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1 THE SPIN-STATISTICS THEOREM

Part 1
Introduction

1 The Spin-Statistics Theorem

This thesis will give an introduction to the principle called supersymmetry. Su-
persymmetry is a principle in physics relating two types of particles, bosons and
fermions, which will be discussed further below. Supersymmetry, abbreviated
SUSY, can, for example, be an extension of the Standard Model, which today
is the model best describing the subatomic world. The Standard Model con-
tains bosons as force carriers, for example the photon, while fermions are the
fundamental particles, for example the electron. SUSY predicts that for each
boson there should correspond a fermion. This is not the case in the Standard
Model (as of today, without supersymmetry). This is why SUSY would be an
extension of the Standard Model.

Above it was mentioned that bosons are force carriers, and fermions are
fundamental particles. To give a more precise definition, bosons are particles
of integer spin, while fermions carry half-integer spin. The examples mentioned
above, photons and electrons, have spin 1 and spin 1/2, respectively. The spin
of the particle tells us what statistics the particle have. This has been worked
out in [I], [2] and [3]. We will for the most time work in one time dimension
and three space dimensions. Then the Spin-Statistics theorem says

Theorem 1.1. (Spin-Statistics)

e The exchange of two particles with integer spin is symmetric. These par-
ticles are called bosons. For two bosons Bi, Ba, this means that B1Bs =
ByB;.

e The exchange of two particles with half-integer spin is anti-symmetric.
These particles are called fermions. For two fermions Fy, Fs, this means
that F1F2 = —F2F1.

Furthermore, [2] and [3] showed that the exchange of two particles where
not both are of half-integer spin is symmetric. Therefore, exchanging a boson
B with a fermion F' is symmetric

BF = FB.

The theorem also establishes that the only types of particles that can exist in
four-dimensional space-time are bosons and fermions.

From the Spin-Statistics theorem we see that bosons satisfy Bose-Einstein
statistics, that is, several identical bosons can occupy the same quantum state
in a quantum system. Fermions, on the other hand, are particles of half-integer
spin satisfying Fermi-Dirac statistics, that is, identical particles cannot oc-
cupy the same quantum state in a quantum system, known as the Pauli ex-
culsion princple.



3 STRUCTURE OF THESIS

As mentioned above, we want to relate bosons with fermions. The relation
was not realised before the in the 1970s, first by Gol’fand and Likthman, and
then generalised by Haag, Lopuszanski and Sohnius.

2 The Haag-Lopuszanski-Sohnius Theorem

Before we look at the articles by Gol’fand and Likthman, and Haag, Lopuszanski
and Sohnius, we should mention another article. In 1967 Coleman and Mandula
published a no-go theorem [], stating “the impossibility of combining space-
time and internal symmetries in any but a trivial way”. At the time, it seemed
impossible to transform bosons to fermions, and vice-versa. However, in 1971
Gol’'fand and Likthman found a way to do so [5]. They extended the Poincaré
algebra, which contains the Minkowski space-time rotations, boosts and trans-
lations (isometries). The Poincaré algebra only contain bosonic generators,
while the algebra they created, called the Poincaré superalgebra, contains both
bosonic and femrionic generators.

In 1975, Haag, Lopuszanski and Sohnius showed that if one weakens the
Coleman-Mandula theorem by allowing the algebra to contain both bosonic
and fermionic generators, it is possible to extend the Poincaré algebra as a su-
peralgebra [6]. This algebra will need to satisfy some different axioms to the
algebra only containing bosonic generators.

3 Structure of Thesis

Before we can appreciate superalgebras, we need to understand the algebras
describing space-time symmetries. These algebras are called Lie algebras, and
are introduced in Using Lie derivatives, we show that Killing vector
fields generate Lie algebras. Then we can compute the Poincaré- and the con-
formal algebra, which are both space-time algebras. In we consider
the Clifford algebra. The Clifford algebra is generated by y-matrices, which are
necessary to keep the fermionc part of the theory invariant under the Lorentz
algebra, which is a subalgebra of the Poincaré algebra. Next, in[section 6 we will
consider some example theories and check whether or not these are invariant
under the Poincaré- and conformal algebra. At the end of the section, we will
for the first time encounter a supersymmetry theory, in one dimension. The
mathematics part of the thesis is ended in where we introduce super-
algebras. We will also consider a simple superalgebra here.

Finally, in the last two sections we consider supersymmetry models in four
dimensions. In the Wess-Zumino model will be introduced. Here
we find the Poincaré- and conformal superalgebras, and show that the Wess-
Zumino model is invariant under these algebras. The other type of model we will
consider is a supersymmetric gauge theory. We show that also this is invariant
under the aforementioned superalgebras, and also another typer of symmetry,
namely gauge symmetry.



3 STRUCTURE OF THESIS

Let us now leave the super until we have acquaint ourselves with only sym-
metry.



4 LIE ALGEBRAS

Part 11
Mathematics of Supersymmetry

4 Lie Algebras

This section has been taken from [7], chapters 2, 5 and 7.

In physics, symmetries are of major importance. A symmetry can be though
of as a transformation that leaves the physical system unchanged. This can be
described by the mathematical objects called groups:

Definition 4.1. A group is a set G, with a group multiplication, denoted o,
satisfying four axioms. Va,b,c € G, we require

1. Closure: aob € G,
2. Associativity: ao (boc) = (aob)oec,

3. Identity: there exist an element 1 € G satisfying loa=ao1l =a,

4. Inverse: for every element a € G, 3a~! € G such that aca™! = a"toa =1,

where 1 is, as above, the identity in G.

Before we proceed it is convenient to introduce some maps. Let X and Y
be two sets. A map f assigns a value y € Y to each x € X, and is written
f: X — Y. The map is defined by f :  — f(z). The map is said to be
injective if x # 2’ implies f(z) # f(2'), and surjective if for each y there
exists at least one x such that f(xz) = y. A map is said to be bijective if it
is both injective and surjective. Now, let X and Y be endowed with algebraic
structures, for example addition. A map is called a homomorphism if it pre-
serves the algebraic structure of the set, so that f(xa’) = f(z)f(2’), where za’
is defined by the structure in X, and f(z)f(z) is defined by the structure in
Y. A bijective homomorphism is called an isomorphism. A homomorphism
f: X — X is called an endomorphism, and if it also is bijective it is called an
automorphism. A map f: X — Y is a homeomorphism if it is continuous
and has an inverse f~! : Y — X which is also continuous. If both f and f~1
is smooth, that is, infinitely differentiable, then the map is called a diffeomor-
phism.

Let us return to our groups. Groups which contains continuous symmetries
are called Lie groups. Before giving a definition of a Lie group it is necessary to
know what a manifold is. A formal definition is not necessary for us, so only an
informal definition is given: a m-dimensional manifold is a topological space
which is homeomorphic to R™ locally. Now a definition of Lie groups can be
given. This is not a concept we will have much use for in this dissertation, but
is given for completeness.

Definition 4.2. A Lie group is a group, G, which is also a smooth manifold,
with a smooth group operation G x G — G : (a,b) = aob Va,b € G, and
smooth inverse G — G :a = a~! Va € G.



4 LIE ALGEBRAS

The reason for not considering the Lie groups is because almost all of the
information from the group is also given in its Lie algebra. A Lie group consists
of an infinite number of elements. There is, however, a finite number of gener-
ators, and these generators form the Lie algebra.

Before defining a Lie algebra, let us recall some useful definitions:
Definition 4.3. A vector space V over a field K is a set with two operations:

e addition: +:V xV — V, and

e multiplication: - : K x V — V.

Let u,v,w € V and a,b € K. The elements of IK are called scalars and the
elements of V' are called vectors. They satisfy

1. u+v=v+u,
2. (u+v)+w=u+ (v+w),

0 is the identity vector in V such that v +0=04+v = v,

L

for a vector u there exists an inverse —u such that u+(—u) = (—u)+u = 0,
5. a-(u+v)=a-u+a-v,

6. (a+b)-u=a-u+b-u,

7. (a-b)-u=a-(b-u),

8. 1 is the identity element in K such that a -1 =1-a = a.

Definition 4.4. Let V be a vector space over a field K, and let f be a linear
function on V| f : V — IK. The set of linear functions is a vector space, called
the dual vector space, denoted V*. An element of the dual vector space is
called a dual vector.

From the definition it is clear that a dual vector maps a vector to scalar in K.
The space containing all tangent vectors at a point p in a manifold M, denoted
T,M, is a vector space, called the tangent space. It has a dual vector space,
TyM. Let w be a dual vector in Ty M such that it is a map w : T,M — R.
Then w is called a one-form. An arbitrary one-form can be written w = w, dz*,
where dz" is a basis for T M, and w), are the components of w. A more general
map is called a tensor. A tensor of type (g, r) is a mapping from ¢ elements of
Ty M and r elements of T;, M to a real number. The tensor is written

0
® ® dz"t @ da¥r.

T = TH1--Fa

We write the map as T : @? Ty M @" T, M — R. The set of all tensors of type
(¢,7) at a point p € M defines the tensor space of type (¢,7), and is denoted
F,4,. Tensors of type (¢,0) maps dual vectors to scalars, and are interpreted as
vectors, while tensors of type (0, ) maps vectors to scalars, and are interpreted
as dual vectors. In particular, a a symmetric type (0,2) tensor g is called a
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metric. It takes two tangent vectors, U,V € T, M as input and returns a scalar.
At each point p, g satisfies g, (U, V) = ¢,(V,U), where g, = g|,. We write g, as

9p = g,“,(p)dx“ @ dz",

where g, (p) are the components of g,. The symmetry condition secures that
9uv (D) = Gupu(p). We will usually omit writing p in g,

Another concept we should remind ourselves of is that of algebras.

Definition 4.5. An algebra & is a vector space over a field K with an additional
operation which takes o x o to &/. We write this operation without any sign,
for example as xy for two elements z,y € . For all z,y,z € & and a,b € K

1. (z+y)z=2zy+yz and z(y + 2) = 2y + zz,
2. (ax)(by) = (a- b)(zy),

An algebra is said to be an associative algebra if it satisfies (xy)z = z(yz).
In we will introduce an example of associative algebras, namely the
Clifford algebra. Now we will define Lie algebras, which are non-associative
algebras, and the additional operation is the Lie bracket.

Definition 4.6. A Lie algebra is a vector space g, together with a map, the Lie
bracket, [—, —] : g X g — g, satisfying the following axioms:

1. Bilinearity: [aX + 8Y,Z] = o[X, Z] + B]Y, Z], [X,aY + 8Z] = o[ X, Y] +
BIX,Z1V o, €K, and V XY, Z € g,

2. Skew symmetry: [X,Y]=—[Y,X]V XY €,
3. Jacobi identity: [X,[Y,Z]] + [V, [Z,X]]+ [Z,[X,Y]]=0V X,Y,Z € g

We may fix a basis {b;} for the Lie algebra g. Then the Lie bracket is defined
as

k
(b, bj] = fi;" b,
k . .
where f;; are known as structure constants, and are antisymmetric in the lower
indices, fijk = —fjik.

Many Lie algebras can be represented as matrices, with the Lie bracket being
the commutator, [X,Y] = XY — Y X, X,Y € g This is called a Lie algebra
representation.

Definition 4.7. Let g be a Lie algebra. A Lie algebra representation on a n-
dimensional vector space V' is a homomorphism p : g — End(V'), where End(V)
is the set of all endomorphisms on V. If V.= R", End(V) = Mat, (R) is the set
of real n x n matrices.

4.1 Killing Vector Fields

This section is taken from [7] and [8]. It will be clear that Killing vector fields
form Lie algebras.

Let us begin with defining what is meant with a vector field. A vector
field X over a m-dimensional manifold M is a smooth map from C*°(M), the
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smooth functions on M, to the same space C*°(M). Let a point p € M have
local coordinates z*(p) such that the set {z'(p),z2(p),...,2™(p)} can be seen

as a map from M to R™. Then the vector field X can be written X = X“ﬂ,
x

where X* are the components of X in the coordinate system with coordinates
x#(p). Since X isamap X : C®°(M) — C>°(M), for a smoothmap f: M — R,

X is a vector field if X[f] := X* Wf is a smooth function. We denote the set
x

of vector fields on M as X(M). A tensor field of type (g, r) assigns smoothly
an element of 7,7, to each point p € M. We denote the set of tensor fields of
type (¢,7) on M as 7,9(M).

We should also introduce a new map. The set of tensors of type (¢,7) on a
point p € M is denoted 7,9 (M). A smooth map f : M — N induces a map
fr %?f(p)(N) — 7% (M). f* is called the pullback. In components the f*
is given by the Jacobian matrix dz'®/0x*. If g is a smooth function, then the

pullback of g by f is defined by f*g =go f.

A concept which will be practical when considering the upcoming Killing
vector fields is the Lie derivative. The Lie derivative evaluates the change of a
tensor field along the flow of a vector field. The flow generated by X € ¥(M)
for some m-dimensional manifold M is a smooth map o : R x M — M. Let
t,s € R and p € M, then o satisfies (0,p) = p, o(t,o(s,p)) = o(t + s,p)
and %J(t,p) = X(o(t,p)). If we fix t,s € R this will instead be written as

oo(p) = p, oi(os(p)) = ors(p) and %Ut(p) = X(o¢(p)). Let us now consider

the components of the flow. The components of the flow in local coordinates x*
is of'(p). We let t = € be infinitesimal. Then, a point p with coordinates z*(p)
is mapped to
d 9 L d , 9
ot(e,p) = 0"(0,p) + e5-0"(0,p) + O(") = 0 (p) + e -0p (p) + O(€7)
= 2" (p) + X" (00(p)) + O(€?) = 2#(p) + X" (p) + O(e),  (4.1)

where O(€?) are terms with € to the power 2 or more. The Lie derivative of a
tensor T along a flow o¢(p) generated by a vector field X is defined as

_ TG, (+2)

Let now T € 97°, so that T is a smooth function, 7' = f. Then the Lie derivative
is

d
LxT(p) = pn

Lxf) = 5| i) = 5| s
= lim © (F(o01e(p) ~ F@uD)] g = lim * (Floep) — Floo(p))
= lim © (f(0(p)) ~ () = lim L (7(a*(p) + X" (1) ~ T2 (3)))
—tiny (S0 + X5 1 0) + O) - f0) )
= X2 f) = X111, (1.3
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That is, the Lie derivative of a smooth function is the directional derivative of
that function. Another Lie derivative which is useful to us is the Lie derivative
of a one-form w along the vector field X:

Lxw = (X"0yw, + 0, X"w,)dz". (4.4)
Furthermore, the Lie derivative satisfies the Leibniz rule:
Lx(t1 ®t2) = Lx(t1) @ ta +t1 ® Lx (t2), (4.5)

where t1 and o are tensor fields of arbitrary types (see [7], Chapter 5.3). Then,
a metric, that is, a type (0,2) tensor g = g, dz* ® dz”, has Lie derivative

LXg =Lx (g;wdxu) ®@da” + guvd‘ru ® Lx (dxu)
= Lx(guwdz") ® dz” + g,da” @ Lx(da")
+da" ® Lx (guda”) — da" @ Lx (gu.dz”).

Using (4.5) on the last term gives —Lx (g, )da* ® dz¥ — g dat ® Lx(dz”).
Thus,

Lxg= Lx(gudz") ®dz” + daz* ® Lx(gudz”) — Lx (g )de" @ dz”.

Now we are left with the Lie derivative of a smooth function Lx(g,.), and the
Lie derivative of two one-forms Lx(dz*) and Lx(dz”). Applying (4.3) and

({4.4), we get
Lxg = (XP0pg9uv + 0, X gp)da! @ da” + (XP0pg, + 0, X7 g,p)dat @ da”
— X[gp|da* ® dz”
= (X*P0,9 + 0, X" g, + 0, X" g, )da" @ da”. (4.6)

The final Lie derivative identity we will have use for follows: For a tensor T" and
two vector fields X and Y, it can be shown that

LixyiT = LxLyT — Ly LxT. (4.7)

Now we are almost ready to introduce Killing vector fields, and to show
that these form Lie algebras. The only thing we are missing is the concept of
isometries:

Definition 4.8. Let M be a manifold, with metric g on M. Let p € M be a
point on the manifold. An isometry is a diffeomorphism f : M — M which
preserves the metric

I 95) = 9p- (4.8)
In components, f* is given by the Jacobian, and (4.8)) becomes
0z’ ox'P
Oh wgaﬁ (f(p) = g;u/(p)a (4.9)

where z and 2’ are coordinates of p and f(p), respectively.

Definition 4.9. Let again M be a manifold, with metric g. Let also X € X(M)
be a vector field on M. If any set of points are displaced by eX, where € is
infinitesimal, and the displacement generates an isometry, then X is called a
Killing vector field.
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Let f : a# — 24 €eX* be an isometry. According to[Definition 4.8] f satisfies
D (z® +eX*) 0 (27 + eXP)
g,“,(.%‘) = Ok Oxv Jops (33 + fX)

(55 + 0 (68 + €0, X°) (gaple) + €X70,g0a0) + O()
= gu(x) + € (X'Y&,gu,,(x) + 0, X%gon () + 8VXﬂgug(x)) +0(e%),
(4.10)

where 0, = % We find
T

X059 + 0y X Gor + 0, X g5 = 0. (4.11)

This is the Killing equation. We recognise the left hand side of (4.11)) as (4.6).
Thus we can rewrite (4.11) as

(Lxg)uw = 0. (4.12)
Using (4.7)) we find that
Lixy)g=LxLyg—LyLxg=0. (4.13)

Thus, the Lie bracket of any two Killing vector fields, [X, Y], is another Killing
vector field. Hence, the Killing vector fields form a Lie algebra.

4.2 The Poincaré Algebra

In this section we will compute the Lie algebra of the Poincaré group by the
use of Killing vector fields. The Poincaré group is a Lie group consisting
of isometries in Minkowski space-time. In Minkowski space-time we use the
Minkowski metric 7,,, which in p time dimensions and ¢ space dimensions is

Nu = Diag(—1,...,—1,41,...,4+1). Choosing g,, = 7 in (4.11) gives
P q
0=X"0ynuw + 0u X Naw + 8VX*377#B (4.14)
=0,X, +0,X,.

Differentiating (4.14) once, and then permuting indices gives

0,0, X, + 0,0,X,, = 0, (4.15)
0,0, X, + 0,0, X, =0, (4.16)
0,0, X, + 0,0,X, = 0. (4.17)

Adding (4.15)) and (4.16]), and subtracting (4.17)) gives

0= 0,0, X, + 0,0, X, + 0,0, X + 0,0, X, — 8,0,X,, — 0,0, X,

(4.18)
=20,0,X,.

We see that the second derivative vanishes. Thus X, must be linear in z*

X, = ay, + bya”. (4.19)
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Substituting (4.19) in (4.14) gives
0=20u(ay, + byyz7) + 0u(a, + buox?) = by + buw. (4.20)

From (4.20)) we find that b, is antisymmetric. Then, in n dimensional space

time, there are %n(n — 1) b,,-matrices. In addition, there are n different a,,-

vectors. In total there are %n(n + 1) independent vector fields X, with compo-
nents X*. We consider first the constant solutions, which takes b,, = 0. Then

the vector fields are

X = X‘uau = n#”X’jaﬂ = n””ay(‘)u. (421)
Now, take a, = 0. We look at one of the antisymmetric vectors. Letting
b1 = —ba1 = 1, and the other components being zero, we get

X = X*‘@H = 77‘“’X1,6M = 77‘“”17,,733‘78” = 7711[)1233281 + 7722[)2133182
=220, — 2'0s. (4.22)

This is also true for the other choices of the b,,-components. We may lower the
indices on x. Thus, the vector fields are

X =2,0, —2,0,. (4.23)

We give the two vector fields we found new names. We choose, as is convention,
P, =9, and M, = z,0, — x,0,. In Appendix the commutation relations
consisting of P, and M, has been computed. The non-vanishing commutation
relations are

[P, P] =0, (4.24)
[M;uu Pp} = nuppu - nuppzn (425)
[Mp,ln Mpo} = nupMpa - ﬁ,pru - nVUMup + nupMUV' (4-26)

If we do not consider translations, that is, P, = 0, then only (4.26) is left. This
describes the Lorentz algebra.

4.3 The Conformal Algebra

In this section we compute the conformal algebra, which is the Poincaré algebra
with additional generators. A conformal transformation is an angle-conserving
transformation. Let M be a manifold, and let X(M) be the set of vector fields on
M. A diffeomorphism f: M — M is a conformal transformation if it preserves
the metric up to a scale

F 95w =P g, (p), (4.27)
or in components
0z’ 9x'8 "
S g 900 T 0) = g (p). (4.28)

where ¢ is a smooth map ¢ : M — M. Let € be an infinitesimal parameter.
Then we can write o = %61/’ for ¢ another map v : M — M. Now we can
rewrite the exponential as

e? =¥ =1+ eh + O(e?)

10
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Let X € X(M). Then, doing the same calculation as for (4.11), but with the
right-hand side of (4.28)), we obtain

Juv(T) + € (X”@ng(x) + 0 X" gar () + 81,Xﬁg#5($)> + 0(62) (4.29)
= (14 et + O(€%)) g ().

We can rewrite this as
X’Yayg;w + auXagcw + &,Xﬁgulg = wg;w- (4'30)

We should check if the , the conformal Killing equation, forms a Lie
algebra. We again identify the left hand side as the Lie derivative of the metric,
but the right hand side is this time non-zero, (Lxg),, = ¥gu,. We use
to see if the conformal Killing vectors form a Lie algebra. ¢ is not necessarily
the same for all vector fields, so we should write 1 x for ¢ corresponding to the
vector field X. Using , which told us that the Lie derivative of a smooth
function was the ordinary directional derivative, we find

Lixy19=LxLyg— LyLxg= Lx(¥vg) — Ly (¢¥xg)
= Lx(Wy)g+vyLxg— Ly(¥x)g —¥xLyg
= (X[y] = Y[¥x])g + (Yvvx — ¥xv¥y)g = Yix vi9

Then [X,Y] is also a conformal Killing vector, because Yrx,y] is a smooth func-
tion. Thus, the conformal Killing vectors form a Lie algebra.

Now we find an expression for ¢ from (4.30) by multiplying with g on
both sides.

miy = X’yguya’yguu + auXaguygaV + auXﬁgl“jgpﬁ
= X7g" 00, + 0, X0k + 0, X" 5% (4.31)
= X7g" 0y + 0, X" + 0, X"
= X7g" 0, + 20, X",

where m = dimM = g"¥g,,, and is equal to 4 in Minkowski space time. Thus,
(4.30) can be written as

X7gP70, g0 + 200 X
X’ya'yg,uu + aHXagow + auXngB = J 29 A Guv- (432)

m

We will consider the Minkowski metric, hence we get
2 A
00Xy +0,X, = EWW@\X . (4.33)
Differentiating (4.33)) once, and then permuting indices gives

0,0, X, + 0,0, X, = %n,wayakxt (4.34)

9,0,X, +0,0,X,, = %nwayakxt (4.35)

11
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2
D0, Xy + 0,0, Xy = Enwa,@x*. (4.36)
Adding (4.35)) and (4.36]), and subtracting (4.34)) gives
0,0, X, = M0 T 7777*;8” — %y g X2, (4.37)

Furthermore, acting on (4.33)) with 9,0" = 0O, and then substitute 0,X, with
(14.33) gives
2
0,010, X, + 0,00, X, = Enw,aﬂaﬂagxa

D0,X, + 0,0,(0°X,) = = 0,0,(0,X7)

mO (;W&X* - 8VX#> +md,0,(0°X,) = 20,0, (0, X7)

Furthermore,

2
0=m0O <m77,w6>\X>‘ - 3,,Xu> + (m—2)0,0,(0°X,)

=0 (20w X* —md, X,,) + (m —2)0,0,(0°X,,)

=0 (20w X — 0" 100, X,.) + (m — 2)0,0,(0°X,)

= 0 (& X?) + (m — 2)8,0,(9°X,,) (4.38)

= (B + (m —2)8,0,) (9° X))

= ("B + 0" (m —2)0,0,) (0°X,)

— (mO+ (m - 2),0") (9 X,)

= (m—1)0(9,X").
From (4.38]) we see that X* is at most quadratic in «#. Therefore, we can write

Xy =ay + b’ +cpa’s? (4.39)

Plugging (4.39)) into (4.37)) gives

vy O 0y — N0
0,0y (a,y + byaz® + cmgxaxﬁ) — % + U N (n’\fXg) . (4.40)

m
The left-hand side of (4.40) is
90y (ay + byaa® + Cvaﬁxaxﬁ) = Cyap (5355 + 5355) (4.41)

= Cyuw + Cyups

and the right-hand side is

v 7] al/ - ua
My O + nv;; U RSN (g + bepa® + Cepoa”z”)
1 pYS P p o p SO
= En {1070 + M0y — N0y} (bepdX + cepodia” + cepoa”dy)

1 o o o o o o
= — 17" Cepo {11 (407, + 04.0%) + myu (8507 + 6705 — muw (9307 + 8505)}

1
= %{WVV(CAM + CA;M) + UW(C)\AV + CAVA) - TI;W(CAM + C)\’Y)\)}'

(4.42)

12
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This means that (4.40)) is satisfied if ¢,,,, is antisymmetric in its last two indices.

The constant vector fields are as P, in the Poincaré algebra. Next, the
term linear in x is considered. Since any tensor can be written as the sum of a
symmetric and an antisymmetric tensor, we can write b,, = b(,.) + b The

antisymmetric part corresponds to the Lorentz algebra, found in
By using (4.33)), we can get more information about the symmetric part.

- 2
Ou(bypa?) + 0y (buox®) = an#,,@\ (n’\gb&xc)
2
bup + b = En/\gb&n/w’

We see that when b, is symmetric, it is proportional to the Minowski metric,
b(uvy o M- We can then write by, = any, + by, where a is some parameter.
The vector fields are given by

XH0, =" X,0, = n""ny,x70, = z"0,. (4.43)

The vector fields of this form are called dilations, D = 2*0,,.
Now, only the term quadratic in z is left. Using (4.41)) and (4.42)) we write

1
Cypr = 0 (UVWCA/\M + nwc)\/\v - anCAM) :
Then, the vector fields are
X1d, ="' X,0,
="y pexP 20,
=" (nmc)\kp + nvpc/\M - npacl\M) Pz 0,

4.44
- (6@,‘0’\@ + 6’p‘c)‘,\a — npgc)‘)\“) zfx?0, (444)

by
= c)‘mxl‘x"&, + c)‘A#xp:L'“ap —c /\“xc,:r"@#
A o 2
="\ (20,270, — x70,,),

where 22 = z,2°. These vector fields are called special conformal transforma-

tions, and are denoted K, = 2z,2"9, — 220,.

There are, in the conformal algebra, m special conformal transformations

and 1 dilation vector, in addition to the %m(m + 1) vectors from the Poincaré

(m+2)(m+1)

algebra. In total there are 5

vector fields in the conformal algebra.

In Appendix the commutation relations consisting of the generators of
the conformal algebra has been computed. The non-vanishing commutation
relations are

[Py, D] = P,, (4.45)
[P, K] = 2 (nuuD + Myy) (4.46)
[D,K,]| =K,, (4.47)

[ZMH,,7 Pp} =MoLy — Nuplo, (4.48)
My, M| = 10p Mo — Nuo Moy — NueMyup + 0o Mo, (4.49)
(M, Kp] = 0p Ky — npp K. (4.50)

13
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In Appendix [B:3] we show that on R?*¢ the conformal algebra is isomorphic
toso(p+1,q+1).

Now we have found the two Lie algebras which will be considered in this
thesis. In the next section we will get an understanding of the Clifford algebra,
which is important in supersymmetry.

5 Real Clifford Algebras

For the Lagrangian of fermionic fields in four dimensional space-time to be
invariant under Lorentz transformations we need to include y-matrices, which
generates the Clifford algebra. The Clifford algebra C#(p, q) over the field R
is an associative algebra containing the identity element 1, defined by

TYuYe + YV = 20w 1, (5’1)
where 7, = Diag(—1,...,—1,+1,...,+1). is referred to as the Clifford
p q
condition. We define )
Y = 1(7;/71/ - ’YV'Y;L)- (5.2)

Now, let us compute the commutator [X,,,¥,,]. We begin by considering a
part of the commutator

[’Y#’Yw Epa] = ’V;L’szpa - Epcr’Y,u’Vu + ’Vuzpcr%z - 'Yuzpafyu
=T (’szpa - Epa’YV) + (’Yuzpo - Epa’Yu)'YV (5.3)
= YulYor ool + [V ool

We compute the [v,,X,,] separately.
4, Bpol = 4(VuXpo — LpoVu)
=Y (VYo = Yop) = (VpYo — Vo Vo) Vi + VpVuVo = VoVuVo + Vo VuVo — Yo Vu Vo

= (Yo + YY) Ve — (VYo + YoVu) Yo — Yo(YoVu + YuVo) + Yo (VoY + YY)
= 2NupVo = 20ueYe = 2Vplon + 270 Nop = ANupYo — 4ucVp

Putting this back in (5.3))

[7/1’71/’ Epo] = ’Yu(nup')/a - "7110'7;)) + (nup')/a - nua%)%

Now we are ready to find the full commutator,

1 1
[Zvs Bpo] = Z['Y/ﬂ/uv Yool = (p > v) = Z(meﬂa — Mo VuYp + MupYo Yo — MuaVpVw) — (1 < V)

1
= Z(nvp(%/}/a + 70’7#) — Nvo (’Y/L’Yp + 'Yp’Y/L) + 77/1;;(7«7'71/ + %%) — Nuo (’Yp'YV + ’Yu'Yp))
= nupzyg - nvazpp + nupzau - npazpz/ (54)
Recalling that the Lorentz algebra is given by
(M, Mpo] = 1upMuo — e Mpy — Nuo Mup + 1up Mo, (5.5)

we see that (5.4]) represent ([5.5)).

14
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5.1 Spinor Representations

The Clifford algebra can be classified as in This has been worked out
in Appendix

p—qmod 8 C?(p,q) N
0,6 MatN(IR) 2d 2
2,4 Mat y (I1) 2(d=2)/2
1,5 Maty (C) 2(d=1)/2
3 Mat y (H) @ Mat v (H) | 2(4=3)/2
7 Maty (R) @ Maty (R) | 2(¢=1)/2

Table 1: Classification of Clifford algebras.

Even though some of these matrices contain complex and quaternionic elements,
they should all be thought of as real associative algebras, in the sense of
mition 4.9

There exists an automorphism f : CZ(p,q) — C£(p,q) defined by v, —
f(vu) = —u, since the Clifford condition does not change: (—v,)(—v) +
(=) (=7w) = Y7 + %y = 21 It is bijective since it is both injective
and surjective. We can use f(y,) = —v, to find how f acts on any number
of y-matrices. For example, we need f(1) = 1. We see that we also need
f(vuvw) = Y, for the Clifford condition to be satisfied. We can generalise
this to f(Vu, ---Yue) = (=1)%v4, ...V, Then, for even k the y-matrices are
mapped to themselves, while for odd k the y-matrices are mapped to minus
themselves. Thus, the automorphism lets us decompose the Clifford algebra into
two subspaces, CZ(p,q) = C£(p,q)° ® C¢(p,q)*, where C¢(p,q)° is called the
even part of the algebra, consisting of an even number of y-matrices, including
the identity, while CZ(p, ¢)* is called the odd part of the algebra, consisting of
an odd number of y-matrices. If we let 0 denote an element in the even part of
the algebra, and 1 denote an element in the odd part, the multiplication rules
of two elements follows

0x0=0, 0x1=1, 1x1=0.

Hence, only C#(p,q)° is closed under multiplication, and forms a subalgebra.
There are two useful isomorphisms [9],

Lemma 5.1. The following isomorphisms hold

VoWV

Ct(p,q)° =Cl(p—1,q), p>1
q=1.

Cf(pa q)O = Cf(q - 1,]7),

Considering p — ¢ = 0 mod 8, then p — 1 — ¢ = 7 mod 8, and C#(p, q)° =
Mat n(R) @& Maty (R). As seen from the dimension changes, d —
d—1, hence N = 2(4=1/2 when p = ¢q. Going through this for all eight different
values for p — ¢ mod 8, we get the classification as in
One subgroup of the Clifford algebra is the group consisting of all invertible
elements of C#(p,q), written C#(p,q)*. Since any group needs to contain all
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p—qmod 8 C?(p,q)° N
1,7 Maty(R) 2(d=1)72
3,5 Mat x (H) 2(d=3)/2
2,6 Maty (C) 2(d=2)/2
4 Mat y (H) @ Mat v (H) | 2(d=4/2
0 Maty (R) ® Maty (R) | 2(4=2)/2

Table 2: Classification of even Clifford algebras.

its elements inverse element, CZ(p, ¢)* contains all other subgroups of CZ(p, q).
One of these is the Pin group,

Pin(p, q) := {viva ... v, [ "0, = £1, v, € RPI}

The subgroup of even elements of Pin(p, ¢) is called the Spin group, and it is
defined as

Spin(p, q) := Pin(p,q) N CZ(p, q)° = {v1va ... vap, | P 040, = £1, v, € RP}.

Irreducible representations of the Pin group are called pinor representations
&P, and irreducible representations of the Spin group are called spinor repre-
sentations §.

We will most of the time work in one time dimension and three space dimen-
sions, p = 1 and ¢ = 3. Then the Clifford algebra is isomorphic to Mat,(R),
and the even Clifford algebra is isomorphic to Maty(C). Mats(R) are act-
ing on pinors in R*, while Mat,(C) are acting on spinors in C2. However,
C? = R4, so by an abuse of notation, one says that the spinor representation
in four-dimensional space-time is Maty(R). Furthermore, the real spinor rep-
resentations are called Majorana spinors, which spinors in four-dimensional
space-time are a part of.

5.2 More About the y-matrices

Following the conventions of [10], we define the totally anitsymmetrised product
of y-matrices as

1 :
Yerpz.oppn = ! Z Slgn(a)’ma(l)%ta(z) wo Vo ny (5.8)
" o€S,
where the sum is over all the permutations of the set S, = {1,2,...,n}. For

example, we have v, = 2%, = %(%'yl, — YYu) as in (5.2). We may multiply
the the totally antisymmetrised product of y-matrices with a single y-matrix

Viapzeoppn Vo = Vnpizcpiny + Mo Vpapacpin—1 = Mopn—1 Vps po.. i —tpn (5.9)
-1
+ e + (7]‘)’"‘ nvpl’Yprg...pn-

Indices with a hat on top are omitted. A proof of this identity can be found
in Appendix[A72] Now we can find a basis for the Clifford algebra. Obviously
we need both 1 and v,. Let us see how many other elements we need to create
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a basis for the Clifford algebra in n dimensions. Let us multiply two elements
v, and 7,. We use the fact that any matrix can be written as the sum of a
symmetric- and an anti-symmetric matrix. Then,
YuYv = Yuv + nm/]l

We see that we have found another element necessary to complete the basis,
namely 7,,,. Let us again multiply by 7, on the right:

VYo = Yuvp T Nov VY — NppuVv-
Thus, also 7y,,, is an element in the basis. We can continue this up to there
are n subscripts on the ~-matrix, but no more. If v in (5.9)) is equal to one of
M2 - -« o, then v, s, = 0. Thus, a basis for the Clifford algebra is given
by

{]1 ’YM meItz et ’YNIMZ---,Un} .

We define the chirality matrix ~, in n = p 4+ ¢ dimensions, as

Y=V Y = Vn (5.10)

In four-dimensional space time, with p = 1 and ¢ = 3, 7 is often denoted as
Y5 = 70123-
Proposition 5.2. ~ satisfies the following identities:

Yy = (1", (5.11)
72 _ (_1)n(n+1)/2—q. (512)
In Minkowski space, 7 = -5 satisfies
1 o
Yur Vs = _ie,uupalyp s (513)
Yuvp = EWMWJ%, (514)
Yuvpo = —€uvpoV5, (515)
where 60123 — —€p123 — 1.

This tells us that in n = 4 dimensional space time, with p = 1, ¢ = 3, 75
anti-commutes with v,, and 72 = (—1)*5/273=7 = —1. The proposition has
been proved in Appendix [A-3]

A Dbasis for the four-dimensional Clifford algebra, or in other words, a basis
for real 4 x 4 matrices, is given by

{1 % Y e Yuvpot
We find how many elements there are of each type:
e 1: 1 element: only 1,
e 7,: 4 elements: vo,v1, 72,73,
® Y.t 6 elements: Yo1,702, Y03, Y12, V13, V23,
® Yuvp: 4 elements: Y012, 7013, 7023, V123,

® Yuvpo: 1 element: Y123 = vs.

In all there are 16 elements.
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5.3 The Charge Conjugation Matrix

We continue considering the Clifford algebra in one time dimension and three
space dimensions, C#(1,3) = Maty(R). The following theorem is useful:

Theorem 5.3. (Skolem-Noether) Let K be an arbitrary field, and let ¢ : Mat,, (K) —
Mat, (K) be an automorphism. Then, for any A € Mat,,(IK) there exists B €
Mat,,(KK), and B invertible, such that

#(A) = BAB™'.
In other words, every automorphism of Mat,, (IK) is inner.

See [11] for a proof. The theorem can be written in a more general way, but
the way it is stated above is strong enough for our purposes. The Skolem-
Noether Theorem tells us that there is an automorphism defined by v, ~
Cv,C71, 74, € C¢(1,3), C € Maty(R) and C invertible. Another automor-
phism is given by v, 'yf“ since transposing the Clifford condition is also a
Clifford condition

Yo+ = 2wl
By the two aforementioned automorphisms there is another automorphism,
which gives W/t» = C,C~'. We may change C to C’ := C5. This gives

T = Cu(C) ! = Csy(Crs) ™ = =Crsns 'O = =07, 070 (5.16)
Transposing again, we find

= (O3 = ~(CT A = () (OO
— (C—lct)—l,yu(c—lct),

leading to (C71C*%)y, = v,(C~1C?). Hence, (C~'C") commutes with all ele-
ments of C£(1, 3). The center of an algebra is the set of elements that commutes
with every element of the algebra. Hence, (C~!C?) lies in the center of C#(1, 3).
Schur’s lemma gives a condition to (C~1C"?):

Theorem 5.4. (Schur’s Lemma) Let A be an associative algebra, and let p be
an irreducible representation of A on a n-dimensional vector space V', that is,
p s a homomorphism from A into Mat,, (V) with no non-trivial subspaces. Let
f € Mat,, (V) commute with p(z) for all x € A. Then f = M1, for some X € R.

This lemma can, as with the Skolem-Noether theorem, be stated in a more
general way, which is not necessary for us. [I2] gives a proof for Lie algebras,
but it is similar for associative algebras. The Clifford algebra is an associative
algebra and it is given by matrices v,. We have shown that there are matrices
(C~1C*) which commute with all v,. Then, by Schur’s lemma (C~'C?) = A1,
and C* = AC. Transposing, we get C' = \C* = \2C, thus A = 1. Then

C'=+C. (5.17)

To determine the sign in ([5.17]) we use the basis for the four-dimensional Clifford
algebra, which is isomorphic to 4 x 4 real matrices:

{]1 Y Yuv  Ypvp 'Y;wpa}“
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A 4 x 4 matrix has 16 elements, its dimensionality is 16. Any matrix can be
written as the sum a symmetric- and an anti-symmetric matrix. A symmetric
matrix consists of n(n + 1)/2 = 10 elements, when n = 4. An anti-symmetric
matrix consists of n(n — 1)/2 = 6 elements, when n = 4. So the dimensionality
of symmetric 4 x 4 matrices is 10, while that of anti-symmetric matrices is 6.
Thus, multiplying C' to the basis above should lead to 10 symmetric matrices,
and 6 anti-symmetric matrices. By making use of ,YZ = fC’y#C”l, and its
generalisation (proof in Appendix |A.4)):

’Yfll,w---,un = (71)n(n+1)/20’7u1#2...;¢n0717 (5.18)

n > 0, we can determine the sign of C. We find whether Cvy,, ;.. for n =
0,1,2,3,4 is symmetric or anti-symmetric:
C' = +0,
(C) =7,0" = =07, 071C! = FCry,,
(C'V;w)t = 'Vfwct = _C'V,uuc_lct = FCVuw,
(C’Y;,“/p)t = 'Yf“/pct = C'Yuupcilct = :I:C’YHV/N
(C'yuupa)t = ,yf“/pacrt = C'ﬁtupao_lct = :l:C'yuupa-

If we choose C* = +C, then there will be 6 symmetric, and 10 skew-symmetric,
while C* = —C gives 10 symmetric and 6 skew-symmetric. Hence, the latter
option is the correct one. The C satisfying this and ([5.16)) is called the charge

conjugation matrix. Introducing spinor indices on a spinor 1 € &, such that
(Vu®)* = (7u)", 0", the charge conjugation matrix becomes

Cop = —Cha. (5.19)

We can use C' to raise and lower spinor indices, where we use the North- West
and South-FEast conventions,

P = C, Vo = P Cha, (5.20)

where C? is the inverse of —Cj;,. After introducing indices, we write the 7-
matrices as (v,)%,- When multiplying a y-matrix with C' we employ the follow-
ing shorthand notation

(Vuab = (Cy)ab = (Vu)yCea = —Cac(u) - (5.21)

That is, if both spinor indices are either up or down, the y-matrix is multiplied
with C. With spinor indices we have, from the calculations below (|5.18)

(Yi)ab = (Yu)bas (Yuvp)ab = = (YVuvp)bas
(’Yp‘l/)ab = ('Yuu)bav (’Yul/po)ab = _(’Yuupa)ba-

Other useful identities are computed below.
(Cs) = 750" = =Cr071C = —Cns.

With spinor indices:
(¥5)ab = —(V5)ba- (5.22)
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We will also encounter terms as 7,,...4,,7s5. For n =1 we have

(Cyus)t = 17,.C" = %6 (Cyu)t = %Cy = —(C5) ' = Cy57u = —Cyus.

With spinor indices:

(Yuys)ab = = (7u75)ba- (5.23)
For n = 2,3,4 we use [Proposition 5.2}
1 oo 1 o

(’Y;LV'YS)ab = *ﬁeuupa('y )ab = 756111/;)0('7 )ba = ('Y/w'yfi)baa (524)

(’Y,ul/p’}%)ab = €uvpo (707575)ab = —€uvpo ("Ya)ab = —€uvpo ("YU)ba
= 6uupa(707575)ba = (fY;u/p’YS)bav (525)

(’Y/J,Vpa’yf))ab = —€uvpo (7575)0,17 = Euupacab = _Euupacba

= 6#Vp0’(75’75)ba = _(’Y,uupcr'YB)ba~ (526)

Another combination of gamma-matrices we will encounter is
QTG Pl C Y 198

We do not yet know what a term like (*y,“_“,im)ab is. Using (5.20)), we get
(7u1--‘um)ab = ('Ym‘-.um)Ccha = de(%l..-um)cdcca

= (=Cad) s i) e =€) = =Yy OV

The final minus sign comes from C% being the inverse of —Cl,. Then,

_ b _
_(C%ﬂmumc 1>a (Yor.ovm Joe = _(C'meumc 1)a <_(7V1~~~Vrn>dc0bd>
= (C’yﬂlu'ﬂvnC_lc)ad(’yyln-’/n)dc
= (prln...um'yul..‘un)ao

b

Thus, ,
YVor oo Ja (Vor o Jbe = (Vs eoopion Yo ooovm )ac (5.27)

Furthermore, when y-matrices act on a spinor with lowered indices (v, ...4,,%)a,
we get

Varopim®a = Voo ®)Cha = Vpar oo )’ Coa = Vpir .o )acC 2t
G (5.28)
Two other identities which will be come in handy follows. We use to prove
them:
Y =+ 6% =7 Y = 0+ Y = Y — A
= —27,, (5.29)
VoYY = (Vo + 0070 = 007u)%p
=NV’ 1 = NouY’y + 05%uw + 05, (Yop + Mwp) — 65 (Vup + 1)
= You = Yuv + WV + Yo = Y = 0. (5.30)

In the next section we will finally take use of the algebras we have computed
in the previous two sections.
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6 Field Theory

In this section we will look into some examples of physical systems, and investi-
gate whether or not they are symmetries under both the Poincaré algebra and
the Conformal algebra. At the end of the section we will consider supersym-
metry for the first time. However, first we recall some necessary tools of field
theory.

6.1 Principle of Least Action

This geometric part in this section has been taken from [7], chapter 7.9.1.

Let M be a m-dimensional manifold with metric g,,. A field is a function
which returns a value for each point on M. For example, a scalar field assigns
a scalar to each point on M, and a vector field assigns a vector to each point
on M. For any field ¢ and its derivatives, we define a function, the Lagrangian
density Z (¢, 0,¢,0,0,¢,...), where ... denotes more derivatives of the field.
For simplicity we will write this only as Z(¢) := Z (v, 0up, 0,0,¢, ... ), or even
only & when it is obvious what fields we are working on. The action is a
functional, which is a function mapping functions to numbers. We use square
brackets around the input of functionals, to distinguish them from functions.
The action is defined as an integral of the Lagrangian density over M with

metric g,
SSOI—_/ ffgo\/detgwdxl/\.../\dxm, 6.1

where dz! A ... A dz™ is an m-form, a totally anti-symmetric tensor of type
(0,m). Ais the wedge product. The wedge product is a totally anti-symmetric
tensor product between one-forms w € 7,°, defined as

dz#t AL A dat = Z sign(o)dazte® AL A dxtetm, (6.2)
TESm

The sum is over all the permutations of the set S,, = {1,2,...,m}. Then we
have

dat Ade? = da* @ de” — dz¥ @ da¥,

dz? Adz* = 0.
If we use another set of coordinates, y',...,y™, the volume element becomes

OxH Oxv 1

We can rewrite dy* = g:; dz?. Then the volume element becomes

oy
)‘ \/|det g, | det <5ayc”>dxl Ao Ada™
= +y/|det g |dzt A ... A dz™

det (

ox#
oy~
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since det(AB) = det Adet B, and det A1 = (det A)~! for two matrices A and

B. Thus, when det (8“7 ) > 0, the volume element is invariant under the

B3

change of coordinates. We will only work in flat space, with g, = 7,,, the

Minkowski metric, which has determinant detn,, = —1x1x1x1= -1, and
then +/|detn,,| = 1. Then (6.1) becomes
= / Z(p)dat ... dz™. (6.3)
M

Since we will almost always integrate over dz'!...da™, we will usually omit
writing this part in the future. Let d¢ be an infinitesimal variation of the field
. The Taylor-like expansion of the action is

i+ b6l = 5lel + [ 35+ 05,2, (6.4

where %}:’] is the functional derivative. We find that

/wgiﬂ iy Slo+ el = Sle] (6.5)

e—0 €

55[%]

The extrema of the action, when [ dp=5+ = 0, are the equations of motion.

This is the principle of least action.

We find the equations of motion in terms of the Lagrangian density:

0:/5@55[ |y Slet €] — Se]

<p e—0 €
= lim - / (¢ + €dp) — /3
e—0 6
. o0&
i e([ewee 5 a0 /0(6”@)5(3“@
/8 .07 0(0,0u) + /3 (6.6)
83
0L
o< 83 EZ
- /5‘p(% 90, +8“8”a(auaygo) +>

In this calculation we have integrated by parts to get d¢ for each term. For
example, for the second term we have

0L 0%
/M 3(6yp) ) = /M 3a,p) %)

_ /M 9, <a(%ii0)§<p> ~ 9, (a(%i)) Sp.  (6.7)
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6.2 Free Massless Lagrangian 6 FIELD THEORY

Furthermore, the divergence theorem tells us

0Z 0%
dz™0 (5 ) :/ de™ n, —— 5§ , 6.8
/M i\30,9)°¢) = o F o) ¥ (6.8)

where n, is the outward pointing unit normal vector field on dM, which is
the boundary of M. Assuming that the field vanishes at the boundary of the

manifold, also vanishes, and (6.7) becomes

In the last step of the equation where we find the equations of motion we have
moved the dp to the left. We then need to be extra careful when considering
fermionic fields, which are anti-commuting.

Let us now for convenience define
6S[e]
= —. Nl
65[] /590 5o (6.10)

We will usually omit writing the field in §S[p], writing it only as §5. We will
make extensive use of

0< 0< 0<
55:/5 (_a+aay+...), 6.11
¥ (930 Ma(a,ugo) g a(a#au@) ( )
where Y Py 0
- - 0,———+0,0,———+---=0 6.12
Oy “3(5u</>) . 9(0,0,p) ( )

are the Euler-Lagrange equations, which gives the equations of motion.

In the following we will check a few models of physics if they are symmetric
under the Poincaré and conformal algebra. The model is symmetric under the
algebra if the action vanishes.

6.2 Free Massless Lagrangian

We begin with the simplest model, a free scalar field, ¢ = ¢. Scalar fields are
bosonic, and they commute with each other. The Lagrangian density of our free
scalar field is

1
%(6) = 3 (967", (613)
where (0¢)? = 0,,¢0"¢. We find the equations of motion from :

0F 1
58 = — / O pnd) = / 0050, (20" ) = / 360,0" . (6.14)

Thus, the equations of motion for the free massless scalar field are, with d,0" =
0, O¢ = 0.
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6.2 Free Massless Lagrangian 6 FIELD THEORY

We want to know if (6.14)) is invariant under the Poincaré algebra. In
we found that the generators of the Poincaré algebra are given by

P, =0,, M,, = z,0, — x,0,.
An obvious guess on how the infinitesimal Poincaré transformations look like is

Sap = a” Py = a0, (6.15)
Sy = b My, = W (2,0, — 1,0,), (6.16)

for infinitesimal a* and b"”. We check if these transformations keeps (|6.14)
invariant:

5ﬁ=/@ﬁw=/wmwm%=—/wmywmza

s = [[o0m0= [0, 2,0,)60,

T / O (NppOy + 20p00 — Npu Oy — £,0,0,) 90 )

/W%@@Aﬁf@@+%%mm—&@fwf@%—%@W@w

- / Y Ny — Moy + 24,0, — 0,,0,,)$0,0”¢p = 0.
This shows that (6.14]) is in fact Poincaré invariant.

In we found the conformal algebra. Let us check if (6.14) is

invariant under conformal transformations as well. In addition to the Poincaré
generators we have

D=x,0 K, =2x,2"0, — x28u.

1wy

We again try the obvious guess of infinitesimal conformal transformations

§c¢ = cD¢ = ca 0,9, (6.17)
0 = d"K, ¢ = d"(2x,2"0, — x,2"0,)0, (6.18)

for infinitesimal ¢ and d*. Applying these transformations to ((6.14]) we get
0.9 = /5C¢D¢ = /cm“@wﬁay@”(b = —/c(éy"@u +240,,0,)90" ¢
= /az)(aya” + 10,0, + 240,,0,0")¢p = — / c(zhdy, + 6," — 2)90,0" ¢

. / (a9, + d - 2)90,0" ) # 0,

24



6.2 Free Massless Lagrangian 6 FIELD THEORY

545 = / 54606 = / & (22,2" D, — 22 8,) 00,07
_ / 0 (213" By + 2,850, + 22,27 0,0, — npa” D,
— 2,840, — 2,37 0,0,)$0°

— / d" (2np,2" 0y + 22,0, + 22,27 0,0, — 22,0, — x,2"0,,0,)Pp0" P

= [ @t + a700)0, + 2 + 5,070,

+ 202" + z,n™ + 2,27 07)0,0, — 2(0), + 2,0°)0,
— (682" + x,n” + 2,270°)0,0,) b

- / A" $((4 — 2d)0,, + 42,0,0° + 22,2" 0,0,0° — 1,27 0,0°0,,)¢

_ / (4 — 2§ — (22,200, — 107" 0, — (4 — 2d),,)$0,0° ) # 0.

We have used ¢/} = d, d being the dimension of our manifold. Neither 6.5 nor
045 vanish. However, we notice that if we change each of the transformations

(6.17) and (6.18) they might do. If we change the transformation (6.17)) to be
de¢p = c(x"0, + A)g, A a constant, then §.S becomes

5,8 = / (a0, + N)$0,0" ) — — / "D,y +d — 2 — A)$d, 0" 6.
This vanish when A = d — 2 — A, hence we get A = 1(d — 2). Similarly, we
need a change for 64S. Here we have an extra term (4 — 2d)z,. Therefore, it
seems we need a constant, x, multiplied with x,. We try the transformation

dap = d"*(2xz 20, — x,x" 0y + Kxy)¢. When we integrate by parts, the new
term gives

/ i, 60,0 — — / k(0o + 2,40,)$0° 6 — / K + 6,00, + 2,0,0°) ¢
- / k6(20, + ,0,0)0.
Plugging this into §45 above gives
548 = / (2,57 D, — 22", + ) 40,07
_ / 0 (4= 2d + 20)60,6 — (2000, — 102" Dy — (4 — 2d + R)2,)$0,0°0)

We need 4 —2d+ 2k = 0 and K = —(4 — 2d + k). These two expressions are the
same, and yield k = d — 2 = 2A.

We have found that the Lagrangian density #(¢) = —4(0¢)? is invariant
under the infinitesimal Poincaré transformations

S = " P, = a8, 0, (6.19)

O0pp =" M0 = " (2,0, — ,0,) 0, (6.20)
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6.2 Free Massless Lagrangian 6 FIELD THEORY

and under the infinitesimal conformal transformations

dep = cD¢ = c(a"0, + A)o, (6.21)
0 = d"K, ¢ = d" (2z,2" 0, — x,2" 0, + 2Ax,)d, (6.22)

with A = %(d —2). In four dimensional space time, d = 4, A = 1.

Another type of field which will be considered is a fermionic spinor field,
@ = 1, in four dimensional space-time. We recall that we will then consider
Majorana spinors, which in this case are 4 x 4-real matrices. We will always
work in four dimensional space-time when considering fermionic fields, except
when otherwise stated. Fermionic fields anti-commute, for two fermionic fields
11, o we have 119 = —1Po1p1. The Lagrangian for our fermionic field is

L) = %W%} = %w“('y”)ab%w”, (6.23)

where 9 is the Majorana conjugate of 1, Y = PtC, and P = v*0,. The
equations of motion for ¢ are

0% 0% 0Z
55 = [ sy° —~ Y | 5 — Opmrm—s
/ v (auza uwa))* v (awb e M’))

0L
= e = gy = 0 5

- / 5 (1) as@ut” + 0,0 (1 Yy = / 56 ()0, ”
/ 5Py (6.24)

We get a sign change from 8u since fermionic derivatives anitcommute

0Z

(00" ) 5
with fermionic fields, a—wb(waw ) = a—wb(wa)z/}b - waa—wb(wb). We investigate
for Poincaré invarinace, and try the infinitesimal Poincaré transformations sim-
ilar to the transformations for the bosonic scalar field:

da = a' Py = a0y, (6.25)
) = V" M = b (2,0, — 2,0,). (6.26)

We need the transformations on v. However, in this case the Majorana conju-
gate only acst on v, so the transformations become

Sath = a"Pp = a" 9,1, (6.27)
Sptb = b M, 1p = b (2,0, — 2,0,,)1). (6.28)

Then we find
5aS = / Sathit = / " Db () abOpt’ = / a" 90" (1) a0y t)”
_/a“auwb(’yp)abapl/’a = _/auguwa(Vp)abapwb =0
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6.2 Free Massless Lagrangian 6 FIELD THEORY

S = /5b7/;$77/1 = /b‘“’(zuay - xﬁu)i)@w = /blw(xuav - xuau)d’a('yp)abapd)b
= - / b ((77#1/ - nuu)"l)a(’yp)abap'l/)b + wa(’yp)ab(%Lal/ - xuaﬂ)ap¢b)
= /b’w (ap7/’a(7p)ab(xuau - xuau)wb + (V) ab(Npu Oy — npvau)d’b)
= _/bul’ ((‘rual’ - xVaH)wb('Vp)abapwa - 2wa(7[u)ab8u]wb)
__ / D (2400 — 220,00 (1) a0 — 20 (1) by ?) # 0. (6.29)
It turns out (6.23]) is not invariant under (6.28]). We try to continue our success
of adding terms to our initial guess of transformations. In this case we need
something which obeys the Lorentz algebra. In we found that ¥, =

%(%ﬂu — YY) = %'y,“, do obey the Lorentz algebra, so we try the following
transformation:

) =" (2,0, — ,0,,) + X)) Y. (6.30)

The transformation for ¢ is then

Sot0 = 0" (2,0 — 2,0,)0 + S) (6.31)
where
St = (Zwy)'C =%, 0
Furthermore,
. 1, 4 1 ‘ 1
¥,C= —5%,,0 = _5(0%11) = _507;“/ =-C%,, =C%,,,

where we have used (C7,,)" = C7y,p. Then (6.31)) is
St = 0" ((2,0) — 2, 0,)¢ +US,) . (6.32)

We have

[oimapn = [0 o a0 (6.33)
We can write

p_ 1 p_ 1 oo 1 oo
ZVH’Y = 571/;[7 = 57’ YvpYo = 577 (,‘YVIU.U + NopYv — 7]0‘1/7#)
1
= 5 (’yv,up + 52’)’1/ - 55’7#) .

Plugging this back in (6.33), we get

1
[ o Sttt = 5 [0 O + 57 = 52),, 00
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6.2 Free Massless Lagrangian 6 FIELD THEORY

Since the equations below (5.18) tells us that (Yuwp)ab = —(Yuwvp)ba, the first
term in the equation above vanishes:

/bwqﬁa(%up)abapwb = —/bwapwa(%up)abwb = /bwwb(’)’wp)abapw
= /bwwa(%up)baapwb = _/bwwa(%up)abaﬂﬁb-

Then we have

_ 1
J ot = [ e @ - i), 00"
= / U (V) abOp 1. (6.34)

Now, using the transformation (6.31)),the varying action in (6.29) and (6.34)),

the action becomes

05 = [V (0,0, — 2,0,)0 + %) B0
== [0 (@~ 0,007 (st — 20 ) — 0 1)y )
== [0 (@0, = 2,000 (F) Dyl + " s
- / D (8, — £,8,)0 + §50,) P

Then the 0,5 vanishes, as desired. We have found that the Lagrangian (6.23)
is invariant under the following infinitesimal Poincaré transformations:

Sat) = " P,tp = aldpp, (6.35)
Sth = b (M, + ) 1 = 0™ (240, — 2,0,) + L) 1) (6.36)

Let us now investigate whether or not (6.23)) is invariant under conformal
transformations. We try the following transformations:

detp = cDY = cat O, (6.37)
dgp = d"K ) = d*(2z,2" 0y — x,270),)1), (6.38)

(6.37) and applied to the varying action is
5.5 = [ 0,000 = [ 0,00 (7m0, = [ (0l +2#9,)0,0° (1)
= [0 (s + [ (80000 )ast? + 0,0 () sy
= [e(@= 10,00 07)ast? +540,% (1))
e RN CORC R RCONERT
— [ ela0,+ (@ 1) 5w 20,
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6.2 Free Massless Lagrangian 6 FIELD THEORY

648 = / Sapdp = / d* (22,370, — 22" 0,) " (V7) ab0pt)"
_ / " (277,,ﬂx'/ay + 22,070, + 22,27 0,0 — 13" 0
— 5850, — " 0,0, ) (1 st
_ / A" (208" D, + 22,850, — Npu” By — ,650,) (1) at)?
+ /d” (anxVap +22,0,0, — Nuwx”0, — a:y6l‘:6p) DY) apth?
+ /dﬂapwa (22,270, — x,2"8,)
— —/d“(2azux”8,, — 2,20,V (V7) b Op1h®
- / (27 0,0 () + 2,0, (0 o — 2 D, (3 oo
= 2 (1 )y — 2,00 (1" ) ) 0
— 645 - / @ (2(1 = Ay, 00 (1" ) + 20 (D (b — Duth® (3 )at)) ¥
— S+ / @ (21 = Ay (7 ) + 240 (Yo — 26870 (3 )as) 0
b [ 20 = D 0+ 22 s — )
— 55+ / @ (201 — ), 5 + 4 (yp)ard )
_ / 0 (22,570, — 22" 0,) P — 2(1 — A, i — 42" (1) apOy?) # 0.

We will again try to add extra terms so that 6.5 and 645 might vanish. We try
6 = ("0, + A”)y, A" being some constant. Since we do not know what A’
is yet, we write the transformation for ¢ as 6.9 = c(z#9,¢ + A’¢). Then

6.5 = [ (w0, + W) = [ (a0, +d— 15 - B) o
__ / e (20,0 + [~ 1 20) Do

For this to vanish we need A’ = d — 1 — A’, and then A’ = 1(d —1). We do
similarly for 641, but for this we need two terms, one multiplied with z, and
one with ¥, §q¢ = d* (22,270, — x,x"0,, + x,K| + xVKh) ¢, with k], k) being
some constants. The transformation for v is

(5d’IZ = d‘u ((2$H$Vay - a:,,x"@,i)lﬁ + xum+ xllﬁ) :
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6.2 Free Massless Lagrangian 6 FIELD THEORY

Then
54S = / " ((2%;6"8” — 2,7 O ) + x B + xuﬁ) D
= [ @ (@00, — 5,270,)500 — 2(1 ), TBY — 400 ()
— kL — W )

—— [ (a0, - 5,070,100 — 2, T~ d) + w)0d
— 4G ()’ — 2 G0 )
We need k] = —(2(1 —d) + &), hence ] = d —1 = 2A’. For k) we use

(6.34). We change b*” with d*, and the extra ¥ makes no difference, since the
additional term turns out to be zero. Then we have

[ same = [ @ vonmd (6.30)
From we get that

[ v enmdnt = 5 [ awm,mos
Then

5 = [ @ (20,570, ~ ,8°0,00 + 2,0 + 2"50) B

_ / @ (22,29, — w,2"0,) 080 — w0, (21— d) + 7)o
— 203,000 — 2 W)

_ / @ (222”0, — 2, 0,)000 — 2, 21— d) + K7) by
— D + R,

Hence, we need sy = — (27, + K5), and k5 = —7v,,. The transformations
we have found is only valid in four-dimensional space-time, d = 4. Thus, the

Lagrangian (6.23]),

L) = G = G0 (P )ardt

is invariant under the infinitesimal conformal transformations

8 = (D + A")p = (29, + g)w, (6.40)
datp = d"(K + 2z, A" + 2"k )y
=d" (2z,2" 0, — 2,20y + 3z, — Y)Y (6.41)
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6.3 Massive Lagrangian 6 FIELD THEORY

6.3 Massive Lagrangian

To the free massless Lagrangian we can add a mass term, such that the La-
grangian density becomes

1 1
P(6) =~ 5(06)" — gmd? (6.42)
We use to find 6.5,

0L 0
5S = /5¢> ((% - 8"3(<M>)> = /5¢ (0,0" —m?) ¢.

Thus, the equations of motion are
(O-m?)¢=0. (6.43)

This is known as the the Klein-Gordon equation. The equations of motion of
the free massless Lagrangian found above, (¢ = 0 is a special case of the Klein-
Gordon equation, with mass m = 0.

We want to investigate whether or not the Lagrangian (6.42)) is invariant
under Poincaré transformations. We recall that the infinitesimal Poincaré trans-
formation are

0o = a" P, = "0, 0, (6.44)
O = V" M ¢ = 0" (2,0, — 2,0,) . (6.45)

Only the mass term in J.5 needs to be considered, since we have already shown

that the kinetic part is invariant in Then
5aS = /a“@ugbngb = —/a”gbmz@#gb =0,

oS = /b””(x,ﬁu — J;Vau)qf)mzqﬁ = —/b“”(n,w + 2,0, — Ny — J;Vﬁu)qﬁm2¢

= f/b’“’(xl,ﬁu — m,@lt)gmeqﬁ =0.
Hence, the massive Lagrangian (6.42) is Poincaré invariant.

The infinitesimal conformal transformations which kept the free Lagrangian
invariant were given by

de¢p = cDo = c(x" 0y + A) o, (6.46)
§a¢ = d"K ¢ = d"(22,,2" 0, — 1,2" 8,1 + 20)6, (6.47)

with A = 1(d — 2). We investigate whether or not these transformations keeps
the massive Lagrangian invariant, so that it becomes invariant under conformal
transformations.

08 = /c(x“@u + A)pm?2¢
= /c (Ou(a*om?¢) — 0, (zH)pm>d — a#dm> 0,0 + Agm> )

=— / c (Shgm®¢ + " ¢m>0,0 — ApmP) = — / (28, — A+ 61) om* .
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6.3 Massive Lagrangian 6 FIELD THEORY

Then 6.5 = 0 if A = —A + 4/, so that A = id # 1(d —2). Hence, the
massive Lagrangian is only invariant under the conformal algebra if there is no
kinetic term present in the Lagrangian. Since the action is not invariant to the
dilation transformations J.¢, it follows that the action is not invariant to special
conformal transformations dz¢ either. This is due to the commutation relation
(4.46)), which states

[P, K, =2(nuuD+M,,).

Since the dilations do not keep the Lagrangian invariant, the right hand side is
not invariant. Then, neither can the left hand side be. The translations have
already been found to be an invariant, thus the special conformal transforma-
tions cannot be an invariant.

Let us do the same calculations for the spinor field, ¥». Adding a mass term
to the Lagrangian, it becomes
1- 1 - L oain y 1o b
L) = 5900 + Fmap = S0 (P )asts” + M Cants” (6.48)
The equations of motion from the mass term are
0< 0 0Z o0&
§S= [ oy — -9, —— st [ = 9 ===
5= [0 (5 ~Ovagm) +* (55 ~ Oz
a 1 b b 1 a 1 a b a b
= 6w §mcab'¢) - 61/1 §m’¢) Cab = 5 6¢ mcab'(/} - 5'(/) meaw

1 _

5 / 59 mCapih” + 69 mCopih’ = / Sypmap.

Putting this together with the kinetic part gives the equations of motion as
68 = / SU(P + m)ip. (6.49)

We check if this is invariant under the same Poincaré transformations as for the
massless case,

0% = a" Pyip = a0y, (6.50)
Sytp = b (M, + Sp) b = 0 (2,0, — 00,) + Syup) - (6.51)

We will only consider the mass term in ([6.49)) since we already know the kinetic
term is invariant under these transformations.

8,8 = / Satbmah = / at o, bmyp = / a9, Caymyp®
—— [ Cumd it = [ @0, Comir = [ 0,0 Corumu®
= —/a*‘@uz/)“Cabmwb =0,
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6.4 Interacting Lagrangian 6 FIELD THEORY

605 = [ dyims = [V (2,0, ~ 2,0,)5 + Syu0) mv
= / O (2,0, — 2,0, Capma)® + (2,0 Capymap?)
= / 0 [ = ((hop = My 9" Capmmt® + 4 Capml(@, 0y, — 2,0,)9°) + 9 (L) avmed’]
= [ @00, — ,8,)0" Cusms® — (S )]
== [V (@00, = 20,0 Cham® + 0By pams]
= [V (@0, 20,07 Conms® + 0 (S Jus’] = 0.
Hence, is invariant under the infinitesimal poincaré transformations .

Let us now see if (6.48)) is invariant under the infinitesimal conformal trans-
formations

8 = (D + A" = (a9, + A")p, (6.52)
Satp = d"(K + 2z, A" + 2"k )
=d" (2x,2" 0, — 1, 2" 0, + 22, A" + 2VK") 9. (6.53)

with A’ = £(d — 1), and &’ = —7,,,. It is enough to check 4.S:
5.8 = / c(z"d, + A )ypmap = / c(z"d,, + A Copmyp®

= - / ¢ (S Capmul® + 297 Capmyt? — A Cpmu)®)

a / c (_I#8M¢b0abm¢a +(d— A’)@Tmﬁ)

- [ a0 Chum + (d = A)imw)
_ 7/0 (@0, + (d — A')) Pmap.

For 6.5 to vanish we need A’ = d — A’ which gives A’ = 2d # 1(d —1). Thus,
(6.48)) is not invariant under the infinitesimal conformal transformations, unless
the kinetic term is not present.

6.4 Interacting Lagrangian

Lastly, an interaction term can be added to the Lagrangian density,

1

L(6) = —5(00)° = 536" — A, (6.54)

1
2
A being some constant, and p € Z. The equations of motion are
o0& 0%
(55’:/(5 (—6):/(5 O¢ — m?¢ — pAeP 1) .
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6.4 Interacting Lagrangian 6 FIELD THEORY

To investigate Poincaré invariance we again use the infinitesimal transfor-
mations

dap = a"' Py = a0, 0, (6.55)
0pp = " M0 = b (2,0, — 2,0,)¢. (6.56)

The only part which is yet to be checked for Poincaré invariance is the interaction
part. We apply the above transformations to the equations of motion from the
interaction term:

0aS :p/a“amwp—l = —p/a“qu\(p — 1)¢P_28M¢ =—p(p— 1)/a“¢p_1)\8u¢
= —p(p — 1)0a5,

5 =p [0 (0,0, - 2,060 = —p [ P7OMp~ 167 20,0, - 2,0,)0
—pp=1) [ B Nw,0, ~ 2,0, = ~plo - V5S.
Thus, (6.54)) is invariant under infinitesimal Poincaré transformations for any p.

We have discovered that the massive Lagrangian is not conformal invariant.
However, the massless Lagrangian with interaction term might still be invariant
under those transformations

Z(¢) = —5(00)* — A" (6.57)

1
2
The infinitesimal conformal transformations are

dep = cD¢ = c(aMd, + A)o, (6.58)
0g¢p = d" K, ¢ = d" (22,270, — x,2" 0, + 20)0, (6.59)

with A = £(d — 2). Then
0.5 = /c(:zc“aM + A) pprpP~!

=—p / ¢ (0u(a") AP + 2 pAD P! — AXGP)

“p [ e (@30 + 260~ AP 0,0 - AAP)

— [ eltp - 10~ A+ dygpror?

— -1 [ @ o+ 8) oo + [clp- DA+ A= D oo
— (p—1)8.5 + /c(pA —d) pAgP.

Solving for 4.5,
905 = [ c(oh~d)pAor
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6.4 Interacting Lagrangian 6 FIELD THEORY

For 6.5 to be invariant, the left hand side has to be zero. A is as it was found
to be in the Poincaré case, A = 1(d — 2).

pA—d=0
pd—-2) _
5 =d
2d

The solutions to this Diophantine equation is found by completing the square,
pd—2p—2d=0%& (p—2)(d—2) =4.
Both (p —2) and (d — 2) must divide 4, thus (p —2), (d — 2) € £{1,2,4}. Thus,

the only solutions are

d
p |

0 1 3
0 -2 6

-2 4 6
1 4 3
Since there can be neither negative nor zero dimensions, only the last four

columns in the table above are relevant. Invariance under special conformal
transformations follows from

[P;MKV] =2 (anD + Ml/u) .

Hence 1
P(6) = —5 (00 ~ A (6.61)
is invariant under conformal transformations for p = —2, 3,4, 6.

We do the same checks for fermionic fields. The Lagrangian density is

P = LB+ Gmi+ MG, (6.62)

again letting A be some constant, and p € Z. However, we notice straight away
that we cannot have p > 2. The interaction term with p = 2 can be written
with spinor indices as

(h1))? = CapClath®Pheep?,

where a,b,c,d € {1,2,3,4}, since we are in 4 dimensions. For p > 2 at least one
of a, b, c,d will be repeated. Fermions anti-commute, thus the interaction term
vanishes. We can also show that for p = 2, the interaction term is non-zero. We
can write

(09)? = e*CaCeatr 0",
€2vdC,;,C,q is proportional to the Pfaffian of C (see [13], section 2),
pf(C) = €40, Cy. (6.63)
It can also be shown that, for an anti-symmetric matrix A, the Pfaffian is

pf(A) = vVdet A. C is an anti-symmetric matrix. Furthermore, by assumption,
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6.4 Interacting Lagrangian 6 FIELD THEORY

C is invertible. Thus, det C' # 0, and pf(C) = €®°?(C,C.q # 0. Hence, the
Lagrangian density with interaction term is

% = SOBY -+ Sl + A, (6.64)
The equations of motion for the interaction part are
i =\ [ (507 CunCeat6°0 = S0 Cun a6 + 56" CuCoa 0
— 5 CapCoath 0" )
=\ [ (50030 + 801 Crat s + 85w + 66 i)
—x [ s,

Let us see if (6.64) is Poincaré invariant. We use the infinitesimal Poincaré
transformations

dath = a0,
) = b (2,0, — 2,0, + X))

Then we find
GuSiwe = AN [ 00,5050 = ~AN [ @ (200,000 + Dv0, i)
— a0 [ @ (20°Csd0? + 0,07 Cunt®)
— 4\ / a“( — 20, Coptp® + aﬂwacabwb)w
= —4) / a* (Qambcbauﬂ + aﬂwacabwb)w = —12A / a b

= *3§aSint-

Then we have 46, Sint = 0, so the varying action is invariant under infinitesimal
translations.

For the infinitesimal Lorentz transformation we recall that
Spth = bW ((1'#81, — xl,c?#)d_) + JJZUH) .

We apply this transformation to the varying action:

5y Sint = 4 / b (2,0 — 200,) + D) .

Let us consider the terms separately, beginning with the first:
Jvradbuio = [0 (nul60)? + 20,050,000 + 2,000,150
= [V (90 + 20,00,00 + 500,50
== [ 0 s + 30,0,00)50.

36
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The term including x, 0, is similar. The last term is
/ D, s = / D (S, ) D = — / D (S ) a0
. / DRt s = — / DG, .

Hence, this term vanishes. We are left with

oS = —AX [ V7 (0 + 32,0,
— DB — B, b )
= —12) / b (s — 2,0) B0,
Thus, is invariant under the Poincaré algebra.

Let us also check for conformal invariance. The infinitesimal conformal trans-
formations are

3
5c¢ = C(I“aﬂ‘ + 5)7/}’
St = d*(2,2" 0, — 220, + 31, — ¥ Y,.)1.
We only need to check one of these, and we choose J., which is the simplest one.
Applying 6. to the varying action gives
3 _
SeSi =\ [ (a0, + 3)bwdu

— - [ o0t = 5)bv+ 2 500,50 +200,0))

3

— —4/\/0((4 - 5)(&11»)2 + 396“5,ﬂ/_)¢1/_ﬂ/1>

= 74/\/0(3x“5ﬂ + S)WW

This does not vanish. Thus, there is no pure fermionic interaction terms which
are invariant under the conformal algebra in four dimensions.

6.5 Supersymmetric Quantum Mechanics

Let us, for the first time, consider a supersymmetric Lagrangian, consisting of
a number of bosonic fields ¢; and fermionic fields );:

1. 1 .
L(6,0) = —58 + Jvith. (6.65)
Now we work with only one time dimension and no space dimensions. In this

case we do not need ~vy-matrices or the Majorana conjugate for the theory to be
Lorentz invariant, which we will see. We find the equations of motion for this

37



6.5 Supersymmetric Quantum Mechanics 6 FIELD THEORY

Lagrangian density:

A
0p; -
o= [0 (G5 -o55 ) +ou (55 -957)
1
/6¢’zat¢ + 5@1 < 1/% ( 2 )> /5¢ ¢z + 5¢z¢z
Thus, the equations of motion are ¢Z = 0 and @[Jl = 0. In |subsection 6.2| we

showed that this is invariant under both Poincaré and conformal transforma-
tions.

In supersymmetry we want a way to be able to transform bosonic fields to
fermionic fields. We try the simple transformations

0ei = €y, (6.66)
dethi = €y, (6.67)

where € is infinitesimal. Let us see if these transformations keeps the action
invariant:

0S5 = /55@@ + Oty = /51/11‘452’ + et

We notice immediately that this will not vanish. We need should have an extra
derivative in the last term. We instead try the following transformations:

5e¢i = 61/11‘7 (668)
Seti = €. (6.69)
Under these transformations, the action gives
0eS = /&@éi + 8ethith; = /Gwz‘éi +eit; = /Gwz‘(ﬁi — eith; = 0.

Hence, the transformations (6.68)) and are supersymmetry transforma-
tions keeping (6.65) invariant.

A more involving Lagrangian will be investigated next,
~ 1, 1 . 1~ 1 -
ZL(o,0,¢) = —*d)? + 5%% + 51/%77/11 + iﬁiW@‘W + (0:0;W)pivp;,  (6.70)

with 0; = 3 ¢1 .
of least action,

07 0z, 07 07 5 97
o5 = oo (55 ~ )+ (55 ~ gt ) + o0 ((M atm)

:/5@- éi+aiajw+a,-ajakw¢j¢3k) + 6 (qb,-miajwij) + 69 (zZﬁaiaszz;j).

W = W(¢) is the potential of the bosonic field. By the principle

The equations of motion are

qﬁ, + 8JW828JW + 818Jakwwj’l/;k =0, (671)
i + 0,0,Wh; =0, (6.72)
lZi — 0;0;W1; = 0. (6.73)
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Under the transformations (6.68)), and
St = ed;W, (6.74)

the action becomes

05 = / V0,0, 0; + €0, 0pthi + €W Dyt; + ;W 0;0;W e
+ 0;0;W (;€0;W + €dppith;) + 9;0;0, W etbypibia;
=e / 0;0:01¢; + D1i0ethi + O W dyas + O;W 9,0, W)
— 0;0;W1h;0;W + 0;0;W 0y ; + 0;0;0.Wbpapith
= 6/3t(1/)i3t¢z’) — 04piO1di + 04 i Op1h;
+ ;W ; + 0,0 Wy — ;0,0 Wihithyab;
= / +OW i + 9, (;Wah;) — ;W Biab; — 0D 0iW bbb

— ¢ [ ~o0,0W b
Since the only term left is equal to itself multiplied by —1, §.S = 0.
The Lagrangian ((6.70) is symmetric under ¢ — ¢, ¥ — ¢ and ¥ — —1h,

1. 1-: 1 . 1 _
L = =S bi + S + itk + SOWOW — 0:0;Whii); =Z.
2% 3 2 2 NACMGAAL)
—8;0;Wihjh;=—08;0; Wep; 1)

Thus, we have another set of supersymmetry transformations,

Sy = &y, (6.75)
Setp; = €y, (6.76)
Seabs = —0,W. (6.77)

In the next section we will consider the algebra describing the supersymme-
try. This is not described by a Lie algebra, but rather by a Lie superalgebra.
We will see how this differs from the Lie algebra.

7 Lie Superalgebras

In this section we formally introduce Lie superalgebras, which is due to Haag,
Lopuszaniski and Sohnius [6]. Coleman and Mandula [4] said that Lie algebras
cannot relate bosons and fermions, but Haag, Lopuszanski and Sohnius found
that if one made some changes to the definition of the Lie algebra, one really
could relate bosons and fermions. The algebra they created is now known as
a Lie superalgebra. Lie superalgebras are not some kind of a Lie algebra, it
is a different type of algebra, which contains the Lie algebra, as well as some
more. Algebras are vector spaces with some additional operator. Superalgebras
contain two types of elements, bosons and fermions. Therefore, a superalgebra
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has been constructed as a Zs-graded vector space (with an operator defined
below), or a super vector space

V.= Vo@vl. (71)

Vo and V; are two vector spaces. The elements in Vj and V; are called homo-
geneous. Let X be an element in V;, i € Z5. The parity of X, denoted | X|, is
0 when X € Vj, and 1 when X € V;. The elements of parity 0 are called even,
while those of parity 1 are called odd. The even elements are bosonic generators,
while the odd elements are fermionic generators. The formal definition of Lie
superalgebras follows.

Definition 7.1. A Lie superalgebra consists of the direct sum of two vector
spaces, § = g, @ g;, together with the Zg-graded bracket, defined as [—,—] :
@, X 8 — @1 ;, where 7 and j are added modulo 2. Tt satisfies

1. Bilinearity:
[aX + 8Y,Z] = o[X, Z] + BY, Z], [X,aY + 8Z] = o[X,Y] + B8[X,Z] V
a,feK, andV X,Y, Z € g,

2. Super skew symmetry:
X,Y] = ~(-)XIMY, X]V XY e,

3. Super Jacobi identity:
XY, Zeg.

From the definition we see that the bracket of two even elements X,Y is

again an even element, since [X,Y] : gy X §g — Gy, 9 = . Doing this for each
of the three different cases gives:

30, 80] C 8o, [80,81] C g1, [81,81] C 8-

Furthermore, super skew symmetry tells us that [gy,5,] and [gy,8;] are both
skew symmetric, while [g;,5;] is symmetric. Using this, we may find other
representations of the Jacobi identity. Let [000] denote that there are only even
elements present, [001] denote that there are two even and one odd element, and
so on. Furthermore, let Latin letters correspond to even elements, and Greek
letters correspond to odd elements. Then, for any X,Y, Z € g, and o, 8,7 € gy,

[000] : [X,[Y,Z]| +[Y,[Z,X]]+ [Z,[X,Y]] =0. (7.2)
This is the Jacobi identity, as seen for Lie algebras.
[001] :[X, [¥, o] + (=1)°FI[Y, [or, X]] + (=)' OV, [X, Y]]

- [X7 [Y, a]] + 1Y, [O‘vX]] + [av [X’ Y“ (7'3)

= [X, [V, a]] = [V, [X, of] = [[X, Y], 0] = 0.

Hence, g, is a representation of of g,

[011] :[X, [v, B) + (=1)° 0+ Ve, [8, X]] + (1) OFD[8, [X, o]
= [X, [a, B]] + [, [B, X = B, [X, a] (7.4)
= [X, [, B]] = o, [X, B]] = [[X, a, 5] = 0.

)

40



7.1 A First Superalgebra 7 LIE SUPERALGEBRAS

[111] :[, [B,7]] + (=)' VB, [y, al] + (= 1)V [y, [a, B]]
= o, [BA+ 8, [y, ed] + [7, [, B]] = 0. (7.5)
Choosing a = 8 = 7, we get
[a]a, a]] = 0. (7.6)

Actually, this implies ([7.5)).
O=[a+B+v[a+B+y,a+B+7]]

=[a+ B+ la,af + (8, 8]+ [v,7] + o, B] + [a, 7]
+[8,a] + [B,7] + [v, o] + [, B]]

= [O" [O‘v a]] =+ [aa [676]] + [O‘v [777]] =+ [O‘v [OC,B ] + [0‘7 [‘L'Y]]
+ [0, 8, o] + [, [8,4)] + o, [y, o] + [, [, B]] (7.7)
+ 8, [, ] + (8,8, BI] + B, [v: Y]] + [8, [ev, Bl] + B, [, 7]
+ (8,18, o]l + [8, 8,91 + 8, [, ] + [B. [, B8]
+ [, [, ] + [, (8, B1) + [, [ Y]+ [s [ B+ [ [ ]
+ [, (B, ] + [, B + [v, [, ] + [y, [, B

Noticing that

0=[a+8[a+Ba+B]] = o, [8, 8] + 2[e, B] + [B, [, o] +2[ev, B]],  (7.8)
0=la—Bla=pBa=p]=a[8,0] =2, Bl - [B, [, a] = 2[a, ], (7.9)

where ([7.6) has been used. Subtracting (7.9) from (|7.8)), we find
1
[ [, B]) = [, [B, o]] = =5 [B, [, o] (7.10)
Substituting (7.10)) in (7.7]) we find

[Ot, [Ba’)/]] + [6a [7’ OéH + [’Ya [a’ﬁﬂ =0, (7'11)

which is (7.5). Hence, the super Jacobi identity for three odd elements can be
written
[afa, a]] = 0. (7.12)

In the next section we will find a simple Lie superalgebra.

7.1 A First Superalgebra

In we found the following supersymmetry transformations ((6.68)),
(B.59) and ©.79)):

Sei = ey, by = e, ey = €d;W. (7.13)

Let @ be the generator of these transformations, with d.p = €Q). Then ([7.13)
gives

Qi = i, Qi = Oy, Qy; = O;W.
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Applying Q twice gives

QQd; = QY = 09, (7.14)
QQY; = Q0p; = Oy, (7.15)
QQY; = QI W = 9;0,WQ¢; = dsih, (7.16)

where (6.73), z/NJZ = 0,0;W1;, has been used in (7.16). Thus QQ = 0, = Py =:

H, H being the Hamiltonian. We have @) € g; and H € gy. The brackets are
[H,H)=HH — HH =0, (7.17)
[Q,H]=QH - HQ =0, (7.18)
[Q.Q] = QQ + QQ = 2H. (7.19)

This is a Lie superalgebra. Bilinearity follows as usual, and (7.17) and (7.18)

are skew-symmetric, while (7.19)) is antisymmetric. The super Jacobi identities
are:

[000] :[H,[H, H)] + [H,[H,H)) + [H,[H, H]] = [H,0] + [H,0] + [H, 0]

=0, (7.20)
[001] :[Ha [Hv QH - [Hv [H’ QH - HH’ H]aQ] = [H70] - [Hv O} - [OvQ]

=0, (7.21)
[011] :[Ha [QaQH - [Q? [H’ Q]] - HHv QLQ] = [H7 2H] - [Q)O] - [07Q]

=0, (7.22)
[111] :[Q, Q], Q] = [2H, Q] = 0. (7.23)

It was also discovered that there is another set of supersymmetry transfor-

mations ((6.75), (6.76) and (6.77)):
Sepi = &, Sethi = éy, deth; = —€O;W. (7.24)

These generate another supercharge Q, satisfying

Qi = i, Qi = —0,W, Qv = Dypi.
Applying Q twice gives
QQdi = Qb = 095, (7.25)
QO = —QOW = —0:0,WQ; = —0;0,W; = Oy, (7.26)
QQY; = Q0y; = O, (7.27)

Where (6.72)), ;= —81-3]-W1Z]-, has been used in ([7.26]). This supercharge, as
with @, satisfy QQ = 0; = H. We have also @) € g;.

The vectorspace {H, Q, Q} is a Lie superalgebra. The brackets are (7.17)),
(7.18) and (7.19)) along with

[Q,H] = QH — HQ =0, (7.28)

[Q,Q] = QQ +QQ = 2H. (7.29)
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We will see how Q acts with Q on the different fields:

QQe: = Qv = —O;W, QQb; = Qi = W
QQY; = Q¢; = i, QQY; = — QW = —;,
QQY; = QAW = —ij;, QQY: = Qi = ¥

The last bracket can then be computed as
[Q,Q] =QQ+QQ =0. (7.30)

These brackets are all bilinear, and ([7.28)) is skew-symmetric, while ([7.29)) and
(7.30) are both symmetric. The Jacobians are, in addition to ((7.20)) - (7.23)),

[001] :[H, [H, Q)] — [H, [H, Q]| - [[H, H],Q] = [H,0] — [H,0] - [0,Q)]

=0, (7.31)
[011] :[Ha [Qa@” - [Qv [H7 Q]] - [[Hv QLQ] = [Hv 2H] - [Q,O] - [OaQ]

=0, (7.32)
[011] :[H, [Q, Q)] - [@, [H,Q]] - [[H,Q),Q] = [H,0] - [Q,0] - [0,Q]

=0, (7.33)
[111] :[[Q, Q], Q] = [2H, Q] = 0. (7.34)

Thus, the algebra consisting of H, @, Q is a superalgebra.

In the final part of the thesis we consider two supersymmetry models, namely
the Wess-Zumino model and supersymmetric gauge theories. In our discussion
of the Wess-Zumino model, we will compute the Poincaré- and conformal su-
peralgebra.
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8§ THE WESS-ZUMINO MODEL

Part 111
Supersymmetry Models

8 The Wess-Zumino Model

The Wess-Zumino model is a simple four-dimensional supersymmetric field the-
ory, consisting of a real scalar field ¢ with mass mq, a real pseudo-scalar field ¢;
with mass mo, and a real Majorana spinor ¢ with mass m3. A pseudo-scalar is a
scalar which changes sign under parity inversion, P. That is, for 2/ = (t,2),
then a5, = (t,—Z). ¢ will interact with ~5, and since changing the orientation
changes sign of 75, ¢ must also change sign to keep the action invariant, and
hence ¢ must be a pseudo-scalar.

8.1 Free massless Wess-Zumino Model

We will first consider the Wess-Zumino model without mass and interactions,
1 o 1 .~ 1-
Giin = —5(00)° = £(99)* — SvPY. (8.1)
2 2 2
In we found the equations of motion for each of these terms (the

pseudoscalar term is similar to the scalar term)

69 = / §¢0¢p + 600 — 5vPp. (8.2)

We also found that this action is invariant under infinitesimal Poincaré trans-
formations. We want to check if this is invariant under supersymmetry trans-
formations as well. [I0] gives us the following supersymmetry transformations:

e = &, dep = ey, St =P+ dys)e.  (8.3)

€ is a constant Majorana spinor. In (8.2) we have ¢ rather than §i. Re-
membering that (Cy*)! = Cy* and (CyH~s)t = —CyHys, we rewrite the latter
supersymmetry transformation:

(SE’JJ = $(¢ + Q~575)6 = W + P)’Maué’YE)f = aﬂ(bW + 8#&%
= 0,0(7"€)'C + 0y (V' y5€) ' C = —0pgpe’ (") C" — Dude' AL (v*) ! C"
= —0u¢€ (CH™)! — 8, 0e' (Cy"5)" = —0,uhe' CH* + Dudbe' Oy 5
— &6+ @Dds = (D — dys) = —e(d+ d5) D

— L=
where Q means that the derivative acts on the fields to the left, (¢ + ¢ys5) @ =
9, (¢ + ¢75)7*. The change of sign is due to @ = v*9,, and y"v5 = —y57*. Let
us now apply (8.3)) to (8.2):

5.5 = / 5,606 + 6.0 — 5.0 = / 06 + e15908 + @ (6 — Fys)P0
= / ep¢ + evs 0o — €00, (¢ — drys)Vep = / ey + evs90b — édd, " (b + drys)yH e
- / 06 + evsTd — & (6 + dys ) ™o
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We notice that

1 1 1
P = 140,7"0, = 370400 + 0,0,) = 577" 0.0y + 57770,0,

1 1
= 5"+, = 5 (20" 10,0, = 0,0 =01 (8.4)

Then we see that 6.5 = 0.

The supersymmetry transforamtions (8.3) are generated by a supercharge
Q. We should check whether or not the Lie superalgebra consisting of P, M,,,
and @ is closed. The infinitesimal transformation generated by @ is

Sep = €Qp. (8.5)
From the supersymmetry transformation (8.3)) we read off that
Qe =1, Qo = 5.

It is convenient to write the spinor indices when we find how ) act on the spinor
field 4:

Sctp = €Qvp = Y6 + b5 )e.
We rewrite the two last equalities with spinor indices:
QY = € CheQY® = —"Q°Cupp” = —€"Quy?,
D+ ds)e® = (1), 0’ + (7'75) D oe”.

Equating these two, and multiplying with Cq., recalling that (v*)ay = —Cac(7)%,
gives

—belﬂﬁc = Cac((’yﬂ)abau(b + ('YM'YS)ab@qu)eb
= —Cea((1") 010 + ("75)*,0u®)€” = () 6O + (V75) cbOpub)€”.
Then we have, letting b — a and ¢ — b
Qawb = _(’Yﬂ)baau(ﬁ - (7#75)17@8;4(5'
Remembering that (v*)pe = (v*)ap and (Y*Y5)ab = —(Y*Y5)ba,
Qawb = _(7#)abau¢ + (7#75)ab8;4(£' (86)
All of the transformations are then
Qad = 1q, Qa(z) = (VS)abqybb; Qaty = _(’Yﬂ)abauﬁb + (7#75)abau(l;- (87)

The brackets defining the Poincaré superalgebra, in addition to (4.24)),
(4.25) and (4.26)), are

[Pua Qa] =0, (8.8)
[M/JJMQ&] = (E,uu)alen .
[Qas Qv) = 2(v")ap Py (8.10)
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They have been computed in Appendix In the [Q., Qp] bracket, the equa-
tions of motion for ¢ has been used, hence the Poincaré superalgebra is only
closed on-shell. The action (8.2) is then invariant under the Poincaré superal-
gebra.

In [subsection 6.2] we also saw that (8.2)) is invariant under the conformal

algebra. We should check if the algebra generated by the generators of the
conformal algebra and @ is closed. Only [D, Q] and [K,, Q] are missing. These
have been computed in Appendix There it was discovered that [K,, Q)] does
not correspond to any of the other generators we have seen so far. Therefore,
we need to introduce a new fermionic operator, S,. It is defined as

[KpHQa] = ('yu)abSb- (8.11)
In Appendix we have also found how S, acts on the fields, namely

Sep = x#%ﬂvﬁaa Sa‘;s = I“’Yﬂs%,
Sathp = (xﬂau +2)(=¢Cap + (5('75)ab) + xuaV(_QZS(’Yﬂy)ab + (2;(7#”75)@17)'

From this and d¢c¢p = (Sy, ¢ being an anticommuting Majorana spinor, we can
find the infinitesimal supersymmetry transformations generated by S. The first
two can simply be read off as

et = ay,u1h, Scd = 50

For the last one we rewrite S,

Satby = (218, 4 2)(—dClap + G(15)ab) + 00y (— (V™ Vab + (Y V5 )ab)
= —(2"9y + 2)(=3Cha + ¢(V5)ba) — L0 (=Y )ba + H(V 75 )ba)
= — ("0 + 2)(=¢Cha + (75)ba)
— 2,0, (—0(Y' V" = 1" Vpa + H((VA" = 1" )75)ba)
= (20 + 2)(=¢Cba + (15)ba) — a0y (—(V V" Jba + S(17"V5)ba)
+ 210, (—dCha + (V5 )ba)
= 2(6Cha — (V5)ba) + T (D(V'V*Jba + H(Y 157" )ba) -

If we multiply —¢* on both sides, the left hand side is —(*Saty = d¢thy. Fur-
thermore, raising the b index with v, = 1¥°Cy, we have

St Cap = =2(¢Cha — B(75) 4 Cen)C* — 20 (S(17*) %y Cet + H(V157")  Ce )™
Multiplying both sides by (Cy)~t = —C<,

St = =2(=¢ChaC — d(75)%,)C* — 2.0 (H(7/ "), + S 57M) )¢
We notice that CpaCP(* = —CC*Cyp = —C(, = —(°. Then,

S = =2(¢C° = B(75)%,C*) — 0o (D(Y' V") 4 + H(Y 7))
= —2(¢(1)°, — d(75)°.)C" — 2 (V") 40 (V) + D7) ()¢ )¢ -
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Without indices,

Sctp = —2(¢ — 75)C — 27" O (07" + Py57™)C.

Thus, we have found that the infinitesimal supersymmetry transformations gen-
erated by S are

Setp = Calyh,  Ocd = Calyuvsh, Ocp = —P(d+ drys)at vl — 2(d — ¢~5(75)C~)
8.12

As always, we need 541/_1:

S¢th = —P(d + I5) 21 7,C — 2(d — ¢75)C
= —0,62" 7V 7uC + 0,02 757 uC — 26 + 2675C
—0u 7 (7 7uC) ' C + 0, 03* (157" 7€) C — 2C + 26(75¢)"C
= =0, ¢a" (' 7" C + 0,03 'yl 'AEC — 20 + 26¢ M EC
= 0,02"',(CY")! = 0,92 (/" (Cs)' — 206 — 20¢H(Cs )
= 0,02"'Y,Cy” + 0, ¢ty Cos — 200+ 29¢" Cys
= 8,02 ¢ (C) ' — 8, daC' L (CY) s — 20 + 26Cys
= —0,¢2" ¢ Cy7” — 0,02 ¢!y, Cy s — 200 + 2y
= —0,0"{ Y + 0,0 (C) 'y s — 200 + 205
= —0, 0",y + 0,0 ("Cyuy s — 200 + 2Cds.

Thus,
_ _ ~ — _ ~
5ct) = =ty (b + dv5)  — 2((d — ds)- (8.13)

The varying action under these supersymmetry transformations is then
68 = /5<¢D¢ + 3¢90 — S PPy
— [ G200 + G506 + G, Do — G5 ) + 20(6 - 15)0

— [ G0 + Gt
— (08 + 20, )yuB(d — ¢v5)7 Y — 200, (6 — d75)7 %
— [ G0 + G0 — Chy (6 + )
— Gy, Py 0, ($ + dys)tb — 2077 0 (¢ + Gs)0
— [ o0+ G500 - Cny™r"0u(6 + rs)o
— (7,0 + ¢5) ¥ — 20D(¢ + 65)¢)
= /257“%@5 + &)Y — 20B( + dy5) v
-0,

where we have used (5.29) v,y vy" = —2+*.
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8.1 Free massless Wess-Zumino Model 8 THE WESS-ZUMINO MODEL

We now need to check if the superalgebra generated by P,, M,,, D, K,
Q@ and S is closed. This has been done in were it was dlscovered that the
bracket [@, S] generated another bosonic operator, R, defined on-shell by

[Qa, Sb] = 2DCab — 2R(75)ab — (’ylw)alew. (814)
R acts on the fields as
bt ~ 1
Ro = ¢, Ro = —¢, Rip = 5350, (8.15)

We find the infinitesimal transformations generated by R. They are given
by d.p = eRp, where e is an infinitesimal bosonic parameter.

Sep = e, e = —e, bet) = 6751/1 (8.16)

Then we find the transformation for 1,

1 1 1 1 -
Setp = €%¢ = *6(751@ C= —*elﬁt it = —§€¢t(075)t = §€¢t075 = 561/)75-

The varying action, over the infinitesimal transformations generated by R, is
. _ - -1 -
6.5 = [ 6,000 + 6,506~ 8,50 = [ ¢06 - eo0d ~ Jeisdu
~ ~ 1 1
— [ €306 - 009 - v (s ud? = =5 [ v 57y
The last term vanishes:
/ e (157" ab 0" = — / D" (157" v’ = / e’ (757" ) ap Ot
= /ewa(vw“)baaﬂwb = —/e@b“(vsv“)ab%wb =0.
Hence, .5 = 0.

With the inclusion of R, the conformal superalgebra closes. The brackets
defining the on-shell conformal superalgebra in four dimensions are

[Muua P, ] = anPu - n#ppuv [ uu» ] - 77# a]u nu[pMa];u
[PLHD]:PM [ vD]
[Pua Ku] = 27]uvD - 2Mul/7 [M;wv Kp] Mvp n;LpKua
[M;wa Qa] = _(E,U,V)aleH [Qav b] = 2( )abP;n
[Kana] = ('Yu)absba [Muwsa] = ( ) Sb7
[Pus Sal = =(1)a" Qs [Sas S0 = 24*)ab K
1
[Qa7 Sb] = 2CabD - 2(’75)abR + ( ) MHV7 [R; Qa] = _5(75)a Qba
1 1
[R.5u] = 5 (15)a" St (D, Qu] = 5Qu:
1
[D, S,] = —55(1.

We have shown that the free massless Wess-Zumino model is invariant under
this algebra. Let us next consider the Wess-Zumino model with mass terms.
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8§ THE WESS-ZUMINO MODEL

8.2 Massive Wess-Zumino Model

Let us now add masses, so that the Lagrangian becomes

% =~ (06)" ~ (90

G — G — S — mai.

(8.17)

We have seen that also this Lagrangian is Poincaré invariant. We also saw that
is is not invariant under conformal transformations. The equations of motion

were found to be

55 = /w(D — )b+ 630 — m2)g —

SY(P + ma ). (8.18)

The supersymmetry transformations incorporating the mass are in [I0] stated

as

55¢ = va 655’ = 5751/},

We find 6.1p. Recall that (Cys)t = —Chys.

b= (P —m3)(¢+ dys)e.

(8.19)

Seth = (P —m3)(¢+ dv5)e = P(d + dys)e — ms(d + dys)e

= —&)(¢ — ds5)

= 7€¢‘9(¢ — gf;’}/s) — émzo + 6tm3€£(C’YS)t
&6+ 315)(D +ma).

= —€ ($(¢ — ¢s5) +ms(s+ (2375)) =
Let us now apply to .

5.5 = / 5.6(0 — m2)é + 5.3(0 — m2)d —
- / ep(0 — m2)é + Evs(0 — md)d + €
- / $(0 = m2) + Evsw(0 — md)d +

+ma(9 + Gys)dp +mi (¢ + s
- [0~

+ma(¢ + ¢vs) P + m3 (6 + dys)v
/ e (0 — m2) + ey5t(0 — m2)d —

0¢S vanishes when my = my = ms.

)
mi)¢ + eysy (0 — m3)e —

— mype — mypTse = —EP(d — dy5) — Emzd — map(vze)'C

= —&(¢ — ¢v5) — Emad — Emads

(96 = dvs) +ms(6 + d35) ) (@ + ma)os

DD — dys) P — P(d — drys)marh
B (& + d1s)0 — (6 + dys)madp

O(¢ + ¢y5)1h +m3 (¢ + dys ).

Thus, all fields must have the same mass,

for the theory to be invariant under the Poincaré superalgebra.

8.3 Interacting Wess-Zumino Model

Lastly we add interactions. The interaction terms in the Wess-Zumino model

takes the form

Zint = —A 0 (3Cat — (v5)ap)® + 1A(¢2 + )2 +mo(¢* + %) ), (8.20)
2
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8.3 Interacting Wess-Zumino Model 8 THE WESS-ZUMINO MODEL

so the Lagrangian describing the Wess-Zumino model is given by
_ 1 2 Logzo ou 1 oo 1 ooy o
Pz == 5(00) = 5(00)° — Gipp — Jm*9* = Sm?F? — mipy
_ - 1 - -
A (0= bt NG+ PP mole? 1 ). 21)

In it was discovered that bosonic fields to any power are invariant
under the Poincaré algebra, while in 4 dimensions, we can only have interaction

terms to power 4, for it to be conformally invariant. This is okay in this case,
since the term containing ¢ is connected to the mass, and we know that this
is not present in theories which are invariant under conformal transformations.
Therefore, only the first term needs to be checked for Poincaré and conformal
invariance. Let us first find the equations of motion for the interaction part:

8-gm a~gln 8$n 63&1
5Simt = / b2t ¢t + e WS

—-x [0 wacabwb FONG + F)o+ mle + 3+ 2m?)
403 (0" ()ast? + 2 + 8 + 2med)
+ 8% (6Cap — B(75)ap) 1" — 59" ($Cab — &(¥5)ad)
=< [ 56 (0 + 20(0° + 66 + m(36° + )
+ 36 (— s+ 2M(8% + 6°) + 2mod))
806 — s b U (6Cha — ()
= [ 56 (50 + 206" + 68%) + m(3" + )
)

+ 66 (— 5w+ 22(6%6 + 6°) + 2m99) )
+20%(6 — 6750

ba)

Then the varying action for the full Lagrangian density is
8wz = 0000~ mo = A (50 + 206 + F)o + m(37 + 7))
+36 |06 = m26 = X (=Pt + 206 + 61)6 + 2mod) | (8.22)
—0% [@ +m+2\(¢ — ¢ZW’5)} Y.

The terms we need to check for Poincaré invariance are the ones containing
different fields, for example both ¢ and ¢. The remaining terms are

58S, = —\ / S + 2086° + me?) + 5¢(— st + 2008 + 2med)
+260(¢ — $75). (8:23)

50
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Let us first check for Poincaré invariance. We recall the infinitesimal Poincaré
transformations:

0o = a0, ¢, 0 = " (2,0, — ,0,)0,
5(1& = auaﬂ& 5b¢; = bwj(zuav - xl/a/l,)(rg7
dath = a" 01, i) = 0" (2,0, — 2,0, + X)),

Since we need §, 31, we rewrite the last two equations:
Sath = ald,1, Spth = 0" (2,0, — 1,0,)0 + ¥5,,.),
as in 85, acted upon by these transformations becomes
§aSe = —A / A" 0P + 2X6% + m?) + a0, d(— P51 + 2X69% + 2med)
+20"0,9(¢ — drys)
= / a0, (V) + 226¢% + m@?) + a*$0, (— st + 2006° + 2meo)
— 20" 9,1($ — dys).

We notice that
/ 0, ()) = / (D500 + 6 Candy ) = / (Dt — Bt Copt®)
_ / (0, + Bt Cpath®) = 2 / 8,0 (8.24)

The same is true if we include vs, [0, (¥5¢) = 2 [ 9,075¢, since (V5)ap =
—(¥5)ba- Then, we are left with

65 = A / at $0, (2ApH? + md?) 4 a" 40, (2Apd* + 2me).
The terms linear in A2 are
[ (00,(63%) + 30,667 = [ " (65°0,0 +26°00,6 + 560, + 26700,
=3 [ "(0,0(6) + 0,6(56).

Comparing this with what we had in the beginning, we see that the terms linear
in A% vanish. Only the terms linear in m remains:

[ 00,6 + 200,00)) = [ a(2000,6 ~2660,8) = 0.
We also need to check §,5;:
0pSe = =X / b (2,0, — 7,0,) (¢(z/3w +2X0¢0” +me?)
+ G5t + 20067 + 2mod) + 20(9 — 6y5))

+ 26", (6 — 6y5).
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All terms in the big parenthesis vanish in the same way as for §,5,. Only the
last term remains:

uSe = =20 [P0 — 1600 = <X [V (000 ~ H15)an)
=3 [ 6 m)as = Bnrs)an)v = X [ B S0 = S
=20 [ 005,06 - Gr0)w =
Hence, the Wess-Zumino model is Poincaré invariant.
We should next check if the Wess-Zumino model is invariant under the

Poincaré superalgebra. [10] gives us the following supersymmetry transforma-
tions

b=, 0=y, dab=D—m—Ao+s)| 6+ (8:25)

Let us first see if § Sy is invariant under these transformation. 6.1 is computed:

= [0 =m =A@+ )| (6+ )
— D —m)(&+ drs)e — N6+ dr5)2e
e+ Gys)(D +m) — N + 20975 — F)e.

The result from [subsection 8.2] has been used. In the last barred term there
are two terms in which the bar only do anything for €. This simply becomes
—e\(¢? — ¢?). The last part is

2)@(5756 = 2)@(]3@ = 2A¢¢3(75e)t0 = —2)\¢(56t’y§0t
= —2e"Ap(Cys)" = 2ENp 5.

Hence,

~ $— ~ ~
S = —e(d+ d5) (P +m) — N9 — ¢°) — 2EAdPYs
= 6+ d1)(D +m) — NG+ ds)?
~ <—
—e[(@+ )9 +m+ A6+ d3))] .
Now we can apply the transformations to :
SeSwz = [0 [00 —m*6 = A (50 + 206+ 6) + m(36 + 7)) |
+er50 (06 = m26 = A (=P + 20676 + 6°) + 2med )|
+é [(Qﬁ + é%)(g +m+ Ao+ 4575))} [6 +m+ 2X\(¢ — 4575)] Pp.

The results from the free massive part tells us that the part containing both
@’s cancel the O terms, and also that all m? terms cancel each other. We also
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8.3 Interacting Wess-Zumino Model 8 THE WESS-ZUMINO MODEL

saw tllat the terms Witp m@ in the last line vanishes. Let us consider the terms
(&) (¢yp) and (€y5v)(y51). We can write these as

(€) (Y1) — (evs) (Py51) = E(ip — Y59pys ).
Applying the Fierz identity (A.31] m, we have

Yip = —*(W)]l + - m—,wm - 7<wwm (dw V5 ) Vs + g (W“me

_ 1 _
VsYys = ’75(**(1/”/1)]1 + - (¢75¢) v5 — Z(WY“W% (WY Y5)VuYs + < (1&7“”77!1)%1/)
1 -
= j(wwms + 1(1/1751/))75 + 1(%&7"1/1)%75 - Zw V5)VuVs + gwwwmu%
= i(t/_ﬂ/})]l - 3(1/3751!1)75 — i(z/?v“wm + i(%“%m% — %(%“”wmu.

Subtracting these, we get

(@0)(0) - @) (ra0) = 3¢ (~ PO+ Grshs + 5010 ) ¥
The last term vanishes:
B = B ()t = 0 ()t = (3t = By = 0
We are left with
() (P0) — (@) ($r59) = _,6 ()1 = (r59)75) ¥
= S (@)) ~ 5 (@s8) ) = 0.

Thus, also the terms (€)(¢)) and (€ys5%)(1ys51)) vanish from 6.Swz. The

remaining terms are
SeSwz = [ <A (M@ + 3)6+ m(38* + ) - er50h (206 + 3) + 2mod)
+eA (2M (6 + G75) (62 + 6) + 28(6 — 615)(6 — bs)
+2m(6 + $95)(6 — $75) + (& -+ $16)20 + (6 + dv5)m )

The first term in each of the brackets cancel each other. The mass terms in the
final bracket can be rewritten

2m(¢ + 675) (6 — 995)0 + (¢ + §5)*mep = 2m(9® + ¢ )0 + (6 + 206 — 6 )m
=m(3¢% +¢%) + 2mody,
so all the mass terms cancel each other. We are left with
20(¢ — 5) (¢ — D75)0 + (¢ + dys) D0
=20(¢ — ¢75) (¢ — D75) — 20u(d + &) (¢ + DY5)7" ¥
= 20(¢ — ¢75) (6 — $75)8 — 207" (6 — $75) (& — 5)¢p =

53



8.3 Interacting Wess-Zumino Model 8 THE WESS-ZUMINO MODEL

Thus, 5SWZ =0.

From [subsection 6.3 we know that a massive Lagrangian cannot be invari-
ant under conformal transformations. Let us now consider the massless Wess-
Zumino model

Loz = = 5(00) = 509 ~ 50~ A (10~ dre)u + NG + 3P ).
(8.26)
The varying action is
_ ATl o\2( 43 72
Suwz = [ 56 [06 = 3w - 203(8* + 07| som

+06 (06 + X5 — 202(8° +62) | — 80 |9+ 2A(6 - 615) | .
We should check that this is invariant under infinitesimal conformal transforma-
tions. We only need to check either using the dilations or the special conformal

transformations, due to [Py, K,| = 21, D—2M,,. We check the dilations, since
these are the simplest ones,

dep = c(aM0, + 1)0, 5t = c(z"0, + 1)¢~5a 6ctp = c(z"0, + %)w

The transformation for ¢ is simply 6. = c(#9,, + 3)ip. For the same reasons
as above, the only remaining terms to be checked are

55, = -\ / 5SS + 2068%) + 5 —Trystp + 2266%)
2506 — s (8.28)

Then, acting on the action with the infinitesimal dilation transformations yield
0eS = =X / (20 + 1) (51 + 2200%) + G~ 1t + 22067
+26(a0, + )0 — F ).
The terms linear in A are
GuSe = A [ =0+ 1o + (20, + Vs — 2a", + 30 — bra)o
=\ [ =00, 4+ 1)(6 ~ br5) — 2atDy+ 506~ drs)
= /\/x“amﬁ(cé — s

~—

¥+ (¢ — dys) 29,1 + (84 — 1) (¢ — dys)

—2(2" 8y, + =) (d — dy5)¢

N W

=0.

By a similar computation, the terms linear in A\? vanish. Hence, the massless
Wess-Zumino model is invariant under the conformal algebra.
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Doing the same calculations as in we find the supersymmetry
transformations generated by S to be

¢ = Catyu,
Scd = Cat s, (8:29)
St = —(B — N + 75)) (6 + $5)a7C — 2(6 — d5)C.

We find 6@,/7. The only additional term to the one we found in is

M + ¢75)%29,C = (¢ + 26dv5 — ¢?)x#v,C. This becomes

M@? + 20075 — 62w 7uC = A2, C + 206624 7157,C — AG 2, ¢
= A" 2" (1,0) C+2Mdpat (157,,0)  C— A*zH (7,,0) C
= —AQ*2 ('), C" = 20 ('Y[ A CT + APt (', O
= —AG*2 (N (Cr)' = 202" (Csy)f
+ A2 (O, )
= —AG* 2 ('O + 20p0aH( Oy + APt (P Ty,
=~y = 20060 75 + G 2,
=~ (6" + 26675 — ¢7)
= —CAa" (o + é75)°.
Then
_ _ ~ < ~ _ ~
Scth = —Catvu(d+ ¢ys) (D + Ao+ dy5)) — 2C(d — ¢s5).
Let us now see if Znwyz is invariant under these transformations:
ScSuwa = [ Gab [0 = M — 20368 + 68 + G50 [06 + M - 2023 + 679)]
_ . — - _ - .
+ |G (6 + 635)( + A6+ 615)) +20(6 — 35)] [#+ 206 — d35)] v
We know from that terms not including any factors of A\ cancel

each other. By a trivial extension of how we found that the terms éit) and

€Y511)y57) vanish in the massive case, also fyuwz/;w and C_’Y;L”Y57/”/_”Y5¢ vanish.
Hence, we are left with

ScSmwz =X [ Catauat [0 + )] + Gt [~2A@ + )]
+ C [ (200 = 69606 = $15) + (& + 6795)D + 20(& + 675)*(6 — 615))
+4(6 - d35)%] v

55
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The terms linear in A2 cancel. Let us now consider the terms linear in .
/2$”7u(¢ — 075)P(d — dy5)Y + Ty (D + ¢y5) 2V Db + 4(d — dy5)*Y

= [ 252,06 = G180~ Fr0)0 — 86+ G527
— 7,0, (6 + $75)*7" Y + 4o — $5)*¢
= /2‘”r“m(<zS — $75)P(¢ — 7)Y — 1 (¢ — D75)°¢
— 229, (¢ — 75)7 0 (& — 5)0 + 4 — H5)°¢
— [~46- &0+ 406 - v =0
Thus Zuw is invariant under the infinitesimal transformations generated by S.

As we discovered in [subsection 8.1 there is one more generator in the confor-

mal superalgebra, namely R. We need to check that Z,wz is invariant under
the infinitesimal transformations generated by R. We recall the transformations:

bt = €6, e = —ct, el = et

Let us apply these transformations to §.S,wz:
SuSuwz = [ ¢[00 = X = 2268 + 66)] - 0 [06 + Mg~ 2023 + 679)]
1 - -
— ey [@ + 2X(¢ — ¢’y5)] Y.

It is easy to see that all terms cancel. Thus, the Wess-Zumino model is invariant
under the conformal superalgebra.

In the next section we will investigate gauge theories. The bosonic field in
gauge theories are not scalar fields ¢, which are spin-0. They are instead spin-1
gauge fields A,, which are vector fields.

9 Supersymmetric Gauge Theories

Here we will consider gauge theories. In a gauge theory, one can remove redun-
dant degrees of freedom in the Lagrangian by gauge transformations. The gauge
transformations are symmetries of the Lagrangian. Gauge theories are built on
Lie groups. Let G be a Lie group with Lie algebra g. Let {7T;} be a basis for g.
Then g satisfies [T;,T;] = fijka, where fijk are the structure constant, which
are anti-symmetric. If [T}, T;] = 0, we have an Abelian gauge theory, which we
will see an example of, namely electromagnetism.

9.1 Super-Electromagnetism

The non-supersymmetry parts are taken from [7], chapter 1.8.
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Let us start by recalling the Maxwell equations representing the laws of
electromagnetism. Let a bold faced letter represent three-vectors, where E =
(Ez, Ey, E.) is the electric field and B = (B, By, B.) is the magnetic field. Let
V be a three-vector, then V -V is the divergence of V', defined as

V-V:i=0,V, +0,V, +0.V,.
V x V is the curl of V, defined as
V xV = (0,V. — 0. Vy)i— (0, V. — 0.V)j + (0. V, — 0,V )k,

where i, j and k are the standard basis vectors. Furthermore, let p be the electric
charge density, and j be the electric current density. The Maxwell equations
are then

V-E=p, (9.1)
OE —V x B = —j, (9.2)
V-B=0, (9.3)
B+V x E =0. (9.4)

Let A, be the four-vector consisting of the electric potential ¢ and the magnetic
potential A, A, = (¢, A). Then, E and B are expressed in terms of 4, as

E =V¢— 0,A, (9.5)

B =V xA. (9.6)
Here Vo = (0,4, 0y¢, 0.¢) is the gradient of ¢. Let us define the electromag-
netic field tensor F),, := 0,4, — 0,A4,. This is invariant under a gauge
transformation

A, — A, + 0,0, (9.7)

where « is any function. This is obvious since derivatives commute. We imme-
diately see that F,, = —F,,. Then there are only 6 independent elements in
this matrix. They are Fy1, Foo, Fos, Fi2, F13 and Fb3. Let us calculate them
using (9.5) and (9.6). Let 4, j, k run from 1 to 3, then

Foi = O0A; — 0;Ag = 04A; — Vo = —Ej,
Fij = 8iAj — 8]'141‘ = aiAj — 6]Az = GijkBk,

where €ijk =1. Then we have F01 = —Ew, F02 = —Ey, F03 = —f;lz7 F12 = Bz,
Fi3 = —B, and F** = B,. Hence,

0 -E, —-E, —E.
E. 0 B, -B,
E, -B. 0 B,
E. B, —-B, 0

F,, = (9.8)
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Raising the indices changes the sign on the E-components:

Fp,l/ = nuprUﬁou

-1 0 -E, -E, —-E)\ [-1
B 1 E, 0 B, -B, 1
1 E, -B., 0 B, 1
1/ \E, B, —-B, 0 1/ (9.9
0 E, E, E,
| -E. 0 B, -B,
“|-E, -B. 0 B,
-E, B, -B, 0

We notice that

QF* + 0 F"' + 0,F* + 93F* = 0,E, + 0,FE, + p.E. =V - E,

OoF' + 1 F' + 0o F'2 + 03 F"° = —0,E, + 0yB. — p.By = —0;E, + (V x B),,
OF? + O F?' + 0, F?* + 03F% = —0,F, — 0, B. + p.By = —0,E, + (V x B),,
O F + 0 F° + 0, F% + 03F* = —0,E.. + 8, B, — py By = —0,E. + (V X B)..

Thus, if we let j* := (p,J), we can write two of the Maxwell equations, (9.1)

and (9.2)), as one equation,
o, FH = jh. (9.10)

We also notice that

OoF12 + O1Fo0 + O2Fo1 = OB, + 0, Ey — 0yE, = 0B, + (V x E),,

0o F31 + O3 F19 + 01 Fy3 = 8tBy +0,FE, — 0, E, = 6tBy + (V X E)y,

80F23 + 82F30 + a3-F02 = ath + ayEz - azEy = ath’ + (v X E)a:a

O1Fo3 4 02F31 + 03 F12 = 0, B, + 0,B, + 0,8, =V - B.
Thus, we can write the final two Maxwell equations, (9.3)) and (9.4), as one
equation,

apF;,u/ + 8NFVP + 81,Fp“ = O (911)

This is a Bianchi identity, which can be written compactly as 9;,F),,) = 0. If
any of p, u and v are identical, the Bianchi identity follows trivially.

The Lagrangian of the electromagnetic fields is
1

ZLEM = 1

Fu M 4 At (9.12)

The first term can be expanded as
F,F* = (0,A, — 0,A,)(0"A” — 9" AV)

= (0,A,)% — 0,A,0" A" — 0, A, 0" A" + (0, A,)*

= (0,A4,)% — 0,(A, 0" A*) + A,0" 9, A"
— 0, (A, 0" AY) + A 0M0, A + (6,1141,)2

= 2(8MA,,)2 —0,(A,0"A*) + 0" (A, 0,A") — 0" A, 0, A
—0,(A,0"AY) 4+ 0"(A,0,AY) — 0" A0, AY

=2(9,4,)* — 2(9,A")?
—0,(A,0"A*) + 0" (A, 0,A") — 0, (A, 0MA”) + O* (A0, AY).
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All terms in the last line are total derivatives which vanish in the Lagrangian.
Thus, the Lagrangian can be written

1 1
Pam = —§(<9,H4,,)2 + 5(8,“4/‘)2 + A" (9.13)

We find the equations of motion:

0 0
= [ 64 — 9, = [ 6A,(j*" + 8,0" A* — 0" (8, A”
58 /5 ”(8,4“ 0 5 )) /6 L+ 8,0 (8, A"))

0, A,
B /514#(]'# +0,(07 A" — 5" A”)) = /(SAu(j“ + 0, Fvh). (9.14)
We have used that
0(0,A")? 0(0sAN) .
A = 2(0,AP)—="22pn? | = 2. AP\ 1 A7) = 291 (9. AP).
O,y = O\ 2O iy ) = O (R0pA7)505) = 201(D,4)

Thus, the equations of motion are j* + 0, F** = 0. This can be rewritten as
0, F* = j# which is one of the Maxwell equations found above.

Let us now check if Zgy is invariant under the Poincaré algebra. We try
applying the obvious transformations

5aA, = a"8,A,, 0p A, = b (2,0, — 1,0,)A, (9.15)
to (9.14)). Then,
648 = /5aAu(j“ + O, F) = /a”apA#(j” + 0,0 A" — 91 AY))
= — / aP(—9,Au 4" + (8,0" A,0,A" — 9,0"A,,0,A"))
= - / aP (=8, A, " + (8,0" ArD, A, — 0,0 A,8,AM))
= / aP (=8, A" + 8,(0" A" — 9" AV)9,A,,)
= —/aPBpAM(—j“ + 0, F"M).
This does not vanish unless we have j# = 0. Let us choose j* = 0 from now on.
5,8 = / 6pA,0, F'H = / b7 (2,05 — 150,)A,0, (8 A* — O*AY)
=— / b7 (11 p 0o + 05 0,) AL (07 AP — DM AY) — (p <> 0)
= / b (GUAH(QPA“ — 0P A,) — 1A, (B AP — 91 AV
— 0, A, x,0, (0" A — aﬂA")) —(po o).

The 0,A,0,A" term, and the terms including 7,, vanishes since we subtract
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with the same term where p and o change places. Then
5,8 = — / b”"( — Oy A" A, — B, A 1,0, (0" A" — 3”A”)) —(p o)

_ / b (ApagaﬂA# + (8 + 2,0")D, Ay AV
— (6" + a:pa”)ayA#&,A") —(pe0)

_ / b (ApnwayaﬂA" + 0, A0, AP + 2,0,0" A, 0, A" — 0, A,0, A"
— 2,0, 4,0,4" ) = (p <+ )

_ / b (A,,nwal,a“A” + 2,0,0" APO, A, + Ay, 0,0" A
— 20,0 4,0,4") = (p ¢ 0)

— / b7 (24,10,0,0" A + 2,05 4,0,(6” AF — 9" A7) ) ~ (p > o).

0,A,,0, A" cancels due to the same reasons as above. Thus, acting with d; on
(19.14) gives

0S8 = /b””(:z:pag — 2,0,)A,0,(0" A" — 9" AV)
_ / 07 (0,0 — w00,) A (0¥ AV — 0" A)
+ 24,15,,8, 0" AY — 2Agnpuayau").

Hence 6,5 does not vanish. We need to modify the d, A, transformation for the
electromagnetic Lagrangian density to be Lorentz invariant. Let us try

WA, =0 (2,05 — 250,) A — Apliop + Actlpy) - (9.16)

Then, applying this transformation to the varying action leads to
5,8 = / V7 (2,05 — 200, AL — Aligy, + Abny) B,(0° AL — 0" AY)

= / b ((xpa[, — xaap)AIZ — 2142770;4 + 2Af,77pu + A;n[m — Af,npu)
X 8, (8" Al — 9" AY)
- _/bpa (p5 — 250,) AL, — Ay, + Abr,,) 0,(07 AF — 9 AY) = 0.

Thus, (9.12) is invariant under the following infinitesimal Poincaré transforma-
tions:

SaA, = a’d,A,,
A, = b (2,05 — T60p) Ay — Aplgy + AgTipy) -

Let us now introduce a fermionic field W, where the Lagrangian takes the
form

% - %qu. 9.17)
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In we found that the varying action is
55 = — / 5T, (9.18)

and we saw that the Lagrangian is invariant under the following infinitesimal
Poincaré transformations

5,0 = a9, 7, (9.19)
530 = b (2,0, — 2,0, + Sy) V. (9.20)

It is also invariant under a global transformation
U — ¥y, (9.21)

where a € R. The exponential of a matrix X is defined as

k=0
Then,
ays _ 1 2.2 } 3.3
e —]1+a75+2a75+6a75+...
1+ Ler —Lasa, o
= avs — —a’l — -«
T 5 6 V5

That is, for even powers of 5, we get £1, while for odd powers of 5 we get
+7v5. We recall that

(D PR i G Ol
cos(z) = kZ:O ] 2, sin(x) = ,;) mxzkﬂ. (9.23)

Thus, we can identify
e’ = cos(a)1 + sin(w)vs. (9.24)
We find how ¥ transforms:
U — eV = (e*5U)C =~ (e5)!0F = —W!(Ce*?)!
= V(O (cos(a)l + sin(a)ys))" = TCO(cos(a)l + sin(a)ys)
= Wes,

Hence, the Lagrangian density transforms as

1 1 _
& = 5\1/&9\1/ — §\I/e°‘757“8u(e°”5\11) = —W(cos(a)l + sin(a)ys)y" e 9, ¥

Ury*(cos(a)l — sin(a)ys)e "9, ¥

=N =N =

_ 1_
= Sy (100, W) = SUPT.

Let us couple the fermionic Lagrangian with &gy, to construct the La-
grangian of supersymmetric electromagnetism:

1 _
Lsem = _ZFWFW + UPv. (9.25)

61



9.1 Super-Electromagnetism 9 SUPERSYMMET-
RIC GAUGE THEORIES

The varying action is
0SsEMm = /(5AM8,,F”“ — TP, (9.26)

We have already shown that this is invariant under the Poincaré algebra. We
should check that it is also invariant under supersymmetry. [I0] gives us the
following supersymmetry transformations:

8.A, =&, 7, (9.27)
1
60 = — 5 Fuye. (9.28)

We find the transformation on ¥:

1 1 1 1
68 = — 5 Fuy¥e = =3 Fu (149 C = 5 Fue()C" = 3 Fuue (O’

1 , 1. y
= §F#V6tC’V“ = ieru'Yu .

Then, applying the infinitesimal supersymmetry transformation to (9.26)), we
get

0cSsEM = /EVN\IJE)DF”“ — %EFW/YW@\IJ.
Let us look at the last term:
_% / EFuy" POl = % / €0pFpy (V7 411" = Py ®.(9.29)
The term including v#¥? can be rewritten
™’ = %(aﬂFHV'VWP + Ou oy + O F ™)
= %((%FWW‘“’" + 0 Fu oy 4 0y Fppy""?)
= %(@)Flw +0,F,,+ 0,F,,)y*"* = 0.

This vanishes due to the Bianchi identity (9.11)), which we derived above. The
last two terms in (9.29) are

1 = v 1 = v = v
§/GBPFW(77P Yo — 0¥ = i/e(apF“pwﬂ — 0, FP",)¥ = —/eal,F Py, W,

which cancel the first term in §.Ssgy. Hence, 0.Ssgm = 0, and Zsgy is invari-
ant under the supersymmetry transformations.

Using the supersymmetry transformations

deA, =ey,9, 0.V = *iFuV’YWGa (9.30)
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and d.p = EQp = —€®Q.p we find how the supercharge @ acts on the two
fields. On A, it is easily seen that Q, A, = —(’yu)ab\Ilb. On W it is slightly more
complicated:

1
5.0 = —€QU° = —EFW(’y‘“’)abeb.

Lowering the a index with C,. gives
1 purya 1 nv
_Qb\I}c = _iFﬂu(’y ) bCac = _§FHU(’Y )cb~

Relabelling, and using (v**)ap = (7" )pa, we find

1
QaAu = —(y)a" Vs, Qu¥o = 5 Fu (")

We calculate the brackets [Qq, @b, beginning with ¢ = A,

Qa, Qb]Au = Qa(_(’)’u)bc‘yc) + Qb(_('yu)ac‘I’C) = _('Vu)bC%FVp('VVp)ac - ('Yu)aC%FVp('VVp>bc
= S Ep (80" )ea + (1a” (0" = =S Fop(1* o + (1)
We use to find
(1Yo = (" + 823 = 800 Y =~ — 8227 + 689"
Then,
Qo @l = —3 Fop((31" 0 + (37"t
= —%Fup(—(w”’” = 0,7+ 05 )ab + (1 + 6,77 = 077" )an)
= 2 Eop (251 )ar — 200 ) = (Ve — (1P

= (’yy)abFl/lL + (’yy)abFI/y« = 2(7V)abFuy,'

By the definition of F,, we have

[QCL? Qb]AM = 2(7”)(1[,61,14” - Q(VV)abauAu - 2(’7y)abPVAp - 2(7”)(1176“14,].
(9.31)
Recognising the last term as a gauge transformation, 9,4, = 0, (9.31)) agrees

with the Poincaré superalgebra found in
In the calculation of the other bracket, [Qq, Qs ¥., we use (B.4):

[0y, 0e,] ¥ = €§€3[Qa, Qu] ¥ (9.32)
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By using the supersymmetry transformations, we get
1
[5617562]\:[] = 561(_§F#V7MV€2) - (1 < 2)
1 v
= 57120400 Av) = 00 (06, Ap)) — (1 & 2)

1
= 57" (0@ W) — 0, @) — (Lo 2)

1
= —57“1'6251(%3“\11 —7.0,9) — (1 < 2)

1 .., _ _
= 31" (@182 — e26) (1 0¥ — 7,0, 9)
1 v 1 _ o 1, _ po
= 57 5(617 €)Yy — 1(617 €2)Ypo | (O V — 7,0, 9),

where we have used the Fierz identity (A.32)) in the last line. Furthermore, since
YOy = Y Y0 = =7, 0p, We get

1 - 14 1 = o v
[0c,,0c, | W = (2(617’)52)7M Yo — Z(eﬂ’p €2) 7" 'Ypﬂ) ’Yvau‘l/-
The ~-matrices in the first term gives

1
Yo = 5(7“7” — YY) YoV

Using (5.29) 77 = —2%u, (5:30) v*vyp, = 0 and v, = 6 = 41, this
becomes

1% 1 lo 1% m 1 17
Y Yre = =7, — 577“ Y Yop + Nop) e = —(Y"u, + 65) — 5557 Yo
= — (=" +65) — 208 = (y," = 85) — 30 = vy, — 4dh.

In the second term, the y-matrices are

M Voo rw = %(7“7” =Y Voot = —%n”’y”vaa%
= —%n“’\’y” (Moo + MpYo = MraVp) T
= —%n‘“ (’yU(E)\pgéfY(s’)%'YV — 20xp%0 + 20 Yp)
= —%77“)‘ (—7"(@\,)0576%75 — 205p%0 + 2Mr07p)

1

= =51 (26005775 = 2% + 20207)

= —€" 505775 + 0450 — 0L,
Rewriting the first term

00575 =1 oo = Vpo" = Vpa 1" — 8L, + .

We are left with only —v,sv*. Thus,

1 1

[5617562]\:[} = - (2(617p€2)(7p7'u - 455) - 4(61,}/;7062),}//)07“) 8”\1/

= (GO 08— 10,) = (@O Dded ) ¥ (033)
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Equating (9.32)) and -
1 1
G?GS[QM Qb] = —6111612) <2(7p)ab(7p$ - 48/)) - 4(’7p0)ab7po'$) v,
Thus,
1 1
[Qav Qb]\:[l = 2(7p)apr\If — 5('Yp)ab'7p$\:[f + Z(VPU)ab’}/pga\I/. (934)

Applying the equations of motion @ = 0, (9.34) agrees with the Poincaré su-
peralgebra on-shell.

We also check for conformal invariance. The fermionic Lagrangian is already

know to be invariant under the conformal algebra, so we only need to check Zg\p.
Checking invariance under the dialtions is enough. We try the transformation

0cA, =cx”0,A,. (9.35)
Then,
0cSEM = /cxpapAfﬁl,Fi"“ = —/c(égAfﬁyFi"“ +:L'pAfL3p6yFi”“)

¢ (4AL0, F/" — (86 + 2°0,) A%0,(0" Al — 9" AY)

||
\\\\\\\\

¢ (3AL0, F/" — 29, AL0, (0" A — 9" AY)

¢ (BALOLFY + (17 + 2P9")0, AL 9, Al — ()P + 2°0,)0, AL, 0, AY)

c (SAZ O F" +0, AZ ov AL — OUALO“AZ-” + x”@"&,AfL@pAf - x”@ual,AzﬁpAg’)

¢ (BALD,FY" + 0, AL(9" Al — 9" AY) + 209”0, AL, Al — 29,0, AL0,AV)

¢ (3AL0, F/" 4 0, ALF 4+ 2P0, AL0, (0" Al — 9*AY))

¢ (BALOF/" — AL O,F/" + 2P0,A!,0,F")

c (29, +2AZ) O E M #£0.

We see that if we instead choose the transformation
0cA, =cx"0,A, + Ay, (9.36)
0.Sgm = 0. Hence, Sgy is invariant under the conformal algebra.

Let us now check for invariance under the conformal superalgebra. [10] gives
the following transformations:

1
Oc Ay = (a¥ YV, oW = pr/u/V "7 ¢ (9.37)
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We find the transformation on ¥:

T, 1 U ~Dr 1 v 1 LV
54\11 = §pr/W'7”V'YpC = §$PFMV(’YH WPC)tC = _§xPFuuCt(7p)t('Yl )tCt

1 v 1 v 1 s
- _§mpFuV<t(7p)tC’W - ixﬂFMVCtC’Yp’YM = §<J7PFW'VP’YI - (9.38)

Applying these supersymmetry transformation to §Ssgnm gives
_ _ 1-
0¢SsEM = /5CAN8VF”“ — 5@116‘1! = /Cmp'yp’y#\I/Z?VF”“ — igprﬂ,/yp'y“”’y”&,\IJ
~ v 1 V.0 1= WV .0
= /pr'ypfyu\llauF " + 54770,017“1/7’)7” v v + §C$paoFMﬂle Y .

The second term vanishes since vy#"«y, = 0. In the last term we can rewrite

Y7

T =T

nro

+ 07t =0Ty

The v#¥? part vanish due to the Bianchi identity, while the n?“~* — n?#~" part
cancel the final term in d:Ssgpm. Hence, 0¢Ssem = 0. Before we can conclude
that dSsgm is invariant under the conformal superalgebra we need to check
R-symmetry. [10] tells us how R acts on the fields:

1
RA, =0, RV = 295V (9.39)
1 - 1 -
56Au = 0, 56\1’ = 56’}/5\11,65\1’ = 56@’)/5 (940)
Thus,

_ 1 —
0eSsEM = /56AM&,F”“ — 6. VPV = —3 /6\11757“(%\1/

1 1
= 5/6\1'“(7“75)abau‘1/b = —5/66M\I'a(7“75)ab\llb

1 1
B /e‘l’b(’Y“%)ab@u‘I’a =5 /E‘I’b(w%)baau‘l’a =0.

We have shown that Sggy is invariant under the conformal superalgebra.
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Part IV
Summary

The thesis started out with computing the Poincaré and conformal algebra from
Killing vector fields. This was done in arbitrary dimensions. The Clifford al-
gebra was also computed in arbitrary dimensions, but some of the important
results from that section was restricted to four dimensions, among them the
charge conjugation matrix.

We also computed several examples, kinetic- massive- and interaction La-
grangians, and check whether or not the Poincaré and conformal algebra were
symmetries of these. We found that the massive Lagrangian was not invariant
under the conformal algebra, and that in four dimensions, only interactions of
fourth power could be symmetric under the conformal algebra. It should be
pointed out that the last point only applies to terms like ¢*, we saw in the
Wess-Zumino model section that also terms like ¢2¢~>2 can be symmetric under
the conformal algebra.

We have also seen how the algebra proposed by Haag, Lopuszanski and
Sohnius, superalgebras, can generate symmetries of Lagrangians. We saw that
in the Wess-Zumino model, the Poincaré superalgebra closed on-shell, and so
did the confomral superalgebra. In the gauge theory electromagnetism, we also
needed a gauge transformation for the superalgebras to close.
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Appendices

A  Some Proofs

In this Appendix we give proofs of identities and other things we have had a
need for.

A.1 Clifford Algebras
This section is taken from [9], and shows how [Table 1| was made.

A real Clifford algebra over the field R, C#(p, q), is an associative algebra
containing the unit, 1. It has generators I';, such that

where n;; = Diag(—1,...,—1,+1,...,+1). We may rewrite (A.1)) as
P q
I,T; = -T,T,, (A.3)

where i # j. We begin with looking at the Clifford algebra in dimensions 0, 1,
and 2.

Dimension 0 is trivial. We have both p = ¢ = 0, thus only the identity is
contained in the algebra, C£(0,0) = {1} = R.

Dimension 1 is more interesting. We first consider p = 1, ¢ = 0. Since p is
negative in the Minkowski metric we have the generator I' satisfying I'? = —1.
Then T is complex, and C#(1,0) = {1,T' | I'? = —1} = C. The other possibility
is p=0, ¢ = 1. Now we have I'> = 1, so that I is real. C#(0,1) = {1,T'|I'? =
1}~*RaR.

Now we look at dimension 2. We start with p = 2, ¢ = 0. Now there are two
generators, I'; and I's. They satisfy I'? = I'2 = —1, I'1)Ty = —TI',I';. We may

choose
0 1 0 1
f- (9 0) ne(C)).

We also need to see whether these anticommute or not.

0
I'iTs = <8 Z) = —T,T,. (A.5)

We may relate these generators with the quaternions, I'y < i, I'y <+ j and
I''Ty + k. Thus, we have the isomorphism C#(2,0) = H. Next we look
at the case p = ¢ = 1. Now the generators must satisfy I'12 = —I'\2 = 1,
I'yI'y = —I'5I'1. A possible choice of I'-matrices is

0 1 0 1 -1 0
S (O Y Ky B Gl
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These generators generate the real (2 x 2)-matrices, thus C£(1,1) = Mats(R).
Only the case p = 0, ¢ = 2 remains. The generators satisfy I'1? = I';? = 1,
I'1I'y = —T'5I';. One choice of generators is

1 0 0 1 0 1
S R Y (I B L F Y

Thus, 1,T,T9,T1T'y are the generators of C£(2,0). These matrices are all real,
and together they generate the real (2 x 2)-matrices, C£(0,2) = Mato(R).

To find the rest of the Clifford algebra we will take use of further isomor-
phisms, shown in

Lemma A.1. The following isomorphisms hold:

C?(0,d) ® C£(2,0) =2 C¢(d +2,0), (A.8)
C¢(d,0) @ C£(0,2) = CE(0,d + 2), (A.9)
Cl(p,q)®Ce(1,1) =2 Cl(p+1,q+1). (A.10)

Proof. We prove first. Let 71, ...,7vq be the generators of C£(0,d) and let
o1, o2 be the generators of C£(2,0). We have the following relations:

Yiv; % = 20451,

003 + 00, = 72(;1]]1

We define a new matrix as

i ,1 << d,
r,={N®002 1St (A.11)
1®0;q ,i=d+1,d+2.

We need to know if these I'; satisfy I';I'; + I';I; = 2n;;1.

n,r; + I

(Vi ® 0102)(7; ® 0102) + (v; ® 0102)(7; ® 0102) 1 < 0,7 < d, ®
(i ®0o102) (1 ®0j_q) + (1 ®0j_q)(yi ® o102) 1 <z<d]—d+1 d—|—2 ®
(1®@0i—q)(v; @102) + (v; @ 0102) (A @ 04—gq)  ,i=d+1,d+2,1<j<d,®
(]1®0'z d)(]l®0'] d)+(]1®0-j—d)(]1®gi—d) a17]:d+17d+2 @

Prior to the calculations of equations (1) - (4), we make the following observa-
tions. Let us first recall the matrices generating C#(2,0),

0 1 0 1 i 0
g1 = (_1 0) s 09 = (z 8) s 0102 = (é —i) = —0907. (A_12)

Since i =d+ 1,d+ 2 in 0;_4, we have o;,_q = 01,02. Now, we find o1020;_4
and 0;_40103.

o) Ji=d+ 1, —0og ,i=d+1,
010920;—_4 — 0;—-d0109 =
192%i—=d —01 ,Z:d+2 imdT102 g1 ,Z:d+2

This means that o1090;_q + 0;_q0100 = 0. It is also useful to note that
01020109 — —1.
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Equation (1) gives

(viv5) ® (o1020102) + (7;7i) ® (01020102)
= (775 +757%) ® (01020102)
= 251-]-]1 ® —1
= —20,1.

() gives

(7il) ® (010205—q) + (1v;) @ (0j_q0102)
=7 ® (01020j_d + Jj_dolag)
=0.

() gives

(1v;) ® (0i-a0102) + (7;1) ® (01020 —a)
=7 ® (05_a0102 + 01020 _4)
= 0.

@ gives

Oi—q0j—q+ 05 q0i_q = —20;;1.

Thus, I';I'; + I'; I = —260;51, and I'; generates the algebra C¢(d + 2,0). The
proof of is similar, with only some changes of sign.

(A.10) mixes the two above. The procedure is similar, but more complicated.
Let v1,...,7p and 41 ... 7, generate C£(p, q), and o1 and o9 generate CZ(1,1).
These generators satisfy

Vv v = —20451, Yi%; + % = 20451, YiY; + 7% =0,
0-12:—1’ 0'22:1, 0109 + o901 = 0.

This time we define two matrices

(A.13)

po_Jyi®owoe Jl<is<p x5 Yi ®o1oe 1 <i<gq,
1w d=p+1." 1® o, st =q-+ 1.

We recall that the generators of C£(1,1) are

0 1 0 1 1 0
g1 = (_1 O)’ g9 = (1 0), 0109 = (0 _1> = _F2F1_ (A_14)

This gives

g9 ,Z:d+1, —09 ,’L:d+1,
01090;—d = 0;—qd01092 =
120 = g i=dyo. TP Loy Li=di2

We also find that oy090109 = 1.
Looking at the two matrices in (A.13)) separately they are almost identical to

those seen in the first part of the proof. Therefore, only when the two matrices
mix will be considered. One investigates in the same way as in the first part,

70



A.1 Clifford Algebras A  SOME PROOFS

and find that all are zero. Letting I'q, ..., I',44 denote all the generators, where
Iy are I'pi1, ..., I'ptq, the I-matrices satisfy
O

We may, then, find that

C£(0,0) ® C£(0,2) = C£(0,2) = Maty(R),
Cr(0,2) ® C£(2,0) = CZ(4,0) = Maty(H),
C£(4,0) @ C£(0,2) = C£(0,6) = Mat, (H),
Cr(0,6) ® CA(2,0) = C£(8,0) = Mat(R),

We see that when we reach CZ(8,0) the process may start over again, thus
C£(0,0), C£(0,2), C£(4,0) and C£(0,6) has periodicity 8. We also notice that
C#(0,0) and C#(0,2) are both real matrices, while CZ(4,0) and CZ(0.6) are
both quaternionic matrices. Thus it seems that for p — ¢ = 0,6 (mod 8), the
matrices are real and of dimension 2¢/2, where d = p+¢, and that for p—q = 4,6
(mod 8), the matrices are quaternionic and of dimension 2(4=2)/2,

Cr(0,0) ® C£(2,0) = C£(2,0) = H,
C#(2,0) ® C£(0,2) =2 C£(0,4) = Maty(H),
C£(0,4) ® C£(2,0) = C£(6,0) = Matg(R),
Cz(6,0) @ C£(0,2) = C£(0,8) = Mat6(R),

These are again periodic of periodicity 8. These satisfy the same conditions as
above.

C£(0,1) ® C£(2,0) = C£(3,0) 2 Ha H,

C?(3,0) ® C£(0,2) = C£(0,5) = Maty(H) @ Maty(H),
Cz(0,5) ® C£(2,0) =2 C#(7,0) = Matg(R) & Matg(R),
Cz(7,0) ® C£(0,2) = C£(0,9) = Mat6(R) ® Mat(R), . ..

Also C£(0,1), C£(3,0), C£(0,5) and C£(7,0) are periodic of periodicity 8. For
p—q =7 (mod 8) they are a direct sum of real matrices of dimension 2(¢=1)/2,

and for p — ¢ = 3 (mod 8), a direct sum of quaternionic matrices of dimension
o(d—3)/2

C?(1,0) ® C£(0,2) = C£(0,3) = Maty(C),
Cr(0,3) ® C£(2,0) = C£(5,0) = Maty(C), ...

C#(1,0) and C£(0,3) are periodic of periodicity 4. We may, however, extend
the periodicity to 8, so that it matches with the periods found above. Then, for
p—q=1,5 (mod 8), we have complex matrices of dimension 2(4=1/2,

We have now found the Clifford algebra over the field RP-? where either p, ¢
or both are 0. By induction we can prove that the results found above is true for
any choice of p and q. We first notice that the direct product of p C£(1,1)s is
isomorphic to CZ(p,p) = Matgr (R). Then we have that C#(p,q) ® C€(n,n) =
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C¢(p+mn,q+n) for any p,q,n € R. We can write any number p as ¢ + a + 8n,
p,g,n € R, 0 < a < 7. Then we find that C¢(p,q) = C¢(q + a + 8n,q) =
Ct(a+8n,0)®C¢(q,q) = C¢(a+8n,0) ® Mataq(R). This means that CZ(p, q)
is just a direct product between CZ(a + 8n,0), which we already know how
looks like, and Matsq(RR), which raises the the dimension of the matrix from

CZ(a 4+ 8n) by 24. Then [Table 1| follows.

p—q mod 8 C?(p,q) N
0,6 Mat v (R) 2172
2,4 Mat y (IH) 2(d=2)/2
1,5 Maty (C) 2(d=1)/2
3 Mat () @ Maty (H) | 2(4=3)/2
7 Maty (R) @ Maty (R) | 2(¢=1)/2

Table 3: Classification of Clifford algebras.

A.2 Proof of (5.9)
The proof of

Vrpigeepin Yo = Vprpizeeopiny T Mopn Yurpizeoin—1 = Mopin 1 Y1 po o tim (A.16)
+...+ (71)’”‘717)V/1,1’Y/L2,11,3.../Ln'

follows.

72



A.2 Proof of A SOME PROOFS

Proof.

1 .
Vuipz..pn Tv = ! Z sign(o) (ry/l/a(l)’yﬂo'(Q) “ Vo (n-1) (%Lo(n)%/ + 7V7Na(n))

= Yo (1) Vo) « -+ ’Yug(nﬂ)’yvfyug(n))

1 .
= E Z Slgn(a) (ry”’d(l)’y“o'@) c Vo (n-1) ('YMC,(TL)’YV + 'YV’YNC,(”))
" oes

- 7#0(1)7%7(2) s ’y#a(nfz) ('y#a(nq)'b + 7V7#0(7L71>)’7#a(n)
F Vit 1y Vi@ -+ Vtotn2) VoVt n1y Vitomy)

= % ;sign(a) ('Y/tg(l)')’ua(z) “ Vho(n-1) ('Yu(,(n)%/ + ’Yu’Yug(n))
= Vo) Vo) + Veiotn2 Tttty YW T V0 Vbt (1) Vit
F Vo) Vo) +++ Vito ) Wto(n1y Vitomy T
+ (71)’"‘71(7}]‘0(1),-)/1/ + FYV’YHU(I))’YIJ’U(Z) R T
+ D)™ Vst 1) Vi o) - 'Wa(n))

1 :
= n! E :Slgn(a) (7#0(1)7#0(2) o Vo tn—1) Wl (n)
‘oes

T Vo) Vo) =" Viomn-2)Whon—1) Vo) +o
—1
+ (71)71 77V#a(1>7,ua(2> o 'PVMU(n))
11 .
55 D SI8(0) (V) Vo -+ Voo Vit iy Mo+ VW)
T oes

T Vo) Vo) = Tho(n—2) (Vua(nq)%’ + YW Vbo(n—1) )’y)u'o‘(n) +o
+ (*1)n71(7ua<1)% + ’YV’Yua(l))'Vua(z) co Vo (n)

+ (1) 2% 10 1) Vito 2 -+ Vit ) -
(A.17)

In the first sum of the last equality in (A.17) there are n terms, and each term is
permuted once, and it changes sign for each permutation. Therefore, that sum
can be written

1 .
m Z Slgn(a) (’Yﬂa(l)’yﬂa@) c Vo1 Whom)
oS

T Yooy Vito@) ** Yion—2)MWhomn—1) Vo) +
—1
+ (71)n nvuo(n%ta(z) ce ’Y.“'o(n))
1 .
T (n-1)! > S180(0) Vs 1) Ve Vo) Mg ()
og€eS
—1

= 77VM7L7#1#2--~#(71*1) - nVH(n—m/Y,ulug...uﬁ,\l),un +ot (_1)n Mvpy Ypops. . pin
(A.18)
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The other sum can be rewritten as

nl2 Z sign(o) (’yua(l)’yua@) = "VMG(”_U('VMG(TL)'YV + ’YV'Yug(n))
o €S
- 7!%(1)’7#0(2) s Pylu‘a(n72) ('y#a(nq)'b + ’YV’YMa(nA))PY#a(n)
o CD" T oy Yo+ W0 Viw ) Vito ey -+ Vit
+ (71)n271/7#g(1)7#o(2) e Pyﬂa(n))
11 .
= nl2 Z Slgn(cr) (7M0(1)7uo(2) c Vg ) Ty =+ (_1)n7u7u6(1)'7u0(2> cee ’Yuf,(n))
c€eS
11 . 2
= 55 ;sgn(a) (n + 1%%(1)%%(2) s Vo) Tv
(e
n—1
+ n+ 1’7/%(1)7#0(2) Vo (n-1) ('VILU(")'YV + 'YV'Y;LU(,,L))
n—1
n + 17‘%(1)7“6(2) w Mo 1) W ko (n)
2
+ (_1)nn7+1%/yua(1)7ua(2) “ Vho(n)
an—1
+ (_1) n+1 (’YV’VHau) + ’Yﬂa(l)’VV)Amg(z) co Vo n)
_n—1
+ (_1)n mryua(mryljvug(m T ’ylta(n))
11 . 2
= nl9 Z Slgn(a) (M(’Y}Lgu)'yugm) o Vg ny Tv
oceS
= Vo) Vitoe2) *** Vit no1y Vo Vitomy T (71)’”71—/7}1’6(1)7}“0(2) co Vo n)
—1
+ (_l)n Vug(l)ryuf}//tg(z) e ’Y;Ag(n))
n—3
- n+1 (’Yﬂa(l)'yua(g) < Vg (n—2) (’YNo(n—l)’YV + ’yl”y,uo(n—l))’yyfo(n)
T Vo) Vo) ** Thon-2 T Vo (n—1) Tho(n)
-1
- (_1)n Vo1 (’VV’YMU(z) + 7ua(2)7V)7u6(3) < Vo (n)
—2
+ (71)n Vo 1y Vo (2) Vv Vo) - - 7#0(7,)))
1l 2
= nl 2 Z Slgn(a)m(’yuﬂm’yuﬁm co Vo) T
oS
T Vo) Vo) = Tto(n—1) Vv Vtto(n) +oee (_1)n71/7/to(1)7ua(2) ce ’Yug(n))
1 .
BCES)] Z SIE0(0) Vg 1) Vit 2y + Vit oy Vo (v)
oceSs
= Yrpo.. pnv-

(A.19)

If n is odd, there will eventually only remain two n%_l terms, while if n is even,

there will be two n%_l terms, one positive and the other negative, since one is

multiplied with (—1)*~"/2 = (=1)™/2 and the other has to go through n/2 — 1
permutations, so it is multiplied with (—1)”/ 2—-1 Adding the two last equations,
we get the desired result. O
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A.3 Proof of [Proposition 5.2

This is the proof of
Proposition A.2. Let v = v1._p(p+1)..n Wheren,, = Diag(—1,...,—1,+1,...,+1)

P q
and n = p + g. Then ~y satisfies the following identities:

Yy = (1", (A.20)
7% = (=1)rn /2= (A.21)

In Minkowski space, 7 = -5 satisfies

1 loa
Yur Vs = 7§€,uupa'7p ) (A22)
Yuvp = €pvpaY’ Vs> (A.23)
Vuvpo = —€pvpaYs- (A.24)
where €9123 = —¢195 = 1.

Proof. We first prove (A.20]). Since o € {1...n} we can choose p = i. For all
i €{1l...n} we can show

Vi = (=0T e (A.25)
Similarly, we find

Moo NieoYnYi = (D) Ty e (A.26)
Then (—1)"1(A.25) = (—1)""(A.26). Multiplying both sides with (—1)*~!

gives the desired result,
S T M C § Ll G B L P P
= (D" Y v

We continue with (A.21)).

’}/2 :71---7p7p+1~-~’7n71-~-7p7p+1~-~’7n

(D)™ 1192 VYot - - VY2 - - VYVt - - - T

1 n+ n—1)+~"+(n—17+1),yp+1 e YnYptl - In

) (
1)n+(n71)+---+(nfp+1)(_1)q71nqq,yp+2 Y Ypa2 - T
1)n+(n71)+---+(nfp+1)(_1)(q71)+(q72)+~-+1

)

1)n(n+1)/2—q

(_
(_
(_
= (-

The last four identities are only proved for four-dimensional space time. 0
is used for the time-component, while 1,2, 3 are used for the space-components.
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A.3 Proof of |Proposition 5.2 A  SOME PROOFS

First out is (A.22)),

1
Yur Vs =V6Vur = 575(%% — VoY)

= (773[H’Yo12 — M2[pY013 + N1[uY023 — Tlo[,ﬂm?,) T
=13[u (7012u] + Mj2Y01 — Muj1Yo2 + 771/]0712) — 20 (’7013;/] + My3Y01 — Mwj1Yo3 + 771/]0713)
+ M (7023u] + Mw)3Y02 — My)27Y03 + 77u10’723) = o[ (’Y123u] + M3z — Mj2V13 + 771/]1’)’23)
=701 (Ms1uT)2 = N2uM3) — Yo2 (Ms[umir — Mputvis) + M2 (M3uivjo — Nofum)3)
+ 703 (M2t — Mpphiz) — 13 (M2pumjo — Mojumv)2) + Y23 (Mo — Mfumo)
+ M3[uY0120] — M2[Y013v] T M1 Y0230] — Mo[V1230]
=297 (No[pNo]1M3[1 ]2 — M0[pMe)2M3[uM]1 + M [pNe]2M3[u )0

= MolpMNo)3M2[u"]1 + MipNo13M2[uv0 — 772[/)770']3771[;1,771/]0)
1

— o
- 76;“/;)67’) .

2

The last equality follows since

€uvpo = No[u"]1112[p"e])3 — No[uTv]2T[p"o)3 + MpT2M0[po]3
= M3[u")1712[p"1o]0 + N3[u"12M[pNe)0 — M3[uTv]0T[p"])2

Another thing to be pointed out is how the 73[,7012,) terms vanish. The van-
ish unless 4 = v. Then all terms but the one in question vanishes on the
right hand side. The left hand side vanishes as well since v,, = 0. Thus

N3 Yo120] — N2[pYo13v] T N[ Y0230] — Mo[uV1230] = 0.

Next is (A.23]). For this we may consider all possibilities separately, there
are only (g) = 4 of them:

€120 V5 = 60120’70’)’5 + 6012171’75 + 60122’7275 + 6012373’)’5

= =375 = V573 = V0127373 = Yo12(733 + 733) = Yo12,

€01307" V5 = 60130’70’)’5 + 601317175 + 601327275 + 6013373’)’5

= Y275 = —Y572 = —701237Y2 = —7Y01232 — 1237012 + 1227013 — 1217023 + 1207123 = Y013,

€02307° V5 = 602307075 + 602317175 + 602327275 + 6023373’)’5

= =715 = VY571 = 7012371 = 701231 + M137Y012 — M127Y013 T N117023 — MN107Y123 = Y0235

€12307° 75 = €12307" 75 + €12317 75 + €123272Y5 + €12337°75

= =775 = —Y0%7123 = — (Y00 + M00)V123 = Y123

Finally, (A.24). Here there is only one (non-zero) possibility:

0123
—€012370123 = € Y0123 = 70123-
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A.4 Proof of (5.18)
The proof of

’nyllLQ-”ll'n = (_l)n(n+l)/20'ﬁtw2munC_l (A.27)

follows. We first look at how one term changes,

'qu')’;ttz o "V/tm = (07, C™)(=CruC7Y) . (O, C7H) (A.28)
= (=1)"CYu1 Vs - - - Y C 1.

Then, the collection of all of the terms become

ryzbutz-ultn = Z Sign(g) (ryﬂo(l)ryﬂo@) e /7”0(71) )t

g€eS
. . t t t
= Z 51gn(0)7u6(n> Vg2 Yito 1y (A.29)
g€eS
= (_1)nC (Z Sign(a)f)/ug(n) . '7M6(2)’Y“6(1)> C_l'
geS

There are Y .-, (n—i) permutations needed to go from ¥, Y - - - Yun 10 Yy - - - Vpaa Yyua -
Thus

(_1)n+2?=1(n_i)'Vmuamun

(—D) Sy (A.30)
(_1)n(n+1)/2

t
7/"‘1)”’2'““’77,

Yurpa.. pin -

A.5 Fierz identity
The Fierz identity for fermionic spinors €; and €3 is
_ 1, 1, 1, 1, 1
€162 = *1(6261)]1 + 1(62%61)75 - 1(627 €)% + 1(627 Y5€1) VY5 + g(ﬁﬂ €1) Y-
(A.31)

This is an important identity in supersymmetry computations. A special case
we have a use for is €1€5 — €9€7:

1 1 1
€162 — €261 = ——(E2€1 — E162)1 + —(Exys€1 — E17Y5€2) 75 — — (€27 €1 — E1vHea)
4 4 4
1 1
+ Z(€2’YH’Y5€1 — El’}/u’}/f’,ﬁg)’}/ﬂ’)% + g(gg’)/uyel — gl’y“VGQ)"}/W,.

USing Cab = _Cbcm (75)0,17 = _(75)ba7 (Vu)ab = (’7u)ba7 ('7;1,75)@17 = _(’YM’YS)ba
and (Yuv)ab = (Vv )ba, we find

1 1
61€2 — 62E1 = 5(51’)/“62)’7“ — Z(gl"}/‘u’yEg)’}/uy. (A?)Q)

B Computation of Algebras

In this section we compute the commutation relations describing the Poincaré-
and conformal (super)algebra. At the end of the Appendix we also show
that the conformal algebra on RP¢ is isomorphic to so(p + 1,q + 1).
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B.1 The Poincaré Algebra B COMPUTATION OF ALGEBRAS

B.1 The Poincaré Algebra

The calculations leading to the Poincaré algebra (4.24)), (4.25)) and (4.26)) follows.
We recall that P, = 0, and M,, = z,0, — x,0,. Then the commutation

relations are

[Py, P, =[0,,0,] = 0,0, — 0,0, =0,

(M, Ppl = [2,0y — 2,0, 0, = 2,00, 0)] — [1,0,, 0]
=2,0,(0,) — 0p(2,0,) — ©,0,(9)) + 0p(2,0,)
=2,0,0, — Npp0y — 0,0, — 2,00, + 1Npy Oy + 2,0,0,
= NpvOu — NpuOu = Npv Py — Npp P,
[M,

s Mpo] = 2,00 — 2,0, 205 — 250,

= [2400, 205 = (200, 25 0p] — (2004, 205 + 21,0, T50)]

= (2400(%05) — 206 (2,00))
—(peo)—(pev)+(pev,peo)

= (2uMp0o + 420,05 — TpNep0y — px,050,)
—(peo)—(peov)+(pev,poo)

= (MpZp0o — NopZpOy) — (Moxp0p — NppteOy)
— (NppTv0s — Nov®p0y) + (Muo®u0p — NpyTe0y,)

= Npw (2p06 — To0u) — Nop(,0, — ,,0,)
= Nov(Tu0p — TpOu) + Npp(T50y — 2,05)

=N Mpoc — Mo Mpy — Nov Myp + 1pp Moy

Thus, the commutation relations describing the Poincaré algebra is

[P;MPV} =0, (Bl)
[M;w, Pp} = nupP;L - n,uppm (B2)
[M;uu Mpo‘} = nupMua - ’r]qupu - nuaMp,p + nupMau- (BS)

B.2 The Poincaré Superalgebra
We compute the Poincaré superalgebra. The generators act on the fields as:
Pup = 0ud, Mo = (2,0, — 2,0,4)0, Qad = ta,
Pup = 0,6, Myt = (2,0, — 2,0,)0, Qud = (15)a" Vs,
Pty = 0, Myt = (2,05 = 200 + Spn)th, - Qo = —(1)ab 0 + (1"95) b0 -
We find the brackets defining the Poincaré superalgebra.

[Pus Qal¢ = Putha — Qa0ud = Optha — Optha = 0,

[Py Qa)¢ = Puystba = QaOud = 750, — 0u(15¢) = 0,
[P Qalts = Pu(=(1")ab0u® + (775)ab O @) — QuOptb

= ~(1")ab00 0 + (17715) b0 06 — By (— (Y )b B d + (775) b0 d) = 0.
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B.2 The Poincaré Superalgebra B COMPUTATION OF ALGEBRAS

Hence, [P, Q,] vanishes.
My, Qalé = Myvtba — Qa(,0y — zyams = (Z)a’ s = (S)a’ Qv
My, Qalé = My y5tha — Qa0 — 200,)6 = 75(Su)a ¥ = (S )a’ Qud
[Mys Q] s = My (—~(4)avBp0 + (175 )0y
— Qa (2,00 — 2,0,) 0 + (Zp0) V)
— — () a0y (28 — 2,0,)6 + (V'75)abDp (,u0y — 1,0,)9
~ (@00 = 2,0,) (= (0D + (175)ar0,)
— (S (= (0)acpd + (1715)ac0y)
= —(v")ab (Mo = Mpu0) D + (Y ¥5)ab (MpuO — Mo )&
+ (s (()ealypd + (1795)cay)

Let us consider only the last line:
1

c 1
(Z ) (V)ea = 5('7W'Yp)ba = 5('7#1//) + 00 — 5Z'Yu)ba
1
= =5’ = 007 + 0 )ab

= — (O = 8%+ %) = B + S0
= —(Zu” = 60V + 07 )ab-
In the same way,
(Z)o (Y 5)ca = (Zuw¥*¥5 = 857uY5 + 4775 )ab
Then,
(M, Qal o = =(7")ab (a0 = 1pw00) 6 + (775)ab (9 = 00 ) &
— (ZY” = 68 + 60)ab0pd + (S5 — 0075 + 05775 )ab0pd
~(Z ) abDp® + (S ¥5)ab0p® = —(Zpw)a’ (V5060 + (775) D)
= (Z0)a " Qcy.
Hence, [M,,,,Q.] = (X uu)abe-
[Qa, Qb]d = Qathy + Qi
= _(’Yu)ab‘a;@ + (’Y“’YS)abaué = (7")baOud + (’7”75)17116#(13 = _2(7M)abau¢7
[Qa, @b)d = Qu(V5)b Ve + Qb(V5)a Ve
= (1) (= (") acOu® + (7"795)acu®) + (15)a" (= (7" )bcOud + (V*75)bc0u )
= (15)6°(—=(1")ca0u® = (7"75)cadu®) + (1) (= (1) et 0y — (175)cb0pu0)
= (79560018 + (V"92)6a0u®) + (7*75)ab0u® + (172)ab0® = —2(7")ab0,ub, -
We use another method to see [Qq, @p]1)c. Since d.p = EQ,
[0c,,0c, )0 = [61Q, ©2Q)p = (61Q6:Q — ©Q6 Q)¢ = (61QaesQn — €3QueT Qu)p
= €163(QuQy + QuQa)p = €1€3[Qu, Q] (B.4)
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We will take use of the Fierz identity (A.32)

1 1
€162 — €261 = 5(517“62)% - 1(517“”62)%”/ (B.5)
Now, computing (B.4)) by applying the supersymmetry transformations
Setp = W, Se = s, Seip = (¢ + dys)e, (B.6)
we get
[0crs0e]t0 = 86, (D(d + Pys5)ea) — (€1 ¢ €2) = D(E1t) + E1v5¢75)e2 — (€1 ¢ €2)
= 7“62518,ﬂ,[1 —+ 7“7562&756‘#1/) — (61 < 62)
= " ((e2€1 — €1€2) + V5(€2€1 — €1€2)75)0, 0

1, 1,
= 77“{ (2(617 €)Y — 1(617 p€2)7up)

1 1
+75 (2(617”62)% - 4(617””62)%p> 75}(%%

where we have applied the Fierz identity in the last step. Let us compute
this as two separate terms. Consider first (€;*€3)-terms:
7 (€1y"e2)n + 7“75(%(517”62)%% =7"(e1y"e2)yw — v“(%(av”ez)%v?
= 29" (17" €2) vy -
The (€17"Pey)-terms are
Y EY P ea)1p + (@7 P ea) Vup s = V(@17 €2) 10 + M (@17 €2) V075
=0.

Thus, only the terms of the first kind contribute. Using the Clifford condition
YV + YV = 20w, we find

[0eys 0en ]t = =V (€177 €2)7, 0% = — (€17 €2) 7" 1, Ot

= 7(€17V62)(265 - ’Yu’Y“)aul/J = *26(1163(7/14)(1173#1/} + E‘fﬁg(’Y”)ab’m@w
(B.7)

Then equating and , we find
€1€3[Qu, Qv = =2€1e5 (Y )bt + €13 (Y ) 1u V-
Thus, we have, with 9, = P,,
[Qa: Qulto = =2(v")ab Pt + €13 (1) apYu-
Using the equations of motion for ¢, @ = 0, we get
(Qa, Qv = =2(7")ap Puth.
This is the same type as [Qq, @p] on ¢ and é. Hence, [Qa, Q] = —2(v")ap Py-

The brackets defining the Poincaré superalgebra, in addition to the brack-
ets found in Appendix are

[P, Qal =0, (B.8)
[Muw Qa] = _(EHV)abev (B.Q)
[Qa, Qb] - Q(VM)abP;u (B].O)
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B.3 The Conformal Algebra

The calculations leading to the conformal algebra (4.45)) - (4.50)) follows. We
recall that P, = 0,,, M,, = ©,0, — 2,0, D = 2"0,, and K, = 2x,2"0, —x28w
where 22 = z,2”. Then,

[Py, D] = [0,,2"0,] = 0,(2¥0,) — 2”0, (0y) = 6,0, = 0,y = Py,

[Py, K| = [0, 22,270, — x2&,] = 2[00, ©,2”0,] — [0y, x28,,]
= 2(0u(x,2”0,) — 2,2°0,0,) — 3#(x23,,) + x231,5#
= 2’0, + 1,650, + x,2°9,0, — x,2°0,0,) — 22,0,
- x28,ﬁ,, + x281,8M
= 21, 2" 0, + 22,0, — 22,0, = 21, D + 2M,,,,

(D, D] = [2,,,2"9,] = 0,

(D, M) = [2°0,, 1,0, — 2,0,] = [270,,2,0,] — [2°0,, 1,0,,]

= 20(20y) — 2,0, (270)) — (1 > V)
’n,,0, + 2°2,0,0, — 1,600, — x,2°0,0, — (1 < V)
0, — 2,0, — (pv) =0,

[D,K,] = [2°0,,2z,2"0, — x°0,] = 2[20,, v,2"0,] — [2°0,, x>0,

= 2(2P0,(x,2"0,) — x,2"0,(2°0,)) — 2°0,(2%9),) + 20, (z"O")

= 2(z” (nppax” + 0, + x,270,)0, — xz,x” (08 + 2°0,)0,)
— 2 (23, + 2%0,)0, + m2(5ﬁ +2°0,,)0,

= 2(z,2"0, + 2"2,0, + 22,27 0,0,) — 2(x, 2?0, — x, 2”20, 0,)
— 2220, — 2°2°0,0,, + 0, + x*3"0,0,,

=2x,2"0, — xzau =K,,

M, K,| = [2,0, — 2,04, 22,2° 05 — a:28,,]

= [240y, 27705 = [240,,2%0,) — (1 4> V)

= 2,0,(2,270,) — 1,270y (2,0,) — 2,0, (2%0,) + 220, (,0,) — (1 & V)

=2,(Mpx’ + 2,0y + 2,2°0,)05 — 27 (Nop + ,05)0,
-z, (22, + x2a,,)ap + xQ(UW +2,0,)0, — (p > v)

= NypTu2’ s + 22,0y + £,2,2° 050, — 2,0, — 20,87 050,
—2x,2,0, — xzmu&ﬁp + anxQ&, + xzxu&ﬁp —(nev)

= Nyp®u 2% 0y — 2,20, + 1pur20, — (1 <> V)

= N2 x° 0y — 22,2,0, + npuxzay — (Nppvx® 0y — 2x,2,0, + npuajzﬁu)

= Npu (2,270 — xQ(r“)H) — Npu(2,2° 05 — xQ&,) = N Ky — Npu kK,
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(K, K] = [22,2"0, — 2%0,, 22,30, — 2°0,)]
Az, 2°0,, 1,270y — 2[x,2"0,, 220, — 2[220y, 2,27 0p] + [220,, 220,
Az, 2°0,, 1,27 0y] — 2([x,2°0,, ¥20,) — (1 4> v)) + [220,,, 20, ]
(2,2 0p(2,27 05) — 2,27 0 (2,27 0)))
— 2(2,2°0,(2%0,) — 220, (x,2P0,) — (u +> v)) + 220, (2%9,) — 229, (2%0,,)
= d(z, 2’ (Mpu®” + 2,07 + 1,27 0,)05 — Ty 27 (Nopa” + 2,65 + ,2°05)0,
— 2(z,2” (22, + 320,)0, — 2% (Nyu” + 2,00 + ,3°0,)0, — (1 > V)
+ x2(2x“8y + :1728#(% — 22,0, — 1’2@8“)

= 42,227 05 + x,2,2° 05 — 22,270, — x,2,270,)

— 2(2&0295#61, + x2xuajp(“)p81, — nl,ﬂac2xp8p — x2xﬂa,, — xQxprﬁpay — (u < v))
+ IQ(ZxM&, —2x,0,)

= —2:52(9%01, — Nopx’0p — (2,0 — Nua”0p) + 2952(3%61/ — x,0,)

= 723102(33#8” —z,0,) + +2x2(:c#81, —z,0,) =0.

We have found that the non-vanishing commutation relations describing the
conformal algebra are given by

[Py, D] = Py, (B.11)
[P, K| =2(nD+ M,,), (B.12)
[D,K,] = K,, (B.13)
(M, Pyl = 1up Py — npp P, (B.14)
(Myus Mpo] = 1pMuo — Mo Mpy — Nvo Mup + Mup Mo, (B.15)
(M, Kp| = mup Ky — up Ko (B.16)

We also show that on RP'? the conformal algebra is isomorphic to so(p +
1,q+ 1). This algebra is the Lorentz algebra of dimension p + ¢ + 2,

so(p+1,q+1):={X € Matyyqi2 | Xnuw = —1 X'}, (B.17)

2
where ¢ denotes the transpose. It has (+2+2) _(p+q+2) (p+q+2)(p+q+1) gen-
erators. In [subsection 4.3| we found that the conformal algebra has Mﬂ
generators, where m = p + ¢ is the space-time dimension, so the number of
generators in each algebra is the same. Let us see why the conformal algebra is
isomorphic to so(p + 1,¢ + 1).

Proof. Let the generators of so(p+1, g+1) be denoted Z,,,,, with p,v = 1,...,p+
g+2,and Z,, =0 when p = v. The generators satisfies (4.26):

[Zuw Zy o) = MopZpuo — Mo Zpy — MvoLup + NupZov- (B.18)
The signature of the Minkowski metric on RP*? is (—,- -, — 4, -+, +).
+1 +1
P q

Let i,5 =1,...,p,p+2,...p+ g+ 1. The generators, Z,,, can be written
as a set of four different generators,

,ul/*{ Y zAv szZAB}
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Here A has been used instead of (p+1), and B instead of (p+¢+2). It should be
mentioned that there is nothing special with the choice of A and B, only that one
of them should be negative, and the other positive in the Minkowski signature.
We rewrite the generators as Q = Zap, S; = Zia — Zip, and T; = Zja + Z;p.
The commutation relations are

(Zij, Q| = [Zij, ZaB) = njaZip —NiBZa; — N;BZia +MiaZBj = 0,

(Zij, Skl = [Zij, Zia — Zyp| = [Zij, Za] — [Zij, ZiB]
=NjkZiA — MAZij —NjaZik + NikZaj — NikZiB + MiBZkj + NjBZik — NikZBj
= NjkZia + NikZaj — NjxZiB — NikZBj = Nk (Zia — Zi) — ik (Zja — Z;jB)
= NS — NikSy,

(Zij, Tie) = [Zij, Zia + ZiB| = [Zij, Zial + [ Zij, ZiB)
=NjkZia — MiaZij — NjaZik +NikZaj +NjkZiB — NiBZkj — NiBZik + Nik 2B
=NjpZia + NikZaj +NjuZis + NikZpj = Njk (Zia + Zig) — ik (Zjp + Zja)
=0T — Ty,

[Qv Q] = [ZABa ZAB] = 07

Q,Si] =[ZaB, Zia — Zip| = [Zap, Zia) — [ZaB, ZiB]
=NBiZAA — NAAZiB — NMBAZA: +NaiZAB — MBiZAB +NABZiB + NBBZ A: — NA:ZBB
=7Zip+Zai =Zip— Zin = —5;,

Q,Ti] = [Zap, Zia+ Zig) = [ZaB, Zia]l + [ZaB, ZiB]
=NBiZAA — NAAZiB — NBAZ Ai + NAiZAB +NMBiZAB — NABZiB — NBBZAi +NAiZBB
=2Zip—Zai = 2Zip + Zia =T;,

(Si, 851 = Zian — Zi, Zja — ZjB| = [Zia, Zja| — [ Zia, ZjB) — [ZiB, Zja| +[ZiB, Z;B]
—_———
=—(Z;a,Z;B]
=NA;ZiA — MAL;A —NAAZij +NijLAA — NA;jZiB +1iBZjA +NABZij — NijZBA
+N4iZiB —NjBZiA —NABZji +NjiZBa +MBjZiB — MiBZjB — NBBZij + Ni; ZBB
= Zij +nijZaa—nijZBa+njiZea— Zij + ;488 =0,

(S:,T5) = [Zia — Zip, Zja + ZjB) = [Zia, Zjal + [ Zia, ZjB) — [ZiB, Zja| —[ZiB, Z;B]
—_———
=—[Z;a,Z;B]
=Zij+ni;Za+njiZpa+Zij =2(Zi; +nijZa) = 2(Zi; — 1i;Q)
= —2(ni;Q + Zji),
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(T3, T;] = [Zia+ Zip, Zja + ZjB] = [Zia, Z;iB| + [ Zia, ZjB] + [Zig, Zja] +ZiB, Z;B]
—_——

=—[Z;4,Z;B]
=Zij +Nij ZAA +Ni;ZBA —NjiZBA — Zij + i ZBB = 0.
The commutation relations are
[ ,LLV, ] = 771/p npo'Zpy - nyg'Zle + /r}'ung‘y, (Blg)
[ZmSk] = ngS mksj, (B.20)
(Zij, Tk] = 77ng nik Ly, (B.21)
@, Si] = (B.22)
Q. Ti] = ﬂ, (B.23)
[Si, Tj] = —2(n;:Q + Zj;). (B.24)
Above we found that the conformal algebra is given by
[Py, D] = Py, (B.25)
[Py, K] =2 (nuuD + Myy,) (B.26)
[D,KM] = K;u (B27)
[MIMM Pp] = anP nupP (B28)
(M Mpo| = 1upMpuo — Mo Mpy — Mvo Mpup + Npp Mo, (B.29)
[Mp,lu Kp] = nupKu - nupKy- (B30)
We see that the commutation relations IB.24)) are equal to the

commutatlon relations describing the conformal algebra 1- except
that ( is equal to minus (B.26]), and (B.22) is equal to mmus‘ Then
we can relate Zy = oMy, S; = P, Q = vD, and T; = §K,. Choosing
a=v=1, andeitherﬂzlandéz—10rﬁ:—1and5:1givesan
isomorphism. O

B.4 The Conformal Superalgebra

We compute the brackets describing the conformal superalgebra.
We recall the infinitesimal transformations for D from [subsection 6.2
. . 3
dep = (a0, + 1)9, de¢p = c(2"0, + 1)0, detp = c(a"0, + 5)1&

We find how D acts on the field from 6. = cDep:

Do =(@0u+ 1o, Db=(du+ )b DU D, + 3.
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We can now find [D, Qu]:
(D, Qul6 = Dif = Qu0y + 16 = (290, + 5)ha — (0, + 1)t
= S = 2 Qud
1D, Quld = Dystia = Qu(0y + 16 = 168y + 5)ba — (0, + )50
= %75% = %Qaqfx

[D,Qultbs = D(—(7") a0 + (175 ab0u$) — Qa2 3, + g)wb
= —(1)ab0u((2"0, +1)¢) + (7"75)ab0u (2”0, +1)9)
@0+ ) (- wdud + (1))
= —()ab(70, + D,y + D)+ (176)an (5,0 + 70,0, + D)0
(1) D0t — (115)as" 0,0, — 5 Quty
= —20")asu + 20" )asud — 5 Quty
= 2Qut — 5 Qutty = 5Quth.

Hence, [D,Q,] = %Qa.
The infinitesimal transformation for K, are

6a6 = A (20,2"0, — 2,0" 0y + 22,0, 046 = A" (2,2"0, — 2,2" 0y + 22,5,
dgp = d*(2z,2" 0, — x,2” 0y + 3, — V)Y

We find how K, acts on the field from dqp = d* K, ¢:

Kud) = (Ql‘ul‘uay - l’y%yau + 2-Tp)¢a KMQFZS = (Qmuxuau - -Tuajyau + 2'%‘#)(/5’
Kﬂw = (Qx“xual, — xl,xyaﬂ + 3z, — ‘TU’YV/_L)'I/]’
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We can now find [K,,, Qq]:
Ky, Qald = Kytbg — Qa(22,27 0, — xy2" 0 + 22,) 0
= (2z,2"0, — 2,270y + 32, — Vo) e — (22,270, — 2,20y + 22,) 1,
= (x/t - JUV%M)%,
Ky, Qald = K5 — Qo (20,27 0y — 270, + 2x,,) ¢
= v5(22,2" 0, — 2,270 + 32, — Vo) Ve — (22,2870, — 2,20 + 22,)V5%a
=v5(zp — 2" Vp)¥a;
5,0 Qaltoy = Ku(—(7)abpd + (1°75)a60p ) — Qu(2,,2" 0y — 2" 8,y + 3, )ty
- Qa(_xy(’yvu)bcﬁbc
= 9 (22,2" 0y — 0,2 Oy + 22,) (= O(1”)ap + S(1775 ) ab)
— (22,27 0y — 2y Oy + 3,)0p(— (Y7 )b + B(Y"5)ab)
+ " (’Yvu)bcap(_qs('yp)ac =+ QZ’('YP'}%)ac)
= (277pu($1/81/ + 1) + 21‘“8/, - 2$pau)(_¢('7p)ab + é(’}/p%’))ab)
- xuap(_¢(7p)ab + (5('7‘)'75)1117) + xy(%/u)bcaﬂ(_(b('yp)ca + é('yp'YS)ca)
= (20pu (2" 0y + 1) + 0y — 22,0,) (= P(V)ab + g’(’yp%)ab)

+ ‘Tyap(f(b(’}/uu’yp)ba - ¢(7V}L7p75)ba)~

Hence, [K,,Q,] does not correspond to any of the previous generators. We
therefore introduce a new fermionic operator S,. It seems we must multiply
this generator with (’yu)ab7 since we have u-subscript and y-matrices. Then we
have

[Ku,Qa] = ('Vp)absb- (B?)l)
Let us find how S, acts on the fields. We will use the following two identities:

1 1
Y = Y v = 5(?7“”%% + 0" ) = 5?7“”(%% + 1Y)

=n""n,,1 =dl, (B.32)
and

" L u L u

Y = 5V e = ) = 57 (e + Y = 290)
1
= 5720wl = 27.7) = (1= d)y- (B.33)
With d = 4 they are v,v* = 41 and v*v,, = —37,. Then we have
7usa¢ = (xu - xu'yuu)wa-

We multiply both sides with %7“ from left:

1 1
Sa = 17#(1‘u =2V = 1(55//)’“ + 32" )Ya = 2" yutba.

The next one is similar:

-1 1
Sad = 175 (2 — 2"y = — 775 (2u7" + 32w )ta = 257
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We will do some extra work on [K,, Qq|¢s. We rewrite the last line

2" 0p(= (VoY ba — S(Vou ¥ ¥5)ba)
= myap(_(b(%/up + Nou Vv — 77pu'7u)ba - ¢<(7uup + NppuVv — npu'yu)'VS)ba)

=270 ((Vopp — Nou Yo + NpwYi)ab — O((Voup = Mpp Yo + Nov V) V5) ab)

= myau(¢(7u)ab - ¢(7u75)ab) - xuau(éb(’)’l/)ab — &7 Y5)ab)
+ xuap(_ﬁb(%wp)ab + Q?’(’Ylwp%)ab)-
We find Sawb = i(’yﬂ)aC[Kﬂa Qc]wb:
i{(2npu(x”8,, +1) + 2,0, — 22,0,) (= (YY" )ab + QE(VM’YP’YS)ab)

10" o Qe =

+ x”alf(¢(7u7u)ab - ¢('7“'7u’75)ab) - x”au (v )ab — ¢('7“'7u75)ab)
0 (=B Yy + S5 )as) }-

Using and
elwpaelw}\é = _2(5;\62 - (5253‘),

we notice that

1
'Yﬂ')ﬁwp = 'YueuupU’YG'VS = €uvpo (Y7 + 0" )y = 7(5;wpo (Y7 +n"7) + GUVPM(’YU# +n7"))7s

2
1
= i(eu'/pa (Y7 +nt7) — QWW(_’YW +0"7))s = €uvpaV s = _§GWWGMM'V>\5
1
= _ieuayp‘f“g)\afw\é = _5(_25362 - 5362)7/\6 = Yvp = Vpv = 27up~

Then
i(Vﬂ)ac[K;m Qc]'(/}b] = %{(QTIW(OCV&/ + 1) + muap - prau)(_(b(,yﬂp + n“p)ab + (Z;((Fylw + nup)%’))ab)

407 0,(6Cap — B18)ab) = D (D + 1™ Yot = B + 1) 5)an)
+ 22,0, (~0(1")ab + B(1*15)ar) }-

We again rewrite some of the terms:

200 (270 + 1) (—(Y"* + 1) 0ty + (V" + 0" )5 ) ad)
=2(20y + 1)(—d(7* )b + 6(7" 75 )ab) + 2(2" 0y + 1) (=46 Cup + 46(75) av)
= 8(xyav + 1)(_¢Cab + &('75)ab)a
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(20p — 22,0,) (=Y + 0" a + S((V"* + 1"°)¥5) ab)

= (2.0 — 22,0,) (=P(V"")ab + f;(’yup%)ab)
+ (20 — 22,0, )0 (= ¢Cap + QE(’YB)ab)

= 2,0,(—(1")ab + (175 )ab) — 22,0 (— (¥ )ab + (7775 )ab)
+ (20" — 22,0°) (—¢Cab + (75 )ab)

= 2,0,(—=(V"")ap + S(Y**5)ab) — 2205 (= (V" )ab + BV Y5) ab)
— 20 (=¢Cab + $(75)ab)

= 2,0, (= (1" )ab + S(V**75)ab) + 20405 (— (V) ab + H(1"*V5)ab)
— 218, (—¢Clp + A(V5)ab)

= 32,,0,(~$(1")ab + D(1*75)ab) — 2 0u(~$Cut + B(15)ab),

Ly OOV + 0" )ab — S((9* +1"")75)ab)

= 2,0y (6(V")ab — O(V"¥5)ab) + "0 (0Cat — D(75)an)
= xua/(_d)(’ylw)ab + &(7#1/75)@) - x“@u(—qﬁcab + &(75)@1))-

Then S, acts on 1, as

Suthy = {800+ 1)(=0Cu, + Bl05)at) + 3240, (=6 + 1715 )an)
— 28, (—¢Clap + A(75)ap) + 42”0y (¢Clat — A (75 )ab)
— 200 (= (" Vab + (V" 5)ab) + 270 (~$Cap + S(15)a)
+22,0,(—= (V" )ar + é(V”p%)ab)}
= ("0 + 2)(=¢Cab + ¢(75)ab) + 200 (— (Y™ ab + A(Y* 75 )ab)-

Now we have found how the generator S acts on the fields. We summarise it
below:

Sep = 1'#’7;17»[}(17 Sag) = l‘ﬂ’}/u’}%?ﬁa,
Sathp = (xﬂau +2)(=¢Cap + (5('75)ab) + xuaI/(_ﬁb(’Yﬂy)ab + é('YHV’YS)ab)'

We have to compute the brackets containing S, to see if the algebra is now
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closed:

[Py, Sal = Py’ vu1ba — Sa0up = 27, 0u0a — Ou(2”1ba) = 6,70
= —Yuta = —(Tu)a Qu®,
[Py, Sald = Pz’ v ¥510a — Sa0ud = 2%, 0u75%a — Ou(x" 1 ysa) = =047 V50
= —YuV5W%a = —(%)abe&,
[P Saltés = P (@0, + 2)(=6Cas + 6(35)a8) + 2,0,(=0(1 as + 61775 )
— Sa0uthn
= ("0 +2)0,(=6Cab + 0(V5)ad) + 2,0p0u(=S(1*)ab + (4" 75) ab)
= 00 (@0, + 2)(=0Cut + 3035)at) + 20y (=0t + 3" ) )
= 0u(=¢Cab + (V5)ab) — Bp(—P(Vu?)ab + A(1:"V5)ab)
= 0u(—=6Cab + (V5)ab) — p(—=(1u” = 05)ab + S((17” — 50)75)ab)
= —(Y)a“0p(=(¥")eb + S (V7 ¥5)eb) = — (V)" Qetle-

Hence, [P,,S,] = —(’m)abe

(M, Sa]p = Muvxp('Yp)abd’b — Sa(2u0y — 2,04)9
= xp(7p>ab(($uav - xvau)wb + (zuu)bcwc) - (33”8,, - x,,@u)x’)(’yp)abz/}b
= IP(%EW)abd’b - (zu(%)ab - mu(’Yu)ab)1/’b
1
= ixp('Yp'YuV)abwb - (xu<7u)ab - xu(')’u)ab)wb

1 b b b
= ixp(’)/pm/ + NopYv — npu')/p)a Yy — (‘TM(’YV)a - xV('Yu)a )%

1 b
= ixp(')/;wp — NppYv + 7]pu7u)a by

1 b
= ixp(%w'}/p = Nov Y T NppYv — NppYv + 77pu7u)a (o

1 1 c
= §xp(7uu7p)ab1//b = 5(7uu)abmp(7p)b e = (Euv)absbd)a
[Mul/a Sa]a) = Muuxp('Yp’YS)abwb - Sa(xuay - xuau)(;
= xp(7p75)ab((x,uav - xua,u)wb + (E,uv)bcwc) - (myau - xuau)xp(’ypv5)abwb

1 c -
= 5(7uu)abxp(7p75)b e = (Zuu)ab5b¢,
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(Mo Saltb = My [ (80, + 2)(=6Can + 3(15)at) + 200 (=D Jat + (175 )as)
= Sal(@udy = 2000+ (S )ove)
= (@0, +2)(@,0, = 2,0,)(=6Cus + 5(15)ar)
+ @0 (20, = 2,0,) (=01 )ab + $(1*5)as) |
— (@00 = 2,0, [ @0, + 2)(=6Cus + 6(15)a8) + 2,00 (=6 (1)t
+ 0075 )ar)| + (Zpu)o° [ (20, + 2)(=¢Cac + B(35)ac)
+ 2505 (= 0(V*7 )ac + é(vf"’%)ac)b
= (100 (=6Cas + B35)at) + 1D (=61t + H(1"775) )
= 2,000,(~6Cas + $(15)ar) + oD (~0 (1"t + S0 18)an)) = (1 > )
— (S )s° [ (@70 + 2)(=9Cuc + B(35)ac) + Do (=6(1Vac + 67775 )ac) |
The first term in the first and second line cancel each other. Furthermore, in

the calculation of (M., Qa)ts, we saw that (X,,)6 (7")ea = —(Zuy” — 807, +
6nyy)ab. Similarly, we have

(Euu)bc('ypg)ac = — (B’ + oy — 5Z'Vup =00y + 55'7ua)aba
(Euu)bc('}’pg%)ac = ((_Z/W'YPJ + 537//7 - 5;,},”;) - 557“0 + 5Z'Yug)75)ab

The terms not containing X, cancel with the remaining term in [M,,,, Sq]vs,
thus

[M,ul/a Sa]"/}b = (Zuu)acscwb

Hence [MNV,S] ( Hy)abSb'

2 — (270, + D)ty

(D, Sal¢ = Daty,1hg — Sa(2¥0, + 1) = aFv, (270, + 5

1 1
= 533“’)’;4% - w”%ﬂba = _*x/h)’/ﬂpaa

2
. . 3
[Da Sa]¢ = Dx”’Yp«’)%"ba - Sa(xyau + 1)¢ = 37”’}%75(3’}”8,, + i)wa - (-Tyau + 1)-%#’7#751/10,
1
= _53'“'7;»751%’
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(D, Sty = D (20 +2)(=4Cus + 6(15)ar) + 2,0 (~0 (1" )at + 615 )as) )
— Sa(zP0, + )’l/Jb
= ("0, + 2)<xpap +1)(=¢Cab + $(15)ab) + 200 (2, + 1) (= (V" )ab + (1" ¥5)a)
— @0+ ) (@B + 2)(~0Cun + H15)a) + TuB0(~D Y + S 5)en))
= ("0, + 20, + 2 — 20, — gx“c?u —3)(=¢Cap + H(75)ab)
a0 ) (60 s+ H025)a)

2
(5B + 1)~ Cas + B)an) — 52D (~0( N + 55 ) ).
Hence, [D, S,] = —15,.
(K, Salp = K,2°v,00 — Sa(23,270, — 220, + 23,)¢
= 2P7,(22,3" 0, — 220, + 37, — Vo) — (22,270, — %0y + 22,)T Y0
= 2Py (2 — T Pp)a — 2"y — 27,0

+ (22,0, — 2,0, —

1
2

v 1 v
= —Tux Yoo + x27u¢a - ixpx ”Yp(fYV’Y,u - 'Yu'yu)wa

174 1 v
= —Tux Yoo + x2’7u¢a - ixpx ((’Ypu + 77,01/)7# - ('Ypu + ﬂpu)%)%

= _xpxy’)/ud)a + x2’7,u¢a
1 17
- ixpx (’Ypuu F N Yo = MupYv + Nov Y — Vppr = MvpVp + NMvpYu + npufyu)lba
= —xuﬁﬂy%% + m27u¢a - xpmu(epuu0’7075 — NupYv + 77pu7p)¢a
= —x%yépmﬂa%% = _l‘yxpeup;ur’yg’%wa = xl/xpepyua'yo'ySwa =0,
(K, Sa](g = K, 2°7,75%q — Sa(22,2"0, — x23“ +2z,)0
= 27,75 (2x,2" 0, — anu + 3z, — 2" Yp)e — (22,270, — a:?au + 22,) 2Py, 15%a
[K s Salthe = K ((xpap +2)(—=¢Cap + QNS(PYS)ab) + 2506 (= (Y7 )ab + é(’ypa%)abn
— Sa(27,270, — 2°0, + 37, — TV, )b = - = 0.
Hence, [K,,S,] =0
[Sa, Splp = Saz* ('Y#)bcdjc + be“(%t)acq/}c
=2 {(@"0,+2) [—as(( 0" Cac + ()aCoc) + & (00" (5 )ac + ()a (15)ac) |

+ 2,0, |=0( (06" (e + (1)a“ (1" )oc) + (16" (5 )ac + (i)a" (7 75)0c ) | }
= o {(2 90 +2) [6((0)s"Cea + (W)a"Car) = (0 (s)ea + ()a“(15)et )|

+ 2,0, [ =0((0)" (1" )ea+ ()a“(7")en) + B0 (1 5)ca + ()" (7775)e0) | |
Zl‘”{ 20, +2) ¢( Vi )ba + ab) (%ﬂs ba + (VuY5)a )}

+ 2,0, {qb((m vw”p)ab) ((m 75 )ba + (%v”p%a)ab)]}.
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We notice that all terms containing ¢~> vanishes. The first one is simply due to
YuYs)ab = —(Yu¥5)sa- The other one is slightly more complicated. We use
Proposition 5.2} so that v*Pv5 = —%e”pa’\%,)\. Then,

124 1% 1 vpo
(Va5 )ba + ("5 )ap = =5 € M (YuYor)ba + (VuYor)av) -

We can then, using (5.9)), rewrite

1 1
TuY¥or = 50 (Ve = MYe) = 5 (o + Muo)1a = (ax + 1a)70)
1
= 5 (’Y/LUA F MY — MuYo T Nuo Y\ — Yure — NoxVu + Nop I\ — 77#)\7:7)
= Yo + Nue YA — MurVo- (B.34)

Then, using (’Y;wp)ab = _(’Y;u/p)ba and (’Yu)ab = ('Yu)bav

1 g
(YY" 5)ba + (VY P ¥5)ab = —56” M uor + Muo¥n = Dud¥o)ba + (Yuor + Nuo ¥ — NurVe ) ab)
1
= _ieupg)\ [(_’Yuaz\ + Npe X — W,\%)ab + (7#0'}\ + Nue Y — nu)\'}/a)ab]
= _EVPUA (77W%\ - 77/1)\’70)(117 = _eupa)\ny‘a (’Y)\)ab + GV’MAUW\(’YU)ab
= —€""" e (V) ab + € 0o (V) ab
= —€"" e (VW )ab — € Mo (V) ab = =267 0 (V2 ) ab-

Now, the whole term including ¢ is
—2x“xyape””“’\nw('y>\)ab = —ZxMx,,ape”p“)‘('yA)ab.
This vanishes since
2x“xue”p”)‘ = z“zue”p“)‘ + xuzue“p”)‘ = z“zue”p‘”‘ — xuzue”p”)‘ =0.

Thus, [Sa, Sp|¢ consists of only terms involving ¢:

Sa: 5216 = 2 { (20 + 26 ( (Voo + (pdan) = 200,17+ (7o) |-

We again use (B.34)). However this time the Minkowski metric is the Kronecker
delta

1Sas 1l = 24 (270, + 2)6 ((va)as + (s
=~ 2By ( (3 + 7" = 847 Yo+ (3 + 87" = 627" v ) }
= 2{2(2"0, + 2)6(vu) s
— @06 (=" + 67" = 887" Yo + (3 + 847" = 57" )an) }
- x“{?(m”@u +2)0(Vu)ab — 22,0,0(0,,7° — 557”)@}
= 222" 0y + 2)d (V) ab — 227 2,0y (V) ab + 22" 2,0, (V" ) ab

= 2$u(xuau + 2)¢('7”)ab - 2x”$uau¢(’yu)ab + 237”.’17“6,/(’}/“)(”,
=2(v")ab (:c#x”a,, + 2z, — x2c'9ﬂ + xux”&,) ¢ =2(v")an K 0.
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Similarly one finds [Sa, Sp)¢ = 2(7*) et K. For [S,, Splib we use (B-4):

[(5{1,(542]1& = Cac [Sa’ Sb]'(/)

Applying the supersymmetry transformations, we get

[0¢,, 0¢, v = 22" vP 7y, (GG — CQél)’Zvapw +ataty” 75%(61525 Cz@%%ﬁpw
+22,, (€162 — C2C1)Vut + 22,75 (C1G2 — C2C1) VY59

Applying the Fierz identity (A.32)), we get, where we have used the equations
of motion @) = 0,

[Sa, Splt = 2(7")ab K-

Hence, [Sq, Sp] = 2(v") ap K .-

[Qa, Sb]é = Qa" () Ve + Sptba
= 2" (1) 00 (= (7" )ac + S(¥¥5)ac) + (290 + 2)(—¢Cha + G(75)ba)
+ 2,05 (—3(Y" Yo + S(V V5 )ba)
= 2 (V)b 00 (= (7" )ea — B(1¥5)ea) + (2”0 + 2)(¢Cab — (75 )an)
+ 2,0, (= (V"™ )ab + AV Y5 ) ab)

= 2,0, (= (YY" Jba — 6(Y*V V5 )ba) + (20 + 2)(6Cab — H(V5)ab)
+ 2,0, (= (" )ab + (V" 75 )ab)

= 2,0, (= (Y™ + 1" Joa — S((V" + 1" )5 )ba) + (2”0 + 2)(¢Cab — (75 )ab)
+ 2,0, (— (V" )ap + G(V V5 )ab)

= 2,0, (—d(Y™ = 1" )ab — S((V" = 1" )5 )ab) + (2" 0y + 2)($Cab — (75 )ab)
+ 2,0, (—o(y ””)ab + (7" 75 )ab)

= 2,00 (=" )ab — G(Y*¥5)ab) + 2" 0 ($Cab + D (V5)an)
+ (20 + 2)(¢Cab — d(5)ab) + 0 (=A™ )ab + H(Y* V5 )ab)
= —22,0,0(Y" )ab + 2(—Clap — d(V5)ab) + 22" 0 dCly
— (@00 (V"™ )ab + 200, (V") ab) ¢ + 2(0Cat — ¢(V5)ap) + 2249, ¢Cly
= — (240, () ab — 20, (V" )ab) & + 2(8Cat, — B(V5)ab) + 22+8,6Clap
—(z,.0, VOV Vavd + 2(2" 0y + 1)Cat — 26(75)ab
—(" ) My ¢ +2D¢Cab — 26(75 ) abs
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[Qa: Sb)6 = Qaa™ (1,75)6 Ve + Sb(75)a e
= xu(’}/uryf))bcal’(_ﬁé(’yu)ac + (5(7”75)@0) + (75)ac ((gj“@u + 2)(_¢Cbc + &(75)170)

+ xuau(_(b('-ywj)bc + QNS(’YHVIYS)bc))

= 2" (7,75) 00 (= (7" )ea — B(V¥5)ca) + (V5)a (270 + 2)(¢Ceb — H(75) eb)
+ 2,00 (— (" )eb + AV Y5 ) cb)

= 2,0, (6(Y"Y V5 )ba + AV 13 )ba) + (20 + 2)(6(75)ab + $Clab)
+ 2,00 (= (V" V5 )ab — A(7* )ab)

= 2,0, (S((F" + 1" )V5)ba — S + 1" Vpa) + (298, + 2)(S(V5)ab + ¢Clas)

+ 2,0, (—p(V" ' ¥5)ab — ¢(V" ) ab)

= 2,0, (A((" = 0" )95)ab — (O = 1" )ap) + (@, + 2)((75)ab + $Cat)

+ 200 (=0(Y" V5 )ab — ¢(Y* ) ab)
= 2,0, (6(Y"¥5) ab — (V" )ab) + 2" 0 (— (V5 )ab + #Cla)
+ (20 + 2)(6(75)ab + #Cab) + 2.0 (— (" 5)ab — (V" )ab)
= —22,0, (7" )ab) + 2(¢(V5)ab + $Cap) + 22+8,6Cay
= — (2400 — 207" )ab® + 2(2" 9y + 1)¢Clab + 20(75)ab
= —(v")atMuvd + 2D$Cap + 26(75) ab-

For the last one, we use (B.4):
[0c, 6]t = €¢"[Qa, Sl
Applying the supersymmetry transformations gives

[0, 0]y = =ty (€0, — 2" 757, €Y50,9
— % + 295¢ery )
- 'VVCGC'Y;L&/ (15“1/)) - 7”75@@%’)’531/ (CU’”/J)

Applying the Fierz identity (A.31), and using Ce = &, Cyse = eys(, (yte =
—evH(, (yPyse = eyt y5C and (Y e = —ey*¥(, we find that

[Qav Sb]z/} = _(’ywj)abM;Lu(; + ZDQBCab%(’YE))abw'

Hence, we need an extra bosonic generator, let us call it R, which acts on
the fields as

. . 1
Then we have [Qq, Sp) = 2DCap — 2R(7V5)ap — (V") ab M-

We should also find the additional brackets:

[P.,R]¢ = Py — RO, = 0, — Db = 0,
[P,,R]¢p = —P,¢ — ROudp = —0,¢ + 0,6 = 0,
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1 1 1
[P;MR]T/) = Pui’YSw - Ra;ﬂ/) = 5'75@”? - 6u§75¢ = 0.
Hence, [P,, R] = 0.

(M, Rl = M,u,¢p — R(2,0, — 2,0,)6 = (2,0, — 2,0,)¢ — (2,0, — x,0,)¢ = 0,

(M, Rlp = —M ¢ — R(2,0, — 2,0,)p = — (2,0, — £,0,)¢ + (2,0, — x,0,)p = 0,
1

[M;un RW = MW§W’5¢ - R(l‘uau - xuap, + Z;w)¢

1 1
= 575(3@&, — 2,0, + X)) — (2,0, — 2,0, + Z’“’)i%w =0.

Hence, [M,,,, R] = 0.

i)

(D, R]¢ = Dp — R(z"0, + 1)¢ = (21, + 1) — (z9, + 1) = 0,
[D,R]¢ = —D¢ — R(z"0,, + 1)$p = — ("9, + 1)¢ + (29, + 1)¢ = 0,
3

1 1 3 3, 1

Hence, [D, R]¢ = 0.
(K., Rl¢ = K. — R(2x,2"0, — %0, + 22,)

= (2z,2"0, — 2°0, + 23:“)& — (22,270, — 2°0, + 2xu)¢~> =0,
[K,,Rl¢ = —K, ¢ — R(2z,2"0, — 2°0, + 22,,)¢

= — (22,270, — 220, + 22,)¢ + (22,2" 0, — 20, + 22,)¢ = 0,

1
[K,.,RlY = KM§75w — R(2x,2"0, — x28u + 3z, — 2 v,)0

1
= 5fy5(2xux"5’y — 220, + 3z, — ") — (22,270, — x28u + 3z, — 2% vu)
1
= 5(2zuz”6‘y — x28u + 3z, — Y)Y — (2z,27 0, — x2a“ + 3z, — V)
=0.

Hence, [K,, R] = 0.

(R, Qulo = R — Qud = 3 (35)a"t — (18)a" = —5 (35)ath = — 5 (15)a" Qs

1
§’YS¢

1
5751/1

(R, Q)6 = ROs)a0n + Qué = 5 (35)a (3™ 60 = 5 (05)a” ()4 = (15)a ()0

= ) G e =~ ()" Qo
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(R, Qulth = ROu(~6(1#)as + D1#15)as) — Qs ()"0

= (= (") ab — H(V*5)a) — %(75)b08u(—¢(7“)ac + ("5 )ac)

[y

= 3u(—41~5(757”75)ab + ¢(’Y5“Y’L)ab) - 5(75%63“(—@5(7”)% + QE(V‘L%)ca)

= (8" Bu(~6 () + B 16)e) ~ 50460150 — BN
= —(18)a"Quthy — H0u(~0(1 "5 )an — H(1")a)
= —(09)a @t — 50 (607" )ar ~ B39 7))
= ()" Qe+ 5 (18)a D~ ) + 51 75)er) = ~(18)a" @t + 5(15)a"Quty
= —305)a"Qeth,
Hence, [R, Qa] = —3(75)a’ Qs.

i 1
[R, Sa]¢p = R (7)o "ty — Sap = x”(w)ab%(%)bcwc — 2" (75)a b = 52" (115)a W

1 1 . 1
= 5x“(vm)abwb = 5(75)ab$”(%)b Ye = 5(’75)ab5b¢7
- 1 .
[R, 84l = Ra" (v,75)a" b + Satp = w“(wvs)abg(%)b Y + 2" (u)a Wb
1 1
= —530” (V575 )a P + T (570 75)a Wb = 593” (Y59Y5)a b

1 . 1 .
= 5(75)ab9€”(’7u75)b Y = 5(75)ab5b¢,
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[R, Sa]tp = R[(a:“@u +2)(—¢Clap + d(5)ab) + .0 (— (Y™ Vap + A(* ’75)@)]

1 c
- Sai(’YB)b "/}c

- [(x“a +2)(=9Can = 9(15)a) + 2D (=07 Yot = S5 ) o)

— 50 [0 + 2)(~6Ce + B5)ac) + 2B (=S e + H 25
- [(x“a +2)(=0(15)ab + $(:3)ar) + 2D (=017 Jab + S157" 5 o)

— 500 [0+ 2)(6Ca — B )en) + 2B (6 e+ D1 75)ea)]
= (96)a° [ (@00 +2)(=6Cp + $(35)e) + 2, Do (=$(1 et + 335 )t)]

= 5 @0+ 260+ 3Ch) + 2,0, (=60 1 = 1 )]
= (5)a" St

= 5[ @0u + 200511 — 3Cut) + 200 (=6 5)as — S0 )]
= (¥5)a"Sethe

= 5[0 + D (=608)as + H0B)ar) + 2400 (057 s + B0 7))

= (75)1165&/1{;
1

- 5(75)110 (xﬂau + 2)(_¢ch + (5('75)017) + xua,,(—¢(gamma“”)cb + (ZB('YIWVS)cb)}

. 1. L
= (75)(1 Scwb - 5(75)(1 Scwb = 5(75)@ Sc¢b~

Hence, [R, S, = %(75)ab5b-
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