dropout(0.50))
 model.add(layers.Dense(len(LABELS), activation='softmax'))

 return model

Function that creates a model:
- INPUT: an image (M,N,NUMBER_OF_IMAGE_PER_SECTION)
- the first layer shrink the image from (M,N,NUMBER_OF_IMAGE_PER_SECTION) to (M,N,1)
- OUTPUT: label (from 0 to len(LABELS))
- based on the number of labels can return:
- 0 [outside], 1 [inside]
- 0 [background], 1 [brain], 2 [penumbra], 3 [core]

In[]:

Function model N. 3
def getShrinkModel(X):
 model = tf.keras.Sequential()
 model.add(layers.Conv3D(16, kernel_size=(3,3,NUMBER_OF_IMAGE_PER_SECTION), activation='relu', input_shape=X.shape[1:], padding='same'))
 model.add(layers.BatchNormalization())
 model.add(layers.MaxPooling3D((2,2,NUMBER_OF_IMAGE_PER_SECTION)))
 model.add(layers.Dropout(0.20))

 model.add(layers.Conv3D(32, (3,3,1), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())
 model.add(layers.Conv3D(32, (3,3,1), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())

 model.add(layers.MaxPooling3D((2,2,1)))
 model.add(layers.Dropout(0.30))

 model.add(layers.Conv3D(64, (3,3,1), activation='relu', padding='same'))
 model.add(layers.BatchNormalization())

 model.add(layers.MaxPooling3D((2,2,1)))
 model.add(layers.Dropout(0.40))

 model.add(layers.Flatten())
 model.add(layers.Dense(100, activation='relu'))
 model.add(layers.BatchNormalization())
 model.add(layers.Dropout(0.50))
 model.add(layers.Dense(len(LABELS), activation='softmax'))

 return model

Function that creates a model (UNET):
- INPUT: an image (M,N,NUMBER_OF_IMAGE_PER_SECTION)
- OUTPUT: an image (M,N)
- based on the code: https://github.com/jocicmarko/ultrasound-nerve-segmentation/blob/master/train.py
- based on the article: https://arxiv.org/pdf/1505.04597.pdf

In[]:

def getUNETModel(X):
 #Â from (M,N,30) to (M,N,1)
 input_x = layers.Input(shape=X.shape[1:], sparse=False)
 conv_1 = layers.Conv3D(16, kernel_size=(3,3,NUMBER_OF_IMAGE_PER_SECTION), activation='relu', padding='same')(input_x)
 conv_1 = layers.BatchNormalization()(conv_1)
 pool_1 = layers.AveragePooling3D((1,1,NUMBER_OF_IMAGE_PER_SECTION))(conv_1)
 #drop_1 = layers.Dropout(0.20)(pool_1)

 # from (M,N,1) to (M/2,N/2,1)
 conv_2 = layers.Conv3D(32, (3,3,1), activation='relu', padding='same')(pool_1)
 conv_2 = layers.BatchNormalization()(conv_2)
 conv_2 = layers.Conv3D(64, (3,3,1), activation='relu', padding='same')(conv_2)
 conv_2 = layers.BatchNormalization()(conv_2)
 pool_2 = layers.MaxPooling3D((2,2,1))(conv_2)
 #drop_2 = layers.Dropout(0.30)(pool_2)

 # from (M/2,N/2,1) to (M/4,N/4,1)
 conv_3 = layers.Conv3D(64, (3,3,1), activation='relu', padding='same')(pool_2)
 conv_3 = layers.BatchNormalization()(conv_3)
 conv_3 = layers.Conv3D(128, (3,3,1), activation='relu', padding='same')(conv_3)
 conv_3 = layers.BatchNormalization()(conv_3)
 pool_3 = layers.MaxPooling3D((2,2,1))(conv_3)
 #drop_3 = layers.Dropout(0.40)(pool_3)

 # last convolutional layers
 conv_4 = layers.Conv3D(128, (3,3,1), activation='relu', padding='same')(pool_3)
 conv_4 = layers.BatchNormalization()(conv_4)
 conv_4 = layers.Conv3D(256, (3,3,1), activation='relu', padding='same')(conv_4)
 conv_4 = layers.BatchNormalization()(conv_4)

 # first UP-convolutional layer: from (M/4,N/4,1) to (M/2,N/2,2)
 up_1 = layers.concatenate([layers.Conv3DTranspose(128, kernel_size=(2,2,1), strides=(2,2,1), activation='relu', padding='same')(conv_4), conv_3], axis=3)
 conv_5 = layers.Conv3D(128, (3,3,1), activation='relu', padding='same')(up_1)
 conv_5 = layers.BatchNormalization()(conv_5)
 conv_5 = layers.Conv3D(64, (3,3,1), activation='relu', padding='same')(conv_5)
 conv_5 = layers.BatchNormalization()(conv_5)
 pool_4 = layers.MaxPooling3D((1,1,2))(conv_5)
 #drop_4 = layers.Dropout(0.40)(pool_4)

 # second UP-convolutional layer: from (M/2,N/2,2) to (M,N,2)
 up_2 = layers.concatenate([layers.Conv3DTranspose(64, kernel_size=(2,2,1), strides=(2,2,1), activation='relu', padding='same')(pool_4), conv_2], axis=3)
 conv_6 = layers.Conv3D(32, (3,3,1), activation='relu', padding='same')(up_2)
 conv_6 = layers.BatchNormalization()(conv_6)
 conv_6 = layers.Conv3D(32, (3,3,1), activation='relu', padding='same')(conv_6)
 conv_6 = layers.BatchNormalization()(conv_6)
 # from (M,N,2) to (M,N,1)
 pool_5 = layers.MaxPooling3D((1,1,2))(conv_6)
 #drop_5 = layers.Dropout(0.30)(pool_5)

 activ = "relu"
 if SIGMOID_ACT: activ = "sigmoid"
 # last convulutional layer; plus reshape from (M,N,1) to (M,N)
 conv_7 = layers.Conv3D(1, (1,1,1), activation=activ, padding='same')(pool_5)
 y = layers.Reshape((M,N))(conv_7)

 model = models.Model(inputs=input_x, outputs=y)

 return model

In[]:

def evaluateModelWithCategorics(model, Y, loss_val, test_labels, training_score, p_id, idFunc):
 # Test the model with the selected patient
 testing = model.evaluate(Y, test_labels, verbose=VERBOSE)

 loss_testing_score = round(testing[0], 6)
 testing_score = round(testing[1], 6)
 print("---")
 if training_score!=None: print("TRAIN %s: %.2f%%" % (model.metrics_names[1], training_score*100))
 print("TEST %s: %.2f%%" % (model.metrics_names[1], testing_score*100))
 print("---")

 with open(SAVED_TEXT_PATH+str(p_id)+"_"+idFunc+".txt", "a+") as text_file:
 text_file.write("\n ---")
 if training_score!=None: text_file.write("\n TRAIN %s: %.2f%%" % (model.metrics_names[1], training_score*100))
 text_file.write("\n TEST %s: %.2f%%" % (model.metrics_names[1], testing_score*100))
 text_file.write("\n ---")
 text_file.write("\n TEST LOSS %s: %.2f%%" % (model.metrics_names[1], loss_testing_score))
 text_file.write("\n ---")
 text_file.write("\n LOSS: " + str(loss_val))

 return testing_score

Post-processing

In[]:

def getRealLabel(labelledMatrix, startingX, startingY, M, N):
 realLabelledWindow = getSlicingWindow(labelledMatrix, startingX, startingY, M, N)
 binaryBackgroundMatrix = realLabelledWindow>=250
 binaryBrainMatrix = realLabelledWindow>=0
 binaryPenumbraMatrix = realLabelledWindow>=30
 binaryCoreMatrix = realLabelledWindow>=100

 valueClasses = dict()

 # extract the core area but not the brain area (= class 3)
 binaryCoreNoSkull = binaryBackgroundMatrix ^ binaryCoreMatrix # background XOR core
 valueClasses[LABELS[3]] = sum(sum(binaryCoreNoSkull))
 # extract the penumbra area but not the brain area (= class 2)
 binaryPenumbraNoSkull = binaryCoreMatrix ^ binaryPenumbraMatrix # penumbra XOR core
 valueClasses[LABELS[2]] = sum(sum(binaryPenumbraNoSkull))
 # extract the brain area but not the background (= class 1)
 binaryBrainMatrixNoBackground = binaryBrainMatrix ^ binaryPenumbraMatrix # brain XOR penumbra
 valueClasses[LABELS[1]] = sum(sum(binaryBrainMatrixNoBackground))
 # (= class 0)
 valueClasses[LABELS[0]] = sum(sum(binaryBackgroundMatrix))

 # the max of these values is the class to set for the binary class (Y)
 realLabel = max(valueClasses.items(), key=operator.itemgetter(1))[0]
 return realLabel

Function to retrive the table of confusion containing `TP`, `TN`, `FP`, `FN`.

In[]:

def getConfusionTable(confusionMatrix, i):
 classConfMatrix = np.zeros((2,2))
 indexesToCheck = [x for x in range(len(LABELS)) if x!=i] # list of index to check

 classConfMatrix[0][0] = confusionMatrix[i][i] # True Positive
 classConfMatrix[0][1] = sum(sum(confusionMatrix[np.ix_([i], indexesToCheck)])) # False Positive
 classConfMatrix[1][0] = sum(confusionMatrix[np.ix_(indexesToCheck, [i])])[0] # False Negative
 classConfMatrix[1][1] = sum(sum(confusionMatrix[np.ix_(indexesToCheck, indexesToCheck)])) # True Negative

 return classConfMatrix.astype(int)

Function to get statistical information, like `recall`, `precision`, ...

In[]:

def getStatisticalInfo(dictForInfor, tableConfusion):

 statInfor = ["Recall", "FNR", "Selectivity", "FPR", "Precision", "FDR", "NPV", "FOR", "Accuracy", "F1_score"]
 tp = tableConfusion[0][0]
 fp = tableConfusion[0][1]
 fn = tableConfusion[1][0]
 tn = tableConfusion[1][1]

 recall = tp/(tp+fn)
 if math.isnan(recall): recall=0
 false_negative_rate = 1 - recall
 if math.isnan(false_negative_rate): false_negative_rate=0
 selectivity = tn/(tn+fp)
 if math.isnan(selectivity): selectivity=0
 false_positive_rate = 1 - selectivity
 if math.isnan(false_positive_rate): false_positive_rate=0
 precision = tp/(tp+fp)
 if math.isnan(precision): precision=0
 false_discovery_rate = 1 - precision
 if math.isnan(false_discovery_rate): false_discovery_rate=0
 negative_predicted_value = tn/(tn+fn)
 if math.isnan(negative_predicted_value): negative_predicted_value=0
 false_omission_rate = 1 - negative_predicted_value
 if math.isnan(false_omission_rate): false_omission_rate=0

 accuracy = (tp+tn)/(tp+fp+fn+tn)
 if math.isnan(accuracy): accuracy=0
 f1_score = (2*tp)/((2*tp)+fp+fn)
 if math.isnan(f1_score): f1_score=0

 for infor in statInfor:
 if infor not in dictForInfor.keys(): dictForInfor[infor] = []

 if infor=="Recall": dictForInfor[infor].append(str(round(recall,3)))
 if infor=="FNR": dictForInfor[infor].append(str(round(false_negative_rate,3)))
 if infor=="Selectivity": dictForInfor[infor].append(str(round(selectivity,3)))
 if infor=="FPR": dictForInfor[infor].append(str(round(false_positive_rate,3)))
 if infor=="Precision": dictForInfor[infor].append(str(round(precision,3)))
 if infor=="FDR": dictForInfor[infor].append(str(round(false_discovery_rate,3)))
 if infor=="NPV": dictForInfor[infor].append(str(round(negative_predicted_value,3)))
 if infor=="FOR": dictForInfor[infor].append(str(round(false_omission_rate,3)))
 if infor=="Accuracy": dictForInfor[infor].append(str(round(accuracy,3)))
 if infor=="F1_score": dictForInfor[infor].append(str(round(f1_score,3)))

 print("\n Statistical Information:")
 print("\t Recall: {0}".format(str(round(recall,3))))
 print("\t FNR: {0}".format(str(round(false_negative_rate,3))))
 print("\t Selectivity: {0}".format(str(round(selectivity,3))))
 print("\t FPR: {0}".format(str(round(false_positive_rate,3))))
 print("\t Precision: {0}".format(str(round(precision,3))))
 print("\t FDR: {0}".format(str(round(false_discovery_rate,3))))
 print("\t NPV: {0}".format(str(round(negative_predicted_value,3))))
 print("\t FOR: {0}".format(str(round(false_omission_rate,3))))
 print("\t Accuracy: {0}".format(str(round(accuracy,3))))
 print("\t F1_score: {0}".format(str(round(f1_score,3))))

 return dictForInfor

Function to recreate the predicted image and save it.

In[]:

def predictAndSaveImages(model, p_id, idFunc, supplement_id=""):
 idPatientToSave = p_id+supplement_id
 if not os.path.isdir(PREFIX_SAVED_IMAGE+idPatientToSave+"_"+idFunc): os.makedirs(PREFIX_SAVED_IMAGE+idPatientToSave+"_"+idFunc)

 patientFolder = SAVE_REGISTERED_FOLDER+"PA"+p_id+"/"

 totConfusionMatrix = np.zeros(shape=(4,4), dtype=int)
 totRealConfusionMatrix = np.zeros(shape=(4,4), dtype=int)

 average_prec_list, jaccard_list = [], []

 for subfolder in glob.glob(patientFolder+"*/"):
 idx = getStringPatientIndex(subfolder.replace(patientFolder, '').replace("/", "")) # image index
 labelled_image = cv2.imread(LABELLED_IMAGES_FOLDER_LOCATION+"Patient"+p_id+"/"+p_id+idx+".png", 0)
 confusionMatrix = np.zeros(shape=(4,4), dtype=int)
 realConfusionMatrix = np.zeros(shape=(4,4), dtype=int)

 startingX, startingY = 0, 0
 imagePredicted = np.zeros(shape=(IMAGE_WIDTH, IMAGE_HEIGHT, 3), dtype=np.uint8)
 testImagePredict = np.zeros(shape=(IMAGE_WIDTH, IMAGE_HEIGHT), dtype=np.uint8)

 imagesDict = {} # faster access to the images
 for imagename in np.sort(glob.glob(subfolder+"*.png")): # sort the images !
 filename = imagename.replace(subfolder, '')
 if not SUPERVISED_TESTING:
 image = cv2.imread(imagename, 0)
 imagesDict[filename] = image
 else:
 if filename != "01.png": # don't take the first image (the manually annotated one)
 image = cv2.imread(imagename, 0)
 imagesDict[filename] = image

 while True:
 pixels = np.zeros(shape=(NUMBER_OF_IMAGE_PER_SECTION,M,N))
 count = 0
 row, column = 0, 0

 # for each image
 for imagename in np.sort(glob.glob(subfolder+"*.png")):
 filename = imagename.replace(subfolder, '')
 if not SUPERVISED_TESTING:
 image = imagesDict[filename]
 slicingWindow = getSlicingWindow(image, startingX, startingY, M, N)
 pixels[count] = slicingWindow
 count+=1
 else:
 if filename != "01.png":
 image = imagesDict[filename]
 slicingWindow = getSlicingWindow(image, startingX, startingY, M, N)
 pixels[count] = slicingWindow
 count+=1

 pixels = pixels.reshape(1, pixels.shape[1], pixels.shape[2], pixels.shape[0], 1)

 if DTYPE==dtypes[1]:
 labelPredicted = model.predict(pixels)[0]
 # Transform the slicingWindowPredicted into a touple of three dimension!
 threeDimensionSlicingWindow = np.ones(shape=(M,N,3), dtype=np.uint8)
 slicingWindowPredicted = np.ones(shape=(M,N), dtype=np.uint8)
 # from: [9.92558718e-01 7.18044024e-03 2.49875709e-04 1.10076335e-05] -> [1,0,0,0]
 approxLabel = [int(round(x)) for x in labelPredicted]

 if approxLabel==[1,0,0,0]:
 approxLabel = 255# background ~= 255
 column = 0
 elif approxLabel==[0,1,0,0]:
 approxLabel = 0 # brain ~= 0
 column = 1
 elif approxLabel==[0,0,1,0]:
 approxLabel = 76 # penumbra ~= 76
 column = 2
 elif approxLabel==[0,0,0,1]:
 approxLabel = 150 # core ~= 150
 column = 3
 else:
 maxIndex = labelPredicted.tolist().index(max(labelPredicted))
 if maxIndex==0: approxLabel = 255
 elif maxIndex==1: approxLabel = 0
 elif maxIndex==2: approxLabel = 76
 elif maxIndex==3: approxLabel = 150

 threeDimensionSlicingWindow = threeDimensionSlicingWindow*approxLabel
 slicingWindowPredicted = slicingWindowPredicted*approxLabel

 # Check and complete the confusion matrix (for information)
 if SUPERVISED_TESTING:
 realLabel = getRealLabel(labelled_image, startingX, startingY, M, N)
 if realLabel==LABELS[0]: row=0
 elif realLabel==LABELS[1]: row=1
 elif realLabel==LABELS[2]: row=2
 elif realLabel==LABELS[3]: row=3

 confusionMatrix[row][column] += 1
 totConfusionMatrix[row][column] += 1
 realConfusionMatrix[row][row] += 1
 totRealConfusionMatrix[row][row] += 1

 ##
 # UNET
 ##
 elif DTYPE==dtypes[2]:
 slicingWindowPredicted = model.predict(pixels)[0]
 # Transform the slicingWindowPredicted into a touple of three dimension!
 threeDimensionSlicingWindow = np.zeros(shape=(slicingWindowPredicted.shape[0],slicingWindowPredicted.shape[1], 3), dtype=np.uint8)

 for r, _ in enumerate(slicingWindowPredicted):
 for c, pixel in enumerate(slicingWindowPredicted[r]):
 mult=1
 if SIGMOID_ACT: mult=255
 threeDimensionSlicingWindow[r][c] = (pixel*mult,)*3

 # Create the image
 imagePredicted[startingX:startingX+M, startingY:startingY+N] = threeDimensionSlicingWindow
 testImagePredict[startingX:startingX+M, startingY:startingY+N] = slicingWindowPredicted

 if startingX>=IMAGE_WIDTH-M and startingY>=IMAGE_HEIGHT-N: # if we reach the end of the image, break the while loop.
 break
 # going to the next slicingWindow
 if startingY<IMAGE_HEIGHT-N: startingY+=N
 else:
 if startingX<IMAGE_WIDTH:
 startingY=0
 startingX+=M

 # save the image predicted in the specific folder
 cv2.imwrite(PREFIX_SAVED_IMAGE+idPatientToSave+"_"+idFunc+"/"+idx+".png", imagePredicted)

 print("OTHER STATISTICS: \n")
 img_reshape = labelled_image.reshape(512*512)

 # equalize the pixels
 for idx, pix in enumerate(img_reshape):
 if pix>0 and pix<=20: img_reshape[idx] = 0
 elif pix>20 and pix<=100: img_reshape[idx] = 76
 elif pix>100 and pix<=230: img_reshape[idx] = 150
 elif pix>230: img_reshape[idx] = 255

 pred_reshape = testImagePredict.reshape(512*512)
 print(np.unique(pred_reshape))
 if DTYPE==dtypes[2]:
 # equalize the pixels
 for idx, pix in enumerate(pred_reshape):
 if pix>0 and pix<=20: pred_reshape[idx] = 0
 elif pix>20 and pix<=100: pred_reshape[idx] = 76
 elif pix>100 and pix<=230: pred_reshape[idx] = 150
 elif pix>230: pred_reshape[idx] = 255

 print("prec score: ")
 prec = metrics.precision_score(img_reshape,pred_reshape, labels=[0, 76, 150, 255], average='macro')
 average_prec_list.append(prec)
 print(prec)
 print("\n jaccard score: ")
 print(metrics.jaccard_score(img_reshape,pred_reshape, average=None))
 jac = metrics.jaccard_score(img_reshape,pred_reshape, average='macro')
 jaccard_list.append(jac)
 print(jac)

 ##
 # CONFUSION MATRIX #
 ##
 # TOTAL summary of the confusion matrices
 if DTYPE==dtypes[1]:
 print('+'*100)
 print("\n TOTAL/AVERAGE CONFUSION MATRIX FOR PATIENT {0}:".format(p_id))
 print(np.transpose(totConfusionMatrix))
 latexForm = pd.DataFrame(np.transpose(totConfusionMatrix))
 print(latexForm.to_latex(index=False))
 print("\n TOTAL REAL CONFUSION MATRIX:")
 print(np.transpose(totRealConfusionMatrix))

 dictForInfor = {}

 for i in range(len(LABELS)):
 print("\n 2x2 TOTAL/AVERAGE Confusion matrix for class {0}:".format(LABELS[i]))
 classConfMatrix = getConfusionTable(totConfusionMatrix, i)
 print(classConfMatrix)
 dictForInfor = getStatisticalInfo(dictForInfor, classConfMatrix)

 print(dictForInfor)

 inforInLatex = pd.DataFrame(dictForInfor)
 print(inforInLatex.to_latex(index=False))
 print('+'*100)

 with open(SAVED_TEXT_PATH+str(p_id)+"_"+idFunc+".txt", "a+") as text_file:
 text_file.write("\n TOTAL/AVERAGE CONFUSION MATRIX FOR PATIENT {0}:".format(p_id))
 text_file.write("\n")
 text_file.write(str(np.transpose(totConfusionMatrix)))
 text_file.write("\n")
 text_file.write(str(latexForm.to_latex(index=False)))
 text_file.write("\n")
 text_file.write(str(inforInLatex.to_latex(index=False)))
 text_file.write("\n")

 with open(SAVED_TEXT_PATH+str(p_id)+"_"+idFunc+".txt", "a+") as text_file:
 text_file.write("OTHER STATISTICS: \n")
 text_file.write("prec score: ")
 text_file.write(str(float(sum(average_prec_list)/len(average_prec_list))))
 text_file.write("\n jaccard score: ")
 text_file.write(str(float(sum(jaccard_list)/len(jaccard_list))))

Main part of the script

In[]:

batch_stats = CollectBatchStats()

In[]:

setup = setup = "SETUP: [[{4}]] \n \t MxN: {0}x{1} \n \t SAMPLES: {2} \n \t EPOCHS: {3}".format(str(M), str(N), str(SAMPLES), str(EPOCHS), DTYPE)
if DTYPE==dtypes[1] or DTYPE==dtypes[2]: setup = "SETUP: [[{4}]] \n \t MxN: {0}x{1} \n \t SLICING_PIXELS: {2} \n \t EPOCHS: {3}".format(str(M), str(N), str(SLICING_PIXELS), str(EPOCHS), DTYPE)

print('+'*90)
print(setup)
print('+'*90)

start = time.time()
if DEBUG: train_df = initTestingDataFrame()
else:
 if not DATA_AUGMENTATION: # load the dataset here only if it's not augmented
 train_df = loadTrainingDataframe()
 else:
 print("Data augmented training/testing... load the dataset differently for each patient")
end = time.time()
print("Total time: {0}s".format(round(end-start, 3)))

In[]:

if not DATA_AUGMENTATION: train_df.head(5)

In[]:

if not DATA_AUGMENTATION:
 N_BACKGROUND = len([x for x in train_df.label if x=="background"])
 N_BRAIN = len([x for x in train_df.label if x=="brain"])
 N_PENUMBRA = len([x for x in train_df.label if x=="penumbra"])
 N_CORE = len([x for x in train_df.label if x=="core"])
 N_TOT = train_df.shape[0]

 print('+'*90)
 print("SUMMARY: \n")
 print("\t N. Background: {0}".format(N_BACKGROUND))
 print("\t N. Brain: {0}".format(N_BRAIN))
 print("\t N. Penumbra: {0}".format(N_PENUMBRA))
 print("\t N. Core: {0}".format(N_CORE))
 print("\t Tot: {0}".format(N_TOT))
 print('+'*90)

In[]:

FUNC_MODELS = [getScoresModelSGD3DBatchNorm]

avg_train, avg_test, num_patient_checked = dict(), dict(), 0

for p_id in PATIENT_TO_TEST:

 if DATA_AUGMENTATION:
 train_df = loadTrainingDataframe(getStringPatientIndex(p_id))

 N_BACKGROUND = len([x for x in train_df.label if x=="background"])
 N_BRAIN = len([x for x in train_df.label if x=="brain"])
 N_PENUMBRA = len([x for x in train_df.label if x=="penumbra"])
 N_CORE = len([x for x in train_df.label if x=="core"])
 N_TOT = train_df.shape[0]

 print('+'*90)
 print("SUMMARY: \n")
 print("\t N. Background: {0}".format(N_BACKGROUND))
 print("\t N. Brain: {0}".format(N_BRAIN))
 print("\t N. Penumbra: {0}".format(N_PENUMBRA))
 print("\t N. Core: {0}".format(N_CORE))
 print("\t Tot: {0}".format(N_TOT))
 print('+'*90)

 print("Testing on patient: {0}".format(str(p_id)))
 trainingListScores, testingListScores = prepareAndStartModel(train_df, p_id)

 for func in FUNC_MODELS:
 # init dictionary
 if func.__name__ not in avg_train.keys(): avg_train[func.__name__] = 0
 if func.__name__ not in avg_test.keys(): avg_test[func.__name__] = 0

 if len(trainingListScores[func.__name__])>0 and len(testingListScores[func.__name__])>0:
 avg_train[func.__name__]+=sum(trainingListScores[func.__name__])
 avg_test[func.__name__]+=sum(testingListScores[func.__name__])
 num_patient_checked+=1

if TEST:
 for func in FUNC_MODELS:
 print("--------------------- {0} ".format(func.__name__))
 print("-"*90)
 print("AVERAGE TRAIN accuracy: %.2f%%" % (round((avg_train[func.__name__]*100)/(num_patient_checked/len(FUNC_MODELS)), 3)))
 print("AVERAGE TEST accuracy: %.2f%%" % (round((avg_test[func.__name__]*100)/(num_patient_checked/len(FUNC_MODELS)), 3)))
 print("-"*90)

In[]:

__MACOSX/._run_training.py

lucatomasetti
Allegato File
ThesisCode.7z

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Segmentation of infarcted regions in
Perfusion CT images by 3D deep

learning

Master’s Thesis in Computer Science
by

Luca Tomasetti

Internal Supervisor

Kjerst Engan

External Supervisor

Kathinka Dæhli Kurz

June 15, 2019

“All those moments will be lost in time, like tears in rain.”

Roy Batty, Blade Runner.

Abstract

This thesis explores different Convolutional Neural Network (CNN) approaches to classify
and segment infarcted regions from images taken through a Computed Tomography
Perfusion (CTP) from patients of the Stavanger’s hospital (SUS) affected by an ischemic
stroke. Also, it evaluates the accuracy and the loss functions of the images analyzed
through CNN. Furthermore, a segmentation approach, based on a U-Net model, is tested
to create, from scratch, a unique image containing a summary of the section of the brain
investigated with the different infarcted regions prediction. The purpose of this thesis
work is to find a fast and effective method to help doctors in their decisions during these
delicate and problematic situations.

Acknowledgements

I would like to genuinely thank both my supervisors, Kjersti Engan and Kathinka Dæhli
Kurz, for helping me in the past six months to realize this work, and for expressing their
passion and their dedication for this thesis.

I would also like to express my sincere gratitude to all my friends, constantly present
at all times during the realization of this thesis; I’m really thankful of all the moments
spent together, thank you.

Finally, a special mention goes to all members of my family, who were always there to
support me in all decisions, good and bad, made during my entire life. I know that it
can be very hard to understand some of my decisions, but you were, and will always be
there to help me make the right ones. This thesis was realized just for you, to show all
my love and my appreciation that I couldn’t demonstrate in the last two years, far away
from home.

Grazie da profondo del cuore.

viii

Contents

Abstract vi

Acknowledgements viii

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Definition . 2
1.3 Outline . 3

2 Background 5
2.1 Medical Background . 5

2.1.1 Hemorrhagic Stroke . 6
2.1.2 Ischemic Stroke . 7
2.1.3 Computed Tomography Perfusion 8
2.1.4 Parametric Maps derived from CTP 9

2.2 Technical Background . 13
2.2.1 Linear Regression . 14
2.2.2 Neural Network . 14
2.2.3 Deep Learning . 18
2.2.4 Deep Neural Networks . 19
2.2.5 Convolutional Neuron Network . 20
2.2.6 Layers of CNN . 21
2.2.7 U-Net . 23
2.2.8 Statistical Information . 24
2.2.9 Statistical Metrics . 26
2.2.10 K-Fold Cross-Validation . 27

3 Dataset & Image pre-processing 29
3.1 Dataset . 30

3.1.1 DICOM Standard . 31
3.1.2 General Overview of the Dataset 31
3.1.3 Annotated Regions . 32

3.2 Image pre-processing . 33
3.2.1 Rearrange Images . 33

ix

x CONTENTS

3.2.2 Register Images . 34
3.2.3 Skull Removal . 34

3.3 Contributions to the pre-processing steps 35
3.3.1 Contrast Enhancement . 35
3.3.2 Extract Annotated Regions . 36
3.3.3 Limitation of the dataset . 37

4 Tile Classification Approach 41
4.1 Introduction . 42

4.1.1 Existing Approaches/Baselines . 42
4.2 Post-processing . 43
4.3 Proposed Architectures . 44

4.3.1 Architecture 1 . 44
4.3.2 Architecture 2 . 45
4.3.3 Architecture 3 . 46

4.4 Experimental Setup and Dataset . 47
4.5 Analysis of results for a single test patient 48

4.5.1 Partial results for patient 2 with Architecture 1 48
4.5.2 Partial results for patient 2 with Architecture 2 52
4.5.3 Partial results for patient 2 with Architecture 3 55

4.6 Experimental Results . 57
4.6.1 Accuracy & Standard Deviation 57
4.6.2 Experimental Evaluation . 58

5 Pixel by Pixel Segmentation Approach 61
5.1 Introduction . 62
5.2 Existing Approaches/Baselines . 62
5.3 Analysis . 63
5.4 Proposed Architecture . 64
5.5 Experimental Setup and Data Set . 65
5.6 Post-processing . 65
5.7 Experimental Results . 66

5.7.1 Visualization Results . 66
5.7.2 Accuracy Results . 66

6 Results & Future Works 69
6.1 Results & Discussion . 70

6.1.1 Aggregate Confusion Matrices for Architecture 1 70
6.1.2 Aggregate Confusion Matrices for Architecture 2 71
6.1.3 Aggregate Confusion Matrices for Architecture 3 72
6.1.4 Aggregate Results for Architecture 4 73
6.1.5 Overall Results . 74

6.2 Future Works . 76

7 Conclusion 77

CONTENTS xi

List of Figures 78

List of Tables 81

A Results for Tile Classification Approach 83
A.1 Results for architecture 1 . 83

A.1.1 Patient 2 . 84
A.1.2 Patient 3 . 85
A.1.3 Patient 4 . 87
A.1.4 Patient 5 . 89
A.1.5 Patient 6 . 91
A.1.6 Patient 7 . 93
A.1.7 Patient 8 . 95
A.1.8 Patient 9 . 97
A.1.9 Patient 10 . 99
A.1.10 Patient 11 . 101

A.2 Results for architecture 2 . 103
A.2.1 Patient 2 . 103
A.2.2 Patient 3 . 104
A.2.3 Patient 4 . 106
A.2.4 Patient 5 . 108
A.2.5 Patient 6 . 110
A.2.6 Patient 7 . 112
A.2.7 Patient 8 . 114
A.2.8 Patient 9 . 116
A.2.9 Patient 10 . 118
A.2.10 Patient 11 . 120

A.3 Results for architecture 3 . 122
A.3.1 Patient 2 . 122
A.3.2 Patient 3 . 123
A.3.3 Patient 4 . 125
A.3.4 Patient 5 . 127
A.3.5 Patient 6 . 129
A.3.6 Patient 7 . 131
A.3.7 Patient 8 . 133
A.3.8 Patient 9 . 135
A.3.9 Patient 10 . 137
A.3.10 Patient 11 . 139

B Results for Pixel by Pixel Segmentation Approach 141
B.1 Results for U-net . 141

B.1.1 Patient 2 . 142
B.1.2 Patient 3 . 143
B.1.3 Patient 4 . 144
B.1.4 Patient 5 . 145
B.1.5 Patient 6 . 146
B.1.6 Patient 7 . 147

xii CONTENTS

B.1.7 Patient 8 . 148
B.1.8 Patient 9 . 149
B.1.9 Patient 10 . 150
B.1.10 Patient 11 . 151

C Thesis Code 153

Bibliography 155

Abbreviations

AIF Arterial Input Function

ANN Artificial Neural Network

AP Average Precision

CBF Cerebral Blood Flow

CBV Cerebral Blood Volume

CT Computed Tomography

CTP Computed Tomography Perfusion

CNN Convolutional Neural Network

CVST Cerebral Venous Sinus Thrombosis

DICOM Digital Imaging and COmmunications in Medicine

DNN Deep Neural Network

FDR False Discovery Rate

FFNN Feed Forward Neural Network

FNR False Negative Rate

FOR False Omission Rate

FPR False Positive Rate

IRF Impulse Residue Function

mAP mean Average Precision

MLP Multi-Layer Perceptron

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

MTT Mean Transit Time

NPV Negative Predicted Value

SGD Stochastic Gradient Descent

SVD Single Value Decomposition

xiii

Abbreviations ABBREVIATIONS

SUS Stavanger UniversitetsSjukehus

TDC Time Density Curve

TIA Transient Ischemic Attack

TTP Time-To-Peak

WHO World Health Organisation

1
Introduction

Figure 1.1: Overview of the structure approach.

1

Tomasetti Luca Chapter 1 Introduction

1.1 Motivation

A cerebral stroke can occur if the flow of oxygen-rich blood to a portion of the brain is
blocked [1]. Cerebral strokes are a severe neurological condition that can cause lasting
brain damage, long-term disability, and death. It can lead to a drastic change of life for
the affected patient and expensive healthcare treatments for society.

Cerebral stroke is the third cause of death among adults in Norway [2] and the second
most common cause worldwide [3]. Despite the incidences that have been significantly
reduced over the past 20 years in the entire world, in Norway, over 13000 patients were
admitted to a hospital with a stroke in 2016 [4]. Worldwide, the number of registered
deaths due to stroke was almost 6 million over the 56.9 million deaths just in 2016 [5]:
a stroke causes over 10% of the annual deaths worldwide. One in six people will be
affected by a stroke during their life [6]; approximately 66% of these will have a functional
disability as a result of a stroke while mortality is 17% within the first three months
after the stroke. Every year in Norway, between 350 and 500 people die of stroke [7].

For medical doctors, dealing with a cerebral stroke is very complicated. Time is the
fundamental factor during the early stage of the treatment, as stated by the World Health
Organization (WHO), which says that a stroke can be described as a “neurological deficit
of cerebrovascular cause that persists beyond 24 hours or is interrupted by death within 24
hours” [8]. Hence, after a patient is admitted at SUS, he/she is immediately taken for a
CT Perfusion scan (CTP) to find out the best treatment for him/her. CTP images, with
the support of parametric maps, explained in detail in Sec. 2.1.4, are helpful to visualize
the damaged area of the brain and to assess if the damage is reversible or irreversible.

1.2 Problem Definition

The aforementioned fact gives a small but general overview of the reasons why a stroke
can lead to severe disease for human beings. Over the last decades, new ways are explored
that can discover quickly and automatically the location of the stroke’s area and segment
the different affected regions of the brain.

The thesis presents a fast mechanism to easily detect the infarcted areas of the stroke
based on a series of CTP images, illustrated in Sec. 2.1.3. Plus, the thesis proposes two
methods to classify or to segment the various regions, (penumbra and core) essential to
help doctors in their decisions of how to treat a patient, detected inside the stroke’s area.
The first approach proposed to accomplish this purpose, is based on the reconstruction
of brain sections with different predicted labels using the Tile Classification solution,

Tomasetti Luca 3

as explained in detail in Chap. 4, while the other approach relies on a Pixel by Pixel
Segmentation to create the various regions of the brain, as defined in Chap. 5. All
implemented methods are based on a Deep Neural Network (DNN) approach, described
in detail in Sec. 2.2.

1.3 Outline

Fig. 1.1 presents an overview of the various steps involved during the realization of this
thesis work. Besides this chapter, which gives a brief introduction about the problem
and motivation, the thesis is structured in 6 different chapters:

• The second chapter presents a technical and medical background for a better
understanding of the thesis’s topics and problems.

• The third chapter describes the analyzed dataset in detail, presents the pre-processed
steps involved and discuss the other contributions to prepare the input for the
architectures.

• Chapter four explains the first proposed method in detail, based on Computational
Neural Network (CNN), specifying the reasons why this approach was chosen;
furthermore, it describes the experiments evaluated.

• Chapter five presents the second proposed method, which was implemented using
an U-Net structure, plus various experiments and relative evaluations.

• The sixth chapter presents a discussion on the results achieved during the experi-
ments of the various implemented methods and a comparison between them. It
also discusses the possible future directions of this thesis

• The last chapter presents the conclusion of the work.

“Deep Learning is a superpower. With it, you can make a computer see,
synthesize novel art, translate languages, render a medical diagnosis,
or build pieces of a car that can drive itself. If that isn’t a superpower,
I don’t know what is.”

Andrew Ng

2
Background

The topics presented in this chapter give a brief explanation of medical and technical
background; they are useful to understand the reasons why the methods proposed are
chosen and how they might be necessary for future clinical decisions. More detailed
information of the arguments covered in this chapter can be found here [1, 9–14].

2.1 Medical Background

As explained in the introduction, strokes can occur if the flow of oxygen-rich blood to a
portion of the brain and medical doctors must, therefore, act very quickly if a patient is
affected by a stroke. The treatment window for thrombolysis is 4,5 hours from symptom
onset [15]. The patient’s condition could only get worst if the blood flow is not restored
as soon as possible. A crucial reason for doctors to act rapidly is because a patient can
lose up to 1.9 million neurons, 14 billion synapses, and 12 km nerve fibers every minute
from the time of the stroke happens [16].

Two main categories of strokes are a hemorrhagic and ischemic stroke. Both of them
lead to brain malfunction in the affected area. However, an ischemic stroke is 10-times
more frequent than a hemorrhagic stroke in a Western Country; the hemorrhagic stroke
is considered to have higher mortality rate compared to ischemic stroke [17]. Another

5

Tomasetti Luca Chapter 2 Background

possible category of stroke is a transient ischemic attack (TIA), also called mini-stroke.
TIA is a short episode of neurological dysfunction generated by a lack of blood flow in
the brain without tissue death. In TIA, symptoms usually resolve within 1 hour. The
phenomenon of a TIA is a risk factor for eventually causing a stroke [18].

In the later chapters there will be a focus only on ischemic stroke, since analyzed patients
in the thesis were affected by that; the other category, hemorrhagic stroke, is just briefly
mentioned in the next section.

2.1.1 Hemorrhagic Stroke

A bleeding artery inside the brain causes a hemorrhagic stroke. The pressure generated
from the leaked blood damages brain cells. The stroke can happen in two different forms:
if the bleeding is located in a vessel inside the brain itself, it is called intracerebral.
Otherwise, if the bleeding occurs outside the brain tissue but still inside the skull, it is
called subarachnoid hemorrhage. Fig. 2.1 shows an example of a hemorrhagic stroke:
the aneurysm in a cerebral artery breaks open, which causes bleeding around the brain,
leading to the death of brain tissues caused by the mass-effect of the blood clot in a
constricted system like the skull, assuming surgical decompression or interventional
treatment of the affected artery doesn’t occur immediately.

Figure 2.1: The illustration shows how a hemorrhagic stroke can occur in the brain.
An aneurysm in a cerebral artery breaks open, which causes bleeding in the brain. The
pressure of the blood causes brain tissue death. The figure is reprinted in unaltered form
from Wikimedia Commons, File: Stroke_ischemic.jpg, licensed under CC-PD-Mark.

https://creativecommons.org/publicdomain/mark/1.0/

Tomasetti Luca 7

2.1.2 Ischemic Stroke

An ischemic stroke might happen because of the loss of blood supply to a part of the
brain. There can be four different reasons why this happen:

• Thrombosis: a blood clot inside a blood vessel that obstructs the normal flow of it
through the circulatory system [19].

• Embolism: an obstruction due to an embolus, a blockage-causing piece of material
inside a blood vessel, coming from another part of the body [20].

• Systemic hypoperfusion: is a state where not enough blood flow goes to the tissues
of the body as a result of problems with the circulatory system [21].

• Cerebral venous sinus thrombosis (CVST): it indicates the presence of a blood clot
in the dural venous sinuses, which diminish blood in the brain [22].

A visual representation of an ischemic stroke is given in Fig. 2.2; if a blood clot breaks
off from plaque buildup in a carotid artery, it can travel into an artery in the brain. The
clot can block blood flow for some parts of the brain, causing brain tissue death. Patients
affected by an ischemic stroke immediately suffer from various symptoms. According to
the site of obstruction, the symptoms can be paresis in the arm, legs or face, difficulties
in speaking and understanding the speech, a possible visual loss and unconsciousness
[15, 23].

Figure 2.2: The illustration shows how an ischemic stroke can occur in the brain. If a
blood clot breaks away from plaque buildup in a carotid (neck) artery, it can travel to
and lodge in an artery in the brain. The clot can block blood flow to part of the brain,
causing brain tissue death. The figure is reprinted in unaltered form from Wikimedia

Commons, File: Stroke_ischemic.jpg, licensed under CC-PD-Mark.

https://creativecommons.org/publicdomain/mark/1.0/

Tomasetti Luca Chapter 2 Background

The brain region affected by an ischemic stroke can be characterized in two different
areas based on the severity of ischemia: penumbra and core. The core denotes the area
which is already infarcted or is irrevocably destined to infarct regardless of reperfusion.
The penumbra is described by the area of an “ischemic tissue potentially destined for
infarction, but it is not irreversibly injured and the target of any acute therapies” [24].
Hence, penumbras are areas of the brain with too little blood supply to revive the
neuronal function of the tissue, but enough blood supply to prevent the cells from being
damaged; they can be saved with the appropriate treatments. Nonetheless, penumbra
areas can degenerate and become core areas after a certain amount of time, if blood flow
is not restored as soon as possible; that is the main reason why time is critical when
doctors are dealing with patients affected by strokes.

2.1.3 Computed Tomography Perfusion

When a person arrives at the hospital for treatment, doctors need to understand the
medical situation in the shortest time possible. The European Stroke Organization
guidelines recommend: “brain imaging with Computed Tomography (CT) or Magnetic
Resonance Imaging (MRI) in all suspected stroke or transient ischemic attack (TIA)
patients” [25]. The thesis has a focus only on CT images; thus, there will be no
explanations for MRI.

Images of cross-sections of the human body are produced from data obtained by measuring
the attenuation of x-rays along with a large number of lines through the cross-section [9].
The first commercial CT scanner was available in 1971 [26]. These days, CT scans have
a fundamental role in investigating and diagnosing strokes. CT is a rapid and cheap
method, plus it has only few contraindications. Acute infarcts are not always detectable,
and the body is exposed to a percentage of radiation [27].

The set analyzed during the thesis is formed by images obtained with a CT Perfusion
technique (CTP). The dataset from this examination contains more relevant information
compared with the information detectable by the eyes alone. This method uses an
iodinated contrast agent injected in cubital veins to enhance contrast in the tissue. The
same sections of the brain are repeatedly scanned during the passage of a contrast
medium from the arteries through the capillaries to the veins and then into the venous
sinuses [14]. There is not a fixed number of images per patient; it depends on many
factors, such as the age of the patient, the volume of the brain, and the radiation dose.
For the Siemens machines used at SUS, it is possible to set a limit for the CT Dose Index
Volume (CTDIvol), which represents the dose for a specific scan protocol considering the
radiation dose. According to Food and Drugs Administration (FDA) recommendations,

Tomasetti Luca 9

the sensible dose warning for CTDIvol is 1000 mGy [28]; however, the typical dose for
CTP brain scan is 500 mGy [29].

Figure 2.3: Overview of a brain section over time during the injection of the contrast
agent. Useful to create the TDC.

Fig. 2.3 displays an overview of a brain section after the pre-processing process, explained
in detail in Chap. 3. Each section has a fixed number of different images showing how
the injected contrast agent is moving across the brain over a period of time, highlighting
the contrast for each pixel. Typically, the period of propagation and detection of the
contrast agent is approximately between 30 and 40 seconds. However, scan images of the
same area are collected in a 50 seconds window of time to allow a better understanding
of the difference between the injection and the start time point of the scanning, since it is
an essential feature for the final result [14]. CTP images are taken with a high frequency
of time (1 second) during the first part of the scanning, roughly for the first 20 seconds,
because of the importance of the first part of the injection, while during the second part
of the scan the images are taken with a 3 seconds frequency.

2.1.4 Parametric Maps derived from CTP

Parametric maps derived from CTP series allow doctors to discover rapidly if a patient
has an ischemic problem. The parametric maps are formed by evaluating different sections
of the brain during the injection of the contrast agent to highlight if there are penumbra
areas and core infarction areas in the analyzed brain. The passage of the contrast agent
is recorded over time, through time versus contrast concentration curve [30]; this curve
is referred to as a time density curve (TDC). The curve represents the intensity of each
pixel of the image during the passage of the contrast agent over a period of time [14].
Fig. 2.3 displays an example of a set of images, after performing pre-processing steps,
of the same brain section during the injection of the contrast agent, over time. Several
TDC equal to the number of pixels in the first image are created.

An example of TDC is presented in Fig. 2.4; the x-axis displays the time elapsed after
the start of the scanning (in seconds), the y-axis denotes the relative enhancement level

Tomasetti Luca Chapter 2 Background

Figure 2.4: The CTP Time Density Curve; it shows the different measurements for
the creation of the parametric maps. The figure is reprinted in unaltered form from:
“Radiological imaging in acute ischaemic stroke” [14] under the consensus of the author.

measured in Hounsfield Units (HU) [31]. Generally, TDC is generated from images
acquired in quick succession. Analyzing the TDC in different ways, various measures of
perfusion can be calculated for each image pixel. The ratios derived include a variety of
color-coded parametric maps; these maps are meant to help visualize an acute stroke [32];
the comparison of these maps helps understand the area affected by a stroke if present.

Time-To-Peak

(a) TTP (b) TTP on the TDC

Figure 2.5: Different visualizations of TTP. The figures are reprinted from: “Radiological
imaging in acute ischaemic stroke” [14] under the consensus of the author.

Time-To-Peak (TTP) represents the time from the start of the contrast injection to the
peak of enhancement in the tissue. It shows immediately if the patient has an ischemic
problem. An example of this representation is given in Fig. 2.5. Fig. 2.5(a) shows
the TTP of all pixels from a section of the brain during the injection of a contrast
agent, while Fig. 2.5(b) is the representation of one pixel over the TDC. The black

Tomasetti Luca 11

area inside the brain (Fig. 2.5(a)) symbolizes an ischemic area, that may contain both
penumbra and infarct core: the contrast agent reaches the affected area later compared
to a non-damaged part of the brain; hence, it is not adequately shown in the image.

Cerebral Blood Volume

(a) CBV (b) CBV on the TDC

Figure 2.6: Different visualizations of CBV. The figures are reprinted from: “Radiological
imaging in acute ischaemic stroke” [14] under the consensus of the author.

Cerebral Blood Volume (CBV) is defined as the volume of the blood per unit of brain
tissue. It is measured as milliliters of blood per 100g of brain tissue (ml/100g). In non-
damaged brain tissue, the CBV should be approximately around 4-5ml/100g; however, if
the blood volume results below 2.5 ml/100g, it indicates infarcted tissue [33]. While it is
shallow in the core area, there is a compensatory increase in the penumbra zone. The
CBV is represented by the integral of the TDC, which produces the area below the TDC.
Fig. 2.6 shows both its representation: all its pixels of the brain section (2.6(a)) and
its visualization over the TDC (2.6(b)). The violet area inside the brain in Fig. 2.6(a)
defines a possible section for an infarcted area.

Cerebral Blood Flow

Cerebral Blood Flow (CBF) represents the volume of blood flow per unit of brain tissue
per minute. It is commonly measured in milliliters of blood per minute per 100g of brain
tissue (ml/100g/min). Normally, in a patient without any ischemic problem, the value of
CBF is around 50-60ml/100g/min [34]. However, if the brain has an ischemic problem,
the flow is reduced in both penumbra and core areas, as it is possible to observe from Fig.
2.7. If CBF is reduced and CBV is normal or slightly reduced, the tissue ischemia is likely
to be reversible; if CBF and CBV are markedly reduced or if TTP is not measurable,
the tissue may be infarcted [35].

Tomasetti Luca Chapter 2 Background

(a) CBF (b) CBF on the TDC

Figure 2.7: Different visualizations of CBF. The figures are reprinted from: “Radiological
imaging in acute ischaemic stroke” [14] under the consensous of the author.

Mean Transit Time

Mean Transit Time (MTT) is the time taken by the contrast agent to pass through the
brain tissue. It is described as the average transit time of blood through a brain region,
estimated in seconds. Fig 2.8(a) shows the representation of MTT over the TDC. If the
MTT is raised as compared to the healthy side, ischemia/infarction is present [35].

(a) MTT on the TDC (b) Parametric map of
TMax.

Figure 2.8: MTT on the TDC and a parametric map of TMax. The figures are reprinted
from: “Radiological imaging in acute ischaemic stroke” [14] under the consensous of the

author.

TMax

Time-to-maximum (TMax) displays the time taken by a contrast agent to reach and
traverse areas of the brain. Together with the TTP, it is a good measure of contrast
arrival time to the tissue. “The tissue time-enhancement curves are deconvolved with the
arterial input function (AIF) by using the single value decomposition (SVD) method to
produce an impulse residue function (IRF)” as stated by [36]. TMax is calculated from

Tomasetti Luca 13

the TTP of the IRF curve, where TMax = 0 reflects normal blood supply in normal
tissue without delay. Fig 2.8(b) shows an example of a TMax map.

2.2 Technical Background

The section gives a general overview of Deep Neural Networks (DNN) and the theory
behind it; moreover, a brief explanation of various methods used for this thesis, based on
Convolutional Neural Network (CNN), is presented. However, first, the section tries to
answer a fundamental question related to the thesis itself:

• Why are Machine Learning and Deep Learning so popular?

Figure 2.9: Focus of the technical background section.

In modern days, machine learning (ML) and deep learning (DL) technologies are becoming
an essential branch in Computer Science. From web search algorithms implemented by
Google [37], passing through DL applications for helping doctors during medical diagnosis
to finally arrive at AlphaGo, the first ML software that was capable of defeating Lee Sedol,
the world champion of Go, a popular board game [38]. ML and DL software are rapidly
influencing and changing the day-to-day life in a way that was not even imaginable 30
years ago. However, conventional ML techniques were limited and dependent on the
choice of features to extract from data and to use these features in a ML framework.
Lately, a new field in the ML community was introduced: representation learning (RL),
“a learning representations of the data that make it easier to extract useful information
when building classifiers or other predictors” [39]. RL allows a system to automatically
discover the representations needed for feature detection or classification from raw data.

Tomasetti Luca Chapter 2 Background

2.2.1 Linear Regression

To understand Neural Networks (NN), the first step is to introduce the problem of
regression. Linear regression is a linear combination of input components, as defined
in equation 2.1, given a data set x = [x1, . . . , xn], the task is to predict the real valued
target y, where w = [w1, . . . , wn] is the weight vector and b is the bias:

y = b + x1w1 + · · ·+ xnwn = b +
n∑
i=1

xiwi (2.1)

2.2.2 Neural Network

The biological operations of specialized cells, the neurons, inspired the term Neural
Network (NN). A neuron is an electrically excitable cell that has a large number of inputs
received from other neurons via dedicated connections called synapses. Furthermore,
some connections may be “strengthened” or weighted in a different way than other
connections. A neuron can produce different outputs based on its activity.

The equivalent of a neuron in a NN is called “artificial neuron”. It receives a set of
weighted inputs, processes their sum with a specific activation function θ, and forward
that result to the next artificial neuron in the network. Equation 2.1 is essential for a
NN because it gives a general overview of the addressed problem. An artificial neuron
receives a specific input xi from the previous neuron in the network; xi is weighted by
wi which determines how to response to the data plus a biased value bi. Equation 2.2
defines the output of an artificial neuron, where θ is the activation function that receives
in input the sum of the weighted inputs.

ŷ = θ

(∑
i

wixi + bi

)
(2.2)

Fig. 2.10(a) shows a visual representation of a simple NN. Three different input xi are
feeding the artificial neuron output y with three different weight values wi. The artificial
neuron is located in one layer. Fig. 2.10(b) reproduces a NN with three layers connected
with each other. This representation is called the Feed Forward Neural Network (FFNN).
The FFNN contains one hidden layer and an output layer. The input layer consists of
six artificial neurons, and the output layer has four artificial neurons. No calculation
is required during the load of the input layer; thus building the FFNN would consist
of implementing two computational layers. The inputs in the hidden layer are fully
connected to the artificial neurons in the input layer. Moreover, a full connection is

Tomasetti Luca 15

presented between the artificial neurons of the hidden layer and the artificial neurons in
the output layer.

(a) Example of NN with a single layer. (b) Example of NN with multiple layers (FFNN).

Figure 2.10: Overview of NNs with different layers.

Activation Functions

The choice of an activation function in NN has a significant effect on the training dynamics
and task performance [40]. During the evaluation of the developed approaches, two
different activation functions were used:

• Rectified Linear Unit (ReLU) [13].

• Sigmoid function [10].

ReLU is one of the most popular choices for an activation function because it is straight-
forward to implement, and it shows good results during the training [40]. ReLU is very
important due to its speed during training. Also, ReLU provides a straightforward
nonlinear transformation. The function is defined as the maximum between 0 and a
given element x.

ReLU(x) = max(0, x)

Tomasetti Luca Chapter 2 Background

Differently, the sigmoid function transforms its inputs, values in R, into the interval [0, 1],
which is fundamental for some particular models:

sigmoid(x) = 1
1+exp(−x)

Loss Functions

To predict its output, NN trains its data through Equation 2.2. The terminology “training
data” is used to determine the parameters of a model that minimize the error between
the predicted output and the real output. The usual way to measure the error between
the two outputs is to use a loss function. The architectures implemented during the
thesis work (Chap. 4 and Chap. 5), are using two different loss functions based on the
output that is generating:

• Categorical crossentropy [41];

• Dice loss [42].

Categorical crossentropy The categorical crossentropy loss function is used for the
approaches described in Chap. 4 based on Convolutional Neural Network (CNN). This
function is mostly used to train a CNN to output a probability a specific number of
classes greater than two (C). It measures the probability error for classification tasks
where the classes are mutually exclusive. It is also called Softmax Loss because it can be
described as a Softmax activation plus a Cross-Entropy loss.

cat_CE = −
C∑
i

gi softmax(log(si)) (2.3)

where gi is the ground truth while si is the CNN score for each class i in C

The gradient of the cat_CE is:

∇cat_CE = ∂

∂si
(cat_CE) =

(
esi∑C
j e

sj
− 1

)
(2.4)

Tomasetti Luca 17

Dice loss it is a function used to measure the similarity of two samples; it is based
on the dice coefficient. This loss function was implemented for the approach described
in Chap. 5, which is based on a U-Net method because it is commonly used in image
segmentation, to compare predicted output against masks in medical applications [43].
The output of this method is an image; thus, the function compares a different portion
of the volume of every image. The formula for the dice coefficient D between two binary
volumes can be written as:

D = 2∑N
i pigi∑N

i p
2
i +∑N

i g
2
i

(2.5)

where the sums run over the N voxels, of the predicted segmentation volume pi and the
ground truth volume gi [42]. The dice loss is defined as:

dice_loss = 1−D (2.6)

The gradient of the dice coefficient is:

∇D = ∂D

∂pj
=

gj
(∑N

i p
2
i +∑N

i g
2
i

)
− 2pj

(∑N
i pigi

)
(∑N

i p
2
i +∑N

i g
2
i

)2

 (2.7)

Optimization algorithms

Optimization algorithms help the model to minimize the loss function in a neural network.
The goal of any optimization function is to find the weight vector w and the bias term b,
given a collection of data x and a vector containing the corresponding target values y,
that associate each data xi with an approximation ŷi of its corresponding label yi with a
minimum error in the approximation. A famous example of an optimization algorithm is
backpropagation. During the implementation of different architectures, it was used the
stochastic gradient descent (SGD) function and the adaptive moment estimation (Adam)
to optimize the models.

Backpropagation It is a mechanism to calculate the gradient of the loss function
involved; it is essential in the calculation of the weights involved in the network [44]. It
is used to adjust the weights during the training of the model in order to minimize the
error of the output.

Tomasetti Luca Chapter 2 Background

The importance of backpropagation was discovered after the release of an article in 1986
[45]. The paper describes different neural networks with a backpropagation implementa-
tion that shows a faster result compared to the other approaches; more details of this
algorithm on [44].

Stochastic Gradient Descent The stochastic gradient descent is an iterative method
for optimizing a differentiable objective function, a stochastic approximation of gradient
descent optimization. SGD is famous for large scale optimization but has slow convergence
asymptotically due to the inherent variance [46]. The equation of SGD is used to minimize
an objective function is given in the form of a sum:

Q(w) = 1
n

n∑
i=1

Qi(w) (2.8)

where the parameter w that minimizes Q(w) is to be estimated; each function Qi is
associated with the ith observation in the data set (used for training).

Adaptive Moment Estimation Adaptive Moment Estimation (Adam) is an algorithm
for first-order gradient-based optimization of stochastic objective functions, based on
adaptive estimates of lower-order moments [47]. Empirical results demonstrate that
Adam works well in practice and compares favorably to other stochastic optimization
methods, thus it is used in one of the models to check its efficiency.

2.2.3 Deep Learning

The term deep learning (DL) refers to a class of ML algorithms that uses representation
learning methods with multiple levels of representation. These levels are obtained by
composing nonlinear but straightforward modules that transform the description at one
level into an image at a higher, slightly more abstract level [44]. All layers manipulate
the output from the previous layer, and they use it as input; plus, the learning method is
divided into two main approaches: supervised learning, like classification and regression,
and unsupervised learning, like pattern analysis and clustering.

Supervised Learning

The supervised learning approach is used to predict a target given some input data [10].
hence, the goal is to create a model fγ that maps an input x to a prediction fγ(x). The
target, also called label, is generally denoted with y. The approach implements a model

Tomasetti Luca 19

fγ(x) with a supervision set of targeted input (xi,yi), where each input xi is matched
up against its correct label. The supervision learning is used to select the best parameter
γ. This approach is used and described in details in Sec. 4.3 and Sec. 5.4.

Unsupervised Learning

The unsupervised learning refers to a learning method without a teacher or truth labels,
also known as self-organization and a way of modeling the probability density of inputs
[48]. The method is not used in this work, thus it will be explained further. For a more
detailed explanation, it is possible to consult [48].

2.2.4 Deep Neural Networks

While a standard NN consists of many simple connected artificial neurons, each producing
a sequence of real-valued activations, “a Deep Neural Network (DNN) is an artificial
neural network (ANN), which has multiple, often many, layers between the input and
output layers”, as stated in a fundamental article about DNN [49]. Various implementa-
tions of DNN have been creating promising results in numerous problems, like image
recognition [50, 51], speech recognition [52] or even predicting the effects of mutations in
non-coding DNA on gene expression and disease [53, 54].

The final goal of a DNN is to find the weight vector W and bias term b, given a collection
of input x and a vector containing the corresponding target values y, that associate
each input xi with a prediction fγ(xi) of its corresponding target yi. Every layer of a
DNN, except the input layer, is produced by the output of the previous layer. In a linear
algebra annotation, each layer can be defined as:

o = Wx + b (2.9)

where W is the weight vector, x is the input of the layer, as defined in Sec. 2.2.3, and b
represents the bias vector.

Fig 2.11 displays a possible visual aspect of the structure of a DNN with four hidden
layers and one output layer. This representation is called Multi-Layer Perceptron (MLP).
The input layer contains six artificial neurons, and the output layer has two artificial
neurons. As for a standard NN, no calculation is needed for the input layer; only five
computational layers are necessary to build this network. Artificial neurons in the
input layer are fully connected to the inputs in the hidden layer. In the same way, the
artificial neurons in all the hidden layer are fully connected to the artificial neurons of

Tomasetti Luca Chapter 2 Background

Figure 2.11: Example of Deep Neural Network (MLP).

the successive hidden layer. Additionally, the artificial neurons in the output layer are
fully connected to the artificial neurons of the last hidden layer.

2.2.5 Convolutional Neuron Network

For image processing and computer vision problems, the training of MLP can be hard
because of the dense connections between artificial neurons did not allow them to scale
efficiently. A Convolutional Neural Network (CNN) solves this complication because it
convolves each input with a detector (kernel), and thus it is sensitive to the same feature
everywhere.

Biological processes inspired CNNs because the connectivity pattern between neurons
resembles the organization of the animal visual cortex [11]. The visual cortex contains a
vast number of cells responsible for identifying light in overlapping sub-regions of the
visual field, the receptive fields. These cells behave as filters over the input; the more
complex cells have larger receptive fields [12].

In the last few years, a large number of researches in computer vision and pattern recogni-
tion have highlighted the capabilities of CNN, achieving state-of-the-art performances on
challenging tasks such as classification, segmentation and object detection. This success
has been attributed to its ability to learn a hierarchical representation of raw input data,
without relying on handcrafted features. Additionally, several papers have shown that it
can also deliver outstanding performance on challenging visual classification assignments
[55]. Furthermore, according to [56], “the ability of multilayer backpropagation networks

Tomasetti Luca 21

Figure 2.12: Typical block diagram of CNN.

to learn complex, high-dimensional, nonlinear mappings from extensive collections of
examples makes them obvious candidates for image recognition or speech recognition
tasks”.

As a standard NN, CNN consists of an input layer plus an output layer linked by a
non-fixed number of hidden layers (Fig. 2.12). Usually, hidden layers are represented
by convolutional layers, activation functions, pooling layers, fully-connected layers and
normalization layers [57].

2.2.6 Layers of CNN

This section explores different typologies of layers typically used during the creation
of a CNN architecture; all these layers were implemented in the distinct architectures
described in Chap. 4 and in Chap. 5.

Convolutional Layers

CNNs base their foundation on convolutional layers. This layer consists of a set of small
learnable filters. The operation of this layer is expressed by convolving each filter over
the entire input and computing a dot products between the input at any position and
the entries of the filter.

g(x, y) = ω ∗ f(x, y) =
a∑

s=−a

b∑
t=−b

ω(s, t)f(x− s, y − t) (2.10)

Tomasetti Luca Chapter 2 Background

Equation 2.10 defines a convolution operation where g(x, y) is the filtered image, f(x, y)
represents the original image and the filter kernel is ω . Each element of the filter kernel
is examined between −a ≤ s ≤ a and −b ≤ t ≤ b.

Transposed Convolutional Layers

A transposed convolutional layer, also called deconvolutional layer, behaves in the
opposite way of a standard convolutional layer. If an input Xi is parsed through a
convolutional layer generates an output Yi, if the resulting output Yi is given to a
transposed convolutional layer, which has the same structure and parameters of the
convolutional layer used to create Yi, it generates as a final result the initial input Xi

[58]. This type of layer is fundamental to build the architecture described in Chap. 5
because it is necessary to use a transformation or an operation that goes in the opposite
direction of a regular convolution.

Pooling Layers

Like the convolutional layer, a pooling layer computes the output for each element in
a fixed-shape window of input data. The pooling layer decreases the resolution of the
window to prevent misleading noise and distortion pixels. Max pooling and average
pooling are the two existing methods.

Figure 2.13: Pictorial representation of max pooling and average pooling. The figure
is reprinted in unaltered form from: “Using convolutional neural networks for image

recognition” [12].

Fig. 2.13 shows an example of these two techniques: the input matrix has a size 4x4.
According to [12]: “for 2x2 subsampling, the 4x4 image is split into four non-overlapping
matrices of size 2x2. In the case of max pooling, the maximum value of the four values
in the 2x2 matrix is the output. Otherwise, in the case of average pooling, the average of
the four values is the output”.

Tomasetti Luca 23

Fully-Connected Layers

Usually, fully-connected layers are used as the last layer in a CNN, after a certain amount
of convolutional and pooling layers. The layer connects all its artificial neurons to every
artificial neuron in the other layer. The result is a flat matrix useful to classify images.

Normalization Layers

A normalization layer uses the distribution of the summed input to a neuron over a
mini-batch of training cases to calculate a mean and variance which are then adopted to
normalize the summed data to that neuron on each training case, which can significantly
reduce the training time in feed-forward neural networks [59]. Also, the normalization
layer produces, for each layer, a system to learn by itself a little bit more independently
of other layers.

Dropout Layers

A dropout layer is used to reduce overfitting in NN by preventing complex co-adaptations
on training data. According to the Oxford dictionary, the overfitting is “the production
of an analysis that corresponds too closely or exactly to a particular set of data, and may,
therefore, fail to fit additional data or predict future observations reliably”.

2.2.7 U-Net

U-Net is a CNN architecture for fast and precise segmentation of images. It was first
described and implemented by a group of researchers from the University of Freiburg
(Germany) in 2015 [60]. As stated in their main article: “it relies on the heavy use of
data augmentation to work with the available annotated samples more efficiently. The
architecture consists of a contracting path to capture context and a symmetric expanding
path that enables precise localization” [60]. A visual example of the possible architecture
of the network is shown in Fig. 2.14.

This innovative structure gives the possibility to give in input an image or a series of
images and to receive in output a full label image. This architecture achieved very
interesting and promising results on different biomedical segmentation applications. The
pixel by pixel segmentation approach (Chap. 5) uses this structure to receive in output
a brain section image containing the different infarcted region inside the brain.

Tomasetti Luca Chapter 2 Background

Figure 2.14: U-Net architecture. The figure is reprinted in unaltered form from [60].

U-Net Layers

The left part of the U-Net architecture is quite similar to any standard CNN’s structure.
The important modification happens on the right side, which is called “the expansive
path”. As stated in the original article:

“every step in the expansive path consists of an upsampling of the feature
map followed by a 2x2 convolution (‘up-convolution’) that halves the number
of feature channels, a concatenation with the correspondingly cropped feature
map from the contracting path, and two 3x3 convolutions, each followed by
a ReLU. The cropping is necessary due to the loss of border pixels in every
convolution. At the final layer, a 1x1 convolution is used to map each 64-
component feature vector to the desired number of classes. In total the network
has 23 convolutional layers” [60].

2.2.8 Statistical Information

During training and testing evaluations of the various models proposed, different statistical
information were calculated and analyzed based on the resulting confusion matrix of
each predicted brain section. Table 2.1 shows a representation of a 2x2 confusion matrix
for one class. A confusion matrix is represented as a table with two columns and two
rows that presents the number of false positives (FP), false negatives (FN), true positives
(TP), and true negatives (TN). It helps to visualize and to calculate the performance

Tomasetti Luca 25

of any supervised learning algorithm highlighting how good a model predicts different
outputs.

Actual Class

Predicted Class True Positive (TP) False Positive (FP)
False Negative (FN) True Negative (TN)

Table 2.1: Representation of 2x2 confusion matrix

The evaluation of each method is based on various statistical information; each equation
lies in the values of the corresponding confusion matrix:

• Accuracy: a description of systematic errors, a measure of statistical bias; it is
calculated as

ACC = TP + TN
TP + TN + FP + FN (2.11)

• Recall: it measures the proportion of actual positives that are correctly identified,
also called True Positive Rate (TPR). The equation to calculate it is:

TPR = TP
TP + FN (2.12)

• Precision: it is the fraction of relevant instances among all instances. It is also
called Positive Precision Value (PPV) and it’s defined as:

PPV = TP
TP + FP (2.13)

• Specificity: also called True Negative Rate (TNR); it measures the ratio of actual
negatives that are correctly identified. It is calculated as follow:

TPR = TN
TN + FP (2.14)

• Negative Predictive Value (NPV): it is defined as:

NPV = TN
TN + FN (2.15)

The values of the NPV oscillate between 0 (worst possible value) and 1 (best
possible option).

• False Negative Rate (FNR): it’s the complementary of the recall measurement;
it is calculated as:

FNR = FN
FN + TP (2.16)

Tomasetti Luca Chapter 2 Background

• False Positive Rate (FPR): it measures the ratio between the true positive val-
ues and the the number of real negative cases in the data with the following equation:

FPR = FP
FP + TN (2.17)

• False Discovery Rate (FDR): it is the complementary of the precision. The
equation to calculate it is:

FDR = 1− PPV = FP
FP + TP (2.18)

• False Omission Rate (FOR): it is the complementary of the negative prediction
value; the formula to measure it is:

FOR = −NPV = FN
FN + TN (2.19)

• F1 score: the formula takes in consideration both the precision and the recall of the
test to compute the final score; it is a measure of a test’s accuracy. It is calculated as:

F1 score = 2 PPV ∗ TPR
PPV + TPR (2.20)

2.2.9 Statistical Metrics

Moreover, it was also calculated the Jaccard index, the mean average precision (mAP),
and the mean squared error (MSE) for the images created. These values are generated
to produce a significant overview of the outcomes and to have a better judgment of the
various information.

The Jaccard index is used to gauge the diversity and similarity of two sample sets A, B.
The equation to calculate it is:

Jaccard(A,B) = |A ∩B|
|A ∪B|

(2.21)

The mAP is another statistical metric that returns a percentage of how accurate is the
similarity between two sets. It calculated the mean of the average precision (AP) of each
output image; the AP equation is defined using the precision and recall values illustrated
before:

AP =
∑
n

(TPRn − TPRn−1)PPVn (2.22)

Tomasetti Luca 27

where TPRn and PPVn are the recall and precision at the nth threshold [61]. Additionally,
the mAP is given as the following equation:

mAP =
∑
k APk
K

(2.23)

where K is the number of brain section per patient.

Finally, the MSE is a statistical measurement to calculate the average of the squares of
the errors; it measures the quality of the produced outputs based on the variance and
bias compared with the real result. It is calculated as follow:

MSE =
∑n
i=1(xi − x̂i)2

n
(2.24)

where n is the number of prediction, xi and x̂i are respectively the real and the produced
output.

2.2.10 K-Fold Cross-Validation

The last statistical analysis implemented during the training and testing of the various
architectures is called K-Fold Cross Validation [62]. This technique is used to generalize
how accurately a predictive model will perform in practice. The best way to properly
understand the general idea behind K-Fold Cross-Validation, is to described it using as an
example the dataset of 11 patients used during the thesis. For K times, where K is equal
to the number of patients, a random patient is chosen without any duplication during the
selection of a patient. Subsequently, the dataset is first split into two different subsets
(folds): the input subset, which contains images of all the patients except for images of
the selected patient, and the testing subset, which contains the remaining images, the
ones related with the selected patient. Afterward, the input subset is randomly split
again: the resulting subsets are the training subset and the validation subset, which
consists of a tenth of the input subset randomly selected for the validation step during
the training of the model. The validation set is equivalent to a 10% of the training
dataset. It is used to find the “optimal” number of hidden units or determine a stopping
point for the backpropagation algorithm; it is fundamental during training epochs of a
model.

“Spectacular achievement is always preceded by unspectacular preparation.”

Robert Schuller

3
Dataset & Image pre-processing

Figure 3.1: Focus of chapter three.

29

Tomasetti Luca Chapter 3 Dataset & Image pre-processing

3.1 Dataset

Figure 3.2: Focus of the Dataset section.

The dataset, used during the thesis work, consists of 4800 CTP images and 160 parametric
maps of 11 anonymous patients obtained at SUS between 2014 and 2015. Each parametric
map contains information from 30 different images over time. All the images of each
patient generate a 4D (3D + time) examination of a CT Perfusion. For each patient,
there are CTP images as well as parametric color-coded maps that describe the blood
perfusion in the brain. A summary of the information of patients is given in Table 3.1.
All patients have suffered significant strokes; therefore they are excellent candidates
to analyze during the thesis because these type of strokes have different categories of
ischemia within the ischemic area, which it is essential for the understanding of the
disease.

ID Age Sex Maps Hemisphere affected Comments
1 64 Male 19 Right
2 56 Female 13 Left Old infarct in the right side.
3 67 Female 13 Right Old infarct in the right side.
4 69 Male 13 Right Old infarct in the right side.
5 65 Male 13 Right
6 77 Female 13 Left Bolus not optimal.
7 87 Female 13 Left
8 70 Male 13 Right
9 63 Female 22 Left
10 67 Female 14 Left
11 83 Male 14 Right

Table 3.1: Information of the 11 patients analyzed.

Tomasetti Luca 31

All images for the patients in this thesis were created and saved during injection of 40
ml iodine-containing contrast agent (Omnipaque 350 mg/ml) and 40 ml isotonic saline
in a cubital vein with a flow rate of 6 ml/s; the scan delay was four seconds. [63]

3.1.1 DICOM Standard

Images extrapolated from a CTP scan are saved as DICOM files, the international stan-
dard to transmit, store, retrieve, print, process, and display medical imaging information
[64]. The structure of a DICOM data object contains several attributes: name, ID, time
of the acquisition, and also one unique attribute containing the image pixel data. The
DICOM Standard has a disadvantage related to data entry: “A significant disadvantage
of the DICOM Standard is the possibility of entering probably too many optional fields.
This disadvantage is mostly showing in the inconsistency of filling all the areas with the
data. Some image objects are often incomplete because some variables are left blank, and
some are filled with incorrect data” [65]. For the sake of the privacy, personal information
of each patient was made anonymous.

A lot of free libraries and software are available to display a DICOM data object; during
this project, the MATLAB library was used to access data from the DICOM files because
the pre-processing phase is based on the work of two former students of the University of
Stavanger [63, 66]. Additionally, the extrapolation of the manual annotation regions was
performed on different brain sections to have a “gold standard” or ground truth for the
output using various Python libraries.

3.1.2 General Overview of the Dataset

The 2D images of the image-sets are 512x512 pixels, corresponding to a resolution of 120
pixels/cm; pixels have a bit depth of 12 bits per pixel. Each image’s location has a 5mm
distance from each other. The CTP examinations that are the foundation of this thesis,
consist of 390, 420 or 660 images, resulting in respectively 30 time-series of 13, 14 or 22
parametric maps.

Fig. 3.3 shows a general representation of the dataset of DICOM images of one patient.
The time-series is represented in the vertical axis while the volume-series is indicated in
the horizontal axis. Each 3D volume on the horizontal axis highlights a section of the
head, displaying both the skull and the brain. Steps of pre-processing are performed to
remove the skull, extrapolate the brain from these CTP images, and rearrange them.
Each time-series of images is realized from the same section and position of the brain
over a period of time; this information is saved in one of the DICOM standard fields.

Tomasetti Luca Chapter 3 Dataset & Image pre-processing

Figure 3.3: Example of images of one patient.

3.1.3 Annotated Regions

In addition to the parametric maps, a set of manually annotated images was given to
represent the ground truth or final results for the CTP images. Each manually annotated
image is associated with a specific brain section. The annotations are corresponding
to the various affected regions of a brain’s section due to an ischemic stroke, such as
penumbra and core. The supervised doctor of the thesis elaborates the annotation after
a study of the different parametric maps of the CTP scans for each patient.

Each annotated image contains zero, one or multiple green perimeters: an external
border coincides with a possible penumbra area whereas a perimeter inside another one
represents a potential core area of an ischemic stroke. Fig. 3.4 shows an example of one
of the manually annotated images correlates with a parametric map; the image contains
a vast penumbra region in the right hemisphere and a small core area, approximately in
the center of the brain, inside the penumbra region.

Figure 3.4: Example of manually annotated brain section.

Tomasetti Luca 33

3.2 Image pre-processing

Figure 3.5: Focus of the image pre-processing section.

This section presents and discusses all the steps involved during the pre-processing of
the images. Most of the methods used during the pre-processing were based on the
work of two former students of the University of Stavanger (UiS) [63, 66], except for the
contrast enhancement and the extraction of the annotated regions, which were developed
primarily for this thesis. The steps involved in the pre-processing are:

1. Rearrange images.

2. Image registration.

3. Skull removal.

4. Contrast enhancement.

5. Second image registration.

6. Extract annotated regions.

3.2.1 Rearrange Images

The first step of the pre-processing is to rearrange images to sort them temporally. For
each image, acquisition time and slice location contained in the DICOM header are read.
This step is vital for the project because it splits the dataset of images in different groups
based on the slice location and acquisition time.

Tomasetti Luca Chapter 3 Dataset & Image pre-processing

3.2.2 Register Images

The image registration step is used to coordinate many images where they may have been
acquired at a different time or viewing points [67]. Images have been registered because
there is always a chance that, during the acquisition of CT perfusion images, a patient
may have moved to create images not aligned with each other. CTP images are registered
using a similarity transformation to align all images in every slice spatially. The first
temporal image in each slice is set as the fixed image, and the 29 remaining images are
registered based on the first temporal image. The method involved is iterative, and it uses
an optimizer to get the best similarity among images; the registration is intensity-based
and, also, it uses phase correlation to estimate an initial geometric transformation. For
more details, check [63, 66].

3.2.3 Skull Removal

The skull is useful during the registration process. However, the skull area has a very
high intensity in the images, and for many tasks, it can be an advantage to remove it
before further processing. This step is important as it may affect the extracted features;
hence, the removal may lead to better and more distinct features [68]. The skull removal
technique is based on an algorithm suggested by Hovland [63], a former student at the
University of Stavanger. The algorithm is based on four main passages that are applied
to each image. A visualization of the algorithm is given in Fig. 3.6.

Figure 3.6: Skull removal algorithm.

A summary of the steps is displayed below, for a more detailed explanation about the
algorithm, check [63].

1. Image normalization: the technique is useful to expand the grayscale for images
to share a similar range. It is implemented using the following equation:

IN = (I −Min)newMax− newMin
Max−Min + newMin (3.1)

Tomasetti Luca 35

where I expresses an image with n-dimensional grayscale levels with intensity values
in range [Min,Max]. IN represent the normalized image, with intensity value in
range [newMin,newMax].

2. Histogram equalization: after the normalization, images are subjected to a
histogram equalization, which increases the global contrast leading to a better
distribution of the intensities in the histogram. This step is useful since the images
have a uniform foreground.

3. Seeded growing region: this step is fundamental to segment each image. The
initial position of the region is the seed point [250, 250] chosen as the pixels with the
maximum intensity level newMax; the seeded growing region expands by examining
neighboring pixels of the initial seed point.

4. Binary mask: this is the final construction from the resulting seeded growing
region; the mask represents the borders of the skull, thus to finally strip the skull,
apply the mask over the image. If the seeded growing region doesn’t return a
satisfactory binary mask for one or more images, a different method is used to
generate proper binary masks: the image is compared with a specific threshold in
order to create a binary image from the operation, then small objects are removed
from the binary image, and the holes are filled.

3.3 Contributions to the pre-processing steps

The section presents a discussion and an overview of the contributions made for this thesis
regarding the development of two pre-processing steps to prepare the proper dataset for
the models and various techniques used to overcome a limitation in the dataset.

3.3.1 Contrast Enhancement

This step enhances the contrast and the differences within the intensity regions inside
the brain to emphasize how much each pixel is different from the others over time. Fig.
3.7 presents an example of a brain section (a) after skull removal, (b) displays the same
brain section after contrast enhancement. Three steps are involved in the improvement
of the contrast of the images:

• First, filter the image with a 2D Gaussian smoothing kernel with a standard
deviation of 0.5 to reduce the gaussian random noise inside an image; this is an
essential step before a contrast stretching.

Tomasetti Luca Chapter 3 Dataset & Image pre-processing

(a) Image after the Skull removal
step but before the contrast en-
hancement.

(b) Image after the contrast en-
hancement.

Figure 3.7: Difference between the same brain section before and after the contrast
enhancement.

• The second step performs a histogram equalization on the resulting image from
the previous step;

• Finally, an image normalization technique is applied, based on the Myklebust’s
algorithm [66].

3.3.2 Extract Annotated Regions

Figure 3.8: Brain section after the ex-
traction of the different regions.

The last step of the pre-processing part involves
the manual annotations extraction of the penumbra
and core regions. First, each manually annotated
image (Fig. 3.4), is crop and resize to 512x512; then
it is set as the fixed image and registered with the
other 30 time-series images, already registered in
the first step.

After the registration, the annotated area in the
image is extracted to create a new image that con-
tains the different regions of the brain. All these
regions represent the various classes to classify with
the CNN approaches. Fig. 3.8 displays a manually
annotated image after the extraction of the different
classes:

• The white label corresponds to the background class;

• the black label shows the area of the brain;

Tomasetti Luca 37

• the dark grey displays the penumbra region;

• the light grey portion gives an overview of the core area.

Finally, after all these steps, the dataset is ready to be trained using one of the models
developed for this work and explained in the next chapters.

3.3.3 Limitation of the dataset

Unfortunately the dataset is composed only of image-sets from 11 patients; however,
only 10 patients were adopted during the training of the distinct models: patient with
ID 1 was not included due to the peculiar structure of its rearranged CTP images which
have a different number of groups compared to its manually annotated images. This
problem leads to confusion during the association of the different rearranged groups with
the manually annotated images; hence, a decision was made to exclude the patient 1
from the dataset.

The sample size is not adequate for any DNN because a model needs to be trained with
a large and suitable number of elements. For this reason, an augmented dataset is also
generated from the current one. A series of vectors create the dataset used during the
training of the various methods. A vector is composed of 30 small portions of 16x16
pixels, called tile, plus an output. The 30 tiles refer to the first image in the time-series,
plus the same part of the other 29 images in the time-series. The vectors dataset is
created using a sliding window technique, Fig. 3.9 represents a visual explanation of
the sliding window technique method to overcome the dataset limitation. Starting from
position [0, 0] in the image until position [512, 512] with a stepping size of 4 pixels, with
a sliding window technique, a red square, which represents the 16x16 tile, is extrapolated
from each image plus the image containing the annotation region. The final result of this
step is a training vector that contains (16x16×N + 1), where N is the number of brain
sections per patient, the input, while the (+1) indicates the 16x16 tile extrapolated from
the image with the annotated regions, which corresponds to the output.

Each vector created is labeled with an output, which is different based on the approach
used. The outcome of the Tile Classification approach, described in Chap. 4, is an integer
that corresponds to the region class with the most considerable number of pixels inside
the tile; while the output of the pixel-by-pixel segmentation, defined in Chap. 5, is the
complete vector that represents the extrapolated tile. The output integer for the Tile
Classification approach is generated by summing up together the number of pixel-based
on their different intensity: the pixel value with the highest number of elements is chosen
as the labeled class. Classes have a selection priority, thus if two or more classes have the

Tomasetti Luca Chapter 3 Dataset & Image pre-processing

Figure 3.9: Example of the sliding window technique.

same number of pixels inside a tile, the choice is made based on the priority: first core,
then penumbra, brain and finally background. The decision of this order is necessary to
maintain simplicity among the process and to increase the number of core and penumbra
classes. An improvement for future work could be to find another method to decide the
specific class of a tile: a possible way could be to add new classes for those tiles that
have a similar number of pixels for two or more classes.

At the end of the process, the number of vectors extrapolated using this technique is
more suitable to train a model based on a DNN. The total number of vectors is 803453;
the number of vectors labeled with a background class is 70500, while the ones with a
brain class are 596039. Vectors labeled with the penumbra class are 127692; vectors with
a core label are 9222. The extraction of background tiles is limited because overweighting
the dataset with too many images of the same class; thus, the number of background
vectors was fixed to 500 per each brain section in the volume.

Tomasetti Luca 39

Data Augmentation

Considering that the number of core tiles is inadequate in the dataset (1.1%) compared
to the other classes extrapolated, there is a chance that the trained models will not be
able to detect that particular class. Besides the standard dataset, it was also created
another dataset with the same method as the other one with the addition of some data
augmentation techniques. For each image labeled with the core class, five different
methods were applied to augment the sample size:

• Rotate the time-series images of 90, 180 and 270 degrees counterclockwise.

• The image tiles are flipped upside down.

• Flipped from left to right.

The augmented dataset is formed of 848849 number of vectors in total. 70500 are labeled
with a background class, 596039 represents a brain class, 127692 belong to the penumbra
class, while the remaining 55338 are vectors labeled with the core class, leading to 6.5%
of the vectors are marked with the core class.

To not create confusion for the next chapters, the augmented dataset will be called
“Dataset 2”, while the dataset without any data augmentation technique will be called
“Dataset 1”.

4
Tile Classification Approach

Figure 4.1: Focus of chapter four.

41

Tomasetti Luca Chapter 4 Tile Classification Approach

4.1 Introduction

The chapter explores three different architectures to test which one yields the best
result during the classification. The structure of these methods is similar among each
other except for smaller changes, explained in detail in corresponding sections. Fig.
4.2 displays an overview of the involved steps after the creation of the input until the
generation of the predicted output, passing through the selection of the architecture and
the post-processing steps. The three Tile Classification architectures are described in
detail, highlighting the differences and the different results achieved, based on statistical
information and confusion matrices. Additionally, visual examples are presented to show
the predicted brain section of the patient with ID 2. All the other predicted images for
all the patients, with their corresponding confusion matrices and statistical information,
are presented in Appendix A.

Figure 4.2: Overview of the input and output section for the CNN architectures.

The Tile Classification approach is based on CNN architecture. The general idea is
to use the dataset of 4D vector images, described in detail in Sec. 3.3.3, as the input;
then train one of the proposed models with a predefined number of epochs equal to 50
and, after that, receive as output a value that represents one of the four classes that
characterize an image. Each output is transformed into a 16x16 image and merged with
the other productions to create the final image. All predicted images in this chapter
display pixelation due to the merging implementation of the various tiles.

4.1.1 Existing Approaches/Baselines

A large number of studies were made to predict and detect regions inside a brain affected
by different diagnoses. A lot of recent researches are related to a brain tumor, lesion
segmentation, and the prediction of Alzheimer’s disease [69–73]. Architectures describe
in the next sections are following a similar approach to the researches mentioned above
but with two important differences: the dataset and the application of the model. All
previous studies based their dataset on MRI images, and these researches aimed to

Tomasetti Luca 43

discover Alzheimer’s diseases or brain tumors. The proposed architecture is using CTP
images over a period of time, as explained in detail in Chap. 2 and Chap. 3; to the
authors’ knowledge, there is no literature using NN on CTP images for stroke detection
or segmentation of stroke areas.

4.2 Post-processing

This section investigates the post-processing technique used to generate the final images
from the predicted tiles. The post-processing steps are an essential part of the entire
process. They allow combining the different tiles predicted during the test of the distinct
models to have a better overview of their overall accuracy. The three architectures
presented for the Tile Classification approach are adopting the same post-processing
technique: the output of a model is a list containing four numbers representing the four
probabilities of the classes that form every ground truth image; the highest value in the
list corresponds to the class predicted by a model. This integer is expanded into a 16x16
matrix containing the same value, transformed into an image and then combined it with
all the other matrices of the same brain section; an example of the involved steps is given
in Fig. 4.3. This process is performed for every tile generated during the testing of each
model.

Figure 4.3: Example of post processing steps for the Tile Classification approach.

Each class is mapped to a specific output integer and a particular value in the RGB color
code to simplify the process of transforming a matrix into a tile image:

• The background class corresponds to the integer 0, and it is mapped with white
color: (255,255,255) RGB decimal code.

• The brain class is related to the integer 1, and it is mapped with black color: (0,0,0)
RGB decimal code.

• The penumbra class coincides with the integer 2; it is mapped with a dark gray
color: (76,76,76) RGB decimal code.

Tomasetti Luca Chapter 4 Tile Classification Approach

• The last class, core, is mapped with the integer 3 and it corresponds to light gray
color: (150,150,150) RGB decimal code.

4.3 Proposed Architectures

The section explores the K-Fold Cross-validation for patient 2, the predicted confusion
matrices, and all statistical results for the model analyzed with the dataset without any
modification (“Dataset 1”) and the augmented dataset (“Dataset 2”). The results of all
the other patients are presented in Appendix A. The following list delineates all various
classes renamed and adopted in the next architectures for a better understanding:

• I : Background class;

• II : Brain class;

• III : Penumbra class;

• IV : Core class.

All results are based on the training of 50 epochs (steps); at the end of every epoch,
a validation step is performed to evaluate the loss of the model. The loss function
implemented for these architectures was the categorical cross-entropy, while the optimizer
function used was the stochastic gradient descent (SGD), and the adaptive moment
estimation (Adam).

4.3.1 Architecture 1

Figure 4.4: General structure for the Tile Classification architecture 1.

Tomasetti Luca 45

Architecture 1
Layer Param.

1
conv3D 448

batch_norm 64

2
conv3D 13856

batch_norm 128

3
max_pool3D 0

dropout 0

4
conv3D 27680

batch_norm 128

5
conv3D 27680

batch_norm 128

6
max_pool3D 0

dropout 0

7
conv3D 55360

batch_norm 256

8
max_pool3D 0

dropout 0

9
flatten 0
dense 76900

dropout 0
10 dense 404

Table 4.1: Layers summary
of architecture 1.

Fig. 4.4 displays a general overview of the first architecture
of the Tile Classification approach. The network contains
nine hidden layers plus the output layer. A summary of the
architecture, plus the parameters involved, are presented in
Table 4.1. The first layer, a convolutional layer, takes in
input a volume of 30 images of dimension 16x16 pixels; the
input is convolved with a ReLU activation function, a kernel
filter of size (3,3,3) and batch normalization. Subsequently,
the second layer represents a convolutional layer with a ReLU
activation function plus a batch normalization operation.
The third layer represents a max-pooling operation of size
(2,2,2) over the time-series images plus a dropout operation.
Layers four and five contain convolutional layers similar to
the first two layers but with an input of size 8x8x15. The
next layer executes a max-pooling operation plus a dropout
operation to reduce the overfitting probability. Layer seven
is a convolutional layer with a 4x4x7 input with the same
components of the other convolutional layers. Layer eight
contains the last max-pooling layer before the fully-connected
layers. Fully-connected layer compresses the input from three
dimensions to a one-dimensional vector of length 100. The
output layer contains four artificial neurons which yield the
probability of the four classes of the brain for the time-series
input. The number of total parameters is 203032; trainable
parameters are 202680 while non-trainable are 352.

4.3.2 Architecture 2

Figure 4.5: General structure for the Tile Classification architecture 2.

Tomasetti Luca Chapter 4 Tile Classification Approach

Architecture 2
Layer Param.

1
conv3D 4336

batch_norm 64

2
max_pool3D 0

dropout 0

3
conv3D 138272

batch_norm 128

4
max_pool3D 0

dropout 0

5
conv3D 553024

batch_norm 256

6
max_pool3D 0

dropout 0

7
flatten 0
dense 76900

dropout 0
8 dense 404

Table 4.2: Layers summary
of architecture 2.

The second architecture has a more compressed structure
compared to the first one (Sec. 4.3.1) because it has only
seven hidden layers plus the final output layer, as shown in
Fig. 4.5. The main difference with the first architecture,
besides the number of layers, lays on the kernel size used
during convolutional layers: instead of using the default
kernel size of (3,3,3), it was implemented a kernel size of
(3,3,N) where N is equivalent to the number of image in
depth of the volume. Hence, the kernel matrix checks and
evaluates the entire time-series volume of the brain section
simultaneously.

A summary of layers for this architecture is displayed in
Table 4.2. A convolutional operation forms the first layer
with a kernel size of (3,3,30), a ReLU activation function
and a batch normalization at the end. Layer two uses a
max-pooling operation with a window size of (2,2,2) on the
input plus a dropout function. The next four layers are a
reiteration of the first two layers with different input sizes.
The last hidden layer flats the output in a one-dimensional
vector of length 100, making use of the dropout function to
prevent overfitting and pass the output to the final layer,
which yields the four probabilities for the respective classes. The number of total
parameters is 773384; trainable parameters are 773160 while non-trainable are 224. The
number of parameters involved in the architecture is almost four times bigger than the
number of parameters of the first architecture, which means that the computational time
of each epoch is relatively slower for the analyzed methods.

4.3.3 Architecture 3

Figure 4.6: General structure for the Tile Classification architecture 3.

Tomasetti Luca 47

Architecture 3
Layer Param.

1
conv3D 4336

batch_norm 64

2
max_pool3D 0

dropout 0

3
conv3D 4640

batch_norm 128

4
conv3D 9248

batch_norm 128

5
max_pool3D 0

dropout 0

6
conv3D 18496

batch_norm 256

7
max_pool3D 0

dropout 0

8

flatten 0
dense 25700

batch_norm 400
dropout 0

9 dense 404

Table 4.3: Layers summary
of architecture 3.

The last architecture constructed presents a structure similar
to the second one (Sec. 4.3.2) but with two fundamental
differences in it: the window size of the first max-pooling
layer is (2,2,N) and the number of layers. Fig. 4.6 exhibits
an overview of the architecture, which contains eight hidden
layers plus the output. Layer one is a convolutional layer
with a kernel size of (3,3,N), a ReLU activation function and
a batch normalization operation. The second layer has an es-
sential role in the architecture because it is the max-pooling
layer with a window size of (2,2,N), where N is equal to the
number of time series in the input volume. After this opera-
tion, the depth of the time series volume input is shrunk to a
vector of dimension one. Layers three, four, and six execute
convolutional operations with a ReLU function, a kernel size
of (3,3,1) and a final batch normalization at the end of each
layer. The fifth layer performs a max-pooling operation with
a window size of (2,2,1) in the same way as layer seven. The
last two layers implement a flatten and a dense procedure to
create an output of 4 values, to show different probabilities
for each class. The number of total parameters is 63800;
trainable parameters are 63312 while non-trainable are 488.
This architecture presented contains the smallest amount
of parameters among the architectures; hence, each epoch
takes approximately 400 seconds to execute.

4.4 Experimental Setup and Dataset

Even after dividing the dataset in smaller tiles and using data augmentation techniques,
described in Sec. 3.3.3, the sample size is still limited. For these reasons, before the
training and testing of all proposed architectures, the dataset is split using a K-fold
Cross-validation, as illustrated in Sec. 2.2.10. Additionally, four experiments with distinct
optimizer functions and datasets were implemented to test all different architectures, to
compare them, and to demonstrate which one presents the best performances.

In the first experiment, the various architectures were tested with “Dataset 1” (no
data augmentation) and the SGD optimizer function; on experiment 2, the “Dataset 2”
(augmented dataset) was used for the training of the distinct models; however, during
the tests, the “Dataset 1” was used to predict the brain sections in order to prevent

Tomasetti Luca Chapter 4 Tile Classification Approach

false results. Experiment 3 and 4 were executed with the Adam optimizer function,
respectively with “Dataset 1” for both training and testing and “Dataset 2” for training
and “Dataset 1” for testing.

4.5 Analysis of results for a single test patient

In this section, a visualization comparison of predicted images with the distinct experi-
ments is shown for each architecture to empathize over the similarities and differences
of the various experiment results; plus, the section presents an analysis of confusion
matrices and the numerous statistical information for two distinct datasets, and two
different optimizer functions, evaluated through the various architectures. Results shown
in the next pages are indicative only for the patient with ID 2 due to the large size of
all the predicted brain sections. The results of all the other patients are presented in
detail in Appendix A.1 for the first architecture, Appendix A.2 for architecture two and
Appendix A.3 for the last architecture.

4.5.1 Partial results for patient 2 with Architecture 1

Visualization Comparison

This section presents a visual comparison of one brain section for the patient with ID
2, given in Table 4.4, to understand how the presented architecture performs with the
different experiments. The choice of this particular brain section is due to the presence
of the totality of the classes involved. The first column in the table represents a brain
section’s ground truth using an image after extracting the manual annotations, as defined
in Sec. 3.3.2. The second column shows a predicted image with “Dataset 1” and the
SGD optimizer function (experiment 1); the third column exhibits a predicted image
with the same dataset as the second column, but the model is trained with an Adam
optimizer function (experiment 3). The last two columns display the predicted section
with the augmented dataset for both the optimizer function SGD (experiment 2) and
Adam (experiment 4). All other brain sections of the patient are presented in Table A.1
in the Appendix A together with all other patients. Comparing all Tile Classification
results, the experiment that produces better accuracy in correlation with the ground
truth image is the one with the augmented dataset and the Adam optimizer (experiment
4), even if specific images contain tile classified with the core or penumbra class.

As it can be observed in Table A.1, Tile Classification results for the first two slices,
both for “Dataset 1” and “Dataset 2”, are very different from the ground truth images;

Tomasetti Luca 49

Ground Truth Normal Dataset Data Augmentation
SGD Adam SGD Adam

Table 4.4: Example of brain section comparison for patient 2 with different techniques
of the first architecture.

this is due to imperfections in the skull removal in the pre-processing part. The skull
removal algorithm is not perfect; nevertheless, it performs well and shows good results
for most of the sections; the only unsuitable outcomes are some of the first sections where
the eyes make the skull less obvious to detect, among a few of the patients. Despite
this inconvenience, the shape of various classes is almost maintained for both training
methods. Data augmentation sections manifest a larger number of tiles classified with the
core class compared with sections generated with the “Dataset 1”. This event is related
to the fact that a model has an extended number of samples that corresponds to a core
class during its training: the augmented dataset can lead to a higher grade of confusion
in the prediction of core areas compared to the other dataset. This phenomenon is
confirmed also in all images in Table 4.4. The architecture proposed with the different
datasets and optimizer is not perfect, as it is possible to evince from the samples in the
previous table. A significant number of false-positive penumbra and core tiles are spotted
in random places in the brain region, which can lead to possible wrong or not accurate
decisions for medical doctors.

Analysis with different Datasets

Table 4.5 presents a comparison of the various statistical information for different classes
in distinct brain sections and their average for both standard and augmented datasets
and the two optimizer functions. Achieved results are quite similar between the two
datasets even if it is possible to notice some variances on average results in penumbra
and core classes, respectively. Accuracy and precision exhibit promising outcomes, while
the F1 score metric shows impressive achievements for the first two classes but average
results for penumbra and especially for core classes. Table 4.6 shows the overall confusion
matrix for all sections of the brain analyzed for patient with ID 2 with the normal
dataset (“Dataset 1”), while Table 4.8 displays the final confusion matrix for the same
patient with the augmented dataset (“Dataset 2”); both tables present values for the
SGD optimizer function. Similarly, Tables 4.7 and 4.9 exhibit confusion matrices for
two different datasets with the Adam optimizer function. The predicted core class (IV)

Tomasetti Luca Chapter 4 Tile Classification Approach

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.958 0.968 0.045 0.018 0.035 0.084 0.965 0.955 0.982 0.916
II 0.939 0.893 0.116 0.098 0.038 0.046 0.962 0.884 0.902 0.954
III 0.971 0.757 0.057 0.367 0.028 0.003 0.972 0.943 0.633 0.997
IV 1.0 0.5 0.5 0.5 0.0 0.0 1.0 0.5 0.5 1.0

Average 0.967 0.780 0.179 0.246 0.025 0.033 0.975 0.821 0.754 0.967

A
da

m

I 0.964 0.973 0.034 0.021 0.04 0.066 0.96 0.966 0.979 0.934
II 0.94 0.891 0.137 0.08 0.03 0.053 0.97 0.863 0.92 0.947
III 0.969 0.75 0.045 0.383 0.03 0.002 0.97 0.955 0.617 0.998
IV 1.0 0.333 0.5 0.75 0.0 0.0 1.0 0.5 0.25 1.0

Average 0.968 0.737 0.179 0.283 0.025 0.03 0.975 0.821 0.692 0.970

D
at
a
A
ug

m
en
t. SG

D

I 0.966 0.974 0.029 0.022 0.044 0.056 0.956 0.971 0.978 0.944
II 0.951 0.914 0.095 0.077 0.03 0.038 0.97 0.905 0.923 0.962
III 0.976 0.775 0.146 0.291 0.018 0.008 0.982 0.854 0.709 0.992
IV 0.999 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

Average 0.973 0.666 0.318 0.348 0.023 0.026 0.977 0.682 0.652 0.974

A
da

m

I 0.962 0.972 0.037 0.02 0.039 0.071 0.961 0.963 0.98 0.929
II 0.945 0.904 0.096 0.095 0.038 0.039 0.962 0.904 0.905 0.961
III 0.978 0.798 0.111 0.277 0.018 0.006 0.982 0.889 0.723 0.994
IV 0.999 0.333 0.0 0.8 0.001 0.0 0.999 1.0 0.2 1.0

Average 0.971 0.752 0.061 0.298 0.024 0.029 0.976 0.939 0.702 0.971

Table 4.5: Comparison of the statistical information for prediction on Patient 2 based
on two different datasets.

Actual Class
I II III IV

Pred.
Class

I 8455 154 2 0
II 330 3367 35 0
III 67 287 612 1
IV 0 1 0 1

Table 4.6: Confusion Matrix for Pa-
tient 2 with the normal dataset and

SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8553 177 3 0
II 259 3283 25 0
III 44 341 622 1
IV 0 2 1 1

Table 4.7: Confusion Matrix for Pa-
tient 2 with the normal dataset and

Adam optimizer.

in Table 4.8, which displays the results for experiment 2, contains a relevant number
of elements than the corresponding class in Table 4.6. The confusion matrix in Table
4.6 was computed using the first experiment setup; while the experiment 2 relays on
the “Dataset 2”, which consists of a more significant number of sample for the core class
compared with “Dataset 1”. The confusion matrix created from experiment 3 (Table 4.7)
shows a better result than the others, which corresponds well with what was indicated
by the visualization example in Table 4.4.

Fig. 4.7 shows four plots representing different accuracy results achieved with particular
methods described in previous sections. Plots are displaying how the training and
validation accuracy is evolving during the 50 epochs as it is possible to evince from Fig.

Tomasetti Luca 51

Actual Class
I II III IV

Pred.
Class

I 8597 190 5 0
II 198 3447 88 0
III 56 169 554 2
IV 1 3 2 0

Table 4.8: Confusion Matrix for Pa-
tient 2 with the augmented dataset and

SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8525 169 4 0
II 296 3440 67 0
III 31 191 579 0
IV 0 7 1 2

Table 4.9: Confusion Matrix for Pa-
tient 2 with the augmented dataset and

Adam optimizer.

4.7(c) and Fig. 4.7(d), during the training with the Adam function, the accuracy (red
lines) stabilizes faster compared to the other two implementation. The different learning
curves in the plots are expected since Adam optimizer achieves similar results as the
SGD function but in a smaller amount of computational time [47]. As expected, due to
the small number of data in the validation set, the validation curves are not smooth.

(a) Accuracy plot for normal dataset and SGD. (b) Accuracy plot for augmented dataset and SGD.

(c) Accuracy plot for normal dataset and Adam. (d) Accuracy plot for augmented dataset and Adam.

Figure 4.7: Different accuracy plots for Patient 2 for the architecture one.

Tomasetti Luca Chapter 4 Tile Classification Approach

4.5.2 Partial results for patient 2 with Architecture 2

Visualization Comparison

Table 4.10 displays the same brain section of the various predicted images for the second
architecture. The most similar predicted image with the ground truth brain section is the
one realized with the augmented dataset and the SGD optimizer function (experiment
2). Furthermore, images created with the augmented dataset are displaying promising
outputs since the shapes of the different classes look very similar to the ground truth’s
classes despite the last predicted image contains a small number of tiles inside the brain
classified as a background (white tiles).

Ground Truth Normal Dataset Data Augmentation
SGD Adam SGD Adam

Table 4.10: Example of brain section comparison for patient 2 with different techniques
of the second architecture.

Images displayed in Sec A.2 present some peculiarities: in some portions of the border
between the background and the brain, the outcome tile is labeled with the penumbra
class creating a bizarre effect in the final image. This fact is notable in the majority of
the predicted images, with both datasets and the two optimizer functions. A possible
reason for this aftereffect is the limited amount of samples for the border regions between
different classes, which can confuse the train of the various models.

Analysis with different Datasets

Table 4.21 displays the different statistical information for the second architecture. The
overall results are very close to the first architecture with small variations in some metrics.
F1 score is almost 10% below to the first architecture; the precision with the only
exception on the result with an Adam optimizer and an augmented dataset (experiment
4), is around 15% lower than the first architecture. With an augmented dataset, the
SGD function shows a similar result in the recall because of the better score within the
core class, while the other methods perform poor results compared to other architectures.

Confusion matrices extrapolated from this architecture have similar structures as the
other confusion matrices for architecture one. They all show different interpretations

Tomasetti Luca 53

Actual Class
I II III IV

Pred.
Class

I 8496 199 9 0
II 274 3278 60 0
III 86 324 578 2
IV 0 4 2 0

Table 4.11: Confusion Matrix for Pa-
tient 2 with the normal dataset and

SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8481 169 1 0
II 288 3383 41 0
III 83 257 607 2
IV 0 0 0 0

Table 4.12: Confusion Matrix for Pa-
tient 2 with the normal dataset and

Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.957 0.968 0.041 0.024 0.047 0.078 0.953 0.959 0.976 0.922
II 0.935 0.884 0.139 0.092 0.035 0.054 0.965 0.861 0.908 0.946
III 0.964 0.705 0.109 0.416 0.033 0.006 0.967 0.891 0.584 0.994
IV 0.999 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

Average 0.964 0.639 0.322 0.383 0.029 0.035 0.971 0.678 0.617 0.966

A
da

m

I 0.959 0.969 0.042 0.02 0.038 0.08 0.962 0.958 0.98 0.92
II 0.943 0.9 0.112 0.089 0.035 0.044 0.965 0.888 0.911 0.956
III 0.971 0.76 0.065 0.36 0.027 0.003 0.973 0.935 0.64 0.997
IV 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

Average 0.968 0.657 0.305 0.348 0.028 0.032 0.975 0.695 0.633 0.968

D
at
a
A
ug

m
en
t. SG

D

I 0.954 0.965 0.048 0.021 0.04 0.091 0.96 0.952 0.979 0.909
II 0.938 0.892 0.11 0.106 0.042 0.044 0.958 0.89 0.894 0.956
III 0.968 0.724 0.138 0.375 0.027 0.007 0.973 0.862 0.625 0.993
IV 0.999 0.2 0.0 0.889 0.001 0.0 0.999 1.0 0.111 1.0

Average 0.965 0.695 0.074 0.348 0.028 0.036 0.973 0.926 0.652 0.965

A
da

m

I 0.961 0.971 0.022 0.036 0.073 0.045 0.927 0.978 0.964 0.955
II 0.945 0.9 0.145 0.05 0.018 0.056 0.982 0.855 0.95 0.944
III 0.972 0.75 0.126 0.344 0.023 0.007 0.977 0.874 0.656 0.993
IV 0.997 0.1 0.0 0.947 0.003 0.0 0.997 1.0 0.053 1.0

Average 0.969 0.68 0.073 0.344 0.029 0.027 0.971 0.927 0.656 0.973

Table 4.13: Comparison of the statistical information for prediction on Patient 2 based
on two different datasets for the second architecture.

among methods: the confusion matrix in Table 4.12 does not have any tile for the core
class, but it is the one who predicts the larger number of tiles for class three (penumbra).
Table 4.15 shows a few errors after the training; however, it contains the biggest number
of errors for the predicted core class. Table 4.11 and Table 4.14 display an average
distribution of corrected predictions and errors among all classes.

Lastly, Fig. 4.8 presents four learning curves for the methods proposed, after 50 epochs.
The curves show similar shapes as the four leaning curves related to the first architecture
results in Fig. 4.7. Each epoch has an average computational time of 600 seconds for
experiment 1 and experiment 2; 670 seconds on average for the other two experiments,
for a total of almost 9 hours of training. All plots show similar curves and results during

Tomasetti Luca Chapter 4 Tile Classification Approach

Actual Class
I II III IV

Pred.
Class

I 8423 170 10 0
II 329 3390 74 0
III 96 241 561 0
IV 4 6 6 2

Table 4.14: Confusion Matrix for Pa-
tient 2 with the augmented dataset and

SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8659 302 22 0
II 121 3255 51 0
III 71 226 567 0
IV 1 26 9 2

Table 4.15: Confusion Matrix for Pa-
tient 2 with the augmented dataset and

Adam optimizer.

the training. The validation accuracy for all methods exhibits higher values compared to
the training accuracy: this is because the sample size of the validation set, as explained
previously for their jagged curves.

(a) Accuracy plot for normal dataset and SGD. (b) Accuracy plot for augmented dataset and SGD.

(c) Accuracy plot for standard dataset and Adam. (d) Accuracy plot for augmented dataset and Adam.

Figure 4.8: Different accuracy plots for Patient 2 for the second architecture.

Tomasetti Luca 55

4.5.3 Partial results for patient 2 with Architecture 3

Visualization Comparison

Among the predicted images of the brain section in Fig. 4.16, the best representation of
the ground truth image is the one generated by the Adam optimizer and the augmented
dataset (experiment 4), even if some tiles are located in the incorrect position. The other
predictions show a similar structure of the various regions as the ground truth image,
although they present a significant number of tiles in the wrong area inside the brain
region. Additionally, the core class is not shown, or it is displayed in a smaller shape, as
it is possible to see in the predicted section with Adam function and the regular dataset.

Ground Truth Normal Dataset Data Augmentation
SGD Adam SGD Adam

Table 4.16: Example of brain section comparison for patient 2 with different techniques
of the third architecture.

Analysis with different Datasets

Actual Class
I II III IV

Pred.
Class

I 8386 166 3 0
II 332 3294 69 0
III 138 345 575 2
IV 0 0 2 0

Table 4.17: Confusion Matrix for Pa-
tient 2 with the normal dataset and

SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8496 180 1 0
II 275 3272 52 0
III 81 356 593 2
IV 0 1 3 0

Table 4.18: Confusion Matrix for Pa-
tient 2 with the normal dataset and

Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8447 186 8 0
II 302 3281 64 0
III 103 325 563 2
IV 0 17 14 0

Table 4.19: Confusion Matrix for Pa-
tient 2 with the augmented dataset and

SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8450 182 11 0
II 309 3363 85 0
III 85 219 531 1
IV 8 45 22 1

Table 4.20: Confusion Matrix for Pa-
tient 2 with the augmented dataset and

Adam optimizer.

Tomasetti Luca Chapter 4 Tile Classification Approach

(a) Accuracy plot for normal dataset and SGD. (b) Accuracy plot for augmented dataset and SGD.

(c) Accuracy plot for standard dataset and Adam. (d) Accuracy plot for augmented dataset and Adam.

Figure 4.9: Different accuracy plots for Patient 2 for the third architecture.

Results presented in Table 4.21 are akin among the four different methods: except for
FDR and the precision in the last approach, each metric produces similar performances
and results. Additionally, all the confusion matrix in the following tables are showing
comparable results in the prediction; the only exceptions are given by Table 4.20, which
contains the most significant number of false-negative for the last class, due to the usage
of a dataset with an expanded sample size of the core class.

The learning curves in Fig. 4.9 are close to the other architectures’ learning curves.
They also present the same irregular curves for the validation set. Presented curves have
a structure that is comparable with the different learning curves in Table 4.7 and 4.8
because of the irregular learning curves for the validation set and their higher accuracy
compare to the training curves.

Tomasetti Luca 57

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.952 0.963 0.053 0.02 0.038 0.099 0.962 0.947 0.98 0.901
II 0.931 0.878 0.134 0.109 0.042 0.053 0.958 0.866 0.891 0.947
III 0.958 0.673 0.114 0.458 0.038 0.006 0.962 0.886 0.542 0.994
IV 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

Average 0.960 0.629 0.325 0.397 0.030 0.040 0.971 0.679 0.603 0.961

A
da

m

I 0.96 0.969 0.04 0.021 0.041 0.077 0.959 0.96 0.979 0.923
II 0.935 0.883 0.141 0.091 0.034 0.055 0.966 0.859 0.909 0.945
III 0.963 0.706 0.086 0.425 0.035 0.005 0.965 0.914 0.575 0.995
IV 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

Average 0.965 0.639 0.317 0.384 0.028 0.034 0.972 0.683 0.616 0.966

D
at
a
A
ug

m
en
t. SG

D

I 0.955 0.966 0.046 0.022 0.043 0.087 0.957 0.954 0.978 0.913
II 0.933 0.88 0.139 0.1 0.039 0.055 0.961 0.861 0.9 0.945
III 0.961 0.686 0.133 0.433 0.034 0.007 0.966 0.867 0.567 0.993
IV 0.998 0.0 1.0 1.0 0.002 0.0 0.998 0.0 0.0 1.0

Average 0.962 0.633 0.33 0.389 0.029 0.037 0.97 0.67 0.611 0.963

A
da

m

I 0.955 0.966 0.045 0.022 0.043 0.086 0.957 0.955 0.978 0.914
II 0.937 0.889 0.117 0.105 0.041 0.047 0.959 0.883 0.895 0.953
III 0.968 0.715 0.182 0.365 0.024 0.009 0.976 0.818 0.635 0.991
IV 0.994 0.026 0.5 0.987 0.006 0.0 0.994 0.5 0.013 1.0

Average 0.969 0.680 0.073 0.344 0.029 0.027 0.971 0.927 0.656 0.973

Table 4.21: Comparison of the statistical information for prediction on Patient 2 based
on two different datasets for the third architecture.

4.6 Experimental Results

The last section presents the overall experiment results for all the patients, with a focus on
the average outcomes obtained for every single test and train. All architectures described
in the previous sections achieved promising outcomes because they are successfully
predicting, even with some minor mistakes and some false-positive results, the different
regions of the ischemic strokes in the affected brains. They are all able to detect in which
brain’s hemisphere the stroke is located and, above all, they are capable of identifying
with high accuracy all various shapes of the different areas of a stroke. A detailed
overview of the many outcomes and the mixed results for all patients is presented in
Appendix A.

4.6.1 Accuracy & Standard Deviation

Tab. 4.22 displays all the accuracies and losses for the K-Fold Cross-validation among
all patients. It also shows the average of these results plus the standard deviation of all
the outcomes. Except for the column for the patient with ID 11, it is possible to evince
that average training, loss, and testing present analogous results among themselves.

Tomasetti Luca Chapter 4 Tile Classification Approach

Patient chosen with K-fold Cross Validation
Avg. σP.2 P.3 P.4 P.5 P.6 P.7 P.8 P.9 P.10 P.11

N
or
m
al

Tr
ai

n
A

cc
.

(%
)

SG
D I 92.61 92.10 92.36 92.88 91.98 92.66 92.37 92.88 92.80 92.40 92.50 0.299

II 91.41 91.34 91.32 91.02 91.35 92.01 91.77 91.67 91.92 91.87 91.57 0.308
III 90.44 90.58 90.70 90.61 90.52 90.61 90.45 90.64 90.58 90.53 90.57 0.078

A
da

m I 93.00 93.06 93.12 93.23 93.28 92.65 93.12 93.23 93.00 93.20 93.09 0.173
II 92.17 92.20 92.23 92.22 92.12 92.18 91.94 92.24 92.16 92.14 92.16 0.082
III 90.94 91.00 90.83 91.00 90.97 90.91 90.61 90.95 90.95 90.92 90.91 0.110

Tr
ai

n
Lo

ss SG
D I 0.222 0.249 0.245 0.201 0.257 0.224 0.233 0.214 0.215 0.234 0.229 0.017

II 0.275 0.283 0.290 0.304 0.287 0.252 0.259 0.264 0.255 0.259 0.273 0.017
III 0.327 0.323 0.317 0.320 0.326 0.323 0.321 0.319 0.324 0.325 0.323 0.003

A
da

m I 0.204 0.201 0.197 0.200 0.191 0.191 0.196 0.192 0.202 0.196 0.197 0.004
II 0.247 0.246 0.243 0.246 0.247 0.240 0.248 0.238 0.246 0.243 0.244 0.003
III 0.311 0.309 0.317 0.308 0.310 0.314 0.316 0.309 0.311 0.312 0.312 0.003

Te
st

A
cc

(%
)

SG
D I 90.39 92.45 91.78 94.36 93.88 92.46 95.59 95.12 94.24 80.22 92.05 4.225

II 88.37 89.75 92.20 91.05 93.67 92.71 95.14 96.01 94.65 80.31 91.39 4.340
III 88.33 91.50 91.45 90.04 92.82 90.01 94.02 95.40 92.63 80.44 90.66 3.928

A
da

m I 89.32 93.72 93.22 94.58 96.16 92.65 96.41 96.02 93.19 78.41 92.37 5.063
II 90.55 92.43 94.83 94.10 93.73 92.96 95.48 95.92 93.81 76.04 91.98 5.514
III 88.01 91.19 91.65 91.70 92.24 89.51 94.05 95.11 93.30 79.73 90.65 4.134

D
at
a
A
ug

m
en
ta
ti
on

Tr
ai

n
A

cc
.

(%
)

SG
D I 92.11 92.21 92.70 92.57 91.54 92.39 92.25 92.88 92.51 90.46 92.16 0.666

II 90.64 90.85 90.75 90.26 90.76 90.45 90.35 90.81 90.61 91.26 90.67 0.272
III 88.73 88.94 88.81 89.10 88.62 89.18 88.91 89.32 88.95 88.78 88.93 0.204

A
da

m I 92.79 92.78 92.98 93.01 92.85 92.95 92.66 93.07 92.88 92.73 92.87 0.125
II 91.75 91.58 91.81 91.72 91.65 91.64 91.72 91.93 91.60 91.62 91.70 0.103
III 89.28 89.38 89.36 89.46 89.22 89.39 89.13 89.52 89.14 89.38 89.33 0.124

Tr
ai

n
Lo

ss SG
D I 0.248 0.243 0.225 0.224 0.271 0.232 0.239 0.216 0.228 0.318 0.244 0.029

II 0.304 0.298 0.298 0.315 0.295 0.307 0.308 0.293 0.304 0.276 0.300 0.010
III 0.379 0.373 0.376 0.365 0.382 0.365 0.372 0.358 0.373 0.376 0.372 0.007

A
da

m I 0.218 0.216 0.210 0.207 0.214 0.210 0.218 0.203 0.214 0.220 0.213 0.005
II 0.261 0.266 0.259 0.261 0.262 0.264 0.261 0.251 0.265 0.267 0.262 0.004
III 0.359 0.357 0.355 0.354 0.362 0.357 0.363 0.352 0.366 0.356 0.358 0.004

Te
st

A
cc

(%
)

SG
D I 90.84 92.84 93.45 93.30 92.83 91.40 95.10 95.78 93.52 80.21 92.12 4.225

II 90.02 92.03 92.71 92.21 91.77 88.17 94.94 94.47 91.18 78.35 90.59 4.482
III 87.49 90.99 90.08 90.99 93.12 88.41 92.35 95.46 90.97 78.32 89.82 4.392

A
da

m I 91.03 93.53 94.49 93.37 93.58 92.31 96.16 95.76 92.84 79.86 92.56 4.475
II 88.01 92.33 94.01 93.66 95.16 92.41 95.69 96.27 93.68 78.71 91.99 4.942
III 88.77 91.25 89.25 89.34 91.82 89.29 93.20 93.84 91.31 77.00 89.51 4.485

Table 4.22: Accuracy & Loss for all models.

4.6.2 Experimental Evaluation

Regarding the results obtained with the other patients, the three architectures proposed
achieved similar results among training, testing, and loss function. All patients shows
similar percentages during the training and testing, with the only exception of patient
with ID 11, as shown in Table 4.22 and in the visualization results in Sec. A.1.10, A.2.10,
A.3.10. Architecture 1 shows a training average among the four experiments of 92.66%,

Tomasetti Luca 59

a testing average of 92.28% and an average result in the two-loss functions of 0.237 for
SGD and 0.205 for Adam. The second architecture produces an average training of
91.53%, an average test accuracy of 91.31%, 0.287 for the SGD loss function, and 0.253
regarding the Adam loss. Architecture 3 has an average accuracy during the train of
89.94% and the test of 90.09%; additionally, the results for the loss functions are 0.348
for SGD and 0.341 for Adam.

The first architecture obtains the best accuracy among the three architectures proposed.
Furthermore, the training loss achieved the best result for this architecture, both for
SGD and Adam functions. The worst architecture, among the three presented, is the
last architecture because of its peculiar structure: since one of its first layers shrink the
3D volume in a one-dimensional volume, a relevant numbers of data is lost during the
process, leading almost to a 3% less accurate results compared to the first architecture.
Nevertheless, differences among the architectures are not too noticeable, as presented in
detail in Appendix A. Plus, the average results are based on all the methods and the two
datasets; thus, the process that achieved the highest accuracy is the first architecture using
the standard dataset and Adam optimizer (experiment 3). However, architectures that
show the best shapes for penumbra and core areas are the ones using the augmentation
dataset due to its presence of more samples for the core area. Test results present a high
standard deviation among all the architectures because the testing dataset does not have
a proper sample size.

5
Pixel by Pixel Segmentation Approach

Figure 5.1: Focus of chapter five.

61

Tomasetti Luca Chapter 5 Pixel by Pixel Segmentation Approach

The chapter presents in detail the last architecture proposed, with a highlight of the
different results achieved with the distinct experiments. Additionally, visual examples
are presented to show a predicted brain section of the patient with ID 2. All the other
predicted output for all the patients, with their corresponding confusion matrices and
results, are displayed in Appendix B.

5.1 Introduction

The success of CNN is mainly based on managing datasets with thousands of annotated
training images. The proposed approach, based on the U-Net approach, does not need
a vast amount of images in the dataset because, as stated in the original article: “the
architecture consists of a contracting path to capture context and a symmetric expanding
way that enables precise localization” [60]. U-Net is trained with two different datasets
containing hundreds of images which are decomposed in smaller sub-images. One of the
two train datasets is also composed using data augmentation techniques for one of the
classes involved. The primary consideration for using this approach is due to the good
results achieved with the Tile Classification of 16x16 tiles in the previous chapter.

Fig. 5.2 displays the steps involved for the creation of predicted images using the proposed
approach; as highlighted by the image, to produce the final result it is not necessary to
use any post-processing steps since the output is directly given as a 2D vector, easily
converted in an image.

Figure 5.2: Overview of the input and output section for the U-net architecture.

5.2 Existing Approaches/Baselines

The approach implemented in this chapter, called Pixel by Pixel Segmentation approach,
was described in detail in Sec. 2.2.7. It maps every input (a series of pixels) over the

Tomasetti Luca 63

Figure 5.3: U-Net architecture. The figure is reprinted in unaltered form from [60].

same section of the brain during the passage of the contrast agent, with the output, a
single pixel in the image target. This approach is based on a deep neural network, called
U-Net, created by a group of researchers of the University of Freiburg [60] to segment
in a fast way neuronal structures in electron microscopic stacks. Fig. 5.3 displays the
architecture of the network implemented during their study. This thesis faces a different
problem compared with the segmentation of neuronal structures; thus, the architecture
was implemented with a different framework and modified from the original structure to
allow it take in input a list of CTP images.

5.3 Analysis

The network implemented for the Pixel by Pixel Segmentation approach has a structure
comparable to the one in Fig. 5.4. The proposed network contains 17 layers plus the
output layer, which also executes a reshape operation. It has a larger number of layers,
compared to the other architectures, because of its structure composition, composed of
two main parts: a contracting part (from layer one until layer 10) and an extensive section
(from layer 11 until the output layer). Additionally, the number of total parameters
involved in the network is very high; which can lead to a possible disadvantage during
the training. The network is slower than the other architectures, but the outcome that
it produces is way more accurate compared to the Tile Classification approach, as it is
possible to evince from Table 5.3. The training and testing evaluation, which is composed
of 50 epochs like the other architectures, takes approximately 12 hours in total or 15
minutes on average per epoch, depending on the dataset involved.

Tomasetti Luca Chapter 5 Pixel by Pixel Segmentation Approach

5.4 Proposed Architecture

U-Net Architecture
Layer Param.

1
conv3D 4336

batch_norm 64
2 avg_pool3D 0

3
conv3D 4640

batch_norm 128

4
conv3D 18496

batch_norm 256
5 max_pool3D 0

6
conv3D 36928

batch_norm 256

7
conv3D 73856

batch_norm 512
8 max_pool3D 0

9
conv3D 147584

batch_norm 512

10
conv3D 295168

batch_norm 1024

11

Conv3DTranspose 131200
concatenate 0
conv3D 147584

batch_norm 512

12
conv3D 73792

batch_norm 256
13 max_pool3D 0

14

Conv3DTranspose 16448
concatenate 0
conv3D 18464

batch_norm 128

15
conv3D 9248

batch_norm 128
16 max_pool3D 0
17 conv3D 33
18 reshape 0

Table 5.1: Layers summary of Pixel by
Pixel Segmentation approach.

Table 5.1 describes in a more detailed way all lay-
ers for the Pixel by Pixel Segmentation approach.
The first layer performs a convolutional operation
with a ReLU activation function and a kernel size
of (3,3,N), where N is the number of time-series
for the same brain section; it also executes a batch
normalization. The second layer runs an average
pooling function, over the output of the first layer,
with a window shape of (3,3,N); this layer is es-
sential because it flats the input volume to a one-
dimensional vector. The third and fourth layers
represent two convolutional layers, using a ReLU
activation function and a kernel size of (3,3,1) and
a batch normalization operation. Layer five exe-
cutes a max-pooling process, with a window size
of (2,2,1), to halve the width and height of the
input. The next three layers operate in the same
way as the last three: two convolutional layers with
a ReLU activation function and one max pooling
layer. Subsequently, the other two convolutional
layers and two batch normalization are executed
in order to arrive on the eleventh layer: it repre-
sents the fundamental step in the architecture. The
layer executes a transposition of a convolutional
layer; the outcome of the previous transposition is
concatenated with the output of the seventh layer,
as it is possible to evince from Fig. 5.3. After
this concatenation, which creates an input of di-
mension (8,8,2), two convolutional operations are
performed plus two batch normalization. Layer thir-
teen implements a max-pooling operation with a
window size of (1,1,2) to reduce the output to a one-
dimensional volume. From layer fourteen to layer
sixteen included, the same operation is operated to
bring back the output to the initial dimension of
(16,16,1). The second-last layer executes a convo-
lutional layer with a Sigmoid activation function to

Tomasetti Luca 65

transform the output into the interval [0, 1]. The number of total parameters involved
in the network is 981553; the trainable parameters are 979665 while the non-trainable
parameters are 1888.

Figure 5.4: Pixel by Pixel segmentation network structure.

5.5 Experimental Setup and Data Set

“Dataset 1” and “Dataset 2” are involved in the same way as they were used for the other
approach, as illustrated in Chap. 4. The training of the architecture bases its foundations
on the K-Fold Cross-validation of the dataset. Thus, experiments are performed for
ten different datasets due to a random exclusion of one patient for testing purposes.
During the training and testing period, it is only evaluated the accuracy percentage and
the output of the loss function. For this architecture, the Dice loss is used (Sec. 2.2.2)
because of its property to gauge the similarity of two regions.

5.6 Post-processing

The Pixel-by-Pixel Segmentation approach does not follow the same post-processing
technique illustrated in the previous chapter; conversely, since the output produced is
a tile due to the property of a U-Net architecture, it just expands the RGB levels of
the tile from 1 to 3. Additionally, since the integers inside the predicted tile are in the
interval [0, 1], they are all multiplied by 255 to produce the corresponding RGB values.
The post-processing step converts every predicted pixel (X) to an RGB decimal code:
(X,X,X).

Tomasetti Luca Chapter 5 Pixel by Pixel Segmentation Approach

5.7 Experimental Results

5.7.1 Visualization Results

The Brain sections created with the architecture described above, present almost the
same structure of the ground truth image. The best result achieved in Table 5.2 is
represented by the image realized with the data augmentation dataset and the SGD
optimizer (experiment 2). However, also the other method, which uses the SGD function,
aims for essential results. The shape of the final brain section generated with the data
augmentation dataset and the Adam optimizer (experiment 4) looks almost perfect
despite some small areas that are labeled with a background class inside the brain region.
The generated image with Adam optimizer and standard dataset (experiment 1) yields
the right shapes for all classes, but overall, the image looks indented.

Ground Truth Normal Dataset Data Augmentation
SGD Adam SGD Adam

Table 5.2: Example of brain section comparison for patient 2 with different techniques
on the U-net architecture.

5.7.2 Accuracy Results

Fig. 5.5 represents the different learning curves for this approach using particular datasets
and distinct optimizer algorithms. Equivalently to the learning curves analyzed for the
various architectures in Chap. 4, these plots reveal a high learning rate in the training
curve along with a scattered validation accuracy curve due to the sample size of the
validation set. Additionally, presented curves display an improvement in their learning
results even around the 50th epoch, which can lead to better outcomes if these models
are trained with a higher number of epochs and a larger dataset. The realization of the
training with a more significant amount of epochs could be an interesting field of study
for the future.

The network training strategy produces precise images, reaching a training accuracy
of 98.27% and testing accuracy of 96.85% on average. The average result for the Dice
loss is 0.017. Results presented in Fig. 5.3 are very promising: they lead to higher
accuracy, both in training and testing, compared to the approaches proposed in Chap. 4,

Tomasetti Luca 67

(a) Accuracy plot for normal dataset and SGD. (b) Accuracy plot for augmented dataset and SGD.

(c) Accuracy plot for standard dataset and Adam. (d) Accuracy plot for augmented dataset and Adam.

Figure 5.5: Different accuracy plots for Patient 2 for the U-Net architecture.

the produced shapes of the distinct areas are more accurate even if the execution time
for each epoch takes more time than the other architectures. All the images predicted
with the different methods are shown in Appendix B. In the same way as the other
architectures, the standard deviation of the test results is high due to the not appropriate
sample size of the dataset.

Tomasetti Luca Chapter 5 Pixel by Pixel Segmentation Approach

Patient chosen with K-fold Cross Validation
Avg. σP.2 P.3 P.4 P.5 P.6 P.7 P.8 P.9 P.10 P.11

N
or
m
al

T
ra

in
A

cc
.

(%
)

SGD 98.04 97.96 98.46 98.47 98.48 98.40 98.46 98.46 98.47 98.45 98.37 0.185

Adam 98.13 98.06 98.12 98.12 98.05 98.16 98.05 98.09 98.16 98.15 98.11 0.042

T
ra

in
L

os
s SGD 0.018 0.018 0.013 0.013 0.013 0.014 0.013 0.013 0.013 0.014 0.014 0.002

Adam 0.017 0.017 0.017 0.017 0.018 0.016 0.017 0.017 0.016 0.016 0.017 0.001

T
es

t
A

cc
.

(%
)

SGD 95.82 97.70 98.91 98.50 98.64 97.90 98.77 98.88 98.81 86.67 97.06 3.576

Adam 94.58 98.02 98.63 97.82 98.48 97.64 98.44 98.64 98.62 86.42 96.73 3.625

D
at
a
A
ug

m
en
ta
ti
on

T
ra

in
A

cc
.

(%
)

SGD 97.64 97.64 97.59 97.75 97.80 98.22 98.18 97.97 98.01 97.95 97.88 0.214

Adam 98.21 98.26 98.28 98.26 98.50 97.60 98.55 98.29 98.23 98.25 98.24 0.241

T
ra

in
L

os
s SGD 0.022 0.022 0.023 0.021 0.020 0.016 0.016 0.018 0.018 0.019 0.019 0.002

Adam 0.016 0.016 0.015 0.016 0.015 0.016 0.016 0.015 0.016 0.016 0.016 0.0

T
es

t
A

cc
.

(%
)

SGD 95.63 97.70 98.20 97.94 98.23 97.82 97.30 98.37 98.24 86.65 96.61 3.405

Adam 95.78 98.15 98.73 98.49 98.50 97.60 98.55 98.74 98.36 87.11 97.00 3.402

Table 5.3: Accuracy & Loss for all models related with the pixel by pixel segmentation
approach.

6
Results & Future Works

Figure 6.1: Focus of chapter six.

69

Tomasetti Luca Chapter 6 Results & Future Works

The chapter examines the outcomes achieved with the two approaches described in the
previous chapters, Tile Classification, and Pixel by Pixel Segmentation, with a focus
on the different performances and the comparison of the predicted outcomes of the
various architectures involved in the thesis. Moreover, a section to address the possible
improvements and future works for the thesis is presented.

6.1 Results & Discussion

6.1.1 Aggregate Confusion Matrices for Architecture 1

The aggregate confusion matrices for all the final images of the patients with “Dataset
1”, SGD and ADAM optimizer and architecture 1 (Sec. 4.3.1) are display in Table 6.1
and Table 6.2:

Actual Class
I II III IV

Pred.
Class

I 95907 680 76 16
II 2019 34550 972 26
III 675 1952 6890 133
IV 3 44 50 391

Table 6.1: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 96092 649 70 20
II 1991 34251 699 8
III 546 2233 7186 98
IV 3 57 37 444

Table 6.2: Adam optimizer.

Furthermore, the aggregate confusion matrices for all the final images of the patients
with “Dataset 2”, SGD and ADAM optimizer are display in Table 6.3 and Table 6.4:

Actual Class
I II III IV

Pred.
Class

I 95824 677 110 6
II 2203 34832 1115 10
III 530 1536 6570 40
IV 49 189 183 510

Table 6.3: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 96018 659 118 8
II 2081 34817 951 5
III 471 1593 6718 15
IV 27 145 216 542

Table 6.4: Adam optimizer.

The distinct experiments, presented in the previous confusion matrices, show promising
and similar results; the decision to select one of these experiment setups should be based
on which class is more important to predict. Even if the aggregated outcomes are showing
analogous values in the predicted classes on the various confusion matrices, Table 6.2
displays the best output for the prediction background and penumbra classes, while
Table 6.3 presents the best result for the predicted brain class and finally Table 6.4 shows
the best outcome for the predicted core class.

Tomasetti Luca 71

Experiment
1 2 3 4

MSE 0.0079 0.0068 0.0082 0.0073

Table 6.5: Mean squared error for the predicted classes for architecture 1.

Table 6.5 presents the mean squared error for the predicted classes. The lowest MSE
value is given by the experiment 2, which is expected since the corresponding confusion
matrix (Table 6.2) shows excellent results for two classes among the total four.

6.1.2 Aggregate Confusion Matrices for Architecture 2

Table 6.6 and Table 6.7 display the aggregate confusion matrices for all the final images
of the patients with “Dataset 1”, SGD and ADAM optimizer and architecture 2 (Sec.
4.3.2):

Actual Class
I II III IV

Pred.
Class

I 95645 759 113 32
II 2324 34717 1148 34
III 641 1721 6688 233
IV 2 31 25 271

Table 6.6: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 95575 673 98 19
II 11033 31134 904 13
III 686 1930 6896 101
IV 5 31 83 436

Table 6.7: Adam optimizer.

Furthermore, the aggregate confusion matrices for all the final images of the patients
with “Dataset 2”, SGD and ADAM optimizer are displayed in Table 6.8 and Table 6.9:

Actual Class
I II III IV

Pred.
Class

I 95563 1170 292 19
II 2421 34265 1393 12
III 579 1455 6048 40
IV 38 319 271 499

Table 6.8: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 95739 855 176 13
II 2258 34819 1138 8
III 576 1420 6487 34
IV 33 140 173 515

Table 6.9: Adam optimizer.

Compare to the previous architecture, the confusion matrices presented in this section
show similar results even if they give less accuracy than the first architecture. Nevertheless,
among the four tables presented here, the one that displays the best results is Table 6.9
since it contains the three best outcomes per predicted class over the four total classes.
The results presented in Table 6.10 confirm the previous statement because the lowest
MSE discovered for this architecture is given by experiment 4.

Tomasetti Luca Chapter 6 Results & Future Works

Experiment
1 2 3 4

MSE 0.0104 0.0091 0.0144 0.0088

Table 6.10: Mean squared error for the predicted classes for architecture 2.

6.1.3 Aggregate Confusion Matrices for Architecture 3

Table 6.11 and Table 6.12 present the aggregate confusion matrices for all the final images
of the patients with “Dataset 1”, SGD and ADAM optimizer and architecture 3 (Sec.
4.3.3):

Actual Class
I II III IV

Pred.
Class

I 95493 692 125 22
II 2374 34549 1371 62
III 753 1924 6403 218
IV 3 37 93 265

Table 6.11: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 95252 671 125 33
II 2688 34440 1284 56
III 671 2028 6482 196
IV 10 61 103 284

Table 6.12: Adam optimizer.

Furthermore, the aggregate confusion matrices for all the final images of the patients
with “Dataset 2”, SGD and ADAM optimizer are display in Table 6.13 and Table 6.14:

Actual Class
I II III IV

Pred.
Class

I 95209 862 205 25
II 2716 34469 1523 37
III 651 1650 5910 112
IV 30 251 342 392

Table 6.13: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 95267 886 228 29
II 2638 34197 1438 25
III 639 1845 5882 69
IV 55 303 439 444

Table 6.14: Adam optimizer.

The aggregate results of the last architecture are in line with its average accuracy, as
shown in Table 4.22. The confusion matrices show total values that are lower than the
other two architectures because of the peculiar structure of the model since it shrinks
the input during one of the first layers. This structure, as proven by the analysis of the
various results, loses some useful information during the training, leading to results that
are not accurate as of the other architectures. The best experiment for this model is
given by Table 6.11, which produces two of the four highest values for the predicted
classes.

Experiment
1 2 3 4

MSE 0.0130 0.0124 0.0159 0.0166

Table 6.15: Mean squared error for the predicted classes for architecture 3.

Tomasetti Luca 73

The lowest MSE is given by experiment 2, as shown in Table 6.15, despite the two of the
highest predicted classes were produced by the first experiment. This could be caused by
analogous results between these experiment 1 and experiment 2.

6.1.4 Aggregate Results for Architecture 4

Exp. Train Acc. (%) Train Loss Test Acc. (%) Test Loss
I 98.37 0.014 97.06 0.027
II 98.11 0.017 96.73 0.034
III 97.88 0.019 96.61 0.031
IV 98.24 0.016 97.00 0.030

Table 6.16: Average statistical information for the experiments on the different archi-
tectures.

Table 6.16 shows the aggregate statistical metrics for the training and testing across
the four experiments. These statistics produce very high accuracy percentages, showing
that the results are promising and a series of future works are necessary to validate the
architecture proposed and their related outcomes.

Ground Truth Normal Dataset Data Augmentation
SGD Adam SGD Adam

Table 6.17: Example of brain section comparison for patient 8 with different techniques
on the U-net architecture.

Future works are necessary because the predicted image by the experiments are producing
encouraging and, at the same time, ambiguous outputs. The predicted images, presented
in Table 6.17, display a segmentation of the various classes comparable to the image ground
truth; the images correspond to the brain section of a patient with ID 8. Differently, the
predicted images related with the patient with ID 11, elaborated with the corresponding
sample set, present a random segmentation over the example images in Table 6.18; the
other outcomes are presented in Appendix B.1.10 and they display the same random
segmentation for penumbra and core classes.

This phenomenon is notable only for this patient of the dataset. Additionally, all the
other architectures present this type of event for the patient with ID 11. It is also
possible to notice in Table 4.22 and Table 5.3 that the training and testing accuracy for
the patient with ID 11 is radically inferior compared to the other patient’s accuracies.

Tomasetti Luca Chapter 6 Results & Future Works

Ground Truth Normal Dataset Data Augmentation
SGD Adam SGD Adam

Table 6.18: Example of brain section comparison for patient 11 with different techniques
on the U-net architecture.

Future researches with a larger dataset should be indispensable to check and validate
the various predictions.

6.1.5 Overall Results

Arch. Exp. Test Acc. (%) mAP (%) Jaccard (%) Comput. Time
per epoch (s)

1

I 92.05 67.63 62.29 720
II 92.37 66.92 61.93 720
III 92.12 67.91 63.06 750
IV 92.56 67.23 62.87 750

2

I 91.39 66.97 61.05 600
II 91.98 65.62 60.37 600
III 90.59 66.88 62.29 670
IV 91.99 67.07 62.18 670

3

I 90.66 65.50 59.47 450
II 90.65 64.58 58.72 450
III 89.82 65.74 60.02 550
IV 89.51 64.18 58.43 550

4

I 97.06 70.92 67.64 850
II 96.73 69.57 65.79 850
III 96.61 69.96 66.34 1000
IV 97.00 70.36 67.06 1000

Table 6.19: Average statistical information for the experiments on the different archi-
tectures.

As it is possible to evince from Table 6.19, the four architectures achieved distinct results
on testing calculated on the average of the K-Cross Fold Validation. Architecture 4
and the first experiment gives the best overall result. The overall Jaccard and mAP
measurements show comparable results among all the architectures. Despite the similar
results, architecture 4 presents slighter better outcomes for mAP and Jaccard than the
other architectures due to its better accuracy in the experiments.

Tomasetti Luca 75

Architecture 4 displays, in general, the best results among all the other architectures,
as it also possible to notice from the predicted images show in Appendix B. The main
advantage of this architecture is the level of precision achieved to segment the distinct
classes involved. The majority of brain sections predicted present a similar structure in the
segmentation for all the classes compare to the linked ground truth images. Penumbra and
core classes, the most critical areas to discover for medical doctors, display optimal region
shapes for all the patients analyzed except for the one with ID 11; notwithstanding, the
dataset does not contain a high number of these classes, just the 17% for “Dataset 1” and
21.5% for “Dataset 2”. The results achieved based on these values are very encouraging
for future works, as shown in Table 6.17. The disadvantage of the architecture 4 is the
amount of time spent to train each different model, independently from the experiment
setup: with a GPU Tesla V100-PCIE (32GB) every training epoch of a model with
“Dataset 1” takes approximately 850 seconds while a model with “Dataset 2” takes 1000
seconds due to its larger sample size.

Architecture 1, architecture 2, and architecture 3 are achieving complementary results
if they are compared only with themselves; the differences are more evident during
the comparison of different experiments analyzed with the various architectures. The
experiments trained with the augmented dataset (“Dataset 2”) display better classification
for the core and penumbra classes in contrast with the experiments trained with the
“Dataset 1”; however, in some occasions, models are predicting regions of brains as core
or penumbra class even if there is no evidence of that in the ground truth image, leading
to false-positive classifications, as an example check Tables A.32, A.44, A.75, A.87, A.136,
A.142.

One of the main advantages of these CNN architectures is the time spent on training
the models. Each architecture created generally takes between 6 and 8 hours to train 50
epochs with a GPU Tesla V100-PCIE (32GB), depending on the dataset. Architecture 3,
among all architectures, is the one that spends less time on the training due to its first
max-pooling layer which shrinks the 3D input into a one-dimensional vector, reducing
drastically the number of parameters to train. Nonetheless, this architecture shows the
lowest score both in training and testing in association with the other architectures
proposed. The predicted images created with these architectures are less accurate than
the images created with architecture 4 because of their primary outcome (a number that
indicates the corresponding class) and the post-processing technique (Sec. 4.2) which
creates a pixelated image joining together the predicted tiles.

All the different architectures and hyperparameters that were tested performed similar
results in general, except the core class prediction during the usage of “Dataset 1” and
“Dataset 2”. The application of SGD and Adam optimizer functions did not influence the

Tomasetti Luca Chapter 6 Results & Future Works

various outcomes significantly; even if the Adam optimizer generally achieved the same
results as SGD in a lower number of epochs. All results achieved with the suggested
approaches are promising since the average accuracy during training and testing exceeds
90% for almost every method. Even if all these architectures show essential results, a
lot of possible future works and researches are likely within this field, and an essential
number of improvements are achievable for the proposed structures. Plus, future work
is fundamental due to the limitation of the involved dataset: the sample size was too
small, the DICOM images are elaborated with the same scanner, and the patients were
taken from the same hospital. Finally, the manually annotated images are produced in
an approximately way, highlighting only the central regions of the infarcted areas, and
by a single doctor, the external supervisor of the thesis, who is an expert in the field but
there was no consensus over the various labels.

6.2 Future Works

This thesis presents four strategies to discover and predict the various regions of an
ischemic stroke using a dataset of CTP images; however, it could be possible to improve
the achieved results with future researches. An interesting study for the future could be
to test all the various methods proposed with a dataset that contains a more significant
number of patients to prove the validity of these architectures. Another interesting future
work could be to combine the predicted section of the same brain and create a 3D model
of the ischemic stroke. Additionally, since in one of the predicted patient (Appendix
A.1.10, A.2.10, A.3.10, B.1.10) the approaches generate false-positive leading to random
classification and segmentation in isolated areas of the brain, a possible future research
could be to find an algorithm to improve the efficiency of the post-processing technique
to avoid these false-positive discoveries. Furthermore, the algorithm proposed to extract
the skull from CTP images is not perfect; thus, it can be improved to test if it is lead to
better results.

7
Conclusion

The thesis presented four different architectures, all based on a CNN structure, to predict
in which part of the brain a stroke can occur and to classify or to segment the various
regions, penumbra, and core, of a possible ischemic stroke. The input of the distinct
CNNs is based on a dataset of CPT images over time from a group of 11 patients. A list
of vectors made of a series of 16x16 tiles is extrapolated with a sliding window technique
from these CTP images of the various brain sections created over a period of time. Each
vector contains the same portion of the pixels of a specific brain section during the
injection of an iodinated contrast agent inside cubital veins to enhance contrast in the
tissue.

The output of each model is the same section of the brain included as the input, with
the addition of manual annotation of the possible areas of the penumbra and core made
by a specialist. This approach is suggested to have the possibility to classify each vector
of tile extracted with a specific class, corresponding to one of the possible outcomes to
recreate, at the end of the training and testing of the model, a predicted brain section
image. The results obtained in this thesis work are very encouraging: the best test result
after K-Cross Fold Validation is found by using a Pixel by Pixel Segmentation approach
(Chap. 5), learned with an SGD optimizer, the “Dataset 1”, and the Dice loss function.

77

Tomasetti Luca Chapter 7 Conclusion

The best overall result is 97.06% accuracy over all the four classes (background, brain,
penumbra, core). The accuracy achieved with one of the proposed architecture should
be the foundation for future researches: a more extensive and heterogeneous dataset,
an improved version of the algorithm to extract the skull, a new version of the model
containing a more significant number of hidden layers and an increment of the training
time.

List of Figures

1.1 Overview of the structure approach. 1

2.1 Hemorrhagic stroke . 6
2.2 Ischemic stroke . 7
2.3 Overview of a brain section over time . 9
2.4 CTP Time Density Curve . 10
2.5 Different visualizations of TTP. 10
2.6 Different visualizations of CBV . 11
2.7 Different visualizations of CBF . 12
2.8 MTT on the TDC and a TMax’s parametric map 12
2.9 Focus of the technical background section. 13
2.10 Overview of a Neural Network . 15
2.11 Example of Deep Neural Network (MLP). 20
2.12 Typical block diagram of CNN. 21
2.13 Pictorial representation of max pooling and average pooling 22
2.14 Architecture of the U-Net. 24

3.1 Focus of chapter three. 29
3.2 Focus of the Dataset section. 30
3.3 Example of images of one patient. 32
3.4 Example of manually annotated brain section. 32
3.5 Focus of the image pre-processing section. 33
3.6 Skull removal algorithm. 34
3.7 Difference between the same brain section before and after the contrast

enhancement. 36
3.8 Brain section after the extraction of the different regions. 36
3.9 Example of the sliding window technique. 38

4.1 Focus of chapter four. 41
4.2 Overview of the input and output section for the CNN architectures. . . . 42
4.3 Example of post processing steps for the Tile Classification approach. . . 43
4.4 General structure for the Tile Classification architecture 1. 44
4.5 General structure for the Tile Classification architecture 2. 45
4.6 General structure for the Tile Classification architecture 3. 46
4.7 Different learning curves for the first architecture 51
4.8 Different learning curves for the second architecture 54
4.9 Different learning curves for the third architecture 56

5.1 Focus of chapter five. 61

79

Tomasetti Luca LIST OF FIGURES

5.2 Overview of the input and output section for the U-net architecture. . . . 62
5.3 Architecture of a U-Net. 63
5.4 Pixel by Pixel segmentation network structure. 65
5.5 Different learning curves for the U-Net architecture 67

6.1 Focus of chapter six. 69

List of Tables

2.1 Representation of 2x2 confusion matrix 25

3.1 Information of the 11 patients analyzed. 30

4.1 Layers summary of architecture 1. 45
4.2 Layers summary of architecture 2. 46
4.3 Layers summary of architecture 3. 47
4.4 Example of brain section comparison for patient 2 with different techniques

of the first architecture. 49
4.5 Comparison of the statistical information for prediction on Patient 2 based

on two different datasets. 50
4.6 Confusion Matrix for Patient 2 with the normal dataset and SGD optimizer. 50
4.7 Confusion Matrix for Patient 2 with the normal dataset and Adam optimizer. 50
4.8 Confusion Matrix for Patient 2 with the augmented dataset and SGD

optimizer. 51
4.9 Confusion Matrix for Patient 2 with the augmented dataset and Adam

optimizer. 51
4.10 Example of brain section comparison for patient 2 with different techniques

of the second architecture. 52
4.11 Confusion Matrix for Patient 2 with the normal dataset and SGD optimizer. 53
4.12 Confusion Matrix for Patient 2 with the normal dataset and Adam optimizer. 53
4.13 Comparison of the statistical information for prediction on Patient 2 based

on two different datasets for the second architecture. 53
4.14 Confusion Matrix for Patient 2 with the augmented dataset and SGD

optimizer. 54
4.15 Confusion Matrix for Patient 2 with the augmented dataset and Adam

optimizer. 54
4.16 Example of brain section comparison for patient 2 with different techniques

of the third architecture. 55
4.17 Confusion Matrix for Patient 2 with the normal dataset and SGD optimizer. 55
4.18 Confusion Matrix for Patient 2 with the normal dataset and Adam optimizer. 55
4.19 Confusion Matrix for Patient 2 with the augmented dataset and SGD

optimizer. 55
4.20 Confusion Matrix for Patient 2 with the augmented dataset and Adam

optimizer. 55
4.21 Comparison of the statistical information for prediction on Patient 2 based

on two different datasets for the third architecture. 57
4.22 Accuracy & Loss for all models. 58

5.1 Layers summary of Pixel by Pixel Segmentation approach. 64

81

Tomasetti Luca LIST OF TABLES

5.2 Example of brain section comparison for patient 2 with different techniques
on the U-net architecture. 66

5.3 Accuracy & Loss for all models related with the pixel by pixel segmentation
approach. 68

6.17 Example of brain section comparison for patient 8 with different techniques
on the U-net architecture. 73

6.18 Example of brain section comparison for patient 11 with different tech-
niques on the U-net architecture. 74

A
Results for Tile Classification Approach

The discussion and comparison of the results of the Tile Classification approach are faced
in Chap. 6. The chapter displays the different results for the different architectures
that are based on this approach, described in Chap. 4. The final training and testing
accuracy percentages plus result for the loss equations are presented in Table 4.22. A
table with a comparison of all the brain section predicted with distinct methods is
presented for all patients. Furthermore, the four confusion matrices are shown, and
the final table containing useful statistical information regarding the predicted output.
Tables in the “visualization results” sections are structured in the following way: the first
row contains the ground truth images for the brain section; the second and fourth rows
show the outcome after the training with the SGD optimizer function with respectively
the standard dataset “Dataset 1” and the augmented dataset “Dataset 2”. Row three
displays the results for the model using the augmented dataset and the SGD optimizer
(experiment 2), while the last row represents the outcomes for the Adam optimizer and
the augmented dataset (experiment 4)augmented.

A.1 Results for architecture 1

This section contains all predicted brain sections for the first architecture, described in
Sec. 4.3.1, with all various methods implemented. Among all patients outcome, results

83

Tomasetti Luca Appendix A Results for Tile Classification Approach

for the patient with ID 2 does not contain the statistical table and the confusion matrices,
since they were already displayed in Sec. 4.3.1.

A.1.1 Patient 2

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.1: Brain sections compared with different techniques of the first architecture
on patient 2.

Tomasetti Luca 85

A.1.2 Patient 3

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.2: Brain sections compared with different techniques of the first architecture
on patient 3.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.3 and A.4) and with the augmented dataset (Tables A.5 and A.6). Table A.7 displays

Tomasetti Luca Appendix A Results for Tile Classification Approach

the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8783 87 18 5
II 227 3499 67 7
III 75 163 331 11
IV 0 3 4 32

Table A.3: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8821 66 10 3
II 230 3509 48 1
III 35 167 360 6
IV 1 6 3 46

Table A.4: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8738 58 9 0
II 272 3528 71 3
III 61 148 323 5
IV 14 18 17 47

Table A.5: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8745 59 10 3
II 278 3549 59 1
III 46 123 341 0
IV 16 19 11 52

Table A.6: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.969 0.977 0.033 0.012 0.026 0.068 0.974 0.967 0.988 0.932
II 0.958 0.927 0.067 0.079 0.031 0.027 0.969 0.933 0.921 0.973
III 0.975 0.662 0.212 0.429 0.019 0.007 0.981 0.788 0.571 0.993
IV 0.998 0.681 0.418 0.179 0.001 0.002 0.999 0.582 0.821 0.998

Average 0.975 0.812 0.182 0.175 0.019 0.026 0.981 0.817 0.825 0.974

A
da

m

I 0.974 0.981 0.029 0.009 0.019 0.06 0.981 0.971 0.991 0.94
II 0.961 0.931 0.064 0.074 0.029 0.025 0.971 0.936 0.926 0.975
III 0.98 0.728 0.145 0.366 0.016 0.005 0.984 0.855 0.634 0.995
IV 0.998 0.821 0.179 0.179 0.001 0.001 0.999 0.821 0.821 0.999

Average 0.978 0.865 0.104 0.158 0.016 0.023 0.984 0.895 0.842 0.977

D
at
a
A
ug

m
en
t. SG

D

I 0.969 0.977 0.038 0.008 0.016 0.077 0.984 0.962 0.992 0.923
II 0.957 0.925 0.06 0.089 0.036 0.024 0.964 0.94 0.911 0.976
III 0.977 0.675 0.231 0.399 0.017 0.008 0.983 0.769 0.601 0.992
IV 0.996 0.623 0.145 0.51 0.004 0.001 0.996 0.855 0.49 0.999

Average 0.975 0.799 0.122 0.252 0.018 0.028 0.982 0.878 0.748 0.973

A
da

m

I 0.969 0.977 0.037 0.008 0.017 0.076 0.983 0.963 0.992 0.924
II 0.96 0.929 0.054 0.087 0.035 0.021 0.965 0.946 0.913 0.979
III 0.981 0.733 0.19 0.331 0.013 0.006 0.987 0.81 0.669 0.994
IV 0.996 0.675 0.071 0.469 0.003 0.0 0.997 0.929 0.531 1.0

Average 0.976 0.829 0.088 0.224 0.017 0.026 0.983 0.912 0.776 0.974

Table A.7: Comparison of the statistical information for prediction on Patient 3 based
on two different datasets.

Tomasetti Luca 87

A.1.3 Patient 4

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.8: Brain sections compared with different techniques of the first architecture
on patient 4.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.9 and A.10) and with the augmented dataset (Tables A.11 and A.12). Table A.13

Tomasetti Luca Appendix A Results for Tile Classification Approach

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8129 66 9 4
II 25 3587 74 8
III 70 224 886 71
IV 0 3 15 141

Table A.9: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8129 50 3 6
II 45 3558 21 0
III 53 261 942 30
IV 0 11 13 190

Table A.10: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8082 47 12 1
II 66 3676 73 2
III 76 132 842 16
IV 3 25 54 205

Table A.11: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8099 34 23 2
II 82 3740 86 2
III 41 84 810 6
IV 2 18 67 216

Table A.12: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.987 0.989 0.012 0.01 0.016 0.019 0.984 0.988 0.99 0.981
II 0.97 0.947 0.076 0.029 0.011 0.03 0.989 0.924 0.971 0.97
III 0.965 0.793 0.1 0.292 0.03 0.008 0.97 0.9 0.708 0.992
IV 0.992 0.736 0.371 0.113 0.001 0.006 0.999 0.629 0.887 0.994

Average 0.978 0.866 0.14 0.111 0.014 0.016 0.985 0.86 0.889 0.984

A
da

m

I 0.988 0.99 0.012 0.007 0.012 0.019 0.988 0.988 0.993 0.981
II 0.971 0.948 0.083 0.018 0.007 0.033 0.993 0.917 0.982 0.967
III 0.971 0.832 0.038 0.267 0.028 0.003 0.972 0.962 0.733 0.997
IV 0.995 0.864 0.159 0.112 0.002 0.003 0.998 0.841 0.888 0.997

Average 0.981 0.908 0.073 0.101 0.012 0.015 0.988 0.927 0.899 0.985

D
at
a
A
ug

m
en
t. SG

D

I 0.985 0.987 0.018 0.007 0.012 0.028 0.988 0.982 0.993 0.972
II 0.974 0.955 0.053 0.037 0.015 0.021 0.985 0.947 0.963 0.979
III 0.973 0.823 0.142 0.21 0.018 0.011 0.982 0.858 0.79 0.989
IV 0.992 0.802 0.085 0.286 0.006 0.001 0.994 0.915 0.714 0.999

Average 0.981 0.892 0.074 0.135 0.013 0.015 0.987 0.925 0.865 0.985

A
da

m

I 0.986 0.989 0.015 0.007 0.012 0.024 0.988 0.985 0.993 0.976
II 0.977 0.961 0.035 0.043 0.018 0.014 0.982 0.965 0.957 0.986
III 0.977 0.841 0.178 0.139 0.011 0.014 0.989 0.822 0.861 0.986
IV 0.993 0.817 0.044 0.287 0.007 0.001 0.993 0.956 0.713 0.999

Average 0.983 0.902 0.068 0.119 0.012 0.013 0.988 0.932 0.881 0.987

Table A.13: Comparison of the statistical information for prediction on Patient 4 based
on two different datasets.

Tomasetti Luca 89

A.1.4 Patient 5

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.14: Brain sections compared with different techniques of the first architecture
on patient 5.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.15 and A.16) and with the augmented dataset (Tables A.17 and A.18). Table A.19

Tomasetti Luca Appendix A Results for Tile Classification Approach

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8306 35 13 5
II 443 3093 60 4
III 43 197 946 16
IV 1 7 10 133

Table A.15: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8411 42 8 6
II 314 3152 57 4
III 68 137 959 16
IV 0 3 3 132

Table A.16: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8165 26 15 3
II 576 3186 108 2
III 48 90 870 3
IV 4 32 34 150

Table A.17: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8492 45 31 0
II 266 3181 94 2
III 35 86 841 0
IV 0 20 63 156

Table A.18: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.959 0.969 0.055 0.006 0.012 0.098 0.988 0.945 0.994 0.902
II 0.944 0.892 0.072 0.141 0.051 0.025 0.949 0.928 0.859 0.975
III 0.975 0.848 0.081 0.213 0.021 0.007 0.979 0.919 0.787 0.993
IV 0.997 0.861 0.158 0.119 0.001 0.002 0.999 0.842 0.881 0.998

Average 0.969 0.893 0.091 0.12 0.021 0.033 0.979 0.908 0.88 0.967

A
da

m

I 0.967 0.975 0.043 0.007 0.012 0.079 0.988 0.957 0.993 0.921
II 0.958 0.919 0.055 0.106 0.038 0.019 0.962 0.945 0.894 0.981
III 0.978 0.869 0.066 0.187 0.018 0.006 0.982 0.934 0.813 0.994
IV 0.998 0.892 0.165 0.043 0.0 0.002 1.0 0.835 0.957 0.998

Average 0.975 0.914 0.082 0.086 0.017 0.027 0.983 0.918 0.914 0.974

D
at
a
A
ug

m
en
t. SG

D

I 0.95 0.96 0.071 0.005 0.01 0.123 0.99 0.929 0.995 0.877
II 0.937 0.884 0.044 0.177 0.069 0.016 0.931 0.956 0.823 0.984
III 0.978 0.854 0.153 0.139 0.011 0.013 0.989 0.847 0.861 0.987
IV 0.994 0.794 0.051 0.318 0.005 0.001 0.995 0.949 0.682 0.999

Average 0.965 0.873 0.08 0.16 0.024 0.038 0.976 0.92 0.84 0.962

A
da

m

I 0.972 0.978 0.034 0.009 0.017 0.063 0.983 0.966 0.991 0.937
II 0.961 0.925 0.045 0.102 0.036 0.015 0.964 0.955 0.898 0.985
III 0.977 0.845 0.183 0.126 0.01 0.015 0.99 0.817 0.874 0.985
IV 0.994 0.786 0.013 0.347 0.006 0.0 0.994 0.987 0.653 1.0

Average 0.976 0.884 0.069 0.146 0.017 0.023 0.983 0.931 0.854 0.977

Table A.19: Comparison of the statistical information for prediction on Patient 5 based
on two different datasets.

Tomasetti Luca 91

A.1.5 Patient 6

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.20: Brain sections compared with different techniques of the first architecture
on patient 6.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.21 and A.22) and with the augmented dataset (Tables A.23 and A.24). Table A.25

Tomasetti Luca Appendix A Results for Tile Classification Approach

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8791 70 5 0
II 109 3516 70 0
III 53 139 553 0
IV 1 4 1 0

Table A.21: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8793 49 1 0
II 98 3447 18 0
III 65 230 609 0
IV 0 2 0 0

Table A.22: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8815 59 3 0
II 85 3458 43 0
III 52 200 581 0
IV 2 13 1 0

Table A.23: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8837 85 1 0
II 56 3478 30 0
III 59 145 596 0
IV 2 21 2 0

Table A.24: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.982 0.987 0.018 0.008 0.017 0.037 0.983 0.982 0.992 0.963
II 0.971 0.947 0.057 0.048 0.019 0.022 0.981 0.943 0.952 0.978
III 0.98 0.805 0.121 0.258 0.015 0.006 0.985 0.879 0.742 0.994
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.983 0.685 0.299 0.329 0.013 0.016 0.987 0.701 0.671 0.984

A
da

m

I 0.984 0.988 0.018 0.006 0.011 0.036 0.989 0.982 0.994 0.964
II 0.97 0.946 0.075 0.033 0.012 0.029 0.988 0.925 0.967 0.971
III 0.976 0.795 0.03 0.326 0.023 0.002 0.977 0.97 0.674 0.998
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.982 0.682 0.281 0.341 0.011 0.017 0.988 0.719 0.659 0.983

D
at
a
A
ug

m
en
t. SG

D

I 0.985 0.989 0.016 0.007 0.014 0.031 0.986 0.984 0.993 0.969
II 0.97 0.945 0.073 0.036 0.013 0.028 0.987 0.927 0.964 0.972
III 0.978 0.795 0.075 0.303 0.02 0.004 0.98 0.925 0.697 0.996
IV 0.999 0.0 1 1.0 0.001 0.0 0.999 0 0.0 1.0

Average 0.983 0.682 0.291 0.337 0.012 0.016 0.988 0.709 0.663 0.984

A
da

m

I 0.985 0.989 0.013 0.01 0.02 0.027 0.98 0.987 0.99 0.973
II 0.975 0.954 0.068 0.024 0.009 0.026 0.991 0.932 0.976 0.974
III 0.982 0.834 0.052 0.255 0.016 0.003 0.984 0.948 0.745 0.997
IV 0.998 0.0 1 1.0 0.002 0.0 0.998 0 0.0 1.0

Average 0.985 0.694 0.283 0.322 0.012 0.014 0.988 0.717 0.678 0.986

Table A.25: Comparison of the statistical information for prediction on Patient 6 based
on two different datasets.

Tomasetti Luca 93

A.1.6 Patient 7

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.26: Brain sections compared with different techniques of the first architecture
on patient 7.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.27 and A.28) and with the augmented dataset (Tables A.29 and A.30). Table A.31

Tomasetti Luca Appendix A Results for Tile Classification Approach

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8956 80 1 0
II 31 3130 45 0
III 64 196 792 8
IV 0 2 0 7

Table A.27: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8970 81 7 1
II 41 3099 22 0
III 40 220 810 5
IV 0 5 2 9

Table A.28: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8989 99 16 1
II 17 3109 57 0
III 46 171 738 1
IV 0 29 26 13

Table A.29: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8984 88 12 0
II 30 3106 51 0
III 37 195 759 1
IV 0 16 19 14

Table A.30: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.987 0.99 0.01 0.009 0.019 0.022 0.981 0.99 0.991 0.978
II 0.973 0.946 0.082 0.024 0.008 0.028 0.992 0.918 0.976 0.972
III 0.976 0.835 0.055 0.253 0.021 0.004 0.979 0.945 0.747 0.996
IV 0.999 0.583 0.533 0.222 0.0 0.001 1.0 0.467 0.778 0.999

Average 0.984 0.839 0.17 0.127 0.012 0.014 0.988 0.83 0.873 0.986

A
da

m

I 0.987 0.991 0.009 0.01 0.021 0.019 0.979 0.991 0.99 0.981
II 0.972 0.944 0.09 0.02 0.006 0.03 0.994 0.91 0.98 0.97
III 0.978 0.846 0.037 0.247 0.021 0.003 0.979 0.963 0.753 0.997
IV 0.999 0.581 0.4 0.438 0.001 0.0 0.999 0.6 0.562 1.0

Average 0.984 0.841 0.134 0.179 0.012 0.013 0.988 0.866 0.821 0.987

D
at
a
A
ug

m
en
t. SG

D

I 0.987 0.99 0.007 0.013 0.027 0.015 0.973 0.993 0.987 0.985
II 0.972 0.944 0.086 0.023 0.007 0.029 0.993 0.914 0.977 0.971
III 0.976 0.823 0.118 0.228 0.017 0.008 0.983 0.882 0.772 0.992
IV 0.996 0.313 0.133 0.809 0.004 0.0 0.996 0.867 0.191 1.0

Average 0.983 0.767 0.086 0.268 0.014 0.013 0.986 0.913 0.732 0.987

A
da

m

I 0.987 0.991 0.008 0.011 0.023 0.016 0.977 0.992 0.989 0.984
II 0.971 0.942 0.089 0.025 0.008 0.03 0.992 0.911 0.975 0.97
III 0.976 0.828 0.098 0.235 0.019 0.007 0.981 0.902 0.765 0.993
IV 0.997 0.438 0.067 0.714 0.003 0.0 0.997 0.933 0.286 1.0

Average 0.983 0.8 0.065 0.246 0.013 0.013 0.987 0.935 0.754 0.987

Table A.31: Comparison of the statistical information for prediction on Patient 7 based
on two different datasets.

Tomasetti Luca 95

A.1.7 Patient 8

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.32: Brain sections compared with different techniques of the first architecture
on patient 8.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.33 and A.34) and with the augmented dataset (Tables A.35 and A.36). Table A.37

Tomasetti Luca Appendix A Results for Tile Classification Approach

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 9853 14 2 1
II 195 2308 38 3
III 80 75 692 3
IV 0 1 13 34

Table A.33: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9811 10 3 0
II 267 2298 20 1
III 56 82 712 1
IV 0 3 8 40

Table A.34: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 9839 17 4 0
II 242 2324 67 2
III 46 48 651 0
IV 3 9 21 39

Table A.35: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9781 10 7 1
II 281 2336 56 0
III 64 50 676 2
IV 2 1 6 39

Table A.36: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.978 0.985 0.027 0.002 0.005 0.08 0.995 0.973 0.998 0.92
II 0.976 0.934 0.038 0.093 0.022 0.008 0.978 0.962 0.907 0.992
III 0.984 0.868 0.071 0.186 0.013 0.004 0.987 0.929 0.814 0.996
IV 0.998 0.764 0.171 0.292 0.001 0.001 0.999 0.829 0.708 0.999

Average 0.984 0.888 0.077 0.143 0.01 0.023 0.99 0.923 0.857 0.977

A
da

m

I 0.975 0.983 0.032 0.001 0.004 0.093 0.996 0.968 0.999 0.907
II 0.971 0.923 0.04 0.111 0.026 0.009 0.974 0.96 0.889 0.991
III 0.987 0.893 0.042 0.163 0.011 0.002 0.989 0.958 0.837 0.998
IV 0.999 0.86 0.048 0.216 0.001 0.0 0.999 0.952 0.784 1.0

Average 0.983 0.915 0.041 0.123 0.01 0.026 0.99 0.96 0.877 0.974

D
at
a
A
ug

m
en
t. SG

D

I 0.977 0.984 0.029 0.002 0.007 0.084 0.993 0.971 0.998 0.916
II 0.971 0.924 0.031 0.118 0.028 0.007 0.972 0.969 0.882 0.993
III 0.986 0.875 0.124 0.126 0.007 0.007 0.993 0.876 0.874 0.993
IV 0.997 0.69 0.049 0.458 0.002 0.0 0.998 0.951 0.542 1.0

Average 0.983 0.868 0.058 0.176 0.011 0.025 0.989 0.942 0.824 0.976

A
da

m

I 0.972 0.982 0.034 0.002 0.006 0.099 0.994 0.966 0.998 0.901
II 0.97 0.921 0.025 0.126 0.031 0.006 0.969 0.975 0.874 0.994
III 0.986 0.88 0.093 0.146 0.009 0.006 0.991 0.907 0.854 0.994
IV 0.999 0.867 0.071 0.188 0.001 0.0 0.999 0.929 0.812 1.0

Average 0.982 0.912 0.056 0.116 0.012 0.028 0.988 0.944 0.885 0.972

Table A.37: Comparison of the statistical information for prediction on Patient 8 based
on two different datasets.

Tomasetti Luca 97

A.1.8 Patient 9

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7 Sec. 8 Sec. 9 Sec. 10Sec. 11

Ground
Truth

Normal
Dataset
SGD
Normal
Dataset
Adam
Data
Augmen.
SGD
Data
Augmen.
Adam

Sec. 12 Sec. 13Sec. 14Sec. 15Sec. 16Sec. 17Sec. 18Sec. 19Sec. 20Sec. 21Sec. 22

Table A.38: Brain sections compared with different techniques of the first architecture
on patient 9.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.39 and A.40) and with the augmented dataset (Tables A.41 and A.42). Table A.43
displays the statistical information for different classes.

Tomasetti Luca Appendix A Results for Tile Classification Approach

Actual Class
I II III IV

Pred.
Class

I 14343 92 6 0
II 108 6597 51 0
III 92 295 944 0
IV 0 0 0 0

Table A.39: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 14235 71 3 0
II 259 6654 40 0
III 59 246 959 0
IV 1 1 0 0

Table A.40: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 14259 68 8 0
II 208 6714 98 0
III 74 196 892 0
IV 3 6 2 0

Table A.41: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 14289 72 7 0
II 196 6682 72 0
III 58 223 923 0
IV 0 5 1 0

Table A.42: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.987 0.99 0.014 0.007 0.012 0.025 0.988 0.986 0.993 0.975
II 0.976 0.96 0.055 0.024 0.01 0.025 0.99 0.945 0.976 0.975
III 0.98 0.81 0.057 0.291 0.018 0.003 0.982 0.943 0.709 0.997
IV 1.0 0 1 1 0.0 0.0 1.0 0 0 1.0

Average 0.986 0.69 0.281 0.331 0.01 0.013 0.99 0.719 0.669 0.987

A
da

m

I 0.983 0.986 0.022 0.005 0.009 0.039 0.991 0.978 0.995 0.961
II 0.973 0.956 0.046 0.043 0.019 0.02 0.981 0.954 0.957 0.98
III 0.985 0.846 0.043 0.241 0.014 0.002 0.986 0.957 0.759 0.998
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.985 0.697 0.278 0.322 0.01 0.015 0.99 0.722 0.678 0.985

D
at
a
A
ug

m
en
t. SG

D

I 0.984 0.988 0.02 0.005 0.01 0.035 0.99 0.98 0.995 0.965
II 0.974 0.959 0.039 0.044 0.02 0.017 0.98 0.961 0.956 0.983
III 0.983 0.825 0.108 0.232 0.013 0.005 0.987 0.892 0.768 0.995
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.985 0.693 0.292 0.32 0.011 0.014 0.989 0.708 0.68 0.986

A
da

m

I 0.985 0.988 0.018 0.005 0.01 0.031 0.99 0.982 0.995 0.969
II 0.975 0.959 0.043 0.039 0.017 0.019 0.983 0.957 0.961 0.981
III 0.984 0.836 0.08 0.233 0.013 0.004 0.987 0.92 0.767 0.996
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.986 0.696 0.285 0.319 0.01 0.014 0.99 0.715 0.681 0.986

Table A.43: Comparison of the statistical information for prediction on Patient 9 based
on two different datasets.

Tomasetti Luca 99

A.1.9 Patient 10

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13 Sec. 14

Table A.44: Brain sections compared with different techniques of the first architecture
on patient 10.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.45 and A.46) and with the augmented dataset (Tables A.47 and A.48). Table A.49

Tomasetti Luca Appendix A Results for Tile Classification Approach

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 10339 15 5 1
II 64 2966 45 4
III 61 151 615 23
IV 0 4 0 43

Table A.45: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 10345 18 3 4
II 64 2903 23 2
III 55 210 642 39
IV 0 2 0 26

Table A.46: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 10346 24 10 1
II 79 2936 58 1
III 34 168 588 13
IV 1 12 9 56

Table A.47: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 10321 35 6 2
II 87 2905 44 0
III 48 176 582 6
IV 2 21 38 63

Table A.48: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.99 0.993 0.012 0.002 0.005 0.031 0.995 0.988 0.998 0.969
II 0.98 0.954 0.054 0.037 0.01 0.015 0.99 0.946 0.963 0.985
III 0.98 0.812 0.075 0.276 0.017 0.004 0.983 0.925 0.724 0.996
IV 0.998 0.729 0.394 0.085 0.0 0.002 1.0 0.606 0.915 0.998

Average 0.987 0.872 0.134 0.1 0.008 0.013 0.992 0.866 0.9 0.987

A
da

m

I 0.99 0.993 0.011 0.002 0.006 0.03 0.994 0.989 0.998 0.97
II 0.978 0.948 0.073 0.03 0.008 0.02 0.992 0.927 0.97 0.98
III 0.977 0.796 0.039 0.321 0.022 0.002 0.978 0.961 0.679 0.998
IV 0.997 0.525 0.634 0.071 0.0 0.003 1.0 0.366 0.929 0.997

Average 0.985 0.816 0.189 0.106 0.009 0.014 0.991 0.811 0.894 0.986

D
at
a
A
ug

m
en
t. SG

D

I 0.99 0.993 0.011 0.003 0.009 0.029 0.991 0.989 0.997 0.971
II 0.976 0.945 0.065 0.045 0.012 0.018 0.988 0.935 0.955 0.982
III 0.98 0.801 0.116 0.268 0.016 0.006 0.984 0.884 0.732 0.994
IV 0.997 0.752 0.211 0.282 0.002 0.001 0.998 0.789 0.718 0.999

Average 0.986 0.873 0.101 0.149 0.01 0.013 0.99 0.899 0.851 0.987

A
da

m

I 0.987 0.991 0.013 0.004 0.011 0.035 0.989 0.987 0.996 0.965
II 0.975 0.941 0.074 0.043 0.012 0.021 0.988 0.926 0.957 0.979
III 0.978 0.785 0.131 0.283 0.017 0.007 0.983 0.869 0.717 0.993
IV 0.995 0.646 0.113 0.492 0.004 0.001 0.996 0.887 0.508 0.999

Average 0.984 0.841 0.083 0.205 0.011 0.016 0.989 0.917 0.794 0.984

Table A.49: Comparison of the statistical information for prediction on Patient 10
based on two different datasets.

Tomasetti Luca 101

A.1.10 Patient 11

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13 Sec. 14

Table A.50: Brain sections compared with different techniques of the first architecture
on patient 11.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.51 and A.52) and with the augmented dataset (Tables A.53 and A.54). Table A.55

Tomasetti Luca Appendix A Results for Tile Classification Approach

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 9952 67 15 0
II 487 2487 487 0
III 70 225 519 0
IV 1 19 7 0

Table A.51: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 10024 85 29 0
II 414 2348 425 0
III 71 339 571 0
IV 1 22 7 0

Table A.52: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 9994 89 28 0
II 460 2454 452 0
III 37 214 531 0
IV 18 42 17 0

Table A.53: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9945 62 17 0
II 509 2400 392 0
III 52 320 611 0
IV 3 17 8 0

Table A.54: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.955 0.969 0.053 0.008 0.021 0.13 0.979 0.947 0.992 0.87
II 0.91 0.795 0.111 0.281 0.084 0.029 0.916 0.889 0.719 0.971
III 0.944 0.564 0.495 0.362 0.022 0.038 0.978 0.505 0.638 0.962
IV 0.998 0.0 1 1.0 0.002 0.0 0.998 0 0.0 1.0

Average 0.952 0.582 0.415 0.413 0.032 0.049 0.968 0.585 0.587 0.951

A
da

m

I 0.958 0.971 0.046 0.011 0.03 0.116 0.97 0.954 0.989 0.884
II 0.91 0.785 0.16 0.263 0.073 0.04 0.927 0.84 0.737 0.96
III 0.939 0.567 0.447 0.418 0.031 0.035 0.969 0.553 0.582 0.965
IV 0.998 0.0 1 1.0 0.002 0.0 0.998 0 0.0 1.0

Average 0.951 0.581 0.413 0.423 0.034 0.048 0.966 0.587 0.577 0.952

D
at
a
A
ug

m
en
t. SG

D

I 0.956 0.969 0.049 0.012 0.031 0.122 0.969 0.951 0.988 0.878
II 0.912 0.796 0.123 0.271 0.079 0.031 0.921 0.877 0.729 0.969
III 0.948 0.587 0.483 0.321 0.019 0.037 0.981 0.517 0.679 0.963
IV 0.995 0.0 1 1.0 0.005 0.0 0.995 0 0.0 1.0

Average 0.953 0.588 0.414 0.401 0.034 0.048 0.967 0.586 0.599 0.953

A
da

m

I 0.955 0.969 0.054 0.008 0.021 0.131 0.979 0.946 0.992 0.869
II 0.909 0.787 0.143 0.273 0.078 0.036 0.922 0.857 0.727 0.964
III 0.945 0.608 0.406 0.378 0.028 0.031 0.972 0.594 0.622 0.969
IV 0.998 0.0 1 1.0 0.002 0.0 0.998 0 0.0 1.0

Average 0.952 0.591 0.401 0.415 0.032 0.05 0.968 0.599 0.585 0.951

Table A.55: Comparison of the statistical information for prediction on Patient 11
based on two different datasets.

Tomasetti Luca 103

A.2 Results for architecture 2

A.2.1 Patient 2

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.56: Brain sections compared with different techniques of the second architecture
on patient 2.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.2 Patient 3

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.57: Brain sections compared with different techniques of the second architecture
on patient 3.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.58 and A.59) and with the augmented dataset (Tables A.60 and A.61). Table A.62

Tomasetti Luca 105

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8827 183 35 11
II 206 3361 58 3
III 53 204 324 11
IV 1 2 2 31

Table A.58: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8680 61 6 5
II 332 3477 46 2
III 70 212 365 16
IV 3 2 3 32

Table A.59: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8642 81 13 4
II 365 3515 91 1
III 69 131 302 4
IV 11 22 14 47

Table A.60: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8668 84 16 3
II 352 3493 68 1
III 47 145 319 0
IV 18 30 16 52

Table A.61: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.963 0.973 0.029 0.025 0.054 0.061 0.946 0.971 0.975 0.939
II 0.951 0.911 0.104 0.074 0.028 0.04 0.972 0.896 0.926 0.96
III 0.973 0.641 0.227 0.453 0.021 0.007 0.979 0.773 0.547 0.993
IV 0.998 0.674 0.446 0.139 0.0 0.002 1.0 0.554 0.861 0.998

Average 0.971 0.8 0.202 0.173 0.026 0.028 0.974 0.798 0.827 0.972

A
da

m

I 0.964 0.973 0.045 0.008 0.017 0.089 0.983 0.955 0.992 0.911
II 0.951 0.914 0.073 0.099 0.04 0.029 0.96 0.927 0.901 0.971
III 0.973 0.674 0.131 0.449 0.023 0.004 0.977 0.869 0.551 0.996
IV 0.998 0.674 0.418 0.2 0.001 0.002 0.999 0.582 0.8 0.998

Average 0.972 0.809 0.167 0.189 0.02 0.031 0.98 0.833 0.811 0.969

D
at
a
A
ug

m
en
t. SG

D

I 0.959 0.97 0.049 0.011 0.023 0.097 0.977 0.951 0.989 0.903
II 0.948 0.91 0.063 0.115 0.048 0.025 0.952 0.937 0.885 0.975
III 0.976 0.653 0.279 0.403 0.016 0.009 0.984 0.721 0.597 0.991
IV 0.996 0.627 0.161 0.5 0.004 0.001 0.996 0.839 0.5 0.999

Average 0.97 0.79 0.138 0.257 0.023 0.033 0.977 0.862 0.743 0.967

A
da

m

I 0.961 0.971 0.046 0.012 0.024 0.092 0.976 0.954 0.988 0.908
II 0.949 0.912 0.069 0.108 0.044 0.027 0.956 0.931 0.892 0.973
III 0.978 0.686 0.239 0.376 0.015 0.008 0.985 0.761 0.624 0.992
IV 0.995 0.605 0.071 0.552 0.005 0.0 0.995 0.929 0.448 1.0

Average 0.971 0.793 0.106 0.262 0.022 0.032 0.978 0.894 0.738 0.968

Table A.62: Comparison of the statistical information for prediction on Patient 3 based
on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.3 Patient 4

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.63: Brain sections compared with different techniques of the second architecture
on patient 4.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.64 and A.65) and with the augmented dataset (Tables A.66 and A.67). Table A.68

Tomasetti Luca 107

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8101 33 5 7
II 63 3726 99 6
III 63 117 862 87
IV 0 4 13 126

Table A.64: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8102 34 9 5
II 64 3734 71 2
III 66 93 863 29
IV 1 6 43 190

Table A.65: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8105 77 51 3
II 58 3703 99 3
III 60 66 728 9
IV 1 30 108 211

Table A.66: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8077 57 29 3
II 90 3723 94 1
III 59 90 788 9
IV 1 10 68 213

Table A.67: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.987 0.99 0.015 0.006 0.009 0.024 0.991 0.985 0.994 0.976
II 0.976 0.959 0.04 0.043 0.018 0.016 0.982 0.96 0.957 0.984
III 0.971 0.818 0.12 0.236 0.022 0.01 0.978 0.88 0.764 0.99
IV 0.991 0.683 0.442 0.119 0.001 0.008 0.999 0.558 0.881 0.992

Average 0.981 0.863 0.154 0.101 0.012 0.015 0.987 0.846 0.899 0.986

A
da

m

I 0.987 0.989 0.016 0.006 0.009 0.025 0.991 0.984 0.994 0.975
II 0.98 0.965 0.034 0.035 0.015 0.014 0.985 0.966 0.965 0.986
III 0.977 0.847 0.125 0.179 0.015 0.01 0.985 0.875 0.821 0.99
IV 0.994 0.815 0.159 0.208 0.004 0.003 0.996 0.841 0.792 0.997

Average 0.984 0.904 0.083 0.107 0.011 0.013 0.989 0.917 0.893 0.987

D
at
a
A
ug

m
en
t. SG

D

I 0.981 0.985 0.014 0.016 0.026 0.023 0.974 0.986 0.984 0.977
II 0.975 0.957 0.045 0.041 0.017 0.018 0.983 0.955 0.959 0.982
III 0.97 0.787 0.262 0.156 0.011 0.021 0.989 0.738 0.844 0.979
IV 0.988 0.733 0.066 0.397 0.011 0.001 0.989 0.934 0.603 0.999

Average 0.979 0.866 0.097 0.152 0.016 0.016 0.984 0.903 0.847 0.984

A
da

m

I 0.982 0.985 0.018 0.011 0.018 0.029 0.982 0.982 0.989 0.971
II 0.974 0.956 0.04 0.047 0.02 0.017 0.98 0.96 0.953 0.983
III 0.974 0.819 0.195 0.167 0.013 0.015 0.987 0.805 0.833 0.985
IV 0.993 0.822 0.058 0.271 0.006 0.001 0.994 0.942 0.729 0.999

Average 0.981 0.895 0.078 0.124 0.014 0.015 0.986 0.922 0.876 0.985

Table A.68: Comparison of the statistical information for prediction on Patient 4 based
on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.4 Patient 5

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.69: Brain sections compared with different techniques of the second architecture
on patient 5.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.70 and A.71) and with the augmented dataset (Tables A.72 and A.73). Table A.74

Tomasetti Luca 109

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8069 33 14 8
II 670 3189 150 20
III 54 111 863 92
IV 0 1 0 38

Table A.70: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8079 21 21 5
II 664 3229 116 5
III 51 76 869 10
IV 1 4 23 138

Table A.71: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8095 70 23 7
II 658 3109 125 3
III 42 136 849 11
IV 0 17 30 137

Table A.72: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8131 24 13 3
II 622 3192 110 3
III 40 111 882 14
IV 0 7 22 138

Table A.73: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.941 0.954 0.082 0.007 0.012 0.14 0.988 0.918 0.993 0.86
II 0.926 0.866 0.043 0.208 0.084 0.016 0.916 0.957 0.792 0.984
III 0.968 0.804 0.16 0.229 0.021 0.013 0.979 0.84 0.771 0.987
IV 0.991 0.386 0.759 0.026 0.0 0.009 1.0 0.241 0.974 0.991

Average 0.957 0.752 0.261 0.118 0.029 0.045 0.971 0.739 0.883 0.956

A
da

m

I 0.943 0.955 0.081 0.006 0.01 0.138 0.99 0.919 0.994 0.862
II 0.933 0.879 0.03 0.196 0.079 0.011 0.921 0.97 0.804 0.989
III 0.978 0.854 0.155 0.136 0.011 0.013 0.989 0.845 0.864 0.987
IV 0.996 0.852 0.127 0.169 0.002 0.002 0.998 0.873 0.831 0.998

Average 0.963 0.885 0.098 0.127 0.025 0.041 0.974 0.902 0.873 0.959

D
at
a
A
ug

m
en
t. SG

D

I 0.94 0.953 0.08 0.012 0.022 0.137 0.978 0.92 0.988 0.863
II 0.924 0.86 0.067 0.202 0.079 0.024 0.921 0.933 0.798 0.976
III 0.972 0.822 0.173 0.182 0.015 0.015 0.985 0.827 0.818 0.985
IV 0.995 0.801 0.133 0.255 0.004 0.002 0.996 0.867 0.745 0.998

Average 0.958 0.859 0.113 0.163 0.03 0.044 0.97 0.887 0.837 0.956

A
da

m

I 0.947 0.959 0.075 0.005 0.009 0.129 0.991 0.925 0.995 0.871
II 0.934 0.879 0.043 0.187 0.074 0.015 0.926 0.957 0.813 0.985
III 0.977 0.851 0.141 0.158 0.013 0.012 0.987 0.859 0.842 0.988
IV 0.996 0.849 0.127 0.174 0.002 0.002 0.998 0.873 0.826 0.998

Average 0.964 0.885 0.097 0.131 0.024 0.04 0.976 0.903 0.869 0.96

Table A.74: Comparison of the statistical information for prediction on Patient 5 based
on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.5 Patient 6

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.75: Brain sections compared with different techniques of the second architecture
on patient 6.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.76 and A.77) and with the augmented dataset (Tables A.78 and A.79). Table A.80

Tomasetti Luca 111

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8782 38 4 0
II 113 3530 56 0
III 59 162 568 0
IV 0 0 0 0

Table A.76: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8781 61 4 0
II 8781 61 4 0
III 61 194 598 0
IV 0 0 0 0

Table A.77: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8827 63 13 0
II 98 3453 102 0
III 27 82 499 0
IV 2 131 15 0

Table A.78: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8769 32 5 0
II 146 3594 84 0
III 38 101 539 0
IV 1 3 0 0

Table A.79: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.984 0.988 0.019 0.005 0.01 0.038 0.99 0.981 0.995 0.962
II 0.972 0.95 0.054 0.046 0.018 0.021 0.982 0.946 0.954 0.979
III 0.979 0.802 0.096 0.28 0.017 0.005 0.983 0.904 0.72 0.995
IV 1.0 0 1 1 0.0 0.0 1.0 0 0 1.0

Average 0.984 0.685 0.292 0.333 0.011 0.016 0.989 0.708 0.667 0.984

A
da

m

I 0.982 0.987 0.02 0.007 0.015 0.039 0.985 0.98 0.993 0.961
II 0.97 0.946 0.068 0.039 0.015 0.026 0.985 0.932 0.961 0.974
III 0.979 0.807 0.049 0.299 0.02 0.002 0.98 0.951 0.701 0.998
IV 1.0 0 1 1 0.0 0.0 1.0 0 0 1.0

Average 0.983 0.685 0.284 0.336 0.013 0.017 0.988 0.716 0.664 0.983

D
at
a
A
ug

m
en
t. SG

D

I 0.985 0.989 0.014 0.009 0.017 0.029 0.983 0.986 0.991 0.971
II 0.964 0.936 0.074 0.055 0.021 0.029 0.979 0.926 0.945 0.971
III 0.982 0.807 0.207 0.179 0.009 0.01 0.991 0.793 0.821 0.99
IV 0.989 0.0 1 1.0 0.011 0.0 0.989 0 0.0 1.0

Average 0.98 0.683 0.324 0.311 0.015 0.017 0.985 0.676 0.689 0.983

A
da

m

I 0.983 0.988 0.021 0.004 0.008 0.041 0.992 0.979 0.996 0.959
II 0.973 0.952 0.036 0.06 0.024 0.014 0.976 0.964 0.94 0.986
III 0.983 0.825 0.142 0.205 0.011 0.007 0.989 0.858 0.795 0.993
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.985 0.691 0.3 0.317 0.011 0.015 0.989 0.7 0.683 0.984

Table A.80: Comparison of the statistical information for prediction on Patient 6 based
on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.6 Patient 7

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.81: Brain sections compared with different techniques of the second architecture
on patient 7.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.82 and A.83) and with the augmented dataset (Tables A.84 and A.85). Table A.86

Tomasetti Luca 113

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8974 96 9 0
II 37 3156 64 0
III 41 154 763 12
IV 0 2 1 3

Table A.82: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8980 91 9 0
II 28 3139 60 0
III 46 166 767 8
IV 0 6 5 7

Table A.83: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8979 296 99 1
II 22 2929 109 0
III 50 160 622 6
IV 0 20 11 8

Table A.84: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8975 113 26 1
II 32 3152 81 0
III 45 127 714 2
IV 0 16 16 12

Table A.85: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.986 0.99 0.009 0.012 0.025 0.018 0.975 0.991 0.988 0.982
II 0.973 0.947 0.074 0.031 0.01 0.025 0.99 0.926 0.969 0.975
III 0.979 0.844 0.088 0.213 0.017 0.006 0.983 0.912 0.787 0.994
IV 0.999 0.286 0.8 0.5 0.0 0.001 1.0 0.2 0.5 0.999

Average 0.984 0.767 0.243 0.189 0.013 0.012 0.987 0.757 0.811 0.987

A
da

m

I 0.987 0.99 0.008 0.011 0.023 0.017 0.977 0.992 0.989 0.983
II 0.974 0.947 0.077 0.027 0.009 0.026 0.991 0.923 0.973 0.974
III 0.978 0.839 0.088 0.223 0.018 0.006 0.982 0.912 0.777 0.994
IV 0.999 0.424 0.533 0.611 0.001 0.001 0.999 0.467 0.389 0.999

Average 0.985 0.8 0.176 0.218 0.013 0.012 0.987 0.824 0.782 0.987

D
at
a
A
ug

m
en
t. SG

D

I 0.965 0.975 0.008 0.042 0.093 0.018 0.907 0.992 0.958 0.982
II 0.954 0.906 0.14 0.043 0.013 0.046 0.987 0.86 0.957 0.954
III 0.967 0.741 0.26 0.258 0.017 0.018 0.983 0.74 0.742 0.982
IV 0.997 0.296 0.467 0.795 0.002 0.001 0.998 0.533 0.205 0.999

Average 0.971 0.729 0.219 0.284 0.031 0.021 0.969 0.781 0.716 0.979

A
da

m

I 0.984 0.988 0.009 0.015 0.033 0.018 0.967 0.991 0.985 0.982
II 0.972 0.945 0.075 0.035 0.011 0.025 0.989 0.925 0.965 0.975
III 0.978 0.828 0.147 0.196 0.014 0.01 0.986 0.853 0.804 0.99
IV 0.997 0.407 0.2 0.727 0.002 0.0 0.998 0.8 0.273 1.0

Average 0.983 0.792 0.108 0.243 0.015 0.013 0.985 0.892 0.757 0.987

Table A.86: Comparison of the statistical information for prediction on Patient 7 based
on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.7 Patient 8

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.87: Brain sections compared with different techniques of the second architecture
on patient 8.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.88 and A.89) and with the augmented dataset (Tables A.90 and A.91). Table A.92

Tomasetti Luca 115

displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 9787 12 0 4
II 280 2283 39 1
III 63 103 700 14
IV 0 0 3 23

Table A.88: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9810 15 2 1
II 238 2283 36 1
III 84 94 704 13
IV 0 1 3 27

Table A.89: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 9845 36 6 3
II 238 2297 62 1
III 44 50 659 1
IV 1 14 18 37

Table A.90: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9856 21 4 1
II 224 2316 56 1
III 48 58 666 0
IV 2 3 16 40

Table A.91: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.973 0.982 0.034 0.002 0.005 0.098 0.995 0.966 0.998 0.902
II 0.967 0.913 0.048 0.123 0.029 0.011 0.971 0.952 0.877 0.989
III 0.983 0.863 0.057 0.205 0.014 0.003 0.986 0.943 0.795 0.997
IV 0.998 0.676 0.452 0.115 0.0 0.001 1.0 0.548 0.885 0.999

Average 0.98 0.859 0.148 0.111 0.012 0.028 0.988 0.852 0.889 0.972

A
da

m

I 0.974 0.983 0.032 0.002 0.006 0.092 0.994 0.968 0.998 0.908
II 0.971 0.922 0.046 0.108 0.025 0.01 0.975 0.954 0.892 0.99
III 0.983 0.859 0.055 0.213 0.015 0.003 0.985 0.945 0.787 0.997
IV 0.999 0.74 0.357 0.129 0.0 0.001 1.0 0.643 0.871 0.999

Average 0.982 0.876 0.122 0.113 0.011 0.026 0.988 0.877 0.887 0.974

D
at
a
A
ug

m
en
t. SG

D

I 0.975 0.983 0.029 0.005 0.014 0.084 0.986 0.971 0.995 0.916
II 0.97 0.92 0.042 0.116 0.028 0.009 0.972 0.958 0.884 0.991
III 0.986 0.879 0.115 0.126 0.008 0.007 0.992 0.885 0.874 0.993
IV 0.997 0.661 0.119 0.471 0.002 0.0 0.998 0.881 0.529 1.0

Average 0.982 0.861 0.076 0.179 0.013 0.025 0.987 0.924 0.821 0.975

A
da

m

I 0.977 0.985 0.027 0.003 0.008 0.08 0.992 0.973 0.997 0.92
II 0.973 0.927 0.034 0.108 0.026 0.008 0.974 0.966 0.892 0.992
III 0.986 0.879 0.104 0.137 0.008 0.006 0.992 0.896 0.863 0.994
IV 0.998 0.777 0.048 0.344 0.002 0.0 0.998 0.952 0.656 1.0

Average 0.984 0.892 0.053 0.148 0.011 0.024 0.989 0.947 0.852 0.976

Table A.92: Comparison of the statistical information for prediction on Patient 8 based
on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.8 Patient 9

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7 Sec. 8 Sec. 9 Sec. 10Sec. 11

Ground
Truth

Normal
Dataset
SGD
Normal
Dataset
Adam
Data
Augmen.
SGD
Data
Augmen.
Adam

Sec. 12 Sec. 13Sec. 14Sec. 15Sec. 16Sec. 17Sec. 18Sec. 19Sec. 20Sec. 21Sec. 22

Table A.93: Brain sections compared with different techniques of the second architecture
on patient 9.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.94 and A.95) and with the augmented dataset (Tables A.96 and A.97). Table A.98
displays the statistical information for different classes.

Tomasetti Luca 117

Actual Class
I II III IV

Pred.
Class

I 14262 67 7 0
II 198 6769 125 0
III 84 147 868 0
IV 0 1 0 0

Table A.94: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 14309 93 7 0
II 170 6683 75 0
III 74 196 921 0
IV 0 0 0 0

Table A.95: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 14316 248 21 0
II 136 6509 110 0
III 88 214 871 0
IV 3 11 1 0

Table A.96: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 14253 63 5 0
II 188 6763 101 0
III 102 158 894 0
IV 1 0 0 0

Table A.97: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.984 0.988 0.019 0.005 0.009 0.034 0.991 0.981 0.995 0.966
II 0.976 0.962 0.031 0.046 0.021 0.014 0.979 0.969 0.954 0.986
III 0.984 0.827 0.132 0.21 0.011 0.006 0.989 0.868 0.79 0.994
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.986 0.694 0.295 0.315 0.01 0.013 0.99 0.705 0.685 0.986

A
da

m

I 0.985 0.988 0.017 0.007 0.013 0.03 0.987 0.983 0.993 0.97
II 0.976 0.962 0.041 0.035 0.016 0.019 0.984 0.959 0.965 0.981
III 0.984 0.84 0.082 0.227 0.013 0.004 0.987 0.918 0.773 0.996
IV 1.0 0 1 1 0.0 0.0 1.0 0 0 1.0

Average 0.986 0.698 0.285 0.317 0.01 0.013 0.99 0.715 0.683 0.987

D
at
a
A
ug

m
en
t. SG

D

I 0.978 0.983 0.016 0.018 0.034 0.029 0.966 0.984 0.982 0.971
II 0.968 0.948 0.068 0.036 0.016 0.03 0.984 0.932 0.964 0.97
III 0.981 0.801 0.132 0.257 0.014 0.006 0.986 0.868 0.743 0.994
IV 0.999 0.0 1 1.0 0.001 0.0 0.999 0 0.0 1.0

Average 0.982 0.683 0.304 0.328 0.016 0.016 0.984 0.696 0.672 0.984

A
da

m

I 0.984 0.988 0.02 0.005 0.009 0.035 0.991 0.98 0.995 0.965
II 0.977 0.964 0.031 0.041 0.019 0.014 0.981 0.969 0.959 0.986
III 0.984 0.83 0.106 0.225 0.012 0.005 0.988 0.894 0.775 0.995
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.986 0.696 0.289 0.318 0.01 0.013 0.99 0.711 0.682 0.987

Table A.98: Comparison of the statistical information for prediction on Patient 9 based
on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.9 Patient 10

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13 Sec. 14

Table A.99: Brain sections compared with different techniques of the second architecture
on patient 10.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.100 and A.101) and with the augmented dataset (Tables A.102 and A.103). Table

Tomasetti Luca 119

A.104 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 10325 13 6 2
II 71 3016 72 4
III 64 105 585 15
IV 0 6 2 50

Table A.100: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 10342 23 11 3
II 55 2937 42 3
III 65 171 615 23
IV 0 2 2 42

Table A.101: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 10326 49 22 1
II 73 2890 64 4
III 58 169 530 9
IV 1 29 54 57

Table A.102: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 10359 51 18 2
II 52 2969 75 2
III 48 112 555 9
IV 1 8 17 58

Table A.103: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.989 0.993 0.013 0.002 0.005 0.034 0.995 0.987 0.998 0.966
II 0.981 0.957 0.039 0.046 0.013 0.011 0.987 0.961 0.954 0.989
III 0.982 0.816 0.12 0.239 0.013 0.006 0.987 0.88 0.761 0.994
IV 0.998 0.775 0.296 0.138 0.001 0.001 0.999 0.704 0.862 0.999

Average 0.988 0.885 0.117 0.106 0.008 0.013 0.992 0.883 0.894 0.987

A
da

m

I 0.989 0.992 0.011 0.004 0.01 0.03 0.99 0.989 0.996 0.97
II 0.979 0.952 0.063 0.033 0.009 0.017 0.991 0.937 0.967 0.983
III 0.978 0.797 0.082 0.296 0.019 0.004 0.981 0.918 0.704 0.996
IV 0.998 0.718 0.408 0.087 0.0 0.002 1.0 0.592 0.913 0.998

Average 0.986 0.865 0.141 0.105 0.009 0.013 0.99 0.859 0.895 0.987

D
at
a
A
ug

m
en
t. SG

D

I 0.985 0.99 0.013 0.007 0.019 0.035 0.981 0.987 0.993 0.965
II 0.973 0.937 0.079 0.047 0.013 0.022 0.987 0.921 0.953 0.978
III 0.974 0.738 0.209 0.308 0.017 0.01 0.983 0.791 0.692 0.99
IV 0.993 0.538 0.197 0.596 0.006 0.001 0.994 0.803 0.404 0.999

Average 0.981 0.801 0.124 0.239 0.014 0.017 0.986 0.875 0.76 0.983

A
da

m

I 0.988 0.992 0.01 0.007 0.018 0.026 0.982 0.99 0.993 0.974
II 0.979 0.952 0.054 0.042 0.012 0.015 0.988 0.946 0.958 0.985
III 0.981 0.799 0.165 0.233 0.012 0.008 0.988 0.835 0.767 0.992
IV 0.997 0.748 0.183 0.31 0.002 0.001 0.998 0.817 0.69 0.999

Average 0.986 0.873 0.103 0.148 0.011 0.012 0.989 0.897 0.852 0.988

Table A.104: Comparison of the statistical information for prediction on Patient 10
based on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.2.10 Patient 11

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13 Sec. 14

Table A.105: Brain sections compared with different techniques of the second architec-
ture on patient 11.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.106 and A.107) and with the augmented dataset (Tables A.108 and A.109). Table

Tomasetti Luca 121

A.110 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 10022 85 24 0
II 412 2409 425 0
III 74 294 577 0
IV 1 11 2 0

Table A.106: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 10011 105 28 0
II 413 2208 413 0
III 86 471 587 0
IV 0 10 4 0

Table A.107: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 10005 80 34 0
II 444 2470 557 0
III 45 206 427 0
IV 15 39 14 0

Table A.108: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9992 108 38 0
II 431 2362 418 0
III 78 292 563 0
IV 8 37 9 0

Table A.109: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.958 0.971 0.046 0.011 0.028 0.116 0.972 0.954 0.989 0.884
II 0.914 0.797 0.139 0.258 0.073 0.035 0.927 0.861 0.742 0.965
III 0.943 0.585 0.439 0.389 0.028 0.034 0.972 0.561 0.611 0.966
IV 0.999 0.0 1 1.0 0.001 0.0 0.999 0 0.0 1.0

Average 0.954 0.588 0.406 0.414 0.033 0.046 0.968 0.594 0.585 0.954

A
da

m

I 0.956 0.969 0.047 0.013 0.035 0.119 0.965 0.953 0.987 0.881
II 0.902 0.758 0.21 0.272 0.072 0.052 0.928 0.79 0.728 0.948
III 0.93 0.54 0.431 0.487 0.042 0.034 0.958 0.569 0.513 0.966
IV 0.999 0.0 1 1.0 0.001 0.0 0.999 0 0.0 1.0

Average 0.947 0.567 0.422 0.443 0.037 0.051 0.963 0.578 0.557 0.949

D
at
a
A
ug

m
en
t. SG

D

I 0.957 0.97 0.048 0.011 0.03 0.12 0.97 0.952 0.989 0.88
II 0.908 0.788 0.116 0.288 0.087 0.03 0.913 0.884 0.712 0.97
III 0.94 0.499 0.586 0.37 0.019 0.044 0.981 0.414 0.63 0.956
IV 0.995 0.0 1 1.0 0.005 0.0 0.995 0 0.0 1.0

Average 0.95 0.564 0.438 0.417 0.035 0.049 0.965 0.562 0.583 0.952

A
da

m

I 0.954 0.968 0.049 0.014 0.038 0.123 0.962 0.951 0.986 0.877
II 0.91 0.786 0.156 0.264 0.074 0.039 0.926 0.844 0.736 0.961
III 0.942 0.574 0.452 0.397 0.028 0.035 0.972 0.548 0.603 0.965
IV 0.996 0.0 1 1.0 0.004 0.0 0.996 0 0.0 1.0

Average 0.951 0.582 0.414 0.419 0.036 0.049 0.964 0.586 0.581 0.951

Table A.110: Comparison of the statistical information for prediction on Patient 11
based on two different datasets.

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.3 Results for architecture 3

A.3.1 Patient 2

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.111: Brain sections compared with different techniques of the third architecture
on patient 2.

Tomasetti Luca 123

A.3.2 Patient 3

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.112: Brain sections compared with different techniques of the third architecture
on patient 3.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.113 and A.114) and with the augmented dataset (Tables A.115 and A.116). Table

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.117 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8609 62 11 7
II 395 3534 112 12
III 78 148 297 18
IV 3 6 2 18

Table A.113: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8597 53 15 7
II 391 3514 103 12
III 99 177 300 22
IV 0 4 3 15

Table A.114: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8592 87 16 4
II 413 3500 107 10
III 72 152 280 8
IV 8 13 17 33

Table A.115: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8604 71 17 5
II 395 3515 107 5
III 71 124 275 4
IV 17 39 21 42

Table A.116: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.958 0.969 0.052 0.009 0.019 0.103 0.981 0.948 0.991 0.897
II 0.945 0.906 0.058 0.128 0.054 0.023 0.946 0.942 0.872 0.977
III 0.972 0.617 0.296 0.451 0.019 0.01 0.981 0.704 0.549 0.99
IV 0.996 0.429 0.673 0.379 0.001 0.003 0.999 0.327 0.621 0.997

Average 0.968 0.73 0.27 0.242 0.023 0.035 0.977 0.73 0.758 0.965

A
da

m

I 0.958 0.968 0.054 0.009 0.018 0.106 0.982 0.946 0.991 0.894
II 0.944 0.905 0.062 0.126 0.053 0.025 0.947 0.938 0.874 0.975
III 0.969 0.589 0.287 0.498 0.023 0.01 0.977 0.713 0.502 0.99
IV 0.996 0.385 0.732 0.318 0.001 0.003 0.999 0.268 0.682 0.997

Average 0.967 0.712 0.284 0.238 0.024 0.036 0.976 0.716 0.762 0.964

D
at
a
A
ug

m
en
t. SG

D

I 0.955 0.966 0.054 0.012 0.025 0.107 0.975 0.946 0.988 0.893
II 0.941 0.9 0.067 0.132 0.055 0.027 0.945 0.933 0.868 0.973
III 0.972 0.601 0.333 0.453 0.018 0.011 0.982 0.667 0.547 0.989
IV 0.995 0.524 0.4 0.535 0.003 0.002 0.997 0.6 0.465 0.998

Average 0.966 0.748 0.214 0.283 0.025 0.037 0.975 0.787 0.717 0.963

A
da

m

I 0.957 0.968 0.053 0.011 0.022 0.104 0.978 0.947 0.989 0.896
II 0.944 0.905 0.062 0.126 0.053 0.025 0.947 0.938 0.874 0.975
III 0.974 0.614 0.348 0.42 0.015 0.011 0.985 0.652 0.58 0.989
IV 0.993 0.483 0.236 0.647 0.006 0.001 0.994 0.764 0.353 0.999

Average 0.967 0.743 0.175 0.301 0.024 0.036 0.976 0.825 0.699 0.965

Table A.117: Comparison of the statistical information for prediction on Patient 3
based on two different datasets.

Tomasetti Luca 125

A.3.3 Patient 4

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.118: Brain sections compared with different techniques of the third architecture
on patient 4.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.119 and A.120) and with the augmented dataset (Tables A.121 and A.122). Table

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.123 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8069 42 8 6
II 61 3670 117 14
III 94 160 838 97
IV 0 4 25 107

Table A.119: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8070 47 21 14
II 91 3664 108 10
III 72 150 828 85
IV 0 6 29 117

Table A.120: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8001 82 32 9
II 125 3636 124 10
III 99 147 722 48
IV 2 15 103 157

Table A.121: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8098 95 45 9
II 64 3595 106 7
III 61 158 671 20
IV 1 32 162 188

Table A.122: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.984 0.987 0.019 0.007 0.011 0.03 0.989 0.981 0.993 0.97
II 0.97 0.949 0.053 0.05 0.02 0.022 0.98 0.947 0.95 0.978
III 0.962 0.77 0.152 0.295 0.028 0.012 0.972 0.848 0.705 0.988
IV 0.989 0.594 0.522 0.213 0.002 0.009 0.998 0.478 0.787 0.991

Average 0.976 0.825 0.186 0.141 0.015 0.018 0.985 0.813 0.859 0.982

A
da

m

I 0.982 0.985 0.02 0.01 0.016 0.032 0.984 0.98 0.99 0.968
II 0.969 0.947 0.052 0.054 0.022 0.022 0.978 0.948 0.946 0.978
III 0.965 0.781 0.16 0.27 0.025 0.013 0.975 0.84 0.73 0.987
IV 0.989 0.619 0.482 0.23 0.003 0.008 0.997 0.518 0.77 0.992

Average 0.976 0.833 0.178 0.141 0.017 0.019 0.983 0.821 0.859 0.981

D
at
a
A
ug

m
en
t. SG

D

I 0.974 0.979 0.027 0.015 0.024 0.044 0.976 0.973 0.985 0.956
II 0.962 0.935 0.063 0.066 0.027 0.026 0.973 0.937 0.934 0.974
III 0.958 0.723 0.264 0.289 0.024 0.021 0.976 0.736 0.711 0.979
IV 0.986 0.627 0.299 0.433 0.009 0.005 0.991 0.701 0.567 0.995

Average 0.97 0.816 0.163 0.201 0.021 0.024 0.979 0.837 0.799 0.976

A
da

m

I 0.979 0.983 0.015 0.018 0.029 0.025 0.971 0.985 0.982 0.975
II 0.965 0.94 0.073 0.047 0.019 0.03 0.981 0.927 0.953 0.97
III 0.959 0.709 0.318 0.263 0.019 0.025 0.981 0.682 0.737 0.975
IV 0.983 0.619 0.161 0.509 0.015 0.003 0.985 0.839 0.491 0.997

Average 0.972 0.813 0.142 0.209 0.021 0.021 0.979 0.858 0.791 0.979

Table A.123: Comparison of the statistical information for prediction on Patient 4
based on two different datasets.

Tomasetti Luca 127

A.3.4 Patient 5

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.124: Brain sections compared with different techniques of the third architecture
on patient 5.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.125 and A.126) and with the augmented dataset (Tables A.127 and A.128). Table

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.129 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8350 71 24 7
II 401 3091 140 23
III 44 168 847 52
IV 0 0 18 76

Table A.125: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8017 38 28 7
II 722 3181 159 23
III 53 107 810 38
IV 1 8 30 90

Table A.126: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8041 29 32 8
II 695 3157 152 7
III 53 127 782 18
IV 4 19 63 125

Table A.127: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8009 49 23 8
II 727 3047 133 6
III 57 203 823 24
IV 0 35 48 120

Table A.128: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.959 0.968 0.051 0.012 0.023 0.092 0.977 0.949 0.988 0.908
II 0.94 0.885 0.072 0.154 0.057 0.025 0.943 0.928 0.846 0.975
III 0.966 0.792 0.177 0.238 0.021 0.015 0.979 0.823 0.762 0.985
IV 0.992 0.603 0.519 0.191 0.001 0.006 0.999 0.481 0.809 0.994

Average 0.964 0.812 0.205 0.149 0.026 0.035 0.975 0.795 0.851 0.966

A
da

m

I 0.938 0.951 0.089 0.006 0.011 0.149 0.989 0.911 0.994 0.851
II 0.923 0.861 0.041 0.219 0.089 0.015 0.911 0.959 0.781 0.985
III 0.971 0.813 0.187 0.187 0.016 0.016 0.984 0.813 0.813 0.984
IV 0.993 0.664 0.386 0.276 0.003 0.005 0.997 0.614 0.724 0.995

Average 0.956 0.822 0.176 0.172 0.03 0.046 0.97 0.824 0.828 0.954

D
at
a
A
ug

m
en
t. SG

D

I 0.936 0.95 0.088 0.009 0.016 0.149 0.984 0.912 0.991 0.851
II 0.921 0.858 0.046 0.221 0.091 0.017 0.909 0.954 0.779 0.983
III 0.969 0.796 0.211 0.196 0.016 0.018 0.984 0.789 0.804 0.982
IV 0.992 0.627 0.43 0.302 0.003 0.005 0.997 0.57 0.698 0.995

Average 0.955 0.808 0.194 0.182 0.032 0.047 0.968 0.806 0.818 0.953

A
da

m

I 0.935 0.949 0.089 0.01 0.018 0.15 0.982 0.911 0.99 0.85
II 0.913 0.841 0.086 0.221 0.087 0.031 0.913 0.914 0.779 0.969
III 0.963 0.771 0.199 0.257 0.023 0.017 0.977 0.801 0.743 0.983
IV 0.991 0.665 0.241 0.409 0.006 0.003 0.994 0.759 0.591 0.997

Average 0.951 0.806 0.154 0.224 0.034 0.05 0.966 0.846 0.776 0.95

Table A.129: Comparison of the statistical information for prediction on Patient 5
based on two different datasets.

Tomasetti Luca 129

A.3.5 Patient 6

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.130: Brain sections compared with different techniques of the third architecture
on patient 6.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.131 and A.132) and with the augmented dataset (Tables A.133 and A.134). Table

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.135 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8775 56 1 0
II 100 3489 86 0
III 81 181 542 0
IV 0 1 0 0

Table A.131: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8734 59 4 0
II 144 3419 53 0
III 78 248 572 0
IV 0 1 0 0

Table A.132: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8724 60 2 0
II 146 3524 101 0
III 84 126 522 0
IV 0 20 3 0

Table A.133: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8787 113 12 0
II 119 3402 63 0
III 48 206 553 0
IV 0 9 0 0

Table A.134: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.982 0.987 0.02 0.006 0.013 0.04 0.987 0.98 0.994 0.96
II 0.968 0.943 0.064 0.051 0.019 0.025 0.981 0.936 0.949 0.975
III 0.974 0.756 0.138 0.326 0.021 0.007 0.979 0.862 0.674 0.993
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.981 0.671 0.305 0.346 0.013 0.018 0.987 0.695 0.654 0.982

A
da

m

I 0.979 0.984 0.025 0.007 0.014 0.049 0.986 0.975 0.993 0.951
II 0.962 0.931 0.083 0.054 0.021 0.032 0.979 0.917 0.946 0.968
III 0.971 0.749 0.091 0.363 0.026 0.005 0.974 0.909 0.637 0.995
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.978 0.666 0.3 0.356 0.015 0.022 0.985 0.7 0.644 0.979

D
at
a
A
ug

m
en
t. SG

D

I 0.978 0.984 0.026 0.007 0.014 0.051 0.986 0.974 0.993 0.949
II 0.966 0.94 0.055 0.065 0.026 0.022 0.974 0.945 0.935 0.978
III 0.976 0.768 0.169 0.287 0.017 0.008 0.983 0.831 0.713 0.992
IV 0.998 0.0 1 1.0 0.002 0.0 0.998 0 0.0 1.0

Average 0.98 0.673 0.312 0.34 0.015 0.02 0.985 0.688 0.66 0.98

A
da

m

I 0.978 0.984 0.019 0.014 0.029 0.038 0.971 0.981 0.986 0.962
II 0.962 0.93 0.088 0.051 0.019 0.034 0.981 0.912 0.949 0.966
III 0.975 0.771 0.119 0.315 0.02 0.006 0.98 0.881 0.685 0.994
IV 0.999 0.0 1 1.0 0.001 0.0 0.999 0 0.0 1.0

Average 0.979 0.671 0.306 0.345 0.017 0.02 0.983 0.694 0.655 0.98

Table A.135: Comparison of the statistical information for prediction on Patient 6
based on two different datasets.

Tomasetti Luca 131

A.3.6 Patient 7

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.136: Brain sections compared with different techniques of the third architecture
on patient 7.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.137 and A.138) and with the augmented dataset (Tables A.139 and A.140). Table

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.141 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 8938 92 7 0
II 43 3041 99 0
III 70 273 728 13
IV 0 2 4 2

Table A.137: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8946 95 6 0
II 50 3001 76 0
III 55 304 757 11
IV 0 5 2 4

Table A.138: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 8965 136 17 0
II 42 2992 100 0
III 45 217 682 9
IV 0 63 38 6

Table A.139: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 8973 120 18 0
II 25 3032 97 0
III 53 230 697 10
IV 0 26 26 5

Table A.140: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.984 0.988 0.012 0.011 0.023 0.026 0.977 0.988 0.989 0.974
II 0.962 0.923 0.108 0.045 0.014 0.036 0.986 0.892 0.955 0.964
III 0.965 0.758 0.131 0.328 0.029 0.009 0.971 0.869 0.672 0.991
IV 0.999 0.174 0.867 0.75 0.0 0.001 1.0 0.133 0.25 0.999

Average 0.978 0.711 0.279 0.283 0.017 0.018 0.984 0.72 0.717 0.982

A
da

m

I 0.985 0.989 0.012 0.011 0.024 0.025 0.976 0.988 0.989 0.975
II 0.96 0.919 0.119 0.04 0.013 0.04 0.987 0.881 0.96 0.96
III 0.966 0.769 0.1 0.328 0.03 0.007 0.97 0.9 0.672 0.993
IV 0.999 0.308 0.733 0.636 0.001 0.001 0.999 0.267 0.364 0.999

Average 0.977 0.746 0.241 0.254 0.017 0.018 0.983 0.759 0.746 0.982

D
at
a
A
ug

m
en
t. SG

D

I 0.982 0.987 0.01 0.017 0.036 0.021 0.964 0.99 0.983 0.979
II 0.958 0.915 0.122 0.045 0.014 0.041 0.986 0.878 0.955 0.959
III 0.968 0.762 0.185 0.284 0.022 0.013 0.978 0.815 0.716 0.987
IV 0.992 0.098 0.6 0.944 0.008 0.001 0.992 0.4 0.056 0.999

Average 0.975 0.691 0.229 0.323 0.02 0.019 0.98 0.771 0.677 0.981

A
da

m

I 0.984 0.988 0.009 0.015 0.032 0.019 0.968 0.991 0.985 0.981
II 0.963 0.924 0.11 0.039 0.012 0.037 0.988 0.89 0.961 0.963
III 0.967 0.763 0.168 0.296 0.023 0.011 0.977 0.832 0.704 0.989
IV 0.995 0.139 0.667 0.912 0.004 0.001 0.996 0.333 0.088 0.999

Average 0.978 0.718 0.181 0.296 0.018 0.017 0.982 0.819 0.704 0.983

Table A.141: Comparison of the statistical information for prediction on Patient 7
based on two different datasets.

Tomasetti Luca 133

A.3.7 Patient 8

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table A.142: Brain sections compared with different techniques of the third architecture
on patient 8.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.143 and A.144) and with the augmented dataset (Tables A.145 and A.146). Table

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.147 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 9800 17 1 1
II 270 2287 80 8
III 58 92 657 15
IV 0 2 6 18

Table A.143: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9804 22 2 3
II 267 2278 68 6
III 57 97 672 16
IV 0 0 4 16

Table A.144: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 9813 45 12 2
II 265 2229 73 4
III 46 100 630 6
IV 6 24 28 29

Table A.145: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9795 25 5 3
II 258 2267 73 3
III 71 95 637 6
IV 4 11 30 29

Table A.146: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.974 0.983 0.032 0.002 0.006 0.094 0.994 0.968 0.998 0.906
II 0.965 0.907 0.046 0.135 0.033 0.01 0.967 0.954 0.865 0.99
III 0.981 0.839 0.117 0.201 0.013 0.007 0.987 0.883 0.799 0.993
IV 0.998 0.529 0.571 0.308 0.001 0.002 0.999 0.429 0.692 0.998

Average 0.980 0.815 0.192 0.162 0.013 0.028 0.987 0.808 0.839 0.972

A
da

m

I 0.974 0.982 0.032 0.003 0.008 0.093 0.992 0.968 0.997 0.907
II 0.965 0.908 0.05 0.13 0.031 0.011 0.969 0.95 0.87 0.989
III 0.982 0.846 0.099 0.202 0.014 0.006 0.986 0.901 0.798 0.994
IV 0.998 0.525 0.61 0.2 0.0 0.002 1.0 0.39 0.8 0.998

Average 0.980 0.815 0.198 0.134 0.013 0.028 0.987 0.802 0.866 0.972

D
at
a
A
ug

m
en
t. SG

D

I 0.972 0.981 0.031 0.006 0.019 0.092 0.981 0.969 0.994 0.908
II 0.962 0.897 0.07 0.133 0.031 0.016 0.969 0.93 0.867 0.984
III 0.98 0.826 0.152 0.194 0.012 0.009 0.988 0.848 0.806 0.991
IV 0.995 0.453 0.293 0.667 0.004 0.001 0.996 0.707 0.333 0.999

Average 0.977 0.789 0.137 0.25 0.017 0.029 0.983 0.863 0.75 0.971

A
da

m

I 0.973 0.982 0.033 0.003 0.01 0.096 0.99 0.967 0.997 0.904
II 0.965 0.907 0.055 0.128 0.031 0.012 0.969 0.945 0.872 0.988
III 0.979 0.82 0.144 0.213 0.014 0.009 0.986 0.856 0.787 0.991
IV 0.996 0.504 0.293 0.608 0.003 0.001 0.997 0.707 0.392 0.999

Average 0.978 0.803 0.132 0.238 0.015 0.029 0.986 0.868 0.762 0.971

Table A.147: Comparison of the statistical information for prediction on Patient 8
based on two different datasets.

Tomasetti Luca 135

A.3.8 Patient 9

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7 Sec. 8 Sec. 9 Sec. 10Sec. 11

Ground
Truth

Normal
Dataset
SGD
Normal
Dataset
Adam
Data
Augmen.
SGD
Data
Augmen.
Adam

Sec. 12 Sec. 13Sec. 14Sec. 15Sec. 16Sec. 17Sec. 18Sec. 19Sec. 20Sec. 21Sec. 22

Table A.148: Brain sections compared with different techniques of the third architecture
on patient 9.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.149 and A.150) and with the augmented dataset (Tables A.151 and A.152). Table
A.153 displays the statistical information for different classes.

Tomasetti Luca Appendix A Results for Tile Classification Approach

Actual Class
I II III IV

Pred.
Class

I 14301 79 10 0
II 179 6711 149 0
III 74 182 841 0
IV 0 2 0 0

Table A.149: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 14280 76 8 0
II 214 6675 125 0
III 60 223 867 0
IV 0 0 0 0

Table A.150: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 14281 74 7 0
II 193 6764 183 0
III 68 144 809 0
IV 2 2 1 0

Table A.151: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 14279 110 13 0
II 191 6555 129 0
III 69 313 858 0
IV 4 6 1 0

Table A.152: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.985 0.988 0.017 0.006 0.011 0.031 0.989 0.983 0.994 0.969
II 0.974 0.958 0.038 0.047 0.021 0.017 0.979 0.962 0.953 0.983
III 0.982 0.802 0.159 0.233 0.012 0.007 0.988 0.841 0.767 0.993
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.985 0.687 0.303 0.322 0.011 0.014 0.989 0.696 0.678 0.986

A
da

m

I 0.984 0.988 0.019 0.006 0.011 0.034 0.989 0.981 0.994 0.966
II 0.972 0.954 0.043 0.048 0.022 0.019 0.978 0.957 0.952 0.981
III 0.982 0.807 0.133 0.246 0.013 0.006 0.987 0.867 0.754 0.994
IV 1.0 0 1 1 0.0 0.0 1.0 0 0 1.0

Average 0.984 0.687 0.299 0.325 0.011 0.015 0.989 0.701 0.675 0.985

D
at
a
A
ug

m
en
t. SG

D

I 0.985 0.988 0.018 0.006 0.01 0.032 0.99 0.982 0.994 0.968
II 0.974 0.958 0.032 0.053 0.024 0.014 0.976 0.968 0.947 0.986
III 0.982 0.801 0.191 0.208 0.01 0.009 0.99 0.809 0.792 0.991
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.985 0.687 0.31 0.317 0.011 0.014 0.989 0.69 0.683 0.986

A
da

m

I 0.983 0.987 0.018 0.009 0.015 0.032 0.985 0.982 0.991 0.968
II 0.967 0.946 0.061 0.047 0.021 0.027 0.979 0.939 0.953 0.973
III 0.977 0.766 0.143 0.308 0.018 0.007 0.982 0.857 0.692 0.993
IV 1.0 0.0 1 1.0 0.0 0.0 1.0 0 0.0 1.0

Average 0.982 0.675 0.305 0.341 0.014 0.017 0.986 0.694 0.659 0.983

Table A.153: Comparison of the statistical information for prediction on Patient 9
based on two different datasets.

Tomasetti Luca 137

A.3.9 Patient 10

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13 Sec. 14

Table A.154: Brain sections compared with different techniques of the third architecture
on patient 10.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.155 and A.156) and with the augmented dataset (Tables A.157 and A.158). Table
A.159 displays the statistical information for different classes.

Tomasetti Luca Appendix A Results for Tile Classification Approach

Actual Class
I II III IV

Pred.
Class

I 10287 19 15 1
II 122 2976 91 5
III 55 136 529 21
IV 0 5 30 44

Table A.155: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 10330 25 8 2
II 72 2990 76 5
III 56 119 560 22
IV 0 6 23 42

Table A.156: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 10321 64 29 2
II 101 2907 78 6
III 38 133 509 21
IV 0 36 49 42

Table A.157: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 10314 35 24 4
II 84 2955 78 4
III 59 119 481 4
IV 1 31 84 59

Table A.158: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.985 0.99 0.017 0.003 0.009 0.044 0.991 0.983 0.997 0.956
II 0.974 0.94 0.051 0.068 0.019 0.014 0.981 0.949 0.932 0.986
III 0.976 0.752 0.205 0.286 0.016 0.01 0.984 0.795 0.714 0.99
IV 0.996 0.587 0.38 0.443 0.002 0.002 0.998 0.62 0.557 0.998

Average 0.983 0.817 0.163 0.2 0.011 0.017 0.988 0.837 0.8 0.982

A
da

m

I 0.989 0.992 0.012 0.003 0.009 0.032 0.991 0.988 0.997 0.968
II 0.979 0.952 0.048 0.049 0.014 0.013 0.986 0.952 0.951 0.987
III 0.979 0.787 0.16 0.26 0.014 0.008 0.986 0.84 0.74 0.992
IV 0.996 0.592 0.408 0.408 0.002 0.002 0.998 0.592 0.592 0.998

Average 0.986 0.831 0.157 0.18 0.01 0.014 0.99 0.843 0.82 0.986

D
at
a
A
ug

m
en
t. SG

D

I 0.984 0.989 0.013 0.009 0.025 0.035 0.975 0.987 0.991 0.965
II 0.971 0.933 0.074 0.06 0.017 0.021 0.983 0.926 0.94 0.979
III 0.976 0.745 0.235 0.274 0.014 0.011 0.986 0.765 0.726 0.989
IV 0.992 0.424 0.408 0.669 0.006 0.002 0.994 0.592 0.331 0.998

Average 0.981 0.773 0.182 0.253 0.015 0.017 0.984 0.818 0.747 0.983

A
da

m

I 0.986 0.99 0.014 0.006 0.016 0.036 0.984 0.986 0.994 0.964
II 0.976 0.944 0.059 0.053 0.015 0.016 0.985 0.941 0.947 0.984
III 0.974 0.723 0.279 0.275 0.013 0.014 0.987 0.721 0.725 0.986
IV 0.991 0.48 0.169 0.663 0.008 0.001 0.992 0.831 0.337 0.999

Average 0.982 0.784 0.13 0.249 0.013 0.017 0.987 0.87 0.751 0.983

Table A.159: Comparison of the statistical information for prediction on Patient 10
based on two different datasets.

Tomasetti Luca 139

A.3.10 Patient 11

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13 Sec. 14

Table A.160: Brain sections compared with different techniques of the third architecture
on patient 11.

Analysis of different Datasets

The following tables represent the confusion matrices with the normal dataset (Tables
A.161 and A.162) and with the augmented dataset (Tables A.163 and A.164). Table

Tomasetti Luca Appendix A Results for Tile Classification Approach

A.165 displays the statistical information for different classes.

Actual Class
I II III IV

Pred.
Class

I 9978 88 45 0
II 471 2456 428 0
III 61 239 549 0
IV 0 15 6 0

Table A.161: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9978 76 32 0
II 462 2446 464 0
III 60 247 523 0
IV 9 30 9 0

Table A.162: Adam optimizer.

Actual Class
I II III IV

Pred.
Class

I 10024 99 50 0
II 434 2479 541 0
III 43 179 411 0
IV 8 42 26 0

Table A.163: SGD optimizer.

Actual Class
I II III IV

Pred.
Class

I 9958 86 60 0
II 466 2466 567 0
III 65 178 356 0
IV 20 69 45 0

Table A.164: Adam optimizer.

Metrics
DS Opt. Class Acc. F1 score FDR FNR FOR FPR NPV Prec. Recall Selec.

N
or
m
al

SG
D

I 0.954 0.968 0.051 0.013 0.035 0.126 0.965 0.949 0.987 0.874
II 0.913 0.798 0.122 0.268 0.078 0.031 0.922 0.878 0.732 0.969
III 0.946 0.585 0.466 0.353 0.023 0.036 0.977 0.534 0.647 0.964
IV 0.999 0.0 1 1.0 0.001 0.0 0.999 0 0.0 1.0

Average 0.953 0.588 0.41 0.408 0.034 0.048 0.966 0.59 0.591 0.952

A
da

m

I 0.956 0.969 0.046 0.015 0.039 0.117 0.961 0.954 0.985 0.883
II 0.91 0.793 0.114 0.282 0.085 0.029 0.915 0.886 0.718 0.971
III 0.941 0.495 0.6 0.351 0.017 0.045 0.983 0.4 0.649 0.955
IV 0.995 0.0 1 1.0 0.005 0.0 0.995 0 0.0 1.0

Average 0.951 0.564 0.44 0.412 0.037 0.048 0.964 0.56 0.588 0.952

D
at
a
A
ug

m
en
t. SG

D

I 0.948 0.963 0.06 0.012 0.03 0.146 0.97 0.94 0.988 0.854
II 0.901 0.781 0.089 0.316 0.102 0.024 0.898 0.911 0.684 0.976
III 0.943 0.475 0.639 0.305 0.012 0.048 0.988 0.361 0.695 0.952
IV 0.994 0.0 1 1.0 0.006 0.0 0.994 0 0.0 1.0

Average 0.946 0.555 0.447 0.408 0.038 0.054 0.962 0.553 0.592 0.946

A
da

m

I 0.951 0.966 0.052 0.014 0.038 0.13 0.962 0.948 0.986 0.87
II 0.905 0.783 0.119 0.295 0.09 0.031 0.91 0.881 0.705 0.969
III 0.936 0.438 0.654 0.406 0.018 0.049 0.982 0.346 0.594 0.951
IV 0.991 0.0 1 1.0 0.009 0.0 0.991 0 0.0 1.0

Average 0.946 0.547 0.456 0.429 0.039 0.053 0.961 0.544 0.571 0.948

Table A.165: Comparison of the statistical information for prediction on Patient 11
based on two different datasets.

B
Results for Pixel by Pixel Segmentation Approach

The chapter presents the final results for the predicted images realized with the Pixel
by Pixel Segmentation approach described and analyzed in detail in Chap. 5. The final
training and testing accuracy percentages plus results for loss equations are presented in
Table 5.3.

B.1 Results for U-net

This section displays predicting results for all brain sections for all patients using the
K-Fold cross-validation, through the U-net architecture, described in detail in Sec. 5.4.
The first row of each table represents the ground truth of a brain section, extrapolated
from the manual annotation with a pre-processing step described in Sec. 3.3.2. Second
and third rows show the predicted brain section resulting from the normal dataset and
two different optimizer functions, SGD and Adam. The last two rows display the same
brain sections with an augmented dataset and the optimizer functions.

141

Tomasetti Luca Appendix B Results for Pixel by Pixel Segmentation Approach

B.1.1 Patient 2

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table B.1: Brain sections compared with different techniques on patient 2.

Tomasetti Luca 143

B.1.2 Patient 3

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table B.2: Brain sections compared with different techniques on patient 3.

Tomasetti Luca Appendix B Results for Pixel by Pixel Segmentation Approach

B.1.3 Patient 4

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table B.3: Brain sections compared with different techniques on patient 4.

Tomasetti Luca 145

B.1.4 Patient 5

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table B.4: Brain sections compared with different techniques on patient 5.

Tomasetti Luca Appendix B Results for Pixel by Pixel Segmentation Approach

B.1.5 Patient 6

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table B.5: Brain sections compared with different techniques on patient 6.

Tomasetti Luca 147

B.1.6 Patient 7

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table B.6: Brain sections compared with different techniques on patient 7.

Tomasetti Luca Appendix B Results for Pixel by Pixel Segmentation Approach

B.1.7 Patient 8

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13

Table B.7: Brain sections compared with different techniques on patient 8.

Tomasetti Luca 149

B.1.8 Patient 9

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10Sec. 11Sec. 12Sec. 13Sec. 14Sec. 15

Sec. 16 Sec. 17Sec. 18Sec. 19Sec. 20Sec. 21Sec. 22

Table B.8: Brain sections compared with different techniques on patient 9.

Tomasetti Luca Appendix B Results for Pixel by Pixel Segmentation Approach

B.1.9 Patient 10

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13 Sec. 14

Table B.9: Brain sections compared with different techniques on patient 10.

Tomasetti Luca 151

B.1.10 Patient 11

Visualization Results

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Sec. 7

Ground
Truth

Normal
Dataset
SGD

Normal
Dataset
Adam

Data
Augmen.
SGD

Data
Augmen.
Adam

Sec. 8 Sec. 9 Sec. 10 Sec. 11 Sec. 12 Sec. 13 Sec. 14

Table B.10: Brain sections compared with different techniques on patient 11.

C
Thesis Code

The following Appendix briefly describes the files included in this thesis’s attachment. The
attachment contains two different compressed folders: pythoncode.zip and matlabcode.zip.

The pythoncode.zip contains the building core of the various CNNs:

• extract_annotation.py: the script consists of function to extract the manual
annotations defined in Sec. 3.3.2.

• get_complete_training_data.py: the file contains all the methods to retrieve
and parse the new dataset for training, as described in Sec. 3.3.3 and Sec. 3.3.3.

• run_training.py: this is the main script which contains the implementations of
the four different architectures proposed with the various experiment setting. The
script refers to Chap. 4 and Chap. 5.

The matlabcode.zip contains the scripts to start the pre-processing steps (to use together
with the code created in [63, 66]):

• anotherSkullRemovalTechnique.m, generalSkullRemoval.m: two similar
scripts to compute the skull removal in the DICOM images.

153

Tomasetti Luca Appendix C Thesis Code

• improveImagesSkullRemoved.m: function that enhance the contrast in the
images without the skull in order to augment the different values in the pixels, as
described in 3.3.1.

• MAIN_PREPROCESSING.m: main script that consists of the call of the
various function involved in the pre-processing steps.

• pre_processing.py: python script to call theMAIN_PREPROCESSING.m
script.

• registerAnnotated.m: script to register the images with the corresponding
manual annotation image.

• start_pre_processing.m: MATLAB script to call theMAIN_PREPROCESSING.m
script.

Bibliography

[1] CP Warlow. Epidemiology of stroke. The Lancet, 352:S1–S4, 1998.

[2] Bent Indredavik, R Salvesen, H Næss, and D Thorsvik. Nasjonal retningslinje for
behandling og rehabilitering ved hjerneslag. Oslo: Helsedirektoratet, 4, 2010.

[3] Haidong Wang, Mohsen Naghavi, Christine Allen, Ryan M Barber, Zulfiqar A Bhutta,
Austin Carter, Daniel C Casey, Fiona J Charlson, Alan Zian Chen, Matthew M
Coates, et al. Global, regional, and national life expectancy, all-cause mortality, and
cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for
the global burden of disease study 2015. The lancet, 388(10053):1459–1544, 2016.

[4] Rupali Rajendra Akerkar, Grace M Egeland, Janne Dyngeland, Rune Kvåle, Marta
Ebbing, Truc Trung Nguyen, Inger Johanne Bakken, and Gunhild Forland. Hjerte-og
karregisteret: Rapport for 2012–2016. 2018.

[5] The top 10 causes of death. https://www.who.int/news-room/fact-sheets/

detail/the-top-10-causes-of-death, 2018. [Online].

[6] Luciano A Sposato, Lauren E Cipriano, Gustavo Saposnik, Estefanía Ruíz Vargas,
Patricia M Riccio, and Vladimir Hachinski. Diagnosis of atrial fibrillation after
stroke and transient ischaemic attack: a systematic review and meta-analysis. The
Lancet Neurology, 14(4):377–387, 2015.

[7] Norhealth. Norwegian Institute of Public Health: Norway’s health statistic database.
http://www.norgeshelsa.no/norgeshelsa/, 2017. [Online].

[8] World Health Organization et al. Cerebrovascular disorders: a clinical and research
classification. 1978.

[9] Gabor T Herman. Fundamentals of computerized tomography: image reconstruction
from projections. Springer Science & Business Media, 2009.

[10] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited, 2016.

155

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
http://www.norgeshelsa.no/norgeshelsa/

Bibliography BIBLIOGRAPHY

[11] David H Hubel and Torsten N Wiesel. Receptive fields and functional architecture
of monkey striate cortex. The Journal of physiology, 195(1):215–243, 1968.

[12] Samer Hijazi, Rishi Kumar, and Chris Rowen. Using convolutional neural networks
for image recognition. Cadence Design Systems Inc.: San Jose, CA, USA, 2015.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[14] KD Kurz, G Ringstad, A Odland, R Advani, E Farbu, and MW Kurz. Radiological
imaging in acute ischaemic stroke. European journal of neurology, 23:8–17, 2016.

[15] Werner Hacke, Markku Kaste, Erich Bluhmki, Miroslav Brozman, Antoni Dávalos,
Donata Guidetti, Vincent Larrue, Kennedy R Lees, Zakaria Medeghri, Thomas
Machnig, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic
stroke. New England journal of medicine, 359(13):1317–1329, 2008.

[16] Jeffrey L Saver. Time is brain-quantified. Stroke, 37(1):263–266, 2006.

[17] Klaus Kaae Andersen, Tom Skyhøj Olsen, Christian Dehlendorff, and Lars Peter
Kammersgaard. Hemorrhagic and ischemic strokes compared: stroke severity,
mortality, and risk factors. Stroke, 40(6):2068–2072, 2009.

[18] J Donald Easton, Jeffrey L Saver, Gregory W Albers, Mark J Alberts, Seemant
Chaturvedi, Edward Feldmann, Thomas S Hatsukami, Randall T Higashida, S Clai-
borne Johnston, Chelsea S Kidwell, et al. Definition and evaluation of transient
ischemic attack: a scientific statement for healthcare professionals from the american
heart association/american stroke association stroke council; council on cardiovas-
cular surgery and anesthesia; council on cardiovascular radiology and intervention;
council on cardiovascular nursing; and the interdisciplinary council on peripheral vas-
cular disease: the american academy of neurology affirms the value of this statement
as an educational tool for neurologists. Stroke, 40(6):2276–2293, 2009.

[19] Thrombus. MedlinePlus. U.S. National Library of Medicine. https://medlineplus.

gov/ency/imagepages/18120.htm, 2016. [Online].

[20] Vinay Kumar, Abul K Abbas, Nelson Fausto, and Jon C Aster. Robbins and Cotran
pathologic basis of disease, professional edition e-book. Elsevier health sciences, 2014.

[21] Ashfaq Shuaib and Vladimir C Hachinski. Mechanisms and management of stroke
in the elderly. CMAJ: Canadian Medical Association Journal, 145(5):433, 1991.

[22] Jan Stam. Thrombosis of the cerebral veins and sinuses. New England Journal of
Medicine, 352(17):1791–1798, 2005.

https://medlineplus.gov/ency/imagepages/18120.htm
https://medlineplus.gov/ency/imagepages/18120.htm

Bibliography 157

[23] Mayank Goyal, Andrew M Demchuk, Bijoy K Menon, Muneer Eesa, Jeremy L
Rempel, John Thornton, Daniel Roy, Tudor G Jovin, Robert A Willinsky, Biggya L
Sapkota, et al. Randomized assessment of rapid endovascular treatment of ischemic
stroke. New England Journal of Medicine, 372(11):1019–1030, 2015.

[24] Marc Fisher and Myron Ginsberg. Current concepts of the ischemic penumbra:
introduction. Stroke, 35(11_suppl_1):2657–2658, 2004.

[25] European Stroke Organisation (ESO) Executive Committee, ESO Writing Commit-
tee, et al. Guidelines for management of ischaemic stroke and transient ischaemic
attack 2008. Cerebrovascular diseases, 25(5):457–507, 2008.

[26] Avinash C Kak, Malcolm Slaney, and Ge Wang. Principles of computerized tomo-
graphic imaging. Medical Physics, 29(1):107–107, 2002.

[27] David J Brenner and Eric J Hall. Computed tomography an increasing source of
radiation exposure. New England Journal of Medicine, 357(22):2277–2284, 2007.

[28] American College of Radiology et al. Acr–asnr–spr practice parameter for the
performance of computed tomography (ct) of the extracranial head and neck, 2016.

[29] M Wintermark and MH Lev. Fda investigates the safety of brain perfusion ct, 2010.

[30] Andrew Bivard, Neil Spratt, Christopher R Levi, and Mark W Parsons. Acute stroke
thrombolysis: time to dispense with the clock and move to tissue-based decision
making? Expert review of cardiovascular therapy, 9(4):451–461, 2011.

[31] Lois Romans. Computed Tomography for Technologists: A comprehensive text.
Lippincott Williams & Wilkins, 2018.

[32] Tomasz Hachaj and Marek R Ogiela. Cad system for automatic analysis of ct
perfusion maps. Opto-Electronics Review, 19(1):95–103, 2011.

[33] Max Wintermark, Marc Reichhart, Jean-Philippe Thiran, Philippe Maeder, Marc
Chalaron, Pierre Schnyder, Julien Bogousslavsky, and Reto Meuli. Prognostic
accuracy of cerebral blood flow measurement by perfusion computed tomography, at
the time of emergency room admission, in acute stroke patients. Annals of Neurology:
Official Journal of the American Neurological Association and the Child Neurology
Society, 51(4):417–432, 2002.

[34] Self-Learning Packet. Overview of adult traumatic brain injuries. Orlando Regional
Healthcare, Education & Development, Orlando, FL, 2004.

[35] Niranjan Khandelwal. Ct perfusion in acute stroke. The Indian journal of radiology
& imaging, 18(4):281, 2008.

Bibliography BIBLIOGRAPHY

[36] Dominik Deniffel, Timothé Boutelier, Aissam Labani, Mickael Ohana, Daniela
Pfeiffer, and Catherine Roy. Computed tomography perfusion measurements in renal
lesions obtained by bayesian estimation, advanced singular-value decomposition
deconvolution, maximum slope, and patlak models: Intermodel agreement and
diagnostic accuracy of tumor classification. Investigative radiology, 53(8):477–485,
2018.

[37] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[38] Jim X Chen. The evolution of computing: Alphago. Computing in Science &
Engineering, 18(4):4, 2016.

[39] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[40] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[41] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified ap-
proach to combinatorial optimization, Monte-Carlo simulation and machine learning.
Springer Science & Business Media, 2013.

[42] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolu-
tional neural networks for volumetric medical image segmentation. In 2016 Fourth
International Conference on 3D Vision (3DV), pages 565–571. IEEE, 2016.

[43] Alex P Zijdenbos, Benoit M Dawant, Richard A Margolin, and Andrew C Palmer.
Morphometric analysis of white matter lesions in mr images: method and validation.
IEEE transactions on medical imaging, 13(4):716–724, 1994.

[44] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436, 2015.

[45] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning repre-
sentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[46] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in neural
information processing systems, pages 693–701, 2011.

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Bibliography 159

[48] Geoffrey E Hinton, Terrence Joseph Sejnowski, and Tomaso A Poggio. Unsupervised
learning: foundations of neural computation. MIT press, 1999.

[49] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[50] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning
hierarchical features for scene labeling. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1915–1929, 2013.

[51] A Krizhevsky, I Sutskever, and G Hinton. //proc. advances in neural inform. Proces.
Systems. 2012. V. 25., 25:1090, 2012.

[52] Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhuvana Ramab-
hadran. Deep convolutional neural networks for lvcsr. In 2013 IEEE international
conference on acoustics, speech and signal processing, pages 8614–8618. IEEE, 2013.

[53] Michael KK Leung, Hui Yuan Xiong, Leo J Lee, and Brendan J Frey. Deep learning
of the tissue-regulated splicing code. Bioinformatics, 30(12):i121–i129, 2014.

[54] Hui Y Xiong, Babak Alipanahi, Leo J Lee, Hannes Bretschneider, Daniele Merico,
Ryan KC Yuen, Yimin Hua, Serge Gueroussov, Hamed S Najafabadi, Timothy R
Hughes, et al. The human splicing code reveals new insights into the genetic
determinants of disease. Science, 347(6218):1254806, 2015.

[55] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

[56] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[57] CS231n Convolutional Neural Networks for Visual Recognition. http://cs231n.

github.io/, 2019. [Online].

[58] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv preprint arXiv:1603.07285, 2016.

[59] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[60] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

http://cs231n.github.io/
http://cs231n.github.io/

Bibliography BIBLIOGRAPHY

[61] Mu Zhu. Recall, precision and average precision. Department of Statistics and
Actuarial Science, University of Waterloo, Waterloo, 2:30, 2004.

[62] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, 1995.

[63] Eivind Hovland. Feature extraction for exploring infarcted regions in perfusion ct
images of the brain. Master’s thesis, University of Stavanger, Norway, 2018.

[64] DICOM Standard. https://www.dicomstandard.org/, 2019. [Online].

[65] Mario Mustra, Kresimir Delac, and Mislav Grgic. Overview of the dicom standard.
In 2008 50th International Symposium ELMAR, volume 1, pages 39–44. IEEE, 2008.

[66] Sigurd Myklebust. Cerebral vessel segmentation in contrast ct images. Master’s
thesis, University of Stavanger, Norway, 2018.

[67] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM computing
surveys (CSUR), 24(4):325–376, 1992.

[68] Sudipta Roy, Sanjay Nag, Indra Kanta Maitra, and Samir Kumar Bandyopadhyay.
Artefact removal and skull elimination from mri of brain image. International
Journal of Scientific and Engineering Research, 4(6):163–170, 2013.

[69] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville,
Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor
segmentation with deep neural networks. Medical image analysis, 35:18–31, 2017.

[70] Xiaomei Zhao, Yihong Wu, Guidong Song, Zhenye Li, Yazhuo Zhang, and Yong
Fan. A deep learning model integrating fcnns and crfs for brain tumor segmentation.
Medical image analysis, 43:98–111, 2018.

[71] Konstantinos Kamnitsas, Christian Ledig, Virginia FJ Newcombe, Joanna P Simpson,
Andrew D Kane, David K Menon, Daniel Rueckert, and Ben Glocker. Efficient
multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation.
Medical image analysis, 36:61–78, 2017.

[72] Bora Erden, Noah Gamboa, and Sam Wood. 3d convolutional neural network for
brain tumor segmentation, 2018.

[73] Adrien Payan and Giovanni Montana. Predicting alzheimer’s disease: a neuroimaging
study with 3d convolutional neural networks. arXiv preprint arXiv:1502.02506,
2015.

https://www.dicomstandard.org/

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Outline

	2 Background
	2.1 Medical Background
	2.1.1 Hemorrhagic Stroke
	2.1.2 Ischemic Stroke
	2.1.3 Computed Tomography Perfusion
	2.1.4 Parametric Maps derived from CTP

	2.2 Technical Background
	2.2.1 Linear Regression
	2.2.2 Neural Network
	2.2.3 Deep Learning
	2.2.4 Deep Neural Networks
	2.2.5 Convolutional Neuron Network
	2.2.6 Layers of CNN
	2.2.7 U-Net
	2.2.8 Statistical Information
	2.2.9 Statistical Metrics
	2.2.10 K-Fold Cross-Validation

	3 Dataset & Image pre-processing
	3.1 Dataset
	3.1.1 DICOM Standard
	3.1.2 General Overview of the Dataset
	3.1.3 Annotated Regions

	3.2 Image pre-processing
	3.2.1 Rearrange Images
	3.2.2 Register Images
	3.2.3 Skull Removal

	3.3 Contributions to the pre-processing steps
	3.3.1 Contrast Enhancement
	3.3.2 Extract Annotated Regions
	3.3.3 Limitation of the dataset

	4 Tile Classification Approach
	4.1 Introduction
	4.1.1 Existing Approaches/Baselines

	4.2 Post-processing
	4.3 Proposed Architectures
	4.3.1 Architecture 1
	4.3.2 Architecture 2
	4.3.3 Architecture 3

	4.4 Experimental Setup and Dataset
	4.5 Analysis of results for a single test patient
	4.5.1 Partial results for patient 2 with Architecture 1
	4.5.2 Partial results for patient 2 with Architecture 2
	4.5.3 Partial results for patient 2 with Architecture 3

	4.6 Experimental Results
	4.6.1 Accuracy & Standard Deviation
	4.6.2 Experimental Evaluation

	5 Pixel by Pixel Segmentation Approach
	5.1 Introduction
	5.2 Existing Approaches/Baselines
	5.3 Analysis
	5.4 Proposed Architecture
	5.5 Experimental Setup and Data Set
	5.6 Post-processing
	5.7 Experimental Results
	5.7.1 Visualization Results
	5.7.2 Accuracy Results

	6 Results & Future Works
	6.1 Results & Discussion
	6.1.1 Aggregate Confusion Matrices for Architecture 1
	6.1.2 Aggregate Confusion Matrices for Architecture 2
	6.1.3 Aggregate Confusion Matrices for Architecture 3
	6.1.4 Aggregate Results for Architecture 4
	6.1.5 Overall Results

	6.2 Future Works

	7 Conclusion
	List of Figures
	List of Tables
	A Results for Tile Classification Approach
	A.1 Results for architecture 1
	A.1.1 Patient 2
	A.1.2 Patient 3
	A.1.3 Patient 4
	A.1.4 Patient 5
	A.1.5 Patient 6
	A.1.6 Patient 7
	A.1.7 Patient 8
	A.1.8 Patient 9
	A.1.9 Patient 10
	A.1.10 Patient 11

	A.2 Results for architecture 2
	A.2.1 Patient 2
	A.2.2 Patient 3
	A.2.3 Patient 4
	A.2.4 Patient 5
	A.2.5 Patient 6
	A.2.6 Patient 7
	A.2.7 Patient 8
	A.2.8 Patient 9
	A.2.9 Patient 10
	A.2.10 Patient 11

	A.3 Results for architecture 3
	A.3.1 Patient 2
	A.3.2 Patient 3
	A.3.3 Patient 4
	A.3.4 Patient 5
	A.3.5 Patient 6
	A.3.6 Patient 7
	A.3.7 Patient 8
	A.3.8 Patient 9
	A.3.9 Patient 10
	A.3.10 Patient 11

	B Results for Pixel by Pixel Segmentation Approach
	B.1 Results for U-net
	B.1.1 Patient 2
	B.1.2 Patient 3
	B.1.3 Patient 4
	B.1.4 Patient 5
	B.1.5 Patient 6
	B.1.6 Patient 7
	B.1.7 Patient 8
	B.1.8 Patient 9
	B.1.9 Patient 10
	B.1.10 Patient 11

	C Thesis Code
	Bibliography

