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Abstract 

The present study investigates turbulent flow over square and trapezoidal wall-mounted subsea 

covers in single and tandem configuration.  

The structures under investigation in the single configuration are subjected to a turbulent boundary 

layer flow at Reynolds numbers of 1.19 × 10&and 1 × 10' (based on the height of the structures 

and the free stream velocity) using Reynolds-averaged Navier-Stokes (RANS) equations 

combined with the 𝑘 − 𝜔 Shear Stress Transport (SST) turbulence model. The mesh independence 

is assessed and comparisons with the published data are made. The results are found to be 

reasonably accurate as compared to the published data. Time averaged results for pressure, velocity 

profiles, bed shear stress and hydrodynamic coefficients around single structures are investigated 

for different trapezoidal configurations. 

The structures in tandem configuration are subjected to the same flow conditions as the single 

structure case at the Reynolds number of 1.19 × 10& using the Reynolds-averaged Navier-Stokes 

(RANS) equations combined with the 𝑘 − 𝜔 Shear Stress Transport (SST) turbulence model. The 

mesh independence studies with the variation of the normalized gap ratio 𝐺/𝐷 between the two 

structures are carried out. Time averaged results for pressure, horizontal velocity profile and 

hydrodynamic coefficients around structures in tandem are studied with different 𝐺/𝐷  and 

trapezoidal configurations. 
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1 Introduction 
 

1.1 Background and motivation 
 

The offshore industry is continuously shifting to deeper waters with advanced subsea equipment 

in the Norwegian continental shelf. The submerged equipment is exposed to impact loads from 

dropped objects and environmental loads exerting on the seabed. Therefore, protection covers 

are often required to shield the most exposed components from critical impact loads. Glass 

reinforced plastic (GRP) covers have recently been used widely due to its low-cost, high 

strength and good corrosion properties. The GRP covers are produced in various shapes and 

sizes, and often as elongated ribs to cover pipeline segments. However, the weight of a GRP 

cover is typically one third of a subsea steel cover with the equivalent size; hence, it is more 

sensitive to hydrodynamic forces (Nymo, 2015).   

 

 

 

 

The seabed flow forces imposed on the GRP covers are composed of the current and wave 

induced streams resulting in a high Reynold turbulent boundary layer flow. The GRP covers 

are regularly subjected to extreme subsea environmental conditions and at a typical Reynolds 

number of 300 < 𝑅𝑒 < 3 × 10& (sub-critical regime) and 𝑅𝑒 > 4 × 10' (transcritical regime) 

(Ong et al, 2010). Here 𝑅𝑒 = 𝑈N𝐷/𝜈  where 𝑈N  is the free stream velocity and 𝐷  is the 

Figure 1.1.1 GRP cover over subsea installation (www.highcomp.no) 
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structure/cover height and 𝜈  is the kinematic viscosity of the fluid. Flows around these 

structures are complex and depends on various parameters such as Reynolds number, 

normalized boundary layer thickness 𝛿/𝐷 (𝛿 is the incident boundary layer thickness) and the 

shape of the structures (Adams & Johnston, 1988). Analytical solutions for these types of flow 

problems are yet not feasible for engineering design. Hence, experimental and numerical 

investigations are needed to study the hydrodynamic behaviors. 

 

In recent years, Computational Fluid Dynamics (CFD) has become a popular method when 

investigating high Reynolds flow problems. Recent advances in computing power and software 

development have made CFD more accessible for both industry and research purposes. In an 

economical point of view, Reynolds-Averaged Navier-Stokes RANS is preferred over Direct 

Numerical Simulation (DNS) and Large Eddy Simulation (LES) due to lower computational 

cost as well as giving reasonable engineering accuracy in predicting the hydrodynamic forces.  

 

This thesis will investigate boundary layer flow over two dimensional subsea covers in single 

and tandem configurations using the RANS k-𝜔  SST turbulence model. Hydrodynamic 

coefficients, bed shear stress, recirculation length, pressure distribution and velocity profiles 

will be studied for different bottom angles of the trapezoidal configurations and different gap 

ratios between the structures in tandem. The numerical setup will be validated to the published 

experimental data with respect to drag coefficient and flow profiles over a wall-mounted square. 

 

1.2 Literature review 

Many experimental and numerical studies have been carried out to investigate the flow around 

wall mounted structures at high Reynolds numbers. Arie et al. (1975) conducted experimental 

studies of the pressure distribution around square structures subjected to a turbulent boundary 

layer flow at Reynolds numbers 3.41 × 10c < 𝑅𝑒 < 1.19 × 10& . Tauqeer et al. (2017) 

conducted a numerical study for flows around subsea covers with different geometries subjected 

to different 𝛿/𝐷 at 𝑅𝑒 = 1 × 10' . The study presented reasonable results compared to the 

experimental data (Arie et al., 1975) using the 𝑘 − 𝜀  turbulence model. Hydrodynamic 

quantities on wall-mounted structures with different geometries were also investigated. 

Meroney & Neff (2010) conducted validation studies on turbulence models for flows over wall-

mounted panels. The study found that the 𝑘 − 𝜔 turbulence model is sufficient to reproduce 
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consistent hydrodynamic quantities with the experimental data. Martinuzzi et al. (1993) 

investigated flow over square ribs with varying spanwise lengths 𝑊/𝐷 (𝑊 is the spanwise 

length of the rib structures and 𝐷 is the height of the structures) using experiments. The study 

found that the flow around rib structures with 𝑊/𝐷 >10 can be considered as two-dimensional. 

Liu et al. (2008) studied the spatio-temporal characteristics of the separation and reattachment 

of turbulent flows over a two-dimensional square rib at 𝑅𝑒 = 1.32 × 10c with 𝛿/𝐷 = 0.75. 

Synchronized measurements of fluctuating pressure and velocity were obtained by using 

microphone arrays and a split-fiber film. The study showed that the shear layer separates from 

the leading edge of the rib, sweeps past the rib and reattaches on the bottom wall with a distance 

of 𝑥_ = 9.75 from the rib. Ryu et al. (2007) investigated the characteristics of turbulent channel 

flow over two-dimensional rib structures in tandem at 𝑅𝑒 = 2 × 10c  employing Reynolds 

Averaged Navier-Stokes Equations and the 𝑘 − 𝜔 turbulence model. The structures in their 

study were square, triangular, semicircular and wavy wall (sinusoidal function shaped). It was 

found that the square shaped structure imposed the most resistance to the incoming flow while 

the wavy wall offered the least. The results were in good agreement with experimental data and 

the RANS 𝑘 − 𝜔 turbulence model was found to capture the essential features of flow over 

wall-mounted structures.  

The literature review shows that flow around wall-mounted structures has been studied in 

experiments for high Reynolds numbers and by RANS equations with the 𝑘 − 𝜀 and the 𝑘 − 𝜔 

turbulence models. To the authors knowledge, the hydrodynamic effects of varying trapezoidal 

configurations have not been studied using 2D RANS equations with 𝑘 − 𝜔 SST turbulence 

model.  
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1.3 Outline 
 
Chapter 2 presents the fundamental theories for wall-mounted structures under turbulent flow. 

This includes theory on flow over bluff and streamlined bodies, and an introduction to 

turbulence. 

 

Chapter 3 gives an introduction to Computational Fluid Dynamics (CFD) and the software 

used in the present study. 𝑘 − 𝜔  SST turbulence model and governing equations are explained 

in detail.  

 

Chapter 4 describes the computational model and boundary conditions used throughout the 

study.  

 

Chapter 5 presents the results of the single case simulations. The convergence and validation 

study are presented and discussed. The pressure contours, velocity profiles, streamlines and bed 

shear stress profiles are shown and discussed thoroughly for the single structure case. 

 

Chapter 6 presents the results of the tandem case simulations. The convergence study is 

presented for the different gap ratios between the two structures. The pressure contours, velocity 

profiles and streamlines are shown and discussed in detail for the tandem case.  

 

Chapter 7 gives the conclusions and outlines the main findings from Chapter 5 and Chapter 6. 

Possibilities for further work on the subject of flow over wall-mounted structures are also 

presented. 
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2 Theory 
 

This chapter gives a brief theoretical introduction to the basic fluid dynamic principles and 

concepts which are relevant for studying wall-mounted structures in a turbulent boundary layer 

flow. The theory presented are flow concepts over bluff and streamlined bodies, turbulent flow 

and hydrodynamic coefficients.  

 

2.1 Flow physics around immersed wall-mounted structures 
 

The force exerted by a fluid flow on a submerged wall mounted body can be resolved along the 

normal and tangential directions to the body-surface. The force per unit area in the normal 

direction is the local pressure and the force per unit area in the tangential direction is the viscous 

stress. The pressure and viscous forces are dependent on the flow properties of the boundary 

layer flow which is characterized by the boundary layer thickness 𝛿/𝐷, free stream turbulence 

intensity, boundary layer profile and obstacle geometry. (Adams & Johnston, 1988). 

 

The body shape of the structures decides how the velocity field and varying forces will work 

around them. Body shapes can be categorized into bluff and streamlined bodies. Bluff structures 

are defined as bodies where the major drag force contribution is due to the pressure forces 

arising from separation of the boundary layer flow adjacent to the surface over the rear end of 

the structures. Streamlined bodies are defined as bodies for which the major contribution to 

drag force in the freestream direction comes from the viscous friction (Cengel & Cimbala, 

2017). A trapezoidal structure can be categorized as a bluff body due to its characteristic edges 

where turbulent separation often will take place. However, low angles of incident (or high 𝛼 in 

the present case) will shape the trapezoid in a streamwise manner, and hence its characteristics 

too.  

 

Bernoulli’s principle explains the pressure and velocity interactions around the 

structure/structures discussed in Chapter 5 and Chapter 6. It states that an increase in fluid speed 

will transpire simultaneously with the decrease in pressure due to a reduction in the fluid’s 

potential energy (Clancy, 1975). Bernoulli’s principle can be derived from the principles of 

conservation of energy and Newtons second law which will be explained in Chapter 3.2.  
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Wall-mounted structures are often characterized by a large dominating vortex in its wake which 

is generated by smaller eddies. Since there are no vortex shedding, the present flow problem is 

assumed to be time independent and a steady state solution is likely to predict the flow field 

with high accuracy (Nymo, 2015). 

 

2.2 Turbulence 
 

2.2.1 Reynolds Number 

The nondimensional Reynolds number is an important parameter when studying turbulent 

boundary layer flow around immersed bodies. It is denoted as the ratio between inertia forces 

and viscous forces and defined as 

 

𝑅𝑒 =
𝐼𝑛𝑒𝑟𝑡𝑖𝑎	𝐹𝑜𝑟𝑐𝑒
𝑉𝑖𝑠𝑐𝑜𝑢𝑠	𝐹𝑜𝑟𝑐𝑒

=
𝑈N𝐷
𝜈

2.1 

 

 

Here 𝑈N is the free stream velocity, 𝐷 is the characteristic length scale over the structure and 𝜈 

is the kinematic viscosity of the fluid (Cengel & Cimbala, 2017). The characteristic length scale 

in the present study is the height of the structure 𝐷.  

 

The flow in the present study is incompressible, meaning the fluid density 𝜌 is constant due to 

negligible compressibility effects. Incompressible flow is valid for Mach number 𝑀𝑎 ≤ 0.3 

where the Mach number is the ratio between speed of flow and speed of sound. This ratio is 

essential for aerodynamic behaviors but is negligible in subsea environment.  

 

2.2.2 Laminar and Turbulent flow 

Fluid flow can be categorized as either laminar or turbulent depending on low or high Reynolds 

numbers, respectively. Laminar flow can be characterized as streamlined flow patterns while 

the turbulent flow is unpredictable and chaotic as shown in Figure 2.1.  
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The transition between laminar and turbulent flow occurs after passing the critical 𝑅𝑒. This 

transition point will however change with respect to the boundary conditions of flow problem. 

The turbulent flow has small horizontal velocity fluctuations 𝑢´(𝑡) around the mean velocity	𝑈 

as presented in Figure 2.2. These fluctuations are caused by small eddies and stochastic 

behavior of turbulent flow (Versteeg & Malalasekera, 2007). 

 

 
The total horizontal velocity 𝑢(𝑡) at a particular instance of time can be expressed as: 

 

𝑢(𝑡) = 𝑢´(𝑡) + 𝑈 2.2 

Figure 2.1 Laminar, transitional and turbulent flows over a flat plate (Cengel & Cimbala, 2017) 

 

Figure 2.2 Instantaneous turbulent velocity variation with respect to time (Versteeg & Malalasekera, 

2007) 
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In order to get a steady state solution for a turbulent flow, the Reynolds Averaged Navier-Stokes 

(RANS) equations needs to be solved. In RANS, flow properties like the velocity 𝑢  and 

pressure 𝑝	are expressed by their time-averaged as in Equation 2.2 and will be elaborated from 

the governing equations for CFD in Chapter 3.4. 

 

The flow around any objects will have a 3D spatial character, even for 2D flow fields. These 

3D flow effects are however small and negligible for boundary layer flows over wall-mounted 

rib structures (Martinuzzi & Tropea, 1993; Keshmiri, 2012), which is in the scope of the present 

study.  

 

Turbulent flow is recognized by turbulent eddies which varies in a broad range of length scales. 

The larger eddies have velocity and length in the same order as 𝑈N and 𝐷, respectively. The 

eddies are mainly developed by inertia forces and small viscous effects, and also contributing 

to the total shear stress on the fluid layers. The smaller eddies tend to be stretched by the motion 

of the large eddies, which results in kinetic energy being handed down from large eddies to 

progressively smaller eddies. When the eddies reach a length scale of 0.1 to 0.01 millimeters in 

engineering flow, the eddy motions are dissipated and converted into thermal internal energy. 

(Versteeg & Malalasekera, 2007) 

 

2.2.3 Boundary Layer  

For high 𝑅𝑒 flows, the boundary layer will be developed into a turbulent flow. Figure 2.3 shows 

how the turbulent boundary layer over a flat plate permutes from a laminar state to a turbulent 

state with characterized by swirling eddies. The no-slip condition assumes that the fluid layer 

adjacent to the wall has zero velocity relative to the boundary. This interaction creates negative 

shear stresses along the buffer layer and resolves into turbulent flow for the upper layers.  
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Expressions for the velocity profiles in boundary layer flows are based on extensive analysis 

and measurements (Versteeg & Malalasekera, 2007). The properties of the different layers can 

be expressed by the ratio between velocity and shear velocity 𝑢\ and non-dimensional vertical 

distance from the wall 𝑦\, which are given as 

 

𝑢\ =
𝑈
𝑢]

2.3 

and 

𝑦\ =
𝜌𝑦𝑢]
𝜇 2.4 

 

where y is the vertical distance which varies normal from the wall, 𝑢] is the shear flow velocity 

between the flow stream layers given by 𝑢] = s
]
t
 where 𝜏 is the wall shear stress.  

The first layer over the wall is the viscous sub layer shown in Figure 2.3. This is a laminar 

boundary layer dominated by viscous stresses. It is also referred to as the wall sublayer and 

dominates 1% of the total boundary layer thickness which corresponds to 𝑦\ ≤ 5 (Cengel & 

Cimbala, 2017). The viscous sub layer follows a linear relationship between 𝑢\ and 𝑦\ for 

smooth walls given by: 

𝑢\ = 𝑦\ 2.5 

 

Figure 2.3 Turbulent flow over a flat plate (Fundamentals of Heat and moment transfer, 8th edition) 
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Above the viscous sub layer is the buffer layer, where the turbulence effects become relevant 

in addition to the viscous stresses. This layer is difficult to properly model since it inhabits flow 

characteristics from its adjacent layers seen in Figure 2.4. The upper layer is called the log-law 

layer which is dominated by turbulent stresses and is valid for 30	 < 	𝑦\ 	< 	500. In this region, 

the shear stress changes gradually with respect to the normal distance to the wall. The log law 

can be expressed as: 

 

𝑢\ =
1
𝜅 ln

(𝐸𝑦\) 2.6 

 

where the von Kàrmàn constant 𝜅 = 0.41 and the log-law constant 𝐸	 = 	9.8	in the employed 

simulation program OpenFOAM for smooth walls. Figure 2.4 shows how the plotted lines of 

experimental data corresponds to the two wall laws from equation 2.5 and 2.6. 

 
The proceeding boundary layer is the outer layer, also called law of the wake, which is fully 

dominated by inertia effects while viscous effects are negligible. In contrast to the transition 

region between the previously discussed wall functions from Equation 2.5 and 2.6, the log law 

and the law of the wake have the similar values in the point of transition. This non-dimensional 

velocity profile is expressed: 

Figure 2.4 Boundary layer regions (Tauqeer, 2016) 
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𝑈N − 𝑈
𝑢]

=
1
𝜅 ln y

𝑦
𝛿z + 𝑐 2.7 

 

where 𝑐 is a constant. (Coles, 1956) 
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2.3 Hydrodynamic Coefficients 
The pressure force, working normal on the obstacle surface, and shear forces, working 

tangential to the obstacle surface can describe the drag and lift force as: 

 

𝐹S = { −𝑝 cos(𝜃�) + 𝜏�sin		(𝜃�))
�

�
𝑑𝐴 2.8 

 

𝐹T = { 𝑝 cos(𝜃�) − 𝜏�sin		(𝜃�))
�

�
𝑑𝐴 2.9 

 

where 𝑑𝐴 is the differential area the force is working on and 𝜃� is the angle which the force 

works normal on the plane 𝑑𝐴. 

 

The drag and lift force over a body subjected to flow are often expressed using force 

coefficients. This is convenient because the coefficients can describe the non-dimensional 

properties of a specific shape, which can be utilized for other dimensions for the same shape. 

Moreover, the non-dimensional coefficients provide a common ground for comparing results 

to other investigations with identical flow conditions. The drag and lift coefficients can be 

expressed as 

 

𝐶S =
𝐹S

1
2𝜌𝑈N

E 𝐴
2.10 

𝐶T =
𝐹T

1
2 𝜌𝑈N

E 𝐴
2.11 

 

Here	𝐴 is the front area of the projected body (Cengel & Cimbala, 2017).  
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3 Computational Fluid Dynamics 
 

Computational fluid dynamics (CFD) is a computational tool using numerical analysis, data 

structures and computer computation to solve problems in fluid dynamics. The majority of CFD 

problems are boundary value problems solved through Navier-Stokes equations using Finite 

volume method (FVM). CFD is used in many applications and has become a widely used tool 

for predicting flow behavior in academic and industrial applications due to its low cost and 

reasonable accuracy. This chapter will briefly describe OpenFOAM, governing equations, 

FVM and the solver used for the present study.  

 

3.1 OpenFOAM 
OpenFOAM is a free, Linux based, open source software package designed to solve problems 

in continuum mechanics like CFD. The software is organized through a set of applications and 

libraries and is operated through text files and terminal commands. An OpenFOAM simulation 

case consists of various directories containing information about the flow problem as shown 

with an example from the present study in Figure 3.1.  

 

 

 
 

 

Figure 3.1 Organized OpenFOAM folders for the present study 
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The 0 directory contains text files which defines the boundary conditions of the flow properties 

characterizing the boundary problem. The constant folder holds the files with information of 

the mesh and the physical boundaries of the simulation. The system folder contains files 

regarding the solver schemes and simulation options. 

 

3.1.1 Meshing and Pre-Processing 

First step in constructing an OpenFOAM case is to define the geometry of the boundary 

problem and partition it to discrete cells. The partitioned domain is called a mesh or a grid, and 

its interface is crucial for the accuracy of the numerical simulation. Areas with the largest 

velocity and pressure gradients requires the smallest cells to thoroughly capture the critical 

areas in the boundary layers, often located close to the walls. It is also necessary to avoid abrupt 

changes in mesh density since OpenFOAM solves the flow problem spatially with finite volume 

methods. The mesh generating software used in the present study is GMSH due to its mesh 

generating tools, scripting options and OpenFOAM support.  

 

3.1.2 Solving  

OpenFOAM solves the Navier-Stokes equations over a space using the finite volume methods 

(FVM). Spatial schemes for gradient, Laplacian and divergence used in the present study are 

Gauss linear, bounded Gauss linear upwind, and Gauss linear limited corrected, respectively. 

The solver is steady state, which means that the flow problem characteristics do not change 

with time. If the simulation is found to have trouble converging, it may indicate that the solution 

is transient. At every time step, the initial solution from the integration is improved with the 

SteadyState solver which uses a looped algorithm to iterate the solution until the Navier-Stokes 

equations are satisfied for the user, further explained in Chapter 3.4. 

 

3.1.3 Courant number 

The Courant number is a condition for stability when solving partial differential equations with 

finite difference methods in time. The Courant Friedrichs Lewy (CFL) condition is defined as 

 

𝐶𝐹𝐿 =
𝑢∆𝑡
∆𝑥 ≤ 𝐶𝐹𝐿��� 3.1 
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Here 𝑢 is the local velocity inside a mesh cell, ∆𝑡 is the assigned time step and ∆𝑥 is the cell 

length in x-direction (Sanz-Serna, 1989). For example, if CFL > 1, a fluid particle will travel 

further than the length of the cell during the time-step. The simulation may produce inaccurate 

results if this condition is not met, hence the present study has specified 𝐶𝐹𝐿��� < 1. 

 

3.1.4 Post- processing 

OpenFOAM has various post processing utilities and there are numerous software packages to 

analyze the output from a simulation. In the present study, ParaView is used to extract data 

values from areas of interest in the computational domain which is further processed into graphs 

and tables using Matlab 2018b. Techplot360 is used to draw streamlines and create contour 

plots of pressure and velocity.  

 

3.2 Governing Equations 
 

3.2.1 Mass and momentum conservation 

The governing equations for any incompressible and isothermal fluid flow are the continuity 

equations and the momentum equations, which are known as the Navier-Stokes equations. The 

continuity equations describe the conservation of mass and the momentum equations are based 

of Newtons second law and the equations are respectively given as: 

 
𝜕𝑢�
𝜕𝑥�

= 0 3.2 

 

𝜕𝑢�
𝜕𝑡

+ 𝑢�
𝜕𝑢�
𝜕𝑥�

= −
1
𝜌
𝜕𝑝
𝜕𝑥�

+ 𝜈
𝜕E𝑢�
𝜕𝑥�E

3.3 

 

where 𝑖, 𝑗 = 1,2 (for 𝑥, 𝑦) denote the streamwise and cross-stream directions, respectively; 

𝑢Q	and 𝑢E (for u and v) are the corresponding mean velocity components.  𝑝 is the pressure 

and 𝜌 is the fluid density. 

 

3.2.2 Reynolds-Averaged Navier Stokes RANS 

The Reynolds-averaged Navier-Stokes (RANS) are Reynolds averaged equations for turbulent 

flow. In an economical point of view RANS is preferred over Direct Numerical Simulation 



28 
 
 

(DNS) and Large Eddy Simulation (LES) due to computational cost as well as giving reasonable 

accuracy. RANS implement Reynolds decomposition to the original Navier-Stokes equations 

to represent the fluctuating velocity terms from Equation 2.2. And then, the RANS equation 

can be given by (Wilcox, 2004): 

 

𝜕𝑢�
𝜕𝑡 + 𝑢�

𝜕𝑢�
𝜕𝑥�

= −
1
𝜌
𝜕𝑝
𝜕𝑥�

+ 𝜈
𝜕E𝑢�
𝜕𝑥�E

−
𝜕𝑢´�𝑢 �́

𝜕𝑥�
3.4 

 

here 𝑢´�𝑢 �́  is the Reynolds stress component. According to Boussinesq assumption, the 

turbulent eddies causing momentum transfer can be modeled as the effect of the eddy viscosity 

(Clement, 1998). The Reynolds stress component can be expressed as: 

 

−𝑢´�𝑢 �́ = 𝜈� �
𝜕𝑢�
𝜕𝑥�

+
𝜕𝑢�
𝜕𝑥�

� −
2
3
𝑘𝛿�� 3.5 

 

where 𝛿��  is the Kronecker delta, 𝑘  is the turbulent kinetic energy and 𝜈�  is the turbulent 

viscosity. Kronecker delta is defined as: 

 

𝛿�� = �0						𝑖𝑓	𝑖	 ≠ 𝑗
1						𝑖𝑓	𝑖 = 𝑗 3.6 

 

To solve the resulting system of the Equations 3.4 and 3.5, additional assumptions of the 

turbulence quantities have to be made. Closure of Reynolds stress is obtained by using the 𝑘 −

𝜔  SST turbulence model which is elaborated in the next chapter.  

 

 

3.2.3 𝑘 − 𝜔 SST Turbulence Model 

The 𝑘 − 𝜔  SST turbulence model (Menter, 1994) is a two-equation eddy-viscosity model 

which is used in the present study due to its good performance in predictions of adverse pressure 

gradients and separating flow (Zhang, 2017). The 𝑘 − 𝜔   SST turbulence model is a 

combination of the 𝑘 − 𝜔 and the 𝑘 − 𝜀  model. The near wall region of the computational 

domain is treated with the 𝑘 − 𝜔  model of Wilcox (1998) while the standard 𝑘 − 𝜀  model of 
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Jones & Launder (1973) is used in the outer wake region and in the free shear layers. According 

to Menter et al. (2003), the equations of 𝑘 and 𝜔 can be expressed as follow: 

 

𝐷(𝜌𝑘)
𝐷𝑡

= 𝑃�� − 𝛽∗𝜌𝜔𝑘 +
𝜕
𝜕𝑥�

�(𝜇 + 𝜎�𝜇�)
𝜕𝑘
𝜕𝑥�

� 3.7 

 

𝐷(𝜌𝜔)
𝐷𝑡

= 𝛼𝜌𝑆E − 𝛽𝜌𝜔E +
𝜕
𝜕𝑥�

�(𝜇 + 𝜎�𝜇�)
𝜕𝜔
𝜕𝑥�

� + 2(1 − 𝐹Q)𝜌𝜎�E
𝜕𝑘
𝜕𝑥�

𝜕𝜔
𝜕𝑥�

3.8 

 

where 𝑃�� is expressed by 

𝑃�� = 𝑚𝑖𝑛 �𝜇�
𝜕𝑢�
𝜕𝑥�

�
𝜕𝑢�
𝜕𝑥�

+
𝜕𝑢�
𝜕𝑥�

� , 10𝛽∗𝜌𝜔𝑘� 3.9 

 

𝛷Q  represents any constant in the original 𝑘 − 𝜔   model (𝜎�Q , …) and 𝛷E  represents any 

constant in the original 𝑘 − 𝜀  model (𝜎�E, ...). Then the constant 𝛷 of the new model is denoted 

as 

 

𝛷 = 𝐹Q𝛷Q + (1 − 𝐹Q)𝛷E 3.10 

 

𝐹Q = 𝑡𝑎𝑛 ℎ(𝑎𝑟𝑔Qc) 3.11 

 

𝑎𝑟𝑔Q = 𝑚𝑖𝑛 �max�
√𝑘
𝛽∗𝜔𝑦 ,

500𝜈
𝑦E𝜔 £

4𝜌𝜎�E𝑘
𝐶𝐷��𝑦E

� 3.12 

 

𝐶𝐷�� = 𝑚𝑎 𝑥 �2𝜌𝜎�
1
𝜔
𝜕𝑘
𝜕𝑥�

𝜕𝜔
𝜕𝑥�

, 10PQ�� 3.13 

 

here 𝑦 is the distance to the closest wall. 𝐶𝐷�� is the positive portion of the cross-diffusion 

term in Equation 3.8.  

 

The turbulent eddy viscosity is defined as 

 

𝜈� =
𝑎Q𝑘

𝑚𝑎𝑥(𝑎Q𝜔, 𝑆𝐹E)
3.14 
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Here 𝑆  is the invariant measure of the strain rate and 𝐹E is 

 

𝐹E = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔EE) 3.15 

 

𝑎𝑟𝑔E = 𝑚𝑎 𝑥 �2
√𝑘

0.09𝜔𝑦 ,
500𝜈
𝑦E𝜔 £ 3.16 

 

The SST constants are: 𝛽∗ = 0.09, 𝛼Q = 0.5532,	𝛼E = 0.4403, 	𝛽Q = 0.075, 𝛽Q = 0.0828, 

σk2= 1.0 and σω1= 0.5, σω2 = 0.85616.  

 

 

3.3 Finite Volume Method 
 

OpenFOAM is based on the finite volume method (FVM) which directly applies the 

conservation laws, using the integral formulation of the governing RANS equations from 

Chapter 3.2. The finite volume method discretizes the governing equations by partitioning the 

physical domain into discrete cells/control volumes. Furthermore, the volume integrals over 

these cells can be converted into a surface integral at the cell boundaries using Gauss theorem. 

Subsequently, the integrals are turned from integrating the differential of the dependent variable 

inside of the cells to surface integrals of the flux dependent on the variables across the cell 

boundary. This simplification allows for iterative solvers to compute the flow domain. 

(Versteeg & Malalasekera, 2007) 
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3.4 simpleFoam 
 

The simulations in the present study applies the steady-state solver for incompressible, turbulent 

flow, using the SIMPLEC (Semi-Implicit Method for Pressure Linked Equations Consistent) 

algorithm-based solver, simpleFoam. The algorithm uses standard pressure-velocity coupling 

and the flow chart is presented in Figure 3.2. The solution strategy is to find a steady-state 

solution with the aid of under-relaxation factors between iterations (Jasak, 1996).  

 

Figure 3.2 Flow chart of the SIMPLE algorithm 
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nOutercorr is the number of outer corrector loops set for one time-step. The outer corrector 

rewrites the boundary conditions with the solved equations of pressure, velocity and transport. 

The simulation will go over to the next time-step if outerCorr surpasses the iteration-count given 

by nOuterCorr (Robertson et al.,2015). 
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4 Computational model 
 
Descriptions for the computational models of squares and trapezoids in single and tandem 

configurations are presented in this chapter. The boundary conditions concerning the present 

simulations are also outlined.  

 

4.1 Model description 
Figure 4.1 and Figure 4.2 presents the 2D computational domain used in the present study for 

the single structure case and the tandem case, respectively. The origin of the coordinates is 

located at the bottom center of the wall mounted structure. The height and top lengths of the 

structure is 𝐷  and the bottom angels of the trapezoidal structures are 90° − 𝛼 =

90°(square), 75°, 60°, 45°and 30°. The length and height of the computational domain are 

52𝐷 and 20𝐷, respectively. The flow inlet boundary is located 𝐿𝑢 upstream from the center of 

the structure and the flow outlet boundary is located 𝐿𝑑 downstream from the center of the 

structure. Ong et al. (2010) performed a numerical study of flow around circular cylinder close 

to a flat seabed at the same Reynolds number range as the present study and found that a 

computational domain with (𝐿𝑢, 𝐿𝑑) = (10𝐷, 20𝐷)  is sufficient to suppress any far-field 

effects on the structures. In the present study, 𝐿𝑢 is set to be 11.5𝐷 and 𝐿𝑑 is set to be 40.5𝐷  

to ensure that the domain is large enough and to capture the motions of interest.  
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Figure 4.1 Computational domain and boundary conditions for single structure case 
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The tandem case investigates identical cover shapes in tandem where the gap ratio 𝐺/𝐷 is the 

distance in between Square 1 and Square 2, presented in Figure 4.2. The 𝐺/𝐷 investigated are 

2, 3	6, 10 and 14 for the square configuration and 𝐺/𝐷	 = 	6, 10 and 14 for all trapezoidal 

structures. The maximum downstream length from Square 2 to the outlet is 40.5𝐷 − 14𝐷 =

26.5𝐷 which is sufficient in terms of far field effects. 

 

 
 

 

 

4.2 Boundary Conditions 
 

The boundary conditions are based on previous experiments done by Arie et al (1975). The 

Reynolds numbers studied for the single cases are 1.19 × 10& and 1.0 × 10' and are meant to 

cover a typical range for subsea environmental conditions. The tandem case was investigated 

at  𝑅𝑒 = 1.19 × 10&. 

 

4.2.1 Inlet 

The inlet velocity is a logarithmic boundary layer flow, with a horizontal velocity profile, 

adapted from the experiments done by Arie et al (1975) to ensure similarity to the experimental 

set up for validation study in Chapter 5.2 . The velocity profile is used throughout the study and 

given by 
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Figure 4.2 Computational domain and boundary conditions for tandem case 
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𝑢 = 𝑚𝑖𝑛{𝑢∗ y𝑐Q ∗ log y	
𝑦
𝛿	z + 𝑐Ez , 𝑈N

ª 4.1 

 

Here 𝑢∗ is the bottom wall friction velocity, 𝑐Q and 𝑐E are the constants from the velocity profile 

adaptation found to be 0.1006 and 0.9656, respectively, by using curve fitting functions in 

Matlab2018.  

 

The velocity in 𝑦 direction is set to be zero and the value of 𝑘 and 𝜔 is calculated as follows: 

 

𝑘(𝑦) = 𝑚𝑎𝑥 «𝐶¬
PQ
E y1 −

𝑦
𝛿z × 1 −

𝑦
𝛿 𝑢

∗E, 0.0001𝑈NE ® 4.2 

 

𝜔 =
𝑘�.&

𝐶¬�.&𝑙
4.3 

 

𝑙 = 𝑚𝑖𝑛 �𝜅𝑦 y1 + 3.5
𝑦
𝛿z

PQ
, 𝐶¬𝛿° 4.4 

 

where 𝐶¬ = 0.09 is the turbulent-viscosity constant, 𝜅 = 0.41  is the Karman constant and 𝑙 is 

the turbulent length scale (see e.g Brørs, 1999; Ong et al., 2010). 

 

4.2.2 Walls: Bottom and Structures 

No-slip condition (𝑢Q = 𝑢E = 0) and standard near-wall conditions are used. When using these 

wall functions, the criteria of  𝑦\ > 30 from Equation 2.4 must be satisfied.  

 

4.2.3 Outlet, Top and Front & Back 

At the outlet, 𝑢Q, 𝑢E, 𝑘 and 𝜔 are specified as zero gradient and the pressure is set as zero. At 

the top, 𝑢Q, 𝑢E, 𝑘 and 𝜔 are set as zero gradient. The front & back patches are specified as empty 

for  𝑢Q, 𝑢E, 𝑘 and 𝜔 since the problem is two dimensional.  
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4.3 Computational mesh 
 

The computational meshes used for the present study are shown in Error! Reference source 

not found. and Error! Reference source not found. for the single and tandem set up, 

respectively. The grids in the present study are constructed as structured mesh with quadrilateral 

cell shapes. Structured mesh is used due to its convergence advantages and higher resolution as 

well as being applicable to for the present geometry.   

 

 

 

 

To ensure the validity of using wall functions the first height of the first cell layer 𝛥𝑦 for the 

walls was 0.025𝐷  and 0.0041𝐷  for 𝑅𝑒 = 1.19 × 10&  and 𝑅𝑒 = 1.0 × 10' , respectively. 

These lengths were found to satisfy the averaged 30 ≤ 𝑦\ ≤ 42 for all α configurations for the 

single case. For the tandem case, the 𝛥𝑦 at all walls, including the second structure was 0.027𝐷 

for all configurations to maintain 30 ≤ 𝑦\ ≤ 42. The cell size is refined in the high gradient 

regions while coarser grids are used in the far field regions to reduce computational cost. 

  

a) b) 

 
 

a) b) 

  

Figure 4.3  Mesh structure for α = 15° at 𝑅𝑒 = 1 ×	10' Figure 4.4 Mesh structure for for α = 30° at 𝑅𝑒 = 1.19 ×	10& 
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5 Results and Discussion for Single Case 
 

This section presents and discusses the results for the single structure case. Chapter 6 will 

discuss the results for the tandem case. Table 5.1 and 5.2 shows the results of for all single 

structure cases at 𝑅𝑒 = 1.19 × 10& and 𝑅𝑒 = 1.0 × 10', respectively.  

 
Mesh 𝛼 [°] 𝐶S  𝐶T  𝑥_/𝐷 

19076 0 1.030 0.604 15.27 

30424 0 1.021 0.608 15.39 

46531 0 1.001 0.595 15.05 

26 800 15 0.991 0.487 14.82 

36166 15 0.988 0.486 14.88 

48789 15 0.984 0.487 15.01 

26 800 30 0.943 0.411 14.36 

36166 30 0.940 0.411 14.41 

48789 30 0.937 0.413 14.62 

26 800 45 0.851 0.367 13.36 

36166 45 0.846 0.368 13.40 

48789 45 0.844 0.369 13.48 

26 800 60 0.677 0.362 11.57 

36166 60 0.673 0.363 11.88 

48789 60 0.672 0.363 11.43 
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5.1 Convergence study 
 

The grid resolution study has been carried out for all five angles (𝛼 = 0°, 15°, 30°, 45° and 60°) 

at 𝑅𝑒 = 1.19 × 10& and 𝑅𝑒 = 1.0 × 10' for 𝛿/𝐷 = 0.73. The variations of 𝐶S,	𝐶T and 𝑥_/𝐷 

are obtained and presented in Table 5.1 and Table 5.2. 𝐶S  and 𝐶T are calculated directly from 

𝐹S and 𝐹T which are computed from the total force acting on the surface of the structures. 𝑥_/𝐷 

is the horizontal distance between the separation point at the top left corner of the structures 

and the point where the bottom wall shear stress changes its sign in the wake region. Results 

Table 5.1 Hydrodynamic quantities for varying α with different grids at 𝑅𝑒 = 1.19 × 10& 

Mesh 𝛼 [°] 𝐶S 𝐶T  𝑥_/𝐷 

39 360 0 1.115 0.624 16.90 

53 124 0 1.125 0.657 16.83 

85 824 0 1.113 0.655 16.10  

39 360 15 1.070 0.488 16.52 

56 124 15 1.060 0.504 16.28 

98 244 15 1.059 0.507 15.77 

39 360 30 0.997 0.410 15.64 

56 124 30 0.990 0.417 15.71 

98 244 30 0.987 0.438 14.82 

39 360 45 0.874 0.369 14.22 

56 124 45 0.869 0.380 14.20 

98 244 45 0.870 0.399 13.60 

39 360 60 0.653 0.389 11.42 

56 124 60 0.646 0.386 11.54 

98 244 60 0.639 0.406 11.06 

Table 5.2 Hydrodynamic quantities for varying α with different grids at 𝑅𝑒 = 1 × 10' 
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for the convergence studies of 𝑅𝑒 = 1.19 × 10&  and 𝑅𝑒 = 1.0 × 10'  are also shown with 

variation of the grid numbers for 𝐶S, 𝐶T and 𝑥_/𝐷  in Figure 5.1. Three meshes are generated 

for each unique configuration to ensure mesh independence for the quantities of 𝐶S, 𝐶T and 

𝑥_/𝐷. The three mesh densities are categorized into coarse, normal and dense grid resolutions 

and increased with 50% to ensure sufficient spatial discretization.  
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a) b) 

  

c) d) 

  
 

e) f) 

  

Figure 5.1 Mesh convergence with respect to hydrodynamic coefficients for 𝑅𝑒 = 1.19 × 10& (left 

side) and 𝑅𝑒 = 1.0 × 10' (right side) 
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For different mesh densities at 𝑅𝑒 = 1.19 × 10&, the difference of 𝐶S between the cases varies 

from 0.14% to 1.99%. The relative difference of 𝐶T is from 0.16% to 2.18% and the relative 

difference of 𝑥_/𝐷  varies from 0.59% to 2.23%. For different mesh densities at 𝑅𝑒 =

1.0 × 10', the relative difference of 𝐶S between cases alters between 0.09% and 1.09%. The 

relative difference of 𝐶T  varies between 0.3% and 4.86% and that for 𝑥_/𝐷 alters between 

3.24% and 6%. Therefore, the normal mesh densities for both square and trapezoid cases at the 

two Reynolds numbers have achieved sufficient grid resolutions.  

Since wall functions are applied for all the simulations, a requirement of 𝑦\ > 30 for the first 

grid above the wall needs to be satisfied. In the present study, 𝑦\varies between 30 and 42 for 

different configurations at both Reynolds numbers. It can be concluded that grid resolutions for 

all configurations in the present study can provide satisfactory results.  
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5.2 Validation study 
Validation study is done by comparing the drag coefficient and the horizontal velocity profiles 

of the present study with those of the earlier numerical and experimental studies. The drag 

coefficient was compared to the experimental data from Arie et al. (1975) and the numerical 

data from Tauqeer et al. (2017) using identical flow conditions of 𝛿 𝐷⁄ = 0.73  at 𝑅𝑒 =

1.19 × 10&. The present study simulated  𝐶S = 1.00, which is in good agreement with the 

previous results of 𝐶S = 0.96 (Arie et al., 1975) and numerical data 𝐶S = 1.02 (Tauqeer et al., 

2017). 

  To further validate the simulation, a comparison of horizontal velocity profiles between the 

experimental data from Liu et al. (2008) and the present study has also been performed. The 

experiment of Liu et al. (2008) was conducted at 𝑅𝑒 = 1.32 × 10c with 𝛿 𝐷⁄ = 0.75;and it is 

compared to the present simulation at 𝑅𝑒 = 1.19 × 10&  with 𝛿 𝐷⁄ = 0.73 . The horizontal 

velocity profiles are compared at six different locations along the computational domain shown 

in Figure 5.2. The velocity profile at the upstream location of 𝑥 𝐷⁄ = −3.5 shows no negative 

part and it appears to be the same as the experimental profile. The velocity profile at the 

separation point 𝑥 𝐷⁄ = −0.5 also appears to follow the experimental data but has a slight 

overpredicted region in the upper section of the velocity profile. This overprediction is also 

observed for the other four downstream locations and this may be due to the difference in 

Reynolds number. Furthermore, the overprediction of the velocity profiles compared with 

Tauqeer et al. (2017), where the 𝑘 − 𝜖  turbulence model is used, may be due to the low 

dissipation by using the 𝑘 − 𝜔 SST model in the present study. A small negative region in the 

velocity profiles appears at 𝑥 𝐷⁄ = 0.5 on the top right corner of the square which shows the 

presence of an adverse pressure gradient. There is a large negative region close to the bottom 

wall in the velocity profiles downstream the square indicating that a recirculation zone has been 

developed. In general, the profiles show reasonable agreement with the experimental data. 
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Figure 5.2 Comparisons of horizontal velocity profiles of the present simulation and experimental 

data from Liu et al. (2009) 
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5.3 Effect of 𝛼 on hydrodynamic quantities and 𝑥_/𝐷  
 

The angles 0° < 𝛼 < 60°  have been studied at 𝑅𝑒 = 1.19 × 10&  and 𝑅𝑒 = 1.0 × 10'  to 

examine its effects on the hydrodynamic quantities: 𝐶S, 𝐶T and 𝑥_/𝐷. As seen from Figure 5.3 

(a), the drag coefficient is monotonically decreasing with increasing 𝛼 . The physical 

explanation for the trend can be outlined as follows. The main contribution of the total drag is 

the pressure difference between the front and the back face of the structure. The block effect of 

structure becomes weak with increasing 𝛼, which results in less pressure difference. This can 

also be observed in the pressure distribution in Figure 5.4. However, as 𝛼 further increases, the 

contribution of the viscous drag increases and with 𝛼 = 60° the trapezoid tends to be flat and a 

larger part of the total drag on the structures comes from the viscous drag.  

 

The viscous drag is higher at 𝑅𝑒 = 1.19 × 10&  and causes larger 𝐶S  than that at 𝑅𝑒 =

1.0 × 10' for higher 𝛼 as shown in Figure 5.3.1 (a). The recirculation length 𝑥_/𝐷, shown in 

Figure 5.3 (c), also decreases for increasing 𝛼 and behaves similar to 𝐶S. This implies that the 

Figure 5.3 Effect of α on hydrodynamic quantities: (a) CD, (b) CL and (c) xR/D 

a) b) 

  
c)  
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viscous effect has a significant influence on these two quantities when the pressure contribution 

decreases. 

 

 
 

5.4 Velocity and Pressure Distributions 
 

The color contours of the pressure at 𝑅𝑒 = 1 × 10' are presented in Figure 5.4. The pressure 

contour values seen in Figure 5.4 (a) represents the kinematic pressure 𝑃 = 𝑝/𝜌�, where 𝜌� is 

the constant mass density. Due to the block effect of the structures to the flow, there is a high-

pressure region in front of the structure because of the energy conservation. Furthermore, due 

to the conservation of mass, a high-speed velocity region forms after the separation point above 

the structure. Hence, due to the Bernoulli’s principle, the high-speed velocity region creates a 

local negative pressure region around the right top edge of the structure as seen in Figure 5.4. 

It can be observed that the intensities of both the positive and negative pressure regions reduces 

with increasing 𝛼. This is due to the fact that the reducing blocking effect, associated with 

higher 𝛼, causes lower velocity drop over the structure, hence resulting in weaken pressure 

regions due to the Bernoulli’s principle. 
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a) b) 

  
c) d) 

  
e)  

 
 

Figure 5.4 Pressure contours for wall-mounted squares in tandem with gap ratios of: a) G/D = 2, b) 

G/D = 3, c) G/D = 6, d) G/D = 10 and e) G/D = 14 
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The contours of the horizontal velocities at 𝑅𝑒 = 1 × 10' are presented in Figure 5.5 for all 𝛼. 

The velocity at the front face of the structure is zero and propagates further upstream due to the 

blocking effect. After the separation point at the top left corner of the structure, the velocity is 

accelerated due to the conservation of mass. A shear layer is generated with a high-speed region 

above the structure and a recirculation region behind the structure. The area of the high-speed 

region reduces with decreasing 𝛼. The negative velocity region downstream close to the bottom 

wall implies that recirculation takes place. 

a) 

 
b) 
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c) 

 
d) 

 
e) 

 

Figure 5.5 Horizontal velocity contours at Re = 1 × 10' for varying 𝛼: (a) 	0°, (b) 15°, (c) 30°, (d) 

45° and (e) 60° 
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The contours of vertical velocity are presented in Figure 5.6 for all angles 𝛼 . There is an 

increase in the vertical velocity along the front face of the structure due to the conservation of 

mass, accelerating the mass above and past the structure to maintain conservation of energy. 

The intensity of the high vertical velocity region around the top left corner reduces with 

increasing  𝛼, as seen in Figure 5.6 (b) - (e). This is because the trapezoidal structures shift the 

direction of the flow more gradually. There is also a slight positive vertical velocity region at 

the rear face of the structure, indicating that a recirculation region forms behind the structures. 

a) 

 
b) 
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c) 

 
d) 

 
e) 

 

Figure 5.6 Vertical velocity contours at Re = 1 × 10' for varying 𝛼: (a) 	0°, (b) 15°, (c) 30°, (d) 45° 

and (e) 60° 
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5.5 Bed shear stress and Scour 
 
In actual subsea environment, bed shear stress is closely related to the scour process, which is 

removal of sediment around the base of subsea structures. High absolute values of 𝜏 𝜏N⁄  close 

to the structure can indicate a significant scour process, which is a typical source for failures in 

subsea operations (Zhao et al.,2012). Therefore, the present study investigates the bed shear 

stress on the seabed surfaces adjacent to the structures with different configurations of 𝛼. 

 

Figure 5.7 shows the non-dimensional bed shear stress 𝜏 𝜏N⁄ , where 𝜏N is the undisturbed bed 

shear stress, along the bottom wall surface. 𝜏 𝜏N⁄  stagnates towards zero close to the front faces 

of the structures which are located 𝑥/𝐷 = (−0.5, −0.768,−1.077,−1.5, −1.732)  for 𝛼 =

(0°, 15°, 30°, 45°, 60°), respectively. Figure 5.7 (b) shows small negative 𝜏 𝜏N⁄  regimes in 

front of the structure for all 𝛼 due to the backflow and the adverse pressure gradient caused by 

the conservation of energy. It can be observed that these negative regimes have lower 

amplitudes and are shorter in streamwise direction with increasing 𝛼. This behavior is due to 

the smooth flow transitions which is associated with larger 𝛼. The bed shear stress has a large 

negative region behind the structures due to the recirculation motions for all configurations. 

This negative region is also reduced with increasing 𝛼, which is consistent with the declining 

recirculation length. It is also worth noting that the absolute minimal value of the bed shear 

stress also decreases with increasing 𝛼 and its location shifts closer to the structure as seen in 

Figure 5.7 (a). 

 

a) b) 

  

Figure 5.7 Bed shear stress along the bottom surface at Re = 1 × 10' for: a) the whole domain. b) the 

front face of the structures 
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5.6 Streamlines 
 

To further investigate the flow around the five configurations with different 𝛼, streamlines are 

plotted at 𝑅𝑒 = 1.19 × 10& in 5.9 and at 𝑅𝑒 = 1.0 × 10' in Figure 5.8 and Figure 5.10. There 

are three main recirculation motions around the square structure seen in Figure 5.8. The first 

vortex (1) forms because the fluid particle hits the structure, flows downward and reverses its 

direction due to the bottom wall. A large recirculation is generated by the shear layer separation 

after the front top edge of the square (2), which also induces a smaller one in the downward 

corner of the square (3). For both Reynolds numbers, with increasing 𝛼, the length of the 

dominating vortex behind the structure decreases, seen in Figure 5.9 and Figure 5.10. In 

addition, as the flow tend to follow the angle of the front face after separation, the height of the 

recirculation reduces as the structure becomes flat. Furthermore, the increasing 𝛼 gradually 

suppresses the vortices (1) and (2) from 5.8 (a), of the structure because the flow tends to be 

attached to the structure surface as seen in Figure 5.8 (b). 

 

 

a) b) 

 

 

 

 

a) 

 

1 2 3

Figure 5.8 Detailed stream lines for Re=1×106 for (a) α=0° and (b) α=60° 
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b) 

 
 

c) 

 
 

d) 

 
 

e) 

 
 

Figure 5.9 Stream lines at Re = 1.19 × 10& for varying α: (a) 	0°, (b) 15°, (c) 30°, (d) 45° and 

(e) 60° 
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a) 

 
 

b) 

 
 

c) 

 
 

d) 

 
 

e) 

 
 

Figure 5.10 Stream lines at Re = 1 × 10' for varying α: (a) 	0°, (b) 15°, (c) 30°, (d) 45° and 

(e) 60°   
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6 Results and Discussion for Tandem Case 
 

This chapter presents and discusses the results for the tandem case. The chapter presents the 

convergence study with respect to 𝐺/𝐷	 and investigates the hydrodynamic coefficients, 

pressure distributions, streamlines and velocity profiles by varying the parameters of 𝐺/𝐷 and 

𝛼. All charts in this section are based on the data from Table 6.1, Table 6.2, Table 6.3 and Table 

6.4. This chapter will use Square 1 and Square 2 when referring to the first and second square 

in tandem, respectively.  Structure 1 and Structure 2 will similarly be used when referring to all 

trapezoidal configurations, including the square configuration.   

 

 

 

 

 

 Table 6.1 Results of convergence study for hydrodynamic coefficients for Square 1 and Square 2 

Mesh 𝐺/𝐷 𝐶SQ 𝐶TQ 𝐶SE 𝐶TE 

33005 2 1.118 0.706 -0.183 0.587 

54135 2 1.112 0.717 -0.194 0.581 

72895 2 1.109 0.721 -0.197 0.578 

104838 2 1.105 0.719 -0.196 0.574 

37139 3 1.134 0.755 -0.286 0.536 

60495 3 1.126 0.762 -0.296 0.527 

116138 3 1.116 0.758 -0.290 0.521 

42219 6 1.150 0.718 -0.458 0.282 

66855 6 1.138 0.716 -0.446 0.279 

134218 6 1.132 0.711 -0.437 0.281 

49839 10 1.061 0.625 -0.215 0.138 

76395 10 1.051 0.621 -0.212 0.137 

156818 10 1.045 0.618 -0.213 0.135 

53649 14 1.026 0.573 -0.013 0.123 

89115 14 1.017 0.577 -0.012 0.120 

169695 14 1.012 0.580 -0.012 0.119 
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6.1 Convergence 
 

Convergence studies with all gap ratios, 𝐺/𝐷 = 2, 3, 6, 10 and 14, are performed with respect 

to hydrodynamic quantities for both squares in tandem to ensure mesh independence. First, 4 

different mesh densities with 𝐺/𝐷	 = 	2 were constructed to establish converged results for the 

original mesh set up, which was found for the normal mesh at 54135 cells. Thereafter, three 

𝛼 𝐶SQ 𝐶TQ 𝐶SE 𝐶TE 

0 1.138 0.716 -0.446 0.279 

15 1.106 0.605 -0.434 0.387 

30 1.104 0.533 -0.415 0.435 

45 0.934 0.479 -0.382 0.450 

60 0.728 0.443 -0.253 0.442 

𝛼 𝐶SQ 𝐶TQ 𝐶SE 𝐶TE 

0 1.017 0.577 -0.012 0.120 

15 0.990 0.449 0.001 0.160 

30 0.939 0.328 0.021 0.187 

45 0.841 0.316 0.063 0.209 

60 0.657 0.298 0.141 0.227 

𝛼 𝐶SQ 𝐶TQ 𝐶SE 𝐶TE 

0 1.051 0.621 -0.212 0.137 

15 1.023 0.504 -0.198 0.206 

30 0.969 0.421 -0.172 0.249 

45 0.864 0.366 -0.119 0.274 

60 0.671 0.335 -0.014 0.284 

Table 6.2 Hydrodynamic coefficients for Structure 1 and Structure 2 with G/D = 6 for trapezoidal 

configurations using mesh number of 66855 

Table 6.3 Hydrodynamic coefficients for Structure 1 and Structure 2 with 𝐺/𝐷 = 14 for trapezoidal 

configurations using mesh number of 89115 

Table 6.4 Hydrodynamic coefficients for Structure 1 and Structure 2 with G/D = 10 for trapezoidal 

configurations using mesh number of 76395 
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meshes of different densities; coarse, normal and dense were constructed for each 𝐺/𝐷  as 

shown in Table 5.1 where all the normal meshes for square configurations were found to 

provide sufficient mesh resolution, with difference less than 5% for any hydrodynamic 

coefficient from its corresponding dense mesh. Figure 6.1 shows the variation of hydrodynamic 

coefficients with the grid numbers. The converged trapezoidal mesh configurations from the 

single structure case were combined with the converged mesh configuration with 𝐺/𝐷 ≥ 6 

from Figure 6.1 to study the trapezoids in tandem as well. Investigations with 𝐺/𝐷 < 6 are not 

carried out for trapezoids in tandem because of the high skewness of the current mesh set up 

for trapezoidal geometries at low 𝐺/𝐷. 

a) b) 

  
c) d) 

  

Figure 6.1 Convergence study for wall-mounted squares in tandem with 𝐺/𝐷 = 2,3,6,10  

and 14 for the hydrodynamic quantities: a) 𝐶SQ for Square1, b) 𝐶SE for Square2, c) 𝐶TQ for 

Square1 and d)	𝐶TE for Square2 
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6.2 Effects of 𝐺/𝐷 and 𝛼 on hydrodynamic quantities 
 

Figure 6.2 presents the variation of the hydrodynamic quantities for the structures of same 

configuration at 𝐺/𝐷  at 𝑅𝑒 = 1.19 × 10& . The drag coefficient of Square 1 is increasing 

towards 𝐺/𝐷 = 6 however declining for higher 𝐺/𝐷 as seen in Figure 6.2 (a). The opposite is 

occurring for Square 2, seen in Figure 6.2 (b), where a distinct maximum absolute minimal 

value for the 𝐶SE  is found at 𝐺/𝐷 = 6  and hence increasing linearly with the 𝐺/𝐷 . This 

relationship can be explained by the shielding effect, from Square 1, on Square 2 and the 

retarded vortex development between the squares which will be further explained in Chapter 

6.3 and 6.5. The lift coefficients for Square1 is maximum with 𝐺/𝐷 = 3 and is monotonically 

decreasing with increasing 𝐺/𝐷 . Furthermore, 𝐶SQ  and 𝐶TQ  for Structure 1 decrease as 𝛼 

becomes larger with 𝐺/𝐷 > 6 for all configurations. 𝐶TE  is decreasing with the 𝐺/𝐷  for all 

structures and its variation tends to be flat out for higher 𝐺/𝐷. 
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The variations of hydrodynamic quantities with 𝛼 = 0° , 15° ,  30° ,  45°  and  60°  are 

investigated with 𝐺/𝐷 = 6,10  and 14  and presented in Figure 6.2. Both 𝐶SQ  and 𝐶TQ  are 

decreasing, while 𝐶SE  and 𝐶TE  are increasing, with larger 𝛼 . The effects of the additional 

Structure2 are compared to the single structure case in Figure 6.2 (a) and (c). Here 𝐶SQ follows 

the same trend as the single structure case by declining with increasing α. Furthermore, the 

hydrodynamic effects of the gap ratios for the square configuration increase between 2 ≤

𝐺/𝐷 ≤ 6 and the 𝐶SQ has a maximum deviation of 13.6% at 𝐺/𝐷 = 6 compared to the single 

square case. Moreover, it can be seen in Figure 6.2 (a) that the discrepancy of 𝐶S between the 

single square and 𝐺/𝐷 = 14  is 0.004%, which indicates that the tandem drag effects on 

Structure1 has disappeared. 

a) b) 

  
 

c) 

 

d) 

  

Figure 6.2 Investigation of gap ratios 𝐺/𝐷  for different configurations of 𝛼  for the 

hydrodynamic quantities: a) 𝐶SQ for Square 1, b) 𝐶SE for Square 2, c) 𝐶TQ for Square 1 and d) 

𝐶TE for Square 2 
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However, Figure 6.3 (c) shows that the 𝐶T  for the single structure is most compatible with 

𝐺/𝐷 = 10 while 𝐺/𝐷 = 14 have lower values of 𝐶T for all 𝛼. This indicates that the lift effects 

of Structure2 on Structure1 not have fully disappeared. From Figure 6.2 (b), the absolute value 

of 𝐶SE slightly decreases with larger 𝛼 and has negative values for 𝐺/𝐷 = 6 and 10. However, 

with 𝐺/𝐷 = 14, the 𝐶SE becomes positive and increases with larger 𝛼. From Figure 6.2 (d), it 

is clear that 𝐺/𝐷 = 6 have the largest values of 𝐶TE compared to the other 𝐺/𝐷. 𝐶TE for 𝐺/𝐷 =

6 has its maximum value at 𝛼 = 45°, and slightly declines when 𝛼 = 60°. This is not the 

situation for 𝐺/𝐷 = 10 and 14, where the 𝐶TE is only slightly decreasing with larger 𝛼. 

 

a) b) 

 
 

 

c) d) 

 
 

 

Figure 6.3 Investigation of 𝛼 for gap ratios of 𝐺/𝐷 = 6,10,14 as well as for singular structures, 

for the hydrodynamic quantities: a) 𝐶S for Square 1, b) 𝐶S for Square 2, c) 𝐶T for Square 1 and 

d) 𝐶T for Square 2 
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6.3 Pressure distribution 
 

The pressure distributions for all 𝐺/𝐷 = 2,3,6,10 and 14 for squares in tandem have been 

investigated and presented in Figure 6.4. It is worth to note that the pressure plotting scale for 

the tandem case has been adjusted from the single square case with the maximum positive 

pressure of 0.29 in front of Structure 1. Therefore, the pressure contour cases are not adequate 

for comparison. 

 

6.3.1 Pressure distribution for squares in tandem 

A large positive pressure region is observed at the front face of Square 1 due to the conservation 

of energy. Furthermore, for all 𝐺/𝐷, two negative pressure zones are formed. One is formed in 

between the squares and the other one is formed behind Square 2. The negative pressure zone 

between the squares is associated with the vortex motions, seen from the streamline plots in 

Figure 6.5.2, and contributes most to the total drag force. The main contribution of the drag is 

from the pressure difference between the front and back face of the structures, which is the 

reason why 𝐶SE is negative for all the 𝐺/𝐷 for square configurations. Dai et al. (2017) has also 

observed that the pressure zone between the structures imposes a suction force on Square 2, 

hence results in negative 𝐶SE due to the pressure difference.  For 𝐺/𝐷 = 14, 𝐶SE is almost zero 

and the pressures adjacent to Square 2 has reached equilibrium.  

The strength of the negative pressure zone between the two square increases in the range of 

2 < 𝐺/𝐷 < 6 and decreases in the range of 6 < 𝐺/𝐷 < 14 as indicated in Figure 6.4 (c) – (e),  

which can be associated with the drag coefficient variations in Square 1 and Square 2. The 

second pressure zone, forming at 𝑥/𝐷~5 behind Square 2 as seen in Figure 6.4 (a) and (b) 

disappears in Figure 6.4 (c) - (e). For 𝐺/𝐷 = 6, it seems that the two negative pressure zones 

consolidate and a negative pressure zone between the squares is formed, hence imposing the 

highest pressure on both structures. Moreover, the strength of the negative pressure zone 

decreases for 𝐺/𝐷 is 6 to 14 and seems to be less affected by Square 2. 
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a) b) 

  
c) d) 

  
e)  

 
Figure 6.4  Pressure contours for wall-mounted squares in tandem with gap ratios of: a) 

	𝐺/𝐷 = 2, b) 	𝐺/𝐷 = 3, c) 	𝐺/𝐷 = 6, d) 	𝐺/𝐷 = 10 and e) 	𝐺/𝐷 = 14 
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6.3.2 Pressure distribution for trapezoids in tandem 

Figure 6.5 shows the pressure contours of all trapezoidal configurations with 𝐺/𝐷 = 6, which 

is found to impose the most drag on the both squares in tandem. The pressure distribution at the 

front face of Structure 1 is, as for the single structure case, decreasing with increasing 𝛼. The 

strength of the negative pressure zone between the structures is also decreasing for increasing 

𝛼 and this trend is also observed for all configurations with 𝐺/𝐷 > 6 seen in Figure 6.5 and 

Figure 6.6. The low negative pressure zone forming behind Structure 2 is slightly increasing in 

size with increasing 𝛼 disparate to the negative pressure zone behind Structure1. This is because 

the pressure zone behind Structure 2 is depending on the flow velocity over Structure 2 which 

again is governed by the shielding effect from Structure1. Structure 2 will be subjected to higher 

flow velocities with reduced shielding effect from Structure1, hence creating a higher negative 

pressure zone because of Bernoulli’s principle. 

 

The negative pressure region behind Structure 1 decreases in strength which is similar to 

𝐺/𝐷 = 6 and 𝐺/𝐷 = 14. The increased negative pressure zone behind Structure 2, associated 

with increasing 𝛼, is obvious for 𝐺/𝐷 = 10 as seen in Figure 6.6. Here, the strength of the 

negative pressure region is clearly increased behind Structure 2 seen in Figure 6.6 (d) and (e).  

Figure 6.7 presents the pressure contours with all α configurations with 𝐺/𝐷 = 14. Here, the 

negative pressure region behind Structure 1 seems to behave identical to that of a single 

configuration at 𝑅𝑒 = 1 × 10'. This is further supported by the fact that the drag coefficient is 

almost the same for the cases of single square and squares in tandem with 𝐺/𝐷 = 14. For 

Structure 2 with α > 0° the pressure on its front face shifts to be positive and becomes larger 

with increasing α, which leads to a positive drag on Structure 2 shown in  

. This is because the vortex motions behind Structure 1 are different for each trapezoidal 

configuration, hence creating different downstream flows which Structure 2 is subjected to. It 

is observed in Figure 6.7 (e) that pressure contours behind Structure 2 is formed in a similar 

manner as Structure 1 since the flow profile it is subjected to has started to recover from the 

𝛼 𝐶SQ 𝐶TQ 𝐶SE 𝐶TE 

0 1.017 0.577 -0.012 0.120 

15 0.990 0.449 0.001 0.160 

30 0.939 0.328 0.021 0.187 

45 0.841 0.316 0.063 0.209 

60 0.657 0.298 0.141 0.227 
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effects of Structure 1. This subsequently results in similar hydrodynamic quantities on Structure 

2 to those on Structure 1 due to Bernoulli’s principle.  

 

a) b) 

  
c) d) 

  
e)  

 

Figure 6.5 Pressure contours for 𝐺/𝐷 = 6 for varying trapezoidal configurations α: (a) 	0°, (b) 15°, 

(c) 30°, (d) 45° and (e) 60° 
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a) b) 

  

c) d) 

  

                                  e) 

 

Figure 6.6 Pressure contours for 𝐺/𝐷 = 10 for varying trapezoidal configurations α: (a) 	0°, (b) 15°, 

(c) 30°, (d) 45° and (e) 60° 
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Figure 6.7 Pressure contours for 𝐺/𝐷 = 14 for varying trapezoidal configurations α: (a) 	0°, 

(b) 15°, (c) 30°, (d) 45° and (e) 60° 

 

 

a) b) 

 
 

c) d) 

  
e)  

 

 



68 
 
 

6.4 Horizontal velocity contours 
 

6.4.1 Horizontal velocity contours for squares in tandem 

The horizontal velocity profiles for wall-mounted squares in tandem for 𝐺/𝐷 = 2,3,6,10 and 

14 is presented in Figure 6.8. A high-speed region V1 is formed at (𝑥/𝐷, 𝑦/𝐷) = (0,2) above 

the shear layer shown in Figure 6.8 (a). It is obvious that 𝐺/𝐷 = 6 have a squeezed V1, 

however, the strength of its core region is the largest of all gap ratios and can be seen with 

contours inside V1. Moreover, for 𝐺/𝐷 > 6 V1 is expanded with increasing 𝐺/𝐷 following 

Square 2. The low-speed region between the two squares are coherent with the vortex motions 

shown in Figure 6.11. For 𝐺/𝐷 = 2, 3 and 6 the core of the low-speed region is located close 

to the left top edge of Square 2. However, when 𝐺/𝐷 > 6 the core of the low-speed region is 

expanded and is attached to the bottom wall.  
a) 

 
b) 

 
 

 

 

V1
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c) 

 
 

d) 

 
e) 

 
 

Figure 6.8 Horizontal velocity contours for wall-mounted squares in tandem with gap ratios of: 

a) 𝐺/𝐷	 = 	2, b) 𝐺/𝐷	 = 	3, c) 𝐺/𝐷	 = 	6, d) 𝐺/𝐷	 = 	10 and e) 𝐺/𝐷	 = 	14 
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6.4.2 Horizontal velocity contours for trapezoids in tandem 

The streamwise velocity contours for all α with 𝐺/𝐷	 = 	6 and 14 are presented in Figure 6.9 

and Figure 6.10, respectively. The high-speed velocity core V1, present for 𝐺/𝐷	 = 	6, is 

visible by contours for 𝛼 ≤ 30° in Figure 6.8 (a) – (c). However, as 𝛼 increases, the area of this 

region is decreasing and the maximum velocity in the core of the high-speed region also 

decreases. 

a) 

 
b) 
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c) 

 
 

d) 

 
e) 

 Figure 6.9 Horizontal velocity contours for 𝐺/𝐷 = 6 for varying trapezoidal configurations α: 

(a) 	0°, (b) 15°, (c) 30°, (d) 45° and (e) 60° 
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a) 

 
b) 

 
c) 
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d) 

 
e) 

 

  

Figure 6.10 Horizontal velocity contours for 𝐺/𝐷 = 14 for varying trapezoidal configurations α: (a) 

	0°, (b) 15°, (c) 30°, (d) 45° and (e) 60° 
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6.5 Streamlines 
The streamlines for 𝐺/𝐷 = 2, 3, 6, 10	𝑎𝑛𝑑	14 are plotted for squares in tandem, and vortexes 

are denoted Rx, where x is the number of the vortex explained in Figure 6.11. Moreover, the 

streamlines for all trapezoidal configurations have been plotted for 𝐺/𝐷 = 6 and 14. 

 

6.5.1 Streamlines over tandem squares 

The streamlines over the square configurations, presented in Figure 6.11, shows 7 visible 

vorticities whose appearances changes with different 𝐺/𝐷. Figure 6.11(a), where 𝐺/𝐷 = 2 , 

shows that the small R1 at the front face of Square 1 is developed in the same manner as the 

single square case. However, the vorticities downstream of Square 1 is varying with 𝐺/𝐷. The 

elongated R2 is located on top of the two tandem squares and induces R3 in a counter clockwise 

direction in the gap between the two squares. At the back surface of Square 2, there is a small 

counterclockwise R4 which is induced by the large downstream R5, similar to the single square 

case. Increasing the gap distance from 𝐺/𝐷 = 1 (a) to 𝐺/𝐷 = 2 (b), the R2 starts to suppress 

R3 and becomes a larger vortex attached to the bottom wall. R3 additionally induces two small 

vorticities: R6 and R7 in a counter clockwise direction.  

 

 
Figure 6.11 Time-averaged streamlines over wall-mounted squares in tandem with gap ratios 

of: a) 𝐺/𝐷 = 2 , b) 𝐺/𝐷 = 3  and c) 𝐺/𝐷 = 6  

 

Figure 6.12 shows the whole domain of interest with 𝐺/𝐷	 = 	2, 3, 6, 10 and 14 for the squares 

in tandem. It can be observed that R6 and R7 have been reduced significantly in size when 

increasing 𝐺/𝐷 to 10 and 14. The long downstream R5 behind Square 2 also decreases in size 

R1 R2 R4

R6 R7

R5R3
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due to its position downstream of Square 1 with large 𝐺/𝐷. This is because the turbulent shear 

layers above R2, formed at the left top corner edge at Square 1, no longer reaches past Square 

2 and affects R5 as seen Figure 12 (d) and (e). This subsequently leads to a highly reduced 

velocity profile over Square 2 which can be linked to the pressure and velocity contours 

discussed in Chapter 6.3.1 and Chapter 6.4.1, respectively.  

 

a) 

 

 

 
  

b) 

 
  

c) 

 
  

d) 
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6.5.2 Streamlines over trapezoids in tandem 

Figure 6.3 and Figure 6.4 shows the streamlines for all trapezoidal configurations in tandem 

with 𝐺/𝐷  of 6 and 14, respectively. With 𝐺/𝐷	 = 	6, the R6 and R7 are suppressed with 

increasing 𝛼. R2 recirculates over the top of Structure2 when 𝛼 < 45° , however for larger 𝛼, 

R2 seem to be shaped according to the gap shape between the two structures and is attached to 

its surrounding walls, as seen in Figure 6.3 (e). 

 The gap shape trend seems to be followed with 𝐺/𝐷	 = 	14	when 𝛼 is	0° and 15°, but there is 

a steady drop in R2´s attachment to the front face of Structure 2 with increasing 𝛼, as clearly 

seen in Figure 6.14 (d) and (e). This is obviously due to the reason that the reduced high-speed 

region above the structures for larger 𝛼 has not reach Structure 2. Finally, R5 is increasing in 

size in the streamwise direction with increasing 𝛼, clearly seen in Figure 6.14. 

 

 

 
a) 

 
  

b) 

 

e) 

 
 

 

 

Figure 6.12 Streamlines for wall-mounted squares in tandem with gap ratios of: a) 𝐺/𝐷	 =

	2, b) 𝐺/𝐷	 = 	3, c) 𝐺/𝐷	 = 	6, d) 𝐺/𝐷	 = 	10 and 𝐺/𝐷	 = 	14 
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c) 

 
  

d) 

 
  

e) 

 
 

 
a) 

 
  

b) 

 
  

Figure 6.13 Streamlines for G/D = 6 for varying trapezoidal configurations α: (a) 	0°, (b) 15°, (c) 30°, 

(d) 45° and (e) 60° 
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c) 

 
  

d) 

 
  

e) 

 
  

Figure 6.14 Streamlines for G/D = 14 for varying trapezoidal configurations α: (a) 	0°, (b) 15°, (c) 

30°, (d) 45° and (e) 60° 
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7 Conclusions 
 
This chapter outlines the conclusions and main findings for the study on the single and tandem 

cases. It also discusses the possibilities of future work on the concept of square and trapezoidal 

structures in both single and tandem configurations. 

 

7.1 Structures in single configuration 
Two-dimensional numerical simulations of turbulent boundary layer flows at high Reynolds 

numbers around square and trapezoidal wall-mounted structures have been carried out. The 

effects of different bottom angles of the trapezoids on hydrodynamical quantities have been 

investigated. The simulations are based on RANS equations using the 𝑘 − 𝜔  SST model 

combined with a wall function. The resulting drag coefficient (𝐶S) at 𝑅𝑒 = 1.19 × 10& shows 

good agreement with that of experimental data. The horizontal velocity profiles at different 

locations near the square match well with those from the experiments (Liu et al., 2008) except 

that there is overprediction near the free stream because of the 𝑘 − 𝜔  SST model. The 

validation shows that the present numerical model can provide satisfying results when used to 

study the hydrodynamic characteristics of different wall-mounted structures subjected to a 

boundary layer flow. Main conclusions can be outlined as follows: 

1. The hydrodynamic quantities 𝐶S , 𝐶T  and 𝑥_/𝐷  all decrease with increasing 𝛼  for 

trapezoidal configurations. 

2. The main contribution of drag forces on the structures comes from the pressure difference 

between the front and back face of the structures. However, as 𝛼 decreases, the viscous drag 

becomes more significant on the total drag. 

3. The vortices on the back and front face of the structures dissipates with increasing angle of 

𝛼.  

4. The absolute minimal value of the bed shear stress is highest for the square configuration 

and lowest for 𝛼 = 60°. 
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7.2 Structures in tandem configuration 

Two-dimensional numerical simulations of turbulent boundary layer flows at 𝑅𝑒 = 1.19 × 10& 

around square and trapezoidal wall-mounted structures in tandem have been carried out. The 

effects of the trapezoidal shape and the gap ratio 𝐺/𝐷 on hydrodynamic quantities for both 

structures in tandem have been investigated. The simulations are based on RANS equations 

using the 𝑘 − 𝜔 SST model combined with a wall function. Main conclusions can be outlined 

as follows: 

1. The most critical region, in terms of drag forces on both structures in tandem is found 

at 𝐺/𝐷	 = 	6. 

2. The drag coefficient of Square 1 have negligble effect from the tandem Square 2 when 

𝐺/𝐷	 = 	14.  

3. The drag coefficient for Structure 2 shifts from negative to positive with 𝐺/𝐷	 = 	14 at 

𝛼 = 15°  

4. The strength of the negative pressure region between Square 1 and Square 2 increases 

from 2	 < 	𝐺/𝐷	 < 	6 and decreasing from 6	 < 	𝐺/𝐷	 < 	14.  

 

7.3 Future work 
 
Studies of flow around wall-mounted squares and trapezoids in single and tandem 

configurations are of great interest for several offshore applications. The present study used the 

𝑘 − 𝜔 SST model with the simpleFoam solver, but other simulation set ups could also be 

utilized. The velocity, pressure and streamlines contours would be interesting to compare to 

other turbulence models and numerical setups to study the discrepancies. Also comparing the 

present study to a 3D – simulation could observe the importance of the 3D effects of such flow 

problems.  

The present simulations have proved to recreate reasonable hydrodynamic coefficients using 

low computational cost. It could efficiently be further used to investigate more configurations 

of 𝐺/𝐷 and 𝛼, and predict coefficients and flow behaviors for engineering purposes.   

The results found in this study indicates that there are some critical configurations which would 

impose significant changes to the force on the subsea covers relative to other configurations, 

especially at 𝐺/𝐷	 = 	6 for the present flow conditions. Being able to properly predict the most 
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favorable configurations, both for single and tandem arrangement,would lead to an improved 

safety for operations with thesubsea equipment protected by the subsea covers.  
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Numerical Simulations of Flow Around Subsea Covers at High 

Reynolds Numbers 
 

Martin Andersena, Guang Yin1a, Muk Chen Onga 

aDepartment of Mechanical and Structural Engineering and Material Sciences, University of Stavanger, 

Stavanger, Norway 

 

Abstract: 
In the present study, the flow around symmetric trapezoidal wall-mounted subsea covers with different 

bottom angles subjected to a boundary layer flow at Reynolds numbers of 1.19 × 10&  and 1 × 10' (based 

on the height of the structures and the free stream velocity) is under investigation using Reynolds-averaged 

Navier-Stokes (RANS) equations combined with the 𝑘 − 𝜔 Shear Stress Transport (SST) turbulence model. 

It is found that the drag coefficient on the wall-mounted square structures using the 𝑘 − 𝜔 SST turbulence 

model is in good agreement with the experimental data. The effects of bottom angles on the hydrodynamic 

quantities and the flow field around the structures have been discussed. 

 

 

1. Introduction  
Wall-mounted square and trapezoidal shaped rib structures are studied due to their wide application in 

offshore technology such as protection covers for pipelines. These structures are regularly subjected to 

extreme subsea environmental conditions and at a typical Reynolds number of 300 < 𝑅𝑒 < 3 × 10& (sub-

critical) and 𝑅𝑒 > 4 × 10' (transcritical). Here 𝑅𝑒 = 𝑈N𝐷/𝜈 where 𝑈N is the free stream velocity and 𝐷 is 

the structure height and 𝜈 is the kinematic viscosity of the fluid. Flows around these structures are complex 

and depend on various parameters such as Reynolds number, normalized boundary layer thickness 𝛿/𝐷 (𝛿 

is the incident boundary layer thickness) and the shape of the structures. 

Many experimental and numerical studies have been carried out to investigate the flow around wall 

mounted structures at high Reynolds numbers. Arie et al. (1975) conducted experimental studies of the 

pressure distribution around square structures subjected to a turbulent boundary layer at Reynolds numbers 

3.41 × 10c < 𝑅𝑒 < 1.19 × 10&. Tauqeer et al. (2017) conducted a numerical study for flows around subsea 

covers with different geometries subjected to different 𝛿/𝐷 at 𝑅𝑒 = 1 × 10'. The study presented reasonable 

results compared to the experimental data (Arie et al. 1975) using the 𝑘 − ɛ turbulence model. Hydrodynamic 

quantities on wall-mounted structures with different geometries were also investigated. Meroney R. N (2010) 

conducted validation studies on turbulence models for flows over wall-mounted panels. The study found that 
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the k-ω turbulence model is sufficient to reproduce consistent hydrodynamic quantities with the experimental 

data. Martinuzzi et al (1993) investigated flow over square ribs with varying spanwise lengths 𝑊/𝐷 (𝑊 is 

the spanwise length of the rib structures and 𝐷 is the height of the structures) using experiments. The study 

found that the flow around rib structures with 𝑊/𝐷	>10 can be considered as two-dimensional. Liu et al. 

(2008) studied the spatio-temporal characteristics of the separation and reattachment of turbulent flows over 

a two-dimensional square rib at 𝑅𝑒 = 1.32 × 10c  with 𝛿/𝐷 = 0.75 . Synchronized measurements of 

fluctuating pressure and velocity were obtained by using microphone arrays and a split-fiber film. The study 

showed that the shear layer separates from the leading edge of the rib, sweeps past the rib and reattaches on 

the bottom wall with a distance of  𝑥_/𝐷 = 9.75  from the rib. Ryu et al. (2007) investigated the 

characteristics of turbulent channel flow over two-dimensional rib structures at	𝑅𝑒 = 2 × 10c employing 

Reynolds Averaged Navier-Stokes Equations and the 𝑘 − 𝜔 turbulence model. The structures in the study 

were square, triangular, semicircular and wavy wall (sinusoidal function shaped). It was found that the square 

shaped structure imposed the most resistance to the incoming flow while the wavy wall offered the least. The 

results were in good agreement with experimental data and the RANS 𝑘 − 𝜔 turbulence model was found to 

capture the essential features of flow over wall-mounted strucures.  

The literature review shows that flow around wall-mounted structures has been studied in experiments for 

high Reynolds numbers and by RANS equations with the 𝑘 − 𝜀 and the 𝑘 − 𝜔 turbulence models. To the 

authors knowledge, the hydrodynamic effects of varying trapezoidal configurations have not been studied 

using 2D RANS equations with 𝑘 − 𝜔 SST turbulence model. In an economical point of view RANS is 

preferred over Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) due to computational 

cost as well as giving reasonable accuracy. In the present study RANS simulations with 𝑘 − 𝜔 SST model 

have been carried out to obtain the hydrodynamic quantities such as; drag coefficient (𝐶S), lift coefficient 

(𝐶T) and recirculation length (𝑥_/𝐷), for symmetric trapezoidal wall-mounted strucures with different bottom 

angles (90° − α) at 𝑅𝑒 = 1.19 × 10& and 𝑅𝑒 = 1.0 × 10'. Here 𝐶S = 𝐹S/0.5𝜌𝐴𝑈NE , where FD is the steady 

state drag force in the streamwise direction, 𝜌  is the fluid density and 𝐴  is the projected area. 𝐶T =

𝐹T/0.5𝜌𝐴𝑈NE , where FL is the steady state lift force in the cross-stream direction. 

The numerical setup used in this study is validated against the experimental data of Arie et al. (1975) and 

numerical results of Tauqeer et al. (2017) for square configuration with 𝛿/𝐷 = 0.73 at 𝑅𝑒 = 1.19 × 10&. 

The paper is organized as follows. First, the mathematical formulation, numerical methods as well as 

convergence studies are given in Section 2. The results and discussions are presented in Section 3. Finally, 

conclusions are given.  

2. Mathematical formulation  
2.1. Flow model 

The Reynolds-averaged equations for conservation of momentum and mass are expressed as: 

 
𝜕𝑢�
𝜕𝑥�

= 0 (1) 
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where 𝑖, 𝑗 = 1,2 (for x,y) denote the streamwise and cross-stream directions, respectively; 𝑢Q	and 𝑢E (for u 

and v) are the corresponding mean velocity components.  𝑢¸′𝑢º′»»»»»»»  is the Reynold stress component and 𝑢�′ 

represents the fluctuating part of the velocity, 𝑃 is the pressure and 𝜌 is the fluid density. 

The 𝑘 − 𝜔  SST turbulence model (Menter, 1994) is employed in the present study. The SST model is a 

combination of the 𝑘 − 𝜔 and the 𝑘 − 𝜀  model. The near wall region of the domain is treated with the 𝑘 −

𝜔  model of Wilcox (1998) while the standard 𝑘 − 𝜀  model of Jones and Launder (1973) is used in the outer 

wake region and in the free shear layers. According to Menter et al. (2003), the equations of 𝑘 and 𝜔 can be 

expressed as follow: 

 𝐷(𝜌𝑘)
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𝜕𝑥�

 
(4) 

where 𝑃�� is expressed by 

 
𝑃�� = 𝑚𝑖𝑛 �𝜇�

𝜕𝑢�
𝜕𝑥�

�
𝜕𝑢�
𝜕𝑥�

+
𝜕𝑢�
𝜕𝑥�

� , 10𝛽∗𝜌𝜔𝑘� 
(5) 

𝛷Q represents any constant in the original 𝑘 − 𝜔  model (𝜎�Q, …) and 𝛷E represents any constant in the 

original 𝑘 − 𝜀  model (𝜎�E, ...). Then the constant 𝛷 of the new model is denoted as 

 

 𝛷 = 𝐹Q𝛷Q + (1 − 𝐹Q)𝛷E (6) 

 𝐹Q = 𝑡𝑎𝑛ℎ	(𝑎𝑟𝑔Qc) (7) 

 𝑎𝑟𝑔Q = 𝑚𝑖𝑛 �𝑚𝑎𝑥	 �
√𝑘
𝛽∗𝜔𝑦 ,

500𝜈
𝑦E𝜔 £

4𝜌𝜎�E𝑘
𝐶𝐷��𝑦E

� (8) 

 𝐶𝐷�� = 𝑚𝑎𝑥	 �2𝜌𝜎�
1
𝜔
𝜕𝑘
𝜕𝑥�

𝜕𝜔
𝜕𝑥�

, 10PQ�� (9) 

 

where 𝑦 is the distance to the closest wall. 𝐶𝐷�� is the positive portion of the cross-diffusion term in (4). 

The turbulent eddy viscosity is defined as 

 𝜈� =
𝑎Q𝑘

𝑚𝑎𝑥(𝑎Q𝜔, 𝑆𝐹E)
 (10) 

 

where 𝑆  is the invariant measure of the strain rate and 𝐹E is given as 

 

 𝐹E = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔EE), (11) 

 𝑎𝑟𝑔E = 𝑚𝑎𝑥	 �2
√𝑘

0.09𝜔𝑦 ,
500𝜈
𝑦E𝜔 £ (12) 
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The SST constants are: 𝛽∗ = 0.09, 𝛼Q = 0.5532,	𝛼E = 0.4403, 	𝛽Q = 0.075, 𝛽Q = 0.0828, σk2= 1.0 and 

σω1= 0.5, σω2 = 0.85616.  

2.2. Numerical Simulation Scheme, computational domain and boundary conditions 
OpenFOAM, an open source computational fluid dynamic (CFD) code, is used in the present study. A 

solver based on semi-implicit method for pressure linked equations, simpleFoam is used. The spatial schemes 

for gradient, Laplacian and divergence are Gauss linear, bounded Gauss linear upwind, and Gauss linear 

limited corrected, respectively.   

The origin of the coordinates is located at the bottom center of the wall mounted structure. The height and 

top length of the structure is D and the bottom angels of the trapezoidal structures are 90° − 𝛼 =

90°(square), 75°, 60°, 45°and 30°  as denoted in Figure 1. The length and height of the computational 

domain are 52𝐷 and 20𝐷, respectively. The flow inlet boundary is located 𝐿𝑢 upstream from the center of 

the structure and the flow outlet boundary is located 𝐿𝑑 downstream from the center of the structure. Ong et 

al. (2010) performed a numerical study of flow around circular cylinder close to a flat seabed at the same 

Reynolds number range as the present study and found that a computational domain with (𝐿𝑢, 𝐿𝑑) =

(10𝐷, 20𝐷) is sufficient to suppress any far-field effects on the structures. In the present study, 𝐿𝑢 is set to 

be 11.5𝐷 and 𝐿𝑑 is set to be 40.5𝐷  to ensure that the domain is large enough. The boundary conditions for 

the simulations are set as follows: 

(1) The inlet velocity is a logarithmic boundary layer flow, with a horizontal velocity profile, adapted 

from the experiments done by Arie et al (1975) to ensure similarity to the experimental set up for 

comparisons. The velocity profile is used throughout the study. The velocity in 𝑦 direction is set to be 

zero and the value of 𝑘 and 𝜔 is calculated as follows: 

 𝑘(𝑦) = 𝑚𝑎𝑥 «𝐶¬
PQ
E y1 −

𝑦
𝛿z × 1 −

𝑦
𝛿 𝑢

∗E, 0.0001𝑈NE ® (13) 

 𝜔 =
𝑘�.&

𝐶¬�.&𝑙
 (14) 

 𝑙 = 𝑚𝑖𝑛 �𝜅𝑦 y1 + 3.5
𝑦
𝛿z

PQ
, 𝐶¬𝛿° (15) 

where 𝐶¬ = 0.09 is the turbulent-viscosity constant, 𝑢∗ is the bottom wall friction velocity, 𝜅 = 0.41  is the 

Karman constant and 𝑙 is the turbulent length scale (see e.g Brørs, 1999; Ong et al. 2010). 

(2) No-slip condition (𝑢Q = 𝑢E = 0) and standard near-wall conditions for 𝑘 and 𝜔 is applied on the 

surface of the structures and the bottom wall. When using these near-wall functions, the criteria of  

𝑦\ > 30 must be satisfied and 𝑦\ is given as: 

 𝑦\ =
𝛥𝑦𝑢∗

𝜈  (16) 

where 𝛥𝑦 is the distance of the first grid away from the wall. 

(3) At the outlet, 𝑢Q, 𝑢E, 𝑘 and 𝜔 are specified as zero gradient and the pressure is set as zero. 

(4) At the top, 𝑢Q, 𝑢E, 𝑘 and 𝜔 are set as zero gradient. 
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Figure 1. Computational domain and boundary conditions 

 

2.3. Grid resolution Study 
The grid resolution study has been carried out for all five angles (𝛼 = 0°, 15°, 30°, 45° and 60°) at 𝑅𝑒 =

1.19 × 10&  and 𝑅𝑒 = 1.0 × 10'  for 𝛿/𝐷 = 0.73 . The variations of 𝐶S , 	𝐶T  and 𝑥_/𝐷  are obtained and 

presented in Table 1 and 2. 𝐶S  and 𝐶T are calculated directly from 𝐹S and 𝐹T which are computed from the 

total force acting on the surface of the structures. 𝑥_/𝐷 is the horizontal distance between the separation 

point at the top left corner of the structures and the point where the bottom wall shear stress changes its sign 

in the wake region. Results for the convergence studies for 𝑅𝑒 = 1.19 × 10& are also shown with variation 

of the grid numbers for 𝐶S, 𝐶T and 𝑥_/𝐷  in Figure 2.  

a) b) 

  
c)  

 
Figure 2. Convergence of trapezoidal configurations at Re = 1.19 × 10&  
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   For different mesh densities at 𝑅𝑒 = 1.19 × 10&, the difference of 𝐶S between the cases varies from 0.14% 

to 1.99%. The relative difference of 𝐶T is from 0.16% to 2.18% and the relative difference of 𝑥_/𝐷 varies 

from 0.59% to 2.23%. For different mesh densities at 𝑅𝑒 = 1.0 × 10', the relative difference of 𝐶S between 

cases alters between 0.09% and 1.09%. The relative difference of 𝐶T varies between 0.3% and 4.86% and 

that for 𝑥_/𝐷 alters between 3.24% and 6%. Therefore, the normal mesh densities for both square and 

trapezoid cases at the two Reynolds numbers have achieved sufficient grid resolutions.  

Since wall functions are applied for all the simulations, a requirement of 𝑦\ > 30 for the first grid above 

the wall needs to be satisfied. In the present study, 𝑦\varies between 30 and 42 for different configurations 

at both Reynolds numbers. It can be concluded that grid resolutions for all configurations in the present study 

can provide satisfactory results. An example of the grid used for trapezoidal configurations is presented in 

Figure 3. 

 

 

  
 

Figure 3. Grid structure for α = 15° and Re = 1 x 106 
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Table 1. Hydrodynamic quantities for varying α with different grids at 𝑅𝑒 = 1.19 × 10& 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Hydrodynamic quantities for varying α with different grids at 𝑅𝑒 = 1 × 10' 

Mesh 𝛼 [°] 𝐶S  𝐶T  𝑥_/𝐷 

19076 0 1.030 0.604 15.27 

30424 0 1.021 0.608 15.39 

46531 0 1.001 0.595 15.05 

26 800 15 0.991 0.487 14.82 

36166 15 0.988 0.486 14.88 

48789 15 0.984 0.487 15.01 

26 800 30 0.943 0.411 14.36 

36166 30 0.940 0.411 14.41 

48789 30 0.937 0.413 14.62 

26 800 45 0.851 0.367 13.36 

36166 45 0.846 0.368 13.40 

48789 45 0.844 0.369 13.48 

26 800 60 0.677 0.362 11.57 

36166 60 0.673 0.363 11.88 

48789 60 0.672 0.363 11.43 

Mesh 𝛼 [°] 𝐶S 𝐶T  𝑥_/𝐷 

39 360 0 1.115 0.624 16.90 

53 124 0 1.125 0.657 16.83 

85 824 0 1.113 0.655 16.10  

39 360 15 1.070 0.488 16.52 

56 124 15 1.060 0.504 16.28 

98 244 15 1.059 0.507 15.77 

39 360 30 0.997 0.410 15.64 

56 124 30 0.990 0.417 15.71 

98 244 30 0.987 0.438 14.82 

39 360 45 0.874 0.369 14.22 

56 124 45 0.869 0.380 14.20 

98 244 45 0.870 0.399 13.60 

39 360 60 0.653 0.389 11.42 

56 124 60 0.646 0.386 11.54 

98 244 60 0.639 0.406 11.06 
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3. Results and discussion  
3.1. Validation study 
Validation study is done by comparing the drag coefficient and the horizontal velocity profiles of the present 

study and those of the earlier numerical and experimental studies. 

The drag coefficient was compared to experimental data from Arie et al. (1975) and numerical data from 

Tauqeer et al. (2017) using identical flow conditions of 𝛿 𝐷⁄ = 0.73 at 𝑅𝑒 = 1.19 × 10&. The present study 

simulated  𝐶S = 1.00, which is in good agreement with the previous results of 𝐶S = 0.96 (Arie et al. 1975) 

and numerical data 𝐶S = 1.02 (Tauqeer et al. 2017). 

  To further validate the simulation, a comparison of horizontal velocity profiles between experimental data 

from Liu et al. (2008) and the present study has also been performed. The experiment of Liu et al. (2008) 

was conducted at 𝑅𝑒 = 1.32 × 10c  with 𝛿 𝐷⁄ = 0.75  and compared to the present simulation at 𝑅𝑒 =

1.19 × 10& with 𝛿 𝐷⁄ = 0.73. The horizontal velocity profiles are compared at six different locations along 

the computational domain shown in Figure 4. The velocity profile at the upstream location of 𝑥 𝐷⁄ = −3.5 

shows no negative part and it appears to be the same as the experimental profile. The velocity profile at the 

separation point 𝑥 𝐷⁄ = −0.5 also appears to follow the experimental data, but has a slight overprediction 

region in the upper section of the velocity profile. This overprediction is also observed for the other four 

downstream locations and this may be due to the difference in Reynolds number. Furthermore, the 

overprediction of the velocity profiles compared with Tauqueer et al. (2017), where the 𝑘 − 𝜖 turbulence 

model is used, may be due to the low dissipation by using the 𝑘 − 𝜔 SST model in the present study. A small 

negative region in the velocity profiles appears at 𝑥 𝐷⁄ = 0.5 on the top right corner of the square which 

shows the presence of an adverse pressure gradient. There is a large negative region close to the bottom wall 

in the velocity profiles downstream the square indicating that a recirculation zone has been developed. In 

general, the profiles show reasonable agreement with the experimental data. 
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Figure 4. Comparisons of horizontal velocity profiles of the present simulation and experimental data from 

Liu et al. (2009) 

 

3.2. Effect of 𝜶 on hydrodynamic quantities and 𝒙𝑹/𝑫  

Varying angles 0° < 𝛼 < 60° have been studied at 𝑅𝑒 = 1.19 × 10&  and 𝑅𝑒 = 1.0 × 10'  to examine its 

effects on the hydrodynamic quantities: 𝐶S, 𝐶T and 𝑥_/𝐷.  

As seen from Figure 5 (a), the drag coefficient is monotonically decreasing with increasing 𝛼. The physical 

explanation for the trend can be outlined as follows. The main contribution of the total drag is the pressure 

difference between the front and the back face of the structure. The block effect of structure becomes weak 

with increasing 𝛼 , which results in less pressure difference. This can also be observed in the pressure 
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distribution in Figure 6. However, as 𝛼 further increases, the contribution of the viscous drag increases and 

with 𝛼 = 60° the trapezoid tends to be flat and a larger part of the total drag on the structures comes from 

the viscous drag. The viscous drag is higher at 𝑅𝑒 = 1.19 × 10& and causes larger 𝐶S  than that at 𝑅𝑒 =

1.0 × 10' for higher 𝛼 as shown in Figure 5 (a). The recirculation length 𝑥_/𝐷, shown in Figure 5 (c), also 

decreases for increasing 𝛼 and behaves similar to 𝐶S. This implies that the viscous effect has a significant 

influence on these two quantities when the pressure contribution decreases.  

Figure 5. Effect of α on hydrodynamic quantities: (a) CÁ, (b) CÂ and (c) xÃ/D  

 

3.3 Velocity and Pressure Distributions 
The color contours of the pressure at 𝑅𝑒 = 1 × 10' are presented in Figure 6. Due to the block effect of 

the structures to the flow, there is a high-pressure region in front of the structure because of the energy 

conservation. Furthermore, due to the conservation of mass, a high-speed velocity region forms after the 

separation point above the structure. Hence, due to the Bernoulli’s principle, the high-speed velocity region 

creates a local negative pressure region around the right top edge of the structure as seen in Figure 6. It can 

be observed that the intensities of both the positive and negative pressure regions reduces with increasing 𝛼. 

This is due to the fact that the reducing blocking effect, associated with higher 𝛼, causes lower velocity drop 

over the structure, hence resulting in reducing pressure regions due to the Bernoulli’s principle.  

a) b) 

  
c)  
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Figure 6. Pressure contours for Re = 1 × 10' for varying 𝛼: (a) 	0°, (b) 15°, (c) 30°, (d) 45° and (e) 60°  

 

a) b) 

  
c) d) 

  
e)  
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The contours of the horizontal velocities at 𝑅𝑒 = 1 × 10' are presented in Figure 7 for all 𝛼. The velocity at 

the front face of the structure is zero and propagates further upstream due to the blocking effect. After the 

separation point, at the top left corner of the structure, the velocity is accelerated due to the conservation of 

mass. A shear layer is generated with a high-speed region above the structure and a recirculation region 

behind the structure. The area of the high-speed region reduces with decreasing 𝛼. 

a) 

 
b) 

 
c) 

 
d) 
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Figure 7. Horizontal velocity contours at Re = 1 × 10' for varying 𝛼: (a) 	0°, (b) 15°, (c) 30°, (d) 45° and 

(e) 60° 

 

The contours of vertical velocity are presented in Figure 7 for all angles 𝛼. There is an increase in the vertical 

velocity along the front face of the structure due to the conservation of mass, accelerating the mass above 

and past the structure to maintain conservation of energy. The intensity of the high vertical velocity region 

around the top left corner reduces with increasing  𝛼, as seen in Figure 8 (b) - (e). This is because the 

trapezoidal structures shift the direction of the flow more gradually. There is also a slight positive vertical 

velocity region at the rear face of the structure, indicating that a recirculation region forms behind the 

structures. 

e) 

 

a) 

 
b) 
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Figure 8. Vertical velocity contours at Re = 1 × 10' for varying 𝛼: (a) 	0°, (b) 15°, (c) 30°, (d) 45° and (e) 

60° 

  

c) 

 
d) 

 
 

e) 
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3.4. Bed shear stress and flow patterns 
In actual subsea environment, bed shear stress is closely related to the scour process, which is removal of 

sediment around the base of an immerged structure. High absolute values of 𝜏 𝜏N⁄  close to the structure can 

indicate a significant scour process, which is a typical source for failures in subsea operations (Zhao et al. 

(2012)). Therefore, the present study investigates the bed shear stress on the seabed surfaces adjacent to the 

structures with different configurations of 𝛼. 

Figure 9. Bed shear stress along the bottom surface at Re = 1 × 10' for: a) the whole domain. b) the front 

face of the structures 

 

 

Figure 9 shows the non-dimensional bed shear stress 𝜏 𝜏N⁄ , where 𝜏N is the undisturbed bed shear stress, 

along the bottom wall surface. 𝜏 𝜏N⁄  stagnates towards zero close to the front faces of the structures which 

are located 𝑥/𝐷 = (−0.5, −0.768,−1.077,−1.5, −1.732) for 𝛼 = (0°, 15°, 30°, 45°, 60°), respectively.   

Figure 9 (b) shows small negative 𝜏 𝜏N⁄  regimes in front of the structure for all 𝛼 due to the backflow and 

the adverse pressure gradient caused by the conservation of energy. It can be observed that these negative 

regimes have lower amplitudes and are shorter (in streamwise direction) for increasing 𝛼. This behavior is 

due to the smooth flow transitions which is associated with high 𝛼. The bed shear stress has a large negative 

region behind the structures due to the recirculation motions for all configurations. This negative region is 

also reduced with increasing 𝛼, which is consistent with the declining recirculation length. It is also worth 

noting that the absolute minimal value of the bed shear stress also decreases with increasing 𝛼 and its location 

shifts closer to the structure.  

 

 

 

 

 

a) b) 
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To further investigate the flow around the five configurations with different 𝛼, streamlines are plotted at 

𝑅𝑒 = 1.19 × 10& and 𝑅𝑒 = 1.0 × 10' in Figure 10, 11 and 12. There are three main recirculation motions: 

around the square structure seen in Figure 10. The first vortex (1) forms because the fluid particle hits the 

structure, flows downward and reverses its direction due to the bottom wall. A large recirculation is generated 

by the shear layer separation after the front top edge of the square (2), which also induces a smaller one in 

the downward corner of the square (3). For both Reynolds numbers, with increasing 𝛼, the length of the large 

recirculation behind the structure decreases. In addition, as the flow tend to follow the angle of the front face 

after separation, the height of the recirculation reduces as the structure becomes flat. Furthermore, the 

increasing 𝛼 gradually suppresses the vortices on front and back faces, (1) and (2) from figure 10 (a), of the 

structure because the flow tends to be attached to the structure surface as seen in Figure 10 (b). 

 

a) 

 

b) 

 
 

Figure 10. Detailed stream lines for Re = 1 × 10' for (a) α = 0° and (b) α = 60° 

 

a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
 

Figure 11. Stream lines at Re = 1.19 × 10& for varying α: (a) 	0°, (b) 15°, (c) 30°, (d) 45° and (e) 60° 

1 2 3
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Figure 12. Stream lines at Re = 1 × 10' for varying α: (a) 	0°, (b) 15°, (c) 30°, (d) 45° and (e) 60°   

Conclusion 

Two-dimensional numerical simulations of turbulent boundary layer flows at high Reynolds numbers around 

square and trapezoidal wall-mounted structures have been carried out. The effects of different bottom angles 

of the trapezoids on hydrodynamical quantities have been investigated. The simulations are based on RANS 

equations using the 𝑘 − 𝜔 SST model combined with a wall function. The resulting drag coefficient (𝐶S) at 

𝑅𝑒 = 1.19 × 10& shows good agreement with that of experimental data. The horizontal velocity profiles at 

different locations near the square match well with those from the experiments (Liu et al. 2008) except that 

there is overprediction near the free stream because of the 𝑘 − 𝜔 SST model. The validation shows that the 

present numerical model can provide satisfying results when used to study the hydrodynamic characteristics 

of different wall-mounted structures subjected to a boundary layer flow. Main conclusions can be outlined 

as follows: 

1. The hydrodynamic quantities 𝐶S , 𝐶T  and 𝑥_/𝐷  all decrease with increasing 𝛼  for trapezoidal 

configurations. 

2. The main contribution of drag forces on the structures comes from the pressure difference between the 

front and back face of the structures. However, as 𝛼  decreases, the viscous drag becomes more 

significant on the total drag. 

3. The vortices on the back and front face of the structures dissipates with increasing angle of 𝛼.  

4. The absolute minimal value of the bed shear stress is highest for the square configuration and lowest for 

𝛼 = 60°.  

a) 

 
b) 

 
c) 

 
d) 

 
e) 
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