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Abstract

One of the main reasons for the limited use of steel fibre reinforced concrete (SFRC) in
load-carrying structures today is the lack of accepted design guidelines. The Norwegian
Concrete Association (Norsk Betongforening) are currently working on the publication
NB38 - Guideline for design, execution, and control of fibre reinforced concrete in load-
carrying structures, and a new version of EN 1992-1-1 is on it’s way. Both of them include
design guidelines for fibre reinforced concrete.

The primary aim of this thesis is to compare the new guidelines, along with existing
guidelines, with respect to their calculations for shear resistance and crack-width. A the-
oretical study is carried out, comparing the theoretical shear resistance and crack-width
for concrete classes defined in EN 1992-1-1:2018 Annex L.

For crack-widths, results from EN 1992-1-1:2018, NB38, and FIB Model Code 2010 are
compared theoretically and for shear capacity, calculations from the different guidelines
are compared to each other, as well as to results from finite element analyses.

The results show that the differences between the guidelines are vast, both for crack-widths
and shear capacity. It is shown that some of the guidelines dramatically overestimate the
contribution of fibres to the load-bearing capacity, while others underestimate it.
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Sammendrag

Bruken av fiberarmert betong i bærende betongkonstruksjoner er i Norge minimal, det er
hovedsaklig begrenset til bruk i gulv p̊a grunn og som sprøytebetong. En av grunnene til
dette er mangelen p̊a aksepterte standarder for beregning og utførelse av fiberarmert be-
tong. Norsk Betongforening jobber med en ny publikasjon per dags dato - NB38 - Veileder
for prosjektering, utførelse og kontroll av fiberarmert betong i bærende konstruksjoner,
og en ny versjon av betongstandarden EN 1992-1-1 er under arbeid. Begge med beregn-
ingsmetoder for st̊alfiberarmert betong.

Hovedm̊alet med oppgaven er å sammenligne beregningsmetodene fra EN 1992-1-1:2018,
NB38, i tillegg til FIB Model Code 2010, n̊ar det gjelder skjærkapasitet og rissberegninger.
En teoretisk studie er utført, med m̊al om å sammenligne de teoretiske skjærkapasitetene
og rissviddene for flere av klassene definert i EN 1992-1-1:2018 Annex L.

For rissviddeberegninger sammenliknes resultatene fra de forskjellige standardene teo-
retisk. For skjærkapasitet vil resultatene fra de forskjellige standardene i tillegg til å sam-
menliknes mot hverandre, sammenliknes mot resultater fra numerisk analyse ved hjelp av
elementmetoden.

Resultatene viser at det er store forskjeller mellom resultatene fra de forskjellige stan-
dardene, b̊ade n̊ar det kommer til rissvidder og skjærkapasitet. Det er oppsiktsvekkende
at noen av standardene i enkelte tilfeller dramatisk overvurderer st̊alfibrenes bidrag til
betongens skjærkapasitet.
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1 Introduction

1.1 Background

The use of Fibre Reinforced Concrete (FRC) is not a new idea, but the structural use
of it hasn’t been significant until recent years, and the main use of it today is limited to
slabs on ground and sprayed concrete. One of the reasons for this is the lack of relevant
design guidelines regarding the use of fibres in concrete dimensioning.

The lack of design guidelines is now seeing an end, and several standards are starting
to appear - and even more are in the final stages before publishing. This thesis will look
at the following standards;

• Final Version of EN 1992-1-1:2018 per April 2019. Scheduled to be completed in
2020

• Latest Version of NB38 - The Norwegian Concrete Association Publication nr 38.
Scheduled

• fib Model Code 2010 - Existing standard describing the use of fibre reinforced con-
crete

One of the reasons for the lack of standards is the difficulties in calculations because the
fibre-concrete interaction is a complex phenomenon dependent on a number of parameters
(fig. 1.1). The effect on shear resistance and crack development are two of the main
problems.

Figure 1.1: Mechanisms contributing to energy dissipation in cracks of FRC (Löfgren;
2005)

This thesis will look at how the different available guidelines calculate crack-widths and
shear resistance, compare them, and compare the shear resistance given by the guidelines
to shear resistances obtained by finite element analyses.

It is noted that all calculations based on NB38 and EN 1992-1-1:2018 are subject to
change, and the formulas in the final versions of NB38 and EN 1992 may be different than
the ones shown in this thesis.
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2 Theoretical Background

2.1 General - FRC

Concrete containing cement, water, fine and coarse aggregates, and dispersed fibres is
generally called Fibre Reinforced Concrete (FRC). The fibre content is generally less than
1% (Nordbrøden and Weydahl; 2012)

For fibres to be effective in cementitious matrices, it has been found that they should
have the following properties (Naaman; 2003):

• A tensile strength significantly higher than the matrix (two to three orders of mag-
nitude)

• A bond strength with the matrix of the same order as, or higher, than the tensile
strength of the matrix

• An elastic modulus in tension significantly higher than that of the matrix (at least
3x)

• Enough ductility so that the fibre does not fracture due to fibre abrasion or bending

• The Poisson ratio and the coefficient of thermal expansion should preferably be of
the same order

2.2 Types of Fibres

A wide range of fibre types (Figure 2.1) are commercially available in Norway, that are all
used to improve toughness and other properties of concrete, e.g. reducing crack widths,
reducing plastic shrinkage, or to avoid spalling of concrete during fire. Common materi-
als are steel, carbon, glass, polyvinyl alcohol (PVA), polypropylene (PP), and cellulose
(Døssland; 2008). Both the mechanical and geometrical properties of the fibres, and the
effect they have on the concrete vary extensively. This thesis focuses on fibres used for
structural applications, and for this purpose slender, high strength steel fibres are consid-
ered to be most efficient (Døssland; 2008; Kanstad et al.; 2011).

Figure 2.1: Types of commercially available fibres (Löfgren; 2005)

3



The geometry of the fibres has a large effect on the bond characteristics, and thus the
fibres can be straight, coned, indented, crimped, end-hooked etc. to alter the performance
(Figure 2.2)

Figure 2.2: Examples of fibre geometries (Löfgren; 2005)

2.3 Fibre orientation and distribution

The orientation of the fibres in the mix plays an important role in the resulting mechanical
performance of the fibre reinforced concrete (FRC), and the post-crack tensile strength
depends strongly on the distribution and orientation of the fibres (Kanstad et al.; 2011).
Fibres are most effective when they are located perpendicular to the crack, and when the
crack appears at the middle of the fibre (Löfgren; 2005). For this, the efficiency factor
η0, also called the capacity factor, is defined. It’s defined as the efficiency of bridging,
i.e. how much of the fibre forces that are effective normal to the crack plane (Figure 2.3).
The capacity factor is 1

3
for isotropic orientation, 1

2
when the fibres are plane oriented,

and equal to 1 if all the fibres are directed normal to the crack plane (Døssland; 2008).
Simplified, the efficiency factor η0 can be taken as (NB38; n.d.):

η0 = 2
3
· α when 0.3 < α < 0.5

η0 = 4
3
·α− 1

3
when 0.5 < α < 0.8

Where the orientation factor, α, is defined as α = ρ
vf

=
nf ·Af

vf ·Ac
, and where vf is the

fibre volume, nf is the number of fibres, Af is the area of a single fibre, and Ac is the
cross sectional area of the section.

Figure 2.3: Determination of force resultant in the fibres crossing a crack. (Thorenfeldt;
2003)
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Fibres tend to orientate parallel to the boundaries, thus, the orientation gets increas-
ingly two-dimensional with decreasing thickness of the section (Figure 2.5 (c)). To account
for this, the following equation for the orientation factor, α, may be used (Rosenbusch;
2003):
α = 0.382e−0.0033h + 0.37
Where h is the thickness of the cross section.

Figure 2.4: Effect of boundaries - Fibre orientation factor as a function of cross-section
height. (Rosenbusch; 2003)

Figure 2.5: Schematic representation of different fibre composites: (a) unidirectional con-
tinuous; (b) bi-directional continuous; (c) discontinuous with biased 1-D fibre orientation;
(d) discontinuous with biased 2-D fibre orientation; (e) discontinuous with plane-random
orientation; (f) discontinuous with random fibre orientation; (g) particulate composite
(particle suspension); and (h) fibre-reinforced and particulate composite (e.g. fibre-
reinforced concrete). (Löfgren; 2005)
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2.4 Shear behaviour of SFRC

In ordinary reinforced concrete, the principal action of transferring the shear stress across
a crack is explained as friction at the crack faces aggregate interlock and dowel action
(fig. 2.6). For ordinary reinforced concrete, the amount of reinforcement crossing the shear
plane influences the shear capacity and shear friction due to dowel effects, and a similar
effect can be seen in fibre reinforced concrete (Löfgren; 2005) (fig. 2.7). For fibre reinforced
concrete with a low or moderate fibre dosage, the cracking strength is not improved, but
once the matrix reaches it’s tensile strength and starts to crack, the fibres are activated
and starts to be pulled out (fig. 1.1) (Barragan; 2002).

Figure 2.6: Aggregate interlock action: (a)
initial crack opening due to tension; (b)
longitudinal sliding reinstating contact be-
tween crack faces; (c) crack kinematics and
generation of normal and shear stresses.
(Micallef et al.; 2014)

Figure 2.7: Bond stress along steel fibre in
a crack (Hwang et al.; 2013)
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2.5 Crack development in SFRC

The matrix in concrete is very brittle, and is thus hard to prevent from cracking under
tensile stresses. While uncracked, the matrix transfers a part of the stresses to the fibres.
Once the matrix starts cracking, the fibres activate completely and transfers the stresses
through the crack due to a number of mechanisms acting simultaneously (i.e. debonding,
fibre pull-out, matrix spalling, and plastic deformations). Compared to ordinary rein-
forced concrete, the fibres in SFRC act as an additional bridging mechanism, shown in
fig. 2.8b (Löfgren; 2005).

(a)

(b)

Figure 2.8: Schematic description of the fracture process in uni-axial tension of a) ordinary
concrete and b) FRC (Löfgren; 2005)
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2.6 Finite Element Method

The theories and formulas shown in sections 2.6.1 to 2.6.4 are based on the theories of
the software used in this thesis, i.e. Atena by Červenka Consulting.

2.6.1 Material Model Formulation

The material model formulation is based on decomposing the strain εij into elastic εeij,

plastic εpij and fracturing εfij components (Borst; 1986).

εij = εeij + εpij + εfij (2.1)

The new stress state is then computed by equation 2.2

σnij = σn−1
ij + Eijkl(∆εkl −∆εpkl −∆εfkl) (2.2)

Where the increments of plastic strain ∆εpij and fracturing strain ∆εfij needs to be evalu-
ated based on the material models used.

2.6.2 Plasticity Model for Concrete Crushing

The new stress state in the plastic model is computed using the predictor-corrector for-
mula:

(n)σij = (n−1)σij + Eijkl(∆εkl −∆εpkl) = σtij − Eijkl∆ε
p
kl = σtij − σ

p
ij (2.3)

The plastic corrector factor σpij is calculated directly from the yield function:

F p(σtij − σ
p
ij) = F p(σtij −∆λlij) = 0 (2.4)

Where the return direction, lij can be defined as:

lij = Eijkl
∂Gp(σtkl)

∂σkl
, then ∆εpij = ∆λ

∂Gp(σtij)

∂σij
(2.5)

Where G(σij) is the plastic potential function.

In Atena, the failure surface of William Menetrey is used (Červenka et al.; 2016):

F p
3P =

[√
1.5

ρ

f ′
c

]2
+m

[
ρ√
6f ′

c

r(θ, e) +
ξ√
3f ′

c

]
− c = 0 (2.6)

Where

m = 3
f

′2
c − f

′2
t

f ′
cf

′
t

e

e+ 1

and

r(θ, e) =
4(1− e2) cos2 θ + (2e− 1)2

2(1− e2) cos θ + (2e− 1)[4(1− e2) cos2 θ + 5e2 − 4e]
1
2

In the above equations, ξ, ρ, and θ are Haigh–Westergaard coordinates, and e is a param-
eter defining the roundness of the failure surface. The failure surface has a sharp corner

8



if e = 0.5 and is fully circular if e = 1.0.

The parameter c in equation 2.6 controls the hardening/softening, and evolves during
the yielding/crushing process:

c =

(
f

′
c(ε

p
eq)

f ′
c

)2

(2.7)

Where the equivalent plastic strain, εpeq is given by:

∆εpeq = min(∆εpij) (2.8)

2.6.3 Rankine-Fracturing model for Concrete Cracking

The Rankine criterion is used for concrete cracking:

F f
i = σ

′t
ii − f

′

ti ≤ 0 (2.9)

It’s assumed that strains and stresses are converted into the material directions, which
depends on the model. In the case of the rotated crack model, the material directions
correspond to the principal directions, and in the case of the fixed crack model, they are
given by the principal directions at the onset of cracking (Červenka et al.; 2016). σ

′t
ii

identifies the trial stress, and f
′
ti the tensile strength in the material direction i. The

prime symbol denotes quantities in the different material directions. The trial stress state
is computed by the elastic predictor:

σ
′t
ij = σ

′n−1
ij + Eijkl∆ε

′

kl (2.10)

If the trial stress does not satisfy equation 2.9, the increment of fracture strain in direction
i can be calculated using the assumption that the final stress state must satisfy equation
2.11:

F f
i = σ

′n
ii − f

′

ti = σ
′t
ii − Eijkl∆ε

′f
kl − f

′

ti = 0 (2.11)

Equation 2.11 can be further simplified under the assumption that the fracture strain
increment is normal to failure surface, and that only one failure surface is checked. For
failure surface k, the fracture strain increment then has the following form:

∆ε
′f
ij = ∆λ

∂F f
k

∂σij
= ∆λδik (2.12)

After substituting into equation 2.11, an equation for the increment of the fracturing
multiplier, λ, is recovered:

∆λ =
σ

′t
kk − f

′

tk

Ekkkk
=
σ

′t
kk − f

′
t (w

max
k )

Ekkkk
, and wmaxk = Lt(ε̂

′f
kk + ∆λ) (2.13)

This equation must be solved by iterations, as for softening materials, the value of current
tensile strength, f

′
t (w

max
k ), is a function of crack opening, w.

The crack opening, w, is calculated from the total value of fracturing strain, ε̂
′f
kk, in direc-

tion k, plus the current increment of fracturing strain, ∆λ. This sum is then multiplied
with the characteristic length, Lt.

9



2.6.4 Combination of Plasticity and Fracture Model

As both the above models has to be used, we combine them into one - using plasticity for
concrete crushing and the Rankine fracture model for cracking. The problem is stated as
a simultaneous solution of the following inequalities (Červenka et al.; 2016):

F p((n−1)σij + Eijkl(∆εkl −∆εfkl −∆εpkl)) ≤ 0, solve for ∆εpkl (2.14)

F f ((n−1)σij + Eijkl(∆εkl −∆εpkl −∆εfkl)) ≤ 0, solve for ∆εfkl (2.15)

2.6.5 Bond slip

The bond between steel bars and the concrete is an important part of the reinforced
concrete mechanical system, and has been researched by many. Two of the available
models are the one from Bigaj (1999), and the one from FIB Model Code (2010):

2.6.5.1 FIB Model Code

The bond law described by FIB Model Code 2010 is shown in figure 2.9. The bond
is described by the set of given equations:

τb0 = τbmax

(
s

s1

)α
for 0 ≤ s ≤ s1

τb0 = τbmax for s1 ≤ s ≤ s2

τb0 = τbmax − (τbmax − τbf )
s− s2
s3 − s2

for s2 ≤ s ≤ s3

τb0 = τbmax for s3 ≤ s

(2.16)

Where the parameters are given in table 2.1

Figure 2.9: Bond Law according to FIB MC 2010 (FIB Model Code; 2010)
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Pull-Out (PO) Splitting (SP)
εs < εsy εs < εsy

Good
bond cond.

All other
bond cond.

Good bond cond. All other bond cond.
unconfined stirrups unconfined stirrups

τbmax 2.5
√
fcm 1.25

√
fcm 7.0

(
fcm
25

)0.25
8.0
(
fcm
25

)0.25
5.0
(
fcm
25

)0.25
5.5
(
fcm
25

)0.25
s1 1.0mm 1.8mm s(τbmax) s(τbmax) s(τbmax) s(τbmax)
s2 2.0mm 3.6mm s1 s1 s1 s1
s3 cclear

1 cclear
1 1.2s1 0.5cclear

1 1.2s1 0.5cclear
1

α 0.4 0.4 0.4 0.4 0.4 0.4
τbf 0.4τbmax 0.4τbmax 0 0.4τbmax 0 0.4τbmax

1 cclear is the clear distance between ribs.

Table 2.1: Parameters defining the mean bond stress-slip relationship of ribbed bars (according
to eq. 2.16) (FIB Model Code; 2010)

The values for pull-out failure in table 2.1 are only valid for well confined concrete
(cover ≥ 5Ø, and clear spacing between bars ≥ 10Ø).
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2.6.5.2 Bigaj 1999

The bond law described in fig. 2.10 is based on the work from Bigaj (1999). This model de-
pends on the bond quality, reinforcement diameter D, and the concrete cubic compressive
strength, f

′
cu.

Figure 2.10: Bond Law according to Bigaj 1999 (Bigaj; 1999)

Concrete Type Bond Quality Point 1 Point 2 Point 3 Point 4

f
′
c < 60

Excellent
s/D 0.000 0.020 0.044 0.480

τb/
√

0.8f ′
cu 0.500 3.000 0.700 0.000

Good
s/D 0.000 0.030 0.047 0.480

τb/
√

0.8f ′
cu 0.500 2.000 0.700 0.000

Bad
s/D 0.000 0.040 0.047 0.480

τb/
√

0.8f ′
cu 0.500 1.000 0.700 0.000

f
′
c > 60

Excellent
s/D 0.000 0.012 0.030 0.340

τb/
√

0.8f ′
cu 0.600 2.500 0.900 0.000

Good
s/D 0.000 0.020 0.030 0.340

τb/
√

0.8f ′
cu 0.600 1.900 0.900 0.000

Bad
s/D 0.000 0.025 0.030 0.340

τb/
√

0.8f ′
cu 0.600 1.100 0.900 0.000

Table 2.2: Parameters for defining the bond strength-slip relationship for smooth bars
according to Bigaj 1999 Bond Law (Červenka et al.; 2016).
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3 Crack Width Calculations

3.1 EN 1992-1-1:2018

The crack width calculations based on EN 1992-1-1:2018 are calculated nominal values,
and may differ from values measured on site.

The calculated surface crack width, wk,cal, may be determined from equation 3.1:

wk,cal = Sr,max,cal(εsm − εcm + ηrεcs) (3.1)

Where:

Sr,max,cal is the calculated maximum crack spacing when cracking is stabilized or alterna-
tively the maximum length along which there is slip between concrete and steel
in the phase of crack formation, and may me determined from equation 3.2

εsm is the mean strain in the reinforcement closest to the most tensioned concrete
surface under the relevant combination of actions, including the effect of imposed
deformations and taking into account the effects of tension stiffening.

εcm is the mean strain in the concrete between cracks at the same level of εsm.
ηr is equal to 0 for short-term loading, and for long term loading in the crack

formation phase.
εcs is the shrinkage strain.

Sr,max,cal = (2c+ 0.35kb
φ

ρp,ef
) · (1− fFts,ef

fctm
) (3.2)

Where:

c is the clear cover, i.e., the distance between the tensioned concrete surface and
the outer edge of the longitudinal reinforcement closest to the concrete surface.

kb is a coefficient which takes account of the bond properties of the bonded rein-
forcement. It may be taken equal to:
= 0,8 for ribbed and indented reinforcing steel bars or prestressing
= 1,6 for bars with an effectively plain surface

φ is the bar diameter. Where a mixture of bar diameters is used in a section, φ
should be taken as the equivalent diameter.

ρp,ef = (As + ξ1Ap)/Ac,eff
fFts,ef is the effective residual tensile strength for the serviceability limit states

= κO · κG · αt1 · fR,1k, Where αt1 = 0.53− 0.14 · fR,3k

fR,1k

fctm is the mean axial tensile strength of concrete at age tref

The value wk,cal is to be compared with wlim,cal, which for a quasi-permanent combi-
nation of actions for most exposure classes is equal to 0.3mm (EN 1992-1-1:2018; 2018)
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3.2 fib Model Code 2010 / NB38

The crack width calculations specified in fib Model Code 2010 and NB38 are equal - and
thus treated as one in the following section.
The design crack width wd in FRC elements can be calculated by equation 3.3:

wd = 2

{
k · c+

1

4

φs
ρsef
· (fctm − fFtsm)

τbms

}
· 1

Es
· (σs − β · σsr + ηr · εsh · Es) ≤ wlim (3.3)

Where:

k is an empirical parameter to take the influence of the concrete cover into consid-
eration; as a simplification, k = 1.0 can be assumed

c is the concrete cover
φs is the bar diameter used in the tensile zone

ρs,ef =
As
Ac,ef

With Ac,ef = effective area of concrete in tension (Figure 3.1)

fctm is the mean axial tensile strength of concrete

fFtsm =
fFtsk
0.7

where fFtsk = 0.45fR1k

τbms is the mean bond strength between steel and concrete (Table 3.1)
Es is the design value of modulus of elasticity of ordinary reinforcing steel
σs is the steel stress in a crack, including the effect of fibres (fFtsm)
β is an empirical coefficient to assess the mean strain over ls,max depending on the

type of loading (Table 3.1)
σsr is the maximum steel stress in a crack in the crack formation stage:

= (fctm − fFtsm) · (1 + αeρs,ef )/ρs,ef

αe is the modular ratio =
Es
Ec

ηr is a coefficient for considering the shrinkage contribution (Table 3.1)
εsh is the shrinkage strain
wlim = 0.30mm for exposure classes XC, XD, XF, XS
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Figure 3.1: Effective tension area of concrete Ac,ef for: (a) beam; (b) slab; (c) wall in
tension (shaded areas) (FIB Model Code; 2010)

Crack Formation Stage Stabilized cracking stage
Short term,
instantaneous
loading

τbms = 1.8 · fctm(t)
β = 0.6
ηr = 0

τbms = 1.8 · fctm(t)
β = 0.6
ηr = 0

Long term,
repeated
loading

τbms = 1.35 · fctm(t)
β = 0.6
ηr = 0

τbms = 1.8 · fctm(t)
β = 0.4
ηr = 1

Table 3.1: Values for τbms, β and ηr for deformed reinforcing bars (FIB Model Code; 2010)
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3.3 Comparison of crack-width calculations from FIB MC 2010,
EN 1992, and NB38

In this thesis, the residual strength classes given in EN 1992-1-1:2018, Annex L, is used
to compare the different guidelines. The table is given in tab. 3.2.

fR,1k
fR,3k/fR,1k 1,0 1,5 2,0 2,5 3,0 4,0 5,0 6,0 8,0 10,0

a
(0.5 ≤ fR,3k/fR,1k < 0.7)

fR,3k = 0.5fR,1k

0,5 0,8 1,0 1,3 1,5 2,0 2,5 3,0 4,0 5,0

b
(0.7 ≤ fR,3k/fR,1k < 0.9)

fR,3k = 0.7fR,1k

0,7 1,1 1,4 1,8 2,1 2,8 3,5 4,2 5,6 7,0

c
(0.9 ≤ fR,3k/fR,1k < 1.1)

fR,3k = 0.9fR,1k

0,9 1,4 1,8 2,3 2,7 3,6 4,5 5,4 7,2 9,0

d
(1.1 ≤ fR,3k/fR,1k < 1.3)

fR,3k = 1.1fR,1k

1,1 1,7 2,2 2,8 3,3 4,4 5,5 6,6 8,8 11,0

e
(fR,3k/fR,1k ≥ 1.3)
fR,3k = 1.3fR,1k

1,3 2,0 2,6 3,3 3,9 5,2 6,5 7,8 10,4 13,0

Table 3.2: Characteristic residual flexural strengths fR,3k for a given class (EN 1992-1-
1:2018; 2018)

Example: The theoretical crack-width has been calculated for several classes from ta-
ble 3.2, with results shown in fig. 3.4 The full calculations can be found in Appendix B.
The calculations are based on the simply supported beam of length 5m given in fig. 3.2.

(a) Boundary conditions and loading
(b) Cross section and reinforcement

Figure 3.2: Beam used for crack-width calculations (dimensions in mm)

16



In order to calculate the crack widths, the stress in the longitudinal bars, σs, has to
be determined. This can be obtained from the system of equilibrium equations of forces
and moments. (Figure 3.3, Equations (3.4) to (3.8))

Figure 3.3: Strains and stresses on a cracked SFRC section in bending

The depth of the neutral axis, x, can be determined by considering force equilibrium.
Unlike in plain RC members, an iterative process is needed in SFRC as the assumed stress
carried by the fibres, fsf , is independent on the induced strain. From equilibrium, it can
be shown that:

x =
EsεsAs + fsfbh
1
2
Ecε0b+ fsfb

(3.4)

Taking the moment about the neutral axis of the fibre component gives the following
internal resisting moment:

M = 0.5σcbx(
2

3
x+

h− x
2

) + EsεsAs(d− x−
h− x

2
) (3.5)

Assuming the loads are low enough not causing the steel to yield, the strain in the rein-
forcing bars can be taken as:

εs =
d− x
x

ε0 (3.6)

Substituting equation 3.6 into equation 3.5 gives us the following solution for ε0:

ε0 =
M

0.5Ecbx(h
2

+ x
6
) + EsAs(

d−x
x

)(d− x
2
− h

2
)

(3.7)

For a given moment, a trial neutral axis is chosen (e.g. 0.45d). Solving eq. 3.7 gives the
extreme concrete compressive fibre strain, ε0, which is then used in equation 3.6 to solve
for the strain in the reinforcement. During this step, it is necessary to check whether or
not the steel strain is below yield (εs ≤ εsy = fsy/Es). Finally solving for x in equation
3.4 will check the initial assumption of x, and if required, x is iterated until convergence.
With x converged, σs is finally calculated as:

σs = Esεs = Es
d− x
x

ε0 (3.8)

A Matlab code was developed during the work of the thesis in order to solve the iterative
calculations, see appendix C, p. k.
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(a) Class 1.0 (b) Class 1.5

(c) Class 2.0 (d) Class 2.5

(e) Class 3.0 (f) Class 4.0

Figure 3.4: wd of section shown in fig. 3.2 with increasing flexural strengths fR,1k and
fR,3k
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As can be seen, FIB MC 2010 and NB38 overestimates the contribution of the fibres
compared to EN 1992-1-1:2018 - especially at low ratios of

fR,3k

fR,1k
(class a, fig. 3.6). It is

also noted that the crack width from FIB MC 2010 and NB38 are independent of fR,3k,
which is clearly visible in eq. (3.3):

wd,FIB,NB = f(..) + f(fFtsm, σs) = f(..) + f(fFtsm) = f(..) + f(fR,1k) (3.9)

i.e. FIB MC 2010 and NB38 neglects the change in residual flexural strength from CMOD1

to CMOD3 (fig. 3.5). This results in calculations neglecting the fact that the residual
flexural strength may increase or decrease after the first cracks appear. This is especially
important for class a and b, where the residual flexural strengths at CMOD3 is respectively
half, and 0.7 times the residual flexural strength at CMOD1. The fact that FIB MC 2010
and NB38 neglects this may result in calculated crack-widths much lower than the actual
values. On the other hand, for class d and e, the calculations may give conservative values
for crack widths, as the fact that the residual flexural strength increases from CMOD1 to
CMOD3 is neglected.

Figure 3.5: Change in residual flexural strength from CMOD1 to CMOD3 for class a to e

(a) Class a (b) Class e

Figure 3.6: wd of class a and e
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The maximum final crack spacing, Sr,max, from the different guidelines is given as:

Sr,max,EN = (2c+ 0.35kb
φ

ρp,ef
) · (1− fFts,ef

fctm
) (3.10)

Sr,max,FIB,NB = 2

{
k · c+

1

4

φs
ρsef
· (fctm − fFtsm)

τbms

}
(3.11)

Comparing them, we can see that in FIB MC 2010 and NB38 the clear distance, c, part
of the equation is not influenced by fFtsm, and thus if fFtsm is set equal to fctm we obtain:

Sr,max,FIB,NB = 2kc (3.12)

In the equation from EN 1992-1-1:2018 the situation is different, and if ffts,ef is set equal
to fctm we obtain:

Sr,max,EN = 0 (3.13)

Increasing ffts further will thus make sr,max,EN negative for values> fctm, while sr,max,FIB,NB
stays positive until:

fFtsm >
4 · k · c · ρs,ef · τbms

φs
+ fctm (3.14)

It is noted that at the time of delivery of this thesis, the group designing Annex L for EN
1992-1-1:2018 are still debating which residual tensile strength that should be used in the
Sr,max calculation (Kanstad; 2019).
A comparison of the calculated mean crack spacing from EN 1991-1-1.2018 and measured
values has been carried out by the task group designing Annex L, showing how the equa-
tion compare to measured values. The results are shown in fig. 3.7, and show that for a
given calculated crack spacing, a vast difference in measured crack spacings can be seen.

Figure 3.7: Measured vs. calculated mean crack spacing (Plizzari; 2019)
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4 Shear Capacity Calculations

In the following sections, shear capacity calculations are described, and carried out for a
beam without shear reinforcement. Formulas for members requiring shear reinforcement
are nevertheless included in the thesis, merely to illustrate the differences between the
guidelines.
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4.1 EN 1992-1-1:2018

The shear capacity of a concrete section VRd = τRdbwd where τRd depends on the rein-
forcement. (Equation 4.1 or 4.3)

NB: The calculations based on EN 1992-1-1:2018 are not to be used for structural design
at the time of this thesis being published, as they currently are being controlled. The
author and the suppliers of the draft of EN 1992-1-1:2018 take no responsibility for any
structural use of them before the official release in mid. 2020.

4.1.1 Members not requiring design shear reinforcement

τRd,cF =
0.6

η · γc
(100ρlfck

ddg
d

)1/3 + fFtud ≥ τRdc,min + fFtud (4.1)

Where:

η is a parameter which expresses that the two contributions are not additive
= min(1 + 0.43f 2.85

Ftud; 2.5)
γc is the partial factor of safety for concrete

ρl =
Asl
bwd

Asl is the area of the tensile reinforcement, which extends ≥ (lbd + d) beyond the
section considered

ddg is a size parameter describing the failure zone roughness, taking into account the
concrete type and its aggregate properties. Its value may be taken as:
16 +Dlower ≤ 40 [mm] for concrete with fck ≤ 60 MPa
16 +Dlower(60/fck)

2 ≤ 40 [mm] for concrete wtih fck ≥ 60 MPa
fFtud = fFtu,ef/γsf
fFtu,ef = κO · κG · fFtuk
fFtuk = αt3 · fR,3k
αt3 = 0.57− 0.26fR,1k/fR,3k
κO is a factor accounting for fibre orientation = 1.0 (to be discussed before final

release of EN 1992-1-1:2018)
κG is a factor accounting for volume effects = 1.0 + Act · 0.5 ≤ κG,max = 1.5
Act is the involved tension zone in the concrete of the cracked cross-sections of an

equilibrium system in m2

The value for τRdc,min will be coordinated with the method for structures with fibres
only at a later version of EN 1992-1-1:2018, but at the time, τRdc,min is taken as:

τRdc,min =
10

γc

√
fck
fyd
· ddg
d

(4.2)
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4.1.2 Members requiring design shear reinforcement

For FRC members with design shear reinforcement, steel fibres, and longitudinal bars
in the tensile zone, the design value of the shear stress resistance in [MPa] should be
determined by equation 4.3. The equation is still to be verified (EN 1992-1-1:2018; 2018).

τRd,sF = (κs
Asw
s

z

bwd
fyd + κFfFtud) (4.3)

Where:

κs = 0.75
κF = 1.0
Asw is the cross sectional area of the shear reinforcement
s is the spacing of the shear reinforcement in [mm]
z is the internal lever arm, which for the shear calculation may be assumed as 0.9d

(Figure 4.1)

Figure 4.1: Model and notation for shear reinforced members (EN 1992-1-1:2018; 2018)
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4.2 fib Model Code 2010

4.2.1 Beams without shear reinforcement

The design value for the shear resistance in members with conventional longitudinal re-
inforcement and without shear reinforcement is given by equation 4.4:

VRd,F =

{
0.18

γc
·k ·
[
100 ·ρl ·

(
1+7.5 · fFtuk

fctk

)
·fck

]1/3
+0.15 ·σcp

}
· bw ·d ≥ VRd,Fmin (4.4)

Where:

γc is the partial factor of safety for the concrete without fibres
k is a factor that takes into account the size effect and is equal to:

1 +
√

200
d
≤ 2.0

d is the effective depth of the cross section in [mm]
ρl is the longitudinal reinforcement ratio:

ρl = Asl/(bwd)
Asl is the cross sectional area of the reinforcement which extends ≥ lbd + d beyond

the considered section [mm2]
fFtuk is the characteristic value of the ultimate residual tensile strength for FRC, by

considering wu = 1.5mm according to equation 4.5
fctk is the characteristic value of the tensile strength for the concrete without fibres
fck is the characteristic value of cylindrical compressive strength
σcp = NEd/Ac < 0.2fcd [MPa] is the average stress acting on the concrete cross

section Ac [mm2] for an axial force NEd [N], due to loading or prestressing actions
(NEd > 0 for compression)

bw is the smallest width of the cross-section in the tensile area
VRd,Fmin = (vmin + 0.15 · σcp)bwd where:

vmin = 0.035 · k3/2 · f 1/2
ck

fFtu = fFts −
wu

CMOD3

(fFts − 0.5fR3 + 0.2fR1) ≥ 0 (4.5)

fFts = 0.45fR1 (4.6)
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4.2.2 Beams with shear and longitudinal reinforcement

For FRC elements with shear reinforcement, the shear resistance is given by equation 4.7:

VRd = VRd,F + VRd,s (4.7)

Where:

VRd,F Follows from equation 4.4
VRd,s Follows from equation 4.8

VRd,s =
Asw
sw

zfywdcotθ (4.8)

Where:

Asw is the area of the shear reinforcement
sw is the spacing of the shear reinforcement
z is the effective shear depth = 0.9d
fywd is the design yield strength of the shear reinforcement
θ denotes the inclination of the compressive stress field (Figure 4.2)

30◦ < θ < 45◦ (FIB Model Code; 2010)

Figure 4.2: Geometry and definitions of shear reinforcement (FIB Model Code; 2010)
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4.3 NB38

The shear resistance calculations in NB38 may be regarded as a combination of the ones
found in EN 1992-1-1 2004 and fib Model Code 2010. The shear resistance for a cross
section without shear reinforcement is given by equation 4.9:

VRd,c = VRd,ct + VRd,cf (4.9)

Where:

VRd,ct is the shear force capacity from the concrete, and follows from equation 4.10
VRd,cf is the shear force capacity from the fibres, and follows from equation 4.11

VRd,ct =

[
CRd,c · k ·

(
100ρlfck

)1/3

+ k1 · σcp
]
· bw · d ≥ (vmin + k1 · σcp) · bw · d (4.10)

Where:

CRd,c = k2
γc

where k2 = 0.18 for concrete with Dupper ≥ 16mm and where the coarse

aggregate makes up ≥ 50% of the total aggregates

k = 1 +
√

200
d
≤ 2.0

ρl is the longitudinal reinforcement ratio:
ρl = Asl/(bwd)

k1 = 0.15 for compression and = 0.3 for tension.
σcp = NEd/Ac < 0.2fcd [MPa] is the average stress acting on the concrete cross

section Ac [mm2] for an axial force NEd [N], due to loading or prestressing actions
(NEd > 0 for compression)

vmin = 0.035 · k2/3 · f 1/2
fck

VRd,cf = 0.6 · fftd,res,2.5 · bw · d (4.11)

Where:

fftd,res,2.5 =
fftk,res,2.5

γsf
where fftk,res,2.5 = 0.37 · fRk,3
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4.4 Comparison of shear resistance calculations from FIB MC
2010, EN 1992, and NB38

The results shown in fig. 4.4 are based on the cross section shown in fig. 4.3 with data
shown in table 4.1. Calculations are shown in appendix A. As the characteristic residual
strength depends on the fibre-matrix bond strength, which is usually a function of the
concrete compressive strength as well as the fibre content, it may be unrealistic to specify
a high value of fR,1k and fR,3k for a relatively low value of fck. This is disregarded in the
following calculations - and it is noted that the calculations are purely theoretical.

Concrete class B35
fck 35 MPa
fctm 3.2 MPa
fctk 2.2 MPa
fyk 500 MPa
γsf 1.5
γc 1.5
γs 1.15
φl 20mm
cnom 35mm
Dlower 16mm
h 400mm
b 200mm

d = h− cnom − φl
2

= 355mm
x See eq. (3.4)

Table 4.1: Data used in shear calculations
Figure 4.3: Cross section of beam
used in shear calculations
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(a) Class 2.0 (b) Class 3.0

(c) Class 4.0 (d) Class 6.0

(e) Class 8.0 (f) Class 10.0

Figure 4.4: VRd of section shown in fig. 4.3 with increasing flexural strengths fR,1k and
fR,3k
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As can be seen, EN 1992-1-1 dramatically overestimates the contribution of the fibres
compared to FIB Model Code 2010 and NB38 when fR,1k and fR,3k increases. In the
figures on the previous page, additional to the calculations from EN, FIB, and NB, a
fourth result is shown, namely EN Red., calculated following eq. (4.1), but neglecting
the minimum shear resistance. In order to compare the different guidelines, the factor
a is introduced - a measure of the fibre contribution to the shear resistance: (It should
be noted that the calculated a factors not necessarily represents the calculated shear
resistance shown in fig. 4.4, as the a factor neglects the minimum shear resistance given
in eqs. (4.1), (4.4) and (4.9).)

0.18

γc
·k ·
(

100ρl

(
1+7.5 · fftuk,fib

fctk

)
fck

)1/3

=
0.6

ηγc

(
100ρlfck

ddg
d

)1/3

+afib ·fftuk,EN (4.12)

Where fftuk,fib is the characteristic value of the ultimate residual tensile strength taken
from eq. (4.4), and fftuk,EN is taken from eq. (4.1).

Solving for afib gives: (Complete formula attached in appendix D)

afib = f(d, dg, fck, ρl, η, k, fctk, fftuk,fib, fftuk,EN) (4.13)

Inputing the data from table 4.1 gives:

afib ≈ −
26259.0 · η · (6.3355 · fR,1k + 31.677 · fR,3k + 30.973)1/3 − 70405.0

η · (32500.0 · fR,1k − 71250.0 · fR,3k)
(4.14)

The factor a in EN 1992-1-1:2018 is given as:

aEN =
κO · κG
γsf

=
1.0 ·min(1.0 + Act · 0.5; 1.5)

γsf
(4.15)

Comparing eq. (4.9) and eq. (4.1) gives a for NB38 as:

aNB ≈ −
16493.0 · η + 3700.0 · η · fR,3k − 14081.0

η · (6500.0 · fR,1k − 14250.0 · fR,3k)
(4.16)

The complete solution of aNB is given in appendix E.

We can now compare the magnitude of the fibre contribution from the different guide-
lines by comparing the different guidelines a factor:

τf = a · fftuk,EN = a ·
(

0.57− 0.26
fR,1k
fR,3k

)
· fR,3k (4.17)

Giving the magnitude of the fibre contribution for the shear resistance as:

τf = a ·
(

0.57 · fR,3k − 0.26 · fR,1k
)

(4.18)

On the next page, the a factor is plotted against class, showing how the different guidelines
emphasize the fibre contribution as fR,1k and fR,3k change.
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(a) Class 2.0 (b) Class 3.0

(c) Class 4.0 (d) Class 6.0

(e) Class 8.0 (f) Class 10.0

Figure 4.5: Comparison of variable a of section shown in fig. 4.3 with increasing flexural
strengths fR,1k and fR,3k
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From these figures the varying degree of contribution from the fibres to the shear
resistance can be read, and it’s apparent that while EN 1992-1-1:2018 emphasizes the
effect of the fibres more or less the same regardless of the residual flexural strengths fR,1k
and fR,3k, FIB Model Code 2010 and NB38 emphasize the effect at low values of fR,3k,
i.e. class a and b, and reduce the influence at higher values, i.e. class d and e. How these
results agree with the results from finite element analyses will be further investigated in
chapter 5.
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5 Finite Element Modeling

A dapped end beam was modelled and analysed in order to investigate the shear capacity
of the concrete. Two bars with φ=6mm is chosen to carry the tensile stresses appearing
in the dapped end (as well as providing shear resistance by dowel effects, ref section 2.4).
Two bars with φ=20mm is chosen to take the bending stress at the bottom of the beam
in order to provoke a shear failure, and not a failure due to tensile stresses at the bottom
of the beam.

5.1 Finite Element Model

The software used in the finite element modeling and analysis is Atena, developed by
Cervenka Consulting.

5.2 Geometry

The geometry of the beam is given in figure 5.1 and the boundary conditions given in
figure 5.2. The reinforcement is given in figure 5.3

Figure 5.1: Geometry of the beam (Dimensions in mm)

Figure 5.2: Test setup, including boundary conditions (Dimensions in mm)

Figure 5.3: Reinforcement of the beam
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5.2.1 Geometry

The geometry is modelled by first creating the
lines defining the top- and bottom surface of the
beam in the x-y plane, before extruding these in
the z-plane to define the top and bottom sur-
faces. These surfaces are then respectively copied
0.15m in the negative and positive y-direction
to form two dependent volumes. This is done in
order to use a structured mesh (see section 5.2.4).

Next, the steel plates are defined in the
same manner as the beam. The structural
reinforcement in figure 5.3 is modelled as straight
lines, and they will in section 5.3.2 be given an
area and other parameters.

a) Lines defining top and bot-
tom surface

b) Top and bottom surfaces

c) Volumes extruded

d) Steel plates added

e) Reinforcement added

Figure 5.4: Development of
FEM model
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5.2.2 Boundary Conditions

The boundary conditions are modelled as described in fig. 5.2, including a boundary
condition at the surfaces in the z-direction, to prevent abnormal behaviour.

(a) Boundary conditions at supports

(b) Boundary conditions of surfaces

Figure 5.5: Boundary conditions of FEM-beam

5.2.3 Loading

In Atena, loading is recommended to be modelled as displacement-controlled, as opposed
to force-controlled, which may scale the results (Červenka et al.; 2016). The loading
is therefore modelled as a fixed starting displacement of δy = −0.1mm. The maximum
loading is assumed to occur in the range −14mm ≤ δy ≤ 0mm, and the interval multiplier
is thus set to 140, with a numerical evaluation for each step.

Figure 5.6: Loading of the beam
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5.2.4 Meshing

It is suggested by Atena theory to use a structured mesh of quadratic hexahedral elements
(fig. 5.7), as a mesh of tetrahedral elements gets less accurate when integrating the shape
functions, and the computing power associated with tetrahedral elements is drastically
larger than that of hexahedral ones (Benzley et al.; 1995). A structured mesh of size
0.025m is chosen, and later used as the characteristic tension size of the section. The final
mesh can be seen in fig. 5.8.

Figure 5.7: The quadratic hexahedral el-
ement (Červenka et al.; 2016)

Figure 5.8: Mesh of the beam
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5.3 Material Models

5.3.1 Concrete

The concrete is assigned the material model CC3DNonLinCementitious2User, a model
based on the theories from chapter 2.6, p. 8, with a hardening regime before the compres-
sive strength is reached (Figure 5.9). The material model allows for user defined tensile
and softening behaviour. Input variables are listed in table 5.1.

Material name Cementitious2 User
Material Prototype CC3DNonLinCementitious2User
Young’s modulus Ecm 34 GPa
Poisson’s ratio ν 0.2
Tensile strength fctk 2.2 MPa
Compressive strength fck -35 MPa
Tension Characteristic size 0.025a m
Tension Function See section 5.3.1.1
Aggregate size Dlower 0.016 m
Compressive Function See section 5.3.1.2

a The tension characteristic size is set equal to the mesh size, see section 5.2.4.

Table 5.1: Input parameters for the SFRC

Figure 5.9: Compressive hardening/softening (Červenka et al.; 2016)
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5.3.1.1 Tension Function

The tension function describes how the concrete behaves while under tensile stresses,
i.e. how the tensile strength changes with the crack-width. The function is described as
a set of points (ref. fig. 5.10) where:
ft = fctk
σt is the residual tensile strength at wc
εf = wc

Lt
where wc is the crack opening (CMOD) and Lt is the characteristic length, equal

to the size of the element. For each class, five points are described:

Point 1 Point 2 Point 3 Point 4 Point 5

εf 0.000 0.0001 CMOD1

Lt
= 0.5

25
= 0.02 CMOD3

Lt
= 2.5

25
= 0.1 0.3

σt
ft

1.0
0.45fR,1k

fctk

0.45fR,1k

fctk

0.37fR,3k

fctk
0

Table 5.2: Points describing the tensile function of the FRC FEM-section

Figure 5.10: Tension function
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5.3.1.2 Compressive Function

As it is known that SFRC concrete is more ductile than ordinary concrete, the first
point in the default compressive function (fig. 5.11) is multiplied by 100 as recommended
(Červenka et al.; 2016). The points defining the compressive function are given in ta-
ble 5.3.

Figure 5.11: Compressive function (Červenka et al.; 2016)

Point 1 Point 2 Point 3 Point 4

εpl 0.0 -4.206E-4 -8.411E-4 -5.841E-1

σc
fc

0.25 0.8 1.0 0.0

Table 5.3: Points describing the compressive function for the FRC FEM-section
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5.3.2 Reinforcement

The reinforcement’s properties are automatically generated per the definitions in EN
1992 by GiD. All the reinforcement is defined as quality B500NC as per EN 1992, i.e.
εud = 3.0%, and with the safety format set to characteristic (Figure 5.12) Input parameters
are listed in table 5.4.

Material name 1D Reinforcement
Material Prototype CCReinforcement
Reinforcement Function Bilinear
Young’s Modulus Es 200 GPa
Characteristic Yield Strength fyk 500 MPa
Reinforcement Class C
Safety Format Characteristic
Hardening Elastic - Perfectly Plastic
Bond Slip FIB MC 2010 (See section 2.6.5.1)

Table 5.4: Input parameters for the reinforcement

Figure 5.12: Safety formats for reinforcement (Červenka et al.; 2016)
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5.3.3 Steel plates

As the loading applied isn’t expected to cause the steel plates to undergo plastic defor-
mations, a perfectly elastic material model is used, which simplifies the finite element
calculations.

The steel plates are assigned the Solid elastic material model, with properties given
in table 5.5.

Material type Solid elastic
Material Prototype CC3DElastIsothropic
Young’s Modulus Es 200 GPa
Poisson’s Ratio ν 0.3

Table 5.5: Input parameters for the steel plates
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5.4 Analysis and Results

For each class, a FEM-analysis has been carried out, and in the following section the
results from these FEM-analyses are compared to theoretical shear resistance, calculated
using eqs. (4.1), (4.4) and (4.9) with all safety factors, i.e. γc, γs, and γsf , set equal to
1.0.
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(a) Class 2.0 (b) Class 3.0

(c) Class 4.0 (d) Class 6.0

(e) Class 8.0 (f) Class 10.0

Figure 5.13: VRd of section shown in fig. 5.1 with increasing flexural strengths fR,1k and
fR,3k compared to results from FEM-Analysis
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As can be seen in fig. 5.13, for class 2.0 and 3.0 (figs. 5.13a and 5.13b) EN 1992-1-1:2018
overestimates the effect of the fibres regardless of fR,3k, overestimating the shear capacity
by 68% for class 2.0/e. Increasing fR,1k, i.e. class 4.0 to 10.0 leads to the calculations
from EN 1992-1-1:2018 to be conservative for class a, while significantly overestimating
the capacity for class e, which indicate calculations that are too dependent on

fR,3k

fR,1k
. i.e.

the FEM-analyses shows that the factor αt3 (eq. (4.1)) should be modified. For all classes
- the calculations from FIB Model Code 2010 and NB38 are on the safe side. NB38 shows
results gradually increasing towards the shear capacity from the FEM-analyses as

fR,3k

fR,1k

increases, but with a significantly steeper gradient, i.e. a clear tendency to excessively
favour an increase in

fR,3k

fR,1k
with respect to the shear capacity is shown. The calculations

from FIB Model Code 2010 shows a gradient approximately equal to the gradient of the
FEM-results (∆VRd = χ· fR,3k

fR,1k
, table 5.7), but with a lower dependency on fR,1k, suggesting

that the calculations for fftu is a bit on the safe side compared to FEM results.
The MAPE (Mean Average Percentage Error) of the different design guidelines vs.

the FEM results are given in table 5.6.

EN FIB NB38
Class 2.0 51.29% 4.25% 1.8%
Class 3.0 32.11% 18.15% 11.91%
Class 4.0 29.67% 25.85% 15.40%
Class 6.0 30.02% 36.73% 19.53%
Class 8.0 32.80% 44.17% 21.59%
Class 10.0 36.18% 49.03% 21.78%

Table 5.6: MAPE Comparison of calculations vs. FEM results

Class EN EN Red. NB FIB FEM
2 21.9425 16.339 8.458 4.698 8.2175
3 32.9075 21.513 12.6875 5.7955 8.9975
4 43.87 30.548 16.9165 6.6445 9.6
6 65.7835 53.281 25.374 7.9455 12.225
8 87.685 76.5275 33.833 8.9495 13.725
10 109.5755 99.71 42.2915 9.7785 12.95

Table 5.7: χ - Slope of VRd/
fR,3k

fR,1k

It is worth noticing that the slope - χ - for EN and NB is a constant function of fR,1k,
respectively ≈ 10.97 · fR,1k and ≈ 4.23 · fR,1k, while for FIB and the FEM analysis, χ is
approximately equal to 3.89 + 0.62 · fR,1k and 7.13 + 0.70 · fR,1k respectively. On the next
page, a from eqs. (4.12) to (4.16), are compared. In addition to comparing a from the
guidelines, aFEM is calculated as follows:

aFEM =

VRd,FEM

bwd
− 0.6

ηγc

(
100 · ρl · fck · ddgd

)1/3

fftuk,EN
(5.1)
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(a) Class 2.0 (b) Class 3.0

(c) Class 4.0 (d) Class 6.0

(e) Class 8.0 (f) Class 10.0

Figure 5.14: Comparison of variable a of section shown in fig. 5.1 with increasing flexural
strengths fR,1k and fR,3k compared to a from FEM
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Comparing the graphs in fig. 5.14, we can define ∆a as the difference between aguideline
and afem - i.e. ∆a = aguideline−afem. ∆a is positive when the guideline overestimates the
contribution of the fibres, and negative when not. i.e. negative values are conservative
with respect to the behaviour seen in the FEM-analysis, and thus safe calculation wise.

Guideline Class a b c d e
2.0 -3.1822 -0.0510 0.1693 0.1766 0.2031
3.0 -6.0562 -0.6158 -0.1787 -0.0360 0.0653
4.0 -7.2347 -0.7746 -0.2863 -0.0935 0.1193
6.0 -8.0110 -0.9747 -0.3846 -0.0164 0.1958
8.0 -8.3646 -1.1141 -0.3258 0.0442 0.2442

EN

10.0 -8.6866 -1.1486 -0.2581 0.0990 0.2916
2.0 0.3973 -0.0002 -0.0782 -0.1366 -0.1193
3.0 -2.7395 -0.6096 -0.4029 -0.3018 -0.2318
4.0 -4.1830 -0.7946 -0.4868 -0.3571 -0.2766
6.0 -5.3952 -1.0096 -0.5926 -0.4350 -0.3382
8.0 -6.0763 -1.1553 -0.6629 -0.4718 -0.3679

FIB

10.0 -6.6507 -1.2119 -0.6827 -0.4810 -0.3719
2.0 -0.5790 -0.0585 -0.0356 -0.0502 -0.0063
3.0 -3.1755 -0.5375 -0.2709 -0.1421 -0.0543
4.0 -4.2139 -0.6273 -0.2910 -0.1458 -0.0544
6.0 -4.8463 -0.7096 -0.3094 -0.1543 -0.0564
8.0 -5.1232 -0.7649 -0.3212 -0.1452 -0.0471

NB38

10.0 -5.3943 -0.7546 -0.2982 -0.1211 -0.0230

Table 5.8: ∆a for the different guidelines and classes

It is noted that the a value still neglects vmin from eqs. (4.1), (4.4) and (4.9), and it
is apparent that while FIB and NB38 have a values below the FEM results, EN 1992-1-
1:2018 overestimates the contribution of the fibres for classes c-e depending on fR,1k. As
table 5.8 shows, FIB Model Code 2010 also overestimates the contribution of the fibres
for class 2.0/a. While this is true, the low values of fR,1k and fR,3k makes ∆VRd = 0.38kN
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6 Conclusion and suggestions for further work

6.1 Discussion and conclusions

The results from the calculations shows that it is apparent that the differences between
FIB Model Code 2010, NB38, and EN 1992-1-1:2018 when calculating crack-widths and
shear resistance are vast. The difference in calculated shear resistance between the guide-
lines is at maximum as high as 115.1kN (Class 10.0/e, VRd,EN − VRd,FIB).

A difference in the crack-width calculations was also found - FIB Model Code 2010
and NB38 give conservative values compared to EN 1992-1-1:2018. The crack-width of
the beam in fig. 3.2 class 1.5/a exceeds wlim when using the calculations from EN 1992,
but FIB MC2010 and NB38 gives results lower than wlim.

It is shown in chapter 5 that EN 1992-1-1:2018 overestimates the contribution from the
fibres to the shear resistance compared to FEM results for most classes. For class 10.0/e
EN 1992-1-1:2018 overestimates the shear resistance by ≈ 46kN - almost 64% higher than
the result gained from the FEM-analysis.

6.2 Suggestions for further work

Although a lot of work - it would be interesting to check the results experimentally. Es-
pecially the shear resistances from chapter 5, as the shear resistance calculated with EN
1992-1-1:2018 might dramatically overestimate the real shear resistance - and thus lead to
structural failure. As all of the calculations are based on a B35 (C35/45) concrete - achiev-
ing a class 10.0/e concrete might be impossible practically, and it would be interesting to
look at how the guidelines deviate from experimental results.
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Benzley, S., Perry, E., Merkley, K., Clark, B. and Sjaardema, G. (1995). A comparison
of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic
analysis, Proceedings, 4th International Meshing Roundtable 17.

Bigaj, A. (1999). Structural Dependence of Rotational Capacity of Plastic Hinges in RC
Beams and Slabs, PhD thesis, TU Delft.

Borst, R. d. (1986). Nonlinear analysis of frictional materials.
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EN 1992-1-1 2018

≔h 400 ≔b 200

≔cnom 35 ≔fck 35 ≔fyk 500

≔øs 20 ≔Dlower 16

≔γsf 1.5 ≔γs 1.15

≔γc 1.5 ≔αcc 0.85

≔fyd ――
fyk
γs

≔fcd ―――
⋅αcc fck
γc

≔d =--h cnom ―
øs
2

355

≔n 2 number of ø20 bars

≔Asl ⋅⋅n π
⎛
⎜
⎝
―
øs
2

⎞
⎟
⎠

2

≔fR.1k 4.0

≔fR.3k =⋅1.3 fR.1k 5.2

≔fftk.res.2.5 ⋅0.37 fR.3k

≔fftd.res.2.5 ―――
fftk.res.2.5

γsf

≔x ――――――――
+⋅Asl fyd ⋅⋅fftd.res.2.5 b h

+⋅⋅0.8 fcd b ⋅fftd.res.2.5 b

≔Act =⋅
⎛
⎜
⎝

⋅min
⎛
⎜
⎝

,2.5 (( -h d)) ―――
(( -h x))

3

⎞
⎟
⎠
b
⎞
⎟
⎠
mm 2 0.019 m2

≔αt3 -0.57 0.26 ――
fR.1k
fR.3k

≔fFtuk =⋅αt3 fR.3k 1.924

≔κO 1.0

≔κG =min
⎛
⎜
⎝

,+1.0
⎛
⎜
⎝

⋅――
Act

m2
0.5

⎞
⎟
⎠

1.5
⎞
⎟
⎠

1.01

≔fFtu.ef ⋅⋅κO κG fFtuk

≔fFtud =――
fFtu.ef
γsf

1.295

A Shear capacity calculations

a



≔η =min ⎛⎝ ,+1 ⋅0.43 fFtud
2.85 2.5⎞⎠ 1.898

≔ρl ――
Asl

⋅b d

≔ddg min ⎛⎝ ,+16 Dlower 40⎞⎠

≔τRd.cf1 =⋅

⎛
⎜
⎜
⎜⎝

+――
0.7
⋅η γc

⎛
⎜
⎝

⋅⋅⋅100 ρl fck ――
ddg
d

⎞
⎟
⎠

―
1

3

fFtud

⎞
⎟
⎟
⎟⎠
MPa 1.641 MPa

≔τRdc.min =⋅
⎛
⎜
⎜⎝

⋅―
10
γc

‾‾‾‾‾‾‾
⋅――

fck
fyd

――
ddg
d

⎞
⎟
⎟⎠
MPa 0.568 MPa

≔τRd.cf =max⎛⎝ ,τRd.cf1 +τRdc.min ⋅fFtud MPa⎞⎠ 1.863 MPa

≔VRd =⋅⋅⋅τRd.cf b d mm2 132.271 kN

b



Fib Model Code 2010

≔h 400 ≔b 200

≔cnom 35 ≔fck 35 ≔fyk 500
≔fctk 2.2

≔øs 20 ≔Dlower 16

≔γsf 1.5 ≔γs 1.15

≔γc 1.5 ≔αcc 0.85

≔fyd ――
fyk
γs

≔fcd ―――
⋅αcc fck
γc

≔d =--h cnom ―
øs
2

355

≔fR.1k 4.0≔n 2

≔fR.3k =⋅1.3 fR.1k 5.2≔Asl ⋅⋅n π
⎛
⎜
⎝
―
øs
2

⎞
⎟
⎠

2

≔fFts ⋅0.45 fR.1k

≔wu 1.5

≔CMOD3 2.5

≔fFtuk =max
⎛
⎜
⎝

,-fFts ―――
wu

CMOD3

⎛⎝ +-fFts 0.5 fR.3k 0.2 fR.1k⎞⎠ 0
⎞
⎟
⎠

1.8

≔k min
⎛
⎜
⎝

,+1
‾‾‾‾
――
200
d

2
⎞
⎟
⎠

≔ρl ――
Asl

⋅b d

≔τRd.cf1 =⋅⋅⋅――
0.18
γc

k
⎛
⎜
⎝

⋅⋅⋅100 ρl
⎛
⎜
⎝

+1 ⋅7.5 ――
fFtuk
fctk

⎞
⎟
⎠
fck

⎞
⎟
⎠

―
1

3

MPa 1.27 MPa

≔τRd.cf.min =⋅⋅⋅0.035 k
―
3

2 fck
―
1

2 MPa 0.48 MPa



≔τRd.cf max⎛⎝ ,τRd.cf1 τRd.cf.min⎞⎠

≔VRd.f =⋅⋅⋅τRd.cf b d mm2 90.18 kN



NB38

≔h 400 ≔b 200

≔cnom 35 ≔fck 35 ≔fyk 500
≔fctk 2.2

≔øs 20 ≔Dlower 16

≔γsf 1.5 ≔γs 1.15

≔γc 1.5 ≔αcc 0.85

≔fyd ――
fyk
γs

≔fcd ―――
⋅αcc fck
γc

≔d =--h cnom ―
øs
2

355

≔n 2 ≔fR.1k 4.0

≔Asl ⋅⋅n π
⎛
⎜
⎝
―
øs
2

⎞
⎟
⎠

2

≔fR.3k =⋅1.3 fR.1k 5.2

≔fftk.res.2.5 ⋅0.37 fR.3k

≔fftd.res.2.5 ―――
fftk.res.2.5

γsf

≔k2 0.18

≔CRd.c ―
k2
γc

≔k min
⎛
⎜
⎝

,+1
‾‾‾‾
――
200
d

2
⎞
⎟
⎠

≔ρl ――
Asl

⋅b d

≔τRd.ct ⋅max

⎛
⎜
⎝ ,⋅⋅CRd.c k ⎛⎝ ⋅⋅100 ρl fck⎞⎠

―
1

3
⋅⋅0.035 k

―
2

3 fck
―
1

2

⎞
⎟
⎠ MPa

≔τRd.cf ⋅⋅0.6 fftd.res.2.5 MPa



≔τRd.c =+τRd.ct τRd.cf 1.429 MPa

≔VRd =⋅⋅⋅τRd.c b d mm2 101.482 kN



EN 1992-1-1:2018

≔h 400 mm ≔b 200 mm

≔cnom 35 mm ≔fck 35 MPa ≔fyk 500 MPa

≔øl 20 mm ≔fctm 3.2 MPa

≔γsf 1.0 ≔Dlower 16 mm

≔γc 1.0 ≔γs 1.0

≔fR.1k 2.5 MPa ≔As =⋅⋅2 π
⎛
⎜
⎝
―
øl
2

⎞
⎟
⎠

2

628.319 mm 2

≔fR.3k =⋅0.5 fR.1k 1.25 MPa ≔d =--h cnom ―
øl
2

0.355 m

≔kb 0.8 From matlab:

≔ρp.ef ――――

⋅⋅2 π
⎛
⎜
⎝
―
øl
2

⎞
⎟
⎠

2

Act

≔σs 381.763 MPa ≔x 98.1937 mm

≔Act =
⎛
⎜
⎝

⋅min
⎛
⎜
⎝

,2.5 (( -h d)) ―――
(( -h x))

3

⎞
⎟
⎠
b
⎞
⎟
⎠

0.02 m2

≔αt3 =-0.57 ⋅0.26 ――
fR.1k
fR.3k

0.05

≔αt1 =-0.53 ⋅0.14 ――
fR.3k
fR.1k

0.46

≔κO 1.0
≔Es 200 GPa

≔κG =min
⎛
⎜
⎝

,+1.0 ⋅0.5 ――
Act

m2
1.5

⎞
⎟
⎠

1.01

≔fFts.ef =⋅⋅⋅κO κG αt1 fR.1k 1.162 MPa

≔Sr.max.cal =⋅
⎛
⎜
⎝

+⋅2 cnom ⋅⋅0.35 kb ――
øl

ρp.ef

⎞
⎟
⎠

⎛
⎜
⎝

-1 ――
fFts.ef
fctm

⎞
⎟
⎠

158.824 mm ≔Ec 30 GPa

≥＝-εsm εcm ―――――――――

-σs ⋅kt ――
fctm
ρp.ef

⎛⎝ +1 ⋅αe ρp.ef⎞⎠

Es

0.6 ―
σs

Es

B Crack Width calculations

g



≥＝-εsm εcm ―――――――――

-σs ⋅kt ――
fctm
ρp.ef

⎛⎝ +1 ⋅αe ρp.ef⎞⎠

Es

0.6 ―
σs

Es

≔q 25 ――
kN
m

≔L 5 m

≔MEk =――
⋅q L2

8
78.125 ⋅kN m

≔fftuk =⋅αt3 fR.3k 0.062 MPa

≔fftu.ef =⋅⋅κO κG fftuk 0.063 MPa

≔fftud =――
fftu.ef
γsf

0.063 MPa

≔kt 0.6

≔Es 200 GPa

≔Ec 34 GPa

≔αe ―
Es

Ec

＝-εsm εcm εsm.cm

≔εsm.cm =max

⎛
⎜
⎜
⎜⎝

,―――――――――

-σs ⋅kt ――
fctm
ρp.ef

⎛⎝ +1 ⋅αe ρp.ef⎞⎠

Es

⋅0.6 ―
σs

Es

⎞
⎟
⎟
⎟⎠

0.002

≔wk.cal =⋅Sr.max.cal εsm.cm 0.245 mm

h



Fib MC 2010 / NB38

≔h 400 mm ≔b 200 mm

≔cnom 35 mm ≔fck 35 MPa ≔fyk 500 MPa

≔øl 20 mm ≔fctm 3.2 MPa

≔γsf 1.0 ≔Dlower 16

≔γc 1.0 ≔γs 1.0

≔fR.1k 2.5 MPa
≔d --h cnom ―

øl
2≔fR.3k =⋅0.7 fR.1k 1.75 MPa

≔As ⋅⋅2 π
⎛
⎜
⎝
―
øl
2

⎞
⎟
⎠

2

≔k 1.0 ≔Ac ⋅b h

≔c cnom ≔Es 200 GPa

Short term, instantaneous loading: ≔Ec 34 GPa

≔τbms ⋅1.8 fctm

≔β 0.6

≔ηr 0

From matlab:
≔σs 291.9024 MPa ≔x 115.2511 mm

≔Act =
⎛
⎜
⎝

⋅min
⎛
⎜
⎝

,2.5 (( -h d)) ―――
(( -h x))

3

⎞
⎟
⎠
b
⎞
⎟
⎠

0.019 m2

≔ρs.ef ――
As

Act

≔αe ―
Es

Ec

≔fftsm =――
fftsk
0.7

1.607 MPa

≔fftsk =⋅0.45 fR.1k 1.125 MPa ≔fftsd =――
fftsk
γsf

1.125 MPa

i



≔fftsm =――
fftsk
0.7

1.607 MPa

≔σsr ―――――――――
⋅⎛⎝ -fctm fftsm⎞⎠ ⎛⎝ +1 ⋅αe ρs.ef⎞⎠

ρs.ef

≔wd =⋅2
⎛
⎜
⎝

+⋅k c ⋅⋅―
1
4

――
øl
ρs.ef

――――
⎛⎝ -fctm fftsm⎞⎠

τbms

⎞
⎟
⎠

―
1
Es

⎛⎝ -σs ⋅β σsr⎞⎠ 0.198 mm

≔Sr.max =2
⎛
⎜
⎝

+⋅k c ⋅⋅―
1
4

――
øl
ρs.ef

――――
⎛⎝ -fctm fftsm⎞⎠

τbms

⎞
⎟
⎠

153.55 mm

j



clear
clc

% Inputs:
q=10; % kN/m
L=5; % m
Ec=34*10^3; % MPa
Es=200*10^3; % MPa
h=400; % mm
b=200; % mm
d=355; % mm
As=628.319; % mm^2
fftk=0.888; %MPa, fftk,res,2.5

stop=0;
M=(q*L^2/8)*10^6;
x(1,1)=0.45*d;
eps0(1,1)=M/(0.5*Ec*b*x(1,1)*(h/2+x(1,1)/6)+Es*As*((d-x(1,1))/
x(1,1))*(d-x(1,1)/2-h/2));
epss(1,1)=(d-x(1,1))/(x(1,1))*eps0(1,1);
x(1,2)=(Es*epss(1,1)*As+fftk*b*h)/(0.5*Ec*eps0(1,1)*b+fftk*b);
ss(1,1)=Es*epss(1,1);
i=2;

while abs(x(1,i)-x(1,i-1))>0.000001 % Iterative calculation running
 until x converges.
    eps0(1,i)=M/(0.5*Ec*b*x(1,i)*(h/2+x(1,i)/6)+Es*As*((d-x(1,i))/
x(1,i))*(d-x(1,i)/2-h/2));
    epss(1,i)=(d-x(1,i))/(x(1,i))*eps0(1,i);
    if epss(1,i) > 500/Es % Checks if steel strain is above yield, and
 cancels if so
        disp(['Warning: steel strain is above yield'])
        stop=1;
        break
    end
    ss(1,i)=Es*epss(1,i);
    i=i+1;
    x(1,i)=(Es*epss(1,i-1)*As+fftk*b*h)/(0.5*Ec*eps0(1,i-1)*b+fftk*b);
end

if stop~=1
    disp(['x=', num2str(x(end)), ' mm, and steel stress = ',
 num2str(Es*epss(end)), ' MPa'])
    subplot(2,1,1)
    plot(x)
    title('Convergence of x')
    xlabel('Steps')
    ylabel('x [mm]')
    subplot(2,1,2)
    plot(ss)
    title('Convergence of \sigma_s')

1

C Iterative solution of steel stress in simply sup-

ported SFRC section subject to bending

k



    xlabel('Steps')
    ylabel('\sigma_s [MPa]')
end

x=122.823 mm, and steel stress = 103.3652 MPa

Published with MATLAB® R2019a
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≔τ ＝⋅⋅――
0.18
γc

k
⎛
⎜
⎝

⋅⋅⋅100 ρl
⎛
⎜
⎝

+1 ⋅7.5 ―――
fftuk.fib
fctk

⎞
⎟
⎠
fck

⎞
⎟
⎠

―
1

3

+⋅――
0.6
⋅η γc

⎛
⎜
⎝

⋅⋅⋅100 ρl fck ――
ddg
d

⎞
⎟
⎠

―
1

3

⋅aFIB fftuk.EN

――――→τ
,solve aFIB

-―――――――――――――――――――――――――――――

⋅0.02

⎛
⎜
⎜
⎜
⎝

-⋅30.0
⎛
⎜
⎝
――――――

⋅⋅⋅100.0 ddg fck ρl
d

⎞
⎟
⎠

―
1

3

⋅⋅⋅9.0 η k
⎛
⎜
⎜⎝
―――――――――――――

+⋅⋅⋅100.0 fck ρl fctk ⋅⋅⋅750.0 fck ρl fftuk.fib
fctk

⎞
⎟
⎟⎠

―
1

3
⎞
⎟
⎟
⎟
⎠

⋅⋅η γc fftuk.EN
≔γsf 1

≔b 150 ≔fcd ―
35
1≔Asl ⋅⋅2 π 32 ≔fyd ――

500
1

≔h 150

≔ddg 32 ≔γc 1.5 ≔fFts ⋅0.45 fR.1k
≔fftk.res.2.5 ⋅0.37 fR.3k

≔d 355 ≔wu 1.5 ≔κO 1.0
≔fftd.res.2.5 ―――

fftk.res.2.5
γsf≔fck 35 ≔CMOD3 2.5

≔ρl ―――
⋅⋅2 π 32

⋅200 d
≔fftuk.fib -fFts ―――

wu

CMOD3

⎛⎝ +-fFts 0.5 fR.3k 0.2 fR.1k⎞⎠ ≔x =――――――――
+⋅Asl fyd ⋅⋅fftd.res.2.5 b h

+⋅⋅0.8 fcd b ⋅fftd.res.2.5 b
? ≔Act =⋅⋅(( -h x)) b 10-6 ?

≔κG =min ⎛⎝ ,+1.0 ⋅Act 0.5 1.5⎞⎠ ?

≔k +1
‾‾‾‾
――
200
d

≔fftuk.EN ⋅
⎛
⎜
⎝

-0.57 0.26 ――
fR.1k
fR.3k

⎞
⎟
⎠
fR.3k

≔fctk 2.2
＝η min

⎛
⎜
⎜⎝

,+1 ⋅0.43
⎛
⎜
⎝

⋅―――
⋅κO κG

γsf
fftuk.EN

⎞
⎟
⎠

2.85

2.5

⎞
⎟
⎟⎠

―――→τ
,solve a

?
≔τ ＝⋅⋅――

0.18
γc

k
⎛
⎜
⎝

⋅⋅⋅100 ρl
⎛
⎜
⎝

+1 ⋅7.5 ―――
fftuk.fib
fctk

⎞
⎟
⎠
fck

⎞
⎟
⎠

―
1

3

+⋅――
0.6
⋅η γc

⎛
⎜
⎝

⋅⋅⋅100 ρl fck ――
ddg
d

⎞
⎟
⎠

―
1

3

⋅aFIB fftuk.EN

≔aFIB ――――――→τ
,,,solve aFIB float 5

-――――――――――――――――――――――――
⋅1.0

⎛
⎜
⎜⎝ -⋅⋅⋅5.2518 106 η ⎛⎝ ++⋅0.57019 fR.1k ⋅2.851 fR.3k 2.7876⎞⎠

―
1

3
⋅6.3103 106

⎞
⎟
⎟⎠

-⋅⋅⋅6.5 106 η fR.1k ⋅⋅⋅1.425 107 η fR.3k

―――→aFIB
simplify

-―――――――――――――――――――
-⋅⋅52518.0 η ⎛⎝ ++⋅0.57019 fR.1k ⋅2.851 fR.3k 2.7876⎞⎠

―
1

3
63103.0

⋅η ⎛⎝ -⋅65000.0 fR.1k ⋅142500.0 fR.3k⎞⎠

D Calculation of the factor aFIB according to eq. (4.13)

m



≔τ ＝+⋅⋅CRd.c k ⎛⎝ ⋅⋅100 ρl fck⎞⎠

―
1

3
⋅0.6 fftd.res.2.5 +⋅――

0.6
⋅η γc

⎛
⎜
⎝

⋅⋅⋅100 ρl fck ――
ddg
d

⎞
⎟
⎠

―
1

3

⋅aNB fftuk.EN

―――→τ
,solve aNB

――――――――――――――――――――

-+⋅0.6 fftd.res.2.5 ⋅⋅CRd.c k ⎛⎝ ⋅⋅100 fck ρl⎞⎠

―
1

3

――――――――

⋅0.6
⎛
⎜
⎝
―――――

⋅⋅⋅100 ddg fck ρl
d

⎞
⎟
⎠

―
1

3

⋅η γc
fftuk.EN

≔γc 1.5 ≔γs 1.15 ≔γsf 1.5 ≔fck 35

≔CRd.c ――
0.18
γc

≔h 400 ≔cnom 35 ≔øl 20 ≔b 200

≔κO 1.0

≔d --h cnom ―
øl
2

≔Asl ⋅⋅2 π
⎛
⎜
⎝
―
øl
2

⎞
⎟
⎠

2

≔ddg 32

≔k +1
‾‾‾‾
――
200
d

≔ρl ――
Asl

⋅b d

≔κG min ⎛⎝ ,+1.0 ⋅Act 0.5 1.5⎞⎠

≔fftk.res.2.5 ⋅0.37 fR.3k

≔fftuk.EN ⋅
⎛
⎜
⎝

-0.57 0.26 ――
fR.1k
fR.3k

⎞
⎟
⎠
fR.3k

≔fftd.res.2.5 ―――
fftk.res.2.5

γsf

＝η min

⎛
⎜
⎜⎝

,+1 ⋅0.43
⎛
⎜
⎝

⋅―――
⋅κO κG

γsf
fftuk.EN

⎞
⎟
⎠

2.85

2.5

⎞
⎟
⎟⎠

≔τ ＝+⋅⋅CRd.c k ⎛⎝ ⋅⋅100 ρl fck⎞⎠

―
1

3
⋅0.6 fftd.res.2.5 +⋅――

0.6
⋅η γc

⎛
⎜
⎝

⋅⋅⋅100 ρl fck ――
ddg
d

⎞
⎟
⎠

―
1

3

⋅aNB fftuk.EN

≔aNB ――――――→τ
,,,solve aNB float 5

-―――――――――――――――――
⋅1.0 ⎛⎝ -+⋅⋅1.6493 107 η ⋅⋅⋅3.7 106 η fR.3k ⋅1.4081 107 ⎞⎠

-⋅⋅⋅6.5 106 η fR.1k ⋅⋅⋅1.425 107 η fR.3k

―――→aNB

simplify
-――――――――――――

-+⋅16493.0 η ⋅⋅3700.0 η fR.3k 14081.0

⋅η ⎛⎝ -⋅6500.0 fR.1k ⋅14250.0 fR.3k⎞⎠

E Calculation of the factor aNB according to eq. (4.16)

n



Class EN EN Red FIB NB38
2.0/a 42.76 42.429 62.989 57.348
2.0/b 53.883 53.4 66.339 61.552
2.0/c 65.003 63.843 69.382 65.755
2.0/d 76.118 73.486 72.179 69.958
2.0/e 87.229 82.237 74.774 74.161
3.0/a 43.979 43.646 68.647 62.602
3.0/b 60.659 59.847 72.845 68.907
3.0/c 77.329 74.482 76.609 75.212
3.0/d 93.991 87.171 80.035 81.517
3.0/e 110.644 98.517 83.191 87.822
4.0/a 45.198 44.859 73.5 67.856
4.0/b 67.43 66.023 78.359 76.263
4.0/c 89.646 84.031 82.681 84.669
4.0/d 111.847 99.314 86.593 93.076
4.0/e 134.035 114.238 90.18 101.482
6.0/a 47.633 47.277 81.643 78.364
6.0/b 80.96 77.406 87.518 90.974
6.0/c 114.253 100.906 92.694 103.584
6.0/d 147.516 123.919 97.35 116.193
6.0/e 180.749 156.425 101.598 128.803
8.0/a 50.067 49.677 88.423 88.872
8.0/b 94.475 87.515 95.079 105.65
8.0/c 138.828 117.611 100.914 122.498
8.0/d 183.129 158.804 106.143 139.311
8.0/e 227.381 203.057 110.902 156.124
10.0/a 52.498 52.056 94.298 99.38
10.0/b 107.976 96.745 101.598 120.396
10.0/c 163.372 139.047 107.977 141.412
10.0/d 218.691 194.366 113.68 162.428
10.0/e 273.939 249.615 118.863 183.444

B35, 2ø20, h=400, b=200, ULS

F VRd results from EN, FIB, and NB38 for section

shown in fig. 4.3

o



Class EN EN Red FIB NB38 FEM
2.0/a 26.262 16.714 20.124 19.194 19.745
2.0/b 30.652 20.925 21.194 20.885 21.195
2.0/c 35.04 24.552 22.166 22.577 22.92
2.0/d 39.429 27.439 23.06 24.269 24.97
2.0/e 43.816 29.796 23.889 25.96 26.075
3.0/a 26.744 17.192 21.931 21.308 25.845
3.0/b 33.327 23.223 23.273 23.846 28.115
3.0/c 39.909 27.717 24.475 26.383 30.3
3.0/d 46.49 31.145 25.57 28.921 31.9
3.0/e 53.07 34.744 26.578 31.458 32.95
4.0/a 27.225 17.668 23.482 23.423 31.45
4.0/b 36.001 25.246 25.034 26.806 33.45
4.0/c 44.776 30.281 26.415 30.189 35.8
4.0/d 53.549 35.034 27.665 33.573 37.65
4.0/e 62.321 43.322 28.811 36.956 38.95
6.0/a 28.187 18.609 26.083 27.652 41.5
6.0/b 41.349 28.514 27.96 32.727 44
6.0/c 54.508 35.628 29.614 37.802 46.75
6.0/d 67.662 48.664 31.101 42.877 49.35
6.0/e 80.814 61.815 32.458 47.951 51.05
8.0/a 29.149 19.531 28.249 31.881 51.4
8.0/b 46.695 31.249 30.376 38.647 54.85
8.0/c 64.235 45.237 32.24 45.414 57.8
8.0/d 81.769 62.77 33.911 52.181 60.3
8.0/e 99.297 80.298 35.431 58.947 62.4
10.0/a 30.11 20.43 30.126 36.11 61.8
10.0/b 52.04 34.135 32.458 44.568 64.55
10.0/c 73.959 54.96 34.496 53.026 67.4
10.0/d 95.869 76.871 36.319 61.485 69.95
10.0/e 117.771 98.772 37.974 69.943 72.05

B35, 2ø6, h=150, b=150, SLS

G VRd results from EN, FIB, NB38, and FEM-analyses

for section shown in fig. 5.2

p


	Acknowledgement
	Abstract
	Sammendrag
	Contents
	List of Figures
	List of Tables
	Notations
	Introduction
	Background

	Theoretical Background
	General - FRC
	Types of Fibres
	Fibre orientation and distribution
	Shear behaviour of SFRC
	Crack development in SFRC
	Finite Element Method
	Material Model Formulation
	Plasticity Model for Concrete Crushing
	Rankine-Fracturing model for Concrete Cracking
	Combination of Plasticity and Fracture Model
	Bond slip
	FIB Model Code
	Bigaj 1999



	Crack Width Calculations
	EN 1992-1-1:2018
	fib Model Code 2010 / NB38
	Comparison of crack-width calculations from FIB MC 2010, EN 1992, and NB38

	Shear Capacity Calculations
	EN 1992-1-1:2018
	Members not requiring design shear reinforcement
	Members requiring design shear reinforcement

	fib Model Code 2010
	Beams without shear reinforcement
	Beams with shear and longitudinal reinforcement

	NB38
	Comparison of shear resistance calculations from FIB MC 2010, EN 1992, and NB38

	Finite Element Modeling
	Finite Element Model
	Geometry
	Geometry
	Boundary Conditions
	Loading
	Meshing

	Material Models
	Concrete
	Tension Function
	Compressive Function

	Reinforcement
	Steel plates

	Analysis and Results

	Conclusion and suggestions for further work
	Discussion and conclusions
	Suggestions for further work

	References
	Appendix Shear capacity calculations
	Appendix Crack Width calculations
	Appendix Iterative solution of steel stress in simply supported SFRC section subject to bending
	Appendix Calculation of the factor aFIB according to eq:shearcomparisonaabbr
	Appendix Calculation of the factor aNB according to eq:shearcomparisonENNB
	Appendix VRd results from EN, FIB, and NB38 for section shown in fig:shearbeam
	Appendix VRd results from EN, FIB, NB38, and FEM-analyses for section shown in fig:testsetup

