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Abstract

Survival data analysis is a set of statistical methodologies that is used to model
time until a certain event occurs. Competing risks data arise frequently in survival
data from medical research in situations when individuals under study are exposed
to more than one type of event such as death from different causes, and occurrence
of one of these events prevent the occurrence of the event of interest.

This thesis introduces the conventional methods of survival analysis such as
Kaplan-Meier and Cox proportional model, and methods which are used in pres-
ence of competing risks such as cumulative incidence and Fine-Gray model. The
Norwegian mortality data in three countries where individuals were at risk to death
from four death causes was used in this thesis to make comparisons between es-
timates of Kaplan-Meier and cumulative incidence and between the hazard rates
estimated by Cox model and Fine-Gray model.

The low rate of overall death in the data of Norwegian mortality in three coun-
ties resulted in very small differences between the estimates of survival prob-
abilities of Kaplan-Meier and cumulative incidence, and between hazard rates
estimated by Cox model and Fine-Gray model, but there are some differences
between the two models in estimating the impact of some covariates.
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Chapter 1
1 Introduction to survival data
Survival data (or survival times) is the simplest form of event history data. Sur-
vival data analysis is one of the statistical methodologies that is used to model
time until a certain event occurs (time to event). It is been used for a long time in
many different fields of study and research, for instance, economics, demography,
and is widely used in medical statistics. With this methodology, we usually use
collected information about an event under consideration itself (an event of the
interest), as well, information about how much time it took, or the time elapsed
from a well defined start time for each of individuals to the event of interest occurs
(a survival time). Thus, as it is illustrated in figure 1.1, there are three essential
elements that should be distinctly defined: a time origin (start point), a scale for
measuring time(day, month, year,..etc) and an event to occur, or end point, in other
words ( e.g. death of a patient, failure of a machine, ..etc) [5].

Figure 1.1: Survival data
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1.1 Censoring
In the statistical analysis of survival, the response (survival time) is the exact
elapsed time from the start point (the time origin), which often is the time since
each of the individuals entered the study, to the end point, or time of event oc-
currence (death, failure, ..etc). Nevertheless, something may happen and hinder
following-up some of individuals along the study period, such as the individual
may suddenly disappear for some reasons. Hence, we might lose it from the sam-
ple. Therefor with long time studies we will, most probably, work on data set
that contains such individuals. These individuals constitute so called (censored)
observations [7]. Discarding censored observations from the data set will affect
on the consistency and lead to bias estimate [5]. Hence, we need methods which
takes the censoring into account.

1.1.1 Right sencoring

An individual is defined as right censored when it is lost to follow-up from some
time point and onwards. This means we just know that the event of interest occurs
some time after a certain time. Figure 1.2 illustrates the concept of right censoring
assuming two individuals, unit1 and unit2. Unit1 who would have had the event
of interest at time Tunit1, which is the true time for the event of interest (e.g. death),
but due to right censoring we only know that Tunit1 is greater than a certain number
Cunit1. This implies that the only information we have about the survival time for
this individual, unit1 here, is it does not experienced the event of interest until time
Cunit1. The number Cunit1 here is the time when unit1 was last seen before losing
following-up [5]. This information is important and has to be used in subsequent
analysis. An individual is right censored, as well, if it does not experienced the
event of interest along to the end of the study period. Unit2 in figure 1.2 is a
second example for right censoring, but this time due to that the individual, Unit2
here, does not experienced the event of interest (e.g. was still working, did not
die, ..., etc) until the study period has finished.

1.1.2 Informative and non-informative censoring

In survival analysis data, as it has been described in 1.1.1, a subject is censored
when it is lost to follow-up due to one of some reasons that are unrelated to the
study (drop out of the study, end of the study,..etc). This usual type of censoring
is known as non-informative censoring. However, in some special situations cen-
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soring of a subject occurs due to a reason related to the study, and this special type
of censoring is called informative censoring [27].

Figure 1.2: Right censoring

1.2 Left truncation
Left truncation, or delayed entry, is a well known concept in survival studies. To
explain the concept of the left truncation, let us assume that we are about to make
a study about the mortality of a cohort who is living in somewhere, for instance,
a county. Let’s say, the follow-up study started on the first of January 1960 and
included all those persons alive and aged 60 years old or above on that date, and
it was decided in advance that the study (following up) will take 20 years. This
means the study should end on 31 December 1979. So, the start event is becoming
60 aged and the final event is death. The individuals who entered late, say 65 years
old, on the first of January 1960, would not have been included if he had died at
age, let’s say, 63. Hence, in the analysis, we must condition on that this individual
was alive at 65, or in other words, we say this individual is left truncated.
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1.3 Survival function and hazard function
The survival and hazard function are a key concept in survival analysis. The
survival curve is defined as a statistical graph of the survival studies of a group
of patients, machine ...etc showing the survival percentage along a study time.

In studies of time to an event, the function that evaluates the probability that
a patient, a machine or any other subject of interest will survive beyond a certain
time t > 0 is a well known as the survival function [9]:

S(t) = P(T > t) =

∞̂

t

f (u)du = 1−F (t) (1.1)

Where S(t) is the survival function and T is the time to event ( is a random
variable with density function f (u) and cumulative distribution F (t)) . The sur-
vival function is known, as well, as the reliability function [20]. Figure 1.3 below
shows an example for survival function of a study with data of 10 years period.
In this figure the x-axis represents time in years, and the y-axis is represents the
probability of subjects surviving. From the figure the proportion surviving, or the
probability of that a subject will survive more than one year is, obviously, equal
to 0.84 .

Figure 1.3: Survival function S (t) for a study with 10 years period.
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When we deal with survival time data , it is usually an aspect of interest to
estimate periods of time which have the lowest and the highest probabilities of
death (or generally of experience the event of interest) among individuals (sub-
jects) who are still alive (did not experience the event of interest), therefore theses
individuals are exposed to risk of experiencing the event of interest. The conve-
nient method to estimate this risk is is the hazard function h(t). The hazard function
h(t) is defined as the probability that an individual who still alive at time t dies
or experiences the event of interest in a very small interval, assuming that the in-
dividual has already survived until the beginning of that interval divided by the
length of the interval. This function has many different names such as the force
of mortality, the conditional failure rate and the intensity function [21]. It could
be expressed in term of limit as:

h(t) = lim4t→0
P(t ≤ T < (t +4t)/T ≥ t)

4t
(1.2)

1.4 Kaplan-Meier
Kaplan-Meier , or product limit (PL) estimate, is one of the statistical methods
that is used in survival analysis and aims to estimate a population survival curve
from a sample where some of the data are right censored. It is one of the best
methods that could be used to estimate survival function from censored data [1].
Kaplan-Meier (1958) were the first ones who brought a solution to estimate the
survival curve in a very simple way taking into account the right censored data
[2]. The Kaplan-Meier survival curve can simply be defined as the prospect of
surviving along a certain interval (length of time), considering time in many small
intervals [6]. The Kaplan-Meier analysis is based on three assumptions. The first
assumption is that subjects which are censored, at any time, have the same survival
probabilities as those others subjects which are still to be followed at that time.The
second assumption is that the survival probabilities for subjects enlisted early and
late in the enrollment period of the study are the same. The third assumption is that
the event happens at the time specified. This method is performed by calculating
the survival probability for each interval as the number of individuals who are
surviving divided by the total number of individuals who are at risk. Individuals
who have died or been censored are not regarded as individuals at risk. Individuals
who censored will not be counted in the denominator after the censoring time.
Then, we compute the probability of success which is equal to surviving beyond
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a certain time point, then we multiply overall event times seen in the data. Thus
the Kaplan-Meier estimator of the survival function S(t) is [3, 4]:

Ŝ(t) = ∏
ti≤t

(
1− di

R(ti)

)
(1.3)

Where Ŝ(t) is the estimated survival function, ti, 0 < t1< t2 <. . .< tn are the time
points at which events occurred seen in the data, di is number of failure (number
of occurrence of the event of interest) at point i, and R(ti) is risk size at time ti
(gives the number of individuals at risk before time ti).

1.4.1 Example

The following data shows the survival time for some patients who entered a clin-
ical study: 9, 12, 21, 27, 32, 39, 43, 43, 46*, 89, 115*, 139*, 181*, 211*, 217*,
261, 263, 270, 295*, 311, 335*, 346*, 365* (* refers to patients who were right
censored on the corresponding day number).

Table 1.1 shows how to calculate the Kaplan-Meier estimates [1].

Time of event (t)
No of pnts

died (d)

Live at the start

of the day (n)

Proportion at risk

surviving (1− d
n )

Probability of surviving

beyond time t

9 1 23 0.9596 0.9596

12 1 22 0.9545 0.9596 · 0.9545 = 0.9130

21 1 21 0.9524 0.9130 · 0.9524 = 0.87

27 1 20 0.9500 0.8260

32 1 19 0.9474 0.7826

39 1 18 0.9444 0.7391

43 2 17 0.8824 0.6522

89 1 14 0.9286 0.6056

261 1 8 0.875 0.5299

263 1 7 0.8571 0.4542

270 1 6 0.8333 0.3785

311 1 4 0.75 0.2839

Table 1.1: Kaplan-Meier estimates for example 1.4.1 [1].
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Figure 1.4 Kaplan Meier curve, with 95% confidence intervals (dashed lines),
for example 1.4.1.

Figure 1.4: Kaplan-Meier curve for example 1.4.1, with 95% confidence intervals
(dashed lines) [1].

1.5 The Log-rank Test
The log-rank test is a method in survival analysis used to test the equality of sur-
vival functions for k-groups. This test is performed under the null hypothesis that
there is no difference in survival between the k-groups versus the alternative hy-
pothesis that at least one of the curves differs [5]. In this test, we compute the
expected number of events in each group at each time point. Suppose we have
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two groups, Group1and Group2, for instance, then we can calculate E1and E2
which are the expected number of events summarized over all events time points
in Group1 and Group2 respectively. Now, let O1and O2 refer to the total num-
ber of observed events in Group1and Group2 respectively. The test statistic for
log-rank test can be calculated as [1]:

T =
(O1−E1)

2

E1
+

(O2−E2)
2

E2
(1.4)

Under the null hypothesis (H0) of no difference between the groups, T fol-
lows a χ2− distribuation. Therefore to test whether the null hypothesis (H0) is
significant or not, we compare the calculated test statistic T with the critical value
from χ2 table with a degree of freedom equal to k− 1 where k is the number of
groups.

1.5.1 Example

Suppose that the following data shows the survival times (in day) for some pa-
tients who entered a clinical study: 9, 13, 27, 38, 45*, 49, 49, *, 93, 118*, 118*,
126, 159*, 211*, 218, 229*, 263*, 298*, 301, 333, 346*, 353*, 362*(* refers to
patients who were right censored on the corresponding day number). We are in-
terested to test whether there is any difference in the survival times between these
patients, and the patients in example 1.4.1 using log-rank test. Table 1.2 illustrates
the log-rank test calculations for data of example 1.4.1 and 1.5.1.
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Time
of

event

Total No
of patients

died in
both

groups
(D)

No of
patients
died in
Group2

(O2)

Alive at
the start of

the day

Alive at
the start of
the day in
Group2

Probability
of death at
the end of

time

Expected
Probability
of death in

Group2 (E2)

Expected
Probabil-

ity of
death in
Group1

(E1)

6 1 0 46 23 0.021134 0.5

9 1 1 45 23 0.02222 0.52111

12 1 0 44 22 0.02273 0.5

13 1 1 43 22 0.02326 0.511628

21 1 0 42 21 0.02381 0.5

27 2 1 40 21 0.05 1.05

32 1 0 39 20 0.02564 0.512821

38 1 1 38 20 0.02633 0.526316

39 1 0 37 19 0.02702 0.513514

43 2 0 36 19 0.05556 1.055556

49 2 2 32 18 0.0626 1.125

89 1 0 31 16 0.03226 0.516129

93 1 1 29 15 0.03448 0.517241

126 1 1 25 12 0.04 0.48

218 1 1 19 9 0.05263 0.473684

261 1 0 17 8 0.05882 0.470588

263 1 0 15 7 0.06666 0.466667

270 1 0 14 7 0.07243 0,5

301 1 1 12 6 0.09091 0.545455

311 1 0 10 5 0.1 0.5
313 1 1 9 4 0.11111 0.44444

24 11 12.22015 11.77985

Table 1.2: Log-rank test statistic for the data in examples 1.4.1 and 1.5.1.

Then we calculate the log-rank statistic using the above mentioned expression,
expression (1.4), as:
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T =

(
13−11.78

11.78

)2

+

(
11−12.22

12.22

)2

= 0.2481

The calculated test statistic T is equal 0.2481 . This value is smaller compared
to the value of χ2 table with degree of freedom 1, which is equal to the number
of samples (2 here) minus 1. Hence, we accept H0 that there is no significant
difference in survival times between the two samples.

1.6 Cox Regression
Cox regression, or proportional hazards regression, is a method to model the effect
of covariates on the time to event of interest. Cox regression is a semi-parametric
model, and the major assumption in this model is that the effects of given co-
variates upon survival do not change over time. Once the assumptions of Cox
regression are met, the Cox regression method can provide survival estimates that
are better than the estimates that could be provided by the Kaplan-Meier function
[8]. Kaplan-Meier is suitable when we have one categorical covariate, and the
log-rank test, as well, is used when we have two or more groups and we are about
to test whether there is any difference in the survival times between these groups
or not. Using one of these two methods would not make us able to estimate the
effect of other covariates upon survival times. One of the benefits of Cox regres-
sion model is it provides us with a way to estimate the effect of one or more than
one covariates on survival times, and it can be used with discrete , continuous and
dichotomous covariates [1].

1.6.1 Proportional Hazards

Cox regression can be formulated as follows:

h(t) = h0(t)e(β1x1+...+βkxk) = h0(t)eβ
′
X (1.5)

Where h0(t) is unspecified baseline hazard, β
′
= [β1,β2, ...,βk] is 1× k vector of

unknown parameters to estimate, and X = [x1,x2, ...,xk] is k×1 covariates vector.
Estimating of these parameters, the parameters vector β

′
, will give us information

about the effect of covariates on the hazard rate.
The concept of proportional hazards is essential in Cox regression. If h1 (t)and

h2 (t) are two different hazards functions for two different individuals, then these
two hazards functions are proportional if:

17



h1 (t) = ψh2 (t) =⇒ ψ =
h1(t)
h2(t)

(1.6)

where t ≥ 0 , ψ > 0 (positive constant) is the proportionality constant. Equa-
tion (1.6) holds, as well, for the corresponding cumulative hazard function Hi (t)
with the same proportionality constant ψ [5].

Assume that we have two cases, case1 and case2 . To explain the concept of
proportional hazards for the Cox model assume that each of these two cases has a
hazard function:

case1= h1 (t) = h0 (t)eβ
′
X1

case2= h2 (t) = h0 (t)eβ
′
X2

using equation (1.6) gives: ψ = h1(t)
h2(t)

= h0(t)eβ
′
X1

h0(t)eβ
′X2

= eβ
′
X1

eβ
′X2

= eβ
′
(X1−X2).

The proportionality constant ψ = eβ
′
(X1−X2)is independent of time. This shows

that the Cox-model implies a proportional hazard assumption.
If we consider the covariate j and assume that other covariates equal, then:
ψ = eβ j(X1 j−X2 j)

If X1 j−X2 j = 1=⇒ ψ = eβ j = HR j which is the hazard ratio when the values
of the covariates of the two cases equal, and there is just one unit difference be-
tween the two cases in the jth covariate . That means the hazard ratio can simply
be defined as change in hazard when a value of a covariate changes one unit. This
gives us the interpretation of the hazard ratio HR, which can simply be interpreted
as rate of the increase of the hazard when a covariate increases one unit.

1.6.2 Proportional hazard (PH ) assumption

As it is mentioned above, Cox regression model is based on the proportionality
assumption. This means that the proportionality constant, or the hazard ratio (ψ),
should be constant along time. Which, obviously, means that the hazard ratio (ψ)
is independent of time. From graphically aspect it means the hazard curves for
various individuals should not cut across each other or, more precisely, they should
be parallel on a log scale. If the hazard curves of each two different individuals do
intersect each other, this is an indicator that the proportional hazard assumption is
not met, then Cox proportional hazard model is unsuitable [14].

The above mentioned graphical methods for checking the violence of propor-
tionality assumption of the Cox- model is based on the scaled Schoenfeld resid-
uals. The scaled Schoenfeld residuals are basically independent of time. This
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means the proportionality assumption holds only when a plot shows a smooth
pattern against time [23].

1.6.3 The partial likelihood function PL

The likelihood function of Cox proportional hazard model considers only proba-
bilities for events (not censoring), that is why it has been called a “partial” like-
lihood function PL [10]. The partial likelihood for β proposed by Cox [15, 16]
without involving the baseline hazard h0 (t), and it works similarly as the full
likelihood. The baseline hazard in each term, will cancel out each other of the
likelihood, therefor it will not be necessary to estimate it in the estimation of co-
efficients [10].

Let n be the number of individuals under study, δi be an indicator for failure or
censoring (1= fail, 0= censored) for the event at time ti, i= 1,2, . . . ,n , and let R(ti)
refer to the set of individuals who are surviving at time ti (risk set at ti). If h j (t)
is the hazard function for the jth individual at time t, then if an event occurred
at time ti (i.e. failure / death time), the probability of that the ith individual may
experience that event is [11]:

P([i]�ti) =
hi (ti)

∑ j∈R(ti) h j (ti)

Looking back on equation (1.5) this probability can be rewritten as:

P([i]�ti) =
h0 (ti)eβ

′
Xi

∑ j∈R(ti) h0 (ti)eβ
′X j

=

=⇒ P([i]�ti) =
eβ
′
Xi

∑ j∈R(ti) eβ
′X j

The above formula is known as risk probability of individual i at time ti.
Assume that just one individual observes the event independently at each event

occurrence time, then the partial likelihood for the coefficient β can be given by:

PL(β ) =
n

∏
i=1

[
eβ
′
Xi

∑ j∈R(ti) eβ
′X j

]δi

(1.7)

It means we only multiply over the event times. All individuals contribute to
the likelihood. The censored individuals contribute by being a part of R(t)until
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their censoring time. Finally, we can estimate β̂ by maximizing the log partial
likelihood, log [PL(β )].

In the following subsection we would explain some steps that are used in or-
der to estimate the covariates parameters vector β̂ based on the partial likelihood
proposed by Cox (equation (1.7) ).

1.6.3.1 Estimating the covariates parameters using PL

For the estimating of the parameters β̂ , Cox [16] recommended to treat the partial
likelihood exactly as the full likelihood(regular likelihood). In this subsection
we would show how to estimate parameters by making inference on the partial
likelihood given by Cox.

First, we start with calculating the logarithm for equation (1.7). This will give
us the log likelihood (log partial− likelihood).

l (β ) = log(PL(β )) = log

 n

∏
i=1

[
eβ
′
Xi

∑ j∈R(ti) eβ
′X j

]δi


=
n

∑
i=1

δi

[
β
′
Xi− log

(
∑

j∈R(ti)
eβ
′
X j

)]
(1.8)

=
n

∑
i=1

li (β )

Here, li is the contribution of the ithindividual in the log partial-likelihood.
i = 1,2, . . . ,n.

Then we obtain the partial likelihood score function U (β ), by taking the first
partial derivative of the log partial-likelihood (equation 7) with respect to the pa-
rameter (β ).

U (β ) =
∂ l(β )

∂β
=

n

∑
i=1

δi

Xi−

∑ j∈R(ti)X jeβ
′
X j

∑ j∈R(ti) eβ
′X j

 (1.9)

Finally, we can obtain the maximum partial-likelihood estimator, which esti-
mate the parameter β̂ , by setting the score function U (β ) equal to zero, and then
solve it.

The variance of the regression parameters can be estimated by calculating the
negative of the second partial derivatives of the log partial-likelihood (equation
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7), then the inverse of this matrix. Thus, we first obtain the so called observed
information matrix I

(
β̂

)
, and the inverse of this estimates the covariance matrix

of the estimated regression parameters i.e:

I
(

β̂

)
=−

[
∂ 2l (β )
∂ 2 (β )

]
(1.10)

Now I
(

β̂

)−1
estimates the covariance matrix, and in particular the diagonal ele-

ments of the inverse information matrix I
(

β̂

)−1
provides the estimated variances

of the corresponding coefficients.

1.6.4 Partial likelihood inference

Inferences about the regression parameters can be treated by hypothesis tests or
confidence intervals. The two most common tests for testing the significance of
one or more of the regression coefficients are Wald test and likelihood ratio test LR
[24]. Many simulation studies revealed that the likelihood ratio test gives better
inference, but more calculations, relative to the Wald test [25].

1.6.4.1 Statistical tests

As it is mentioned above, there are two tests used to test the statistical significance
of one or more coefficients, the likelihood ratio test LR , and the Wald test. These
two tests are essentially used to compare the difference between two models. One
large model, and the second one with imposing some restrictions on some of the
parameters of the first model, generally by assuming these parameters equal to
zero(restrictive model), and it can be accomplished by omitting variables who are
associated with these parameters. The likelihood ratio statistics is [12]:

LR = 2
[
l
(

β̂

)
− l
(
b̂
)]

(1.11)

Where l
(

β̂

)
is the log likelihood of the large model, and l

(
b̂
)

is the log
likelihood of the restricted model.

As an example, assume we were about to estimate the effect of some given
variables on the mortality rate. Assume we first fitted the model considering some
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variables such as , for instance, age, weight, civilian status, county and smoking
habits, then we omitted some of these variables and fitted the model again consid-
ering, for instance, the variables age, weight and smoking habits. Here, the first
fitted model is the large model, and the second one is the restricted model.

The likelihood ratio statistics is chi-square distributed with degree of freedom
equal to the difference in the number of the parameters between the two models.
Then the p− value is calculated from χ2 (m), where m is the degree of freedom
which is equal the difference in the number of the parameters between the two
models. We judge the full model (the one with more variables) to significantly fit
the data better than the restrictive model if the p−value < 0.05. The p−value is
calculated as p− value = P(Y > LR) , where Y is χ2 (m).

The Wald test is commonly used in multiple regression for testing the signifi-
cance of the coefficient. In Cox regression, Wald test is used, as well, for testing
the significance of a particular regression coefficient. Wald statistic has the fol-
lowing expression under the null hypothesis β j = 0 [13]:

Z j =
β̂ j

S j
(1.12)

Where, β̂ j is the estimated coefficient, S j is the estimated standard error of
β̂ j. S j is provided by the square root of the corresponding j diagonal element of
the inverse information matrix given by equation (1.10). Z j here is approximately
standard normal distributed.

1.6.4.2 Confidence interval

The calculation of the confidence interval for the Cox regression model coeffi-
cients is based on Wald statistic. The upper and lower limits of an approximate
(1−α)100% confidence interval can be calculated using the following formula
[13]

β̂ j±Z α

2
S j (1.13)

Where Z α

2
is the critical value of the standard normal distribution.
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Chapter 2
2 Data presentation

2.1 Causes of death and mortality in three Norwegian counties
Background

During the years 1974–78 all Norwegian (men and women) aged 35–49 years,
who were living in three different Norwegian counties Oppland, Sogn og Fjor-
dane, and Finmark were invited to a cardiovascular health screening test. A great
per cent of the inhabitants participated in the screening and they gave, in addi-
tion, a self-report on their smoking habits. To the end of the year 2000, mortality
of about 50 000 individuals was followed-up by record linkage with the cause of
death registry at Statistics Norway. Here, the survival times are left-truncated at
40 year, and that is because of the risk of death for the individuals aged below 40
years old is low. In addition, all individuals are right- censored when they reach
70 years (unless they already died or censored before they turn 70 years old).

Table 2.1, below, shows the header and the first four rows of the above men-
tioned data of the causes of death and mortality in three Norwegian counties. In
this work, we will use a subset of of 4000 individuals (2086 males and 1914 fe-
males) of a total set of 50 000 individuals, which is described above[17, 18]. These
4000 individuals were randomly selected from this cohort to study the mortality
from the four causes of death:

• Death from cardiovascular disease (including sudden death).

• Death from cancer.

• Death from other medical causes.

• Death from alcohol abuse, chronic liver disease, accidents and violence
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agesta agesto dead dead1 dead2 dead3 dead4 Sex Con sbp bmi smk
strt

smkgr

40.00 60.80 0 0 0 0 0 2 14 110 21.8 NA 1

44.43 57.65 1 0 0 1 0 2 14 120 30.4 NA 1

40.00 60.38 0 0 0 0 0 2 5 156 28.1 NA 1

41.11 66.29 0 0 0 0 0 2 14 130 24.9 26 2

Table 2.1: Data for causes of death and mortality in three Norwegian counties
[18].

Coding[18]

• agesta: age of the individual when the health examination was tested (or 40
years if screened before that age).

• age sto: age of the individual in years at death or censoring.

• dead: refers to death from the all four causes (0 = censored, 1 = dead).

• dead1: refers to death from cancer (0 = censored or dead by other cause
than cancer, 1 = dead from cancer).

• dead2: refers to death from cardiovascular disease, including sudden death
(0 = censored or dead from other cause than cardiovascular disease, 1 =
dead from cardiovascular disease)

• dead3: refers to death from other medical causes (0 = censored or dead from
the other three death causes cancer, cardiovascular, and alcohol abuse, 1 =
dead from other medical causes)

• dead4: refers to death from alcohol abuse, violence and accidents, and liver
disease (0 = censored or dead from other causes than alcohol abuse, violence
and accidents, and liver disease. 1 = dead from alcohol abuse, liver disease,
and violence and accidents)

• sex: refers to individual sex (1 = male, 2 = female)

• Con: refers to three counties in Norway (5 = Oppland, 14 = Sogn og Fjor-
dane, 20 = Finmark)
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• sbp: refers to systolic blood pressure at health screening exam

• bmi: refers to body mass for the individual when the health screening exam
was taken

• smk strt: refers to age when the individual started smoking

• smk gr: refers to four different smoking categories(1 = never smoked, 2 =
former smoker, 3 = 1-9 cigarettes per day, 4 =10-19 cigarettes per day, 5
=20+ cigarettes per day, 6 = pipe or cigar)

2.2 Kaplan-Meier
In this section we will apply the procedures of Kaplan-Meier survival curve esti-
mator (which is mentioned in 1.4), on the data of causes of death and mortality in
three Norwegian counties to plot and discuss some survival curves.

Figure 2.1 shows Kaplan-Meier survival curves for the overall causes of death
(death from cancer, cardiovascular diseases, alcohol abuse and other medical causes).
Using this figure we could determine whether there was any difference in the mor-
tality rate caused by the four causes of death among the gender or not. It is clear
that the mortality from all causes among males and females who aged between
40 to 70 was grater among males (the blue curve) than females (the red curve)
along the study period. By reaching 70 years old, about 91% of females had not
experienced death, whereas about 76% of males had not experienced death.

Figure 2.1: Kaplan-Meier curves overall causes of death by gender
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Figure 2.2: Kaplan-meier curves overall causes of death by county

The Kaplan-Meier survival curve by county is shown by figure 2.2. The sur-
vival probabilities in the three counties are approximately equal until turning about
54 years old when the survival probability for Finmark trend to be lower than the
survival probability in Oppland and Sogn og Fjordane. The survival probability
for Oppland became lower than the survival probability in Sogn og Fjordane af-
ter turning 61 years old. After getting 70 years old, the survival probabilities are
approximately 0.78, 0.81 and 0.80 for Finmark, Oppland and Sogn og Fjordane,
respectively.

Figure 2.3 shows Kaplan-Meier curves of death form each cause of death in-
dividually adjusted by gender (who were aged 40-70 years old). The mortality
rates from cancer, cardiovascular, alcohol abuse and other medical causes among
males were higher compared to rates of mortality from the same causes among fe-
males. The highest rate of death among females was death from cancer, whereas
the highest rate of death among males was death from cardiovascular diseases.
The probability of death from cancer after turning 70 years old for females was
about 93%, whereas it was about 89% for males. The biggest difference in the
mortality rate between males and females was in the death from cardiovascular
diseases. There were about 96% females who had turned 70 years old and had not
experienced death from cardiovascular, whereas there were bout 87% males had
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survived. The rate of death from other medical causes and from alcohol abused
is, obviously, not much. The difference between males and females in the mortal-
ity rate from these two causes was, as well, not too much, specially for the death
from other medicals causes. Death from alcohol abuse among the males was
higher compared to death from other medical causes, while the opposite holds
for the death from these two causes among females. Probability of death from
alcohol abuse and other medical causes after turned 70 year old among the males
was about 97% and 98%, respectively, whereas it was 99% and 97% among the
females.

Figure 2.3: Kaplan-Meier curves for the four death causes among males (to the
left) and females (to the right).

Figure 2.4 illustrates Kaplan-Meier survival curves for rates of the mortality
from the four death causes adjusted by the smoking habits. For the both causes, the
smoking habits were worse prognosis in the survival probabilities of cancer and
cardiovascular diseases, more than in the survival probabilities of alcohol abuse
and other medical causes. The survival probabilities related to smoking habits
was worse for cardiovascular diseases than for cancer among the all six levels
of the smoking habits except for individual who were smoking 20+ cigarettes
per day and never smoker. the biggest difference in the survival probabilities of
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cancer and cardiovascular diseases related to the smoking habits were among pipe
smoker which showed the worst survival probabilities for cardiovascular diseases.
The probability of surviving of pipe smokers after turned 70 years old was about
78% from cardiovascular diseases , while it was 87% from cancer. Mortality rates
from alcohol and other medical causes related to smoking habits was not large, and
there were not even big differences in the survival probabilities between these two
death causes except among pipe smoker where we could observe large differences
(compared to the other smoking habits) specifically after turning 55 years old.
More over, the survival probability of other medical causes was constantly greater,
or almost equal, along ages 40-70 years old than survival probabilities of alcohol
abuse, but it was not among individuals who were pipe smoker. The survival
probability of cancer and cardiovascular diseases was clearly directly proportional
with the smoking habits, specially with cardiovascular diseases.

Figure 2.4: Kaplan-Meier curves for four causes of death adjusted by smoking
habits.

Figure 2.5 represents Kaplan-Meier curves adjusted by the three counties Op-
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pland, Sogn og Fjord og Finmark. The survival probability of cancer and cardio-
vascular diseases in the three counties was less compared to the survival proba-
bility of other medical causes and alcohol abuse. Cancer probability of surviving
of individuals who turned 70 years old and were living in Oppland was 92.28%,
91.88% for cardiovascular disease, 96.99 % for other medical causes and 98.21%
for alcohol abuse. There was not big difference between the two counties Opp-
land and Sogn og Fjord in the survival probabilities, but a bit notable observation
was that survival probability for other medical causes was a little bit larger than
for alcohol in the all three counties, but it was less survival probability for other
medical cause than for alcohol for individuals who were living in Oppdal after
they turned 64 years old. The worst survival prognosis was of cancer and car-
diovascular diseases for individuals who were living in Finmark. There was even
a notable difference between cancer and cardiovascular mortality in this county.
Cardiovascular mortality was worse compared cancer mortality. Probability of
survival after 70 years old for cardiovascular was about 88%, whilst for cancer
it was about 91%. The difference in mortality rate between this Finmark country
compared to its counterparts Oppland and Sogn og Fjord could only be interpreted
due to lifestyle

Figure 2.5: Kaplan-Meier curves for the four death causes adjusted by the three
counties.
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In Kaplan-Meier survival analysis, the assumption of independence of cen-
soring is essential, and this method deals with only one type of failure, death for
example, regardless the cause of this particular failure. That means Kaplan-Meier
survival method will not provide good estimations if this assumption of censoring
independency does not hold. Looking on the data of Norwegian mortality in three
counties which we have just worked on by conducting the Kaplan-Meier survival
method in this chapter. There are four different death causes that compete each
other and might lead to death which is the event of interest. If we just look at the
data of the death, for example, from cancer, we could find many individuals have
been registered as censored while, in fact, they died from one of the three other
causes. Then if the assumption of independence of censoring does not hold the
Kaplan-Meier method will fail to estimate the survival times of such data. There-
fore we need to find some alternative methods to estimate the survival time for
these types of data when there are more than one cause for the event.

Analysis of such survival data, when the subjects are exposed to experience
more than one type of event of interest, or to experience the same event of interest
from multiple causes called competing risk analysis.

2.3 Cox regression model estimates for data of Norwegian mor-
tality

In this section we conducted an analysis by performing Cox proportional hazards
model on the above mentioned data of the Norwegian mortality in three different
counties. We fitted the model using the six covariates, which we have described
in 2.1, to estimate their effects on the survival time or, in other words, to investi-
gate differences in mortality between these covariates. For every cause of death,
we performed the uni-variable analysis by fitting the model using every covariate
individually, and then performed the multi-variables analysis by including the all
covariates simultaneously. After fitting multi-variable analysis we removed the
non-significant covariates. In addtion, we did not include the covariate started
smoking (smk strt in the tables header) when we fitted the multi-variable analysis.
The reason for this is simply because this covariate has many missing values
(many individuals were not smoker), and then we end up analysing a subset of
data only containing smokers. Firstly, we fitted the model with respect to the
overall causes of death, then with respect to every cause of death individually
(The cause specific Cox proportional model). P-values of each reference level
of the categorical covariates (smoking habits and county) are found by likelihood
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ratio tests, while the others are found by Wald tests.

2.3.1 Cox proportional hazard model for overall causes mortality

Table 2.2 shows the results of uni-variable and multi-variable analysis of Cox pro-
portional hazard model for overall causes of death. Staring with the uni-variable
model we can, obviously, see that the all six covariates are statistically signifi-
cant. For sex, the hazard ratio is 0.49 indicates that being female decreases the
probability of experiencing death from overall causes (risk of death) by a fac-
tor of 0.49, or by 51% compared to male, holding the other covariates constant.
In the multi-variables analysis, the sex is significant as well, and the hazard ra-
tio is equal to 0.62 which means being female reduces the risk of death by 38%
compared to being male. The systolic blood pressure is statically significant for
both, uni-variable and milt-variables analysis. In the uni-variate analysis, its haz-
ard ratio is equal to 1.02 indicating a positive association between systolic blood
pressure and the overall causes mortality. This means the excepted hazard of
death is 1.02 times higher in an individual who is one unit systolic blood pressure
higher than another. The hazard ratio of systolic blood pressure is the same for the
multi-variables analysis as for the uni-variable. The categorical covariate smoking
habits has six factors with the factor never smoked as a reference level. All five
factors are statically significant compared to the reference level, never smoked.
Considering the smoking habits and holding the other covariates constant, the haz-
ard ratio compared to persons who never smoked is 1.67 times higher for former
smoker persons, 2.64 times higher for 1-9 cigarettes a day smokers, 2.82 times
higher for 10-19 cigarettes a day smokers, 3.8 times higher for 20+ cigarettes a
day smokers and the highest hazard ratio is for pipe smokers whose hazard ratio is
4.3 times higher compared to persons never smoked. In the multi-variables analy-
sis, however, the all five factors compared to the reference level remain statically
significant. The hazard ratio compared to persons who never smoked ( reference
level) is 1.38 times higher for former smoker persons, 2.43 times higher for 1-9
cigarettes a day smokers, 2.52 times higher for 10-19 cigarettes a day smokers,
3.08 times higher for 20+ cigarettes a day smokers and the highest hazard ratio is
again for pipe smokers whose hazard ratio is 3.19 times higher compared to per-
sons who never smoked. The covariate categorical county has three factors Sogn
og Fjordane = couny 14, Finmark = county 20 , and the reference level Oppland =
county 5. The overall causes mortality for Sogn og Fjordane county compared to
oppland county is not statically significant neither in the uni-variable analysis nor
the multi-variables analysis. However, the overall causes mortality for Finmark

31



county is statistically significant with a hazard ratio equal to 1.30 which means
living in this county increases the hazard ratio by 30 % than living in Oppland
county. Not in a uni-variable model. The body mass has a positive association
with the overall causes mortality in the uni-variable analysis, whereas it is not sig-
nificant in the multi-variables analysis. The body mass hazard ratio is equal 1.02.
This means holding the all other covariates constant, a one unit increase in the
body mass is associated with 2% increase in the expected hazard. The covariate
smoking start, which referring to the age when an individual started smoking, is
highly significant. Time since an individual started smoking is negatively associ-
ated with the overall causes mortality. The hazard ratio of 0.95 indicates that the
expected hazard ratio decreases by 95% for any persons who started smoking at
age of one year older than other person who started smoking one year younger.

Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 0.49 (0.41 , 0.58) 1.06·10−15 0.62 (0.52 , 0.75) 4.49 ·10−7

sbp 1.02 (1.01 , 1.02) 2.00 ·10−16 1.02 (1.01 , 1.02) 2.00 ·10−16

never smoked 1 ref 2·10−16 1 ref 2.2 ·10−16

former smk 1.67 (1.29 , 2.15) 8.4 ·10−5 1.38 (1.06 , 1.79) 0.02
1-9 cigar 2.64 (1.98 , 3.51) 2.58 ·10−11 2.43 (1.82 , 3.23) 1.28 ·10−9

10-19 cigar 2.82 (2.21 , 3.61) 2.00 ·10−16 2.52 (1.96 , 3.23) 4.09 ·10−13

20+ cigar 3.8 (2.84 , 5.08) 2.00 ·10−16 3.08 (2.27 , 4.16) 3.00 ·10−13

pipe-cigar 4.31 (2.77 , 6.71) 9.59·10−11 3.19 (2.03 , 5.02) 5.61 ·10−7

county OPP-L 1 ref 0.01
county S&F 0.94 (0.77 , 1.15) 0.56

county F 1.30 (1.07 , 1.57) 0.01
bmi 1.02 (1 , 1.05) 0.05

smk strt 0.95 (0.94, 0.97) 7.19·10−12

Table 2.2: Uni-variable and multi-variables Cox regression estimates overall four
death causes

2.3.2 Cox proportional hazard model for cancer mortality

Table 2.3 shows the uni-variable and multi-variable analysis to relate the six co-
variates to time to death from cancer by conducting a Cox proportional hazard
regression model on the data of the Norwegian mortality in three counties. The
covariate sex is significant only in the uni-variable model (the same as it was in
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the overall death cause). The blood pressure, in contrast to result of overall death
model, is not significant neither in uni-variable model nor multi-variable model.
county seems to not having any effect on death from cancer neither in uni-variable
model nor multi-variable model, and the same was body mass. Age when start-
smoking was statistically significant and negatively associated with cancer mor-
tality, but not in multi-variate model. The smoking grade is highly significant and
associated with cancer mortality in both, uni-variable and multi-variables analy-
sis. It is the same compared to overall cause of death model with an exception
for the level former smoker which is significant in overall cause of death model,
but not significant for cancer mortality. The smoking habits is worse related to
prognosis of cancer mortality.

Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 0.71 (0.54 , 0.93) 0.01
sbp 1.00 (1.00 , 1.01) 0.36

never smoked 1 ref 3·10−8 1 ref 3·10−8

former smk 1.48 (0.99 , 2.23) 0.06 1.48 (0.99 , 2.23) 0.06
1-9 cigar 2.16 (1.34 , 3.46) 0.00 2.16 (1.34 , 3.46) 0.00

10-19 cigar 2.54 (1.72 , 3.76) 3.09·10−6 2.54 (1.72 , 3.76) 3.09·10−6

20+ cigar 3.82 (2.42 , 6.02) 8.46·10−9 3.81 (2.42 , 6.02) 8.46·10−9

pipe-cigar 3.06 (1.38 , 6.80) 0.01 3.06 (1.38 , 6.80) 0.01
county OPP-L 1 ref 0.55
county S&F 0.91 (0.66 , 1.26) 0.58

county F 1.12 (0.81 , 1.57) 0.48
bmi 1.00 (0.96 , 1.04) 1.00

smk strt 0.95 (0.93 , 0.98) 4.42·10−5

Table 2.3: Uni-variable and multi-variables Cox regression estimates for death
from cancer.

2.3.3 Cox proportional hazard model for death from cardiovascular disease

Table 2.4 shows estimates of the Cox proportional hazard model for death from
cardiovascular. All covariates are statically significant, in the uni-variate model,
except the level of county county S&F (Sogn og Fjordane). Tthe smoking habits,
as it in death of cancer, is significant in both, uni-variable and multi-variable
model. In addition, smoking habits level former smoker is significant in contrast
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it in death from cancer model. Sex and blood pressure are highly significant in
uni-variable and multi-variable model. The covariate county F (Finnmark county)
is significant in the uni-variable and multi-variable model (county OPP-L is Opp-
land wich is the reference level of the covariate county). Body mass and smoking-
start age have effect on the death from cardiovascular in the nin-variate model, but
they are not significant in the multi-variable model.

Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 0.30 (0.22 , 0.41) 9.38·10−15 0.38 (0.27 , 0.52) 1.92·10−9

sbp 1.03 (1.02 , 1.03) 2·10−16 1.03 (1.02 , 1.04) 2·10−16

never smoked 1 ref 6.4·10−15 1 ref 4.62·10−9

former smk 2.47 (1.62 , 3.78) 2.96·10−5 1.67 (1.08 , 2.58) 0.02
1-9 cigar 4.01 (2.52 , 6.37) 4.41·10−9 3.37 (2.11 , 5.36) 3.19·10−7

10-19 cigar 3.86 (2.54 , 5.86) 2.42·10−10 2.99 (1.95 , 4.57) 4.40·10−7

20+ cigar 4.76 (2.90 , 7.80) 6.40·10−10 2.94 (1.76 , 4.90) 3.66·10−5

pipe-cigar 6.99 (3.61 , 13.54) 8.11·10−9 4.05 (2.05 , 8.01) 5.58·10−5

county OPP-L 1 ref 0.01 1 ref 0.01
county S&F 0.95 (0.69 , 1.30) 0.73 0.96 (0.70 , 1.33) 0.82

county F 1.57 (1.17 , 2.10) 0.00 1.51 (1.12 , 2.04) 0.01
bmi 1.05 (1.02 , 1.09) 0.00

smk strt 0.96 (0.94 , 0.98) 0.00

Table 2.4: Uni-variable and multi-variables Cox regression estimates for death
from cardiovascular.

2.3.4 Cox proportional hazard model for death from other medical causes

Table 2.5 shows the uni-variable and multi-variables analysis for the death from
other medical causes. The blood pressure is significant and related to increase
the hazard of death from the death from other medical causes in both, the uni-
variable and the multi-variables analysis. Hazard of death from other medical
causes is effected by the smoking’s level 20+ cigarettes per day, and the pipe
smokers. These two are significant in the uni-variable and the multi-variables
model. Smoking-start age is related to increase the hazard of death from other
medical causes in , but it is not significant in the multi-variable model.
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Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 1.04 (0.65 , 1.69) 0.86
sbp 1.02 (1.01 , 1.03) 0.01 1.02 (1.00 , 1.03) 0.00

never smoked 1 ref 0.10
former smk 1.14 (0.57 , 2.25) 0.72

1-9 cigar 1.50 (0.65 , 3.45) 0.34
10-19 cigar 1.58 (0.78 , 3.14) 0.19
20+ cigar 2.29 (1.00 , 5.27) 0.05
pipe-cigar 1.47 (1.47 , 12.82) 0.01

county OPP-L 1 ref 0.60
county S&F 0.79 (0.66 , 1.26) 0.42

county F 0.78 (0.81 , 1.57) 0.43
bmi 0.94 (0.88 , 1.02) 0.15

smk strt 0.92 (0.88 , 0.97) 2·10−4

Table 2.5: Uni-variable and multi-variables Cox regression estimates for death
from other medical causes.

2.3.5 Cox proportional hazard model for death from alcohol abuse

The estimations of Cox proportional hazard regression model for alcohol abuse
mortality are shown in table 2.6. The risk of death from alcohol abuse is significant
and highly related with the sex in the uni-variable and multi-variable model. The
hazard ratio of 0.26 indicates that being female reduces the hazard of death by
74% compared to being male. The smoking-start age is significant in the uni-
variable model, but not in multi-variable model. The smoking is significant for the
all level except former smoked and pipe smoker levels in the uni-varaible model,
but in the multi-variable model only smoking 10 - 19 is significant. The smoking-
start age is significant and related to death from alcohol abuse in the uni-variable
model.

35



Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 0.26 (0.14 , 0.48) 2.52·10−5 0.26 (0.14 , 0.51) 6.39·10−5

sbp 1.01 (1.00 , 1.03) 0.03
never smoked 1 ref 0.01 1 ref 0.02
former smk 0.96 (0.41 , 2.24) 0.92 0.63 (0.26 , 1.49) 0.29

1-9 cigar 2.38 (1.02 , 5.56) 0.05 1.97 (0.84 , 4.63) 0.12
10-19 cigar 2.85 (1.42 , 5.74) 0.00 2.08 (1.02 , 4.23) 0.04
20+ cigar 3.42 (1.46 , 8.00) 0.01 2.01 (0.84 , 4.81) 0.12
pipe-cigar 1.59 (0.21 , 12.16) 0.66 0.81 (0.10 , 6.27) 0.84

county OPP-L 1 ref 0.27
county S&F 1.29 (0.70 , 2.36) 0.41

county F 1.66 (0.90 , 3.04) 0.10
bmi 1.05 (0.98 , 1.12) 0.17

smk strt 0.94 (0.90 , 0.99) 0.01

Table 2.6: Uni-variable and multi-variables Cox regression estimates for death
from alcohol abuse.
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Chapter 3
3 Competing risks analysis
Cox proportional hazard models and Kaplan–Meier estimates of survival curves
are widely used to assess the effects of some given covariates on the survival time
and to describe the survival tendency, respectively. These two statistical methods
are appropriate when we deal with one type of event, for example death, regardless
of its cause. A specific situation appears when interest is in a particular cause of
failure, whereas some different causes are present. These other causes alter the
probability of occurrence of the event of interest from the predetermined cause.
Hence, estimating the survival probability of a specific cause treating the other
causes as censoring, which are present at the time, will underestimate the survival
probability, and this the case of competing risks.

In this chapter we would introduce the problem of competing risks which is
the main topic of this work. The chapter starts with giving a brief definition for
the problem of competing risks, then the alternative methods which are more ap-
propriate than the traditional methods, such as Kaplan-Meier and Cox regression
model, to estimate the survival times and effect of some covariates in presence of
competing risks. We will introduce two of these methods. Firstly, we will present
a method that replaces Kaplan-Meier, and one of the appropriate estimates of the
failure probabilities, namely, the cumulative incidence plots. Then we will present
Fine-Gray model, in order to show and discuses the estimates which we got after
conducting these two methods on the previously mentioned (in chapter 2) data of
the Norwegian mortality in three counties in the following chapter.

3.1 The problem of competing risks
In survival analysis, as we previously discussed, we aim to estimate time elapsed
from a certain time point to occurrence of a certain type of event (event of inter-
est). But sometimes, specially in medical’s studies, the subjects can be exposed
to experience more than one type of event (failure), or to experience a particular
event (failure) from more than one cause. For example in transplant studies, if the
aim was to estimate time to relapse, then death of patient from transplant is an
another event that competes and can hinder occurrence of the event of the interest
(relapse) [19].

Competing risks problem appears in the situations where subjects are exposed
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to experience more than one type of event. These events compete with the event
of the interest, and occurrence of anyone of these events prevent the occurrence of
event of the interest. The competing risks problem concern, as well, the situations
where subjects are exposed to experience a single event of interest (failure) from
more than one cause of failure, and occurrence of one of these other failure causes
prevent and hinder occurrence of the event due to a particular and predetermined
cause of failure (cause of interest) [22]. In the situation of the data that we have
already previously introduced in section 2.1, data of the Norwegian mortality in
three counties, all inhabits were exposed to risk of experiencing the death from
one of four different causes of death that compete with each other. There was
only one event of interest, which is death, but there were more than one cause
(risk) of death (the event). Assume that we were interesting in estimating the sur-
vival time of cancer mortality. Here, death due to anyone of the other three causes,
cardiovascular, alchol abuse and other medical causes, will prevent occurrence
of death (the event) from cancer. Hence, considering the probabilities of survival
of the other causes in parallel with the probability of survival of the cause of in-
terest is inevitable. Figure 3.1 represents a graphical model of the competing risks
problem for the data of the Norwegian mortality in three counties with individuals
initial state which is alive (did not experience the event of the interest yet), and
the four competing end points( death from cancer, cardiovascular, alcohol abuse
or from other medical causes).

The competing risks problem is not only limited to the medical field. It can
be an issue in many other fields of studies concerning survival data analysis. In
the industrial reliability, for instance, if the interest was failure of a particular
component in a system that could disrupt the system, whereas failure of some
other different components in the same system which could also disrupt the system
was possible can be counted as a competing risks problem [22].
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Figure 3.1: A graphical model of competing risks problem for the data set of the
Norwegian mortality in three counties due to four death causes

Using conventional survival analysis approaches, such as the Kaplan-Meier
etimate, in presence of these competing events (events in case of Norwegian mor-
tality data are death from one of the four causes) will not precisely estimate the
survival probability of event of the interest from the predetermined failure cause
because Kaplan-Meier method estimates survival probability of only one type of
event, for instance death from cancer, and treats death due to the competing risk (
death due to cardiovascular, alcohol abuse and other medical causes) as censored
[19]. If we estimate the survival function for one cause of failure using Kaplan-
Meier and let death from other causes be treated as censoring we assume that the
other causes of death are independent from the cause of interest (which might
not be realistic) and we estimate the survival probability in a hypothetical world
where the cause of interest is the only cause of death.

That is why it was imperative to propose some alternative statistical meth-
ods that could replace the traditional approaches, such as Kaplan-Meier, and give
better estimates for the survival probability. During the last two decades, it has
been proposed some methods to analyze survival data in presence of competing
risks[19]. In the following two subsections we will introduce two of these meth-
ods.
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3.1.1 Cumulative incidence function

In competing risk analysis two quantities are important the cumulative incidence
function (CIF), and cause specific hazard function. In contrast to the Kaplan-
Meier method, the cumulative incidence function estimates probability of occur-
rence of an event of interest taking into account probability of occurrence of com-
peting risks (other events). In competing risk observations a subject is exposed to
experience an event from a set of different causes. Therefore the cause specific
hazard function is a key concept in the competing risk analysis. This function
gives hazard of failing due to a distinct cause of failure while other causes are
present. Let ε ∈ (1,2, ..,K) be causes of failure (assuming there are K observable
causes of failure), then the probability of failure due to the kth cause at time t for
subjects who have not yet experienced any event at that time is defined by [22]:

hk(t) = lim4t→0
P(t ≤ T < (t +4t),ε = k/T ≥ t)

4t
(3.1)

where T is the time of failure and k = 1,2, ...,K.
Equation (3.1) is known by the cause specific hazard function. Then, cumula-

tive cause specific hazard of the kth cause of failure is given by :

Hk (t) =

tˆ

0

hk (s)ds

Then define

Sk (t) = e(−Hk(t)) (3.2)

S (t) = e(−∑
K
k=1 Hk(t)) (3.3)

Sk (t) in equation (3.2), is the survival probability of cause k of failure which
is the probability of having not failed from the kth cause of failure at time t, and
equation (3.3) describes the overall survival probability which is the probability
of having not failed from any of the K causes of failure at time t.

The cumulative incidence function for the kth cause of failure Ik (t) is the prob-
ability of failing due to the kth cause of failure prior or at time t.

Ik (t) = Prob(T ≤ t,ε = k)
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The cumulative incidence function can be expressed using the cause specific
hazard as the follow:

Ik (t) =

tˆ

0

S (s)hk (s)ds (3.4)

Methods, such as Kaplan-Meier, which treat censoring due to competing event
as non-informative censoring overestimate the failure probability compared to
methods that take into account the competing event. Hence, they might give
misleading estimates when the probability of the competing cause is high. To
explain that let 1 denotes death from cancer as the event of interest, and 2 de-
notes death due to cardiovascular as the competing event. Then the cumula-
tive hazard functions for these two causes are H1 (t) , H2 (t) , respectively. The
survival function at a distinct time t considering only the event of interest is
S1 (t) = e−H1(t) ≥ e−H1(t)−H2(t) = the overall survival function taking into account
the hazard of competing event ( death due to cardiovascular) [26].

In the presence of competing risks, the Kaplan-Meier method estimates a dif-
ferent quantity, Sk (t) which is survival probability in the hypothetical world where
cause k is the only cause of failure, and treats events from other causes than cause
k of interest as censored, whereas the cumulative incidence function take into ac-
count the fact that the failure might occur from other causes. In addition, even
if we want to estimate Sk (t) using Kaplan-Meier and assuming non-informative
censoring might lead to wrong results as the non-informative censoring might be
wrong. The Kaplan-Meier estimates the cumulative probability of occurring of
event k prior and at time t by [22].

1−Sk (t) =

tˆ

0

Sk (s)hk (t) (3.5)

Since S (t)≤ Sk (t), then

tˆ

0

Sk (s)hk (s)≥
tˆ

0

S (s)hk (s) = Ik (3.6)

From equation (3.5), this implies that Ik ≤ 1−Sk. The equality holds when there
is no competing hazards (e.i ∑

K
j=1, j 6=k H j (t) = 0). This implies that Kaplan-Meier
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method, in the presence of competing risk, overestimates the probability of failure
due to cause k.

The cumulative incidence function is known, as well, by many other names
such as crude cumulative incidence function and sub-distribution function [22].

To estimate the cumulative incidence function, let t1 < t2 < .... < tN be the
distinct time points at which any cause of failure occur. Assume the number of
subjects failing at time t j by failure cause k is given by dk j, then the total num-
ber of failures from any cause of the K causes of failure at t j could be given by
d j = ∑

K
k=1 dk j . Now, as in equation (1.4), let R

(
t j
)

gives the number of individ-
uals at risk, which is the number of individuals which have not failed from any
cause of failure before time t j (risk set). From equation (1.4) the survival function
regardless the cause of failure is estimated by Kaplan-Meier by:

Ŝ(t) = ∏
t j≤t

(
1−

d j

R
(
t j
))

The cause specific hazard, equation (3.1), gives the conditional probability of fail-
ing from cause k at time t j given still alive just before time t j is:

hk
(
t j
)
= Prob(T = t j,ε = k/T > t j−1)

This probability can be estimated by:

ĥk
(
t j
)
=

dk j

R
(
t j
) (3.7)

Then the survival function can be written as:

Ŝ(t) = ∏
t j≤t

(
1−

K

∑
k=1

ĥk
(
t j
))

The portability of failing due to cause k at time t j, unconditional probability,
Pk
(
t j
)
= Prob

(
T = t j,ε = k

)
is estimated by the product of the cause specific and

the survival probability at t j as:

P̂k
(
t j
)
= ĥk

(
t j
)
· Ŝ
(
t j−1

)
(3.8)

Sum of equation (3.8) over all time points t j ≤ t, estimates the cumulative
incidence of cause k
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Îk (t) = ∑
t j≤t

P̂k
(
t j
)

(3.9)

3.1.2 Fine-Gray model

To estimate the effect of some given covariates on hazard rate we introduced the
Cox model in subsection 1.6. In equation (1.2) we defined the hazard function,
generally, when a subject is exposed to fail due to only one type of event (one
case of failure) and there is no any other competing event. In the presence of
competing risk the hazard function is represented by the cause specific hazard
function (equation (3.1)). In subsection 2.3 we applied the Cox model on the
Norwegian mortality in three counties data set (which contains competing risk
observations), to each competing event (death cause), individually. The results
been shown by tables 2.2, 2.3, 2.4, 2.5 and 2.6 are the estimated effects of the given
covariates on each of the four cause specific hazard function (death from cancer,
cardiovascular diseases, alcohol abuse and other medical causes). The problem
with the cause specific hazard function is it treats competing events as censoring
events. The Cox hazard model estimates the effect of some given covariates on
the cause specific hazard function. Therefore the main problem with the Cox
model appear when we want to use the result to model the effect of the covariates
on the CIF. Hence, in the presence of competing risk using the Cox model may
lead to biased results [28]. However, Cox model remains one of the best and
widely used method in the survival analysis and it is appropriate when the aim is to
estimate the effect of the covariates on the cause-specific hazard [29]. The hazard
function has one-one correspondence to the CIF only when there is no competing
risk, therefore the hazard ratio gives the risk of the study subjects, whereas in
the presence of competing risk, there is no one-one correspondence between the
hazard foundation and CIF therefore the effect of the covariates on hazard can not
directly be linked to its effect on CIF [22, 26]. Let H1 (t),H2 (t),...HK (t) denote K
cause specific hazard functions for K causes of failure, then from equation (3.4)
of the cumulative incidence function for the kth cause of failure:

Ik (t) =

tˆ

0

S (s)hk (s)ds =

tˆ

0

e−(H1(s)+H2(s)+...+HK(s))hk (s)ds

Hence, Ik (t) depends on all the cause specific hazards.
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Fine and Gray [30] introduced a method to link covariates to the cumulative
incidence function CIF. The subdistribution hazard function proposed by Fine and
Gray to estimate the covariates effect on the CIF in the presence of competing risk
is defined by [22, 30] :

hk(t) = lim4t→0
P(t ≤ T < (t +4t),ε = k/T ≥ t ∪ (T < t ∩ ε 6= k))

4t
(3.10)

Which gives the risk of failure due to the kthcause in individuals who have
not yet experienced an event from kth cause (individuals who experienced the
competing event will be included in the risk set)
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Chapter 4
4 Estimating cumulative incidence function and Fine-

Gray model
In this chapter we will estimate and present cumulative incidence plots after per-
forming the cumulative incidence method on the data of Norwegian mortality in
three Norwegian counties. We will make comparisons between these estimates
(the cumulative incidence estimates) and the Kaplan-Meier estimates which have
been presented in chapter 2. Then, we will present estimates of Fine-Gray model
and compare these estimates with Cox model estimates which we already have
presented in the chapter 2.

4.1 Cumulative incidence
This section starts with presenting the cumulative incidence for each gender fol-
lowed by presenting the cumulative incidence for each category of smoking grade,
which has six levels, and then the cumulative incidence for each of the three coun-
ties.

4.1.1 The cumulative incidence curves by gender

Figure 4.1 illustrates the cumulative incidence curves of death from four causes
of death among Norwegian males and females aged 40-70 years old. The highest
incidence of death among males is death from cardiovascular diseases. By turn-
ing 70 years old, the estimated incidence of death from cardiovascular for males
is 11.95%, while Kaplan-Meier method estimated the probability of dying from
cardiovascular for males to be 12.96% (i.e. a relative change 0.08 ). Cumula-
tive incidence of death from cardiovascular diseases for females is about 4.2%,
whereas using Kaplan-Meier method gave about 4.4% (i.e. a relative change 0.06
). The difference in the death from cancer between gender is smaller compared to
the death from cardiovascular. The estimated incidence of death from cancer are
8.6% and 6.3% for males and females, respectively. The Kaplan-Meier estimated
the risk of death from cancer by 9.62% and 6.53 %, respectively, for males and fe-
males (i.e. a relative change 0.10 for males and 0.03 for females). The difference
in the estimated risk of death from cancer between the two methods, Kapan-Meier
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and cumulative incidences, is very small for females. It is because of the risk of
death from the other three competing causes is very low. It is the same for risk
of death from other medical causes (relative change for male is 0.10 and 0.06 for
female), and alcohol abuse (relative change for male is 0.09 and 0.05 for female)
as the difference between Kaplan-Meier and the cumulative incidence is small.
How ever the relative change for other medical causes and alcohol abuse is a little
bit bigger than the relative change for cancer and cardiovascular, because here the
risk of death from the sum of competing causes is a little bit higher.

Figure 4.1: The cumulative incidence curves for the four causes of death by gender

4.1.2 The cumulative incidence curves by smoking habits

Figure 4.2 represents the cumulative incidence curves for the four causes of death
by smoking habits. Bad smoking habits implies worse prognosis in survival prob-
abilities of cancer and cardiovascular diseases than in survival probabilities of
alcohol abuse and other medical causes. In the following we will present esti-
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mates of the cumulative incidence (for individuals who have reached 70 years old
) and make a comparison between these estimates and those which were previ-
ously estimated by Kaplan-Meier.

There is a small difference between the two methods in estimating of cardio-
vascular and cancer death for individuals who were smoking 1-9 cigarettes per
day. The estimated cumulative incidence for death from cardiovascular at age
70 is 12.23%, while Kaplan-Meier was 13.16% giving a relative change of 0.07.
For death from cancer, the cumulative incidence is 9.2% while the Kaplan-Meier
estimated it by 10.4% which gives a relative change of 0.12. The cumulative in-
cidence for death from other medical causes is estimated by 0.02%, whereas the
Kaplan-Meier estimated it by 0.03 (i.e. a relative change 0.13). For alcohol abuse,
the cumulative incidence is 3.96%, while Kaplan-Meier estimated it by 4.54% (i.e.
a relative change 0.13). Clearly, the relative change between the Kaplan-Meier
and the cumulative incidence for other medical causes and for alcohol abuse are
bigger compared the relative change for cancer and for cardiovascular. It is the
same for the smoking group 10-19 cigarettes since the relative change between
the two methods are 0.11, 0.09, 0.13 and 0.13 for cancer, cardiovascular, other
medical causes and alcohol abuse.

For individuals who were smoking more than 20 cigarettes per day, the esti-
mated cumulative incidence for death from cancer and cardiovascular are, respec-
tively, 10.4% and 12.43%. Risk of death estimated by Kaplan-Meier for these two
causes were, respectively, 16.07% and 15.03%. This means the relative change
between the two methods for this group of smoking is 0.35 for death from cancer,
and 0.17 for death from cardiovascular. In other hand, the relative change for the
death from other medical causes is 0.30 (cumulative incidence estimated by 2.07%
and Kaplan-Meier estimate was 3.07%), and the relative change for death from al-
cohol abuse is 0.1 (cumulative incidence estimated by 3.96% and Kaplan-Meier
estimate was 4.38%).

The difference between death from cancer and from cardiovascular is, obvi-
ously, bigger among pipe smokers compared to the difference of death from these
two causes among the others smoking group. In other hand death from other med-
ical causes is more related to pipe smoking than the others smoking groups. The
cumulative incidence risk of death from cancer and cardiovascular are, respec-
tively, 11.04% (relative change of 0.17) and 19.23% (relative change of .1). For
other medical causes the cumulative incidence is 6.12% (relative change of 0.15),
and for alcohol abuse it is 1.42% (relative change of 0.15).

Though Kaplan-Meier and the cumulative incidence did not give big differ-
ences, however, the relative difference for the most unlikely causes of death, death
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from other medical causes or from alcohol abuse, is mostly bigger than the rel-
ative difference for the most likely causes of death, death from cancer or from
cardiovascular.

Figure 4.2: The cumulative incidence curves for the four causes of death by smok-
ing habits

4.1.3 The cumulative incidence curves by county

Figure 4.3 illustrates the cumulative incidence curves by county. After turning 70
years old, the estimated cumulative incidence risk of death from cancer for indi-
viduals who were living in Oppdal county is 7.26% (relative change of 0.06), for
individuals who were living in Sogn og Fjordane county is about 7.33% (relative
change of 0.07) and for individuals who were living in Finmark is 8.27% (relative
change of 0.09).

The cumulative incidence risk of death from cardiovascular for individuals
(turned 70 years old) who were living in Oppdal county is 7.59% (relative change
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of 0.04), for those who were living in Sogn og Fjordane county is about 7.52%
(relative change of 0.04) and for individuals who were living in Finmark is 10.76%
(relative change of 0.07).

For individuals who were living in Oppdal county the estimated cumulative
incidence risk of death from alcohol abuse is 1.66% (relative change of 0.07), for
those who were living in Sogn og Fjordane county is 2.40% (relative change of
0.06) and for individuals who were living in Finmark is 2.57% (relative change of
0.08).

Probability of death from other medical causes (for all ages) is the smallest
in the three counties except for individuals who were turned 63-70 years old and
were living in Oppdal county. The cumulative incidence risk of death from other
medical causes for individuals who were living in Oppdal, Sogn og Fjord and
Finmark are 2.71%(relative change of 0.1), 1.70% (relative change of 0.05) and
1.74% (relative change of 0.10), respectively.

Figure 4.3: The cumulative incidence curves for the four causes of death by
county.
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4.2 Fine-Gray model
This section start with presenting uni-variable and multi-variable Fine-Gray es-
timates for death from cancer, then for death from cardiovascular followed by
uni-variable and multi-variable fine-Gray estimates for death from others medical
causes and for death from alcohol abuse.

4.2.1 Fine-Gray model for death from cancer

Table 4.1 shows the uni-variable and multi-variable Fine-Gray estimates for the
death from cancer. In the uni-variable analysis the covariates sex, smoking grade
and age when started smoking are significant, and smoking grade is the only sig-
nificant covariate in the multi-variable analysis. It is the same results that have
been estimated by Cox model for the same cause of death, 2.3, where sex, smok-
ing grade and age when started smoking were significant, and smoking grade was
the only significant covariate in the multi-variable analysis as well.

There are no big differences in the the hazard ratio estimated by Cox model
and by Fine-Gray model. For the uni-variable Cox model analysis the hazard ratio
of the covariate sex were 0.71, whereas the hazard ratio for the significant levels
of smoking grade were 2.16, 2.54, 3.82 and 3.06 for the levels 1-9 cigarettes, 10-
19 cigarettes, 20+ cigarettes and pipe smoker, respectively. For the covariate age
when started smoking Cox model estimated the hazard ratio by 0.95 and there is
no big different between this value and the hazard ratio estimated by Fine-Gray
model. Similarly to the uni-variable Cox model analysis the smoking grade is the
only significant covariate in the uni-variable Fine -Gray model.
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Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 0.75 (0.57 , 0.98) 0.03
sbp 1.00 (1.00 , 1.01) 0.27

never smoked 1 ref 1·10−6 1 ref 1·10−6

former smk 1.49 (0.99 , 2.24) 0.06 1.49 (0.99 , 2.24) 0.06
1-9 cigar 2.09 (1.30 , 3.36) 0.00 2.09 (1.30 , 3.36) 0.00

10-19 cigar 2.27 (1.54 , 3.38) 3.54·10−5 2.27 (1.54 , 3.38) 3.54·10−5

20+ cigar 3.36 (2.13 , 5.30) 1.82·10−7 3.36 (2.13 , 5.30) 1.82·10−7

pipe-cigar 3.27 (1.47 , 7.26) 0.00 3.27 (1.47 , 7.26) 0.00
county OPP-L 1 ref 0.7
county S&F 0.88 (0.66 , 1.26) 0.45

county F 1.03 (0.81 , 1.57) 0.87
bmi 1.01 (0.97 , 1.05) 0.75

smk strt 0.96 (0.94 , 0.99) 0.00

Table 4.1: Fine-Gray model for death from cancer

4.2.2 Fine-Gray model for death from cardiovascular disease

Table 4.2 shows the uni-variable and multi-variable Fine-Gray model analysis for
the death from cardiovascular. In the uni-variable analysis the all covariates are
statically significant, except the level of county county S&F (Sogn og Fjordane)
exactly as the same as the uni-variable Cox model for death from cardiovascu-
lar 2.4. There are noa big difference in the hazard ratios for Fine-Gray model
compared to the hazard ratios for the corresponding covariates estimated by the
Cox model. However, the difference between the two models in estimating of the
hazard ratio for the covariate smoking grade (of the two levels 1-19 cigarettes and
20+ cigarettes) is a little bit bigger compared to the difference between the others
covariates. It is exactly the same with the multi-variable model that there are no
concrete and clear differences between the two model in estimating the hazard
ratios of and, again, the biggest difference is in the hazard ratio for the covari-
ate smoking grade (of the two levels 1-19 cigarettes and 20+ cigarettes). On the
contrary to Cox model the covariate body mass is significant in the multi-variable
analysis.
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Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 0.31 (0.23 , 0.42) 3.07·10−14 0.39 (0.28 , 0.53) 7.08·10−9

sbp 1.03 (1.02 , 1.03) 2·10−16 1.03 (1.02 , 1.03) 2·10−16

never smoked 1 ref 6·10−14 1 ref 13.35·10−8

former smk 2.52 (1.65 , 3.86) 1.93·10−5 1.72 (1.12 , 2.66) 0.01
1-9 cigar 4.01 (2.52 , 6.38) 4.31·10−9 1.22 (2.11 , 5.39) 3.58·10−7

10-19 cigar 3.56 (2.35 , 5.40) 2.56·10−9 2.84 (1.85 , 4.36) 1.64·10−6

20+ cigar 4.23 (2.58 , 6.94) 1.07·10−8 2.71 (1.63 , 4.54) 0.00
pipe-cigar 7.72 (3.99 , 14.95) 1.34·10−9 4.29 (2.13 , 8.67) 4.53·10−5

county OPP-L 1 ref 0.01 1 ref 0.03
county S&F 0.95 (0.69 , 1.32) 0.78 0.95 (0.69 , 1.32) 0.77

county F 1.57 (1.17 , 2.12) 0.00 1.46 (1.08 , 1.98) 0.02
bmi 1.06 (1.03 , 1.09) 0.00 1.04 (1.00 , 1.08) 0.03

smk strt 0.97 (0.95 , 0.99) 0.00

Table 4.2: Uni-variable and multi-variable Fine-Gray model for death from car-
diovascular disease.

4.2.3 Fine-Gray model for death from other medical causes

Fine-Gray estimates for death from other medical causes are shown in table 4.3.
Comparing these estimates to the Cox model estimates for death from the same
cause of death (death from other medical causes) shown in table 2.5 one can ob-
serve some substantial differences regarding the significance of some covariates.
Sex, blood pressure (sbp), smoking grade and age when started smoking (smk
strt) are significant in the uni-variable model, whereas in the Cox model sex and
smoking grade were not. In the multi-variable analysis, in contrast with the Cox
multi-variable analysis, smoking grade is significant, and the hazard ratio of blood
pressure, which is significant, does not differ much from the hazard ratio estimated
by the Cox model. There are not big differences in the hazard rates estimated by
the Cox model and the Fine-Gray model, and it could be because of the very low
mortality rate due to other medical causes.
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Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 0.27 (0.14 , 0.50) 4.09·10−5

sbp 1.01 (1.00 , 1.03) 0.04 1.01 (1.00 , 1.03) 0.04
never smoked 1 ref 0.01 1 ref 0.01
former smk 2.26 (0.40 , 2.21) 0.89 0.93 (0.40 , 2.16) 0.86

1-9 cigar 2.09 (0.97 , 5.30) 0.06 2.22 (0.95 , 5.19) 0.07
10-19 cigar 0.97 (1.32 , 5.33) 0.00 2.65 (1.32 , 5.33) 00
20+ cigar 1.13 (1.33 , 7.26) 0.01 3.11 (1.33 , 7.28) 0.00
pipe-cigar 0.42 (0.20 , 11.67) 0.68 1.48 (0.19 , 11.35) 0.70

county OPP-L 1 ref 0.7
county S&F 1.24 (0.68 , 2.29) 0.49

county F 1.51 0.81 , 2.80) 0.19
bmi 1.05 (0.98 , 1.11) 0.17

smk strt 0.92 (0.90 , 0.99) 0.02

Table 4.3: Uni-variable and multi-variable Fine-Gray model for death from other
medical causes.

4.2.4 Fine-Gray model for death from alcohol abuse

Table 4.4 shows the uni-variable and the multi-variable Fine-Gray model estima-
tions for death from alcohol abuse. The covariate sex is, obviously, not significant
in both the uni-variable and multi-variable analysis whereas the uni-variable and
multi-variable analysis of Cox model for death from alcohol abuse, table 2.6 , was
estimated it as significant. The blood pressure (sbp) is the only covariate that is
significant in both, the uni-variable and the multi-variable analysis, but it was not
in the multi-variable analysis of Cox model and the difference in the hazard ratio
(uni-variable analysis) estimated by the Cox model and Fine-Gray model is not
too big. In contrast to the Cox model, the smoking grade is not significant neither
in the uni-variable nor in the multi-variable analysis. Age when started smoking
(smk strt) is only significant in the uni-variable analysis similarly to Cox model
estimate and the difference in the hazard ratio between the model is, as will, not
big.
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Covariate exp(β̂ ) (95% CI) P− value exp(β̂ ) (95% CI) P− value

Uni-variable Multi-variables
sex 1.10 (0.68 , 1.77) 0.69
sbp 1.02 (1.00 , 1.03) 0.00 1.02 (1.00 , 1.03) 0.00

never smoked 1 ref 0.20
former smk 1.13 (0.57 , 2.25) 0.72

1-9 cigar 1.45 (0.63 , 3.33) 0.38
10-19 cigar 1.43 (0.72 , 2.85) 0.30
20+ cigar 2.01 (0.87 , 4.62) 0.10
pipe-cigar 4.49 (1.52 , 13.27) 0.00

county OPP-L 1 ref 0.6
county S&F 0.78 (0.43 , 1.38) 0.39

county F 0.75 (0.40 , 1.42) 0.38
bmi 0.95 (0.88 , 1.03) 0.20

smk strt 0.93 (0.88 , 0.98) 0.00

Table 4.4: Uni-variable and multi-variable Fine-Gray model for alcohol abuse

The overall number of deaths in the Norwegian mortality in three counties
data set, the data which we worked on in this thesis, is very small where only 586
of 4000 individuals were died. Therefore the difference between the two model in
estimating the covariates effect is not big.

5 Conclusion
Competing risks are common in the analysis of survival data. Ignoring to compute
correctly for competing events can result in counteractive consequences such as
underestimation of the survival probability and imprecise estimate of the magni-
tude of effects of some given covariates on the occurrence of event of the interest.
The overall number of deaths in the Norwegian mortality in three counties data
set is very small. The number of deaths from cancer, cardiovascular, other med-
ical causes and alcohol abuse is 217, 240, 68 and 61, respectively, which means
586 of 4000 individuals died, and 3414 individuals were truly censored. One can
argue that it is, definitely, the reason behind there are no big difference between
survival functions estimated by the Kaplan-Meier estimator and by the cumula-
tive incidence function. However, the relative change between these two methods
is, mostly, bigger for death from other medical causes and from alcohol abuse
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than for death from cancer and from cardiovascular, and it is because the first two
causes of death was the most unlikely cause of death while the later two causes
were the most likely cause of death. This means death from cancer or from car-
diovascular were high competing risk for death from other medical causes or from
alcohol abuse, and this is the case where the difference between Kaplan-Meier es-
timates and the cumulative incidence function is bigger as the hazard of failure
from the competing risk is higher.

The Cox model and Fine-Gray model were used to estimate the effect of the
covariates on the cause specific hazard and the subdistribution hazard, respec-
tively, but again the difference in the effect of those covariates on the cause spe-
cific hazard rates estimated by Cox model and the corresponding effect of the
same covariates on the subdistribution estimated by Fine-Gray is not big, on con-
trary to many studies made and have been published by many statisticians and
showed notable difference in the hazard rates which have been estimated by the
two models for the same covariates. However, there are some differences between
the two models in terms of the significance of some given covariates as some of
these covariates were not statistically significant in the Cox model, but they were
statistically significant in the Fine-Gray model.

We refer to an important post by Paul Allison [31] who recommended not
to use Fine-Gray’s subdistribution method for causal analysis of competing risks
after he found out that for any competing risks H1 and H2, covariate that increases
the cause specific hazard of event H1will appear to decrease the subdistribution
hazard for event H2.
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