

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:

Author:

Programme coordinator:

Supervisor(s):

 Spring semester, 2019

Open / Confidential

(signature of author)

Title of master's thesis:

Credits:

Keywords:

Number of pages: 66

+ supplemental material/other: None

Stavanger, June 15, 2019

Master’s in Computer

Science

Hafiz Rayaan Shahid

Antorweep Chakravorty

Antorweep Chakravorty, Prakhar Srivastav

Refactoring Monolithic application into

Cloud-Native Architecture

30

• Monolithic application

• Cloud-Native application

• Microservices architecture

• Google Cloud Platform

UNIVERSITY OF STAVANGER

MASTER THESIS

Refactoring Monolithic application into
Cloud-Native Architecture

Author:
Hafiz Rayaan SHAHID

Supervisor:
Antorweep CHAKRAVORTY

Prakhar SRIVASTAV

Department of Electrical Engineering and Computer Science
Faculty of Science and Technology

University of Stavanger

June 15, 2019

http://www.uis.no
http://www.uis.no

iii

Abstract

Cloud Native is an approach, using which, applications are developed and run in
such a way as to exploit and use the maximum features of cloud computing. Go-
ing cloud native does not just mean deploying your code to the cloud but follow-
ing some rules and patterns to develop the application from the start. We want
to evaluate the performance of an on-premise application with a parallel cloud na-
tive application through experimentation. We developed a cloud native application
from scratch, using Platform as a service (PaaS) by Google cloud platform (GCP),
following all the patterns that will be described in this report. GCP provides PaaS
to develop,run and manage your applications without having to manage the in-
frastructure. This cloud native application is a counterpart of a monolithic and on-
premises application called DUP (Delivery Platform). The performance analysis is
based on metrics e.g. zero-downtime deployment, continuous deployment, automa-
tion of DevOps, extensibility of microservices, effective provisioning and efficient
roll out strategies. We discover that the cloud native architecture performs better
under these metrics.

v

Acknowledgements

First of all, I would like to thank my project advisor Mr. Antorweep Chakravorty
who helped me throughout the project with the report. I acknowledge his support
towards my thesis and that it is, how it is now, because of him.

I would also like to thank my advisor from Sysco AS, Mr. Prakhar
Srivastav, to help me do the implementation part of the thesis. Also, Mr. Hung
Huynh who came up with the idea together with Mr. Prakhar.

I acknowledge that without their support, this thesis would not have
been as good as it is now. And for that, I am thankful . . .

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Chapters . 2

2 Background 3

2.1 Cloud Computing . 3

2.1.1 Service Models . 4

2.1.2 Deployment Models . 5

2.1.3 Cloud Computing Characteristics 7

2.1.4 Application Workloads . 8

2.1.5 Cloud-Native Properties . 10

2.2 Microservices Architecture . 13

2.2.1 Characteristics . 14

2.2.2 Benefits . 15

2.2.3 Complexities . 16

3 Related Work 19

3.1 Event Driven Cloud Native Application 19

viii

3.1.1 Objective . 19

3.2 Evaluation of Two Deployment Patterns 20

3.2.1 Bring Your Own Code . 20

3.2.2 Bring Your Own Container . 20

3.3 Cloud Native Applications . 21

3.4 Cloud Application Architectures . 21

4 Design and Implementation 23

4.1 On-Premise Solution . 23

4.1.1 Architecture . 23

4.1.2 Application workflow . 26

4.1.3 File Based Ingestion . 26

4.1.4 Multi-Cloud Support . 26

4.2 Google Cloud Platform . 27

4.2.1 Cloud Storage . 27

4.2.2 Cloud Function . 28

4.2.3 Kubernetes Engine . 28

4.2.4 Pub/Sub . 28

4.2.5 Bigtable . 28

4.3 Cloud-Native solution . 28

4.3.1 Architecture . 29

4.3.2 Implementation . 30

Module 1 . 30

Module 2 . 33

Module 3 . 37

ix

Github . 37

5 Experimentation and Evaluation 39

5.1 Setup . 39

5.2 Decreased time to market . 39

5.2.1 Provisioning and Scaling . 40

5.2.2 Continuous Integration . 41

Zero Downtime . 42

5.3 Extensibility and Security . 42

5.3.1 Extensibility . 42

5.3.2 Security . 42

5.3.3 Agility . 43

5.3.4 Observability . 44

6 Conclusion and Future Work 47

xi

List of Figures

2.1 Properties of cloud computing . 4

2.2 Component Management . 6

2.3 Relation between cloud characteristics, service and deployment models 9

4.1 DUP architecture . 24

4.2 DUP workflow . 25

4.3 File based ingestion . 27

4.4 DUP cloud architecture . 29

4.5 Project description . 31

4.6 Module 1 workflow . 31

4.7 Cloud function deployment . 32

4.8 Subscription Details . 33

4.9 Module 2 workflow . 34

4.10 cloudbuild.yml code snippet . 35

4.11 Cloud build trigger . 35

4.12 Meta data logs . 36

4.13 Data as Json object . 36

4.14 Module 3 workflow . 37

4.15 Bigtable instance . 38

xii

4.16 Bigtable Monitoring . 38

5.1 Comparing Provision and Scaling . 40

5.2 Deploying Trigger Function . 45

5.3 Deploying Parser Service . 45

5.4 Deploying Consumer Service . 46

5.5 Average for Adding Feature . 46

xiii

List of Tables

5.1 Extensibility . 43

5.2 Security . 43

5.3 Agility . 44

5.4 Observability . 44

1

Chapter 1

Introduction

In the inception of internet, physical servers were used to manage the infrastructure
that runs the applications. Physical servers are quite useful because we can configure
them according to our needs and are very powerful. The failure rate is considerably
low because of maximum power supplies, fans etc. But, all of this comes with a lot
of unnecessary overhead. Physical servers are noisy, hard to maintain since they re-
quire man power to keep them alive and are quite expensive. The servers can never
be utilized to their maximum potential. When you want to run multiple applications
on one server, conflicts related to software and network routing arise because of try-
ing to utilize maximum out of a server’s processing power [14]. In recent years, there
has been a considerable leap in technology due to which large amount of data are
being generated and consequently requiring large storage and excessive processing
power. All of this data needs to be stored and processed somewhere that is much
stronger than physical on-premise servers and easy to manage without wasting man
power and money.

Here, cloud computing provides the required services. Cloud is in-
frastructure, hardware and software, provided over the internet as a service. So that
companies can get rid of their noisy, expensive on-premise servers [4]. Comput-
ing power, storage and other services are provided on demand. So, unlike physical
servers, companies do not need to worry about the overhead and not being able to
utilize their resources to the maximum. You only pay for what you use and can eas-
ily scale up or down depending on the requirement. Now a days, organizations are
migrating their applications to cloud. Some are also migrating the whole infrastruc-
ture, software and hardware. But moving your systems to cloud does not necessarily
mean that you are utilizing the cloud to its maximum potential. According to a re-
search [7], There are some patterns and strategies, using which, you should make
an application that exploits the cloud usage to its true potential. These applications
are formally known as Cloud Native Applications(CNA). Monolithic applications,
defined as being a big block of code without any loosely coupled components, are
different from CNA. Recently, with the rise of cloud computing, companies started

2 Chapter 1. Introduction

getting rid of their monolithic applications and going to cloud or developing the
cloud native version from the scratch. This need for creating cloud native appli-
cations with the same functionality of the already existing monolithic on-premise
applications has been the motivation for the work provided in this thesis.

1.1 Chapters

This section we briefly talk about all the chapters written in this thesis. The workflow
of this report is based on 6 chapters. Each chapter has its own content and challenges
that we will discuss here briefly and completely inside the chapters. Following are
the chapters that construct this report in a sequence:

• Chapter 1: Introduction

It contains the introductory material to the thesis topic and how it affects the
industry today.

• Chapter 2: Background

It consists of of the history, background information and theoretical concepts
that are important to understand the work done.

• Chapter 3: Related Work

It consists of two research papers related to our topic and how we build on or
use their work in our thesis.

• Chapter 4: Design and Implementation

It contains the detailed information of the design and how we implement the
application.

• Chapter 5: Experimentation and Evaluation

It contains the experiments performed on the implementation to evaluate the
application.

• Chapter 6: Conclusion and future directions

It concludes the thesis with discussing the findings of the thesis and gives fu-
ture recommendations for research.

3

Chapter 2

Background

This chapter sets the background to the thesis. It gives the necessary information to
understand the topics related to the implementation part.

2.1 Cloud Computing

The past few years showed that the data are being generated increasingly [2]. To
handle this huge amount of data, we need excessive computing power and storage.
Having physical server’s on-board comes with a heavy price. It is expensive and
needs special manpower to maintain it. Moreover, it can never be fully utilized by
running multiple applications on it because of network routing and software con-
flicts. To overcome these problems, cloud computing has been introduced. Cloud
computing can be defined as a virtualized, managed, scalable, distributed shared
pool of resources that provide computing power as a service [4, 37]. The resources
can be created and used on-demand as per convenience without having to worry
about wasted computing power and other resources. Cloud computing has different
meaning for different companies. The companies that provide the cloud services are
known as cloud providers. They are responsible for managing the cloud resources
and keep them running. Cloud consumers are the companies or individuals who
access the cloud services. These are mostly the companies that don’t want to man-
age and buy the hardware that supports applications. Alternatively, they use cloud
services to build applications so they can focus more on the business side.

The benefits of cloud computing gave the world a different view of application
development. Many applications are developed on cloud and many are being mi-
grated. Applications in the field of Data analytics, IoT, Distributes systems, Stream-
ing engines are widely developed using cloud services. The popularity of cloud

4 Chapter 2. Background

FIGURE 2.1: Properties of cloud computing

computing is peeking and has resulted in different cloud service deployment mod-
els and strategies, Service models and other characteristics [2]. Figure 2.1 shows the
properties of cloud computing, further we will study them in detail.

2.1.1 Service Models

Different service models are used to provide cloud resources to the consumers. The
service models vary in the levels of abstraction that range from providing software
as a service down to a basic processing power or entire infrastructure to create ap-
plications. According to a definition [27, 36, 2], there are three cloud service models
which can be defined as:

• Infrastructure as a Service (IaaS)

Infrastructure as a service (IaaS) is a cloud service in which a cloud provider
provides the consumers with computing resources such as data storage and
networking facilities, servers. Companies use this infrastructure together with
their own platform to run and manage applications. Key features include pay-
ing for IaaS on demand rather than buying the hardware and having to main-
tain it. It saves a lot of resource and money. Moreover, it can be scaled up or
down depending on the storage and computing requirements.

• Platform as a service (PaaS)

2.1. Cloud Computing 5

It is a cloud service that provides it’s consumers with a platform using which,
they can build and manage their applications. Similar to IaaS, consumers get
processing and storage resources. Additionally, in this service model, con-
sumers get prebuilt tools by the provider to customize their applications and
test them. Companies can focus entirely on development without worrying
about managing the infrastructure. Cloud providers are in charge of managing
underlying operating system, server and security concerns. Teams can work
in a collaborative effort remotely on the same application.

• Software as a service (SaaS)

It is cloud service model in which a user is provided with the cloud provider’s
cloud based software. Unlike IaaS and PaaS, consumers do not have to develop
a certain application to use it neither install it on their side. They can access
the software, that resides on provider’s server, as a service through the internet
or an API. Users can use this software to store and manage their data. It is a
subscription model. The stored data on SaaS is secure and will not result in a
loss in case of failure.

When an organization wants to use these service models, they need
to know what components they have to manage and which are providers responsi-
bility. Figure 2.2 shows the relation of managing components in regards to different
service models.

2.1.2 Deployment Models

Most cloud providers have hubs containing hundreds of servers that help load the
data faster to a user. Often, data is brought closer to the consumers by geographic
location to support fast loading. Cloud Deployment Models are based on the loca-
tion of data. There are four deployment models that can be defined as follows [27,
36, 2]:

• Private Cloud

It is an infrastructure used by self-contained companies. This cloud infrastruc-
ture can be managed by the company itself or a third party organization. It
gives a higher level of security. Data can not be tampered because it is backed
up internally, using a firewall and can be hosted both externally and internally.
Private clouds is mostly used by companies that require high security, data
availability, and high management.

• Public Cloud

6 Chapter 2. Background

FIGURE 2.2: Component Management

This cloud infrastructure can be used by public on a provided network. Public
does not mean that consumer’s information is publicly available but that con-
sumers can access it using different access controls.The infrastructure is not
controlled by the consumers. It is based on different paying policy such as
pay per user or a shared cost model for all the consumers. Public cloud is best
suited for companies whose requirements are changing constantly. It is quite
popular for web application development and data storage among different
sized companies.

• Community Cloud

This cloud service is shared by organizations working in a particular commu-
nity, for example government associations, commercial organizations, hospi-
tals, banks etc. The members of one community share similar concerns such
as security, performance and privacy. This cloud deployment model can be
managed by a company itself or a third party organization [2].

• Hybrid Cloud

This deployment model includes the properties of public and private clouds,
but each may work as a stand alone entity. In this deployment model, exter-
nal and internal providers can provide the resources [1]. It is ideal for scalable

2.1. Cloud Computing 7

and secure applications. A company might need a Hybrid cloud to create ap-
plications based on the application’s requirement. An example would be an
application that stores data in a secure way using private cloud but communi-
cates with the users using public cloud.

2.1.3 Cloud Computing Characteristics

Today, it is essential that organizations maximize the potential benefit of cloud com-
puting. For that, knowledge of cloud characteristics is very important. Cloud com-
puting is defined by (NIST) National Institute of Standards and Technology through
following characteristics [27, 28].

• On-demand self-service

Provisioning cloud resources is possible from the cloud provider without hu-
man interaction. Basically, an organization can provide needed resources with-
out contacting to the cloud provider. The resources might include VM in-
stances, Databases etc. These organizations need to access a web portal that al-
lows them to access and use the cloud services and provision and de-provision
services On-demand [27].

• Broad network access

Many consumer platforms are provided over the network to access the cloud
resources. Primarily, services are available on a network that is a high broad-
band link, for example the internet. On the other hand, Private cloud might
use a local connection such as (LAN) local area network. The two important
aspects of broad network access and cloud computing are latency and Net-
work bandwidth. Since these aspects are related to quality of service, a very
important part of cloud computing. It mainly affects the applications that are
time sensitive[27].

• Multi-tenancy and resource pooling

Cloud services are build in such a way to support multi-tenancy. Multi-tenancy
lets multiple consumers use the same infrastructure or the application while
still maintaining their data security and privacy. A real life example would be
people living in a shared apartment and still have their rooms to have their
privacy and security of personal belongings.

On the other hand, resource pooling means that same resource is used to ser-
vice multiple customers. The resource pool of the cloud provider should be
large enough to provide service to every consumer and economy of scale.

• Rapid elasticity and scalability

8 Chapter 2. Background

A very important part of cloud computing is that organizations can be provi-
sioned with resources when they need them and can remove them when they
are finished. Also, resources can be scaled up or down in accordance with the
requirements. When organizations scale down the resources to their needs,
they cut down cost.

Basically, elasticity is related to a rapid provision and de-provision of resources
that might include VM instances, Databases or whole applications[27]. On
the other hand, scalability is a gradual and planned process. For example,
organizations plan to scale up or down over a period of time and cloud can
handle that.

Testing and developing applications is directly related to rapid elasticity and
scalability. If an organization requires a few VMs to test an application before
deploying into production, they can just create the virtual machine instances
right then without having to wait for the physical ones.

• Measured service

The consumer organizations only have to pay for what they have used because
the resources are being metered. Charge-per-use capability can be leveraged
to optimize resource utilization. The cloud providers are monitoring the use
of their resources and charge the consumers accordingly [11].

At this stage, it is important to show the relation of three main prop-
erties of cloud computing to each other. Figure 2.3 is a visual representation of
the interaction of cloud service models, cloud deployment models and the essen-
tial characteristics.

2.1.4 Application Workloads

In cloud computing, workloads is the usage of cloud resources within a given time.
It will help to provision or de-provision the resources by understanding workloads
[11, 2]. Following are the workloads that the cloud applications may encounter:

• Static Workload

It has optimized the the utilization of the cloud resources within specified pe-
riod of time. Provisioning or de-provisioning is not required in this case. Since,
At the time of provisioning, the required resources are provisioned and at the
same time a small amount is over-provisioned to handle the overhead [2].

• Periodic Workload

2.1. Cloud Computing 9

FIGURE 2.3: Relation between cloud characteristics, service and de-
ployment models

This workload is important for periodic tasks for example paying the salaries
to the employees every month. This results in peak periodic utilization. So,
when there is peak time, consumers need more cloud resources and want to get
rid of extra resources once peak time is finished. One way to to scale would
be to statically scale up or down as in static workload. Another way would
be to scale elastically. In this case, over-provisioning is not required since the
resources are exactly hoe much needed at all times [2].

• Once-in-a-Life Workload

In this case, the resources are needed after a long time. This might happen in
the case of E-commerce applications where the user orders a specific product.
So, the peak time for the utilization of resources for this application would
only when an order is placed. We need to fill the under utilization gaps for this
workload. One way would be statically scaling, which might be inefficient due
to possible under provisioning. Another way is to scale automatically where
just the required resources are used.

• Unpredictable Workload

This workload occurs when the resources are utilized randomly and in un-
predictable times [2]. Static scaling can not be used in this case, due to the
randomness and unpredictability of the resource usage. So, the alternative op-
tion, elastic scaling would be ideal for this case and predicting the peak time is
not necessary.

• Continuously Changing Workload

10 Chapter 2. Background

This everlasting changing workload is due to the continuous fluctuation in the
utilization of resources. The rate of fluctuation remains constant. Both static
and elastic scaling can be used to cope with this workload [2]. In static scaling,
we can divide the provisioning and de-provisioning into steps such as we can
provision 50 GB storage space when needed and de-provision 50 GB when
not. Alternatively, in elastic scaling, resources are provisioned consistently
with changing requirements.

2.1.5 Cloud-Native Properties

There are different scaling techniques for each workload and thus requirements of
the application design are also different. The most popular design is to divide the
application into smaller components and manage them separately. But, splitting
the application into smaller components is not enough to take full advantage of the
cloud environment. The application has to be designed in such a way as to ensure
the maximum utilization is cloud services [2]. Following are the properties that a
cloud native application should have [11, 12, 2]:

• Distribution

There is a big pool of resources on which the cloud resources are distributed
in a scattered way. The cloud-native application should be developed in such
a way that it should be consistently distributed with the resources [2].

• Elasticity

Elasticity and scalability can be used interchangeably [35]. It can be defined as
the ability to manage the increasing requirements with a maintained cost [6].
Elasticity must automatically cope with different workloads. Therefore, cloud-
native applications should be developed to scale as required. There are two
ways of achieving scalability, horizontally by adding more cloud resources or
vertically by adding more functionalities to the existing resource.

• Isolated State

The cloud-native applications should be stateless. This requirement gives rise
to isolated state property. Elasticity will result in scaling the applications up or
down, which means applications will have more instances and thus applica-
tions need to be stateless. Each instance of the application has to be managed
as a stand-alone component [2]. However, the states can be stored in a database
to be retrieved as required.

• Automated Management

2.1. Cloud Computing 11

Automated management has a real importance when elasticity results in pro-
visioning and de-provisioning of resources. There should be a way to monitor
the changing requirements and provide the required resources and remove the
unneeded resources.

• Loosely Coupled

The different components of a distributed system sometimes depend on each
other to work consistently. These components need to be independent from
one another by eliminating the dependency. So that scaling of applications is
easily done and failing components do not affect the other parts of the appli-
cation [11].

The twelve factor app Building cloud-native applications can be very tricky due
to the continuous augmentation, constant collaboration of the teams working on
it. There must be guidelines that can be followed to design and develop cloud-
native applications. A methodology called The Twelve-Factor App exists, that gives
guidelines to build applications with following properties [24]:

• It is a declarative format that results in automation.

• It is portable in different environments and platforms.

• It is compatible with multiple cloud platforms.

• The development and production parts are totally divided which gives rise to
continuous deployment.

• It is highly scalable and does not have any effect on the architecture itself [24].

Twelve Factors

1. Codebase

A version control system tracks the different versions of the code, for example
git [2]. Companies do not need different codebase for different deployments.
A single codebase can be shared among all the deployments like staging, pro-
duction.

2. Dependencies

A dependency manager should be used by a cloud-native application like
NPM (NodeJS Package Manager) and dependencies should be declared explic-
itly through some dependency declaration tool. This simplifies the application
and its settings.

12 Chapter 2. Background

3. Config

The config factor is a configuration setting of an application’s different deploy-
ments like staging, production etc [2]. The config of an application includes all
the resources used such as a backing service, pre-deploy settings for different
deployments or any credentials required. This config is not the same as the
application’s internal configuration and should not be included within the ap-
plication. But, at the same time this configuration should be easily accessible
to change between deployments like environment variables.

4. Backing services

These are the services used by the applications to attain it’s standard opera-
tions such as data storage services(BigTable,BigQuery etc) [2]. A cloud-native
application should treat the internal and external services as the same.

5. Build, release, run

The codebase can be deployed into production using different steps [2]:

• Build: The code is transformed into builds, an executable format.

• Release: This stage combines the build produced in the previous stage
with a config specific to the deployment. Consequently, a release that
includes the build and the config is created.

• Run: This step is responsible for running the release generated in the
release step in an execution environment.

6. Processes

Multiple processes might be used to execute a cloud-native application. These
processes are stand-alone and do not share anything among each other [2].
Thus, the application is stateless.

7. Port binding

The twelve factor application binds a port to a Hypertext Transfer Protocol
service to provide a web facing interface without havig to rely on webserver
injection. The application is totally independent of webservers for providing
web interface.

8. Concurrency

Application’s workload is divided into several processes. Each process has a
type which corresponds to a certain type of work [2]. All work of the same
type is assigned to that process which. All the work is being done by different
processes at the same time.

9. Disposability

2.2. Microservices Architecture 13

The processes in these applications can be thrown away at any time. The usage
depends on the application’s requirements and when a process is not needed
anymore, it is disposed.

10. Dev/prod parity

The deployment stages like development,staging and production should not
be very different from one another [2].

11. Logs

The events on the application can be monitored easily if the logs are well de-
signed and treated as stream of events.

12. Admin processes

The administrative work is done by a one-off process. The dependencies that
support the admin process are isolated.

2.2 Microservices Architecture

The applications developed and managed as a single big chunk of code are known
as monolithic applications. Monolithic, in the start of development processs, look
very simple and easy to understand. It’s comparatively easier to change some func-
tionality without having to worry about other services. But, These benefits vanish
off with the increasing complexity of the application. They suddenly are hard to
grasp and agility becomes a problem when developers have to make a lot of effort
just to make small changes. The most effective way to deal with increasing com-
plexities of the applications is to divide and separate the common functionality into
a separate service that iterates independently. Consequently, agility is increased by
letting the developers make changes to just the service they want without effecting
other services [2]. Every microservice is a separate entity which can be handled by
seperate teams, can be written with the choice of their language and can be scaled
up or down as required.

We can say that this architecture not only scales up or down as re-
quired but resists failures and is known as microservices architecture [29]. This ar-
chitecture divides the application into smaller services with unique operations. The
microservices are developed and designed by keeping the cloud-native application
properties in mind, which are already discussed. In order to have deeper insight on
microservices architecture, we need to look at the characteristics and other proper-
ties that govern them.

14 Chapter 2. Background

2.2.1 Characteristics

A microservices application does not have to obey all of these characteristics, but
it should be a minimum of these [9]. Following all of them will make a consistent,
extensible and failure resistant application.

• Business oriented

The applications are broken down to smaller components called microservices.
The boundaries along which the application is split, should be properly cre-
ated so that the system integrity remains intact. So, these microservices are
supposed to be developed based on the business needs. This can take a lot of
effort from different teams working in a company.

• Design for failures

When the application is split into smaller microservices, the failures are in-
evitable. The developer who creates the service should make sure that a failed
microservice does not kill the whole system. There are monitoring systems
that find the failures throughout the application lifetime. We can quickly fix
the failures on detection [26].

• Decentralized Data Management

Since microservice is a loosely coupled application that has everything inside it
that it needs. It should also have its own persistent unit such as database. This
brings in a lot of options to use as databases such as Postgres, Google Bigtable.
These databases can be SQL or NoSQL depending upon the requirements [2].
Although, in some cases a centralized data management system is required to
inform all the microservices about a transaction. But, this can be done using
a messaging system such as Kafka. So, keep the databases completely decen-
tralized so they can remain loosely coupled.

• Discoverability

The infrastructure used to create an application can fail. So, its better to create
microservices so that the configuration remains intact. If any service needs to
connect to other services, it shall discover them easily. But, services can be
found easily if all the services are registered in container registry system.

• Inter-service communication design

The microservices are deployed using different deployment strategies such as
containers, virtual machines etc [2]. But how are they supposed to commu-
nicate with one another? This question is a very important to answer for a
reliable microservices application. For one way communication, it is possi-
ble to use a messaging service like Kafka. But for two way communication we

2.2. Microservices Architecture 15

would have to expose REST endpoints so that other services can create the http
requests to reach out [2]. This way both microservices can talk to each other
without having to risk security and they will still be loosely coupled. There are
some cases where services want a chat like messaging or a queue of REST calls
to get something done. In that case we can create another layer for messaging
that stays between services and lets them chat with each other.

• Evolutionary Design

The requirements for the systems are always changing which results in the
addition of new functionalities. To add a new feature, just the concerned mi-
croservice is updated and deployed. The entire system does not have to be
updated [2].

2.2.2 Benefits

Many companies complain about the challenges they have to face with monolithic
architecture related to scalability, agility etc. Now, we take a look at some of the
important factors that makes us choose a microservices architecture [30].

• Agility

Using microservices architecture, small teams can be independent and own
their services they develop. Each team has a role to play and understands
it’s small and independent job, which makes the development cycle speed up,
decreasing the cycle times. The organization benefits greatly from this aggre-
gated throughput [30].

• Innovation

Innovation comes with each small team can choosing it’s own frameworks,
technologies appropriate for it, and other important tools. The ownership of
services is due to the responsibility that comes with it. The merge of the Devel-
opment and operations, called DevOps, within a team decreases the possibil-
ity of clash of goals [30]. The deployment of agile processes is never stopped.
Instead, the whole application deployment process shall be automated as con-
tinuous delivery, from committing the code to deploy the running service.

• Quality

Using the microservices architecture also improves code quality. Dividing the
application and design into smaller modules is the same as in object oriented
programming. It’s easier to build, reuse, compose and maintain the whole
structure of code.

16 Chapter 2. Background

• Scalability

Microservices should be strictly decoupled for a better development of very
large applications [30]. This should be considered as a prerequisite for a better
performance because it allows each service to be developed with it’s optimal
tools, appropraite programming language, frameworks.

The services that are decoupled can be scaled independent from others and
horizontally. Adding additional servers, Horizontal scaling, is dynamic since
it does not care about the limitations of other servers. Running the applica-
tion on a larger machine, Vertical scaling depends on the limitation of other
servers and causes downtime during scaling. Moreover, Failing modules can
be replaced automatically improving application resilience.

• Availability

The failure is isolated in one of the services and is easy to locate and fix us-
ing microservices architecture. We can use different techniques to decrease
the chances of failure such as caching, health checking, monitoring etc. This
increases the application’s availability [30].

2.2.3 Complexities

Every architecture comes with it’s challenges and complexities, despite the benefits
we discussed earlier. A microservices architecture also has it’s complexities. This
section states some of those challenges and trade-offs [31].

• Distributed Systems

There are a set of problems called Fallacies of distributed systems that come
along with microservices architecture since it falls under Distributed comput-
ing [31]. The developers that are beginners in distributed systems can assume
that the network on which the communication is happening is reliable, the
bandwidth is infinite and the latency is minimum, which is not the case.

• Migration

when migrating an application to a microservices architecture from a mono-
lithic architecture, the right border line for microservices should be realized.
The process is hard and requires developers to extract the dependencies that
are connected down with the persistent layer [31].

• Versions

The process of versioning can be complex for microservices. There are some
patterns that can be followed such as route based versioning and can be devel-
oped at API layer.

2.2. Microservices Architecture 17

• Organization

An organization architecture goes side by side with the mocroservices archi-
tecture. An organization might face problems like creating efficient team struc-
ture, following the DevOps approach and design effective communication be-
tween development and operational tasks [31].

• Architectural Complexity

The challenges are inside the code repository in on-premise architecture. But,
in microservices, the challenge is to make the servies communicate with each
other rather than having one big bunch of code [31].

19

Chapter 3

Related Work

In this chapter, we look into the work that has been done in this field and how we are
going to build on it or use some of it features in this thesis. Cloud-native infrastruc-
ture is a comparatively new field but there is a significant amount of research done
on this architecture. We are going to look into some of the studies that are related to
our work and we will build on their research.

3.1 Event Driven Cloud Native Application

This study [2] is about serverless computing and how it effects software develop-
ment. Serverless computing performs the best with event driven systems. The de-
mand for serverless computing is very high due to consumers wanting more efficient
and easy ways to receive events with abstraction along the challenges like handling
communication, various implementations. Serverless applications are better in per-
formance from the applications that use servers. There are a lot of cloud providers
who are providing with services that are deployed on cloud and do not use your
own servers. Those services include Amazon Web Services Lambda, Google Cloud
Functions and Microsoft Azure Functions [6]. Each service has some advantages and
challenges that a developer might face.

3.1.1 Objective

The evaluation and comparison is performed on the above mentioned serverless
computing services. The experimentation is based on what challenges and limitation
does each service has and how substantial they are. It is important to define how
much a service is dependent on other provided services to decrease the efforts of

20 Chapter 3. Related Work

developing a function. It means that service provider will be very strong if they
have increasing number of services.

In our thesis, we have used an event driven and serverless function,
Google Cloud Function. This is used to trigger every time a file is uploaded on
Google Cloud Storage. The results in this thesis has helped us with choosing and
using this service. Since Google Cloud Function is comparatively new and is still in
Alpha build, there is more room for research.

3.2 Evaluation of Two Deployment Patterns

In this study [3], there is research and evaluation of the two deployment strategies
linked to Cloud Native applications. There are no research work done in terms of
patterns being available in the industry. So, there is still room for literature reviews
and studies which gave rise to this study. The advantages and disadvantages of the
deployment strategies are studied in this report and an application is developed us-
ing these deployment strategies. This application helps to evaluate the deployment
patterns practically. There are discussions about the pros and cons of the findings
and a decision tree is built for consumers to choose their required pattern. In our
thesis, we have used this research between the deployment patterns and used it to
develop our cloud native application. To know what each pattern offers, we should
go through them briefly.

3.2.1 Bring Your Own Code

In this pattern, developers need to only care about the code they write and upload
it. The cloud providers take care of creating the containers and deploying them on
cloud [3].

3.2.2 Bring Your Own Container

In this pattern, containers are constructed by the developer and deployed on the
cloud to run. The cloud is only responsible for running the containers which gives
the developer more insight and control over the application [3].

3.3. Cloud Native Applications 21

3.3 Cloud Native Applications

In this research [13], there is a study about different key concepts of cloud native ap-
plications(CNA). There are some example CNAs which are built on these concepts.
The study discusses the most important key factors in cloud-native architecture, one
is microservices architecture and the other one is serverless computing and how
cloud services are fully managed. These ideas are discussed in detail and there in-
fluence on the future of cloud applications is stated through analysis.

It concludes that the cloud providers are constantly developing ser-
vices that are fully managed and the consumers do not have to manage the resources.
So, the overhead of scaling and managing resources has shifted from the user to the
vendors. These services work the same as any microservice in terms of being scalable
and resilient. Also, some Serverless computing examples are Google cloud functions
and AWS lambda. This study helped us with understanding the microservices archi-
tecture and serverless computing through examples and detailed analysis. We have
used the microservices architecture to build our application and created a serverless
function using google cloud functions.

3.4 Cloud Application Architectures

This research paper consists of cloud native architectures and how it got where it is
and what is the future [25]. It shows the results of a development project that was
about migrating an application from one cloud infrastructure to another one. As a
additional study, the similarities and dissimilarities are analyzed of several cloud
applications. Using this commonality study, cloud developers can take advantage
designing applications wisely for each cloud provider. Throughout this paper, re-
quired mappings of cloud native applications are analysed, some more research pa-
pers have been studied and performed action research on cloud. This research has
introduced two main factors of cloud computing, one is the evolution of the cloud
applications is visualized as the evolution of making resource usage optimized. The
other one is that these resource usage optimizations are because of cloud native ap-
plications being built in a completely different way after various standards have
been set through research.

23

Chapter 4

Design and Implementation

In this chapter, we are going to analyse the on-premises application and see how
we can recreate it in a cloud-native way and deploy it on cloud using Google cloud
platform services, which we will later discuss in this chapter. The application that
we are going to redesign according to cloud-native architecture already exists and is
called Digital Utility Playground (DUP), a delivery platform [5]. We will go through
it’s architecture in the following following section.

4.1 On-Premise Solution

DUP is a Data Delivery Platform [5], whose main functionality is to receive data
in different formats, take it through an ingestion system, perform data processing
before finally storing it in a persistent unit to apply machine learning algorithms
and to retrieve useful information. No cloud resources are used in this application.
In other words, this solution is deployed completely on-premises.

4.1.1 Architecture

This application can be divided into three sub modules which are applications, in-
frastructure and security. Figure 4.1 shows how these modules are separated from
each other. Following is the description of each module:

1. Applications

There are several sub applications working together to create the delivery plat-
form such as Ingestion applications, Internal applications, Analytics and Inte-
gration services.

24 Chapter 4. Design and Implementation

FIGURE 4.1: DUP architecture

Ingestion applications are used to ingest structured or unstructured data
into the system from various sources. The sources include files/objects with
different formats such as csv, xml and json, Stream ingestion from sensors or
Rest/Soap API calls over the web.

Internal applications are used to perform different operations such as pre
and post-processing on the data, producing records/items from the data to
Kafka topics, consuming data from Kafka topics and store in a persistent unit
such as SQL database or elastic search.

Analytics is used to visualize the data and query over it to retrieve useful
information. Analytics is a fundamental part of data delivery, to study your
data visually and use it in machine learning algorithms and tools.

Integration services can be provided with the processed data to use as re-
quired. There can be multiple integrations conected with this system that need
the data coming in with different formats but processed into the same struc-
ture.

4.1. On-Premise Solution 25

FIGURE 4.2: DUP workflow

2. Infrastructure

The infrastructure includes all the services used together with the applications.
These services include:

• Kafka Clusters: It is used as a distributed messaging system to exchange
data between the sub-applications.

• Database: It is used to store the processed data in a tabular form.

• ELK Clusters: It is used to store big data that is easily searchable.

• Container orchestration: The above mentioned applications are converted
into containers and need to be managed by an orchestration system such
as Kubernetes, Openshift , Hashicorp etc.

• Active Registry: It stores the container image with with complete man-
agement facilities such as image signing and security scanning.

3. Security

Citrix Application delivery controllers (ADC) help make the applications adapt-
able to the protocols and networks widely used. They ensure the applications
to be optimal, highly available and without security risks. They help in funda-
mental tasks such as authentication, request propagation and load balancing.

26 Chapter 4. Design and Implementation

4.1.2 Application workflow

In the previous section, we discussed the existing modules in detail. Now, we look
at how these modules are designed to interact with each other, from ingesting the
data to storing it in the database. According to Figure 4.2, there are three main steps
in the workflow:

• Step 1: The Authentication/Ingestion application takes the data from the source
and passes it onto the pre-processing application.

• Step 2: The pre-processing application takes the data, applies required pre-
processing algorithms on it and puts it on a Kafka cluster.

• Step 3: The post-processing application reads the data from the cluster, applies
post-processing techniques on it and sends it to the target services.

4.1.3 File Based Ingestion

Earlier, we discussed about different data ingestion techniques that are used in DUP
architecture. To name a few, they are Stream Ingestion (sensor), Web based ingestion
(Rest/API) and File based ingestion (xml,json,csv). All of these ingestion are used
in DUP but in this thesis, we are just going to discuss File based ingestion. Since,
this is the use-case we will implement in a cloud native way to compare with this
on-premises solution. According to Figure 4.3, File based ingestion has 5 steps.

• 1 and 2: The customer logs into Citrix ADC for authentication.

• 3: The customer uploads the files through DUP dashboard.

• 4: The customer fills the required form and an upload request is sent. More-
over, the backend APIs identify the customer’s information from headers.

• 5: The files are uploaded on the customer’s sftp directory.

4.1.4 Multi-Cloud Support

There are two ways to use cloud services in DUP architecture. First is that DUP
can use cloud services like SQS/Kinesis or Dataflow/PubSub instead of setting up
kafka. BigTable or Cloud SQL can be used as a targeted service. In this way, we don’t
need computing power from the cloud provider, just the storage resources. The ap-
plications are still running on Premise servers. The second way is that the whole

4.2. Google Cloud Platform 27

FIGURE 4.3: File based ingestion

application together with sub-applications and the entire infrastructure is migrated
to cloud. This will require the computing resources like VM clusters to run the ap-
plications and also storage resources. This is the one that we are going to adapt for
this thesis.

4.2 Google Cloud Platform

GCP provides the platform as a service to create cloud native applications. To do
that, the on-premise application has to be redesigned in order to be consistent with
GCP services. All GCP services related to storage, computing power, Data analytics
run on the same infrastructure google uses for its own products like Gmail [10].
We are going to go through the services we are using in our application briefly to
understand their importance.

4.2.1 Cloud Storage

Using this service, consumers can store and retrieve large amounts of data anywhere
in the whole world [19]. Google Cloud storage can be used with various purposes
such as serving a web application data, storing data for analysis or uploading big
data objects like files to get downloaded later.

28 Chapter 4. Design and Implementation

4.2.2 Cloud Function

Google Cloud functions are services that provides a platform to deploy functions in
a serverless environment [18]. The developers do not need to worry about managing
the infrastructure, cloud functions manage everything. These functions are built to
be uni-functional and can be triggered on an occurrence of an event. The event that
cloud functions are linked to, can be a file upload or delete on cloud storage or data
published on Google Pub/Sub.

4.2.3 Kubernetes Engine

This is a container orchestration environment which lets the developers write the
code and not worry about the deployment strategies [20]. It handles the deploy-
ments with automation instead of building pipelines. It is an open source service
which makes it ideal for any kind of application might it be on-premise or on cloud.
It basically provides us with a cluster of fully managed virtual machines that run our
docker containerized applications. Also, lets us store the containers into container
registry.

4.2.4 Pub/Sub

It is a messaging service which lets applications/microservices exchange data with
each other [21]. It is asynchronous and fully decouples the applications. It consists
of a component called topic which is used to publish and consume the data. The
data can be of any format such as a string object or Json object.

4.2.5 Bigtable

It is a NoSQL data base service provided to the customers for storing and retrieving
huge amount of data [8]. It is mainly used for analytics on Big Data and google uses
it for its own products like Maps, search etc.

4.3 Cloud-Native solution

In this section, we will redesign and implement DUP architecture according to google
cloud platform’s services that we discussed in the previous section. We will follow

4.3. Cloud-Native solution 29

FIGURE 4.4: DUP cloud architecture

the rules and theoretical bounds for creating cloud native applications discussed in
Chapter 2.

4.3.1 Architecture

The architecture for the cloud native application has to be developed again in order
to cope with google cloud platform’s services. GCP, like any other cloud provider,
provides it’s consumers with their client API. This API can be used to connect to
GCP’s services and use them as required. Figure 4.4 shows the overall architecture
of the cloud-native version of DUP. In the Figure 4.4, it is visible that only the File
based ingestion scheme is used. The numbering in the figure represents which task
is going to be performed first sequentially.

This architecture is based on microservice architecture, cloud-native
properties and 12 factor app as discussed in chapter 2. We have divided the whole
architecture into several modules. This helps us to develop each module as a sepa-
rate and stand-alone unit. Lets discuss a high level description of each module. The
numbering in each module step represents the numbering in the Figure 4.4.

• Module 1

1. Upload a .csv file to google cloud storage bucket.

2. Create and trigger cloud function on cloud storage (bucket) file upload.

3. Publish meta data of the file to google cloud Pub/Sub’s topic “FileUpload-
Topic” in that function.

30 Chapter 4. Design and Implementation

• Modlue 2

Create and deploy a service (Parser) using KBE that:

4. Consumes meta data from “FileUploadTopic”.

5. Reads file from the bucket.

6. Parses file content to JSON and Publishes each JSON object to “FileCon-
tentTopic”.

• Module 3

Create and deploy a service (Consumer) using KBE that:

7. Consumes each JSON from “FileContentTopic”

8. Stores that JSON to “FileContentTable” in BigTable.

4.3.2 Implementation

Before we start implementing module 1, there are some prerequisites to complete.
These pre-conditions include:

• Creating a project on GCP with command:

cmd [16]: "gcloud projects create projectID"

• Enabling billing for that project.

• Enabling cloud function, storage and other APIs to be used.

• Installing and setting up the google cloud SDK.

• Installing the updated gcloud components with the command:

cmd [16]: "gcloud components update"

• Setting up the development environment such as Python, Java, Go.

After finishing this setup. we check in the GCP console if the project has been created
successfully. Figure 4.5 shows the description of the projects created.

Module 1

Since, we are just focusing on File-based ingestion in our implementation. So, the
first step is to see how we can ingest/upload a file. For that, we create a bucket in
the google cloud storage. This bucket gives the functionality to upload a file.

4.3. Cloud-Native solution 31

FIGURE 4.5: Project description

FIGURE 4.6: Module 1 workflow

Following is the command we can use to create a bucket:

cmd [16]: "gsutil mb gs://BUCKET-NAME"

For example: cmd [16]: "gsutil mb gs://file-upload-bucket2032"

Now that we have created a bucket, we need deploy a cloud function that is trig-
gered every time a file is uploaded. The reason for this event trigger is to read the
meta data of the file and publish it on Pub/Sub. So that the services looking for up-
loaded files can read the meta data off Pub/Sub and consequently read the file from
the bucket. Figure 4.6 shows the architecture of module 1.

We also need to create a Pub/Sub Topic with a subscription that any service can use
to read the data off that Topic. Following is the command used to create a topic:

cmd [23]: "gcloud pubsub topics create TopicName"

For example:

cmd [23]: "gcloud pubsub topics create FileUploadTopic"

32 Chapter 4. Design and Implementation

FIGURE 4.7: Cloud function deployment

In the current situation we have the following events that can trigger from cloud
storage [16]:

• Finalize: This event occurs when an object is uploaded on cloud storage.

• Delete: This event occurs when an old version of a file is deleted or it is over-
written .

• Archive: It is only used in buckets with versions. Basically, it triggers when a
file is deleted or archived.

• Metadata Update: This event occurs when the metadata of the file is changed.

Algorithm 1 Cloud function

1: procedure TRIGGER-FILE-UPLOAD-TOPIC(data, context)
2: projectId← con f ig.get(”PROJECTID”)
3: topicName← con f ig.get(”TOPICNAME”)
4: topicPath← publisher.topicPath(projectId, topicName)
5: encodedData← json.dumps(data).encode(′ut f − 8′)
6: f uture← publisher.publish(topicPath, data = encodedData)
7: return f uture.result()

4.3. Cloud-Native solution 33

FIGURE 4.8: Subscription Details

In our case, we need to trigger a function when a file is uploaded. So, we need the
Finalize event trigger function. We have used python as the programming language
to develop the function. Algorithm 1 shows the procedure which takes the data meta
data of the file and publishes on "FileUploadTopic". Figure 4.7 shows the deployed
cloud function. We have created a subscription to the topic. Figure 4.8 shows the
details of the subscripiton.

Following is the command to deploy the cloud function:

cmd [16]: "gcloud functions deploy function-name –runtime nodejs8 –trigger-resource
bucket-name –trigger-event google.storage.object.finalize"

For example:

cmd [16]: "gcloud functions deploy Trigger-File-Upload-Topic –runtime nodejs8 –trigger-
resource file-upload-bucket2032 –trigger-event google.storage.object.finalize"

Now, we upload the file to trigger the function. Following is the command to upload
a file:

cmd [16]: "gsutil cp file-name.csv gs://bucket-name"

For example:

cmd [16]: "gsutil cp test-file.csv gs://file-upload-bucket2032"

Module 2

We have the meta data of the uploaded file into the Pub/Sub topic. Now, we want
to read this data and based on it we read the file from cloud storage bucket. Figure
4.9 shows the architecture of Module 2.

Firstly, we need to create a parser service that reads the metadata of the file, reads
the file content and publishes the content back to Pub/Sub. We created the parser

34 Chapter 4. Design and Implementation

FIGURE 4.9: Module 2 workflow

microservice in java and deployed it on google kubernetes engine (KBE). To deploy
the parser service we first need to create a cluster of virtual machines on KBE. A
cluster of VM is used to run docker containerized applications. So, following is the
command used to create a KBE cluster:

cmd [22]: "gcloud beta container –project "ambient-polymer-228615" clusters create "dup-
cluster" –zone "us-central1-a" –username "admin" –cluster-version "1.11.8-gke.6" –machine-
type "n1-standard-1" –image-type "COS" –disk-type "pd-standard" –disk-size "100" –
scopes "bigquery","cloud-platform","cloud-source-repos","cloud-source-repos-ro","compute-
ro","compu te-rw","datastore","default","gke-default","logging-write","monitoring","monitoring-
write"," pubsub","service-control","service-management","sql","sql-admin","storage-full","storage-
ro" ,"storage-rw","taskqueue","trace","userinfo-email" –num-nodes "3" –enable-cloud-logging
–enable-cloud-monitoring –no-enable-ip-alias"

In this command [22], we need to set the scope and permissions for the gcp ser-
vices that our application can use along with the project name, cluster name, zone,
machine types.

Once we created the cluster, we can deploy our application on this cluster. Cloud
build trigger is used for continuous deployment and integration. Cloud build lets
us connect with a github repository and trigger the build every time we commit

4.3. Cloud-Native solution 35

FIGURE 4.10: cloudbuild.yml code snippet

FIGURE 4.11: Cloud build trigger

changes to that repository. We need a cloudbuild.yml file in the application that per-
forms the following steps [17]:

• Creates a docker container image of the application.

• Pushes that image to the container registry.

• Deploys the image to KBE cluster.

Figure 4.10 is the code snippet of the cloudbuild.yml file. The steps in the code are
performed sequentially.

36 Chapter 4. Design and Implementation

FIGURE 4.12: Meta data logs

FIGURE 4.13: Data as Json object

Once we have the application ready with the cloud build file. We create the trigger
that is connected with the github repository of this application. Figure 4.11 shows
the trigger details.

Now, that our parser service is deployed on kubernetes, it can read the metadata
from the Pub/Sub topic. figure 4.12 shows the logs containing the meta data and
how the necessary information to read the file is extracted from it such as bucket
and file name. The file is then read from cloud storage using this information. The
test file we are using is about meter readings of smart meters.

Once the file is read, we take each row and create a json object and push it to the
Pub/Sub topic "FileContentTopic". The data consists of attributes such as is, me-
ter_reading, meterpoint_id etc. Figure 4.13 shows the json object we created from
the first row of the file content.

4.3. Cloud-Native solution 37

FIGURE 4.14: Module 3 workflow

Module 3

In this module, we read each json object from "FileContentTopic" and save it in
google cloud Bigtable. For that, we need to create we first need to create an in-
stance of Bigtable. Inside that instance, we create a table where we can store our
data. Figure 4.14 shows the workflow of module 3.

The first thing is to create a Bigtable Instance. Following is the command to create a
Bigtable instance:

cmd [15]: "cbt createinstance filecontenttable FileContentTable filecontenttable-c1 us-central1-
a 3 SSD"

We can check the instance details in Figure 4.15. Now, we can create a table inside
this instance. Following is the command that creates a Bigtable table:

cmd [15]: "cbt createtable DataTable"

Now, the Bigtable database is ready to receive the data from the consumer service.
This microservice is also going to be deployed on Kubernetes engine like Parser.
It posts the Json data that it gets from Pub/Sub’s "FileContentTopic" to Bigtable’s
"DataTable". Figure 4.16 shows the montitoring platform that Bigtable provides.

Github

The cloud native application is developed using microservices architecture. These
microservices are supposed to be deployed on google cloud platform. The code for
these microservices is hosted as github repositories. The repositories are public and
added in the citation of this thesis [34, 32, 33].

38 Chapter 4. Design and Implementation

FIGURE 4.15: Bigtable instance

FIGURE 4.16: Bigtable Monitoring

39

Chapter 5

Experimentation and Evaluation

This chapter consists of the experiments performed and evaluation of the on-premise
and cloud native applications. In this thesis, all the experiments are done to achieve
two main objectives, Decreased time to market and Extensibility and security. Since
our objective is that it takes minimum time to develop and deploy the application
with maximum security so that user experience becomes better.

5.1 Setup

The on-premise application is developed and deployed on local servers. The speci-
fications of the on-premise server was initially 4 GB of RAM and 120 GB Hard disk.
Later, Due to adding more features, it was changed to 8 GB RAM and 250 GB Hard
disk. On the other hand, it’s counterpart cloud native application is deployed on
google cloud platform using PaaS model. We use Kubernetes engine’s standard clus-
ter of 3 nodes to deploy services. Each node in a standard cluster has 4 GB of RAM.
This can be scaled up to a high performance cluster when required. We ran the ex-
periments first on the on-premise application using metrics such as provision and
scaling, continuous integration and deployment, testing, zero downtime, extensibil-
ity, security, resiliency, agility, observability. We noted down the results from the first
experiments and performed the same experiments on the cloud native application.
We will put all these results ahead in the report and talk about the advantages and
disadvantages of each architecture based on our evaluation.

5.2 Decreased time to market

In this section, we will list the experiments and their results, performed to make the
delivery time minimum to the user. There are some specific cases which affect the

40 Chapter 5. Experimentation and Evaluation

FIGURE 5.1: Comparing Provision and Scaling

time to market. We will evaluate all of these cases one by one.

5.2.1 Provisioning and Scaling

Most applications, after a certain time, need to be scaled up or down depending
upon the usage and memory/resource management. For the applications that are
on-premise, it is a very long and cumbersome task to scale up. That is mainly be-
cause RAM and Hard disk have to be physically put in the servers and get allocated
to the required application. The developers need to solve the software issues that
come with it.

The cloud native application, on the other hand, is easily scalable. RAM, Hard disk,
Virtual machines can be easily increased on demand. We only have to use and pay
for the services we are using at a given time, no more no less.

We ran some experiments to scale up the on-premise application and compared it
with the cloud-native application. First experiment is to increase the Disk space,
which on-premise application took 48 hours. We changed it from 120 GB to 250 GB.
On the other hand, Disk space on a cluster is increased just on demand. We need

5.2. Decreased time to market 41

to take the cluster down, go through the instructions for increased resources, and
increase it. It took 3 hours in total for the whole process. For RAM it took 24 hours
on-premise server and took 4 hours on cloud. Since, we only need to change the
cluster from standard to CPU intensive cluster. Managing resources for on-premise
application was a big task due to the teams working on it. It took 36 hours and on
cloud, it took 10 hours because of it being one use case of the entire application.
The difference of timings are huge in comparison of on-premise and cloud-native,
that is because cloud is managed by providers and you just need to demand. For
on-premise, you need to physically add the modules and manage them in software.
Figure 5.1 shows these experiments in a plot.

5.2.2 Continuous Integration

Continuous deployment and integration is a fundamental part of application devel-
opment today due to the DevOps culture. Developers need to continuously merge
all branches of code a couple of times daily in order to avoid bugs and conflicts later.
Also, we need an automated setup for deploying changes into production. So, the
developers can be totally focused on the job in hand rather than worrying about the
deployment strategy.

With on-premise applications the process of integration and deployment is easier
said than done. Developers need to create CI/CD pipelines to deploy changes. Au-
tomation is not possible here, developers manually need to setup a build tool such
as Jenkins. In other words, developers have to worry about the Operational work
such as deployment strategies on top of developing the application.

On the other hand, the cloud native application consists of automated operational
tasks. Developers do not need to setup any build tools or create pipelines. GCP
provides us with cloud build triggers that we discussed in chapter 4. Cloud build
provides the resource to deploy the changes into production by just committing your
code into the master branch of your Github repository. It lets you connect your
microservice running on kubernetes engine to Github. An automated pipeline is
generated and the developers only focus on the development part rather than the
operational tasks.

To compare the performance of the two applications in terms of CI/CD, we ran
some experiments. These experiments consist of keeping the deployment times of
each microservice and compare which architecture gives better results. Figure 5.2
shows the deployment times for multiple attempts to deploy the function that trig-
gers when a file is uploaded. The on-premise times were 4,5,4.5,5.6,4,5.2 (hours) and
on cloud they were 0.1,0.2,0.1,0.3,0.2,0.3 (hours). Figure 5.3 shows the deployment
times for multiple attempts to deploy the parser service. The on-premise times were

42 Chapter 5. Experimentation and Evaluation

5,4.2,4.1,5.2,6.1,5.1 (hours) and on cloud they were 0.3,0.2,0.1,0.4,0.3,0.4 (hours). Fig-
ure 5.4 shows the deployment times for multiple attempts to deploy the consumer
service. The on-premise times were 3,4,4.5,5.3,4.5,4.7 (hours) and on cloud they were
0.2,0.2,0.1,0.1,0.3,0.2 (hours). Figure 5.5 shows the average time of each service and
compares the two approaches. The average time for deploying cloud function on-
premise was 4.7 hours and on cloud was 0.3 hours. For Parser service, it was 5
hours on-premise and 0.4 hours on cloud. For consumer service, it was 4.3 hours
on-premise and 0.3 hours on cloud.

You can see the huge differences in deployment times of on-premise and cloud na-
tive applications. That is because cloud native approach provides us with automa-
tion around DevOps.

Zero Downtime

Another thing to consider when talking about CI/CD is the ability to deploy changes
in the application without any down time. The on-premise application does not
support zero downtime deployment because the application has to be taken down
of the production server in order to change it and deploy it back. On the other hand,
the cloud native application provides with the functionality to deploy new versions
of the application while the old version is still running. Doing this, the customers or
other integration services using your application do not experience down time.

5.3 Extensibility and Security

5.3.1 Extensibility

This is an important factor to analyse when evaluating a cloud native application.
Extensibility is one of the main differences between cloud native and monolithic
applications. Table 5.1 shows the percentages of different features related to exten-
sibility for on-premise and cloud. We can clearly see that for loose coupling, mod-
ularization and extensibility on premise numbers are not above required. But using
GCP, microservices are 100% loosely coupled, modularized and are extensible.

5.3.2 Security

The developers do not have to implement security. Google is making GCP the most
secure cloud platform. Security at Infrastructure, resource, API and identity level

5.3. Extensibility and Security 43

Features Sub level On-
premise
status(%)

Required
status(%)

GCP
level(%)

Loose cou-
pling

code (service) 70 min 90 100

Infrastructure 20 min 90 100
Modularization code (service) 80 min 90 100

Infrastructure 10 min 90 100
Extensibility code (service) 70 min 90 100

Infrastructure 70 min 90 100

TABLE 5.1: Extensibility

should be high but also the effort for implementation should be low. The cloud
provider GCP, provides us infrastructure, hardware and software, so we do not need
it handle security there which makes it low in Figure 5.2. Also, each resource such as
kubernetes engine, Pub/Sub are provided by GCP, so we do not need to implement
security. At API level on the other hand, GCP provides us with client API which
we use to access the resources. But, still we need to download a security key and
include it in the program, which makes it medium level effort in Figure 5.2.

Features Security level
On-premise

Effort On-
premise

GCP level GCP effort

Infrastructure
level security

High High High Low

Resource level
security

Medium High High Low

API level secu-
rity

High Medium High Medium

Identity based High High High Low

TABLE 5.2: Security

5.3.3 Agility

GCP is very impressive agility vise. Its easy to understand services with proper
help from its client libraries makes it easy to migrate to. Table 5.3 shows the dif-
ference of agility on-premise and on GCP. Development takes some effort because
you need to redesign the application according to GCP services. So, it is medium
in Table 5.3. Testing for GCP is high because it provides us with proper logging
and monitoring mechanism, using which we can test if it works as intended or not.
Also, deployment is high in terms of agility because of automation around DevOps

44 Chapter 5. Experimentation and Evaluation

through cloud build trigger discussed in the previous section. On the other hand,
on-premise application has low development and testing agility while still having
better deployment.

Features On-premise level GCP level
Development Low Medium
Testing Low High
Deployment
(Production)

Medium High

TABLE 5.3: Agility

5.3.4 Observability

GCP provides you with services to monitor the application. It gives you a plat-
form to show logs, tracing and report errors. Table 5.4 shows difference between
observability features. GCP provides with Stackdriver Trace, which makes tracing
bottlenecks into a service easy and thus it is high in Figure 5.4. GCP also provides
with Logging and montioring service such as Stackdriver Logging. It gives all the
logs from the whole application in one place making it easier to read the logs and
which is why it is high in Figure 5.4. There is no error reporting on-premise but GCP
provides us with Stackdriver Error Reporting, using which errors are isolated and
effected services are shown.

Features On-premise level Expected level GCP level
Tracing Medium High High
Logging Low High High
Error Reporting NA High High

TABLE 5.4: Observability

5.3. Extensibility and Security 45

FIGURE 5.2: Deploying Trigger Function

FIGURE 5.3: Deploying Parser Service

46 Chapter 5. Experimentation and Evaluation

FIGURE 5.4: Deploying Consumer Service

FIGURE 5.5: Average for Adding Feature

47

Chapter 6

Conclusion and Future Work

Cloud computing has made a huge impact on application development today. Ap-
plications that needed big noisy, expensive and hard to manage servers do not need
them anymore. Cloud provides them the whole Infrastructure as a Service, Platform
as a Service, or Software as a Service, making it easy to develop and deploy the
applications unlike on-premise.

Migrating to cloud comes with its challenges. The companies either move their
applications on cloud or develop cloud native applications from scratch to exploit
cloud potential to its maximum. To do that, they need to follow some characteristics
and cloud native properties to create an application that is best suited for cloud.

We saw that to create a cloud native application from an on-premise monolith, the
design for the application can be same throughout different cloud providers, since
they all provide with alternate services. But, the developers need to develop the
application according to each cloud. Each cloud platform e.g. Google cloud platform
gives it services with a specified set of client libraries to access those services. To
program the application for some other cloud provider, we will have to use different
client libraries to access their services.

In this thesis, we also created a cloud native application from an on-premise mono-
lith. First, we designed the architecture based on google cloud platform services.
Then, we developed the application in a cloud native way following all the prop-
erties stated in the background chapter. Finally, we run some experiments to anal-
yse and evaluate the performance of the two architectures. The main differences
we looked into are related to DevOps culture, ease of implementation, continuous
development and integration, extensibility and scalability, security and decreased
time to market. The experiments have shown some drastic results. The findings
are all hugely in favor of cloud native architecture. Since, it is easily extensible, mi-
croservices are scalable and can be added for additional functionality, automated
at deployment ends, continuous deployment takes minutes in response to hours

48 Chapter 6. Conclusion and Future Work

on-premise. Provision and scaling for computing resources is easier since it can be
added on demand rather than having to physically manage them on on-premise
servers.

In the future, there is scope for improvement and additional functionality on this
report. Firstly, we can add machine learning algorithms in our application. since we
worked on just File based ingestion usecase in this thesis, we can develop the whole
DUP on-premise application in a cloud native architecture. Support for multi-cloud
can be added in the future to make it easier to migrate to other cloud providers, the
possibilities are limitless with cloud.

49

Bibliography

[1] M. Ahronovitz, D. Amrhein, and P. Anderson. “Cloud Computing Use Cases -
A white paper”. In: (Sept. 2010), pp. 20–21. URL: http://cloudusecases.org.

[2] Tareq Ahmed Ali Al-Maamari. “Aspects of Event-Driven Cloud-Native Ap-
plication Development”. MA thesis. Universitätsstraße 38 D–70569 Stuttgart:
University of Stuttgart, 2016.

[3] Mirna Alaisami. “Cloud-native Applications: Authoring and Evaluation of
Two Deployment Patterns”. MA thesis. Universitätsstraße 38 D–70569 Stuttgart:
University of Stuttgart, 2018.

[4] Michael Armbrust et al. “Above the Clouds: A Berkeley View of Cloud Com-
puting”. In: 1 (Feb. 2009), pp. 1–9. URL: http://citeseerx.ist.psu.edu/
viewdoc/citations?doi=10.1.1.149.7163.

[5] Sysco AS. Digital Playground (a part of SYSCO Energy Cloud). URL: https://
sysco.no/smidig-overgang-till-2gen-ams-hur-kan-vi-bli-battre-an-
norge/.

[6] A. B. Bondi. “Characteristics of Scalability and Their Impact on Performance”.
In: Proceedings of the 2Nd International Workshop on Software and Performance
(2014), 195–203. URL: http://doi.acm.org/10.1145/350391.350432.

[7] K. CHANDRASEKARAN. Essentials of CLOUD COMPUTING. 6000 Broken
Sound Parkway NW, Suite 300: Taylor & Francis Group, LLC, 2015.

[8] Fay Chang et al. “Bigtable: A distributed storage system for structured data”.
In: In proseceding of the 7th conference on USENIX symposium on operating systems
design and implementation - VOLUME 7. 2006, pp. 205–218.

[9] S. Daya, N. Van Duy, and C. Ferreira K. Eati. Microservices from Theory to Prac-
tice: Creating Applications in IBM Bluemix Using the Microservices Approach. Read-
ing, Massachusetts: IBM Redbooks, 2016.

[10] Edureka. “Google Cloud Platform Fundamentals”. In: (2018). URL: https://
www.edureka.co/blog/what-is-google-cloud-platform/.

[11] C. Fehling et al. Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer Publishing Company, Incorporated, 2014,
pp. 21–23.

http://cloudusecases.org
http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.149.7163
http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.149.7163
https://sysco.no/smidig-overgang-till-2gen-ams-hur-kan-vi-bli-battre-an-norge/
https://sysco.no/smidig-overgang-till-2gen-ams-hur-kan-vi-bli-battre-an-norge/
https://sysco.no/smidig-overgang-till-2gen-ams-hur-kan-vi-bli-battre-an-norge/
http://doi.acm.org/10.1145/350391.350432
https://www.edureka.co/blog/what-is-google-cloud-platform/
https://www.edureka.co/blog/what-is-google-cloud-platform/

50 BIBLIOGRAPHY

[12] A. FELDMAN and C. HENRY. “Best Practices for Developing Cloud-Native
Applications and Microservice Architectures”. In: The Net Stack (Feb. 2015),
p. 23. URL: http://thenewstack.io/best- practices- for- developing-
cloud-nativeaplications-and-microservice-architectures.

[13] Dennis Gannon, Roger Barga, and Neel Sundaresan. “Cloud-Native Applica-
tions”. In: IEEE Cloud Computing 4 (Sept. 2017), pp. 16–21. DOI: 10.1109/MCC.
2017.4250939.

[14] Justin Garison and Kris Nova. Cloud Native Infrastructure. Ed. by Virginia Wil-
son and Nikki McDonald. 1005 Gravenstein Highway North, Sebastopol, CA
95472.: O’Reilly Media, Inc., Nov. 2017.

[15] Google. “Bigtable Instance creation”. In: (2016). URL: https://cloud.google.
com/bigtable/docs/creating-instance.

[16] Google. “Cloud storage Tutorial”. In: (2016). URL: https://cloud.google.
com/functions/docs/tutorials/storage.

[17] Google. “Creating Build configuration”. In: (2016). URL: https : / / cloud .
google . com / cloud - build / docs / configuring - builds / create - basic -
configuration.

[18] Google. “Google Cloud Functions. Google Inc. 2016”. In: (2016), p. 48. URL:
https://cloud.google.com/functions.

[19] Google. “Google Cloud Storage. Google Inc. 2016”. In: (2016). URL: https:
//cloud.google.com/storage/.

[20] Google. “Google Kubernetes Engine. Google Inc. 2016”. In: (2016). URL: https:
//cloud.google.com/kubernetes-engine/.

[21] Google. “Google Pub/Sub. Google Inc. 2016”. In: (2016). URL: https://cloud.
google.com/pubsub/.

[22] Google. “Kuberenets Cluster Creation”. In: (2016). URL: https : / / cloud .
google.com/kubernetes-engine/docs/how-to/creating-a-cluster.

[23] Google. “Pub/Sub Topic Management”. In: (2016). URL: https : / / cloud .
google.com/pubsub/docs/admin#pubsub-create-topic-cli.

[24] Heroku. The twelve-factor app methodology for building robust SaaS. 2017. URL:
http://12factor.net/.

[25] Nane Kratzke. “A Brief History of Cloud Application Architectures”. In: Lübeck
University of Applied Sciences 1 (Aug. 2018), pp. 10–21.

[26] J. Lewis and M. Fowler. “Microservices , a definition of this new architec-
tural term”. In: (2014), p. 26. URL: http://martinfowler.com/articles/
microservices.html.

http://thenewstack.io/best-practices-for-developing-cloud-nativeaplications-and-microservice-architectures
http://thenewstack.io/best-practices-for-developing-cloud-nativeaplications-and-microservice-architectures
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/MCC.2017.4250939
https://cloud.google.com/bigtable/docs/creating-instance
https://cloud.google.com/bigtable/docs/creating-instance
https://cloud.google.com/functions/docs/tutorials/storage
https://cloud.google.com/functions/docs/tutorials/storage
https://cloud.google.com/cloud-build/docs/configuring-builds/create-basic-configuration
https://cloud.google.com/cloud-build/docs/configuring-builds/create-basic-configuration
https://cloud.google.com/cloud-build/docs/configuring-builds/create-basic-configuration
https://cloud.google.com/functions
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster
https://cloud.google.com/pubsub/docs/admin#pubsub-create-topic-cli
https://cloud.google.com/pubsub/docs/admin#pubsub-create-topic-cli
http://12factor.net/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY 51

[27] Peter Mell and Timothy Grance. “The NIST Definition of Cloud Computing”.
In: NIST Special Publication 800-145 (Sept. 2011), pp. 20–21. URL: https : / /
nvlpubs . nist . gov / nistpubs / Legacy / SP / nistspecialpublication800 -
145.pdf.

[28] Goran Novkovic. Manufacturing in the Cloud. Part II: 5 Characteristics of Cloud
Computing. 2019. URL: http://blog.mesa.org/2017/08/manufacturing-in-
cloud-part-ii-5.htmls.

[29] C. Richardson. Microservice architecture patterns and best practices. 2018. URL:
http://microservices.io.

[30] Amazon Web Services. Benefits of Microservices. URL: https : / / docs . aws .
amazon.com/whitepapers/latest/microservices-on-aws/benefits-of-
microservices.html.

[31] Amazon Web Services. Challenges of Microservices. URL: https://docs.aws.
amazon.com/whitepapers/latest/microservices-on-aws/challenges-of-
microservices.html.

[32] Hafiz Rayaan Shahid. DUP Cloud consumer Microservice. https://github.com/
rayaanshahid/dup-cloud-consumer. 2019.

[33] Hafiz Rayaan Shahid. DUP Cloud Function Microservice. https://github.com/
rayaanshahid/dup-cloud-function. 2019.

[34] Hafiz Rayaan Shahid. DUP Cloud Parser Microservice. https://github.com/
rayaanshahid/dup-cloud-parser. 2019.

[35] Edwin Shouten. “Rapid elasticity and the cloud”. In: (Feb. 2012), p. 23. URL:
http://www.thoughtsoncloud.com/2012/09/rapid-elasticity-and-the-
cloud/.

[36] Rishabh Software. Cloud Computing Deployment And Service Models. 2019. URL:
https : / / www . rishabhsoft . com / blog / basics - of - cloud - computing -
deployment-and-service-models.

[37] Luis M. Vaquero et al. “A break in the clouds: Towards a cloud definition”.
In: ACM SIGCOMM Computer Communication Review (2009), pp. 50–55. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.176.6131&
rank=3.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://blog.mesa.org/2017/08/manufacturing-in-cloud-part-ii-5.htmls
http://blog.mesa.org/2017/08/manufacturing-in-cloud-part-ii-5.htmls
http://microservices.io
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/benefits-of-microservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/benefits-of-microservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/benefits-of-microservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/challenges-of-microservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/challenges-of-microservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/challenges-of-microservices.html
https://github.com/rayaanshahid/dup-cloud-consumer
https://github.com/rayaanshahid/dup-cloud-consumer
https://github.com/rayaanshahid/dup-cloud-function
https://github.com/rayaanshahid/dup-cloud-function
https://github.com/rayaanshahid/dup-cloud-parser
https://github.com/rayaanshahid/dup-cloud-parser
http://www.thoughtsoncloud.com/2012/09/rapid-elasticity-and-the-cloud/
http://www.thoughtsoncloud.com/2012/09/rapid-elasticity-and-the-cloud/
https://www.rishabhsoft.com/blog/basics-of-cloud-computing-deployment-and-service-models
https://www.rishabhsoft.com/blog/basics-of-cloud-computing-deployment-and-service-models
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.176.6131&rank=3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.176.6131&rank=3

	Abstract
	Acknowledgements
	Introduction
	Chapters

	Background
	Cloud Computing
	Service Models
	Deployment Models
	Cloud Computing Characteristics
	Application Workloads
	Cloud-Native Properties

	Microservices Architecture
	Characteristics
	Benefits
	Complexities

	Related Work
	Event Driven Cloud Native Application
	Objective

	Evaluation of Two Deployment Patterns
	Bring Your Own Code
	Bring Your Own Container

	Cloud Native Applications
	Cloud Application Architectures

	Design and Implementation
	On-Premise Solution
	Architecture
	Application workflow
	File Based Ingestion
	Multi-Cloud Support

	Google Cloud Platform
	Cloud Storage
	Cloud Function
	Kubernetes Engine
	Pub/Sub
	Bigtable

	Cloud-Native solution
	Architecture
	Implementation
	Module 1
	Module 2
	Module 3
	Github

	Experimentation and Evaluation
	Setup
	Decreased time to market
	Provisioning and Scaling
	Continuous Integration
	Zero Downtime

	Extensibility and Security
	Extensibility
	Security
	Agility
	Observability

	Conclusion and Future Work

