

Title page for Master's Thesis

Faculty of Science and Technology

 FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:

Computer Science

 Spring semester, 2019

Open

Author:

Fabian Legland Boe

…………………………………………

(signature of author)

Programme coordinator: Morten Mossige

Supervisor(s): Morten Mossige

Title of master's thesis:

Real-time graph visualization in a single-page application

Credits: 30

Keywords:

Graph theory, Graphviz, Angular,

TypeScript, Single-page application,

WebSocket, RPC

Number of pages: 38

 + supplemental material/other: 1

Stavanger, 14/06/2019

Real-time graph visualization in a single-page application

Fabian Legland Boe

June 2019

Acknowledgements

I would like to thanks my supervisor, Morten Mossige, for his swift and detailed guidance. I would

also like to thank Tore Fuglestad from ABB for detailed descriptions regarding communication on

this project. Their thoughts and feedback have been critical for this project.

Abstract

In this project a single-page application for visualizing factory data was created. The application uses

Graphviz to draw graphs. It keeps the graph updated by fetching data from a server using WebSock-

ets and RPC. The graph is easily traversed on mobile and desktop platforms with intuitive controls.

The application compiles to regular HTML, CSS and JavaScript for a platform-independent solution.

The paper explains the inner workings of the graph drawing algorithm. It also presents an im-

plementation of the single-page application and a presentation of the tools used. A performance

evaluation is also presented.

1

Contents

1 Introduction 4

2 Graph Theory 6

2.1 Introduction . 6

2.2 Rank assignment . 8

2.2.1 Breaking Cycles . 9

2.2.2 Network Simplex . 9

2.3 Ordering nodes within ranks . 12

2.4 Positioning nodes . 15

2.5 Drawing splines . 17

2.5.1 Finding the polynomial area . 18

2.5.2 Drawing splines . 18

3 Application framework and communication protocols 21

3.1 Angular web framework . 21

3.1.1 Components . 21

3.1.2 Services . 22

3.2 WebSockets . 22

3.3 RPC . 23

4 Method(s) and Design 25

4.1 Introduction . 25

4.2 Initialization Phase . 25

4.3 Main Phase . 28

4.4 Formatting graph data . 30

4.5 Server communication . 32

4.6 Running the project . 33

5 Results 34

5.1 User interface . 34

5.2 Performance metrics . 35

5.3 Discussion . 36

2

6 Conclusion and further work 37

7 References 38

3

Chapter 1

Introduction

The purpose of this project is to replace the current factory visualization software for ABB. The

system monitors the status of sensors and alarms, represented as a directed graph. The information

is fetched from a server and drawn as a static image. The solution is outdated and has several issues.

It contains redundant intermediate steps, making it badly optimized. Since the output is displayed

as a still image, the information is quickly outdated. In order to receive updated information, the

whole system needs to be refreshed. This creates a lot of overhead and requires manual intervention

each time. The solution also has restricted platform support, working solely on Windows systems.

This project intends to solve the aforementioned issues. It is made as an Angular application,

which supports all modern platforms by using HTML, CSS and JavaScript. Angular has a modular

workflow, making it easier to add and modify parts of solution to accommodate future changes. The

project uses WebSocket communication which is fast and reliant, even with high traffic. WebSockets

are especially well suited for recurring traffic on the same connection. The graph is drawn once

using Graphviz, the same software used in the current solution. Next, the project subscribes to data

changes from the Server. As new updated data is received, the relevant parts of the graph is updated.

The resulting product is a fast, modular, real-time and platform-independent solution.

Outline:

Chapter 2 Graph Theory: Provides an in-depth look at how Graphviz draws directed graphs.

The chapter is divided into an introduction and the four passes for the algorithm used by Graphviz.

The first pass (2.2) assigns the graph nodes into different hierarchical layers. The second pass (2.3)

sets the ordering withing those layers. The third pass (2.4) finds the actual Cartesian coordinates

of each node. The final pass (2.5) draws the edges between nodes.

Chapter 3 Application framework and communication protocols: Introduces the theory

behind the other tools used in the project. This includes a section on the Angular Framework (3.1),

4

explaining the different parts of an Angular single-page application. This chapter also describes the

theory behind the communications used in this project. That includes WebSockets (3.2) and RPC

(3.3) protocols.

Chapter 4 Methods and Design: Provides an overview of the different phases of the application.

The introduction phase (4.2) draws the graph and subscribes to graph data changes. The main phase

(4.3) handles changes received from the server, and updates the graph with these values. The rest

of the chapter explains the implementation of server data formatting (4.4) and communication (4.5).

Chapter 5 Results and Discussion: Provides a look at the application from a users perspective

(5.1), as well as different performance measurements (5.2). The last section discusses the impact of

the results and other factors (5.3).

Chapter 6 Conclusion: Concludes the project and suggests further work.

5

Chapter 2

Graph Theory

2.1 Introduction

This project uses a JavaScript wrapper for the GraphViz software in order to draw graphs. GraphViz

uses several tools that are specialized for different graph layouts. Circo is used for circular graphs,

neato is preferred for smaller, unknown networks[2]. For hierarchical directed graphs, GraphViz uses

dot language. The data for this project fits this description. Chapter 2 explains each step of the dot

algorithm in depth. This chapter is based on the paper A Technique for Drawing Directed Graphs

[7] which explains the inner workings of the dot algorithm in detail.

The algorithm tries to create graphs that are similar to handmade ones. Handmade graphs usually

have an overall direction and convey the information clearly. The dot paper defines several aesthetic

principles for drawing graphs that achieve this. These are defined as follows:

• ”A1: Expose hierarchical structure in the graph. In particular, aim edges in the same general

direction if possible. This aids finding directed paths and highlights source and sink nodes.

• ”A2: Avoid visual anomalies that do not convey information about the underlying graph. For

example, avoid edge crossings and sharp bends.

• ”A3: Keep edges short. This makes it easier to find related nodes and contributes to A2.

• ”A4: Favor symmetry and balance. This aesthetic has a secondary role in a few places in our

algorithm.”

The algorithm tries to follow these principles. Unfortunately it is impossible to consistently uphold

all principles. It therefore tries to do best in the most common situations.

The algorithm separates the problem into four separate passes, each handling their own specific

problem. The output of one pass is the input for the next pass. The passes are as follows:

1. Optimal rank assignment (section 2.2)

2. Ordering nodes within ranks (section 2.3)

6

3. Optimal position of nodes (section 2.4)

4. Drawing edges as splines (section 2.5)

First pass sorts all nodes into ranks (see figure 2.1). Ranks are non-negative integers correlating to

the hierarchical position of nodes within the graph. In a top-down flowing graph, ranks corresponds

to the y direction. This means ranks go from source nodes at the top (rank 0) to sink nodes at the

bottom (max rank). This paper assumes a top-down flow of graphs, and will refer to directions this

way.

Second pass computes the order of nodes within each rank (see figure 2.1). This helps prevent

edge crossings, following principle A2.

Third pass computes the actual position of the nodes. Output from the previous passes are used

to calculate this properly. Node positions that results in shorter edges are prioritized which follows

principle A3.

Forth pass draws edges between nodes using splines. It tries to follow principle A2 and A4 by

avoid edge crossing, sharp bends and keep edges in the same direction parallel.

Figure 2.1: Example graph showing rank assignment and ordering within ranks

7

Graphs contain definitions and attributes as shown below:

G(V,E) The graph. Defined with a set of vertices and a set

of edges.

e(v, w) An edge e ∈ E going from v to w. v and w are

called the tail and head node, respectively.

v(x, y) Center point of the bounding box of v ∈ V .

δ(e) Minimum edge length, usually 1.

λ(v) Rank of vector v.

l(e) length of e(v, w). Defined as the |λ(w)− λ(v)|,

subject to l(e) ≤ δ(e).

xsize(v), ysize(v) Size of the bounding box defining the borders of

node v in x and y direction.

nodesep(G) Minimum horizontal spacing between nodes on the

same rank.

ranksep(G) Minimum vertical spacing between nodes on the

different ranks.

ω(e) Weight of the edge e. It defines how important it is

to keep edge e short and straight.

S Contains sets of nodes. S = Smin, Smax, S0, ..., Sk.

Nodes in the same set are kept at the same rank.

Virtual nodes and edges Temporary entities assisting the calculations in the

passes without being present in the final drawing.

The dot algorithm receives a string as an input. That string contains G(V,E), e(v, w), δ(e),

nodesep(G), ranksep(G), w(e) and S. The rest of the data is computed in the passes.

2.2 Rank assignment

The first pass computes a rank λ(v) for all v ∈ V . Ranks are assigned by breaking cycles in the

graph (2.2.1), then using a network simplex algorithm to find the ranks (2.2.2).

Each set of nodes in S are treated as a single node. This makes sure all nodes in a set are given the

same rank. Nodes in set Smin and Smax are assigned rank 0 and max rank, respectively. Sets do

not exclusively hold a rank as other nodes may receive that same rank as well. This pass treats all

edges with the same head and tail node as a single edge, assigning the merged edge the sum of all

the edge weights. This pass also ignores loops1 as well as leaf nodes not in sets.

1Edges where the tail and head node are the same. Also called self-edges.

8

2.2.1 Breaking Cycles

Before assigning ranks, the graph must become acyclic by reversing certain edges. A spanning tree

is created using Depth-first search. This returns a list of tree edges and non-tree edges. All non-tree

edges are then classified into three types[4]: Forward, back and cross edges.

By looping through all non-trivial strongly connected components we can find the back edge that

forms the most cycles. This edge is then reversed. This is repeated until there are no more compo-

nents. This process reverses all the necessary edges while affecting the end result as little as possible.

Note that the edges are only reversed for this pass. Algorithm 1 illustrates how the process works.

Algorithm 1 break cycles

1: tree edges, nontree edges = dfs();

2: classify edges(nontree edges);

3: while components = find strongly connected components() do

4: for c in components do

5: e = most cyclic edge(c.back edges);

6: e.reverse();

7: end for

8: end while

This algorithm does not guarantee that Smin and Smax are placed at the lowest and highest rank,

respectively. To enforce this, all edges going to Smin are reversed and all nodes lacking an in-edge

gets a virtual one from Smin. This makes sure that Smin is the oldest ancestor which will give it

the lowest rank when ranks are assigned. The opposite is true for Smax. All edges going from Smax

are reversed and all leaf/sink nodes are given a virtual edge going to Smax. This makes sure that

λ(Smin) ≤ λ(v) ≤ λ(Smax), for any node v not in Smin or Smax.

2.2.2 Network Simplex

After reversing edges, the graph is now ready for rank assignment. An optimal rank is defined as

having a minimum weighted edge length sum, defined by this equation:

min
∑
e∈E

ω(e)l(e)

Subject to : l(e) ≥ δ(e) ∀ e ∈ E
(2.1)

Equation 2.1 says to minimize the sum of all edge values where the value is defined as the edge

length times the edge weight. This follows principle A3 in terms of keeping edges short, while also

prioritizes weighted edges. Note that no edge can be shorter than the minimum edge length δ.

Equation 2.1, with it’s minimization and restriction is an example of a integer program. This

can be solved as a min-cost flow problem or solving it as a linear program [8]. However, the dot

algorithm solves it using the network simplex algorithm.

9

The network simplex method involves two parts, the first part is finding an initial feasible tree.

The second part involves iteratively assigning new ranks until we reach an optimal ranking. A tree

is feasible when l(e) = δ(e) ∀ e ∈ E. These edges are referred to as tight edges. A tight edge can be

more precisely defined as an edge with no slack where slack is defined as l(e)− δ(e).

To make a feasible tree. first assign each node an initial rank, giving higher rank to nodes with

more in-edges. Then create a maximal tree containing only tight edges. Then find the closest non-

tree edge, adjust the whole tree until the edge is tight, then create a new maximal tree. Repeat

until all nodes are included. The result is a tight spanning tree. The final step involves computing

cut values for all edges which is explained after algorithm 2.

Algorithm 2 feasible tree

1: init rank();

2: while tight tree() < |V| do

3: e = a non-tree edge incident on the tree with a minimal amount of slack;

4: delta = slack(e);

5: if incident node is e.head then delta = -delta;

6: for v in Tree do v.rank = v.rank + delta;

7: end while

8: init cutvalues();

Algorithm 2 explained:

init rank: Nodes are sorted in ascending order based on the number of in-edges. Every

collection of nodes with an equal amount of in-edges are given the next available

rank. For example, if the collection of in-edges are as follows: [0, 0, 2, 3, 3, 5]

then ranking will be set like so: [0, 0, 1, 2, 2, 3].

tight tree: Creates a maximal tree with only tight edges, then returns the number of nodes.

2-7: Finds an edge not present in the tight tree with minimal amount of slack. All

node ranks in the tight tree are then adjusted to make this new edge tight.

Since the whole tree is adjusted, no tightness is lost. The node is added to the

tight tree in the next iteration. When the tight tree covers all nodes in the

graph, the loop exits.

init cutvalues: Computes cut values for all edges.

Computing cut values are done individually for every edge in the spanning tree. When calculating

the cut value of an edge, the edge is temporarily removed. This creates two strongly connected com-

ponents A and B. If the cut edge is directed from A to B, we refer to A as the tail component and B

as the head component. The original graph has potentially several edges between the components,

in either direction. These non-tree edges and the cut edge, are used in computing the cut value.

The cut value is the summed edge weight of all these connecting edges, with a negative signed value

for edges going to the tail component.

10

A negative cut value indicates that the weighted edge length sum (equation 2.1) can be reduced

by exchanging the cut edge for a non-tree edge. This means the ranking in the feasible tree is not

an optimal solution. Replacing an edge that has a negative cut value improves it’s cut value and

the solution is closer to optimal. When no more negative cut values can be found, the solution is

optimal and correct rank values can be calculated.

Figure 2.2: Example of a cut value calculation

Figure 2.2 illustrates the cut calculation. The left image shows a spanning tree with only tight

edges. Dotted edges are non-tree nodes. Right image shows the strongly connected components if

the edge (g, h) is cut. The tail component contains node g and the head component contains all

the other nodes. The edges connecting the components are the cut edge, going from tail to head

component, as well as edges (e, g) and (f, g), going from head to tail component. The cut value

for (g, h) = ω(g, h) − ω(e, g) − ω(f, g). Since (e, g) and (f, g) are going from the head to the tail

component, they get a negative value. If all edge weights were 1, the cut value of edge (g, h) would

therefore be -1. The edge (g, h) will be exchange for either (e, g) or (f, g).

After creating a feasible tree, we replace negative cut edges until the solution is optimal. This

process is shown in algorithm 3.

11

Algorithm 3 rank

1: feasible tree();

2: while (e = leave edge()) 6= nil do

3: f = enter edge(e);

4: exchange(e,f);

5: end while

6: normalize();

7: balance();

Algorithm 3 explained:

feasible tree: See algorithm 2.

leave edge: Finds an edge with negative cut value. If no edge is found, the spanning tree

has an optimal structure.

enter edge: finds a non-tree edge to replace the cut edge with. The edge from the head to

the tail component with the least amount of slack is selected. This function is

similar to line 3 in algorithm 2.

exchange: Exchanges the cut edge with the newly found replacement. The spanning tree

ranks are then updated and new cut values are computed.

normalize: Normalizes the ranks so that zero is the lowest value.

balance: Some nodes are not very reliant on their given rank. They may have several

ranks that are feasible, or their number of in-edges and out-edges are equal.

These nodes can be moved freely while still keeping an optimal solution. The

nodes are moved to other less crowded ranks if available (with a greedy ap-

proach). This helps avoid clustering of nodes and keep a good aspect ratio

which follows principle A4. The result is an optimal ranking for the input

graph.

2.3 Ordering nodes within ranks

This pass defines the order of nodes within the same rank. Proper ordering is important to avoid

edge crossing, which follows principle A2. Ordering is done by first creating an initial order within

each rank, then adjusting the ordering of each rank. The ranks are iterated in ascending order,

giving each node a weight based on the position of it’s incident2 nodes in the previous rank. The

nodes are then given a new position based on the sorting of the weights.

Before ordering nodes, some preparatory steps are taken. Self-edges are ignored and multi-edges are

merged into one edge, similar to the last pass. When ranks were assigned, some nodes were moved

while balancing. This potentially created non-tight edges. These edges are replaced with chains of

virtual nodes and edges. These virtual edges are one rank long so that the graph is now tight.

2Nodes that are connected directly to the given node by an edge.

12

The nodes are given weights based on the median function[5]. The function computes the weight of

a node v, using the list of incident nodes P . The list contains the index position of incident nodes

on the previous rank. Note that since iteration is done in ascending order, nodes in P are always

the parent nodes of v. The weighted value is computed as the median value of the indices in P . If

the list contains an even number of values, their will be two median values in the list. In that case,

either the left or right value is chosen consistently throughout the calculations.

This pass uses an extended version of the median function. When two median values are present,

the algorithm is biased towards the side where incident nodes are more densely placed. To further

improve positions, a separate check for crossings is computed after the median function has com-

puted all node positions.

Algorithm 4 ordering

1: order = init order();

2: best = order;

3: for i = 0 to Max iterations do

4: wmedian(order,i);

5: transpose(order);

6: if crossing(order) < crossing(best) then best = order;

7: end for

8: return best;

Algorithm 4 explained:

init order: traverses the tree using DFS or BFS. As nodes are traversed, they are added

to the next position of their rank from left to right. The result contains no

crossings.

Max Iterations: Integer value, default is 24.

3-8: A new solution is calculated using the weighted median function. transpose

further transposes the position of nodes if possible. if the solution has fewer

crossings than the current best solution, it replaces that solution. After looping,

the best solution is returned.

Algorithm 5 wmedian

Input: order, iter

1: if iter mod 2 == 0 then

2: for r = 1 to Max rank do

3: for v in order[r] do median[v] = median value(v,r-1);

4: sort(order[r],median);

5: end for

6: end if

13

Algorithm 6 median value

Input: v, adj rank

1: P = adj position(v,adj rank);

2: m = |P|/2;

3: if |P| = 0 then

4: return -1.0;

5: elseif |P| mod 2 == 1 then

6: return P[m];

7: elseif |P| = 2 then

8: return (P[0] + P[1])/2;

9: else

10: left = P[m-1] - P[0];

11: right = P[|P|-1] - P[m];

12: return (P[m-1]*right + P[m]*left)/(left+right);

13: end if

Algorithm 5 and 6 explained:

wmedian: Ascends iteratively trough the ranks. At each rank, every node is assigned a

new weight based on the incident nodes in the previous rank. The nodes at

each rank is then sorted based on their weights. Nodes without incident nodes

in the previous rank stays at their old position.

median value: Returns the median value if the list of incident node position has an odd length.

If not, it interpolates the two median values, favouring the side more dense with

nodes. If no incident nodes are found, -1 is returned as the median value. The

sort function in wmedian handles these values as mentioned in it’s description.

14

Algorithm 7 transpose

Input: rank

1: improved = true;

2: while improved do

3: improved = false;

4: for r = 0 to Max rank do

5: for i = 0 to |rank[r]|-2 do

6: v = rank[r][i];

7: w = rank[r][i+1];

8: if crossing(v,w) > crossing(w,v) then

9: improved = true;

10: exchange(rank[r][i],rank[r][i+1]);

11: end if

12: end for

13: end for

14: end while

Algorithm 7 explained:

2-14: The while loop runs as long as there are improvements. If a iteration does not

result in an improvement, the function terminates. The for loops makes sure

the function runs through every possible node. When at a node, the node and

it’s next neighbour is swapped if this results in less crossings.

Edges between nodes at the same rank, referred to as flat edges, should point perpendicular to

the direction of ranks in regards to principle A1. If there are flat edges in the graph, the initial

order, sort and transpose algorithms try to keep nodes next to each other if they are incident to a

flat edge.

2.4 Positioning nodes

This pass finds the coordinates of each node, including virtual nodes from the previous step. The

X and Y coordinates are computed separately. X coordinates are calculated based on order within

ranks. Y coordinates are calculated based on rank and ranksep(G). Nodes on the same rank are

given the same Y coordinate. This process is so simple, the Y coordinate is not explained in this pass.

An optimal node placement upholds the following equation:

min
∑

e(v,w)∈E

Ω(e)ω(e)|xw − xv|

Subject to : xb − xa ≥ ρ(a, b)

(2.2)

15

xa and xb are the X coordinates of two nodes on the same rank. The nodes are next to each other

with a on the left side of b. ρ(a, b) defines the minimum space between the center of two nodes based

on the horizontal size of the nodes as well as nodesep(G).

Edges between nodes on the same rank are trivial to keep horizontal. the edge is usually a simple

straight line. Therefore virtual nodes between ranks are more important to keep straight and short.

Edges are therefore separated into three types: between real nodes, from real node to virtual node,

between virtual nodes. Ω(e) returns different values depending on the three types. Values defaults

to 1, 2 and 8, respectively. This makes sure virtual edges are prioritized when minimizing.

The main algorithm for this pass is similar to the previous pass in that it tries to find an initial

solution, then iteratively improves it:

Algorithm 8 xcoordinate

1: xcoord = init xcoord();

2: xbest = xcoord;

3: for i = 0 to Max iterations do

4: medianpos(i,xcoord);

5: minedge(i,xcoord);

6: minnode(i,xcoord);

7: minpath(i,xcoord);

8: packcut(i,xcoord);

9: if xlength(xcoord) < xlength(xbest) then xbest = xcoord;

10: end for

11: return xbest;

16

Algorithm 8 explained:

init xcoord: Initializes all node positions as tightly packed to the left as possible while still

maintaining xb − xa ≥ ρ(a, b).

medianpos: Assigns node coordinates based on the median position of it’s child nodes. This

works by queueing all nodes on a given rank. The queue order is decided by

prioritizing nodes. Nodes with a higher weighted sum of out-edges get higher

priority in the queue. Nodes are then dequeued in prioritized order. Dequeued

nodes are placed on the median of it’s child node positions. If there are two

median positions, the average is taken. This creates symmetry and follows

principle A4. if the median position is unavailable due to nodesep(G) or higher

priority nodes already placed, the position is adjusted but stays as close to the

median as possible.

minedge: Functions the same way as medianpos, but only for edges between two non-

virtual nodes [6].

minnode: Moves nodes to the median of all it’s parent and children.

minpath: Straightens virtual node chains, making them more vertically aligned.

packcut: Tries to compact ranks by removing unnecessary spacing. The precision is

improved by using the network simplex algorithm in chapter 2.2.2 with X

coordinates instead of ranks. This method uses an auxiliary graph which allows

for offsetting the endpoint of edges in the x direction.

xlength: Uses the minimize function (equation 2.2) to check whether the new solution

is an improvement.

2.5 Drawing splines

This step draws the edges between nodes. The edges are drawn using splines from piecewise bezier

curves. Splines create smooth curves with follows principle A2. The algorithm is split into two parts.

The first part finds the greatest polynomial area where the spline can be drawn without colliding

with other nodes and splines. The second part draws the spline. Virtual nodes are then resized to

fit the splines bounding boxes.

The area is defined using a set of connected boxes B0, ..., Bi. The boxes are defined by two lines in

the X direction and two lines in the Y direction, meaning the box edges line up with the coordinate

axes. All boxes have at least one edge overlapping with another box so that there are no gaps

between the boxes. The first box has a point q and the last box has a point r. These points define

the start and end positions of the spline, respectively. Optionally, one can define θq and θr as the

spline slope at point q and r.

Control points define the spline’s path. The positioning of these points are critical for making

the spline move from q to r without leaving the area defined by the boxes. Boxes BB0, ..., BBi are

17

also created, defining the smallest boxes still containing the splines path. These boxes are referred to

as the splines bounding boxes. The spline bounding boxes are used when calculating the polynomial

area of new splines to avoid collisions, if possible.

2.5.1 Finding the polynomial area

Edges are classified into three types: Edges between ranks, flat edges and self-edges.

The most frequent type is the edges between ranks. When defining the area for these splines,

virtual nodes are ignored to give the spline as much space as possible. If the area finding algorithm

encounters a long vertical section, it stops and draws a straight line for that section. This especially

looks better when several edges are almost vertical as this keeps them parallel by simply offsetting

one of the splines. Multi-edges are given areas that keeps them identical but slightly offset in the X

direction.

Flat edges are treated similar to edges between ranks. Multi-edges are treated the same, except

the offset is in the Y direction since these edges are mostly horizontal.

Lastly there’s the self-edges. If an input or output position is specified, a polynomial area is gener-

ated and a spline is placed clockwise or counter-clockwise depending on the positions. If no position

is specified, a simple loop from two splines is used. Mutli-edges are drawn with a slight radial offset.

2.5.2 Drawing splines

To draw a spline, a piecewise linear path is created. This is simply a collection of straight lines

connected to each other, defining a path. The points on this path is used to make a piecewise bezier

curve. A bezier curve is a curved path made from linearly interpolating between several points,

called control points. Finally, the BBi boxes are calculated for the spline. This makes sure the next

spline tries to avoid colliding with this one. To reduce collisions, shorter splines are drawn first. The

algorithm for drawing splines are as follows:

Algorithm 9 compute splines

Input: B array, q, theta q, use theta q, r, theta r, use theta r

1: compute L array (B array);

2: compute p array (B array, L array, q, r);

3: if use theta q then vector q = anglevector(theta q)

4: else vector q = zero vector;

5: if use theta r then vector r = anglevector(theta r)

6: else vector r = zero vector;

7: compute s array (B array, L array, p array, vector q, vector r);

8: compute bboxes ();

18

Algorithm 9 explained:

compute L array: All boxes in the B array have a side shared with another box. This

function finds those lines.

compute p array: Creates an array of the points for the piecewise linear path (see algorithm

10). Uses the divide-and-conquer approach.

3-6: If either use theta q or use theta r is true, angle the vector from the

respective point by theta q or theta r.

compute s array: Generates an array of spline control points (see algorithm 11). Uses the

divide-and-conquer approach.

compute bboxes: Generates the BB i array defining boundary boxes of the space used by

the spline.

Algorithm 10 compute p array

Input: B array, L array, q, r

1: if line fits (B array, L array, q, r) then return;

2: p = compute linesplit (B array, L array);

3: addto p array (p);

4: compute p array (B array1, L array1, q, p);

5: compute p array (B array2, L array2, p, r);

Algorithm 10 explained:

line fits: Checks if a line from q to r stays within the polynomial area and only in-

tersects with the L segments of the boxes. Detection is done by sampling

along the line.

compute linesplit: Finds the L segment furthest away from the line and splits the L array

and B array at that segment into two arrays each. The function returns

a point p. Point p is the end point of the segmented line closest to the

q-r line.

3-5: Point p is then added to the list of points and a recursive call for each

split part is called.

19

Algorithm 11 compute s array

Input: B array, L array, p array, vector q, vector r

1: spline = generate spline (p array, vector q, vector r);

2: if size (p array) == 2 then

3: while spline fits (spline, B array, L array) == false do

4: straighten spline (spline);

5: elseif spline fits (spline, B array, L array) == false then

6: count = 0;

7: ospline = spline;

8: while (fits == false) and (count ≤ max iterations);

9: spline = refine spline (p array, ospline, mode (count, max iterations));

10: fits = spline fits (spline, B array, L array);

11: count = count + 1;

12: endwhile

13: if fits == false then

14: p = compute splinesplit (spline, p array);

15: compute s array (B array1, L array1, p array1, vector q, vector p);

16: compute s array (B array2, L array2, p array2, reverse (vector p), vector r);

17: return;

18: endif ;

19: endif ;

20: addto s array (spline);

Algorithm 11 explained:

generate spline: generates a spline going from q to r using the p array.

spline fits: Checks if the spline is within the polynomial area. Similar to line fits.

straighten spline: reduces spline curvines by adjusting the control points.

refine spline: Similar to straighten spline but will also try to increase curvature. Mode

decides whether to increase or decrease curvature.

compute splinesplit: similar to compute linesplit.

compute s array: recursively calls the procedure again with the two split parts from com-

pute splinesplit.

The final pass is now complete and a graph is now displayed. For an overview on what the in-

put data for the algorithm looks like, see section 4.4.

20

Chapter 3

Application framework and

communication protocols

3.1 Angular web framework

Angular is a TypeScript-based web application framework managed by Google. All Angular ap-

plications are Single Page Applications (SPA). This means any implied redirecting between pages

is in reality just dynamic switching of content. What can be perceived as a redirect is referred

to as changing views in Angular. Since no page reloading takes place, load times are faster and

usage is more reminiscent of desktop applications. Each view is controlled by an Angular compo-

nent. Components are the middleman between views and the application logic. Angular services

are responsible for fetching data and are usually narrow, purpose specific scripts used by components.

This section explains these terms in more detail. The statements in this section is based on the

Angular documentation [1].

3.1.1 Components

A component functions as a controller for a view. A view is defined as a screen element that can be

modified by angular.

A component consists of a HTML, CSS and typescript file. The files define the visibility and

function of the component. Components also includes a spec.ts file. This file is used for running

unit tests on the typescript file.

The HTML template (as well as the CSS file) defines the look of the component, referred to as

a view. In addition to normal markup functionality, the template can contain angular specific code.

This code allows for if conditions, loops and variables. The code supports two-way communication

between the template and the typescript document using data-binding. This allows both the view

and the controller to share and manipulate shared data.

21

The typescript document defines a class containing the data and logic used by the component.

This file replaces most of of the functionality of a regular JavaScript document. It contains decora-

tors which provides metadata on how it should be used.

Components are initialized the same way as HTML elements. For instance, a component named

test would be initialized by using a <app-test></app-test> tag in the root component template.

This functionality allows components to be modular, reused and easy to implement.

3.1.2 Services

Services contain functionality that isn’t associated with a specific view. Services share data between

components. All services are singletons and are therefore not initializable. This allows for states to

be shared between components. They are often used for fetching data outside of the application,

like external servers and APIs. Services also contains certain special objects like Subjects. Angular

Subjects are objects that functions as queues with triggers. Adding data to the queue allows a

component who is listening to the Subject to react when new objects are added to the queue.

A service can be injected into a component. Injecting a service is how a component has access

to the functionality of the service.

3.2 WebSockets

This section introduces WebSockets and how it compares to the alternatives. To understand Web-

Sockets it helps to compare it to well a known protocol like HTTP.

HTTP is a stateless protocol. That means that even though several requests are sent over the

same connection, the server still treats them as separate requests. This is done to reduce overhead

which would otherwise be used to reestablish connections. Each HTTP request is therefore meant

to be intrinsically fulfilling.

HTTP requests and responses contain headers. They are used to provide metadata like authen-

tication, data type and length. Headers are always included in every request and response. In

HTTP, the client always specifies which actions the server should take. These actions (e.g. GET)

are specified in the header. Each request is given exactly one response by the server and no response

are sent without a request.

HTTP has certain advantages over WebSockets. These include automatic caching and load bal-

ancing [9].

WebSockets have certain properties that separates it from HTTP. The WebSocket protocol is a

22

full-duplex system. This means that both the client and server can communicate simultaneously.

WebSockets are an upgrade from HTTP. A WebSocket connection is established by first sending

a HTTP GET request where the client indicates a desire to upgrade the connection. All future

requests on this connection is sent using the WebSocket protocol and without the need of HTTP

headers. The protocol is standardised and easily implemented [9].

If a connection requires full-duplex functionality, WebSockets far outperform HTTP [9]. An ex-

ample of such a service is real-time messaging (e.g. group chats). Another example is video games

that requires fast and frequent data transfer (e.g. online shooters).

There are several alternatives to WebSocket functionality. Polling works by sending an AJAX

request every x seconds to the server. The delay between requests means that polling does not have

the same real-time benefits as WebSockets. It also polls even though the server has no updates.

Another form of Polling is called Long Polling. Here every AJAX request asks the server to keep

the connection open until new data is returned. As soon as the client receives a response, it sends

a new request. This makes sure data is returned in real-time.

The mentioned alternatives to WebSockets have the benefit of being compatible with all REST

APIs and HTTP-only servers.

3.3 RPC

Remote Procedure Call (RPC) is a communication protocol which can be described as an API [3].

It allows a client to directly call functions on the server as if it was a local machine. This essentially

means the client accesses the server functions directly from a remote location. Functions are called

with a method name and parameters. The method name is the name of the function on the remote

server and the parameters are the inputs to that function.

An issue is that documentation usually only describes what functions do. It can be challenging

to know what function to call and where to start. The tight coupling offers some critical advantages

however. For starters, there’s usually a less overhead since functions are called directly.

RPC benefits systems that needs a high message rate and low overhead. It requires users to have in-

tricate knowledge of the underlying system (e.g. Administrator level clients) since they can directly

call the system functions.

A popular alternative to RPC is the REST architecture. Instead of using functions as the fundamen-

tal unit REST uses resources. REST models resources, relations between resources and collections

of resources.

23

The focus on resources means a stronger level of abstraction. This means a greater decoupling

between the client and the server. This abstraction also means changes to the underlying system

doesn’t affect the API to the same degree [3].

Unfortunately there’s no single standard specifying how a REST API is defined. RPC inherently fol-

low the standard of the underlying system while REST does not. This can cause confusion and false

sense of understanding in REST. Additionally, REST usually have big payloads and more ”chatty”

networks than RPC [3].

REST benefits systems with a focus on entities and resources and also works best for systems

with a great diversity of clients and a high need for easily understandable functions [3].

24

Chapter 4

Method(s) and Design

4.1 Introduction

The application displays a graph representing a factory layout of sensors and alarms. The nodes

have a name and a status, and each edge have labels identifying the relationship between nodes.

The graph keeps an up to date version of each node’s status. The data is fetched from a server and

formatted by the application before being drawn.

The application consists of four separate processes:

Visualizer: The starting point of the application. It calls the Data Service

and is responsible for drawing the graph. It also manipulates the

graph in order to keep it up to date.

Data service: The center of the application. All other processes interact only

with the Data Service, and do so directly. It is called by the

visualizer, fetches data from the Server, and calls the Formatter.

Formatter: Parses graph data into dot formatted strings. This allows it to be

drawn in the right format by the Visualizer.

Server: The endpoint storing all graph data. Data includes graph struc-

ture and node status.

The application has two phases. In the initialization phase, the application fetches the graph struc-

ture and subscribes to status changes. In the main phase, the application responds to changes by

updating the graph.

4.2 Initialization Phase

This phase runs once when the application starts. The code runs once, and prepares the application

for the main phase. The phase consists of three steps:

25

1. Fetching graph structure

2. Building the graph

3. Subscribing to signal changes

The Visualizer requests the graph structure from the Data Service. The graph structure is repre-

sented as a parsed string in the dot format. This gives the Visualizer all the data it needs to draw

the graph correctly. With the parsed string, the Visualizer can simply draw the graph by handing

the string to the Viz.js wrapper for Graphviz which will then draw the graph.

After drawing the graph, the Visualizer triggers the Data Service to subscribe to signal updates

from the Server. The Data Service communicates the request using the RPC protocol over a Web-

socket connection.

Below is the Visualizer algorithm for this phase:

Algorithm 12 Fetching parsed graph structure string

1: Procedure Visualizer.init()

2: dot formatted string = Data Service.get graph string();

3: draw graph(dot formatted string);

4: Data Service.subscribe all signals();

5: end

Algorithm 12 explained:

get graph string: Triggers the data service to get the parsed string. The data service

formats the graph structure using the Formatter.

draw graph: Draws the graph using GraphViz.

subscribe all signals: The Data Service sends subscribe requests to the server. A request is

sent per node in the graph.

The algorithm below shows the pseudocode for the Data Service when calling get graph string.

Note that the Formatter and WebSocket communication is explained more in-depth in section 4.4

and 4.5.

26

Algorithm 13 Fetching Graph structure

1: Procedure Data Service.get graph string()

2: nodes = get graph structure(root node name);

3: return Formatter.make graph string(nodes);

4: end

5:

6: Procedure Data Service.get graph structure(node name)

7: node = new Node(node name);

8: child edges = websocket get child edges(node name)

9: for child edge in child edges do

10: child node = get graph structure(child edge.target name);

11: node.out edges.add(child edge)

12: endfor

13: return node;

14: end

Algorithm 13 explained:

get graph structure: This function recursively finds nodes using the Depth first

search algorithm. An edge is created for each child and added

to the parent. When complete, the root node is returned. Note

that this function expects an acyclic graph. Checking for pre-

viously visited nodes would probably be necessary in order to

support cyclic graphs.

Formatter.make graph string: The Formatter receives an array of nodes and uses it to create

a dot formatted string (see section 4.4).

Node: The graph nodes are represented by a Node object. The object

has a name for labeling itself, a type which defines it’s design

and represents it’s function. It also has a status which is it’s

current signal value and an array of out-edges. These edges

point to it’s child nodes, and each edge has a label.

websocket get child edges: The Data Service sends a WebSocket request for child edges.

The edges have a label and a target node name. (see section

4.5 for WebSocket communication).

After drawing the graph, the Visualizer now activates subscriptions on the Data Service. The

algorithm below shows the pseudocode for the Data Service when calling subscribe all signals:

27

Algorithm 14 Subscribing to signal changes

1: Procedure Data Service.subscribe all signals()

2: on(websocket open) do

3: signals = fetch all signals();

4: handle subscriptions();

5: enable subscriptions();

6: for signal in signals do

7: signal subscribe(signal);

8: endfor

9: end

10: end

Algorithm 14 explained:

on websocket open: This code is triggered as soon as the WebSocket connection to the

Server is open (see section 4.5). This makes sure the code does not

run prematurely and fails.

fetch all signals: Requests a list of signals from the Server and filters it for relevant

signals. The list need to be filtered since many signals represent

other values like Server status and node values not used in this

project. The list contains one signal for each node, representing the

nodes status.

enable subscriptions: Sends a request defining how frequent updates should be sent from

the Server. The default is currently every 100ms. The function

also sends a request to the Server that returns an error. This

is necessary since the request also triggers the WebSocket pack-

age to handle new values received from the Server (function web-

socket new value received in algorithm 15). The error does not af-

fect anything else and is purely for client side activation. Neither

requests trigger the Server to start sending updates.

signal subscribe: This triggers the Server to send new updates. The Data Service

sends a request for each signal.

4.3 Main Phase

When the Data Service receives a new value, it queues the new value in an Angular Subject. This

triggers the Visualizer to handle the new value. The Visualizer then searches the graph for the

correct node and updates it’s status, and optionally, it’s visuals.

The algorithm below shows the pseudocode for the Data Service when a new signal update is

received from the Server and also how the Visualizer is triggered by the new updated value:

28

Algorithm 15 Received signal update

1: Procedure Data Service.handle subscriptions()

2: on(websocket new values received) do

3: update global list of signal values with the new values;

4: notify subscribers about the new values;

5: end

6: end

7: Procedure Visualizer.updated signal(signal)

8: node = get element by id(signal.node name);

9: if is sensor(node) do

10: update sensor(node);

11: if animate sensors on do animate sensor(node);

12: else if is alarm(node) do

13: update alarm(node);

14: if animate alarms on do set alarm color(signal.value);

15: end

16: end

Algorithm 15 explained:

2-5: This code gets triggered each time a new signal update is received from the

server. Since each update is received at intervals, the Server returns a list of

all changes since the last update. The function iterates over the signals and

each signal update is pushed to a queue on an Angular Subject. This triggers

Visualizer.updated signal once for each updated value.

updated signal: The function finds the current HTML element representing the node referred

to in the signal data. It then updates the node value and triggers a visual

change if configured to do so.

update sensor: Updates the status text on the node element with the new value.

animate sensor: The node changes color and fades slowly back to normal to indicate that a

new value was received. This gives a better overview of general signal traffic.

Animations can be turned on or customized with different colors, strength and

timing.

update alarm: Switches the alarm status between True and False depending on the signal

value. If the new signal value is 0, the alarm is set to False, else it is set to

True. The value indicating a False alarm defaults to 0 but can be customized.

set alarm color: Sets the alarm color based on it’s status. Can be deactivated and colors can

be customized.

29

4.4 Formatting graph data

To draw the graph, the graph data needs to be converted to a string. The dot formatted string

enables GraphViz to draw the graph as intended.

The input given to the Formatter is a root node with name, type and outbound edges pointing

to other nodes. Below is an example of the output from the Formatter. The output creates the

draws the graph in figure 4.1.

digraph {

/* ===== Options: ===== */

ratio="1"

size="10"

margin="2"

center="true"

/* ===== Declarations: ===== */

node [shape=diamond,height=2,width=2] e;

node [shape=circle] a; b; c; d;

/* ===== Labels: ===== */

a [label = <a
signalValue>, id = "a"];

b [label = <b
signalValue>, id = "b"];

c [label = <c
signalValue>, id = "c"];

d [label = <d
signalValue>, id = "d"];

e [label = <e
signalValue>, id = "e"];

/* ===== Connections: ===== */

a->b[label=ab];

a->d[label=ad];

a->e[label=ae];

b->c[label=bc];

}

30

Output above explained:

Options: Global properties for the graph that improve readability. Property ratio is set

based on screen size ratio to dynamically fit any client. The property size scales

the graph and text, margin adds node spacing, and center centers the whole

graph. The properties are simply chosen based on subjective appearance.

Declarations: Design definitions for alarms and sensors, respectively. The keyword ”node” is

used to define node styling. The brackets contain the styling and after that the

affected nodes are written. Sensors are given strict dimensions since they tend

to be horizontally stretched without it. A declaration is created by filtering

nodes on the current type and adding the node names to the end of the string.

Labels: The text on each node. Includes HTML markup for readability in the graph. If

HTML markup is used, Graphviz requires the label string to contain less than

(<) and greater than (>) signs on each end of the string, respectively. Labels

are generated by looping through all nodes and putting each nodes name into

a template.

Connections: Draws edges between nodes. The label property gives each node an edge label.

The list is generated by looping through all nodes and generating a connection

string based on a template, the current node and all it’s out-edges.

Figure 4.1: Example output

The drawing contains no colors. Colors are added after the graph is drawn in the Visualizer. Since

color is changed when animations are active, initial color is set using the same methods. This is

more consistent since there are irregularities between the styling conventions in dot and HTML.

31

4.5 Server communication

Communication between the Data Service and the Server is done using RPC over WebSocket. A

connection is established which triggers further transmission from the Data Service. Below are the

different methods used for communicating using the Angular websocket-rpc package:

Incoming communication using WebSocket.on(method name, handler function):

This is triggered when the Server responds to certain specific function calls. The method name spec-

ifies what function the Server is responding to. The handler function is triggered by the response

and sometimes the response contains data the handler function can use. The following methods are

used in this project:

open: Received when the WebSocket connection is opened. Used in line 2 in algorithm 14 ”Sub-

scribing to signal changes” to trigger activation of subscriptions.

Signal.OnUpdate: Received in a response to the server subscribing to signal updates. It returns

a list of signals. Each signal contains a new value as well as a integer called handle for identifying

nodes. Nodes with a handle value matching any of the signals are updated with the new value.

Used in line 2 in algorithm 15 ”Received signal update”. Note that Signal.OnUpdate is only trig-

gered because WebSocket.Subscribe(’Signal.OnUpdate’) is called. The subscribe function is

not recognized by the Server, so an error is returned. The subscribe function is essential in making

Signal.OnUpdate work so it is still necessary to call it.

Outgoing communication using WebSocket.call(method name, parameters):

This function sends a request to the Server. The method name corresponds to the method that gets

triggered on the server. The parameters allows the Data Service to further specify the request. The

following methods are used in this project:

IPS.Device.Connections: Requests a list of outgoing edges for a given node. The node is specified

using the format {Device: node name} where node name is replaced with the actual name of the

node. Each edge has the properties Target, for child node name, and Label, for the edge label text.

This method is used in line 8 in algorithm 13 ”Fetching Graph structure”.

Signal.List: Requests a list of signals. The list contains all signals and therefore no input pa-

rameters are necessary. Each signal is in the form {path, type, unit}. path is in the form

node name:signal name. type refers to the value type (e.g. integer, boolean, etc.). unit is the unit

of measure (e.g. ml/min, bar, etc.). Used in part of fetch all signals in algorithm 14 ”Subscribing to

signal changes”.

Signal.Subscription: This function takes a parameter, rate. The parameter defines how fre-

quent signals should be sent from the Server in (milliseconds). Used in enable subscriptions in

32

algorithm 14 ”Subscribing to signal changes”.

Signal.Subscribe: Subscribes to a given signal. The method takes one parameter, path, which is

the same as mentioned in Signal.List.

4.6 Running the project

The application requires Node.js 10.9.0 or higher. To run the app, simply run these commands in

the project folder:

1. npm i

2. ng serve --open

To make the application accessable on the local network, --open can be replaced with --host=xxx.xxx.xxx.xxx

with the computers IPv4 address. If this causes an ”Invalid host header”-error, an aditional argu-

ment can be appended: --disable-host-check.

Controls, visuals and connectivity can be customized. These values are configured in the environ-

mental variables. The variables contained in the file root\src\environments\environment.ts

are listed below:

root node Name of the root node in the graph.

websocket url The server endpoint

false alarm value The value that indicates if an alarm is off.

subscription interval How often the Server should return new signal values (in ms).

size Size of node graph.

margin extra spacing between nodes.

animate sensors whether to animate sensor signal updates.

animate alarms whether to update colors for alarm signal updates

minFill opacity when update detected

maxFill opacity when update animation is done

fps how many frames of animation for the update animation.

cooldown How long the animation should last in seconds.

node style settings Control color, shape, size and font settings for alarms and sensors.

zoom scale timeout: retry interval for activating zoom and scale functionality in milliseconds.

zoom scale settings Control zoom sensitivity and thresholds.

33

Chapter 5

Results

This chapter shows the result of running the application. This includes the user interface and

interaction with the application. This chapter also looks at different metrics and how they can be

interpreted.

5.1 User interface

When the application runs, the initialization phase starts and the graph is drawn. The user is

greeted with the image in figure 5.1.

Figure 5.1: The user interface.

To interact with the graph, the user can zoom and pan. The user zooms by scrolling the mouse wheel.

To support mobile devices, zoom controls are present in the lower right corner. To pan around, the

user can drag with any mouse button or finger. These controls allows the user to navigate any sized

graph and focus on areas of importance.

34

5.2 Performance metrics

This section looks at performance with varying signal update frequency and animation settings. Fig-

ure 5.2 shows an performance review of the initialization phase. The total time elapsed is 1109ms

on average. Each category is shown in percentage of time elapsed. The figure illustrates that almost

74% of time elapsed is due to scripting 1.

Figure 5.2: Phase 1 performance.

The main phase runs indefinitely. To give a good estimation of time elapsed, all further metrics

runs for 60 seconds each. Figure 5.3 shows the performance of the main phase with different signal

update intervals. 5.3a has a 100ms interval, while 5.3b has a 1ms interval. 5.3c has a 5 seconds

update interval while the 5.3d has a 100ms interval but no animation.

Figure 5.3: Phase 2 performance with different signal update intervals.

5.3a and b are very similar. 5.3a is configured to receive updates 100 times less frequent than 5.3b

but the difference in performance is very low. This is probably due to the server having a minimal

interval time, meaning 5.3b is not actually running at a 1ms interval. The difference between 5.3a

and 5.3c is more noticeable. 5.3c receives updates 50 times less frequent than a. The scripting time

is about 3.3 times lower while the overall work on the CPU is about 30% lower.

5.3a and d have the same update interval. 5.3d however has no animations active. Instead of

changing opacity and colors, nodes are simply updated with new text for their values. The perfor-

mance is highly improved with a 3.1 times performance improvement in overall CPU load.

1Benchmark hardware specification for tests: Windows 10, Intel Core i7-4770K, 16GB 1600MHz RAM, GTX 1080

35

5.3 Discussion

Looking at figure 5.2 and 5.3 There’s a clear majority of idle CPU time in the main phase compared

to the initialization phase. This is possibly because the initialization phase has to load everything as

quickly as possible. The main phase mostly waits for signal updates. Looking at the figures we can

see how increasing the signal update frequency to reduce latency has little effect on performance.

Disabling animations however, impacts performance more significantly. Improving animation effi-

ciency could possibly improve performance in the main phase by a huge amount.

Overall the application runs fast and updates the graph quickly compared to the current solution.

Replacing the static image output with a HTML document allows for more flexibility in manipula-

tion. Using HTML also allows for far greater platform support. Using Angular allows for a modular

workflow that makes it easier to update existing features and add new ones.

36

Chapter 6

Conclusion and further work

This thesis presented a replacement for the current system used by ABB. The replacement was

developed with the Angular framework and used RPC WebSocket communication. The results show

that the solution is efficient even with low latency hight traffic loads. The application runs fast, is

flexible and has wide platform support.

Several improvements can be done. Adding support for additional signal information by adding

a contextual menu to nodes. Allowing for live modifications and grouping in the graph. Delivering

notifications for certain alarms or threshold signal values. Users might also want additional ser-

vices that correlate with the information in the graph, like live video feeds of the factory floor or

signal/alarm logs.

37

Chapter 7

References

[1] Architecture overview. https://angular.io/guide/architecture. Accessed: 2018-04-28.

[2] What is graphviz? https://www.graphviz.org/. Accessed: 2018-12-05.

[3] N. Barbettini. Api throwdown: Rpc vs rest vs graphql, iterate 2018. https://www.youtube.

com/watch?v=IvsANO0qZEg. Accessed: 2018-05-01.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT

press, 2009.

[5] P. Eades. The median heuristic for drawing 2-layerde networks. Tech. Report, 69, Dept. of

Computer Science, Univ. of Queensland, pages 1–13, 1896.

[6] H. Eichelberger. Aesthetics and automatic layout of uml class diagrams. 2005.

[7] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for drawing directed

graphs. IEEE Transactions on Software Engineering, 19(3):214–230, 1993.

[8] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by successive approxima-

tion. Mathematics of Operations Research, 15(3):430–466, 1990.

[9] D. Misic. A beginner’s guide to websockets. https://2018.pycon-au.org/talks/

45211-a-beginners-guide-to-websockets/. Accessed: 2018-04-30.

38

https://angular.io/guide/architecture
https://www.graphviz.org/
https://www.youtube.com/watch?v=IvsANO0qZEg
https://www.youtube.com/watch?v=IvsANO0qZEg
https://2018.pycon-au.org/talks/45211-a-beginners-guide-to-websockets/
https://2018.pycon-au.org/talks/45211-a-beginners-guide-to-websockets/

	Introduction
	Graph Theory
	Introduction
	Rank assignment
	Breaking Cycles
	Network Simplex

	Ordering nodes within ranks
	Positioning nodes
	Drawing splines
	Finding the polynomial area
	Drawing splines

	Application framework and communication protocols
	Angular web framework
	Components
	Services

	WebSockets
	RPC

	Method(s) and Design
	Introduction
	Initialization Phase
	Main Phase
	Formatting graph data
	Server communication
	Running the project

	Results
	User interface
	Performance metrics
	Discussion

	Conclusion and further work
	References

