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Abstract

This thesis demonstrates the use of machine learning for integrity management and assessment

of pipeline integrity using various types of classification algorithms on comprehensive in-line

inspection data. Machine learning is a subfield of artificial intelligence that includes abstruse

statistical techniques enabling machines to improve problem solving experience and excels at

identifying underlying statistical patterns enhancing in example predictive models, anomaly

detection, and operational monitoring. Machine learning has been used with tremendous success

on a range of problems across industries, and while it is important to be grounded and have

realistic expectations for the value gain, there is no reason to believe that the oil and gas industry

are any different as the literature study show.

Pipeline corrosion is one of the primary causes for pipeline failure. It is necessary to continuously

monitor and analyze the pipeline to predict possible failures and ensure safe operation. In the oil

and gas industry, In-line inspection (ILI) is an essential part of the integrity management (IM)

of pipeline system. Corrosion is one of the primary concerns for the IM of a pipelines due to the

potential for leakages and catastrophic failures. ILI allows for routine inspections of pipelines

with high accuracy and is a great tool for identifying corrosion damage, and if necessary, is used

to decide whether further detailed investigation is necessary. As a proactive IM strategy, it is

highly dependent on the ability to accurately predict rate of corrosion growth.

The thesis gives the necessary theoretical background to integrity management of pipelines with

the inherent risks of operation, failure modes, and defect assessment. The literature study focuses

on the historical development and current developments for machine learning in the oil and

gas industry, followed by a client case where various supervised machine learning models is

developed and used to determine the structural integrity of sections of a pipeline based on data

from in-line inspections with the objective of determining the suitability of machine learning for

defect assessment and potential use in assisting predictive corrosion models.

The various machine learning models are developed through extensive experimentation with

inspiration from other research and problem domains. As the ILI inspection supply comprehensive

data, the importance of imposing constraints is important in order to make findings relevant

in practice. The machine learning models1 performed well on the available pipeline data, and

models such as the XGBoost Classifier predicted class labels with accuracy of 100.0%. There

are limitations to the models as they were not developed to take into account the assessment of

complex shaped defects but the results are promising, and we can argue the case demonstrates

the wider potential for machine learning in future work on defect assessment and integrity

management.

Keywords – Machine Learning, Integrity Management, Oil and Gas, ILI, Corrosion.
1The Python-code for data preprocessing, training and evaluating the classification models is available on

request to: perhaakon@live.no
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Anomaly
An indication, generated by non-destructive examination of an
irregularity or deviation from sound weld or base pipe material, which
may or may not be an actual flaw.

Arc strike
Localized points of surface melting caused by an electrical arc (also
referred to as hot spot).

Construction feature
Feature that arises during pipe manufacture, transport or constructing of
the pipeline, including a girth weld anomaly, arc strike and grinding.

Corrosion
An electrochemical reaction of the pipe wall with its environment causing
a loss of metal.
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but not necessarily resulting in localized reduction of wall thickness.

Detection threshold The minimum detectable metal loss.
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An indication, generated by non-destructive examination, of an anomaly,
change in nominal wall thickness, casing, reference magnet, pipeline
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Grinding
Reduction in wall thickness by removal of material by hand filing or
power disk grinding.

Gouge
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Heat affected zone

The area around a weld where the metallurgy of the metal is altered by
the rise in temperature caused by the welding process. For the purpose
of this specification it is considered to be within 3A of the center line of
the weld, where "A" is the geometrical parameter related to the wall
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Intelligent pig A pig that can perform a non-destructive examination.
Metal loss feature An area of pipe wall with a measurable reduction in thickness.
Mid-wall feature Any feature which does not run out to either the internal or external surface.
Measurement
threshold

The depth of metal loss or remaining wall thickness from which the width
"W" and length "L" of an anomaly are measured.

Nominal wall
thickness

The wall thickness required by the specification for the manufacture of
the pipe.

Pig
A device which is driven through a pipeline by the flow of fluid, for
performing various internal activities (depending on the pig type) such as
separating fluids, cleaning or inspecting the pipeline.

Pig trap
An ancillary item of pipeline equipment, with associated pipework and
valves, for introducing a pig into a pipeline or removing a pig from a
pipeline.
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Anomaly
An indication, generated by non-destructive examination of an
irregularity or deviation from sound weld or base pipe material, which
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A system of pipes and other components used for the transportation of
fluids between (but excluding) plants. A pipeline extends from pig trap to
pig trap (including the pig traps), or, if no pig trap is fitted, to the first
isolation valve within the plant boundaries or a more inward valve if so
nominated.

Pipe mill feature
A feature that arises during manufacture of the pipe, as for instance a
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Detection

The probability of a feature being detected by the intelligent pig.

Probability of
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Reference wall
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Reporting threshold
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Spalling
Abrasion of the pipe surface resulting in shallow surface laps and
possibly hardening of the material below.

Weld feature Feature in the body or the heat affected zone of a weld.



1. Introduction 1

1 Introduction

1.1 Problem Definition

How can Machine Learning techniques be used to improve risk based inspection and integrity

management of pipeline systems?

1.2 Objectives and Approach

The objectives of this thesis are to perform exploratory work on the application of Machine

Learning techniques towards risk based inspection and integrity management of pipeline systems,

identify sections of corrosion features, determine severity of identified corrosion features, train,

validate, and test selected Machine Learning models on selected datasets extracted from inspection

reports, and compare test results with results from traditional defect assessment methods in

accordance with DNV-RP-F101 Corroded Pipelines to determine the suitability of machine

learning for the assessment of anomalies.

The expectations for the client are to get an enhanced understanding of how machine learning can

aid existing procedures related to operational monitoring and integrity management of pipeline

systems.

1.3 Limitations

The thesis focuses ILI inspection data from an inspection run performed in 2010. As the data

available was limited in severity, some assumptions was made in order to enable the application

of machine learning techniques towards the classification problem. The minimum depth threshold

for anomalies was set to 10% of reference wall thickness instead of 2.0 mm which is the traditional

threshold set when inspecting pipelines due to the low amount of high corrosion features recorded

during the inspection run. The assessment performed in the Python kernel is based on the

allowable stress approach in DNV-RP-F101 and features were labeled according to the depth

percentage feature. Hence, the hypothesis is that the feature with highest importance and

correlation with the class label would be depth percentage. It should also be mentioned that

the assessment uses the assessment method for single defects that do not interact with other

defects. As many of the recorded features are of feature type "main spot", indicating the deepest

corrosion feature in a cluster making up a complex shaped defect, this results in some limitations

for the validity of the models when performing classification of unseen data. The thesis does also

not cover into detail the inner workings behind the different machine learning algorithms as this

is beyond the scope of the thesis.



2 1. Introduction

1.4 Thesis Structure

The thesis is structured in 3 major sections. The first part introduced the client case and gives the

necessary theoretical background to integrity management of pipeline systems by performing a

literature review. The second part focuses on the current application and development of machine

learning technology in the oil and gas industry with the objective of performing an exploratory

study on the possibilities for improving existing workflows for the client. The third part is

about showcasing the comprehensive workflow involved when building predictive models by using

machine learning tools. The objective of this client case is to enhance the understanding of how

machine learning models can be deployed and how they can improve assessment workflows. The

thesis finished with a discussion and conclusion on the potential of machine learning, practical

barriers of machine learning, and theoretical limitations and avenues for further research.
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2 Client Case

2.1 Enhancing Integrity Management using Machine Learning

techniques on In-line Inspection data

Integrity Management of pipelines is essential for the ensuring safe operations and prevent

potentially catastrophic failures. The primary concern for pipeline deterioration is corrosion.

Hence, in-line inspections (ILI) is a vital part of the monitoring of pipelines subjected to corrosion,

supplying detailed information about pipeline features such as corrosion features with detailed

geometric measurements of size and position, in addition to other features such as anodes, girth

welds, etc. The objective of an ILI is to inspect the level of corrosion and possible damage on

the pipeline, locate defects, assess the severity of defects, and use the ILI history from previous

inspections to estimate corrosion growth rates for each section of the pipeline. The ILI results

are then used as a guideline for determining the Integrity Management Strategies (IMS) for the

given system.

The objective of the client case is to apply ML techniques on ILI data from inspections performed

with an Ultrasonic Tool (UT) on a pipeline on the Norwegian continental shelf in order to train,

test and validate different ML models with the end goal of determining the level of integrity of

the pipeline. The predicted results from the ML models are then cross validated against results

from the traditional corrosion flaw assessment in accordance with DNV-RP-F101.

The case will be a binary classification problem where Class 0 indicates good integrity, i.e. low

corrosion levels, or Class 1 indicating severe corrosion levels and subsequent reduced level of

integrity. As a part of the case, an exploratory data analysis (EDA) is performed on the different

features with the objective of identifying patterns in the data which can aid the predictive models.

The end goal of the client case is to enhance the client’s knowledge about ML techniques, how to

apply the tools, and how ML can be used to improve IM of pipeline systems.
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3 Theoretical Background

3.1 Integrity Management of Pipeline Systems

Corrosion as considered as one of the primary concerns for pipeline integrity (Ahammed and

Melchers, 1996; da Cunha, 2016; Choi et al., 2003). Hence, it is of utmost importance to

implement necessary integrity management strategies to ensure safe operation by reducing risk

and preventing potential failures (Kishawy and Gabbar, 2010). To enable the implementation

of sufficient strategies it is important to understand the fundamental concepts of corrosion

including the causes, growth behaviour, consequences, and mitigation techniques. Pipeline

integrity management is a program which manages methods, tools and activities necessary for

assessing the health condition of pipelines in addition to scheduling adequate inspection and

maintenance activities to reduce the risk and costs (Xie and Tian, 2018). Pipeline integrity

management programs consist of three major steps. Defect detection and identification, defect

growth prediction, and risk-based management.

ILIs are performed periodically using smart pigging tools in order to detect defects and anomalies

such as corrosion and crack features. Significant advances are needed as there are great challenges

associated to accurately evaluate anomalies based on ILI data, predict growth rate of corrosion

features, and optimize integrity activities in order to prevent failure of pipelines. The following

chapter gives a comprehensive review on pipeline integrity management using ILI data.

3.1.1 Introduction

Pipelines can suffer from a variety of different defects such as corrosion, fatigue cracks, stress

corrosion cracking (SCC), dents, etc. which can affect the level of integrity of the pipeline. If the

pipeline is not properly managed, the consequences of a failure can be of catastrophic scale for

the local environment. Failures can be in the form of either leaks or ruptures, and in addition

to the potential environmental consequences, the potential expenses related to cleaning and

downtime of production will be a heavy cost for the company operating the pipeline. Integrity is

the top priority for pipeline operators ensuring reliable and safe operations. Reliable and safe

operations lead to increased productivity, stable production, reduced costs, and prevents possible

damage to the environment. It is of utmost importance to ensure safety, security of supply,

and compliance with legislation and relevant codes for the offshore industry. Pipeline integrity

tools are developed to manage risk, ensure compliance, and improve business performance. By

implementing integrity management practices, we can reduce probability and consequences of

failure, and improve the pipeline operating company’s business performance by correctly assess

and manage detected anomalies and defects. The role of a pipeline integrity management program

is to monitor and predict the effect of defects in order to ensure when, where and what type of
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inspection, maintenance and repair is performed.

A great pipeline integrity management program should prevent failures from occurring, manage

risks adequately, reduce costs for operators, and control damage effectively. The IM program can

be divided into three major steps as listed earlier:

1. Anomaly and defect detection and identification

2. Defect growth prediction

3. Risk-based management

The detection and identification of anomalies and defects are performed by using tools which

collects the necessary data such as visual inspection, nondestructive evaluation (NDE), hydrostatic

testing, or in-line inspection. ILI is the most used inspection technology and the focus of this

thesis. Hence, the thesis focuses on data resulting from ILI tools. Defect growth prediction is

about predicting, as accurate as possible, at what rate the feature grows and remaining time

before pipeline failure will likely occur. Features that are a threat to pipeline integrity are

metal loss, cracking, third party damage, dents, etc. The third step, risk-based management,

determines the suitable inspection intervals, maintenance and repair actions to ensure safe

operation. Management models affect primarily the first and second step by potential changes to

inspection actions and defect status classification. The primary objective of an integrity program

is to achieve accurate defect prediction in order to find the most effective balance/compromise

between reliability and costs, and it is important to note that some studies consider the design

phase as an integral part of the management model. This is reasoned for by arguing that from a

lifecycle perspective, design is an integral part as better design practices would lead to better

confidence in the integrity of the pipeline. Palmer et al. (2004) provides a detailed introduction

to the design stage of subsea pipelines and Antaki (2003) introduces an approach for taking into

account the design stage of integrity management in the lifecycle cost modeling.

The following sections covers ILI tools and the major technologies to detect and identify defects,

the performance and applications

3.1.2 Detection of Anomalies by In-line Inspection

Failure of pipelines can have dramatic consequences. Due to possible pipeline failures including

leakage, environmental damage and high costs related to repair and potentially expensive

replacements, accurate pipeline monitoring and inspection is essential. Varela et al. (2015)

discusses and summarizes major methodologies, not limited to ILI, which is widely utilized

for inspecting and monitoring of corrosion features located externally in pipelines in addition

to discussing pros and cons for the different inspection technologies. Rankin (2004) further

elaborates pipeline inspection techniques such as hydrostatic testing, ILI tools, tools designed

for inspection of non-piggable pipelines, etc. The procedure for performing an inspection with a
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pigging tool and the capabilities of the tool are as follows. First, the tool is inserted into the

pipeline and pushed through the pipe by the fluid flow. As it travels through the pipeline, the

tool gathers all specific information related to the health and condition of the pipeline. The

tool is capable of classifying the types of anomalies and their features including orientation, size

and specific location in the pipeline (Shaik, 2015). R. Walker et al. (2010) elaborates on how to

achieve reports of higher quality from ILI data, giving greater insight into what practices and

technologies ILI service providers should invest in and embrace in order to ensure reliable service

delivery.

Metal loss defects can be categorized into two main types. The first type is pressure-based defects

and the second type is depth-based defects (Shaik, 2015). When considering depth-based defects,

Shaik (2015) argues that the pipe is assumed failed when the defect depth reaches 80% of the

initial wall thickness of the pipeline. For pressure-based defects as in example corrosion, the

failure state is determined by the failure pressure, uncertainty model and selected safety factors.

3.1.3 In-line Inspection Technologies

To ensure the integrity of the pipeline during the operational life it is necessary to perform routine

monitoring and evaluate the impact of the subsea environment on the pipeline. These inspections

can be performed in two ways. The first approach is by external inspection carried out by either

a remote operated vehicle (ROV) or by an autonomous underwater vehicle (AUV). The choice of

inspection method is dependent on the type of corrosion features expected in combination with

the location of the features (Nash, 2011). The most widely used approach for internal inspection

is the use of in-line inspection tools such as smart pigging which is a device inserted and run

through the pipeline recording comprehensive data of the pipeline integrity through corrosion

features and all essential geometric data. The pigging tools uses ultrasonic, magnetic flux or

visual inspection techniques to examine the condition of the pipeline.

The inspection devices used, referred to as "pigs", are devices which are inserted into either

onshore or offshore pipelines to perform the desired task. Tasks can range from cleaning the

inside of the pipeline by removing residues and objects which prevent or reduces the flow, to

internal inspections for detecting corrosion and cracks which are a threat to the integrity of

the pipeline. Pigs enables the assessment of pipeline integrity providing the basis for decisions

related to maintenance and repair, preventing failures such as leakages and ruptures. The two

main inspection technologies used for subsea pipelines are ultrasonic testing and magnetic flux

leakage where the selection of technology is based on the objective of the inspection work. As

the technology used for the ILI inspection is ultrasonic inspection technology, this will be further

elaborated on in the next sections.
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3.1.4 Ultrasonic Inspection Technology

Ultrasonic technology enables detailed inspection and measurement of pipelines in order to detect

metal loss features at an early stage in order to prevent loss of integrity and leakages of potentially

catastrophic scale. The following section covers the basic principles of ultrasonic technology and

how it enables the detection and evaluation of e.g. corrosion features.

The concept of ultrasonic technology is based on the perpendicular incidence of ultrasound into

the wall of the pipe. The pulse is then reflected from the back of the pipe wall forth and back

until the energy dissipates. The received signal is a sequence of rear wall echos (RWE) which

enables the measurement of remaining wall thickness. In principle, the process of determining

wall thickness is to measure the time t between entry echo and the first rear wall echo, or measure

the time t between two rear wall echos. With the basic assumption that the sound velocity v in

steel is 5920 m/s, the wall thickness d can be determined:

d =
v ∗ t
2

(3.1)

In addition to measuring the depth of the defect, the tool does also have the capability of

detecting if the feature is located internally or externally. This is a result of the stand-off distance

between the probe and the wall. The pipeline is filled with a medium such as oil with a known

velocity of sound. This enables the stand-off distance to be calculated directly from the entry

echo and time-of-flight. The stand-off measure enables the distinction between internal and

external metal loss features as the stand-off signal will change when an internal metal loss feature

is present, illustrated in figure 3.1. In addition, ultrasonic technology allows for the detection of

a wide variety of anomalies such as in example inclusions, slag, lamination, etc. This is due to

inhomogeneities reflecting the signal from within the pipe wall.
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Figure 3.1: Principle of ultrasonic wall thickness measurement

3.1.5 Tool Specifications

This sections covers the ultrasonic inspection tool configuration used for the 2010 inspection run.

The tool configuration is listed in table 3.1 and the tool schematics are displayed in figure 3.2.

Table 3.1: Ultrasonic inspection tool configuration.

Maximum wall thickness 60 mm2

Velocity at full spec ≤ 1.12 m/s 3

Temperature range −50 – +50 °C4

Maximum pressure 120 bar
Minimum internal diameter
in straight pipe 432 mm

Minimum internal diameter in
minimum bend 457 mm

Minimum bend radius 3D/90° 5

Tool length Approximately 3850 mm
Tool weight Approximately 620 kg
Number of bodies included
sensor carrier 4

Distance range 6 Approximately 295 km at 1.1 m/s 7

Battery life time Approximately 75 hours
Number of sensors 312
Axial sampling distance Approximately 1.5 mm
Circumferential spacing sensor spacing Approximately 1.5 mm
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Figure 3.2: Schematics of 20" Ultrasonic inspection tool

3.1.6 Feature Specifications

The following tables list the inspection tool’s capabilities for recording features during the in-line

inspection. Important to note that the values represent the capabilities and not reporting

thresholds.

Table 3.2: Metal loss - Inspection tool capabilities

Detection of metal loss
with POD8 > 95%9 (due to
low echo loss rate and good
anomaly detection in the weld
area)

Without depth sizing:
Minimum diameter
Minimum depth

7.5 mm
1.5 mm

With depth sizing:
Minimum diameter
Minimum depth

15.0 mm
0.4 mm10

Discrimination int./ext. Yes

Depth sizing accuracy
Resolution of wall thickness
Resolution of stand-off measurement
Accuracy of depth sizing at 95% confidence level

0.06 mm
0.014 mm
±0.4 mm

Length sizing accuracy At 95% confidence interval ±3 mm
Width sizing accuracy At 95% confidence interval ±6 mm
Accuracy of wall thickness
measurement Purpose of verifying nominal wall thickness ±0.2 mm

Table 3.3: Other features - POI > 95%

Mid-wall features Laminations and inclusions
minimum diameter 10 mm

Deformations Dents and blisters Yes
Weld detection Girth-, spiral-, and longitudinal weld Yes
Installations Minimum diameter 25 mm
Bends Bend radius <5D/90° Yes
Repair areas (welded) Sleeves, patches, attachements Yes

2Subject to tool speed and depth of internal metal loss.
3Higher velocity on request.
4Higher temperature on request.
51.5D on request.
6Depending on velocity, tool settings, and data storage limitations due to pipeline condition
7Larger distance on request
8POD = probability of detection.
9Can potentially be reduced in tight-radius hot bends.

10Lower threshold, in example for thin walls.
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Table 3.4: Location accuracy

Distance ± 10 cm from nearest GW
Orientation ± 5° for diameter ≥ 20", else ± 10°

3.1.7 Evaluation Procedure

Data from the ultrasonic inspection tool is stored on a recording medium during the inspection

run and subsequently checked locally for quality and completeness. After extraction at the

receiver, the data is extracted from the recording medium and preprocessed for analysis. The

following procedure can be divided into three major steps:

1. Identification of reference points based on girth welds in addition to supplied information

from the client.

2. List of reference points is generated including marker points for marker transmitter system

and natural reference points such as installations.

3. Analysis of recorded data.

During the third step, the analysis, anomalies are first determined by search program according

to specified criteria and saved in database. From the previous database anomaly candidates are

selected from a refined search based on criteria such as depth, width, length, etc. The selected

anomalies are then analyzed and classified by qualified data analysts with the aid of data analysis

software. After the analysis, the features are stored in a feature list and checked by senior

engineer for correctness and completeness.

After the initial screening assessment and analysis, the metal loss features are assessed in

accordance with the selected anomaly assessment method, e.g. DNV-RP-F101. Then the metal

loss features are classified by their remaining wall thickness or depth, and the most severe features

are fully assessed to ensure the integrity of the pipeline section.

The final step of the evaluation procedure is to generate the full inspection report consisting of

statistics and diagrams, lists of all recorded results, detailed feature description and detailed

assessment of features.

Pigs give accurate readings of the pipelines, but issues arise because large sections of the world’s

pipelines are not easily accessible for this inspections with pigging tools. The following section

reviews the different signal processing techniques and algorithms for different types of ILI tools.

3.1.8 Performance and Application of In-line Inspection Tools

It is of utmost importance to understand the performance of the available ILI tools in order to use

them correctly and achieve their full potential. The measure of performance can be subdivided

into four measures:
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• Detection: The capability to detect a feature. Probability of detection (PoD) should be

above 90% for all ILI tools.

• Identification: The capability to successfully classify and report the correct feature type

after detection. Probability of identification (PoI) increases with increasing size of feature.

Incorrect classification of feature will have significant impact on accuracy of feature growth

prediction.

• Accuracy: The accuracy for sizing of feature is the most significant measure to assess

performance of the tool. Accuracy has a big impact on integrity management, and with

increasing accuracy, unnecessary inspections will be reduced. Increased accuracy will

result in improved selection of essential features and failure pressure will be predicted with

increased accuracy.

• Localization: The capability to accurately locate anomaly. With high location accuracy,

features can be compared with previous performed inspections and the growth history can

be used to adjust models for e.g. future corrosion growth. This measure does also have a

significant impact on the maintenance and repair activities.

Previous studies have introduced algorithms for classification, detection, sizing, etc. in order to

assess and improve ILI tool performance. Caleyo et al. (2007) proposed a criteria for assessing

performance of ILI tools. The proposed methodology allows for determining errors associated

with estimation of true defect depths, and the proposed criteria were tasted in a case study using

Mont Carlo simulations in addition to a real-life test study in order to present the application.

Hrncir et al. (2010) presents a case study for improving the confidence level of feature information

reported by utilizing revised sizing algorithms. Wang et al. (2015) presents a methodology to

estimate the true depth of corrosion features based on detection theory accounting the soil

property variation by combining a Bayesian inferential framework with cluster analysis. The

case study presents three significant types of uncertainties in ILI tools which affect performance.

Systematic errors of ILI tools, measurement noise, and random errors from the ILI tool and

changes in surface roughness. McNealy et al. (2010) studies the effects on performance from

combined measurement errors associated with the current technology employed for ILI of metal

loss features. The errors and subsequent uncertainty of ILI data is handled in (Mora et al., 2008)

which introduced a case study that identifies uncertainty effects of ILI accuracy for criticality

assessment of metal loss features.

ILI data enables the assessment and prediction of conditions of pipelines, aiding the planning of

integrity activities. Examples

3.1.9 Predicting Growth Rate of Defects

For predicting the growth rates for defects in pipelines there are 2 types of methodologies:

Data-based and model-based methods. This section will cover the prediction algorithms, types
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of anomalies an defects that a pipeline can experience, in addition to methodologies for assessing

the specific defects.

3.1.9.1 Data-based

Data-based methods use ILI data or test data in order to study the defect propagation stage. The

application of ILI data in order to assess anomalies was discussed in the previous section, and

the data-based approach gives essential information for predicting in example corrosion growth.

Schneider et al. (2001) predicted defect growth rate and useful remaining life of a pipeline system

using ILI data. The challenges for this study was the inaccessibility of certain pipeline sections

which was handled by fitting statistical distributions for minimum wall thickness to the sample

data. The extreme values from these distributions were then used in order to derive theoretically

the corresponding distributions of the "unpiggable" sections of the pipeline system. The research

highlighted the need for improved understanding of corrosion rates in selected sections of the

pipeline were the solution for improved predictive power was to mount ultrasonic transducers

which yields detailed information on the rate of corrosion.

3.1.9.2 Model-based

Model-based methods involve the application of physical models in order to perform defect and

anomaly predictions using tools such as finite element method, and the remaining useful life of

a pipeline can be predicted using physical models such as pipeline degradation models based

on the failure probability. Liu et al. (2013) presents a case study using Bayesian networks to

determine final probabilities of damage to subsea pipelines where the analysis aids the decisions

related to risk-ranking and risk-reduction. There are a wide variety of models and methodologies

for assessing and predicting the rate of growth for defects and estimate when a failure is likely to

occur. The deciding factor for selection of methodology is the type of defect which the pipeline

is subjected to at the specific section. Hence, the importance of classifying anomalies correctly

as discussed in previous sections. In the following section, prediction algorithms, models and

methodologies for assessing anomalies will be discussed.

3.1.10 Metal loss

Metal loss is the major threat for pipelines, can result in catastrophic consequences for the

surrounding environment if subject to a rupture or collapse, and is primarily caused by either

corrosion or erosion. The methodologies for discussion these to deteriorating mechanisms are

discussed in the following sections.
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3.1.10.1 Corrosion

Corrosion is a common mechanism for degradation of pipelines and is heavily affected by the

surrounding environment. Corrosion is a natural mechanism where the pipeline materials react

with the environment, and especially on the inside due to the internal working environment

usually consists of a multiphase flow of hydrocarbons and water. We distinguish between two

categories for pipeline corrosion: External and internal. According to Wang et al. (2015), the

factors having the greatest impact on corrosion initiation and growth rate are the concentration

of CO2−
3 , HCO3, Cl−, SO2−

4 , soil resistivity, soil moisture, half-cell potential, pH level, and the

distance between the corrosion defect to the nearest cathodic protection installation. Alamilla

et al. (2009) goes into further detail about the environmental parameters and effects influencing

the propagation of localized corrosion damage and developed a mathematical model for corrosion

damage propagation.

Models for prediction of corrosion growth rates can be further improved by implementing the

corrosion damage data from ILI inspections by assessing the corrosion history of a pipeline

resulting in a clearer picture of the actual development of corrosion which can be used to adjust

the predicted growth rates. This assumes that the different inspection runs are performed with

similar technology and with tools with similar uncertainties, etc. If a series ILIs are performed

over the operational life of a pipeline, there is a great chance of the ILI service provider being

changed from time to time together with the tool type and technology. Combining that with

the development in accuracy of tools could potentially result in the different runs recognizing

features as different types and at different sizes. It would be natural to expect greater depth of

features of a run from 2010 versus a 2006 run, but this is not necessarily the case if the 2006 tool

have greater uncertainty for depth measurement. Hence, studies of run comparisons have showed

how certain pipelines were actually of higher levels of integrity than previously anticipated due

to measurement errors. This is further discussed in (Ricker, 2007) which analyses corrosion data

from pipelines from 1922 to 1940.

Failure of pipelines caused by corrosion can occur due to either the failure pressure becoming

lower than the operation pressure, or because the depth of defects have reached the critical

threshold for remaining wall thickness. The industry standard for wall thickness assumed failed is

80%. From the size and shape data recorded of corrosion defects in addition to pipeline geometry

and materials, we can express a function for the failure stress of corrosion defects. The effects

of corrosion defects on pipeline integrity and subsequent burst pressure and capacity equations

has been studied to a great extent. Netto et al. (2005) presents an approach for estimating the

burst pressure of corroded pipelines due to corrosion, taking into account localized pits with

various depths and irregular shapes on the internal and external surface. The proposed model

was used to determine burst pressure as a function of geometric and material parameters of

different pipelines and corrosion defects.
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Methods for assessing the integrity of pipelines has been studied and developed to a great extent.

In the oil and gas industry, there are several code-based deterministic methods which are widely

used to assess pipelines:

• DNV-RP-F101 (Veritas, 2015)

• ASME B31G (Committee et al.)

• ASME B31G Modified (Kiefner and Vieth, 1989b)

• RSTRENG (Kiefner and Vieth, 1989a)

• SHELL92 (Ritchie and Last, 1995)

• SAFE (Wang et al., 1998)

• PCORRC (Leis et al., 1997; Stephens and Leis, 2000)

All methods have similar equations and methodology as for how to assess detected anomalies,

but differs primarily in how they handle the defect shape factor and bulging factor. Cosham

et al. (2007) presents the best practices for assessing corroded pipelines and discusses the best

techniques currently available for assessing a wide variety of pipeline defects. The most used

standard in Norway is DNV-RP-F101 which is also primarily used for the assessment performed

on the ILI data used as the basis for the client case of this thesis. The methods provide predicted

remaining useful life and integrity level by determining burst pressure from equations taking into

account defect information regarding shape and size in addition to the physical properties of the

specific pipeline. The main factors which affect the equations for burst pressure are properties of

the pipeline such as remaining wall thickness, diameter and ultimate strength. Therefore, by

determining the failure criteria we can estimate the remaining useful life by creating physics-based

models which take into account pressures and defect sizes versus time.

The main methods to be combined with deterministic methods for computing the probability of

failure for corrosion defects are the Monte Carlo method, first-order reliability method (FORM)

and first-order Taylor series expansion of limit state functions which are further elaborated in

(Melchers and Beck, 2018). The application of Monte Carlo simulation was performed by Larin

et al. (2016) which proposed a method for estimating reliability of a corroded pipe in operation.

The application of FORM to assess probability of failure aided Teixeira et al. (2008) in predicting

the remaining useful life of a corroded pipeline.

The single most important thing when assessing integrity is to calculate and predict the growth

rate of corrosion defects. The growth rate of corrosion can be estimated by either physics-based

corrosion models or by using ILI data. Shaik (2015) argue that using ILI data give more accurate

results for cases where several inspection-runs of data are available as this enhances the prediction

by the use of the corrosion history which can be used to adjust the physics-based corrosion growth

models. Kiefner et al. (1973) presents a model for predicting and determining corrosion growth

rate based on ILI data. It is important to note that there are great uncertainties associated
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with the estimation of historical corrosion growth rate due to different ILI tools and technology,

issues with relating features from previous inspection runs, etc. This comparison of previous

inspection runs were performed by Spencer et al. (2010) which presents a comparison of successive

ILI runs for reducing bias when using the same service provider versus using different service

providers. As previously mentioned, soil properties can also affect the external corrosion growth

if the pipe is buried. This is presented in Wang et al. (2015) which presents a methodology

which estimates external corrosion depth based on ILI data by combining cluster analysiswith a

Bayesian inferential framework. Corrosion will be further discussed in section 3.2.

3.1.10.2 Erosion

Erosion is primarily caused by sand particles and particulates in the production medium which

impacts and deteriorates the inner surface of the pipe wall. Zdravecká et al. (2014) presents the

process and consequences of erosion failure induced by sand particles which are heavily featured

in the production medium. Parsi et al. (2014) gives a comprehensive review of the modeling of

erosion of pipelines including predictive models. Erosion prediction models can be based on the

following three categories:

• Computer-aided fluid dynamics (CFD): CFD models have the capabilities to simulate

a wide variety of scenarios for erosion taking into account different parameters on erosion

rates, etc. CFD tools can give great results if deployed correctly, but they are time

consuming in addition to being simulation-based which can potentially result in results

which are not realistic.

• Experimental methods: Physical experimental methods aids in achieving more realistic

predictive models. Physical experiments can be conducted resulting in high quality and

realistic data, but this comes at the cost of potentially being time consuming and expensive.

• Mechanistic methods: Mechanistic modeling is an analytically approach to predicting

erosion. Mechanistic models are fast to implement and relatively cost effective, but suffer

from potential over-simplification of the case-setup resulting in limited accuracy towards

the prediction of growth behavior of erosion.

As a result of the limitations for the previously mentioned models, several studies have been

conducted, proposing approaches for combining the models in order to increase the predictive

power of the models. Ukpai et al. (2013) achieved great results by utilized acoustic emission

(AE) monitoring techniques in order to investigate the effect of impacting sand particles on the

degradation mechanism of X65 carbon steel pipelines. The study utilized CFD in conjunction

with particle tracking to model and predict the velocity and impact angle distribution in order

to predict the kinetic energy and resulting erosion damage in an erosion-corrosion environment.

Tang et al. (2009) presents an approach for predicting the remaining useful life of pipelines

subjected to multiphase flow induced erosion-corrosion, mainly focusing on the interactions
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between the multiphase flow and the pipeline.

3.1.10.3 Cracking

Cracking is another defect type which can occur. Cracking is a time-dependent threat with

potentially catastrophic outcome, and can be divided into two primary types:

• Stress corrosion cracking (SCC): SCC is the creation an growth of cracks aided by

the surrounding and internal environmental conditions enveloping the pipeline structure.

• Fatigue crack propagation: Fatigue crack propagation is caused by a variation in

pressure, either cyclic loading or random depending on how the pipe is operated, which

continuously weakens the pipe for each cycle.

The following section will primarily focus on SCC. SCC consists of three primary stages:

1. Initiation: Low growth but highly affected by the surrounding environment.

2. Propagation: Stable growth rate of the crack.

3. Failure/rupture: Occurs quickly and cannot be accurately modeled.

Stage 1 and 2 is the primary focus as this is where integrity management strategies can aid the

prevention and mitigation of SCC resulting in failure. The remaining life of a pipeline subjected

to corrosion can be defined as:

Nf = Ni +Np (3.2)

where Nf is the fatigue life, Ni is the number of cycles until crack initiation, and Np is the

number of cycles until propagation. Hence, the essential aspect here is the number of remaining

cycles of useful life for the pipeline. Cracking will not be discussed further as the thesis focuses

on features caused by primarily corrosion. Hence, the next sections will elaborate further on the

corrosion of structures in offshore environments.

3.2 Corrosion

This section will focus on corrosion uncertainty modeling for steel structures, reviewing

fundamental effects of corrosion, factors affecting the severity of corrosion, potential consequences,

and how to mitigate and prevent corrosion.

3.2.1 Corrosion of Steel

Corrosion is the natural process in which a refined metal converts into a chemically more stable

state such as its oxide, sulfide, or hydroxide. The process is either electrochemical or chemical,

and results in the gradual destruction and breakdown of the metal as a result of it reaching with
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its environment. For corrosion of steel to occur, the general prerequisite is the creation of a

corrosion element. There exist three types of corrosion elements (Hamann and Lampe, 2018):

• Local element corrosion: Corrosion is occurring i.e. due to local deformations/strains

in hull of a structure, high temperature, etc.

• Contact element corrosion: Occurring due to different metals with different electro-

potential being in contact, either through a weld, rivets, etc.

• Concentration corrosion: Occurring due to the metal being subjected to an electrolyte

which results in pitting corrosion, crevice corrosion, uniform corrosion, etc. This is the

most common type of corrosion.

Corrosion occurring with the presence of mechanical loading have relatable properties to the first

and third corrosion elements.

Marine environments are considered to be highly corrosive for mild and low alloy steels, which

of the use is widespread in the offshore industry as it has a low investment cost compared to

high-strength steel alloys. Research show that up to 90% of failures for ships are related to

corrosion and corrosion fatigue, and a significant number of environmental disasters are related

to insufficient maintenance and resulting corrosion (Melchers, 1999).

Preventive measures such as cathodic protection and coatings combined with adequate

maintenance should mitigate corrosion, but history show that existing maintenance procedures

are not always sufficient as requirements for components and structures changes. There will

always be areas where corrosion is inevitable as preventive measures are difficult to impose.

Hence, the probabilistic modeling for expected corrosion is essential knowledge. The assessment

of corrosive damage on existing structures could potentially have severe economic consequences

if in example significantly conservative estimates of corrosion rates are considered, resulting in

premature condemnation of the structure as the wrong residual life is estimated (Melchers, 1999).

3.2.2 Subsea Pipeline Corrosion Mechanism

The resistance of pipelines against internal and external forces becomes weakened as the pipeline

is subjected to corrosion - the leading factor causing integrity loss (Yang et al., 2017). The

following two sections will cover the essential categories of pipeline corrosion, internal and external

corrosion, which of both are electrochemical processes.

3.2.3 Internal Corrosion

Internal corrosion is primarily caused by chemical agents, solids , and fluid flow, contributing

to the electrochemical processes resulting from the presence of contaminants such as carbon

dioxide (CO2), hydrogen sulfide (H2S), and microbiological growth. CO2 dissolves in water,
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dissociates to bicarbonate anion creating hydrogen ions, and acts as oxidizers in the pipeline

resulting in internal corrosion. The corrosion caused by CO2 develops slow, and the growth

rate of corrosion is increased with increases in concentration of CO2, temperature and pressure.

H2S-induced corrosion has 4 major forms resulting from 4 different states of environmental

conditions (Sulaiman and Tan, 2014):

1. Hydrogen-Induced Cracking (HIC) resulting from atomic hydrogen diffusion on the pipeline.

2. Sulfide Stress Cracking (SSC) resulting fro the joint effects of stress and corrosion.

3. Pitting attacks at cracking area of sulfide film formed on surface of pipeline.

4. Sulfide pitting corrosion from deposition of solid sulfide formed by reaction of ferrous ions

and hydrogen sulfide.

Microbiological induced corrosion (MIC) is caused by biological growth and resulting Sulfate-

Reducing Bacteria (SRB) which generates CO2, water and sulfide as they oxidized fatty acids

leading to similar corrosive behaviour to pitting corrosion for sour environments (Sulaiman and

Tan, 2014). If the pipeline is subjected to high flow rates and velocity, the flow may cause

accidental damage to protective layers causing accelerated corrosion growth rates. In a situation

with high velocity, high occurrence solids such as sand and particulates are especially damaging

to protective layers (Ilman and Kusmono, 2013).

3.2.4 External corrosion

As a predictive measure against external corrosion, pipelines are coated with a protective layer in

addition to often being buried below the sea bed to protect against currents, fishing equipment

(Sulaiman and Tan, 2014). Types of pipelines which are not buried and fully exposed to seawater

are e.g. risers, deep-water pipelines, tie-in spools, and up-crossing segments. The deciding factor

for determining which type of corrosion mechanism that occur is the surrounding environment.

If the surrounding environment is consisting of seawater, the dissolved O2 will act as an oxidizer

at the cathode resulting in corrosion of not adequately protected. Similar to the case of internal

corrosion, increases in concentration of O2 on the surface results in increased potential corrosion

rate. To reduce the potential for external corrosion, coatings are of high importance. If this

protective layer is broken, e.g. through mechanical damage from third parties, the rate of

corrosion will increase significantly. As stated, the major oxidizing agent is dissolved oxygen in

combination with potential damage to the coating. Hence, pipelines buried below sediment as

a preventive measure will result in the pipelines being subjected to significantly less dissolved

oxygen concentration in addition to be less susceptible to damage. This reduced the risk of

anaerobic, but at the cost of greater potential for MIC (Sulaiman and Tan, 2014).
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3.2.5 Potential Consequences of Corrosion

The consequences of corrosion resulting in failure and the severity of the subsequent failure

depends on several factors. If the pipeline is located onshore, the result of a leakage can be be

fluid leakage, fire, explosions, etc. depending on the surrounding environment. If the content

transported is e.g. natural gas and the leakage occur in the close proximity to electrical equipment,

there would be a high probability of an explosion occurring. If the failure occurs in e.g. a natural

habitat, the environmental damage could be catastrophic. There is also the chance of a leak

occurring offshore and not immediately being detected, either due to a lower pressure drop than

what would be noticed or just shear negligence. In addition to the potential loss of human life

and environmental damage, we have the potential economic consequences and ramifications. A

pipeline leakage can result in loss of production for a significant time period due to long and

challenging maintenance work. Hence, the integrity management of pipeline systems is of high

importance.
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4 Machine Learning

4.1 Introduction

In the previous section, the thesis covered the theoretical background for integrity management

of pipeline systems. In this section, the objective is to further study the application of machine

learning in the oil and gas industry towards improving in-line inspections, condition assessments,

identification and categorization of structural integrity of pipelines. The results from the literature

study will be taken into account for the following chapters as to decide which parameters are

selected for different algorithms in the methodology section in addition to feature selection in

the data preprocessing section. The data will also be subjected to exploratory analysis with the

purpose of identifying underlying patterns and feature importance.

4.2 Machine Learning - Current Status and Development

The oil and gas industry has traditionally been conservative in embracing new technological

developments rapidly, but due to the economic downturn and subsequent cost reduction over

the last 5 years, the shift towards the digitalization of workflows using ML and advanced

analytic tools have been on the agenda for the industry. The methodologies are not new, but the

implementation in production processes and integrity management is relatively new. Companies do

not necessarily struggle with understanding the methodology but struggle with the implementation

and deployment of models in existing production systems and in operational processes. Hajizadeh

(2019) performs a review of recent developments and practices of machine learning, offering a

SWOT analysis aimed towards increasing business value by aiding strategic management in order

to implement the technology. The study shows that the annual number of papers towards the

implementation and development of machine learning has gone up exponentially over the last two

decades, giving a clear indication of how the industry is trying to adapt new technology in order

to increase effectiveness of operational procedures, production processes, integrity management,

etc. Liu et al. (2019) gives a comprehensive demonstration of how ILI inspection data can be

utilized for corrosion characterization. The paper proposes an automated method to match

multiple ILI inspections and their recorded feature data in order to perform matching of the

corrosion features. The matching problem is treated as a classification problem and classified

as either matched or unmatched. The features selected for the model are absolute distance,

circumferential position, defect length width and depth percentage. In other words, these are

the features to keep an eye on in the client case where we will explore the feature importance

for predicting the class label. The algorithms used are support vector machines, decision tree,

random forest, and ensemble learning. The results look promising as the predictive models

managed to accurately classify and match the corrosion features with an accuracy of just above
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90%. The result shows great promise as the proposed method enables the automatic matching

and identification of features, reducing the amount of manual labour required.

As of today, the industry have available enormous amounts of data related to operation of

production facilities, heavy asset management systems, integrity management systems, etc. One

of the big issues the industry is facing is in the availability of the data. If we consider a production

system for oil and gas, it consists of a wide variety of equipment, systems, and sensors. In

addition, the systems can potentially be operated by different companies contributing to the

challenge of accessing all relevant data.

The primary issue the industry are facing is extracting value from data.

4.3 Fundamental Steps in Extracting Value from Data

The issue with value of data is related to the form it is presented and its availability. Sensor data

could e.g. be of different signal types, coming from both old and new systems and equipment with

decades different technology, and not necessarily easily connected to find patterns and predict

production variables. Hence, we say that the data is structured in different silos, resulting an

difficulties in extracting and accessing relevant data. The three fundamental steps in extracting

value from data are the foundation of the horizontal data platform.

1. Data sources: Data liberation from source system - remove the data silo. Evergreen data

available instantly anywhere.

2. Ingest, normalization and contextualization: Continuous optimization and

contextualization of often incomplete data. Common data model enables cross domain

analytics and visualization.

3. Value capture: Unique tools and open APIs to ease value capture and speed of

operationalization accross all assets.

This is the basic structure of an horizontal data platform which is the ideal way of structuring

assets, increasing the value-add for the end user which could be e.g. a production engineer

trying to implement models to increase the predictive power of a system which tries to predict

operational status for a production system the next 6 hours taking into account variables such

as pressure and temperature sensors at different parts of the system, weather data, historical

data, flow assurance modeling, operational anomaly history, etc. The objective would be to make

the relevant data readily available for the end user, reducing the necessary expert knowledge

for applying data analytics tools for understanding and processing data, resulting in a faster

deployment of new techniques.



22 4. Machine Learning

4.4 Establishing a Solid Foundation for the Deployment of

Machine Learning

To be effective with machine learning, we need a solid foundation for our data. We start with

data collection. This involves connecting instrumentation, logging, sensors data, sensor metadata,

external data, user generated content, 3D models, maintenance logs, etc. into the system. The

second step would involve moving and storing data by establishing reliable data flows, necessary

infrastructure and data pipelines, and handle structured and unstructured data. The third part is

the exploration and transformation of data by cleaning, perform anomaly detection, and prepping

the data for further analysis. The forth step is aggregating values and labels to the data. This

involves performing data analytics, creating aggregate values, evaluating feature importance,

creating training data, etc. The fifth step towards having a machine learning model prototype

is the learn and optimize-phase. Here, the algorithms are applied and experimented towards

solving the desired problem. When the model is trained, it can be applied to test data and be

ready for further development or deployment in an existing system.

4.5 Machine Learning

Machine learning is the most exciting field of computer science at the current moment due to the

high abundance of statistical data which are recorded on a daily basis in our society. By using

self-learning algorithms from machine learning, we can convert the data into knowledge which

can be used to increase efficiency in production, detect features, and numerous other fields of

application. In this chapter, we will focus on the main concepts and different variants of machine

learning which are readily available through the many powerful open source machine libraries.

The chapter we will cover the general concepts, the three types of machine learning, and the

essential steps involved in building successful models.

The objective of this section is to increase the understanding of statistical methodology in order

to leverage the machine learning algorithms in Python’s scikit-learn library, contributing to the

knowledge of how to solve machine learning use cases.

The foundation of machine learning algorithms is statistics. To apply machine learning towards

problem solving, it is important to understand the underlying statistics. One of the main goals

of ML is to find statistical dependencies in the data at interest. The available data could be used

to in example check blood pressure against age of or to recognize handwritten text.

When investigating the potential use of machine learning approaches for solving a problem, it is

important to understand properly what machine earning is in this context. Literature often refer

to artificial intelligence (AI) techniques and it is important to understand the differences and

how they correlate. The term artificial intelligence is a commonly known term often portrayed

in movies such as The Matrix and The Terminator to portray thinking machines capable of
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operating independently of the inputs of an operator. Both term are often used interchangeably,

resulting in unclear differences. The following section will explain what the term mean and their

differences in the context of the thesis.

The concept that AI involves machines that are characteristic of human intelligence was first

coined by the founding father of artificial intelligence, John McCarthy (Morgenstern and McIlraith,

2011). The broad term can be narrowed down to the ability of performing tasks such as planning,

understanding of language, recognizing sound, object and feature recognition, learning, and

solving problems. AI technology can be differentiated into two main categories: General and

narrow. General includes all the aforementioned abilities, while also resembling all characteristics

of human intelligence. Narrow AI on the other hand revolves facets of human intelligence, is only

able to solve those facets, but can perform those facets exceptionally well. In the context of the

thesis such facets would be the ability to classification and feature recognition.

In other words, machine learning is an approach of achieving AI, and AI could be defined as the

ability to learn without being explicitly programmed. Hence, AI techniques for classification and

feature recognition could be achieved without machine learning, but without the usage of machine

learning the following approach for AI would require building an extraordinary amount of lines

of code taking into account all potential variables with complex rule-sets and decision-trees.

Hence, the usage of machine learning could be compared to "training" the AI algorithm to

adjust, improve and learn the different features and create suitable classification models which

would become increasingly better for each iteration. This is way more efficient than coding

software-routines for every complex outcome of integrity of a pipeline system, and more data fed

to the system would result in improvement of the models.

4.6 Categories of Machine Learning

Machine learning can be divided into three categories: Supervised, unsupervised, and

reinforcement learning. Supervised learning uses labeled data, direct feedback, and is used

to predict outcomes. Unsupervised learning involves no labels, no feedback, and is about finding

hidden structure in data. Reinforcement learning is a decision process with a reward system used

to guide the learning models on how to achieve the desired solution.

The main goal in supervised learning is to learn a model from labeled training data which enables

the prediction of unseen or future data. The term supervised refers to the labels that are already

known which the models uses to learn from. A great example of supervised learning is the spam

filter on your email. By labeling emails as spam, it learns the patterns and features of spam

mail and subsequent filters it out after sufficient training. This is called a classification problem

similar to the client case of this thesis. Another category of supervised learning is regression

where the model predicts a continuous output value based on predictor values which can be

correlating features.
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Classification is a part of supervised learning where the objective is to predict an output based

on previously processed labeled data. After sufficient training data is supplied, the supervised

learning algorithm can accurately predict the outcome or label of the new unseen dataset. The

classification algorithms are not limited to only binary classification, but can also be used for

multiclass classification tasks such as identifying handwritten labels. In supervised learning we

already know the class label. In reinforcement learning we uses a defined measure of reward

related to specific actions by the model to increase the converging towards the ideal solution. In

unsupervised learning on the other hand, we have unlabeled and unstructured datasets. Thus, it

is necessary to perform an exploratory data analysis of the data in order to identify underlying

patterns and extract meaningful features with information contributing to a solution. This can

be performed by cluster algorithms which enables the binning of samples based on their similar

attributes. In unsupervised learning we do not know the structure or clusters which each feature

is related to, but the technique is great for identifying new relationships and patterns in the data.

In addition to clustering, we have another subtype of unsupervised learning models called

dimensionality reduction. This involves principal component analysis (PCA) which takes high-

dimensional data and reduced the number of dimensions in order to make the data easier to

handle and easier to interpret. High-dimensional datasets can be difficult to interpret and identify

underlying patterns, but by performing a PCA there is a chance that the dimensionality reduction

results in useful visual information as the feature is now projected into a 3D or 2D plot showing

patterns previously unfamiliar. After this is performed, the data can be labeled and used to

train other machine learning models in order to perform e.g. supervised classification on similar

high-dimensional datasets of unseen values.

4.7 Popular Machine Learning Algorithms

Here, some of the most popular types of machine learning models are presented.

Linear Regression

Linear regression is considered on of the simplest and easiest models to implement, and can be

quite useful when we desire to predict a continuous value or a value as a result of two predictors

in contrast with Classification algorithms where the output is of categoric nature. Hence, if

the desired output is to predict future values for a production process in real time, regression

algorithms would be highly suited. It should be noted that linear regression models do have some

issues related to the stability when there is redundant features present in the dataset. Common

use cases for regression models are predicting production volume for next month, predicting time

for transportation between two points, estimating blood pressure value based on age, etc.

Logistic Regression

Logistic regression algorithms performs binary classification problems and is gives a binary output
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of either 0 or 1. To achieve the binary output, the algorithm takes linear combinations between

features and applies a non-linear function such as the Sigmoid function in order to resemble a

basic neural network (Raschka and Mirjalili, 2017). The use of logistic regression models is great

due to the possible regularization it provides of features. Hence, reducing the possible effects

of having redundant features with high collinearity. In comparison, Naïve Bayes models are

highly dependent on not having correlated features as they do not learn the interacting functions

between features. This will be displayed in the results where the Naïve Bayes models perform

relatively bad due to the high feature correlation in the dataset. Logistic regression enables

easy interpretation of outputs, and the models can easily be updates with new data such as ILI

inspection data with different levels of corrosion compared to the one previously trained on. This

enhances the predictive power of the model. Logistic regression is especially useful when creating

a probabilistic framework and for when new data will be readily available to update the model.

In addition, logistic regression also aid in the process of understanding underlying patterns and

contributing factors behind the predicted output. Hence, one of the big selling points of logistic

regression is the fact that is simply not a "black box" model where the underlying algorithms are

quite difficult to understand, resulting in outputs which are hard to interpret. By understanding

the process, we also understand to greater extent the potential uncertainties of the model based

on the available dataset. Use cases range from predicting the amount of customers that will visit

a shop to measuring effectiveness of improvement initiatives in process industries.

Decision Trees

Decision trees are used in ensembles to achieve efficient algorithms such as Random Forest and

Gradient Tree Boosting, allowing for exceptional handling of interactions between features with

high correlation in addition to being non-parametric. Hence, decision trees are great for handling

datasets containing outliers or having values that are not linearly separable. The downside to

using decision tree algorithms is that they do not support online learning, which basically means

that for a model being integrated in a production system it has to be taken out and completely

rebuild in order to learn from new data. In other words, it does not perform well in theory if

trained on one set of pipeline systems and then being fed data from a pipeline system with a

different level of corrosion. The major disadvantage of decision trees is the potential for overfitting

as the depth of the tree can be to deep resulting in a complex model which fits great on the

training data but does not generalize well to unseen data. Hence, when using decision trees the

preferable solution is to use an ensemble of methods such as random forest which negates the

negative aspects with decision trees, reducing the chance of overfitting. Another downside with

decision trees with high depth is that they require large amounts of storage for data. Hence,

if the RAM of the computer system is insufficient, the hard drive will be required to store the

training data which results in dramatically increased computational time. Typical use cases are

classification problems and decision problems like investment decisions.

K-means
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If we are dealing with unlabeled data, the objective will be to assign labels based on the features

of the data. This is called clustering, and clustering algorithms are quite useful for predicting

labels when we have large datasets with many different features which we want to distinguish

and cluster based on certain attributes. Clustering algorithms are suitable for organizing and

grouping data, all depending on the initial problem statement and the features in the data.

K-means work by setting an amount of desired clusters and then giving the clusters an initial

guess which is then per iteration approximated closer to the actual center of each cluster. This is

an efficient technique of identifying groupings of data which at first glance can look chaotic, but

this is also the big disadvantage with K-means - the fact that it require knowledge about the

amount of clusters in the data. Hence, if we do not know the amount of clusters, we will have to

guess the best K number of clusters.

Principal Component Analysis

Principal component analysis (PCA) is an analytics tool which is used to perform dimensionality

reduction of data sets with a great number of correlating features. This reduces redundancies

and the risk of overfitting. The PCA is a low-dimensional representation of a set of variables

which can make underlying patterns of data visible and can provide patterns in the data that are

characteristic to certain groups of samples, aiding in e.g. clustering analysis. For further info on

PCA, Raschka and Mirjalili (2017) provides a thorough presentation of how to implement PCA

in machine learning applications.

Support Vector Machines

Support vector machines (SVMs) are a supervised machine learning technique which is widely

used in pattern recognition and classification problems. It is especially suitable for binary

classification problems. SVMs creates a decision region based on the samples closest to the

decision region as to achieve the optimal decision region without underfitting or overfitting. SVMs

have high accuracy and works well with data which are not linearly separable in the primary

feature space, e.g. 2-dimensional. SVMs are great for high-dimensional space problems, but

this comes at the cost of SVMs being memory intensive in addition to being hard to interpret.

Typical use cases ranges from recognizing hand written letters to detecting persons which would

likely suffer from diabetes.

Naïve Bayes

Naïve Bayes are a machine learning technique used for classification problems and is based on

Bayes’ Theorem (Zhang, 2004). The model is fairly easy to build, implement and deploy, and is

suited to data sets of great sizes. They are known to outperform highly advanced classification

methods relative to the effort involved in implementing them. Hence, this is one of the algorithms

which will be deployed in the analysis. As it is quite simple in nature, it does not require

as much CPU and memory power in order to run efficiently. This increases the possibility of

implementing these models in e.g. existing production systems where the computational power
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may be limited. The models work by converging for each iteration towards the solution if the

NB conditional independence assumption holds. The model has a tendency to converge faster

than e.g. logistic regression, making it less dependent on large sets of training data. In short,

NB models are great for fast deployment and relatively accurate results, but the disadvantage as

stated earlier is the missing feature interaction learning. In other words, it will not necessarily

recognize the relationship between depth percentage of the corrosion features in the pipeline and

the remaining wall thickness. Typical use cases are recommendation systems such as Netflix

and the shows you are promoted which are based on your viewing history, sentiment analysis,

and face recognition. These applications the NB models do all require the models to perform

efficiently without requiring heavy computational power, again underlining the suitability of NB

models for these use cases.

Random Forest The random forest classifier is an ensemble of decision trees and is highly

suited to classification problems. It performs well on large sets of data and is especially useful for

predicting specific variables from thousands of input variables due to it taking into account the

feature correlations and easily scales to any number of dimensions, resulting in great performance

levels. The downside to random forest is the potentially slow learning rate for each iteration.

This depends on the parameterization, and trained models are not able to improve and learn

without being rebuilt. Random forest is great for predicting failure of production equipment in

manufacturing, or predicting class labels of samples.

Neural Networks

Neural networks models are based on the human mind, and takes into account the weights of

connections between neurons in hidden layers between the input and output. The neural network

works by balancing the weights of the different neurons for each iteration and balancing the

predictive weights based on the predicted and true output. Hence, when all weights are trained,

the neural network can be efficiently utilized to predict e.g. class labels. Neural networks are

models of high complexity, making them suitable in creating taylormade complex solutions for

solving problems with high accuracy, but the extreme complexity results in the models assuming

the "black box" designation which means that the model and its result can be hard to interpret.

One of the big advantages is the reduced need for feature engineering and preprocessing of data

by normalization or standardization before training the models. In addition, neural networks

can be utilized in Deep Learning which are highly complex models which enables the creation

of models taking into account several different ML models, resulting in previously unthinkable

problems being solved. Neural networks are suited to both supervised and unsupervised learning,

but the downside to neural networks is the high complexity which makes them hard to use

and deploy. In addition, neural networks require extreme computational power and can be a

significant toll on CPU and memory. Hence, they perform best by being run on GPUs and within

the memory constraint of the computer RAM.

It is difficult to predict which algorithms will perform best and worst on the ILI inspection data.
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The "no free lunch" theorem states that there is no single algorithm working best for all cases.

Hence, the process of building machine learning models involve working iteratively towards the

better performing ones by trying out different algorithms against each other and cross-validate

the performance against each other. In order to achieve the optimal solution for a problem

statement, is is important to understand the demand of the client, the rules and regulations, and

take into account expert domain knowledge - all contributing factors toward the best performing

machine learning model.
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5 Data

5.1 Data Collection

This chapter will cover the in-line inspection details and data collection process. This involves

operational details from the inspection selected inspection run, scope of the inspection, operational

details, summary of reported findings, tool specifications and accuracies, and the data evaluation

process which was performed.

5.1.1 Inspection Reports

The ILI data available for the given pipeline is supplied by 4 different inspections performed

over the course of the operation history. The selection of the pipeline is based on the availability

of necessary data from the client and is listed in table 5.1 Solutions (1998). The objective of

the ILI is to detect, size and localize metal loss features such as internal and external corrosion,

in addition to mid-wall features such as laminations and inclusions. The thesis will primarily

use data from the 2010 inspection run for the client case. This is due to previous tools having

greater uncertainty in depth measurements in addition to the data not being readily available in

suitable formats. Hence, the earlier inspection reports were disregarded for the clientcase.

Table 5.1: In-line Inspections for Ula to Ekofisk Pipeline.

Inspection Reports
Inspection
Year

Inspection
Tool

Inspection
Length [m]

Pipeline Operator

1997 UT 71141.10 Ula to Ekofisk 2/4R PII Pipeline Solutions
2004 UT 72923.80 Ula to Ekofisk 2/4J PII Pipeline Solutions
2006 UT 72750.33 Ula to Ekofisk J NDT Systems and

Services AG
2010 UT 72875.09 Ula to Ekofisk J NDT Systems and

Services AG

The table shows different lengths for the different inspections. The reason for the large variance

between 1997 and the subsequent years is different end points. Ekofisk 2/4R was shut down and

disconnected from the pipeline in 1998, and decommissioned in 2013. Hence, different end points

for the inspections.

5.1.2 2010 Inspection Report

For the 2010 inspection run, the quality of the available inspection data is good and fully meets

the tool and feature specifications. The inspection data were recorded by all sensors covering the
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full circumference of the pipeline in addition to the entire length of the pipeline of approximately

72,875 meters. The operational details of the run is listed in table 5.2. From the report, some

observations are important to take into account when considering the quality and accuracy of

the recorded data. For the first 0.5 km of pipeline, the inspection data is affected by a case of

multiphase flow where two different media, crude oil and water, was mixed due to the following

listed circumstances:

• Initial pressure test of launcher was performed by filling it with water in addition to

pressurization by nitrogen injection. The procedure then requires the launcher to be drained

of water before being replaced by crude oil. The draining procedure was unsuccessful,

resulting in the tool being surrounded primarily by water at the start of the inspection.

• As the inspection was started, crude oil entered the top of the pipe resulting in the increase

of crude oil content with the subsequent decrease of water content for the bottom part of

the pipe.

• The heterogeneous oil-water interphase results in echo loss of between 30 mm and 200

mm for the first 250 m of pipeline, illustrated in figure 5.1. The vertical axis is the

circumferential position of the pipeline from 0 to 360 degrees.

The number of detected metal loss features was 771, which of approximately 75% were classified

as internal features (537 of 771).

Figure 5.1: UT echo loss.

5.1.3 Operational Details

The operational details of the inspection run is listed in table 5.2.
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Table 5.2: Pipeline And Medium Information 2010 Inspection Run

Inspection section Ula - Ekofisk J
Length of inspected pipeline 73 km
Pipeline diameter 20"
Wall thickness range 12.7 mm – 20.5 mm (predominantly 14.3 mm)
Highest occurring weld type Long seam
Minimum bend radius 5D/90◦

Steel grade API 5L X60/X65
MAOP 139.7 bar
Design factor 0.72
Conditions during normal operation:
Pressure Launcher: 29 bar, receiver: 20 bar
Temperature Launcher: 72◦C, receiver: 36◦C
Medium Oil
Medium flow velocity 0.5 m/s
Conditions during inspection:
Pressure Approx. 30 bar
Temperature Launcher: 43◦C, receiver: 8◦C
Coupling medium Crude oil
Sound velocity in coupling medium 1310 m/s at 20C
Attenuation in coupling medium 6 dB
Inspection speed Approx. 0.45 m/s

Table 5.3: Reporting Thresholds.

Feature Description Value

Metal loss Depth
Length

≥ 1.5 mm
≥ 20 mm

Lamination Length
Width

≥ 300 mm
≥ 2 sensors

Wall thickness variation Wall thickness reduction
Length

≥ 20%
≥ 300 mm

Dent Sensor carrier lift-off ≥ 3 mm
Installation All

5.1.4 Data Thresholds

For a feature to be registered, the criteria in table 5.3 must be applied. The UT tool registers

all pipe joints as well as detailed information about all features fulfilling the criteria which is

identified during data analysis. The potential features recorded is listed in the pipeline register

and presented in table 5.4. In figure 5.2, the pipeline register file structure is illustrated showing

all the variables for each reported feature ID.

5.2 Assessment of Recorded Critical Anomalies

From the 2010 inspection report, there are three anomalies which does not fulfill the DNV-RP-

F101 criterion for single defect method’s conservative estimates. The highest calculated ERF
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Table 5.4: Registered features.

Feature Description
Feature ID Unique identifier of the feature
GW No. Girth weld number

Absolute distance [m] Distance value of beginning of feature to
reference distance 0 (start point of inspection)

Dist. to USW [m] Distance value of beginning of feature to
upstream girth weld

Circ. pos. [◦] Circumferential position of feature
(0 degrees at 12 o’clock)

Ref. wt [mm] Reference wall thickness in vicinity of feature
Rem. wt [mm] Remaining wall thickness of feature
Depth [mm] Depth of feature
Depth [%] Depth of feature in percent of Ref. wt
Joint length [m] Length of pipe joint
Length [mm] Axial length of feature
Width [mm] Width of feature
Psafe [bar] Maximum safe pressure specified by client
ERF value Estimated repair factor

Feature type Geometry, installation, dent, inclusion, lamination,
metal loss, wall thickness variation

Comment Additional information about feature

Rel. pos.

Relative position of feature. bm = base material,
alw = at long weld, agw = at girth weld, asw = at spiral weld,
aws = at welds, ilw = in long weld, igw = in girth weld,
isw = in spiral weld

Loc. in wall Location of feature with pipe wall: Internal, external, or mid-wall

Figure 5.2: Pipeline register.
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values are in the range 1.01 to 1.21, located in three pipe joints: GW No. 353.0, 354.0, and

355.0. The anomalies are detected as channeling corrosion features with lengths equal to the

length of the pipe spools. Hence, why the DNV method for single defects are not sufficient as

the features would involve complex depth profiles. The DNV single defect method only take into

account the maximum corrosion depth and total length of the feature. By using the complex

defect assessment of DNV-RP-F101, the detailed depth profile of the corrosion feature would be

taken into account and result in more accurate results with relatively less conservative estimates

for safe operating pressure.

The datasets will be further investigated in the next chapter.
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6 Machine Learning Case

6.1 Introduction

In this section, the objective is to showcase the comprehensive workflow involved when building

predictive models by using machine learning tools from the Python library scikit-learn. The

workflow consists of the following steps:

1. Problem Definition: The problem definition is important in order to know how to apply

the appropriate solution to problem at hand. This involves defining clearly stating the

problem and what we want to predict, aiding in identifying the suitable data with relevant

value for solving the problem.

2. Data Collection: Collecting the necessary data of high value for the problem. This

involves knowing how and where to access the necessary data, and how to get value from it

in order to make it useful for the problem.

3. Data Preprocessing: As the data is usually incomplete, unstructured, inconsistent, and

may include many errors and outliers, it is important to preprocess the data such that the

data becomes cleaned, structured, and converted into suitable data types for the different

algorithms.

4. Exploratory Data Analysis (EDA): EDA is a data analytics technique for investigating

the data by using graphical statistics in order to discover patterns, identify anomalies, and

check assumptions for the data.

5. Data Modeling: This involves the experimental phase of machine learning where we

implement different learning models for our data in order to select the most suitable learning

model which results in the best predictive performance based on the available data.

6. Deployment of Model: After comparing the different models, finding the best one,

optimizing and tuning the hyperparameters, and achieving the optimal model, it is finally

time for deploying the predictive model. Now we can see the results for how great the

predictive power is of the model.

The client case is performed with Python and the machine learning library scikit-learn which is a

great library for efficiently deploying ML models. In the following sections, the the results from

the different steps in the data analysis will be summarized and explained in detail. Results are

extracted from a separate Python kernel11. Tables from the notebook are listed in this chapter

as figures due to conversion issues.

11A ’kernel’ is a program that runs and introspects the user’s code.



6. Machine Learning Case 35

6.2 Problem Definition

The objective of this case is to perform an analysis of the ILI inspection data with application of

machine learning techniques in order to predict classification of features recorded by the ILI tool.

The classification will indicate the level of integrity of the different features of the pipeline system

and be classified as either Class 0 (insignificant corrosion) or Class 1 (significant corrosion).

6.3 Data Collection

6.3.1 Importing Data

In this section the ILI data is imported to the notebook and stored in a dataframe using the

pandas library in python. The data used is the reported features from the ILI inspection, and

the shape of the dataset is 1791 rows and 21 columns. The rows make up each recorded pipeline

feature with an individual ID tag, and the rows make up the variables for each feature. The data

was split into two separate datasets - one for training and one for testing. The objective is to

train the ML models on the training data, and after learning is performed the test data is used

as "unseen" data in order to validate and achieve an accuracy score for the predictive models.

The data was randomly split with the training set having a shape of 1000 x 21 and the test set a

shape of 790 x 20. This is because the Class labeling was removed from the test set as the case is

a classification problem.

6.3.2 Describing Features

Each column gives a certain feature information about each sample which can be illustrated in

figure 6.1. The features can be divided into 4 categories:

• Nominal categorical features: Features with two or more features. No intrinsic ordering

of categories.

• Ordinal categorical features: Features with similar characteristics as nominal categorical

features, but differentiated by clear ordering of categories.

• Integer numerical features: Features that must take an integer value.

• Continuous numerical features: Features that can be infinitely many values.

The Class label is the outcome feature for the problem set and consists of binary data where 0 is

high level of integrity and little corrosion, and 1 is lower integrity and significant corrosion. The

class label was added to the initial raw data supplied by the ILI inspection. Due to the dataset

containing generally few severe instances of corrosion, Class 1 was set to cover a lower range of

values for feature depth than originally planned as the regular threshold applied when inspecting
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Figure 6.1: Feature Descriptions.

corrosion features is set to 2 mm for the initial inspection assessment. This was done to achieve

enough data for both classes in order to train the ML models sufficiently. The ideal situation

would be to have available various pipeline ILIs and train the algorithms on both uncorroded

sections and highly corroded sections where integrity is severely reduced. This data was not

available for the client at the time of this thesis. Hence, the best alternative was decided after

coordination with the client to set the threshold for significantly corroded features to 10 percent

of the pipeline wall thickness.

6.4 Data Preprocessing

This section involves the preprocessing of data such as cleaning, structuring, and enriching the

raw data from the ILI inspection into another format. The objective is to increase the value of

the data by making it more appropriate for data analytics and converting it into a format which

the ML algorithms can handle efficiently. The process for preparing data for training consists of

4 steps:

1. Correcting: Correcting values, handling outliers and removing features. The process of

rectifying abnormal, accurate or non-acceptable values is of high importance as they can

affect the predictive power and accuracy of the ML models.

2. Complementing: The process of handling missing data.
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3. Creating: Creating new features such as aggregate values, etc.

4. Converting: Converting data into data types which the algorithms can efficiently handle.

The essential factors determining how well a ML algorithm can learn and perform is the quality

of the available data and the relevant information that it contains (Raschka and Mirjalili, 2017).

Hence, the high importance of preprocessing the data before the learning algorithm is applied.

The following section will cover and discuss essential techniques for preprocessing the ILI-data

which will result in the desired level of performance for the ML models.

6.4.1 Identifying Anomalies and Outliers

These values can affect the accuracy of ML models if not correctly handled. This involves

investigating for potential extreme outliers, etc. To identify such features we can use the

univariate distribution of each feature. We will first look at the univariate distribution of the

categorical features.

6.4.1.1 Univariate Distributions of Categorical Features

Figure 6.2: Univariate distributions of categorical features.

Observations:
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• The number of features that is Class 0 is significantly higher than Class 1.

• The feature types that is dominating is metal loss, installation and main spot. Metal loss

and main spot are basically the same with main spot being the most significant corrosion

feature in a cluster of corrosion features making up a complex shaped defect.

• The feature subtypes occurring most frequently is anode and channeling.

• Most features are located internally, but there is still a considerable amount of external

features.

• Features located in the middle of the wall are usually considered as inclusions and defects

from the production of the pipeline.

• The majority of features for relative position is in the base material.
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6.4.1.2 Univariate Distributions of Numerical Features

Figure 6.3: Univariate distributions of numerical features.
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Figure 6.4: Univariate distributions of numerical features.

Observations:

• DistToUSW feature ranges from 0 to 12 meters with the majority of features occurring

around 6 meters, indicating that the average pipe section is 12 meters. The majority of

features occur around 6 meters, but there is a pretty uniform distribution for the rest of

the range.

• The distribution of CircPos feature resembles normal distribution with the mean value

being around 180 degrees. This is corresponding with the position of 6 o’clock in the

pipeline where channeling occurs, often as a consequence of the multiphase flow and water

assembling on the bottom part.

• RefWT feature ranges from 12.1 to 38.4 mm with the majority being centered just below

15 mm, corresponding with the majority of the pipeline type.
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• RemWT feature ranges from 8.8 to 29.0 mm. The majority of features are centered at two

local concentrations around 12.5 and 17.5 mm.

• Depth feature resembles a log-normal distribution with the majority of features occurring

between 0 and 2.5 mm. Some outliers occur at up to 18.8 mm.

• DepthPercentage feature does also resemble a log-normal distribution with the majority

being centered around 10 percent wall of the wall thickness.

• Length feature ranges from 0 to above 12000 mm in some cases. The majority of the

features occur from 0 to 400 mm.

• Width feature ranges from 5 to 1591 mm, and the data is distributed around two local

maximums at 50 and 800 mm width.

• ESFvalue feature resembles a normal distribution with the mean value just below 0.6.

• DistDP feature indicates that the majority of recorded deepest points occur at the first

and last section of the pipeline.

• CircPosDP feature resembles a normal distribution similar to the CircPos feature, indicating

that there is a high chance of collinearity between the two features, resulting in one of them

being redundant. In other words, one of them is likely to be removed for the ML model.

Based on these observations, no value correction is necessary as they can be considered acceptable.

6.4.2 Outlier Data

An outlier is a point observed to be distant from the majority of the observations. Outliers

can distort and affect the accuracy of ML models. In this section the box plot rule is applied.

The rule states that for a given numerical variable, outliers are observations outside the 1.5

interquartile range (IQR) which is the difference between the 75th and 25th quartiles. The

numerical features are plotted with outliers in 6.5.

Observations:

• DistToUSW: No values considered outliers.

• CircPos: Values below 120 and above 280 degrees is considered outliers.

• RefWT: values below 14 and above 15 is considered outliers.

• RemWT: Values below 10 and above 15 is considered outliers.

• Depth: Values above 3.6 is considered outliers.

• DepthPercentage: Values above 26 percent is considered outliers.

• Length: Values above 1000 is considered outliers.
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Figure 6.5: Box plots of numerical features with 1.5 IQR.
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• Width: Values above 350 is considered outliers.

• ERFvalue: No values considered outliers.

• DistDP: Values above 5000 is considered outliers. This feature is just a modified absolute

distance so it should be removed for further analysis as it would affect results by considering

the majority of the pipeline to be outlier. Will be further inspected in the exploratory data

analysis (EDA).

• CircPosDP: Values below 100 and above 320 is considered outliers. In other words, a

greater range compared to CircPos feature.

Now the outliers are identified, the next step is to decide what to do with them. Hence, we will

perform exploratory analysis of the features later in the thesis.

6.4.3 Missing Data

ML algorithms cannot handle missing values. Hence, it is important to identify features containing

missing values in order to fix them. The number of missing values in the datasets are displayed

in figure 6.6.

6.4.3.1 Identifying Missing Data in Training and Test Datasets

Figure 6.6: Missing data.
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Observations:

• Comment, Depth, DepthPercentage, DistDP, DistToUSW, ERFvalue, LocInWall, Psafe,

RefWT, RelPos, RemWT, Subtype, and Width all have missing values.

• The different features have their natural reasons for missing values. Not all features are e.g.

necessary to comment.

• As stated in the report, the first 500 meters of the pipeline is suffering from ecco-loss due

to water in the pipeline. This has led to a high amount of missing values in this region.

• After the feature s with missing values are identified, we must appropriately handle the

missing values to increase the value of the data.

The methodology for handling missing data is illustrated in figure 6.7.

Figure 6.7: Procedure for handling missing data.

From the previous data the options are to either impute or delete the missing data. By selecting

to delete data, there is a risk of loosing valuable information which the algorithms can use. If

deletion is performed on a complete row, that would result in the loss of all variables for the

classified feature. Hence, loosing valuable information which can aid in improving the prediction

model.

Imputing values is an option for the numerical data as use of the feature correlation matrix
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enables the prediction of missing values. This can involve using ML techniques such as linear

regression to predict a missing value by selecting two highly correlating features as predictors.

Linear regression can provide good estimates assuming there is a correlation between the features.

Other alternatives for imputing values are to insert the mean value of the column for the missing

value.

6.4.3.2 Plotting Feature Correlation Matrix

There may be unknown and complex relationships between the features in the dataset. Hence, it

is important to first and foremost identify the correlating features, but also quantify to which

degree which feature correlate. This will aid the prediction of missing values, and to detect

multicollinearity between features. Features can correlate for a number of reasons. The correlation

between features can increase the value of the data for data analytic purposes as it can improve

the understanding of the statistical relationships between features. The correlation value can

range from positive to negative, indicating to which degree the features correlate.

• Positive value: Both features change in the same direction.

• Neutral value: No correlation between features.

• Negative value: Features change in the opposite direction.

Values close to -1 or 1 indicates high correlation between the features. Figure 6.8 shows the

feature correlation matrix which can be used to identify possible features which can be used to

predict the missing values for the different features.
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Figure 6.8: Feature correlation matrix.

Observations:

• Class (not missing values): Correlates highest with RemWT, Depth, DepthPercentage,

Width.

• GWNo: Correlates highest with AbsDist, DistDP.

• AbsDist: Correlates highest with GWNo, DistDP.

• DistToUSW: Only significant correlation value is for RefWT (-0.29).

• CircPos: Correlates highest with CircPosDP. This is natural as the feature circumferential

position of the deepest point should not vary much from the centre position of the selected

feature.

• RefWT: Correlates highest with RemWT, ERFvalue.

• RemWT: Correlates highest with Class, RefWT, DepthPercentage, ERFvalue.
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• Depth: Correlates highest with Class, DepthPercentage (less with RemWT, ERFvalue,

DistDP).

• DepthPercentage: Correlates highest with Class, RemWT, Depth.

• Length: Correlates with no significant feature.

• Width: Correlates highest with Class, CircPosDP.

• Psafe: Correlates with no significant feature.

• ERFvalue: Correlates high with RefWT, RemWT.

• DistDP: Correlates highest with GWNo, AbsDist.

• CircPosDP: Correlates highest with CircPos, Width.

Now, we can, in additions to performing deletion, generate predictions for missing values for

the features with highest correlation. This will be performed for some of the features over the

coming sections.

6.4.3.3 Imputing Missing Values for CircPos by Linear Regression

Linear regression is a ML technique for predicting a value based on e.g. two predictor values

that are known. The correlation matrix indicates that the CircPos feature correlates with

CircPosDP and AbsDist feature. Hence, we make CircPosDP and AbsDist as the predictors in

order to predict CircPos. The linear regression model is trained and then applied to the samples

with missing feature data which then is filled in with a predicted value. Figure 6.9 shows the

distribution of the CircPos feature after imputing the missing values. The distribution plots look

OK with no negative values indicating that the linear regression model have predicted wrong.

Hence, no need to investigate this further.

6.4.3.4 Imputing Missing Values for DistDP by Linear Regression

The correlation matrix indicates that DistDP correlates with GWNo and AbsDist feature. Hence,

we select them as the predictors for the linear regression model. Figure 6.10 shows the distribution

plot of the DistDP feature after imputation. The plots indicate that the highest number of

features occur at the beginning of the pipeline, which does comply with the observations from

the ILI where the first sections close to the installation were identified to experience the highest

number of relatively severe corrosion features.
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Figure 6.9: Distribution of CircPos after imputation.

Figure 6.10: Distribution of DistDP after imputation.
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Figure 6.11: Remaining features.

6.4.3.5 Dropping Features of Less Importance

In the following section unnecessary features which can be argued that do not contribute to a

possible solution will be removed as they are not longer necessary and only increases computational

time and required power. In the next section, after the different features are removed, a threshold

will be applied to remove samples with a certain amount of missing features. Features such as

"installation" under "FeatureType" and "anode" under "SubType" have many missing values and

can be considered to not contribute significantly towards the Class. From DNV-RP-F101 Part B,

the major features affecting the Class is "Depth" and "Length" feature for single isolated defects.

The selected features which are dropped are: GWNo, Psafe, Comment, AbsDist, DistToUSW,

and SubType. All these features included a great amount of missing values.

For the next step a threshold of minimum 10 feature values is applied in order to remove rows

containing less values. After this step, the following number of missing values are present in the

datasets, illustrated in figure 6.11. This list indicates that the remaining missing value in the

training set is the ERFvalue which will be estimated in the next section.

6.4.3.6 Imputing missing values for ERF

All the main spot features are missing the ERF value as the main spot is a part of a complex

shaped defect. Though, we can predict the ERF value assuming we know Psafe and the MAOP.

MAOP is set to be equal to the design pressure of 139.7 bar. To impute the missing values for

ERF value, it is necessary to create a new feature column in our dataset called Pfail.
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6.4.4 Creating New Features from Existing Features

New features can be created on the basis of existing features which can increase the value of the

features towards contributing to the solution for the problem. From existing features we can

create the following features:

• Area: By multiplying width and length of feature.

• Volume: By multiplying Area with depth of feature.

• Failure pressure: Calculation in next section.

It should be noted that this is a simplification of the feature dimensions as many of the defects

in the pipeline are part of clusters making up complex shaped defects which require considerably

more attention when performing a defect assessment. The simplifications are justified because

the ILI indicates that the pipeline at hand is not significantly corroded. Hence, for ILI data from

a heavily corroded pipeline it would be necessary to implement the methodology for assessing

complex shaped defects in order to determine e.g. the failure pressure.

6.4.4.1 Creating Failure Pressure Feature

The methodology for calculating failure pressure done by performing the following series of

calculations.

Pf =
2 · t · UTS

(D − t =)
·
(
1− d

t

)(
1− d

t·Q

) (6.1)

where Q is

Q =

√
1 + 0.31

(
1√
Dt

)2

(6.2)

The safe operating pressure is then calculated from the following equation:

Psafe = F · Pf (6.3)

where

F = F1 + F2 (6.4)

From the safe operating pressure we can calculate the estimated repair factor (ERF):

ERF =
MAOP

Psafe
(6.5)

If the client does not provide the MAOP, it is set to the design pressure which can be calculated

as follows:

Pd =
2t

D
· SMY S · fd (6.6)
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Table 6.1: Variables

MAOP = Maximum Operating Pressure 139.7 bar
t = Wall thickness RemWT feature
d = Depth of metal loss feature Depth feature
L = Length of metal loss feature Length feature
D = Nominal outer diameter 508 mm (for the majority of the pipeline
F1 = Modeling factor 0.9
F1 = Operational Usage Factor 0.72
UTS = Ultimate Tensile Strength

Table 6.2: UTS corrected for operational temperature.

Pipeline type X60 X65
Standard UTS for pipeline type 413 MPa 448 MPa
Temperature corrected UTS 393 MPa 428 MPa

In this case, the MAOP is defined to be 139.7 bar as stated previously. Hence, we have our

ERFvalue feature. The variables and the existing features in our dataset is listed in 6.1. For

strength calculation according to DNV-RP-F101, the UTS value must be reduced to account for

the design operating temperature of 78 degrees Celsius. The new UTS value is listen in table 6.2.

As most of the pipeline consists of X60, we select 393 MPa as the UTS value for estimating the

ERFvalue as this is the most conservative solution.

6.4.5 Converting Data Types

Most ML algorithms require all features to be converted into some numeric representations that

can be understood by these algorithms. Categorical features cannot be processed directly by the

algorithms and conversions on these features shall be done before subsequent data processing.

Hence, by identifying the data type of each feature we can take the appropriate means to convert

the data.

The dataset contains 12 features that have float data type and 3 features which have object

datatype. FeatureType is considered a categorical feature as there are seven types of features,

RelPos consists of 5 subtypes, and LocInWall consists of 3 types. Hence, the features cna be

considered ordinal categorical as they can be set the values of 0, 1, 2, 3, and 4.

• FeatureType: metal loss = 1, main spot = 2.

• LocInWall: int = 0, ext = 1.

• RelPos: bm = 0, aqw = 1, alw = 2, aws = 3, iqw = 4.
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6.5 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is an approach for performing initial investigations on the

dataset. EDA has a descriptive nature, using graphical statistics in order to recognize patterns,

to detect anomalies, to test hypothesis, and check assumptions. The objective of this section is to

perform EDA for several of the features in the dataset in order to find patterns and correlations

between independent features and the class label. Some of the features are binned in order

to create new features to increase the correlations and the predictive power of the learning

algorithms.

First, we perform EDA on the categorical features vs the probability of Class. Then, we investigate

the numerical features vs the probability of Class. Not all numerical features will be fully explored

as earlier iterations of this Python kernel found the potential binning of features, etc. to have

little impact on the final results as the algorithms easily classify the labels with high accuracy.

This will be illustrated later in the thesis.

It is important to note that the EDA is performed on the training dataset as it has the largest

amount of features. If the decision is taken to create new features by binning certain ranges of

values, this will be performed for both training and test dataset.
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6.5.1 Feature Type EDA

For FeatureType feature, we visualize the following:

• FeatureType vs Class

• FeatureType and LocInWall vs Class

• FeatureType and RelPos vs Class

Figure 6.12: Feature type EDA

Observations:

• Main spot features have a higher chance of being classified as Class 1. This makes sense

as main spot indicates the point of greatest depth of a complex shaped corrosion feature,

which again is synonymous with a significantly corroded section of the pipeline.

• External features has a significantly higher chance of being classified as Class 1 if being a

main spot. This does also make sense as there are 4 recorded external main spots which of

all is of significant size. Hence, the high probability of being Class 1.

• For RelPos feature, main spot has a higher chance of being class 1 compared with metal
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loss.

• RelPos ’bm’ and ’aws’ is has 0 percent chance of being classified as class 1 as indicated by

the plot.

Based on the observations, we can conclude that FeatureType is an important feature for

predicting Class.

6.5.2 Location in Wall EDA

For LocInWall feature, we visualize the following:

• LocInWall vs Class

• LocInWall and FeatureType vs Class

• LocInWall and RelPos vs Class

Figure 6.13: Location in wall EDA

Observations:

• Internal features have a significantly higher probability of being classified as Class 1.
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• If an external feature is main spot, it is almost a guarantied Class 1 feature.

• External metal loss features have a very low probability of being Class 1 feature.

6.5.3 Relative Position EDA

For RelPos feature, we visualize the following:

• RelPos vs Class

• RelPos and FeatureType vs Class

• RelPos amd LocInWall vs Class

Figure 6.14: Relative position EDA

Observations:

• 50 percent chance for agw and alw to be Class 1 and 0.

• FeatureType has a significant impact on the type Class.

• LockInWall does also have a significant impact on Class as internal features have a

significantly higher probability.
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6.5.4 Circumferential Position EDA

Figure 6.15: Circumferential position EDA.

Observations:

• CircPos resembles a normal distribution.

• Values are distributed with the mean value close to 180 degrees.

In order to increase the predictive power of the CircPos feature, we bin the feature into a new

feature named CircPos_binned. The binning is performed into 5 groups illustrated in figure 6.16.

Figure 6.16: Circumferential position binned.

There seems to be a clear correlation between the CircPos feature and Class probability after

the feature has been sampled. A consequence of binning numerical features are the subsequent

creation of categorical features. Hence, it is important to remember to convert all binned features

into integers.



6. Machine Learning Case 57

6.5.5 Depth EDA

Figure 6.17: Depth EDA

Observations:

• The majority of depth data is located between 0.5 mm and 3.0 mm with some outliers.

• Sharp change at approximately 1.5 mm from class Class 0 to Class 1 features.

• Histogram resembles a normal distribution with the mean number of features occurring

between 1.5 mm and 2.0 mm.

The decision is taken to group the data into a new feature, Depth_binned, consisting of 5 groups

illustrated in figure 6.18.

Figure 6.18: Depth binned.

After data type conversion into integer values, we now have 5 distinctive values for the binned

data. From the graph, all features up to 1.0 mm in bin 0 are most likely Class 0. Features in

bin 1 are have a 50 percent chance of being either Class 0 or Class 1. This can be explained by
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the sudden change at 1.5 mm from Class 0 to 1. Hence, all features binned in group 2, 3, or 4

have a high probability of being Class 1. It can be concluded that the feature is important for

predicting Class label. Next, the DepthPercentage feature will be explored in order to uncover

potential hidden patterns as it is a measure of remaining wall thickness.

6.5.6 Depth Percentage EDA

Figure 6.19: Depth percentage EDA.

Observations:

• The fraction of Class 1 increases dramatically as the depth exceed 10% of the wall thickness.

• This corresponds well with the initial raw dataset as it was sorted and classified for features

below and above 10% feature depth.

It can be assumed that potential binning of features below and above 10% would result in a

new feature which will be of high importance for predicting the Class label. Thus, the feature is

binned in 5 groups illustrated in figure 6.20.

Figure 6.20: Depth percentage binned.
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In comparison with Depth_binned, DepthPercentage_binned does not have a 50% chance of

both classes for feature the second group. Hence, it has greatly increased the predictive power as

it clearly distinguish Class based on the depth percentage. As the feature is clearly either Class

0 or Class 1, we do also risk the potential of overfitting the models, but as the failure pressure

is primarily based on the remaining wall thickness at given sections we can conclude that the

feature should be taken into account for the learning models.

6.5.7 Failure Pressure EDA

Figure 6.21: Failure pressure EDA.

Observations:

• For values below 20 N/mm2, the majority of features are classified as Class 1.

• The majority of features are located in two local distributions with mean values of 20

N/mm2 and 27 N/mm2.

• First distribution has a greater amount of features, primarily Class 1, and has a lower

failure pressure for the subsequent section of pipeline.

• The second distribution has a lower amount of feature, primarily Class 0, and has a higher

failure pressure which makes sense.

The next step is to perform a binning of the feature in order to achieve a new feature, Pfail_binned,

which will contribute to increasing the value of the dataset and thus the predictive power of the

models, illustrated in figure 6.22.
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Figure 6.22: Failure pressure binned.

The result of the binning is 5 groups where the first two, covering low failure pressure features,

have a high probability of being Class 1. The next two groups, covering higher failure pressure

features, have a great probability of being classified as Class 0. This makes sense as a higher

failure pressure would indicate higher capacity and therefore higher level of integrity. The 5th

group is interesting as it consists of oulier values centered around 40 N/mm2 in addition to being

classified as Class 1 in figure 6.21, which have in figure 6.22 a 50% probability of being Class

0 and Class 1. This value will for now be left in place, but if binned feature skews results in

inaccurate results for the ML models, it could be necessary to remove the outlier.

6.5.8 Feature Correlation Matrix

In figure ref, all features are plotted in the final feature correlation matrix. These features will

be used in the coming sections in order to train and test the different ML algorithms and their

performance of the classification problem.
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Figure 6.23: Complete feature correlation matrix.

From the feature correlation matrix, there is a high correlation between the Class label and RefWT,

RemWT, Depth, DepthPercentage, ERFvalue, FeatureType, LocInWall, Pfail, Depth_binned, and

DepthPercentage_binned. Multicollinearity are detected between Depth and DepthPercentage,

in addition to their binned features. Multicollinear features can cause redundancies as they

contain approximately the same information for the classification problem. Multicollinearity

results in increased time and and computational time required to train the ML models. One

should always strive to eliminate redundant features as it would increase efficiency. Will permit

multicollinearities in the dataset as it is not too significant in size, but for significantly larger

datasets elimination would be preferable.

6.6 Data Modeling

In this section different ML algorithms are trained on the training dataset, in order to perform a

comparative analysis of which model that have the highest performance based on the available

data. There is no single ML algorithm which performs best for all usecases. hence, the best

approach is to generate a high performance model for the specific problem trial and error with a
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set of different algorithms in order to identify the best performing models, optimizing them, and

then compare them given the specific problem at hand. In the following section the following

steps will be performed in order to identify the best performing classification algorithm:

1. Machine learning modeling and performance comparison.

2. Hyperparameter tuning for chosen models.

3. Feature selection and optimization of best performing model.

The ML models is run on a MacBook Pro 15 2016 with 16 GB RAM and 4 CPU cores with 8

threads. The run times were acceptable but for larger datasets it would be preferable to run more

complex algorithms on a server farm or by using the GPU. On a side note, if the objective were

to use in example artificial neural networks (ANN) with e.g. a Python library called TensorFlow,

then it would be preferable to run the training on the GPU in tandem with the RAM as storage

as this would reduce the computational time required as the training can be parallelized.

6.6.1 Machine Learning Modeling and Model Performance

The machine learning models selected for the initial testing are considered to be some of the best

for solving classification problems. As we have a binary classification problem, the hypothesis is

that the best performing models will be the ones that manage to create a boundary decision

region for based on the training set without achieving over- or underfitting of the model. In the

Python kernel, all the models are first imported and listed in a list of estimators. The second

step is to separate independent features and dependent features from the dataset. This means

that we split the training set into two sets where the true output value is stored in a separate

dataframe which then is compared with the predicted value to give a measure of accuracy. After

separating the features, we generate a dataframe to compare the performance of the ML models.

The next step involves generating training and validation dataset splits for cross-validation which

is used to estimate the performance of the models. The results of the performance comparison is

illustrated in figure 6.24.

From the results, it is clear that the best performing models are XGBoost, Bagging Classifier,

Gradient Boosting Classifier, AdaBoost Classifier, Decision Tree Classifier, and Random Forest

Classifier. The weakest performing models were SVC and Nu SVC closely followed by the

different versions of Naive Bayes. The initial performance of the models without tuning performed

exceptionally well and it is interesting to see the wide span in performance between the best and

worst performing models. Should note that this does not mean the models are generally worse,

but that they are rather performing less on the available dataset and the way it is structured.
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Figure 6.24: Performance comparison of machine learning models.

6.6.2 Hyperparameter Tuning

Hyperparameters are parameters with a set value before we initiate the learning process. In

other words, the hyperparameters cannot be optimized through each iteration of the learning

process as it is set. The process of hyperparameter optimization is about selecting values which

increases the accuracy and predictive power of the model with the objective of achieving the

maximized accuracy for the selected models. In the following section, some of the best and worst

performing algorithms from the previous section are selected to be further optimized in order to

see if there are any room for potential increases in performance. The method which will be used

for optimizing the hyperparameters is the grid-search cross-validation method (Chang and Lin,

2011; Krstajic et al., 2014). The results of the hyperparameter tuning is listed in figure 6.25. As

expected, the top performing models cannot be improved as they have a 100 accuracy on the

test dataset. The worst performing models, SVC and Nu SVC have not improved in performance

which is quite interesting. In addition, SVC and Nu SVC together with a series of algorithms

listed in figure 6.24 have not improved significantly by hyperparameter tuning.
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Figure 6.25: Optimized hyperparameters.

6.6.3 Feature Selection and Optimization of Model

From the previous section 4 models achieved a 100 percent accuracy for predicting the Class

label. This was also achieved by the simple models. Hence, we can choose the model we want

from these and investigate how few features the models needs to achieve this accuracy. As

the computational time was insignificant, we can conclude that the reduction of features is not

necessary for this size of dataset. If the size increases significantly though combined with a more

severely corroded pipeline, there may be necessary to remove features to save time.

Feature selection is the process of selecting features based on their value towards solving the

problem, contributing highest to the output feature which is Class in this problem. If the

dataset consists of features with values that do not contribute, they are considered irrelevant

and can decrease accuracy of the model by making it learn on said features. A technique for

identifying features with high importance is recursive feature elimination with cross validation

(RFECV). RFECV will in the following section be applied to XGBoost model to investigate

feature importance.

6.7 Model Evaluation

From the feature ranking, the features of highest importance for the Class label is DepthPercentage,

Pfail_binned, DepthPercentage_binned, Depth_binned, CircPos_binned, and Pfail. These

features have as previously stated multicollinearities between them as illustrated in figure 6.23.

This is not an issue for the classification problem in this case, but it is fair to assume it has

contributed to longer computational time. As the numbering indicates, the top features are the

most important features for the selected algorithm.

By selecting just the top four ranked features, the XGBoost model achieves a 100% accuracy
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(a) Feature ranking.

(b) Feature importance.

Figure 6.26: Feature ranking and original feature importance.

with the selected features. Hence, we can build a model with significantly fewer features which

performs at the exact same accuracy. This is the power of feature selection in machine learning.

This complies with DNV-RP-F101 and the assessment methodology for the allowable stress

approach and the features it takes into account when assessing the integrity level of anomalies.

In regard to the feature importance listed in figure 6.26a, this corresponds quite well with the

initial estimations of feature importance performed on the original dataset as illustrated in figure

6.26b.
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7 Discussion

Corrosion in pipelines is regarded as a major issue which cannot be neglected. It could have

severe consequences for the integrity of the pipeline, and potentially result in leakage if not

properly managed. The consequences of a leakage and the subsequent flow of hydrocarbons into

the surrounding environment is a frightening thought. Such a situation can cause damage to

infrastructure, people, the environment, in addition to having significant economic and operational

consequences for the operator of the pipeline. In order to prevent corrosion induced failures

from occurring, there are various types of mitigation and prevention strategies. Measures can

be taken to impede the electrochemical process of corrosion such as using cathodic protection,

use inhibitors, etc. To ensure that the integrity management strategy is adequate for the

specific pipeline, it is important to support the integrity management strategy with accurate

measurements and classification of existing corrosion features in addition to predicted growth

rates for the existing corrosion features.

7.1 The potential of Machine Learning

We have in this thesis proved that supervised machine learning models have the capabilities

to accurately predict the class label of features. The hypothesis was that the most important

features for the classification algorithms would be the depth features. This is based on the

allowable stress approach and how it focuses on feature depth and remaining wall thickness to

calculate the failure pressure, in addition to the classified labels actually being labeled according

to the depth percentage feature.

Based on conversations with industry domain experts on both machine learning and integrity

management in addition to findings in the literature review, the current development is towards

creating predictive models for estimating corrosion growth rates for different sections of pipelines.

This can be performed by taking into account flow assurance modeling, pipeline topography,

production and inspection history in addition to ILI data. Flow assurance modeling involves

analyzing the contents of the pipeline and here we have traditional models for predicting corrosion

growth rates which can be used as a basis for new predictive models corrected by machine learning.

To successfully develop and deploy such models, there are certain requirements that should be

met. First, the data should be covering detailed production history, inspection history, etc. In

addition, it is necessary to get sufficient amounts of data on pipelines that are severely corroded.

This was one of the major drawback of the data used for this thesis. It was simply not enough

corrosion features to train the models on correctly classified labels as the labeling was downgraded

to 10% depth of wall thickness.

Gains from automation

Machine learning automates important parts of the model building that previously required
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deep domain expertise (Chollet, 2017). Thus, it lowers the barriers to developing an artificial

intelligence for a given domain. The largest challenges are associated with the building of the

models, but after the model is fully developed, it can be used to automate processes which

previously was extremely time consuming and repetitive analyses performed by human domain

experts. It can be assumed that for operational monitoring, the engineers are primarily working

and monitoring work during office hours. Machine learning have the potential for automating

weekly monitoring of production values as it can perform it live at all times continuously. For

the specific case of classifying class labels and assessing pipeline integrity, it can be argued that

the effectiveness of the presented models demonstrate the potential for using machine learning in

previously manual processes.

7.2 Practical Barriers of Machine Learning

As the literature study found, the major barriers for the application of machine learning is related

to knowledge about the development and deployment process combined with the knowledge for

how to assemble teams with the necessary domain expertise in their respective sciences. Despite

having large amounts of raw data available and expert knowledge, the industry suffers from slowly

adapting new technological developments and usually gets stuck in the development phase of the

models. In other words, it is of high importance when performing projects related to machine

learning to have a project leader which has the necessary knowledge of how to successfully

develop and deploy the models. This means to assembly a team with experts in their respective

fields such as corrosion and machine learning, in addition to having experts with background in

computer science which can take into account the knowledge of the corrosion experts in order

to develop models which takes into account all necessary aspects of the problem which they

want to solve. It is also important to take into account the existing systems that the specific

company uses as projects related to machine learning most likely is initiated with the objective

of increasing the effectiveness and efficiency of existing procedures, etc. Hence, the importance

of involving people with expert knowledge of the existing systems and methods.

7.3 Theoretical Limitations and Avenues for Further Research

The major limitation to the work performed in this thesis is related to the available data on

defects. As the majority of defects in the selected pipeline could be considered as single defects,

the result was that the models were not trained on data of complex shaped defects. For future

work, the next step would be to have available large quantities of data on pipelines suffering from

severe corrosion. This would enable us to use the results from the traditional time-consuming

assessment methodologies in order to label the data. This would result in increased value for the

data as we now will have the ability to train models on severe corrosion features.
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8 Conclusion

The thesis has demonstrated the usage and accuracy of machine learning towards solving

classification problems by utilizing exploratory data analysis on feature importance and feature

correlation, and gives clear recommendations for future work on defect assessment and integrity

management of pipeline systems. The best performing models achieved a 100% accuracy in

predicting the class label which is above expectations. Based on the results and the literature

review, we can conclude the following.

Pipelines are suffering from corrosion due to a number of reasons and the mitigation and

prevention technologies cannot prevent the creation of corrosion features. At best, the pipeline

lasts its entire lifetime without maintenance, but most likely it would be detected e.g. higher

oxygen levels in the flow assurance modeling resulting in potential higher corrosion growth rates

and the subsequent need for performing ILI inspections. This can be challenging on pipeline

systems which are not designed for receiving pigging tools. Many pipelines are unpiggable due to

a number of reasons, increasing the need for new predictive models. Current research is focusing

on using flow assurance modeling together with ILI data and historical data in complex models

in order to predict corrosion severity in such unpiggable regions. Predicting corrosion growth

without the use of data analytic tools have severe limitations due to the complex nature of

corrosion. Machine learning can also be used as a tool for initial screening of features or for live

monitoring of operational values. One of the major findings from the literature review is the

potential for using machine learning on a series of ILI inspections of the same pipeline in order

to identify local corrosion growth rates based on the historical corrosion data. This works by

matching features’ historical data and training the models to identify patterns in the corrosion

features, which from history, indicating the potential for high corrosion rate in the future.

While we find the machine learning models to be exceptional for predicting class labels, we can

argue that this thesis demonstrates the wide potential for machine learning in the oil and gas

industry. There are many types of machine learning - not to mention of artificial intelligence -

for a range of AI problems relevant to the integrity management of pipeline systems, predicting

corrosion feature growth rates, perform anomaly detection on live production data, etc. What

they all have in common is the need for comprehensive, reliable and high quality data, in

addition to domain expertise and the computational resources for deploying complex models.

The development phase is the most challenging where the need for computational power is at its

highest, but one should be aware of potential up-front investments and costs related to having the

computational power ready for deployment. If the company does not perform machine learning

or AI related training on a regular basis, cloud computing is a great alternative. It should also

be noted that the up-front investments and related costs could be significantly lower in the

long-term if the alternative is to rely on manual work performed by domain experts. If the work

is of repetitive nature, the expert knowledge can be of higher need in other projects. Machine
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learning is on the rise in may industries being the major buzzword these days, and while it is of

the utmost importance to have realistic expectations and be aware of the potential pitfalls when

initiating machine learning projects in a conservative and slowly evolving industry, there should

be no concern and reason to assume that the oil and gas market are any different.
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