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BACKGROUND:Protein homeostasis or proteostasis under the conscious control of a

network of proteins including chaperones, transporters, ubiquitin-dependent proteasome

control the proper expression, folding, translocation and clearance.This is necessary

to keep an organism’s health and and proteome in the functional state. Therefore, a

derangement could possibly lead to aggregation or fibrilization of these proteins which is

manifested in most of neuropathies. OBJECTIVES: Our objective was to determine

the possible factors that could influence the accumulation of α-synuclein in Arabidopsis

thaliana plant. METHODS: Three different Arabidopsis thaliana plant (Wild-type(WT)

and 2 mutants - ISUSN5 and E46K12) were used for the study. Two sampling methods

were used. In sampling method 1, 0.1 g of each of young and old leaves were harvested

from the different plants after 4 months. Extracts were prepared from each of them to

determine proteasome activity. In sampling method 2, the mutant plants, ISUSN5 and

E46K12 were sectioned or divided into 4 quarter. Each quarter was harvested at an

interval of 4 weeks within the 4 months period. Each quarter represented the different

ages of the plants. Unlike the mutant plants, the whole plant was harvested at the first,

second, third and fourth month. RESULTS: The average Relative Fluorescent Unit

(RFU) measurement for young were and old leaves for the WT, ISUSN5 and E46K12

were 43568.29, 37182, 96420 respectively for the young leaves and 33982.41, 24145.43

and 159108.15 respectively for sampling method 1. In the second sampling method,

the RFU measurements for the WT, ISUSN5 and E46K12 were 17981.05, 35052.42

and 18474.20 respectively. CONCLUSION: RFU measurements were higher in the

young leaves than in the old leaves in the WT and ISUSN5 for sampling method 1. In

sampling method 2, the average RFU measurement as a function of the proteasome for

the first, second, third and fourth month were 4266.53, 10426.14, 26185.33 and 30146.20

respectively. The average RFU measurements obtained for the ISUSN5 mutant plants

were 33650.30, 18455.63, 31502.64 and 29204.34 respectively. E46K12 mutant plant

also had the following RFU measurements; 13266.84, 26824, 13600.38 and 20204.88

respectively. Therefore, sampling method 2 did provided some few evidence to support

the hypohesis that ageing is a contributing factor in α - synuclein aggregation unlike the

sampling method 1.

Keywords: Proteostasis, chaperones, proteome, α − synuclein, Relative fluorescent

unit, proteosome
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Chapter 1

Introduction

1.1 Introduction

Cells’ health and longevity of an organism is hugely dependent on the functionsl state

of its proteome - the complete set of proteins in an organism [10]. The ability to control

the amount, binding interaction, conformation and location of the constituent proteins

within the proteome is known as protein homeostasis or protestasis. This is achieved

by adjusting to the inherent biology of the cell usually through transcriptional and

translational alterations [11]. Proper expression, folding, translocation and clearance is

under the influence of effective homesostasis through a network made up of molecular

chaperones, transporters,ubiquitin-dependent proteasome and autophagic activities [10].

Aggregation into highly organised and stable fibrillar or amyloid structures is a common

feature possessed by most proteins. The demand for proteins to fold into specific three

- dimensional (3D) conformational following translation in the ribosome is critical since

regulation and control of necessary cellular task is under their control to keep cellular

balance [12].

Parkinson’s disease (PD) is a progressive movement disorder and the second neurological

disorder following Alzheimer’s disease (AD). In a monograph “An Essay on the shaking

Palsy” in 1817 by James Parkinson, he explained the clinical features [13–15] using 6

subjects. Ageing is touted to be the major risk factor [16–18] for developing PD. Little

knowledge has been exploited to comprehend the role of age in the pathogenesis of PD

despite its certainty as a contributing factor[19]. The only explanation underlying this

is the susceptibility of the dopaminergic neuron to toxic compounds owing to reduced

or null normal cellular function and biochemical processes[20]. Neurological and clini-

cal manifestation include severe motor symptoms and postural imbalance, slowness of

movement, rigidity and uncontrollable tremor. PD affects at least 4 million people and

1
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hence a debilitating neurological disorder[21]. Moreover, the average age of onset of PD

is 55. The rate of incidence increases as one ages[14]. According to report, there is

about 95% cases of sporadic PD, that is, there is no genetic linkage. The remaining 5%

of PD cases owing to inheritance[14]. Clinical symptoms of PD get worse over time[14].

Before the introduction of Levodopa as a therapeutic intervention, mortality rates was

thrice as much as normal individuals with the same matching age[14]. Prevalence rate

reported worldwide ranges between 31- 347 per 100000[22]. Prevalence rate (1.7%) in

China stands to be the lowest worldwide[23]. As a major neurotransmitter in the central

nervous system (CNS), dopamine’s neural dysfunction is touted to be a primary cause

of PD[24]. Loss of nerve cells as a result of degeneration of dopaminergic neurons in the

substantia nigra (a portion of the midbrain), locus ceruleus, nucleus basalis, hypothala-

mus, cerebral cortex, cranial nerve motor nuclei, central and peripheral divisions of the

autonomic nervous system is typical pathological characteristic of PD[13, 25, 26]. The

pathological feature of PD is the accumulation of aggregates or inclusions called alpha

synuclein contained in Lewy bodies in the cytoplasm. Alpha–synuclein predominates the

Lewy bodies[26]. Alzheimer’s disease and dementia are also disorders associated with

Lewy pathologies. Impaired mitochondria function, oxidative stress and excitotoxicity

are thought to play a role in nigra degeneration, yet they remain not demystified[27].

Table 1.1: Proteins associated with some neurodegenerative diseases

Gene / protein Role

APP Yields Amyloid beta (Aβ), the main composition of senile plaques.

PSI and PS2 Forms part of γ-secretase. It cleaves APP giving rise to Aβ.

α - synuclein A major paert of lewy bodies.

Parkin Has ubiquitin E3 ligase activity.

DJ - 1 Shields the cell from death induced by oxidative stress.

PINK1 protective activity against cell death.

LRRK2 A kinase with an unknown function.

HTRA2 Breakdown proteins and also degrades inhibitors of apoptosis proteins.

SOD1 Detoxifies superoxide by converting it into hydrogen peroxide.

Huntingtin Disease-associated mutations yields polyglutamine repeats.

Genetic polymorphisms associated with the metabolism of dopamine together with other

compounds related in function, influence the susceptibility to PD[28]. Methylation by

Catechol-O-methyltransferase (COMT) inactivates neurotransmitters and toxic catechol

such as DOPA – immediate precursor of dopamine[28]. Dopamine metabolism is pri-

marily regulated by an enzyme known as monoamine oxidase B (MAOB). A decline in

COMT activity can lead to an elevated conversion of dopamine to neuromelanin and

consequently result in the generation of cytotoxic radicals that contributes to the degen-

eration of neurons[28]. Degeneration of dopaminergic system in PD can be prevented

if the activity of MAOB is inhibited[29].Smoking as a lifestyle activity has a beneficial
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effect against PD since it reduces the activity of MAOB[30]. Based on the pharmaco-

logical profiles, there are five dopamine receptors. This is further grouped into two: D-1

like which comprises DRD1 and DRD5 and D2- like which is made up of DRD2, DRD3

and DRD4)[28]. DRD2 and DRD4 are the two among the rest that control the signaling

effect and regulate nigrostriatal neurons and motor activity[31]. An individual is predis-

posed to PD as a result of genetic variation of these proteins that regulate dopaminergic

neurotransmission[28].

Neuronal function is mitochondria-dependent taking into accounts, the biochemical,

physiological and morphological features of the mitochondria. The mitochondria func-

tions and respond quickly to cellular activities that require energy and hence normalizing

fluctuations in bioenergetics. Intrinsic and extrinsic factors expose neurons to stress and

hence require a more regulated system by the mitochondria. Therefore any compromise

on mitochondrial function can lead to neuronal degeneration and dysfunction[3].



Chapter 2

Aim of the thesis

In this thesis, different strains of Arabidopsis thaliana plant was used. The aim of the

thesis was to determine the factors that could promote of influence the accumulation of

α-synuclein using Arabidopsis thalianaas the model plant

Arabidopsis thaliana plant was used for this study not only owing to the merits it has

over other plant models which includes its small size, short generation time, small nuclear

genome and large number of offsprings [32] but also permits the use of proteomics as a

post-genomic tool [33]. In addition, the mitochondria and the chloroplast are the most

predominant organelles that have attracted much studies at the sub-proteomic level [33].

It was thought that the expression of the various forms of the α-synuclein mutants could

affect their rate of accumulation. The rate of accumulation could have a cytotoxic effect

or affect downstream processes on other cells or tissues which might impair cellular

function.

Confocal microscopy technique was used to observe the physical changes of the mito-

chondrial and the accumulutive effect of the labelled α-synuclein over-time. Lastly, the

proteasome activity was measured to compare functional state of the different Arabidop-

sis thaliana plants at different plant stages.

4



Chapter 3

Background theory

3.1 ETIOLOGY AND PATHOGENESIS OF PARKINSON’S

DISEASE

Attention has been drawn to environmental and genetic factor in the development of

PD. The contribution to the initiation of PD could be a function of both or either

factors[5, 27, 34], although there is still an existing debate. PD remains as a sporadic

neurogenerative disease with unknown pathogenesis despite the times and years scien-

tists have invested to unravel this mystery underlying its development and hence under-

standing the complication and relative selective degeneration of dopaminergic neurons.

Cellular, molecular and organism studies has shown that exposure to the several toxins

and agrochemicals may have an enormous effect on the pathogenesis of PD. Genetic

contributions remain indispensable since some disease-related genes have been identified

therefore making PD a multifactorial neurodegenerative disease[34]. Several monogenic

hereditary forms of PD, although rare, appears to have early onset. Dominant and reces-

sive trend of inheritance have been shown[5]. Intake of caffeine and Cigarette smoking

appear to reduce the risk of PD and hence gives an important clue to the development of

PD. The role of anti-inflammatories, exercise, antilipidaemics and calcium antagonists

acting as antihypertensives in reducing PD remains ambiguous[20, 35, 36].

3.2 OXIDATIVE STRESS AND PD

Oxidative stress is said to occur when there is an imbalance between the generation and

clearance of reactive oxygen species (ROS), that is, an unregulated production of ROS.

These include nitric oxide,superoxide, hydrogen peroxide and hydroxyl radicals [2].An

5
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elevatated ratio between high oxygen consumption and low antioxidant levels resulting

in tissues regenerating at a lower pace in the brain, subject these tisses to the damaging

effect of ROS[2].

Among the many factors that have been suggested to be involved in the pathogenesis

of PD is oxidative stress that initiates from the glial cells which has been backed by

postmortem studies and further investigations explaining the ability of oxidative stress

and oxidizing toxins to cause the degeneration of nigral cells[37]. Oxidative stress indeed

seems to be involved in the cascade of biochemical changes that bring about the death

of dopaminergic neurons[37].

Heroin addicts, following the accidental use of 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine

(MPTP)- synthetic analog of heroin, led to the discovery that, Parkinonism can be in-

duced in humans and non-human primates by MTPT[38]. MTPT confers an irreversible

and severe motor damage with features that are not different from those observed in

PD[1]. MAOB oxidizes MPTP to MPP+ (1-methyl-4-phenylpyridinium) in the central

nervous system (CNS)[39]. Dopamine transfer has high affinity for MPP+ and hence

take them up into the dopamine neurons[40]. Following their translocation via active

transport into the mitochindria, it inhibits the complex I by interfering with the mi-

chondrial respiration chain and consequently leading to the generation of superoxide

anions[41]. Superoxide anions react with nitric oxide (NO) to yield another oxidant

called peroxynitrite. Peroxinitrite has been implicated in several models of neurologic

and neurotoxic diseases[42]. Supporting this observation is the protective action of neu-

ronal NO synthase (nNOS) inhibitors that act against neurotoxicity against MPTP. Mice

which were mutated to lack the nNOS gene were aslo not predisposed to the neurotoxic

effect when compared to the wild-type[43–45].
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Figure 3.1: A model depicting cell-death of dopaminergic cells induced by MPTP.
MPP+ is transported via the high-affinity dopamine transporter (DAT) and gets con-
centrated in the mitochondrial of DA neurons thereby inhibiting Complex I. This leads
to the generation of supeoxide anion and consequently reacts with nitric oxide (NO)
to form peroxinitrite. The nitric oxide is generated by neuronal NO Synthase (NOS)
and inducible NOS. The result is a damage of intracellular proteins and DNA, causing
cell death. The effect of DNA damage is the activation of poly (ADP-ribose) poly-
merase (PARP). PARP depletes cells of high energy stores through a decline in NAD

and ATP[1].

3.2.1 MANIFESTATION OF OXIDATIVE STRESS

3.2.1.1 Lipid peroxidation

The presence of double bonds in lipids enhances the oxidative changes by oxidants.

Polyunsaturated fatty acids which include arachidonic and linoleic acids are mostly pre-

disposed to this oxidative effect of ROS[2]. In lipid peroxidation, there is an abstraction

of a proton from a C=C bond following an attack by ROS (usually radicals). This

generates highly reactive lipid peroxy radicals capable of initiating chain reactions that

attack other unsaturated fatty acids[2]. This often occurs within the side chain[46] and

consequently results in breakdown product formation such as acrolein,malondialdehyde

and 4-hydroxy-2,3-nonenal (HNE). An increased level of HNE and malondialdehyde have

been implicated in PD and ALS[47, 48] and Azheimer’s disease (AD)[49, 50] brain tissue.
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3.2.1.2 Protein oxidation

The backbone and side chains of most proteins can be brought under the effect of oxi-

dation by ROS with the side chain oxidation being most evident and hence investigated

into when protein oxidation by ROS is suspected[46]. The oxidative action of these ROS

produces several products which consequently react with the amino acid side chain to

yield cabonyls.

3.2.1.3 DNA oxidation

The formation of DNA-protein cross-links, modification and release of purine and pyrim-

idine bases and break-of strands are some of the common evidence of ROS attack on

nucleic acids[46]. A major class of DNA lesions induced by ROS is the oxidation of bases.

Hydroxylated guanine is assayed and measured as 8-hydroxy-2-deoxyguanosine[46].

3.2.2 Metabolism of dopamine and oxidative stress

Neuromelanins present in the neurons within the substantiah nigra are known to ac-

cumulate with age. They function to accumulate metal ions, most especially iron[51].

As a neurotransmitter, dopamine also acts as a potent metal chelator and reductant[2].

It coordinates the cupric and ferric ions, thereby reducing their oxidation states and

eventually trigger the generation of hydrogen peroxide. This provides the condition for

Fenton reaction[2]. Synthetic melanins can be generated by incubating dopamine with

curpric and ferric ions[52]. There has been a suggestion that supports the protective ac-

tion of melanin against dopamine-induced redox associated toxicity[53, 54]. Depending

on the metallic (iron) load - at low or high concentrations, neuromelanin can act as an

antioxidant or a pro-oxidant respectively[55]. In addition to the antioxidant property,

neuromelanins can also function as iron-storage molecules[2]. According to Double et al.,

the presence of both high and low - affinity Fe3+ binding sites in neuromelanin obtained

from human substantia nigra, has shown that the bound- iron has redox activity[56].

Evidence to show that α-synuclein plays a part in the activity of dopamine regulation

is emerging[2]. The familiar form of PD resulting from A53T mutation of α-synuclein

gene is known to disrupt vesicular storage of dopamine, leading to an age-related con-

dition where there is an increasing concentration of dopamine in the cytoplasm and

subsequently generate ROS after associating with iron[57, 58].
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Also, according to studies, the aggregation of α-synuclein results from the direct associa-

tion of α-synuclein with metal ions[59–61]. However, methionine, when oxidized prevent

the aggregation of α-synuclein[62].

Figure 3.2: Regulation of dopamine (DA) activity and ROS generation. DA has a null
redox activity when bound to vesicles and functons in neuronal signalling. It coordinates
with with Fe when released into the cytoplasm to generate ROS and neuromelanin
(NM). A transport of DA into the cytoplasm is favoured when dopamine release is not
regulated by α-synuclein and hence results in the generation of more ROS and NM [2].

3.3 ENVIRONMENTAL AND GENETIC RISK FACTORS

ASSOCIATED WITH PARKINSON’S DISEASE

A general potential influence on the incidence of PD ranges from rural settlement, in-

dustrialization, plant-derived toxins, well-water,viral and bacterial infections to a more

specific , as occurrence is limited to carbon monoxide, carbon sulfide and organic sol-

vents exposure[63]. Studies into pesticides as another potent agent that influence PD

occurrence has been of interest recently. The only setback is the lack of specificity of

which pesticide that might play a key role in PD incidence in individuals[64]. In ro-

dents, rotenone and paraquat are the leading agro-chemicals that has been identified

and known to cause nigra dopaminergic cell death in rodents[65, 66].
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Figure 3.3: The cause of PD has been linked to both environmental and genetic
factors including mutations. Either sporadic of familial forms of PD has a gross effect
on the mitochondrial which is involved in many biochemical processes such as Complex

I activity, quality control, dynamics and transport,etc. [3].

Rotenone is used to regulate uncontrollable fish population. It occurs naturally al-

though highly toxic. Independent of transporters, Its lipophilicity makes it possi-

ble to cross membranes, blood brain barrier (BBB) and consequently accumulate in

mitochondria[67]. Rotenone masks oxidative phosphorylation by blocking complex I in

the electron-transport chain (ETC) which occurs in the mitochondria[68]. This inhibi-

tion consequently bring about loss of dopaminergic neurons in the substantia nigra and

changes in behavior associated with PD in humans[69].

Figure 3.4: Structure of rotenone

Clinical and epidemiology studies have shown that herbicides and pesticides are potent

risk factors for PD[70–73]. Paraquat (1,1’ – dimethyl-4,4’ -bi-pyridinium) is a herbicide

that bears structural resemblance to MPP+. Paraquat is known to induce oxidative

stress[74]. MPP+ is generated as active toxic product of MPTP metaolism[70, 72, 75,

76] and it is known to be toxic to neurons and hence purported as a risk factor for PD[77].
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Much interest was given into investigating the neurotoxicity of MPTP by studying its

mechanism of action in relation to the pathogenesis of PD[78, 79]. Parkinsonism induced

by MPTP is not progressive, has no Lewy body formation and finally no changes in the

affected area of the brains occurs as in normal Parkinsonism[20].

Figure 3.5: Structure of Paraquat (a) and MPTP (b)

Recent studies has focused on the identification of single genes (α-synuclein,DJ-1, PARKIN,

PINK1, Ubiquitin C-terminal hydrolase isozyme L1 and nuclear-related factor 1) whose

mutations could be responsible for the familiar forms of PD as this provides a better un-

derstanding into the molecular machinery underlying this progressive-neuropathological

disease[34, 69, 80].

3.4 GENE IMPLICATIONS AND PARKINSON’S DIS-

EASE

PARK1 is the first PD-gene that encodes alpha-synuclein. The synuclein family includes

(alpha,beta, and gamma – synuclein)[81, 82]. In humans, α,β and γ have been identified

in chromosomes 4q21, sq35[83] and 10q23[84] respectively. Although only α – synuclein

is implicated in the diseased condition, yet has similar sequence as β and γ [5].

PARK2 or α-synnuclein gene

Figure 3.6: A multiple alignment sequence of α, β and γ - synuclein.
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Figure 3.7: A phylogenetic tree of α - synuclein of some closely related organisms.

3.4.1 Stucture of alpha-synuclein in relation to mutation and function

Alpha synuclein is small pre-synaptic protein composed of 140 residues located widely in

the brain within the hippocampus, olfactory bulb, thalamus, neocortex and cerebellum[82,

85]. The function of alpha-synuclein is undefined yet implicated in neurodegenerative

associated diseases which includes PD and Alzheimer’s disease. These are collectively

known as synucleinopathies[86]. Its structure is defined by an N-terminal sequence

which is fractioned into 11-mer repeats. From sequence 1-95 bears a consensus sequence

of KTKGEV as shown in figure 3.6. Like apolipoproteins, with just a turn of 3, forms

an alpha helix described as amphipathic[87]. Apolipoproteins play role in associating

α-synuclein with lipid membranes[88, 89] . The N-terminal is known to contain the

Nascent polypeptide-Associated Complex (NAC) domain which plays crucial role in α-

synuclein aggregation and sensing lipid properties[90]. This domain lies between residue
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60-95[87].In addition, synucleinopathies resulting from single residue mutation within

the peptide occurs in the N-terminal. That is, A30P, E46K, H50Q, G51D, A53E, and

A53T[91–94]. The high acidity and the unstructured nature of the C-terminus of al-

pha - synuclein[89] makes a target of most post-translational modifications[95]. The

C-terminus interacts with proteins, polycation, ion and binding to polyamines. It also

functions to protect alpha-synuclein from aggregation[96, 97]. There is 40% structural

homology of the N-terminal of alpha synuclein to chaperone 14-3-3[98]. Its structural

homology to 14-3-3, a chaperone protein following binding functions to block protein

aggregation induced thermally[99, 100]. Therefore, any mutation associated with the

PARK1 gene may facilitate the oligomerization or aggregation[101, 102]. In Lewy bod-

ies(LB), chaperone 14-3-3 is involved in development of neurons and control of cell

growth[103]. This prevents apoptosis by inhibiting BAD, a proapoptotic member of the

Bcl–2 family. Like chapereone 14-3-3, alpha synuclein also binds to these proteins[98].

In PD brain, the formation of a 54-83kDa protein complex (selectively in the substan-

tia nigra is due to the interaction between alpha synuclein and chaperone 14-3-3[104]).

The interaction sequester chaperone 14-3-3 and consequently lead to a decline in the

total amount of chaperone 14-3-3 available to combat apoptosis making the cells more

predisposed to stress and other injury[104].

Figure 3.8: A multiple alignment sequence showing the first 140 amino acid sequence
of chaperone 14-3-3 and α-synuclein.

Independently, alpha-synuclein acts as a chaperone to support cells to regulate the ef-

fect of stress[98]. However, dividing cells experience the toxic effect of overexpressed

wild-type alpha- synuclein[98]. Toxicity effect is worse in overexpressed mutant alpha-

synuclein owing to the inhibition of PKC and interaction of alpha -synuclein with pro-

teins involved in signal transduction including ERK, BAD [98]. There is a divergent

resultant effect of either alpha -synuclein binding or chaperone 14-3-3 binding. Un-

like chaperone 14-3-3, the effect of alpha-synuclein has an inhibiting effect on tyrosine

hydroxylase(TH)- the rate limiting enzyme in catecholamine synthesis[105].

3.4.2 Physiological roles of alpha-synuclein

Phospholipase D2 catalyzes the conversion of phosphatidylcholine to phosphatidic acid

(PA) in the bovine brain. This triggers the production of secretory vesicles[106]. This

enzyme is inhibited by alpha and beta – synuclein[105]. Alpha- synuclein is capable of

binding to vesicles expressing high levels PA[107]. PA therefore regulates the trafficking
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through vesicle budding or turnover[108]. There was an enhanced release of dopamine

(DA) at nigrostriatal terminals following paired electric stimuli when alpha- synuclein

were knocked out of mice. This observation suggests that alpha-synuclein represses

dopaminergic neuro-release[109].

3.4.3 Synaptic activity of alpha-synuclein

Pre-synaptic localization and its association with curved membranes and proteins re-

siding at the synapse highlights a more regulatory function of alpha-synuclein at the

synapse including synaptic plasticity, vesicular trafficking, learning, DA metabolism and

the release of neurotransmitters[87].

Figure 3.9: Synaptic roles of α - synuclein include membrane remodelling, modula-
tion of the DAT - a dopamine transporter, vesicular monoamine transporter VMAT2,

clustering of synaptic vesicles, etc [4].

3.4.4 Effect of alpha – synuclein on dopamine metabolism and dopamin-

ergic neurons

Dopaminergic neurons remain the most noted neurons that are implicated in PD. Follow-

ing its loss in the substantia nigra, there is lack or inadequate dopamine transmission and

signaling[110–112]. The mechanism that explains the susceptibility of dopaminergic neu-

rons following alpha -synuclein pathology is still unknown[87]. Interaction with serotonin

transporter DAT has been the claim to explain that alpha-synuclein regulates the home-

ostasis of monoamines in synapses[113–115], although its mechanism of action is still

controversial[116, 117]. Covalent modificstion either activates or renders tyrosine hydro-

sylase inactive through phosphorylation and dephosphorylation respectively[113, 114].

In understanding the role of α - synuclein and its dysfunction, the mechanism underlying

the susceptibility of dopaminergic neurons to pathologies associated with α-synuclein is
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still not comprehended. At the synapses, regulation of monoamines homeostasis through

the interaction with the serotonin transporter is proposed to be function of α - synuclein

[116]. Alpha-synuclein binds to and regulates the activity of DAT- the transporter of

dopamine[113–115] although its mode of action remains demystified.

The expression and activity of tyrosine hydroxylase is inhibited by α - synuclein[118–

122]. Alpha - synuclein achieves this by getting the phosphorylated state reduced, while

the inactive dephosphorylated state becomes predominant through stabilization[119,

123–125]. A knockdown of α - synuclein is known to affect VMAT2- a vesicular dopamine

transporter per vesicle by elevating the density of VMAT2 molecules.VMAT2 activity is

impaired when α - synuclein is overexpressed, which eventually distorts dopamine home-

ostasis leading to an elevatd cytosolic dopamine concentration[126]. It is reported that,

there is a decline in yield of dopamine uptake when α - synuclein is absent in the dor-

sal striatum [127]. This is followed by further decline in dopamine transporter,tyrosine

hydrosylase, tyrosine hydrosylase-positive fibres in the striatum and more complicat-

edly, a decrease in the amount dopaminergic neurons in the substantia nigra[128–130].

Thus,dopaminergic neurons are dependent on α - synuclein function and impaired when

there is loss of function α - synuclein. Neuronal function of α - synuclein is more profound

when present in cells other than dopaminergic neurons[87].
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Figure 3.10: A hypothetical schematic representation of the leading pathways that
result in the aggregation of α - synuclein. Loss of enzymatic activity and chaperone
14-3-3 lead to protein aggregation owing to unfloding events and consequently leading
to the formation of Lewy bodies. Overexpression of α - synuclein also tend to clog the
proteasom, that is when the rate of formation exceeds the rate of clearance leading to

inhibition of the proteasome [5].

3.5 FUNCTIONS OF PARKIN

Subjecting parkin to different kinds of mutations including duplication or triplication

of exons, deletion of single or multiple exons, point mutations, loss of a copy of a gene

leads to an autosomal recessive (AR) form PD and hence the most common form of

AR-PD[131–134]. Parkin protein constitute 465 amino acid residues. It is a RING-

type, one of the two distinct forms of ubiquitin E3 ligase and functions to transfer

ubiquitin directly from ubiquitin-activating enzyme (E2) to the substrate and hence

E3 ubiquitin ligase activity [8, 134]. SH2 -like domain links the N-terminal to the C-

terminal which are made up of ubiquitin-like domain and two RING finger domains

respectively [131]. Parkin functions to render protein specificity prior to degradation

in the ubiquitin proteasome system (UPS). Mono and polyubiquitination of Lysine-48

and Lysine-63 residues is carried out by parkin[132]. Receptor turn over under certain

situations is achieved by parkin through its monoubiquitinating activity[135]. Protein
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degradation and protein inclusions result from parkin-mediated Lysine-48 and Lysine-63

linkages respectively[136, 137]. The function and the type of ubiquitin modification is

hugely dependent on the cellular context and machinery of ubiquitin that is used by

parkin[132].

With its multifunction E3-ligase activity, parkin can perform several ubiquitin asso-

ciations and enhance cellular role. In vitro studies suggest that parkin is primarily

involved in mono-ubiquitination processes[137, 138]. Polyubiquitination is achieved

when chaperone-dependent ubiquitin ligase, COOH terminus of heat shock protein 70-

interacting protein (CHIP) is added [137, 138].

3.6 PROTEIN DEGRADATION

About more than 30 years ago, there was a demonstration that illustrated the ability of

cells to breakdown abnormally folded proteins[139]. It was learnt that treatments that

hampered the normal folding of proteins necessitated their hydrolysis and clearance[6].

In view of this findings, it was established that the structure of proteins does not deter-

mine only its catalytic features but also its stability in the cell[140]. However, the exact

conformational changes in proteins that trigger the degradation machinery of the cell

and consequent hydrolysis remain unclear[6].

Protein turn-over explains the continual removal of both intracellular and extracellular

protein by breaking them down into their basic building block[4]. Protein degradation

plays a crucial role in cellular function and survival. To prevent the toxic effect of ag-

gregation of proteins following misfolding or damage, cells need to clear them[9]. Most

neurodegenerative diseases are characterized by protein folding, deposition and aggre-

gation and hence collectively called proteinopathies or protein formation disorders[141].

The multiple proteolytic system in mammals that undertake the continual degradation

process ensure a high selectivity and thus prevent the unwanted degradation of the

constituenyts of the cell[4]. There should be a overall balance in protein breakdown

and synthesis. This is because a marginal increase or decrease in the two activities,

uncontrolled can lead to a substantial loss of mass in the whole organism[4].

3.6.1 Importance of protein degradation

The entire protein pool is brought under strict regulation which ensures that a pro-

tein is synthesized, folded and localized[11, 142]. When the quality of cellular protein

is compromised, homeostasis and function is impaired[143]. Generically, protein com-

formational disorders including pathologies such as myopathies, metabolic disorders,
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neurodegenerative disorders and systemic disorders type of amyloidosis are as a conse-

quences of alterations in different elements of the protein quality control system[144, 145].

Proteotoxicity describes the toxic effect of altered proteins in the cell. Complex cellular

systems that function to conserve protein homeostasis are called proteostasis network[11]

including chaperones and their regulators which are involved in de novo folding or refold-

ing and the ubiquitin-proteasome and autophagy system which carries out irreversible

degradation and clearance roles[7]. Within the cell are surveillance systems that detect

altered proteins and execute their folding, elimination or repair. The elimination process

involves the degradation by proteases. The type of protein, the location within the cell

and the defective step in protein’s quality control process define the magnitude of effect

of poor quality control[143]. The accumulation of altered proteins is due the increased

formation of toxic protein products, defunct surveillance system that monitors,detect

and clear altered proteins. However, it is suggested that, with age, the major contribu-

tor to the formation and accumulation of high levels of abnormal or damaged proteins

is reactive oxygen species(ROS) as proposed as the main element to the aging process

as indicated by the free radical theory of aging[143, 146].

The degradation of cellular proteins is highly selective and regulated[147] so as to achieve

proteostasis[4]. Proteins that are continually degraded are replaced by newly synthesized

ones. proteins have different half-lives and hence the time rate at which the different

proteins are degraded varies ranging from minutes to days[6]. The clearance of critical

regulatory proteins including enzymes, inhibitors and transcripion factors is necessary

for the control of metabolism and growth in cells. Protein degradation is irreversible ,

unlike other regulatory mechanisms[4].

Proteins adapt to new physiological conditions and changes in cell composition following

their rapid degradation. The degradation of proteins in all cell types enables a quality

control mechanism that specifically clears damaged or abnormal proteins as a conse-

quence of missense or nonsense mutation, oxidation by reactive oxygen species (ROS),

denaturation and biosynthetic errors[4].

For example, during starvation or in a catabolic-diseased state when caloric intake is

low, the hydrolysis of proteins in the skeletal into their constituent amino acids becomes

necessary so as to provide precursors essential for gluconeogenesis and thus yield en-

ergy from non-sugar sources[148]. In the immune system, protein clearance is necessary

for the continual monitoring for abnormal proteins found within the extracellular and

intracellularly[4]. Protein fragments or peptides that are usually produced during break-

down in the proteasome is taken up into the endoplasmic reticulum. These molecules are

carried on cell surfaces adhered to major histocompactibilty complex (MHC)[149].Small,

non-native peptides, located on the surfaces of cells, presented by MHC are continually
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degraded and removed by circulating lymphocytes. In the same way, foreign bodies or

antigens presented by MHC II molecules are taken up by antibodies and digested in the

lysosomal-endosomal compartment[4].

Figure 3.11: A diagram showing the life-phase of protein development from tran-
scription through/involving an interplay of scaffolding proteins until it reaches the final

degradative stage in the proteasome [6]

.

3.7 MOLECULAR CHAPERONES AS A COMPONENT

OF PROTEIN QUALITY CONTROL

Proteins are closely invloved in almost every biological process and hence the most

versatile and complex macromolecule[7]. More than 10000 proteins are expressed and

synthesized in the ribosome as chains of amino acids linked by peptide bonds. These

chains need to fold into their native three-dimensional (3D) active state and hence to

maintain the proteome integrity[150, 151]. The maintenance of the 3D conformation

and flexibility of proteins is critical to their function. With a little margin, proteins are

thermodynamically stable in their physiological state.

Chaperones also known as heat shock proteins are stress factors that associates, stabilizes

or support other protein to achieve a stable native conformation. A typical feature of

molecular chaperones is that they do not form part of the final structure[152, 153]. In

response to high temperatures and other stress conditions, they are induced[7]. They

are highly conserved molecules[143]. In eukaryotes, a fraction of 20-30 percent of the

total proteins in mammals are inherently present in its folded-native state. Interaction

with binding partners make them assume a folded conformation[154]. Otherwise, these

metastable proteins such as alpha-synuclein and tau, by forming fibrillar aggreregates

can give rise to parkinson’s disease and dementia respectively[7]. Depending on the

cellular location, molecular chaperones can be described as cytosolic or organelle-specific.
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3.7.1 Cytosolic chaperones

Folding and unfolding events that are situated in the cytosol is modulated by cytosolic

chaperones. To prevent clogging in the lumen, proteins that are synthesized in the

polysomes or transported from other compartments in the cytosol are modulated by

cytosolic chaperones[155–157]. Most the chaperones located in the cytosol are members

of Heat-shock Protein (Hsp)40, Hsp60, Hsp90 family. They function co-operatively in

their surveillance activity[143]. In a situation where the spontaneous folding of a de novo

synthesized protein fails, Hsp70/Hsp40 may come into play accordingly and if this also

fails in this regard, they are passed on to Hsp90/HOP stabilizing chaperone complex

or Hsp60 chaperonin chamber[158]. sHSP and Hsp70 chaperones are the most readily

deployed chaperones in response to cellular stress and thus being the most abundant

among the chaperone family[143]. They bear 50% amino acid identity among other

species and hence highly conserved. Cell resistance to heat shock is conferred by their

overexpression and thus making whole organisms including flies tolerant[159, 160].

3.7.2 Organelle-specific chaperones

Folding events that are localised within organelles in the cell may also be essential

and dedicated to maintain proteostasis [161–163]. Protein folding may be required for

de novo synthesized proteins, like in the cytosol. Matured proteins that are already

synthesized in the cytosol may also require folding after their transport across the mito-

chondrial membrane into the mitochondria through translocation complexes[143]. The

endoplasmic reticulum (ER) is marked as a key organelle chaperones responsible for

protein quality control and maintenance of protein homeostasis[143]. The high content

of chaperones within the lumen of ER is due to their direct involvement in the synthesis

of proteins. They are immediately brought into action once they sense that a protein is

not folded and hence facilitate the folding process[143]. Like the cytosolic chaperones,

the promiscuity of some ER chaperones enables them to act on a wide range of proteins

by recognizing hydrophobic patches or oligomeric chains such as BiP and calnexin/-

calreticulin respectivrely citehetz2009,scheper2009,todd2008. Some chaperones are also

limited to specific substrate in function. A classical example is HSP47 which acts on

collagen[143].

Unfolding protein response (UPR) describes the situation whereby the level of unfolding

increases in the ER making the ER homeostasis get compromised. The presence of a

complex network of proteins together with other factors in the ER upregulate ER chap-

erones synthesis. In effect of UPR, the amount of ER chaperones elevates and translation

of proteins gets reduced to minimize ER clogging[164]. Like cytosolic proteins, organelle
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proteins that escape folding are marked for degradation which occurs in the cytosol

following retrotranslocation from the organelle’s lumen. There is an intact relation-

ship between the UPR and the proteosome, described as the ER-associated degradation

(ERAD). Prior to protein degradation in the proteosome, proteins that skipped folding,

they are tagged with ubiquitin[165, 166].

Clearance or proteolysis of the unfolded proteins in the ER is not only limited to the

proteosome but also the lysosome. Unlike in the ER where there is a retrotranlocation

of the destined unfolded proteins from the ER into the cytosol, the degradation of the

proteins by the lysosome is achieved by engulfing the whole ER[167].

3.8 MAJOR CLASSES OF CHAPERONES

Based on their sizes, molecular chaperones can be classified as HSP90, HSP40, HSP70,

HSP60 (chaperonins) and small heat shock proteins (sHP)characterized by a molecular

weight of 12-43 kDa[168, 169].

3.8.1 HSP70

They are main the players in the folding process and maintenance of homeostasis. The

toxic effect of protein aggregation reduces incredibly by increasing the amount of HSP70

in disease models[170]. The HSP70 reaction cycle is ATP-dependent. Regulation is

under the control of HSP40 chaperones family and nucleotide-exchange factors[171, 172].

The linkage between the chaperone function, UPS and autophagy necessary for the

degradation of misfolded proteins is coordinated by some of these factors[173]. Allosteric

interaction mediates the binding and release by HSP70 chaperone. This event occurs by

associating a conserved amino-terminal ATPase domain with a carboxy-terminal peptide

binding domain.[171]. The carboxy-terminal peptide binding domain consists of an α

-helical lid segment and a β sandwich subdomain[171].

The affinity state of the peptide in an ATP-dependent manner is regulated by the con-

formational change in the β sandwich domain and the α-helical lid[171]. In the presence

of a bound ATP, the α-helical lid adopts an open conformation. The result is a high on

rate and off rates for the peptide. Contrarily, when ADP is bound following the hydrol-

ysis of ATP, leads to a lid closure and therby stabilizing peptide binding (low on rates

and off rates for the peptide substrate. The hydrolysis of ATP to ADP is fascilitated by

HSP40[7]. Direct interaction of HSP40 and the unfolded proteins can assemble HSP70

to the protein substrate[172, 174]. A nucleotide-exchange factor binds to the HSP70
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ATPase domain and facilitates the exchange of ATP for ADP. This consequently results

in lid opening an d substrate release. The fast-folding substrate bury their hydrophobic

residues. Molecules that require a longer time to fold rebound to HSP70. This ensures

aggregation[7].Rebinding to HSP70 may perhaps kinetic barriers in the folding process,

thereby reducing folding time and bring about conformational remodelling[175].

After the HSP70 cycling process, proteins that skipped the accelerated folding event may

be transferred into the chaperonin cage - a specialized environment for folding. A clear

example includes actins and tubulins[156]. In dilute solution in vitro, these proteins are

known to be confronted with high energetic barriers in the folding process and hence

are not able to assume their native states spontaneously[7].

Figure 3.12: The different functional states of HSP70 depicting the role of ATP and
co-chaperone, HSP 40 in folding nascent or partially folded proteins into their native

state[7].

3.8.2 HSP90

In eukaryotes, telomere maintenance, apoptosis, mitotic signal transduction, cell-cycle

progression, innate immunity and targeted-protein degradation are among the many

signalling pathways are under the control of a proteostasis hub formed by HSP90[176].

Structural maturation and conformational regulation of many signal-transduction such

as steroid receptors and kinases are influenced by HSP90 downstream of HSP70[176,

177]. However, the machinery by which HSP90 and its cofactors mediate conformational

change is still not demystified[178].
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3.8.3 HSP60 (Chaperonins)

They widely enclose substrate protein of molecular size of about 60 kDa. Chaperonins

are grouped into two - group I and II. In eukaryotes and bacteria, group I chaperonins

are also called also known as HSP60 and GroEL respectively [7]. The more complex

group II chaperonins which include archael chaperonins(thermosomes) is made up of

octameric or nonameric rings [179]. These rings are composed of one, two or three

different subnunits. In bacteria, mitochondria and chloroplasts, there are 7-membered

rings of group I chaperonins that function to co-operate with HSP10[7] Extensive studies

on GroEl-GroES in E.coli has been carried out [153, 180]. More than 250 cytosolic

proteins with molecular weight between 20 and 50 kDA are known to have interactions

with GroEL [7]. However, structural and functional differences have been idenfified

between the two groups of chaperonins. The formation of a temporal complex with

HSP10 (co-chaperone) that enclosed the central cavity is the main closure mechanism in

group I chaperonins as opposed to the presence of an extra helix found at the terminal

of the helical domain that seals the central folding chamber in group II [181, 182].

The general idea to explain the intricate principle behind protein folding and encapsulat-

ing by GroEL and GroES has been defined. Here, three to four of the seven hydrophobic

sites on an open ring of GroEL captures by binding to non-native polypeptide[183]. ATP

and GroEs binds to GroEL ring and induces comformational changes. This subsequently

results in both the sequestration of the binding sites and creating an expanded closed

depression or cavity that trap the substrate polypeptide in the hydrophobic chamber for

polypetide folding[184].

Separation, unfolding and confinement (within the GroES-GroEL cavity where there is

acceleration of folding ) are the significant features governing the interaction between

non-native and GroES[185].

3.9 CELLULAR DEGRADATIVE PATHWAY

There are several protein degradative pathways in cells. The lysosome and the ubiquitin-

proteosome are the major degradative pathways present in cells. However, protein degra-

dation can also occur in the cytoplasm and nucleus[4].
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Figure 3.13: The various degradative pathways through which a substrate can be
degraded within cells [4].

3.9.1 Lysosomal pathway

The process of endocytosis take up hormones or plasma proteins and phagocytosed bac-

teria and consequently degraded in the lysosomes. Within the lysosome are acid-optimal

proteases that includes cathepsins B, H and D and other acid hydrolases[4]. An evolu-

tionarily conserved process - autophagy, strictly regulates lysosomal pathways that are

involved in the breakdown of cytoplasmic material and organelles[186, 187]. In response

to stress conditions such as viral infection, unfolded protein response and amino acid

starvation, autophagy is activated[188]. Macroautophagy (autophagy), microautophagy

and chaperone-mediated autophagy are the known autophagic routes depending on the

delivery route of the cytoplasmic material[188].

Macroautophagy is the most predominant route that sequesters the portion of the cyto-

plasm destined for degradation into its lytic compartment. This is achieved by wrapping

inside a two-walled organelle called autophagosome[189]. The autophagosome subse-

quently fuses with the lysosome. The content within the autophagosoes are degraded

and re-used[190].

3.9.2 Ubiquitin - Proteosome (UP) pathway

To degrade proteins, two distinctive processes are involved: protein signalling through

covalent attachment of multiple ubiquitin to proteins and the degradation of the mod-

ified protein and consequent release and utilization of ubiquitin molecules[191]. Pro-

teins that are committed as target for degradation often requires the attachment of
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multi-ubiquitin residues. Ubiquitin moieties are linked through their Lys48 residues.

The presence of escort factors also helps to deliver ubiquitin-tagged proteins into the

proteasome[192, 193] The role played by protein ubiquitination is important in many

cellular regulation processes in eukaryotes[147, 194]. Ubiquitin is a globular protein that

is highly conserved and it is made up of 78 amino acid residues[8]. Some proteins whose

levels are regulated or maintained constitutiely or in response to fluctuations in their

environment and hence, the covalent conjugaton of ubiquitin (ubiquitination or ubiqui-

tylation)to these proteins leading to degradation remain essential[8]. Ubiquitylation is

therfore seen as targeting sunstrates for breakdown in the proteasome, a multi-subnit

protease which is ATP dependent[8]. Ubiquitination is crucial in multitudinuous process

that encompasses organelle biogenesis, apoptosis, cell cycle progression, cellular differ-

entiation, protein transport, antigen processing, inflammation, DNA repair and stress

responses[8]. Like phosphorylation, most substrates through their linkage via lysine

residue associate with ubiquitin in a complex post-translational modification[195]. The

activity of ubiquitination can be enhanced or inhibited by phosphorylation, either by

modifying the destined substrate prior to ubiquitination or the enzymes involved in the

process of ubiquitination[8].

3.10 ACTIVATION OF UBIQUITIN AND SUBSTRATE

TAGGING

The multistep process of ubiquitylation involves three distinctive enzymes; Ubiquitin

-activating enzyme (E1). E1 forms a thiol-ester linkage with the C-terminal glycine of

ubiquitin. The activation process is ATP dependent[8]. Following activation, ubiquitin

is transferred from E1 in a reaction catalysed by Ubiquitin carrier protein or E2 or

ubiquitin-conjugating enzyme (UBC) to Uniquitin-protein ligase (E3) which is bound

to the substrate. There are two distinct E3 families; Homologous to -E6-AP carboxyl

terminus (HECT domain) which mediate the transfer of Ubi from E2 to E3 and finally to

substrate and RING FINGER which mediate the direct transfer of Ubi to the substrate

[9, 196, 197]. Following the conjugation of ubiquitin to the substrate, an isopeptide

linkage is formed between the activated C-terminal of glycine of Ubi and an ε-amino

group of a lysine residue of the substrate[191]. Conjugation between ubiquitin and

the N-terminal residues of lysine or cysteine residues has been reported but although

rare[198].

Seven lysine residues are present in ubiquitin and hence formation of polyubiquitin

chains can be formed through different linkages[194]. To generate signals neccesary
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for proteasome targeting, a chain consisting of four ubituitin residues in a Lys48 link-

age is required[199]. Substrates that are marked with ubiquitin through Lys11, Lys63

and other lysine residue linkage can be presented for proteasome degradation[200].

Monoubiquitination prepares a protein for proteasome degradation, although in less

cases, proteins marked with single ubiquitin is enough to serve as a target for proteasome-

mediated degradation[201–203]. Membrane trafficking is other known function of both

mono and polyubiquitination[204].

Figure 3.14: The delivery and activation pathway of ubiquitination [8].

3.11 THE DYNAMICS OF UBIQUITINATION

Ubiquitination is an important signal for proteasome degradation. However, ubiquitin,

once conjugated to a protein does not always results in the degrdation of the protein.

This is due to the play of ubiquitin dynamism[9]. Within the cells are numerous enzymes

that dissociates the chain of ubiquitin from their substrates. Some of these ubiquitin

enzymes are part or in association with the proteasome[205]. Rpn11, a 19S subunit,

present in yeast, by hydrolyzing the isopeptide bond between the lysine in the substrate

and the ubiquitin, gradually and progressively removes the ubiquitin tag[206, 207]. The

removal of ubiquitin from the destined substrate occurs when a substrate is fully ready for

degradation. The ubiquitin then escapes from the proteasome and hence, recycled[206,

207].

Inactivation of Rpn11 leads to protein degradation impairment[206, 207] suggesting that

the folding of substrates is inhibited following polyubitination[208]. Associated with the

proteasome are Ubp6 and Uch17 - de-ubiquitin enzymes that sequentially remove from

the distal ends by trimming the ubiquitin residues[209, 210]. The action of these afore-

mention enzymes can be seen as a timer. The proteasome begins to degrade the ubiquiti-

nated substrate after it binds whiles the ubiquitin consequently start to shrink until the
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tag is finally removed from the substrate[9]. There is an escape of the substrate if degra-

dation initiation fails. Longer ubiqutitin chains is aimed to decrease the susceptibility of

ubiquitinated substrates to de-ubiquitin enzymes and thus ensure that the substate stay

within the proteasome cavity for a relatively longer period of time[199, 210]. Another

function of these de-ubiquitination enzymes is to prevent clogging in the proteasome.

They remove ubiquitin from proteins that seem to retire in the proteasome, allowing

them to escape and hence prevent blockage and hence allow other destined proteins to

enter and be degraded within the proteasome[9].

Hul5, a ubiquitin ligase, is in association with the proteasome. By extending the ubiqui-

tin residues on a substrate, Hul5 counteracts the process of de-ubiquitination[211, 212].

This consequently prolongs the time at which a substrate stay in the proteasome with a

high propensity of being degraded[9]. This two opposing mechanisms on the substarte

functions to select substrates for the degradation in the proteasome[9].

3.12 PROTEASOME

The Proteasome is described as a large cylindrical protein. Its overall dimension for

length, maximum diameter and minimum diameter measures at 148 Å, 113 Åand 75

Årerspectively [213]. The proteasome comprises of at least 33 subunits with a molecular

weigtht of 2.5 MDa[214, 215].

The 26S proteasome is found in all living cells and it functions to degrade regulatory

proteins and degraded proteins. The 26S proteasome comprises a 20S core particle. The

20S proteasome forms the core and proteolytic chamber or unit[214] which is capped

or flanked on either one side or both sides by a 19S regulatory particle[214, 215]. The

lid and the base of the 19S regulatory particles are formed from at least 19 subunits.

The 19S regulatory particle possesses ATPases and provides a barrier or gate to the

degradative route. It also functions to recognise, unfold and transport substrate into

the 20S proteolytic cavity[208, 215]. The 20S core particle is a cylindrical structure

which is formed by four stacked heptameric rings[214]. The two outer and inner rings

comprises α and β subunits respectively. The proteolytic active site can be located

within the cental cavity - β subunit. The 20S present in bacteria are different proteases

which bears structural resemblance to proteasome and yet perform equal function[9].

These bacteria proteases belonging to ATPases associated with diverse cellular proteins

(AAA+ protein) and the proteasome have a distant relationship.

The proteasome plays significant roles in several biological processes that includes the

clearance of misfolded or abnormal proteins, control of cell cycle and cellular immune
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response[214]. These aforementioned cellular functions are closely linked to ubiquitin

and ATP-dependent protein clearance or degradation pathway which involves the 20S

proteasome.

Figure 3.15: Structure of the proteasome showing the two main subunits, 19S and
20S which are invloved in regulatory activities and the proteolytic chamber (which is

flanked by two 19S reglatory particle) respectively [9].

3.13 INITIATION OF DEGRADATION

Tagging proteins with ubiquitin is not enough to drive the destined protein into the

proteasome for degradation[199, 216]. Coupled to the tagging, another degron, that

is, an initiation site must be present on the protein[217, 218]. The initiation site is a

portion of the protein where the proteasome associates with the substrate, followed by

degradation. This degron - aportion of the protein crucial in the rate of degradation, can

be situated either at the end of the protein or within. When located within the protein,

it is flanked by folding domains on both sides of the protein[217, 219, 220]. Following the

covalent attachment of ubiquitin, substrates are tethered to and fixed in the proteasome

where there is an engagement by the translocation motor within proteasome[9]. The

translocation motor can be located within the ATPase ring in 19S regulatory particle

according to studies using a bacterial analogue of proteasome[221–224].The unstructured

region of the substrate that is grabbed by loops is pulled into the central pore of the

ATPase ring. This consequently results in unfolding and transport of the substrate into

the proteasome[222, 224]. Hydrolysis of the substrate into peptides occurs. Proteolysis

proceeds until the fragments become small enough that they can leave the proteasome

by diffusion[225, 226]. According to studies, on average, amino acids of about 5-20

residues in length are further broken down into single or free amino acids in the cytosol

by proteases[227].
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However, an increasing number of destined substrates are not completely degraded ac-

cording to recent studies[228]. A phenomenom, called regulated ubiquitin proteasome-

dependent processing (RUP) results from partial elimination of the polypeptide chain,

and the other part leaving the proteasome as a stable protein fragment. This stable

species or fragment has a biological aactivity[228, 229]. RUP consequently activates

inactive or dormant proteins including NFkB and NFkB-related transcription factors of

mammnal and yeast respectively [230, 231], which are all ubiquitinated prior to their

degradation in the proteasome[220].

3.14 DELIVERY OF SUBSTRATES TO THE PROTEA-

SOME

The delivery of ubiquitinated substrate prior to degradation in the proteasome has two

fate; first by asssociating directly with the 19S regualtory protein of the proteasome by

interacting with regulatory subunits such as Rpn10, Rpn13 or Rpn5[9]. In other instance,

adaptors bring ubiquitinated substrates to the proteasome. In this way, the adaptor

binds to both the substrate-bound ubiquitin to present it for degradation[206, 232, 233].

A greater fraction of Rpn10 may function as an adapter owing to the fact that they

are not in association with the proteasome[9]. Rad 23, Ddil and Dsk2 perform similar

function as adaptors. They are characterized by the presence of ubiquitin-like domain

(UBA)that bind multiubiquitin residues[234–236]. These aforementioned adaptors can

bind to the proteasome and the ubiquitinated substrate at the same time whiles facil-

itating the degradation of the ubiquinated substrate by engaging the substrate to the

proteasome at the initiation site. Indirectly, these adaptors can also hand off the sub-

strate to the ubiquitin-binding proteasome subunit[208]. Differentiating between the

proteins which directly get to the proteasome and which flows through the adaptor

remains a debate, but the likelihood is that, ubiquititinated proteins may raech the

proteasome directly[193].



Chapter 4

EXPERIMENTAL SETUP

4.1 Strains of Arabidopsis thaliana seeds

6 different strains of Arabidopsis thaliana were used for this thesis. The mutants had

variant forms as shown in Table ??.

4.2 Description of mutants

1. ISUSN: A transpeptide obtained from the gene, AtIscU1 guides the direct trans-

port of α-synuclein into the mitochondria.

2. E46K: A mutant α-synuclein with a single amino acid residue substitution of glu-

tamic acid (E) with lysine (K) at position 46.

3. A53T: A mutant α-synuclein with a single amino acid residue substitution of ala-

nine (A) with threonibe (T) at position 53.

4. A30P: A mutant α-synuclein with a single amino acid residue substitution of ala-

nine (A) with proline (P) at position 30.

5. Sterile SN: Arabidopsis thaliana plants modified to produce very few seeds.

4.3 STERILIZATION OF ARABIDOPSIS THALIANA

SEEDS

1 mL of 10 % chlorine was added into Eppendorf tubes containing the seeds. The seeds

were then vortexed shortly and incubated for 12 minutes. Following incubation the

30
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seeds were centrifuged at 13.2× 103 rpm for 2 minutes. The 10 % chlorine was removed

by pipetting. The seeds were washed with distilled water to remove residual chlorine.

The tubes containing the seeds were vortexed and centrifuged at 13.2 × 103 rpm for 2

minutes. After every washing, the supernatent was removed and vortexing, washing and

centrifugation were repeated for 3 times and left to dry.

4.4 SOWING OF SEEDS AND TRANSFER OF SEEDLINGS.

Distilled water was added to the dried seeds and pipetted onto an a petri dish containing

an MS agar. Following germination after 21 days, the seedlings were transplanted onto

a soil. The plastic bed containing the transferred seedlings were placed under controlled

growth conditions which with varying light and dark conditions (16 and 8 hours light

and darkness, respectively) for 6 weeks.

4.5 CONFOCAL MICROSCOPY: SCREENING AND SE-

LECTION.

4.5.1 Preparation of slides, scanning and selection

Six weeks after the seedlings have been transplanted, leave samples were obtained from

each plant. Prior to confocal screening, wet glass slides were prepared for all the 15

(including variant) leave samples.The slides were viewed under white light. The samples

were focused under white light. Scanning and adjustment was done with a X60 W

objective lens. Alexa fluorophore was used for the laser screening. to observe α-synuclein

expression both in the cytosol or mitochondria. An unbiased selection was done to select

plants that exhibited high expression of α - synuclein in their respective cellular location.

4.6 SECTIONING OF SELECTED PLANTS

Unlike the wild-type (where the whole leave samples were harvested), each selected

plant sample was sectioned into four(4) parts. Leave samples were collected from each

quartet, wrapped in an aluminium foil and stored in liquid nitrogen at -74°C. This step

was repeated every one (1) month for a total of 3 months. Subsequent quartet from

each plant was collected and stored at -74°C.
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4.7 SAMPLING OF PLANT SAMPLES.

Two sampling methods were developed and used:

1. Young and old leaves from the same plant were harvested.

2. The whole plant was divided into quartet where each quarter represented different

developmental stages with respect to age. Harvesting were made at one (1) month

interval. That is, the first quarter that was harvested becomes the youngest plant,

followed by the second quarter until the fourth quarter which is considered to be

the oldest plant sample. Each quarter was wrapped in an aluminium foil, labelled

and stored shortly in liquid nitrogen and later stored at -78°C.

4.8 DETERMINATION OF PROTEASOME ACTIVITY

USING CHEMICON 20S PROTEASOME ACTIV-

ITY ASSAY, CAT NO. APT280.

4.8.1 Preparation of extract

4.8.2 Extract preparation for sampling method 1.

Triplicates of old and young leaves were obtained from the same plant for the different

Arabidopsis thaliana plants. Both young and old leaves from the same plant were har-

vested, weighed, wrapped in an aluminium foil and stored in liquid nitrogen shortly proir

to gringing using a mortar and pestle.The leaves were then transferred into a mortar.

The grinded leave samples was transferred into an Eppendorf tube. 200 µL of 1X buffer

was added, vortexed shortly and centrifuged at 14000 rpm for 5 minutes to obtain a

clear supernatant and then stored on ice.
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Figure 4.1: An image showing the sizes of both young(marked in the yellow ring),
old leaf (marked in red ring) and a 2 cm grid ( marked in sea-blue).

.

Figure 4.2: A picture showing 0.1 g of young and old leaves prior to extraction.

4.8.3 Extract preparation for sampling method 2.

Here, a quadruplicate of the whole wild-type (WT)plant was weighed unlike the mutants

where each quarter was weighed to obtain different masses. Grinding procedure was the

same as done in sampling method 1 but different known volume of 1X buffer was added

respectively. The resulting mixture was vortexed shortly and centrifuged at 14000 rpm

for 5 minutes to obtain a clear supernatant.
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4.8.4 Preparation of assay mixture.

10 µL of the supernatant (proteasome sample) from each replicate of the different Ara-

bidopsis thaliana plant was pipetted into 3 different labelled PCR tubes marked for each

replicate. 4 different labelled PCR tubes marked for each replicate was made for sam-

pling method 2. The test sample was prepared as shown in Table 4.1 below. The test

sample was then incubated at 37°C for 2 hours. Fluorescence was read at 380/460 nm.

The principle behind this test is that, a fluorophore, 7-Amino-4-methylcoumarin (AMC)

is detected after cleavage from a labelled proteasome substrate (LLVVY-AMC). The

AMC is then quantified as the relative fluorescent unit at380/460 nm using a fluorome-

ter (Chemicon 20S Proteasome Activity Assay Kit, CAt. No. APT280).

Table 4.1: The different assay composition mixture using Chemicon Proteasome ac-
tivity assay protocol

Sample Assay mixture
Proteasome Total

10X Assay Proteasome Distilled
buffer sample water substrate volume

Buffer blank 10 µL 0 µL 90 µL 0 µL 100 µL

Substrate blank 10 µL 0 µL 80 µL 10 µL 100 µL

Test sample 10 µL 10 µL 70 µL 0 µL 100 µL

4.9 DETERMINATION OF TOTAL PROTEIN CONCEN-

TRATION USING THE BCA METHOD BY THERMO

SCIENTIFIC

4.9.1 Preparation of 1:2 serial dilution of BSA standard solution

A seven 25 µL serial dilutions were made from a 50 µL 2 µL/µg BSA stock solution.

4.9.2 Preparation of working reagent

Two solutions labelled A and B were provided by Thermo Scientific. 50 part of working

reagent A was mixed with 1 part of reagent B. A green colloidal solution was obtained.

The mixture was then dissolved evenly to obtain a clear green solution.
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4.9.3 Preparation of assay mixture for total protein concentration

Four replicates of the plant extract were made for each Arabidopsis plant. 25 µL of

both the extract and the BSA standard dilutions were pipetted into a PCR tube. 200

µL of the working reagent was added to each tube and mixture evenly. A purple colour

developed. The tubes were on water bath at 37°C for 30 minutes. After 30 minutes, a

higher colour intensity developed.The tubes were cooled down for 5 minutes. Absorbance

was read at 562 nm to obtain theconcentration.

The principle underlying this test is that Cu+2 is reduced to Cu+ by a protein in a basic

solution. The Cu+ is selectively detected by bicinchoninic acid (BCA). The result is a

purple-coloured product which is formed by chelation of the Cu+1 by two molecules of

BCA. This water-soluble complex has maximum absorbance at 562 nm.
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Results and Discussion

5.1 Plant selection

Results from the confocal microscopy screening showed that the following plants marked

with asterics in the table below were selection for further investigation.

These were; E46K 12, ISUSN 5, A53T T3 - 1 and wild - type (WT). Out of the 10 repli-

cates for each class of Aradopsis thaliana, those that showed more than 70% expression

were deemed ideal.

Table 5.1: Summary of the degree of expression for the different Arabidopsis thaliana
strains.

Sample ID Cellular location of expression Degree of expression (low\high)

ISUSN 1 Mitochondria low

ISUSN 4 Mitochondria low

E46K 12* cytosol high

E46K 11 cytosol low

ISUSN 5* Mitochondria high

E46K 13 cytosol high

A30P 6 cytosol high

A30P 16 cytosol high

A30P 1 cytosol low

A53T T3-5 cytosol high

A53T T3-4 cytosol high

A53T T3-1* cytosol high

SN Sterile 2 cytosol high

SN Sterile 1 cytosol high

SN* cytosol high

36
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5.2 Weekly observed features of a variant form of Ara-

bidopsis thaliana, E4KK12 prior to screening.

Figure 5.1: A picture of E46K12 plant viewed under confocal microscope. Cytoplas-
mic cellular content marked green and red are α - synuclein and chloroplast labelled
with Alexa 488 antibody (green) and Alexa Fluor 647 dye-labelled oligonucleotide water

(red) respectively.

After week 18, almost all the plants were physically visualized as developing flowers and

shoots as shown in the image above. Also observed were thick and crowded leaves for

each plant.
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Figure 5.2: A picture of ISUSN 5 plant at 6 weeks (left), 19 weeks (right) and 21
weeks old (bottom).

5.3 Structural dynamism of the mitochondria.

Figure 5.3: The mitochondria and chloroplast labelled with Alexa 488 antibody
(green) and Alexa Fluor dye - labelled oligonucleotide water (red) after week 18 for

the ISUSN5 Arabidopsis thaliana plant.
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Figure 5.4: The mitochondria and chloroplast labelled with Alexa 488 antibody
(green) and Alexa Fluor dye - labelled oligonucleotide water (red) after week 22 for

the ISUSN5 Arabidopsis thaliana plant.

Figure 5.5: The mitochondria and chloroplast labelled with Alexa 488 antibody
(green) and Alexa Fluor dye - labelled oligonucleotide water (red) after week 18 for

the ISUSN5 Arabidopsis thaliana plant.

α - synuclein is known to be predominantly localized in the cytosol, although a fraction

of the total ocmposition has been been suggested to be present in the membrane of the

mitochondria in functional dopaminergic neurons [237]. .

The dynamism and different morphology assumed by the mitochondrial are hugely in

response to the various physiologic function and partly owing to stress condition such

oxidation and aggregation of intracellular proteins within the subcellular organelle [238].

In the figure above, it could be observed that the amount of α - synuclein concentration

in the cytoplasm gradually decreases with age. This observation is manifestation by the

aggragation of α - synuclein and hence the apperance of brighter spots.
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5.3.1 Generation of standard curve.

5.3.1.1 Preparation of dilutions for a standard curve

A dilution series of 1:2 was made from a 125 µM AMC. The dilution concentration range

was set between 0.04 µM - 6.25 µM.

Figure 5.6: A calibration curve obtained for AMC. This function illustrates a di-
rect relationship between the concentration of the fluorophore (AMC) and emission at

480nm. The higher the concentration, the higher Relative fluorescent unit (RFU).
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Table 5.2: Fluorescent measurements obtained for both young and old leaves of the
ISUSN 5 mutant Arabidopsis plant for sampling method 1 after week 28.

Sample ID / Assay component Fluorescent measurement

Replicate Replicate number Young leaves Old leaves

2

1 44495.036 25630.341
2 46008.709 30580.668
3 50575.406 28239.481
4 52139.844 32953.397

5

1 11634.188 17948.071
2 42139.262 22851.964
3 63835.613 24422.502
4 35543.478 23105.330

8

1 14634.261 17450.917
2 18553.665 22201.015
3 30456.988 21086.994
4 36171.013 23274.551

DMSO 657.849

Distilled water 359.618

10X buffer 306.360

Table 5.3: Fluorescent measurements obtained for both young and old leaves of the
Wild-Type (WT) Arabidopsis plant for sampling method 1 after week 28.

Sample ID / Assay component Fluorescent measurement

Replicate Replicate number Young leaves Old leaves

1

1 39138.907 39997.568
2 40465.135 35953.953
3 41387.173 43553.392
4 44623.7515 45338.496

2

1 40110.838 7547.107
2 41982.490 9800.748
3 38234.185 8865.939
4 37630.586 8224.409

5

1 49084.300 37361.526
2 48002.767 36652.918
3 54665.635 37922.188
4 47493.705 33982.408
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Table 5.4: Fluorescent measurements obtained for both young and old leaves of the
E46K12 mutant Arabidopsis plant for sampling method 1 after week 28

Sample ID / Assay component Fluorescent measurement

Replicate Replicate number Young leaves Old leaves

2

1 90139.14 301239.32
2 111341.93 318900.41
3 96330.76 292147.18
4 99933.56 291030.28

3

1 95890.25 59443.61
2 93716.48 147102.73
3 153856.73 79691.23
4 100585.26 151683.26

4

1 71652.36 138552.04
2 75491.72 68217.09
3 86506.66 30661.68
4 81601.87 30629.01

Table 5.5: A 1:16 dilution of extract to buffer to determine the total protein concen-
tration and absorbance values for young and old leaves of E46K12 mutant Arabidopsis

thaliana plant after week 28.

Proteasome sample concentration mass concentration mass
of young of old leaves

leaves mg protein

replicate replicate mg/mL mg/mL mg/mL mg protein

number per g leaves mL per g leaves

fresh wt. fresh wt.

2 1 13.062 26.124 6.851 13.702

2 13.110 26.022 6.611 13.222

3 13.014 26.028 10.068 2.136

4 13.879 27.758 9.636 19.272

3 1 10.606 21.212 8.227 16.554

2 13.479 26.958 8.659 17.318

3 12.598 25.196 8.867 17.734

4 13.318 26.626 8.707 17.414

8 1 12.870 25.740 6.675 13.250

2 13.062 26.124 7.827 15.654

3 12.710 25.42 9.124 18.248

4 13.094 26.188 8.803 17.606
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Table 5.6: A 1:8 dilution of extract to buffer to determine the total protein concen-
tration and absorbance values for young and old leaves of ISUSN5 mutant Arabidopsis

thaliana plant after week 28.

Proteasome sample concentration mass, concentration mass,

replicate replicate of young leaves mg protein of old leaves mg protein

number mg/mL per g leaves mg/mL per g leaves

fresh wt. fresh wt.

2 1 6.211 12.422 2.561 5.122

2 4.716 9.432 1.597 3.194

3 6.140 12.280 3.200 6.400

4 6.326 12.652 2.518 5.036

5 1 5.303 10.606 1.201 2.402

2 5.096 10.192 1.580 3.160

3 5.076 10.152 1.752 3.504

4 5.515 11.030 1.653 3.306

8 1 3.948 7.896 2.119 4.238

2 4.711 9.422 2.286 4.572

3 4.800 9.600 2.245 4.490

4 4.072 8.144 1.757 3.514

Table 5.7: A 1:16 dilution of extract to buffer to determine the total protein concen-
tration and absorbance values for young and old leaves of Wild-type (WT) Arabidopsis

thaliana plant extract after week 28.

Proteasome sample concentration mass cncentration mass,

Replicate replicate of young leaves, mg protein of old leaves mg protein

number mg/mL per g leaves mg/mL per g leaves

fresh wt. fresh wt.

1 1 13.447 26.894 7.011 14.022

2 12.246 24.492 6.851 13.702

3 11.574 23.148 8.036 16.072

2 1 11.494 22.988 2.417 4.834

2 10.389 20.778 2.897 5.922

3 10.546 21.092 2.961 5.922

5 1 13.463 26.926 6.131 12.262

2 13.126 26.252 7.187 14.374

3 13.446 26.892 7.764 15.528
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Table 5.8: Summary of Total protein concentration obtained for young and old leaves
in Sampling method 1 after week 28.

Plant ID Young leaves, Old leaves, young leaves, Old leaves,

average [ ]± SD average [ ]± SD average RFU average RFU

Wild-type (WT) 12.192 ± 1.18 5.695 ± 2.14 43568.29 33982.41

ISUSN 5 5.160 ± 0.75 2.039 ± 0.53 37182.29 24145.43

E46K 12 12.899 ± 0.73 8.334 ± 1.09 96420.54 159108.15

Figure 5.7: Excitation spectrum of extract measured at 400nm. This was obtained
to account for any possiblity of Chlorophyll or other plant pigment interference.

Figure 5.8: Excitation spectrum of extract measured at 490nm. This was obtained
to account for any possiblity of Chlorophyll or other plant pigment interference
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Table 5.9: Showing the different masses of the whole (for WT) and plant quartets
with their respective volumes of added buffer.

Plant sample weight (g) volume of buffer (mL)

Wild-type (WT) Replicate number

1 3.355 6.71

2 3.221 6.44

3 6.969 13.94

4 5.375 10.75

ISUSN 5

Plant number Quarter order

1 1 0.219 0.44

2 1.075 2.15

3 0.368 0.74

4 0.128 0.26

2 1 0.526 1.05

2 0.902 1.8

3 0.241 0.48

4 0.185 0.37

3 1 0.504 1.01

2 1.307 2.61

3 0.392 0.79

4 0.288 0.58

4 1 0.867 0.18

2 1.060 2.12

3 0.926 1.85

4 0.25 0.50

E46K 12

Plant number Quarter order

1 1 0.487 0.97

2 1.533 3.07

3 1.133 2.27

4 0.191 0.38

2 1 1.012 2.02

2 1.586 3.17

3 1.285 2.57

4 0.242 0.48

3 1 0.588 1.18

2 1.438 2.88

3 1.155 2.30

4 0.240 0.48

4 1 0.642 1.28

2 1.130 2.26

3 0.273 0.55

4 0.163 0.33
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Table 5.10: Fluorescent measurements obtained for the different quarters of E46K 12
mutant Arabidopsis plant for sampling method 2. The first, second, third and fourth
quarter were 12, 16, 20 and 24 weeks old respectively. The emission wavelength was

460 nm.

Proteasome sample Fluorescent measurement

Replicate Quarter

Plant 1 1st 5798.57

2nd 5813.10

3rd 28288.22

4th 13165.45

Plant 2 1st 899.92

2nd 4367.19

3rd 32526.25

4th 69506.44

Plant 3 1st 10171.86

2nd 9233.98

3rd 25314.36

4th 9681.30

Plant 4 1st 11091.98

2nd 9141.88

3rd 24117.67

4th 36468.97

Table 5.11: Fluorescent measurements obtained for the different quarters of ISUSN
5 mutant Arabidopsis plant for sampling method 2. The first, second, third and fourth
quarter were 12, 16, 20 and 24 weeks old respectively. The emission wavelength was

460 nm.

Proteasome sample Fluorescent measurement

at an emission wavelength of 460 nm

Replicate Quarter

Plant 1 1st 29327.17

2nd 17763.22

3rd 64284.88

4th 66651.19

Plant 2 1st 13363.89

2nd 35454.21

3rd 16918.55

4th 26247.71

Plant 3 1st 25599.56

2nd 18676.54

3rd 24626.06

4th 21149.11

Plant 4 1st 61911.25

2nd 6327.89

3rd 57108.36

4th 27429.088
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Table 5.12: Fluorescent measurements obtained for the different quarters of Wild-type
(WT) mutant Arabidopsis plant for sampling method 2. The first, second, third and
fourth quarter were 12, 16, 20 and 24 weeks old respectively. The emission wavelength

was 460 nm.

Proteasome sample Fluorescent measurement

Plant number Age (month)

Plant 1 1 4266.53

Plant 2 2 10426.136

Plant 3 3 26185.33

Plant 4 4 30146.20

Table 5.13: A 1:5 dilution of extract to buffer to determine the total protein concentra-
tion and absorbance values for the quartets obtained from E46K12 mutant Arabidopsis
thaliana plant for sampling method 2 using Thermo Scientific BCA protein assay kit.

Absorbance was read at 562 nm.

Proteasome sample Absorbance, concentration mass,

Replicate quarter mg/mL mg protein per g leaves

1 1st 1.5552 4.161 8.322

2nd 0.9297 2.028 4.056

3rd 1.2458 2.782 5.564

4th 1.3402 3.016 6.032

2 1st 1.551 2.560 5.120

2nd 0.2508 0.541 1.082

3rd 1.1930 2.652 5.304

4th 0.9643 2.459 4.918

3 1st 1.4125 3.198 6.396

2nd 1.0426 2.292 4.584

3rd 0.4491 0.956 1.912

4th 0.7283 1.569 3.138

4 1st 0.2684 0.578 1.156

2nd 0.6033 1.293 2.586

3rd 0.6506 1.397 2.794

4th 1.2583 2.469 4.938
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Table 5.14: A 1:5 dilution of extract to buffer to determine the total protein concentra-
tion and absorbance values for the quartets obtained from ISUSN5 mutant Arabidopsis
thaliana plant for sampling method 2 using Thermo Scientific BCA protein assay kit.

Absorbance was read at 562 nm.

Proteasome sample Absorbance, concentration mass,

Replicate quarter mg/mL mg protein per g leaves

1 1st 0.6080 1.086 2.172

2nd 1.553 2.134 4.268

3rd 1.2232 2.272 4.544

4th 0.5187 0.924 1.848

2 1st 0.5726 1.019 2.038

2nd 0.7274 1.306 2.612

3rd 1.1839 2.192 4.384

4th 0.3728 0.664 1.328

3 1st 0.4023 0.716 1.433

2nd 0.7059 1.266 2.532

3rd 0.7991 1.441 2.882

4th 0.9644 1.757 3.514

4 1st 0.7404 1.331 2.662

2nd 0.5921 0.944 1.888

3rd 0.4968 0.885 1.770

4th 1.1475 2.118 4.236

Table 5.15: A 1:5 dilution of extract to buffer to determine the total protein concen-
tration and absorbance values for the quartets obtained from WT Arabidopsis thaliana
plant for sampling method 2 using Thermo Scientific BCA protein assay kit. Ab-

sorbance was read at 562 nm.

Proteasome sample Absorbance, concentration, mass,

Whole plant mg/mL mg protein per g leaves

1 1.4997 2.852 5.704

2 1.2408 2.769 5.538

3 1.1876 2.639 5.278

4 1.5985 3.681 7.362
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Table 5.16: Summary of Total protein concentration obtained for young and old
leaves in Sampling method 2.

Plant ID [average total protein] ± SD, mg/mL Plant number, Average RFU
age(month)

Wild-type (WT) 2.985±0.41 Plant 1 4266.53

Plant 2 10426.14

Plant 3 26185.33

Plant 4 30146.20

ISUSN 5 1.284± 0.65 Quarter 1 33650.30

Quarter 2 18455.63

Quarter 3 31502.64

Quarter 4 29204.34

E46K 12 2.122±0.97 Quarter 1 13266.84

Quarter 2 26824.95

Quarter 3 13600.38

Quarter 4 20204.88

Both intrinsic and extrinsic factors including ageing, generation of reactive oxygen

species (ROS), oxidation of biomolecules and induced-stress respectively generally lead

to a reduction in physiologic functions such as protein turn over, degradation of altered

protein and clearance. This consequently brings about an elevated rate of morbidity

and mortality [239, 240].

In the model transgenic plants and WT, the differential physiologic state is due to the

different stress conditions. A measure of proteasomal activity in the leaves of the model

plants, thus its ability to specifically break the conjugated substrate (LLVY-AMC),

thereby releasing AMC is as a function of the physiologic state. AMC as a fluorophore

was then quantized.

Protein degradation and clearance under the conscious control of the proteasome is ex-

pected to be higher in young tissues or organs relative to old tissues but with no known

fold or magnitude though a substantial difference in activity is expected in both.

In sampling method 1, Table 5.2 and 5.3 showed that, the relative fluorescent unit (RFU)

measured for the young leaves were higher as compared to the old leaves. Although there

were some few inconsistencies in the number of replicates where RFU recorded in the

old leaves were higher than those in the young leaves as observed in Table 5.4.

However, in table 5.8 the average RFU measured for young leaves were higher than

those measured in old leaves for the WT, E46K12 and ISUSN5. In addition, the WT

and E46K12 had the was highest average total protein concentration as compared to

ISUSN5 as sen in Table 5.8 The low RFU in ISUSN5 could be attributed to the influx or

transport of α - synuclein in the mitochondria which has the tendency to compromise of
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mitochondrial function and integrity due to stress inner mitochondrial membrane where

oxidative phosphorylation occurs. Reduced oxidative phosphorylation implies that there

is low ATP synthesis.

In a similar work conducted in Fisher 344 rats tissues of (liver, heart and kidney) and

neuronal cells by [241] to study the effect of age and stress on multicatalytic proteasome

(MCP), proteasomal activity was shown to decrease with age. In their report, pro-

teasome activity in the liver, lung, heart and kidney tissues had showed no significant

decrease in proteasome activity after 12 months. This results obtained when compared

to week 3 or 3 months old animals did not have much difference. Contrarily, a decline

of proteasomal activity was observed after 24 months in lung tissues. There was an

early detection of a decline in proteasomal activity in the cortex and hippocampus in

the central nervous sysytem. Therefore, it can be inferred that the proteasome degree

of susceptibility and function varies within different organs and tissues.

Fluorescent measurements for young and old leaves as seen in Table 5.4 was in this case, a

reverse of the expected in sampling method 1. Measurements obtained were low and high

in young and old leaves respectively. The observed feature of the leaves, that is, young

and old, as a measure of age may not be a true reflection of the actual age of the plants.

Hence, this obsevation could be attributed to (i) the sampling and (ii) the inherent

behaviour or features of the mutant plant. To ascertain the different RFU measurements

recoreded for the different Arabidopsis thaliana plants, the protein concentration was

determined. The total protein yield of an extract may not necessarily predict the amount

of a particular protein since most soluble protein reside in the cytosolic but to some

extent inference could be made. In Table 5.8, the RFU unit was manisfested by the

value of absorbance or concentration. E46K12 had a maximum cytosolic protein yield.

This was followed by WT and lastly ISUSN5.

Interference by chlorophyll a - the most abundunt plant pigment, was accounted for by

obtaining a emission spectrum with the starting wavement set at diffrent wavelengths -

400 nm and 490 nm 400 nm . Chlorophyll a has a maximum emission at 673 nm. In

figure 5.7 and figure 5.8, there was not any observed peak of emission at 673 nm and

hence inference can be made that, interference from chlorophyll was nil.

Results obtained from the sampling method 2 showed some inconsistencies. In gen-

eral, The relative fluorescent unit (RFU) as a function of the proteasome activity was

to expected to have a declining order or fashion from the first quarter to the fourth

quarter. In this experiment, conscious effort to have least effect of bias was ensured

and hence critical.In the sectioning process, eaxh quarter reprsented or contained an

uneven distribution of leaves accounting for the different masses (densities) and hence

different volumes of buffer was added as shown in table 5.9. In table 5.16, WT had the
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highest averrage total protein. This was followed by E46K12 and ISUSN 5 which had

the least average total protein concentration. In both sampling methods, the average

total protein concentration is almost similar for the WT and E46K12 mutant Arabidop-

sis thaliana plant. The inconsistent measurements of RFU in the sampling method 2 as

seen in Table 5.12, 5.10, 5.11 gave rise to outliers. The effect of the outlier is that an

inverse relationship was observed between the RFU and the total protein concentration.

In addition to the above, the low proteosome activity in the young leaves as compared

to the old leaves could also be attributed to the following factors: (i) a less demand or

low assembly in activity in response to stress at the young stage in the plant growth

since stress is associated with ageing. (ii)The developmental stage of the proteosome as

a component of the proteome had marked its prime in activity and hence its expression

is manifasted by a heightened activity.

The different treatment or storage method following harvesting could also account for

the unexpected or differentRFU in sampling method 1 and 2. In sampling method 2,

the harvested leaves were stored at -74°C prior to extraction over a period of 4 months

unlike sampling method 1 where the leaves were shortly stored in liquid nitrogen four

less than an hour prior extraction. Plants’ ability to survive freezing temperatures vary

hugely owing to their different level of cold acclimatization at approximately below 10°C

[242]. Therefore, the extent of injury caused by extreme cold would also vary. Protein

denaturation and precipitation could be as a result of freeze-induced dehydration [242].



Chapter 6

Conclusion

Sampling method 1 provided a better and a more consistent results with respect to size as

a measure of age and proteasome activity. In general, proteasome activity was higher in

the young leaves than the old leaves. A functional proteasome reduces the rate of protein

aggregation and hence facilitate its clearance. On the other hand, sampling method 2

gave some hints about protein or α−synuclein aggregation and age. Therefore , it could

be inferred that age is one of the major factors that can influence the accumulation of

α− synuclein.
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Future perspective

1. A number of proteins such chaperones and proteasome involved in protein process-

ing /handling and clearance is hugely dependent on the viability of ATP. Therefore,

growing the plants in the presence of a suitable varying concentration of ATP and

measuring proteasome activity will provide more direct relationship between pro-

teasome activity and ATP. This could help us establish a possible effect of over

/under supplementation of ATP on these proteins.

2. To have a true age of the plants, a specific time period should be set for each

plant whiles the plants are grown on different different beds. For example, within

a period of 12 months, first, second, third and fourth harvest harvest could be

made intermittedly at the 3rd, 6th, 9th and 12th month respectively as reported

by [241]. This will avoid the effect of storage conditions on protein activity. This

is because, as seen in sampling method 1, extracts prepared shortly after harvest

provided a more consistent RFU unlike the second sampling method.
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Hui Phosphorylation of α-synuclein upregulates tyrosine hydroxylase activity in

mn9d cells. 113(1):32–35, 2011. ISSN 0065-1281.

[125] Haiyan Lou, Susana E Montoya, Tshianda NM Alerte, Jian Wang, Jianjun Wu,

Xiangmin Peng, Chang-Sook Hong, Emily E Friedrich, Samantha A Mader, Court-

ney J Pedersen, et al. Serine 129 phosphorylation reduces the ability of α-synuclein

to regulate tyrosine hydroxylase and protein phosphatase 2a in vitro and in vivo.

Journal of Biological Chemistry, 285(23):17648–17661, 2010.

[126] Jun Tang Guo, An Qi Chen, QI Kong, Hua Zhu, Chun Mei Ma, and Chuan

Qin. Inhibition of vesicular monoamine transporter-2 activity in α-synuclein stably

transfected sh-sy5y cells. Cellular and molecular neurobiology, 28(1):35–47, 2008.

[127] Heramb Chadchankar, Jouni Ihalainen, Heikki Tanila, and Leonid Yavich. De-

creased reuptake of dopamine in the dorsal striatum in the absence of alpha-

synuclein. Brain research, 1382:37–44, 2011.

[128] Abdelmojib Al-Wandi, Natalia Ninkina, Steven Millership, Sally JM Williamson,

Paul A Jones, and Vladimir L Buchman. Absence of α-synuclein affects dopamine

metabolism and synaptic markers in the striatum of aging mice. Neurobiology of

aging, 31(5):796–804, 2010.



Bibliography 67

[129] Pablo Garcia-Reitboeck, Oleg Anichtchik, Jeffrey W Dalley, Natalia Ninkina,

George K Tofaris, Vladimir L Buchman, and Maria Grazia Spillantini. Endoge-

nous alpha-synuclein influences the number of dopaminergic neurons in mouse

substantia nigra. Experimental neurology, 248:541–545, 2013.

[130] Darren C Robertson, Oliver Schmidt, Natalia Ninkina, Paul A Jones, John

Sharkey, and Vladimir L Buchman. Developmental loss and resistance to mptp

toxicity of dopaminergic neurones in substantia nigra pars compacta of γ-synuclein,

α-synuclein and double α/γ-synuclein null mutant mice. Journal of neurochem-

istry, 89(5):1126–1136, 2004.

[131] Rainer Von Coelln, Valina L Dawson, and Ted M Dawson. Parkin-associated’s

disease. Cell and tissue research, 318(1):175–184, 2004. ISSN 0302-766X.

[132] Ted M Dawson and Valina L Dawson. The role of parkin in familial and sporadic

parkinson’s disease. Movement disorders, 25(S1):S32–S39, 2010. ISSN 0885-3185.

[133] Christine Klein and Michael G Schlossmacher. Parkinson disease, 10 years after

its genetic revolution: multiple clues to a complex disorder. Neurology, 69(22):

2093–2104, 2007.

[134] Christine Klein and Katja Lohmann. Parkinson disease (s) is “parkin disease” a

distinct clinical entity? Neurology, 72(2):106–107, 2009.

[135] Lara Fallon, Catherine ML Bélanger, Amadou T Corera, Maria Kontogiannea,

Elsa Regan-Klapisz, France Moreau, Jarno Voortman, Michael Haber, Geneviève
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