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Abstract

This thesis examines requirements of subject sample size while planning a medical experiment,
describes some known types of measures of inter-rater agreement and discovers some new useful
results in this study area. The main goal is to determine how many patients to include in clinical
study. There is a particular focus on studying the Gwet’s AC1 agreement coefficient by comparing it
to the well known Cohen’s kappa coefficient and some others, which are popular used in the inter-rater
agreement studies. As is shown most agreement coefficients have paradoxical behaviour, which gives
unreasonably low estimates of agreement in some situations. Gwet’s AC1 has been claimed to be
”paradox-free”, however, we find its own paradox. That is why the focus holds on studying some
useful properties of this measure and analyzing the formula for variance which has the main role in
finding the required sample size.
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1 Introduction

Sample size calculation is an important part of any clinical research. There are
different methods to estimate the sample size. If we want to provide an effective and
safe test of treatment, we need to make sure that needed number of subjects were taken
for the trial.

If we talk about clinical research, often two measurement methods need to be com-
pared. Before researches can start the clinical trial, they need to identify sample size
to present the contingency table of the agreement between the raters.

Chapters 2 and 3 cover introduction to the main topic, the theory of the power-based
and precision-based calculations of sample size is given. An introduction to inter-rater
agreement and reliability of diagnostic tests is given in chapter 4, which also contains a
brief summary of the theory of some types of measures of inter-rater agreement, gives
some simple analytical and practical examples.

In Chapter 5 properties of Gwet’s gamma coefficient are studied in detail and im-
portant conclusions done. The minimum and maximum for percent chance agreement
are established. It is found that for large number of categories Gwet’s gamma is no
longer a chance-corrected measure.

An upper bound of variance of Gwet’s gamma is obtained in chapter 6. Afterwards it
is finally shown how to choose the sample size when designing an inter-rater reliability
study to attain a pre-specified margin of error for Gwet’s gamma.
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2 Sample size calculations in medical research planning

Proper research planning is an integral part of evidence-based medicine. Sample size
calculations are important parts of planning quantitative studies. During the studies
that determine the prevalence of a certain characteristic in a population( for example,
the prevalence of asthma in children), the calculation of the sample size is necessary
to get the desired degree of accuracy from the obtained estimates.

For example, the prevalence of the disease in 10%, obtained on a sample size of 20
people, will have a 95% confidence interval from 1% to 31%, which can be recognized
neither accurate nor informative estimate. On the other hand, the prevalence of the
disease in 10%, obtained on a sample size of 400 people, will have a 95% confidence
interval from 7% to 13%, which can be considered as fairly accurate result. Pre-
calculation/assessment of available precision for different choices of sample size before
study start let us avoid the first of these two situations.

In studies aimed to identify precision in estimate of treatment effect (for example, the
difference in the effectiveness of two treatment methods, the relative risk of the disease
in the presence or absence of a risk factor) estimating the sample size is important to
ensure that if a clinically or biologically important effect exists, then it highly probable
will be detected, in other words, the analysis will give statistically significant results.

The adequacy of the sample size should also be assessed in accordance with the
purpose of the study. For example, if the goal of the study is to demonstrate that a
new treatment is better than the existing one, then it is necessary to ensure that the
sample size can detect clinically significant differences between the two treatments.

However, sometimes it is required to demonstrate that two treatments are clinically
equivalent. This type of research is often called a test of equivalence or ”negative”
test. The sample size in studies aimed at demonstrating the equivalence of medicine
is larger than in studies aimed to identify differences in efficiency. It is important to
make sure that the sample size calculations are related to the goals and problems of
the study and are based on data about the main outcome variable.

The sample size should also correspond to the methods of analysis used in the
study, since both the sample size and the analysis depend on the chosen design of
research. There are two approaches to sample size calculations, depending on whether
the primary aim is a comparison performed by a statistical test, or an estimate of a
population parameter.

2.1 Power-based sample size calculations

Power-based sample size calculations relate to hypothesis testing. Below will be pre-
sented some definitions used in power-based sample size calculations. Generally about
hypothesis testing: we formulate a null hypothesis, H0, and an alternative hypothesis,
H1, i.e.
H0 : current knowledge
H1 : new knowledge
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2.1 Power-based sample size calculations

More precisely, a hypothesis test should be formulated in terms of some population
parameter(s). E.g. a general two-sided hypothesis test, for some population parameter
θ:

H0 : θ = θ0 H1 : θ 6= θ0.

By comparing groups, we initially assume that they do not differ (this is our H0). If
the probability that the identified differences are a random result is very small under
the assumption that H0 is true, then it will be clear to reject the null hypothesis and
make a conclusion that there is indeed a difference ( H1 true). The value of p for
a particular sample is the probability of obtaining at least the same or even greater
differences than observed, provided that the null hypothesis is correct.

Reality

Test H0 true H0 false

Reject H0 Type I Error Correct rejection H0

(probability = α) (probability= 1− β (=power))

Accept H0 Correct acceptance of H0 Type II Error
(probability= 1− α) (probability= β)

Table 1: Probability of errors Type I and Type II

Type I error (false positive)
Mistakenly rejecting the null hypothesis, i.e. conclude with differences where there are
none. The probability of type I error is also called level of significance (alpha):

α = P (Type I error) = level of significance

i.e.
α = P (reject H0|H0 true)

Type II error (false negative)
It occurs if we accept the null hypothesis when it is not true, in other words, we do
not find significant difference. The probability of type II error is denoted by beta.

β = P (Type II error)

i.e.
β = P (not reject H0|H1 true)

Power
The probability of detecting a true difference (i.e. the statistical power of a trial) is
equal to 1− β, i.e.
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2.1 Power-based sample size calculations

power = P (reject H0|H1 true) = 1− β

By using statistical calculations we can compute the p-value, which is later compared
to a pre-selected level of significance, often denoted as α. In biomedical research the
significance level is usually set at α = 0.05 (= 5%). If the significant level was chosen
at α = 0.05, then all the samples that return p ≤ 0.05 for the null hypothesis reject
this hypothesis, and the samples with p > 0.05 do not give grounds for rejecting it.

The point is that in cases there really is no difference, there is only a 5% chance
that by random chance an observed difference is large enough to lead to a rejection of
the null hypothesis will happen. In other words we set the probability of false rejection
of null hypothesis H0 (standard) in favour of the alternative hypothesis H1 (studied).

2.1.1 Power calculations: comparison of means

Suppose we have two groups of normally distributed data and we want to compare
the mean in both of them to each other (i.e. carry out an unpaired t-test):

H0 : µ1 = µ2 H1 : µ1 6= µ2.

Required number, n, in each group for a given level of α and power 1 − β is given
as (R. Cornish, 2006)

n = f(α, β) · 2s2

δ2
, (1)

where
α - level of significance.
1− β - power of test.
f(α, β) - value calculated from α and β (see Table 2).
s - the standard deviation, assumed equal in both groups.
δ = µ1 − µ2 - the smallest difference in the means which is considered to be clinically
meaningful.

β
α 0.05 0.1 0.2

0.05 13.0 10.5 7.9
0.01 17.8 14.9 11.7

Table 2: f(α, β) for some commonly used choices of α and β

Example

We can see how the formula given above works on concrete example taken from
Rosie Cornish (2006)”An introduction to sample size calculations”[5].

Suppose we wish to carry out a trial of a new treatment among men aged between 50
and 60. This treatment is for people who has hypertension (high blood pressure).Also
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2.1 Power-based sample size calculations

suppose we want to be 90% sure of detecting a difference in mean blood pressure of
10 mmHg as significant at 5% level (i.e. α = 0.05, β = 0.1, power=0.9, δ = 10). We
assume s = 20mmHg (this number is taken from other published papers about blood
pressure studies), and calculate the number required in each group

n = f(α, β) · 2s2

δ2
= 10.5 · 2 · 202

102
= 84,

using f(α, β) = 10.5 from Table 2.

That is we would need 84 subjects in each group, i.e. a total of 168 participants to
obtain the desired statistical power.

2.1.2 Power calculations: comparison of probabilities

Suppose we have two groups of size n and we want to compare a binary outcome in
these groups. Let
p1 = probability of events in group 1.
p2 = probability of events in group 2.

Then the null and alternative hypotheses would be:

H0 : p1 = p2 H1 : p1 6= p2.

We would like to detect the smallest important difference in proportions, δ = p1−p2.
General form same as equation (1), however since the variance of a binomial random
variable is given by p, this simplifies to the following form, where required number of
subjects, n, is given by (R.Cornish, 2006)

n =
p1(1− p1) + p2(1− p2)

(p1 − p2)2
· f(α, β). (2)

Example

We look at group of people who have had a heart attack. A new treatment has
been developed for such patients. It is known that 10% of people have died within
one year after the heart attack. It is clearly that it would be very important clinically
if the death percentage were to be reduced from 10% to 5%. We will use α = 0.05
and β = 0.1. It means that our p1 = 0.1 (probability of deaths in placebo group) and
p2 = 0.05 (probability of deaths in treatment group). Using the formula above, we get

n =
0.1(1− 0.1) + 0.05(1− 0.05)

(0.1− 0.05)2
· 10.5 = 578

So we can conclude that 578 patients is needed in each treatment group so that
we are 90% sure of being able to detect a reduction from 10% to 5% as statistically
significant at the 5% level.
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2.2 Precision-based sample size calculations

2.2 Precision-based sample size calculations

Suppose now we want to estimate an unknown parameter with a certain degree of
precision. In other words we want our confidence interval to be of a certain width. We
have a general formula to find a 95% confidence interval for asymptotic normal case,
it is given by

Estimate± zα/2 × SE,
where zα/2 = 1.96 - quantile of normal distribution, SE is a standard error of what we
are estimating. This formula is based on approximation.

The formula for standard error contains number n, which is the sample size. It
means we can get the formula that can be solved to find n, by specifying how wide the
95% confidence interval should be. We can use consideration around variance/standard
deviation for determining sample size we need. Let us first present the general formu-
lation of the sample size calculation for one parameter.

Assume we have some estimate µ̂ = X̄. Then V ar(X̄) = σ2/n, where σ2 = V ar(X),
and SD(X̄) = σ/

√
n. As we mentioned that our estimate is normal distributed, then

there is approximately a (1 − α)100% chance that X̄ will fall in: X̄ ± zα/2
σ√
n
, i.e.

an interval estimate that with (1 − α)100% probability covers the true/population
parameter, which we call confidence interval.

In other words, zα/2
σ√
n

should not exceed a margin error, e:

zα/2
σ√
n
≤ e =⇒ n ≥

z2α/2σ
2

e2
.

Example 1(Gayatri Vishwakarma [9])

Calculate the sample size needed to achieve plasma lamotrigine (LTG) among pa-
tients who have seizures with ±1.0mg/l precision and 95% confidence. In this case the
standard deviation of plasma was taken as 2.0mg/l, i.e. σ = 2.0, e = 1.0mg/l, and for
95% significance level zα/2 = 1.96.

Thus, by inserting given values into the formula for n, we get

n =
(1.96)222

12
= 15.36.

Rounding upwards, it means we need to have a sample size at least 16.

Example 2

We will take the example with a new treatment for people with high blood pressure
as we did before(R.Cornish, 2006 [5]). So we select randomly 2n subjects, n of them
get this new treatment and the other n get the same treatment as before (it means
we take both groups of the same size). In addition to testing if the new treatment is
better than the old one, we want to estimate a 95% CI for the difference in mean. The
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2.2 Precision-based sample size calculations

CI should be wider than 10mmHg. So the question is how many subjects we need to
have in this study?

We have the formula for 95% confidence interval for a difference in means. It is
given by

(x̄1 − x̄2)± 1.96× sp
√

1

n1

+
1

n2

,

where sp is pooled estimate of common variance.

We want 1.96× sp
√

1
n1

+ 1
n2
≤ 5mmHg. Also n1 = n2 = n, i.e.

1.96× sp

√
2

n
≤ 5,

We need to know what sp is, so that we can work out sample size. As we did in
similar example above, we took sp = 20mmHg by using other published papers about
this topic. This gives us

1.96 · 20

√
2

n
≤ 5 =⇒ n

2
≥
(

1.96 · 20

5

)2

=⇒ n = 122.93.

Rounding up, it means we need 123 subjects in each group.

If we wanted, for example, to estimate a 95% CI for the same parameter within
2.5mmHg of the estimated, then we would get the following

n

2
=

(
1.96 · 20

2.5

)2

=⇒ n = 491.72,

which by rounding gives us 492 subjects.
From this we can conclude that we have to increase our sample size by a factor of 4,

if we want to increase our precision by factor of 2, as we showed in example. In general,
by increasing the precision by some factor k, the sample size needs to be increased by
factor k2 (as it said in R.Cornish, 2006 [5]).
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3 Inter-rater agreement

3.1 Reliability of measurements/classifications

Reliability is the level of constancy of the repetition of the same result in multiple
measurements of a trait under identical conditions. Further we want to ask the following
question: Can the result be repeated if the measurement is repeated several times?

Let’s take a look at the reasons for the low reliability of diagnostics.

• The discrepancy between the results obtained by different raters when measuring
the same symptom/trait

• Difference in the results of repeated measurements of a trait provided by the same
rater

We want to find out the variation between different researchers. First of all, two
raters often do not come to the same result. So knowing the level where two raters agree
or disagree with each other is very important in science and in assessing the quality of
medical care, regardless of whether a physical examination, laboratory test, or other
measurement of human characteristics is performed. Therefore, when performing a
research or improving the quality of diagnosis in the practice, it is necessary to know
how to represent agreement in quantitative form.

3.2 Inter-rater reliability

Inter-rater agreement is one of many measures of reliability. Inter-rater reliability
can be defined as a degree to which two or more individuals referred as raters give an
independent data classification with the same set of objects. In other words inter-rater
reliability, which measures uniformity, requires to conduct the same form with the same
people by two or more raters in order to establish the degree of agreement on the use
of this tool by those who use it.

Confidence in accuracy of the clinical study depends on the reliability of gathered
data. One of the important factor to get a clinical and medical research with a high
quality lies in the importance of raters having a high degree of agreement while testing
the samples. Any research project can potentially have a number of errors. And the
confidence in the conclusions of the study depends on minimizing those errors by the
researcher.

3.3 Types of data and measurement scales

In rating we usually work with data which can be of different type: nominal and
ordinal. Nominal scale, which is also called a categorical variable scale, is assigned to
subjects divided into categories without having any order. Nominal scale is used for
labeling variables into distinct classes. By constructing a nominal scale, the following
requirement must be met: each item of a set of objects must be assigned only to one
class, i.e. none of the objects can be assigned simultaneously to two or more classes. If

9



3.4 Establishment of framework

we talk about inter-rater agreement, in this case by having a nominal scale, we assume
that two individuals or raters agree when their ratings are identical. And they disagree
if the ratings are not identical.

In ordinal scale the classes of objects are discrete, as in case of nominal scale, and the
categories are ordered. However, the numbers can be compared, it is always necessary
to remember that quantities in the ordinal scale have only relative and not absolute
value. When we have an ordinal measurement, we no longer assume the agreement and
disagreement as two distinct definitions. It means that a disagreement can be assumed
as some other level of agreement, in other words, quantify level of disagreement.

To look closer at the difference between these types of data, we will take a simple
example from Kilem L. Gwet ”Handbook of inter-rater reliability”[1].

Suppose a psychiatrist classifies his patients into five categories: Personal Disorder,
Schizophrenia, Depression, Neurosis and Other. There is no possible way of meaningful
ordering of these categories. That’s why we can say that the scale of these five categories
is Nominal. From the other side,after being tested for Multiple Sclerosis, the patient can
be defined as Doubtful, Probable, Possible, Certain, and that is then rated on Ordinal
scale. In this case it is clear that one of the categories can be closer to another one but
not all of them. For example, the category ”Certain” is closer to ”Probable” than to
the ”Doubtful” category. By looking at this example we can say that disagreements on
nominal and ordinal scales should be considered in different ways. It means that the
way to analyse the data depends on which type of rating data we are working with,
nominal or ordinal.

Inter-rater reliability can be calculated for all types of data, but we want to focus
on categorical data, specifically nominal type of data, where the order of categories
does not have any interpretation.

3.4 Establishment of framework

Let’s first present the general agreement table for distribution of n subjects rated
by two raters into k categories.
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3.4 Establishment of framework

Rater A

Rater B 1 2 ... k Total

1 n11 n12 ... n1k n1.

2 n21 n22 ... n2k n2.

... ... ... ... ... ...

k nk1 nc1 ... nkk nk.

Total n.1 n.2 ... n.k n

Table 3: Distribution of n subjects by rater and category.
The categories are nominal

Diagonal elements of Table 3 represent agreement among the raters, while non-
diagonal elements represent disagreement. The level of agreement between the raters is
defined by different types of measures, agreement coefficients, which will be presented
later. Most agreement coefficients (but not all of them) express the value to which
the observed agreement exceeds the random agreement and looks like a proportion
of maximum possible improvement. We can present a very general formulation of
agreement coefficient:

Coefficient =

percent of percent of
observed agreement - random agreement

100% - percent of
random agreement

11



4 Types of measures of inter-rater agreement

4.1 Cohen’s Kappa coefficient

Cohen’s kappa coefficient is a statistical measure of inter-rater agreements for cat-
egorical data. Kappa is the most used chance-adjusted agreement coefficient and as-
sumed to be a more reliable measure than the simple calculation of a percent agreement.

Cohen’s Kappa measures agreement between two raters and it is calculated as:

κ =

1
n

(
k∑
i=1

nii −
k∑
i=1

neii

)
1− 1

n

k∑
i=1

neii

, (3)

where
k - number of categories,
n - the total number of pairs (observations),
nii - the number of agreed pairs of category i,
neii - the expected number of agreed pairs of category i, which is calculated as:

neii =
1

n

k∑
j=1

nij ×
k∑
j=1

nji.

.
Interpretation of Cohen’s kappa values is given in Table 4 (Landis & Koch, 1977)[20].

Cohen’s Kappa value Level of agreement

0.00 Poor

< 0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost Perfect

Table 4: Level of agreement for Cohen’s Kappa value

An agreement table can also be presented in terms of proportions, i.e. where each
cell’s count is divided by n (the total number of observations), i.e. pij = nij/n. In this
case we can write kappa as:

12



4.1 Cohen’s Kappa coefficient

κ =
p0 − pe
1− pe

, (4)

where 
p0 =

k∑
i=1

pii,

pe =
k∑
i=1

pi.p.i,

(5)

pi. and p.i is the sum of frequencies of each category.

The kappa indicator reaches its maximum value, i.e. 1, if all non-diagonal elements
are equal to zero.

Example

We will see how formula (4) works on practice by looking at a simple example. We
have a table of agreement (Table 5) with two raters and two categories.

Rater 2

Rater 1 Yes No Total

Yes 19 2 21

No 3 4 7

Total 22 6 28

Table 5: Distribution of 28 subjects by rater and category

By using the formulas for the observed agreement given for Cohen’s kappa, we get:

p0 = (19 + 4)/28 = 0.82,

and Cohen’s chance agreement:

pe =
21

28
× 22

28
+

7

28
× 6

28
= 0.64.

Thus, the Cohen’s kappa coefficient (4) will be:

κ =
0.82− 0.64

1− 0.64
= 0.5.

So, we got an agreement coefficient equal to 0.5 which is corresponding to Moderate
level of agreement using Table 4.

13



4.2 Scott’s Pi coefficient

4.2 Scott’s Pi coefficient

Cohen’s Kappa coefficient can be compared to an other agreement coefficient named
Pi and invented by William A. Scott, 1955. The general formula is the same as for
Cohen’s kappa (4), however chance agreement is calculated as

pe =
k∑
i=1

π2
i

with
πi = (pi. + p.i)/2,

which is ”the agreement that is expected when the units are statistically unrelated
to their descriptions” (Krippendorff, 2007, p. 80).

For situation with two rater and categories, this simplifies to:

pe = π2
1 + (1− π1)2.

Example

Using the example from Table 5 and the formulas presented above, we can calculate
the value for pe:

π1 =

(
21

28
+

22

28

)
/2 = 0.77,

pe = π2
1 + (1− π1)2 = 0.772 + (1− 0.77)2 = 0.65.

Insert the values of p0 and pe into the formula for Pi and get:

Pi =
0.82− 0.65

1− 0.65
= 0.49.

So, the Scott’s Pi agreement coefficient is equal to 0.49, which in this case is very
similar to Cohen’s kappa 0.50.

4.3 Krippendorff’s Alpha coefficient

Krippendorff’s Alpha appeared as a way to determine the validity of data in content
analysis (Krippendorff, 2004). It is considered to be a reliable way to describe the level
of agreement between the raters. It differs from the previously mentioned coefficients
in that it incorporates a small-sample correction to the observed (percent) agreement.

For n subjects categorized into k categories, the Krippendorff’s alpha coefficient can
be calculated from the following formula:

α =
p′0 − pe
1− pe

,

where
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4.3 Krippendorff’s Alpha coefficient


p′0 = (1− εn)p0 + εn,

p0 =
k∑
i=1

pii,

pe =
k∑
i=1

π2
i ,

and {
εn = 1/(2n),

πi = (pi. + p.i)/2.

Note: As n→∞, εn → 0; thus for large samples Krippendorff’s alpha ≈ Scott’s Pi.
(According to Gwet (2014, p.39 [1]), small samples shows insignificance of ε already as
n = 10.)

Krippendorff’s alpha coefficient in 2× 2 case simplifies to:{
pe = π2

1 + (1− π1)2,
p′0 = (1− εn)(p11 + p22) + εn.

Example

We are going to use the same example as we did for Cohen’s kappa and Scott’s Pi
coefficient. Assume that we have the same dataset from Table 5.

The values for p0, π1 and pe are going to be without change, i.e. p0 = 0.82, π1 = 0.77,
pe = 0.65.

By taking the formula from above, we can find the values for p′0 and pe:

εn = 1/(2n) = 1/56 = 0.018,

p′0 = (1− 0.018) · 0.82 + 0.018 = 0.82.

Thus, we have

α =
0.82− 0.65

1− 0.65
= 0.49.

The Krippendorff’s alpha agreement coefficient is equal to 0.49, i.e. the same as
Scott’s Pi.
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4.4 Gwet’s AC1 coefficient

4.4 Gwet’s AC1 coefficient

The AC1 statistics was proposed by K.L. Gwet(2008a) as an alternative, improved
agreement coefficient compared to Cohen’s kappa. The AC1 coefficient “is defined as
the conditional probability that two randomly selected raters agree given that there is
no agreement by chance.” (Gwet 2001). The main difference from the kappa coefficient
is the way we calculate the chance agreement.

The AC1 coefficient for k categories is given by:

γ =
p0 − pe
1− pe

, (6)

where

pe =
1

k − 1

k∑
i=1

πi(1− πi), (7)

and πi = (pi. + p.i)/2 has the same form as for Scott’s Pi and Krippendorff’s alpha
coefficients.

For a 2× 2 case, the percent chance agreement simplifies to:

pe = 2π1(1− π1).

Notaion for Gwet’s AC1 coefficient such as AC1 and γ will be used interchangeably
following the notation in Gwet’s book [1].

Example

Again we take the same dataset from Table 5 as we did before to calculate the
agreement coefficient and compare it with the others. The observed percent agreement
p0 and π1 are calculated the same way as in all other cases. We have p0 = 0.82,
π1 = 0.77.

To calculate Gwet’s chance agreement we insert the value for π1 into formula for pe:

pe = 2 · 0.77 · (1− 0.77) = 0.35.

Thus, we can find the value for gamma:

γ =
0.82− 0.35

1− 0.35
= 0.72.

Gwet’s AC1 agreement coefficient is equal to 0.72. This value of agreement is the
highest among all the agreement coefficients presented in this chapter, due to lowest
chance agreement.
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4.5 Paradoxes of agreement measures

4.5 Paradoxes of agreement measures

When we talk about kappa coefficient, one can notice sometimes unexpected values
kappa gives us. This value can be quite low if we compare it to the percent agreement.
Feinstein and Cicchetti (1990) shows us issues of kappa statistics which is called two
kappa paradoxes. As it is shown in Gwet(2014, p. 58)[1], these two paradoxes were
described by Feinstein and Cicchetti like this:

• ”The first paradox of κ is that if pe is large, the correction process can convert a
relatively high value of p0 into a relatively low value of κ” (Feinstein & Cicchetti
(1990, p. 544)

• ”The second paradox occurs when unbalanced marginal totals produce higher values
of κ than more balanced totals.”(Feinstein & Cicchetti (1990, p. 545)

4.5.1 The first paradox

This paradox is a function of a high unbalanced prevalence in the sample. Let’s take
a look at the agreement between two raters, where they agree almost perfectly about
rating some number of subjects into two category.

Rater 2

Rater 1 Yes No Total

Yes 25 5 30

No 0 0 0

Total 25 5 30

Table 6: Distribution of 30 subjects by rater and category

By using the data from the Table 6, the kappa coefficient will be:

p0 = (25 + 0)/30 = 0.83,

pe =
30

30
× 25

30
+

0

30
× 5

30
= 0.83.

Thus,

κ =
p0 − pe
1− pe

=
0.83− 0.83

1− 0.83
= 0.

So, we can see that kappa calculations gives us the result equal to 0, which one
can read as no agreement between the raters. Yet, by looking at the data in the
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4.5 Paradoxes of agreement measures

contingency table, we have almost prefect agreement between the raters. If we look at
the observed marginals, we can see that rater 1 put all the subjects into the category
”Yes”, which gives us probability equal to 1. At the same time the rater 2 put 83%
to same category. Since we used all subject to compute p0 and pe, it is logically that
p0−pe will have no meaning. It means that maybe it is not smart to use these observed
marginals(concentrated in one category), which is leading to this paradox.

Let us check if this paradox holds for the other agreement coefficients that have
been presented in this chapter before.

As we said earlier, the observed agreement p0 = 0.83 will be the same for all coeffi-
cients (p′0 = p0 with n = 30 for Krippendorff’s alpha). We need to find only the value
for percent chance agreement. First we need to find π1:

π1 = (
30

30
+

25

30
)/2 ≈ 0.91,

then pe will be the same both for Scott’s Pi and Krippendorff’s Alpha coefficients:

pe = 0.922 + (1− 0.92)2 ≈ 0.83.

Thus,

Pi = α =
0.83− 0.83

1− 0.83
= 0.

pe and γ for AC1 will be

pe = 2 · 0.91(1− 0.91) = 0.16,

γ =
0.83− 0.16

1− 0.16
= 0.8.

As we see this paradox is not unique to Cohen’s kappa. Of the studied coefficients,
Gwet’s AC1 is the only one giving a reasonable estimate of agreement in this situation.

4.5.2 The second paradox

The second paradox includes such issue as symmetry of observations in the disagree-
ment categories. It means that higher kappa may be produced by raters who disagree
more on the marginal counts. We can illustrate this paradox by going through the
example taken from Feinstein and Cicchetti (1990)):
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4.5 Paradoxes of agreement measures

Rater 2

Rater 1 Yes No Total

Yes 45 15 60

No 25 15 40

Total 70 30 100

Table 7: Distribution of 100 subjects by rater and category

For the situation in Table 7 the kappa calculation will be:

p0 = (45 + 15)/100 = 0.6,

pe =
60

100
× 70

100
+

40

100
× 30

100
= 0.54,

κ =
p0 − pe
1− pe

=
0.6− 0.54

1− 0.54
= 0.13.

Rater 2

Rater 1 Yes No Total

Yes 25 35 60

No 5 35 40

Total 30 70 100

Table 8: Distribution of 100 subjects by rater and category

For the situation in Table 8, the observed agreement has the same value as in Table 7,
i.e p0 = 0.6. Chance agreement and kappa coefficient will be:

pe =
60

100
× 30

100
+

40

100
× 70

100
= 0.46,

κ =
p0 − pe
1− pe

=
0.6− 0.46

1− 0.46
= 0.26.

So we got that kappa value associated with second case is two times the kappa in
the first one. Same as in first paradox, the problem lies in the calculation of the chance
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4.5 Paradoxes of agreement measures

agreement. It shows us that chance agreement is dependent of the marginal counts,
hence kappa reacts sensitively and its value strongly depend on that.

Now we want to do the same as we did with first paradox and check if the second
one holds to any of other presented agreement coefficients.

First, we find all the values for Table 7:

π1 = (
60

100
+

70

100
)/2 = 0.65,

then Scott’s Pi and Krippendorff’s Alpha will be:

pe = 0.652 + (1− 0.65)2 ≈ 0.55,

P i = α =
0.6− 0.55

1− 0.55
= 0.11.

For AC1 the result will be:

pe = 2 · 0.65(1− 0.65) = 0.46,

γ =
0.6− 0.46

1− 0.46
= 0.26.

Then for the values from Table 8:

π1 = (
60

100
+

30

100
)/2 = 0.45,

Scott’s Pi and Krippendorff’s Alpha will be:

pe = 0.452 + (1− 0.45)2 ≈ 0.5,

P i = α =
0.6− 0.5

1− 0.5
= 0.2.

For AC1 the result will be:

pe = 2 · 0.45(1− 0.45) = 0.5,

γ =
0.6− 0.5

1− 0.5
= 0.2.

To sum up: corresponding values for Scott’s Pi, Krippendorff’s Alpha and AC1 are
0.11, 0.11, 0.26 for the situation in Table 7, and 0.2, 0.2, 0.2 for Table 8 respectively.

Hence, we note the similar behaviour for Scott’s and Krippendorff’s coefficients as in
case with kappa. The value got two times bigger after changing the marginals counts.
While the value for Gwet’s AC1 stayed almost unchangeable in both situations (we
note actually a little decreasing in last one). This shows us that second paradox of
kappa holds for Pi and Alpha as well, but does not hold the same way for AC1.
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4.6 Illustration of measures of inter-rater agreement

4.6 Illustration of measures of inter-rater agreement

We here introduce some definitions which were used to make some illustration of
each type of measurement of inter-rater agreement for the 2 × 2 case (Qingshu Xie
[11]).

Definitions:

• Observed agreement

p0 =
p11 + p22

n
.

• Prevalence index (PI). As it said in reference paper, PI was defined by Byrt,
Bishop and Carlin (1993) as a difference in probabilities of given categories. It is
estimated by the difference between (p1. + p.1)/2 and (p2. + p.2)/2.

PI =
p1. + p.1

2
− p2. + p.2

2
=

p11+p21
n

+ p11+p21
n

2
−

p21+p22
n

+ p12+p22
n

2
=

2p11 + p12 + p21
2n

− 2p22 + p12 + p21
2n

=
2p11 − 2p22

2n
=
p11 − p22

n
.

So, the prevalence index is

PI =
p11 − p22

n
.

• Bias index (BI) is the difference in probabilities in the agreement category (cate-
gory ”Yes” in our case). It means difference between p1. and p.1.

BI = p1. − p.1 =
p11 + p12

n
− p11 + p21

n
=
p12 − p21

n
.

So, the bias index is

BI =
p12 − p21

n
.
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4.6 Illustration of measures of inter-rater agreement

4.6.1 Comparison of presented agreement coefficients

We take some basic example to compare all the agreement coefficients. Assume we
have 100 subjects, and we want to look at the effect of prevalence on the coefficients.
In the following illustration we used the indices introduced in above and such data:
n = 100, p0 = 0.9, BI = 0.1.

Figure 1: Comparison of all agreement coefficients

The figure 1 shows the behaviour of agreement coefficients as a function of prevalence
index (PI). As we took a fixed rate at 90% observed agreement (p0) and 10% a bias
(BI), then we can see how the agreement coefficients are influenced by the effect of the
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4.6 Illustration of measures of inter-rater agreement

prevalence index.
We can clearly see that Cohen’s kappa, Scott’s Pi and Krippendorff’s alpha coeffi-

cients decreases, when the absolute value of the prevalence index increases. Also we
can see the equality of the Scott’s Pi and Krippendoff’s alpha coefficients, same as we
showed it analytically before.

If we look at the figure, we note that all four coefficients illustrate an agreement
with a very similar magnitude in ”balanced data”(PI = 0). When the absolute value
of prevalence index increases, we can see the difference in the behaviour only for AC1,
while three others behave as described above. The behaviour of AC1 diverges from
the other three coefficients; while AC1 increases somewhat in magnitude, the others
decrease drastically as PI = |1|.
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5 Properties of AC1

Let us assume the example of an experiment where we have two raters (A and B)
and k categories. The agreement table represented in terms of frequencies is given
below.

Rater A

Rater B 1 2 ... k Total

1 p11 p12 ... p1k p1.

2 p21 p22 ... p2k p2.

... ... ... ... ... ...

k pk1 pk2 ... pkk pk.

Total p.1 p.2 ... p.k 1

Table 9: Distribution of frequencies by rater and category

where the agreement matrix P is

P =



p11 p12 . . . p1k

p21 p22 . . . p2k

...
...

. . .
...

pk1 pk2 . . . pkk


And remind from section 4.4 that AC1 coefficient is defined as

γ =
p0 − pe
1− pe

,

where

p0 =
k∑
i=1

πii,

pe =
1

k − 1

k∑
i=1

πi(1− πi),

πi = (pi. + p.i)/2.
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5.1 Properties of chance agreement pe

In the remaining, pe is taken implicitly to mean the chance agreement pertaining to
Gwet’s AC1.

We would like to mention some interesting properties of πi:

• πi is a function of agreement matrix P , and it can be regarded as a prevalence of
category i.

• πi is a probability mass function. Namely 0 ≤ πi ≤ 1 and
k∑
i=1

πi = 1.

• If P is diagonal, then πi = pii, for i = 1, . . . , k.

We need to remember that raters A and B ”put” subjects in some category i and
that each pi. and p.i define the number of those subjects. If both raters classify subjects
in the same category i, then the number of those will be defines as pii not related but
assigned. So this gives us that πi will define the probability of some random subjects
being related to category i by some random rater.

Gwet’s theory

Gwet bases his theory about chance agreement measure on the notion that subjects
can be Hard or Easy to classify:

• Easy (for the rater) subjects are always classified correctly.

• If for a rater the subject is hard =⇒ it is assigned randomly uniformly
into any of the available categories.

5.1 Properties of chance agreement pe

We want to introduce three main properties of pe:

1) pe is a degree of uniformity.

”Subjects distributed more uniformly across categories are more likely to contain
H-subjects” (Gwet 2014, p.116)[1].

2) 0 ≤ pe ≤ 1
k
.

Let us remind the formulation of chance agreement:

pe =
1

k − 1

k∑
i=1

πi(1− πi). (8)

And let us find the minimum and maximum of pe. The minimum value of equa-
tion (8) is 0, it is easy to show. If we, for example, take the case with following
agreement table
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5.1 Properties of chance agreement pe

Rater A

Rater B 1 2 Total

1 1 0 1

2 0 0 0

Total 1 0 1

Table 10: Distribution of frequencies by rater and category

then from Table 10 it is obviously that π1 = 1, hence pe = 2π1(1− π1) = 0. So, as
we said, minimum of pe = 0.

Lemma 1. Maximal pe is attained, if πi = 1
k
, for ∀i = 1, 2, ..., k.

Proof. If we take the equation (8) and open the parentheses, we get:

pe =
1

k − 1

(
k∑
i=1

πi −
k∑
i=1

π2
i

)
.

Note that
k∑
i=1

πi = 1,

therefore

pe =
1

k − 1

(
1−

k∑
i=1

π2
i

)
.

Note that
k∑
i=1

1
k

= 1.

Consider (
1

k
+ a1

)2

+

(
1

k
+ a2

)2

+ ...+

(
1

k
+ ak

)2

, (9)

such that ( 1
k

+ a1) + ( 1
k

+ a2) + ...+ ( 1
k

+ ak) = 1, i.e.
k∑
i=1

ak = 0.

Then (9) is equivalent to

1

k2
+

2a1
k

+ a21 +
1

k2
+

2a2
k

+ a22 + ...+
1

k2
+

2ak
k

+ a2k =

k∑
i=1

1

k2
+

2

k

k∑
i=1

ak +
k∑
i=1

a2k.
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5.1 Properties of chance agreement pe

We know that
k∑
i=1

a2k ≥ 0. On the other hand
k∑
i=1

ak = 0, thus 2
k

k∑
i=1

ak = 0.

Therefore we can conclude that
k∑
i=1

1
k2

+ 2
k

k∑
i=1

ak +
k∑
i=1

a2k ≥ 0 =⇒ expression (9) is

always bigger than or equal to 0. It means that for
k∑
i=1

π2
i to be minimal, the πi has to

be equal to 1
k

=⇒
k∑
i=1

π2
i =

k∑
i=1

1
k2

.

Hence,

pe ≤
1

1− k

(
1−

k∑
i=1

1

k2

)
=

1

k − 1

(
1− 1

k

)
=

1

k − 1
· k − 1

k
=

1

k
.

Corollary 1. pe tends to 0 as k grows. Therefore γ ≈ p0, if k is big enough.

When γ ≈ p0, AC1 is no longer a chance-adjusted agreement coefficient.

Corollary 2. (AC1 paradox) Value of AC1 grows, when we add an ”empty” category.

Assume we have an agreement matrix:

P2 =

(
0.4 0.1
0.1 0.4

)
=⇒ γ(P2) = 0.6.

Now take the same example matrix and add one ”empty” category. We expect to
get a similar value for AC1 as for P2, but:

P3 =

 0.4 0.1 0
0.1 0.4 0
0 0 0

 =⇒ γ(P3) = 0.73.

We see that the value became higher. We continue with couple more examples to
see the tendency of behaviour of AC1:

P4 =


0.4 0.1 0 0
0.1 0.4 0 0
0 0 0 0
0 0 0 0

 =⇒ γ(P4) = 0.76.

For number of categories k = 8:

P8 =


0.4 0.1 0 . . . 0
0.1 0.4 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 =⇒ γ(P8) = 0.78.
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5.1 Properties of chance agreement pe

So, we note that the more ”empty” categories we add, the higher values of AC1 we
get.

3) For a given p0, maximum pe is attained if the agreement matrix P
has the following form: all diagonal elements are equal, i.e pii = p0/k, and
all non-diagonal elements are equal to each other as well, i.e. pij = pji =
(1− p0)/(k(k − 1)).

Proof. We need to show that to attain maximal pe, the matrix P have to be in the
following form:

P ∗ =



p0
k

1−p0
k(k−1) . . . 1−p0

k(k−1)

1−p0
k(k−1)

p0
k

. . . 1−p0
k(k−1)

...
...

. . .
...

1−p0
k(k−1)

1−p0
k(k−1) . . . p0

k


We want to prove that maximum chance agreement pe for the given agreement

matrix above will be 1
k

as we showed in property 2).
Let us take a general form of agreement matrix and divide it into two matrices:

• Pd - includes only diagonal elements while all others are equal to 0,

• Pnd - includes all non-diagonal elements while diagonal elements are equal to 0.

P =


p11 p12 . . . p1k
p21 p22 . . . p2k
...

...
. . .

...
pk1 pk2 . . . pkk

 = Pd + Pnd =

=


p11 0 . . . 0
0 p22 . . . 0
...

...
. . .

...
0 0 . . . pkk

+


0 p12 . . . p1k
p21 0 . . . p2k
...

...
. . .

...
pk1 pk2 . . . 0


Following the same logic as in proof of Lemma 1, it is clear that maximum values of

Pd is attained, if all the summation terms (which in case of diagonal matrix will be the
diagonal elements) are equal. Same can be said about non-diagonal elements. They
also should be all equal to attain the maximum of Pnd.

From p0 =
k∑
i=1

pii follows that pkk = p0
k

.

Sum of all elements in P is given by:
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5.1 Properties of chance agreement pe

k · (elements of Pd + (k − 1) · elements of Pnd) = 1 =⇒
(k − 1) · elements of Pnd = 1

k
− p0

k
=⇒

elements of Pnd = 1−p0
k(k−1) .

Thus, we have a new form for matrices Pd and Pnd:

Pd + Pnd =


p0
k

0 . . . 0
0 p0

k
. . . 0

...
...

. . .
...

0 0 . . . p0
k

+


0 1−p0

k(k−1) . . . 1−p0
k(k−1)

1−p0
k(k−1) 0 . . . 1−p0

k(k−1)
...

...
. . .

...
1−p0
k(k−1)

1−p0
k(k−1) . . . 0


And now we got a new agreement matrix in the form

P ∗ =


p0
k

1−p0
k(k−1) . . . 1−p0

k(k−1)

1−p0
k(k−1)

p0
k

. . . 1−p0
k(k−1)

...
...

. . .
...

1−p0
k(k−1)

1−p0
k(k−1) . . . p0

k


Let us find the chance agreement for P ∗. We can first find the value for πi:

πi =
pi. + p.i

2
=

2 ·
(
p0
k

+ (k − 1) · 1−p0
k(k−1)

)
2

=
p0
k

+
1− p0
k

=
1

k
.

So we got πi = 1
k

=⇒ pe = 1
k
, which is maximum value for pe.
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6 Variance of Gwet’s AC1

Let γ define the Gwet’s AC1 coefficient. Remind from section 4.4 that

γ =
p0 − pe
1− pe

,

which is the same formulation as for kappa with p0 and pe observed and percent
chance agreement respectively.

The variance of the AC1 coefficient for two-rater reliability experiments was pre-
sented by Gwet(2008a) and it is given by:

V ar(γ) =
1

n(1− pe)2

[
p0(1− p0)− 4(1− γ)

(
1

k − 1

k∑
i=1

pii(1− πi)− p0pe

)
+

+4(1− γ)2

(
1

(k − 1)2

k∑
i=1

k∑
j=1

pij[1− (πi + πj)/2]2 − p2e

)]
, (10)

where
n - number of observations,
k - number of categories,
pi. and p.i - marginal frequencies from agreement table, πi = pi.+p.i

2
.

Asymptotic normality

Gwet mentions asymptotic normality of AC(1) in his article (2008)[7] ”It can be
shown that υ(γ̂k|Agreement) captures all terms of magnitude order up to n−1, is con-
sistent for estimating the true population variance and provides valid normality-based
confidence intervals when the number of participants is reasonably large.”

Example

We want to see how the standard error and the confidence interval for gamma
coefficient behave in case of small and big number of observations. We take a look at
basic example where we simulate some data: n = 40 and n = 300 to see the difference,
p0 = 0.9, BI = 0.1.
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Figure 2: Illustration of standard error of AC1 and 95% confidence interval for gamma
with n = 40
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6.1 Variance of Kappa

Figure 3: Illustration of standard error of AC1 and 95% confidence interval for gamma
with n = 300

We note that standard error is dependent on sample size as expected. There is also
a dependence of the effect of the prevalence index. The larger number of observations
we have, the smaller we get the standard error. Same happens with the confidence
interval. If we calculate the kappa for small number of observations, we get CI quite
wide.

So we can conclude that the bigger the sample size, the smaller confidence interval
it can produce, which gives us that the estimate of agreement is very accurate.

6.1 Variance of Kappa

We want to compare the behaviour of variance for gamma with the kappa agreement
coefficient. Let us remind the Cohen’s kappa coefficient:

κ =
p0 − pe
1− pe

.

The formulation of variance was presented by Gwet (2008a) and it is equivalent
to the formulation of Fleiss, Cohen and Everitt(1969). The last ones represented the

formula for estimated standard error of κ. As we know from basic Sd(κ) =
√
V ar(κ).

se(κ) =

√
A+B − C

(1− pe)
√
n
. (11)
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6.1 Variance of Kappa

This formulation was taken from Fleiss, Levin and Paik[2] (2003), where

A =
k∑
i=1

pii [1− (pi. + p.i)(1− κ)]2 ,

B = (1− κ)2
∑∑

i 6=j
pij(p.i + pj.)

2,

C = [κ− pe(1− κ)]2.

Approximate 100(1− α)% confidence interval for kappa is

κ− zα/2se(κ) ≤ κ ≤ κ+ zα/2se(κ).

D. Altman [3] proposed the following approximation of the variance:

V ar(κ) ≈ p0(1− p0)
n(1− pe)2

. (12)

This estimate was first presented in Cohen, 1960. According to Fleiss, Cohen and
Everitt (1969), formula (11) is more accurate and is based on a better theoretical
foundation. However, according to Altman [3], formula (12) is often used during design
planning due to its simplicity. Unfortunately, (12) is not an upper bound and it can
underestimate the real variance when there is disbalance in prevalences of categories.
A following example demonstrate it.

Example

We do some simulations to run the example by using formulas given by Fleiss, Cohen
and Everit from above for the same data as in previous example:
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6.1 Variance of Kappa

Figure 4: Illustration of standard error of kappa and 95% confidence interval for kappa
with n = 40
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6.1 Variance of Kappa

Figure 5: Illustration of standard error of kappa and 95% confidence interval for kappa
with n = 300

We note the same behaviour of kappa coefficient as we did in AC1 ones, which
depends on sample size and the prevalence index. The larger number of observation
we use, the less standard error we get and smaller CI will be produced. Though, we
notice that kappa has a larger standard error and wider confidence interval than AC1
coefficient.
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6.2 Upper bound for V ar(γ)

6.2 Upper bound for V ar(γ)

Now we will obtain an upper bound for variance of AC1. Variance for Gwet’s
coefficient was presented in (10) and, using definition of γ in (6), it can be rewritten
as:

V ar(γ) =
1

n(1− pe)2

{
p0(1− p0)− 4

1− p0
1− pe

(
1

k − 1

k∑
i=1

pii(1− πi)− p0pe

)

+4
(1− p0)2

(1− pe)2

(
1

(k − 1)2

k∑
i=1

k∑
j=1

pij[1− (πi + πj)/2]2 − p2e

)}
. (13)

Expression in the parentheses (13) is a sum of three terms:

T1 = p0(1− p0), (14)

T2 = −4(1− p0)
(1− pe)

(
1

k − 1

k∑
i=1

pii(1− πi)− p0pe

)
, (15)

T3 =
4(1− p0)2

(1− pe)2

(
1

(k − 1)2

k∑
i=1

k∑
j=1

pij[1− (πi + πj)/2]2 − p2e)

)
. (16)

We will search for upper bounds for T1, T2, T3 separately.

Upper bound of T1

T1 takes its maximum value at p0 = 1/2 which is equal to 1/4.

Upper bound of T2

Substitute the definition of pe into the expression under the parentheses of T2 and
multiply by (k − 1):

k∑
i=1

pii(1− πi)− p0πi(1− πi).

Assume without loss of generality that p0 6= 0. Then p0 can be also taken out of
parentheses:

p0

{
k∑
i=1

pii(1− πi)
p0

−
k∑
i=1

πi(1− πi)

}
. (17)

Recall that p0 =
k∑
i=1

pii and all pii ≥ 0. Denote p̃i = pii
p0

.

Upper bound of T2 can be obtained by finding the maximum of the expression
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6.2 Upper bound for V ar(γ)

k∑
i=1

p̃iπi −
k∑
i=1

π2
i , (18)

where p̃i and πi are probability mass functions of distributions that are not related to
each other.

Lemma 2. The maximum of
k∑
i=1

p̃iπi −
k∑
i=1

π2
i is equal to 1

4
− 1

4k
.

Proof. Assume without loss of generality π1 ≥ π2 ≥ . . . ≥ πk, then expression (18) less
or equal to

p1π1 − π2
1 −

∑
i>1

π2
i . (19)

Using the result of Lemma 1 (chapter 5.1), we conclude that minimum of the last
term of equation (19),

∑
i>1

π2
i , is attained, if all πi are equal (for i > 1), i.e. πi = 1−π1

k−1 .

Maximum of (19) is attained for p̃1 = 1 and, by inserting value for πi, we get

π1 − π2
1 − (k − 1)

(1− π1)2

(k − 1)2
= π1 − π2

1 −
(1− π1)2

k − 1
=

kπ1 − π1 − kπ2
1 + π2

1 − 1 + 2π1 − π2
1

k − 1
=

1

k − 1

(
−π2

1k + π1(k + 1)− 1
)
. (20)

Expression (20) is a quadratic function of π1 which is a parabola pointing down-
wards. Thus, the maxim of (19) is attained at π1 maximal, which is π1 = k+1

2k
, and is

equal to

1

k − 1

(
−k
(k + 1

2k

)2
+ (k + 1)

k + 1

2k
− 1

)
=

1

k − 1

(
−(k + 1)2

4k
+

(k + 1)2

2k
− 1

)
=

1

k − 1
· (k + 1)2 − 4k

4k
=

1

k − 1
· k

2 − 2k + 1

4k
=
k − 1

4k
=

1

4
− 1

4k
.

Finally

T2 ≤
p0(1− p0)

1− pe
(
1− 1

k

)( 1

k − 1

)
. (21)
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6.2 Upper bound for V ar(γ)

Upper bound of T3

Theorem 1.

k∑
i=1

k∑
j=1

pij [1− (πi + πj)/2]2 − p2e ≤
k∑
i=1

π3
i −

( k∑
i=1

π2
i

)2
.

Proof. We start with analysis of T3 that is expression under the parentheses:

1

(k − 1)2

k∑
i=1

k∑
j=1

pij[1− (πi + πj)/2]2 − p2e. (22)

Lemma 3.
1

k − 1

k∑
i=1

k∑
j=1

pij[1− (πi + πj)/2] = pe.

Proof. (of Lemma 3)

The left hand side of the equation we want to prove is

k∑
i=1

k∑
j=1

[pij − pij(πi + πj)/2] =
k∑
i=1

k∑
j=1

pij −
k∑
i=1

k∑
j=1

pij(πi + πj)/2,

while the right hand side is equal to

k∑
i=1

[πi − π2
i ] =

k∑
i=1

πi −
k∑
i=1

π2
i .

Since
k∑
i=1

k∑
j=1

pij = 1 and
k∑
i=1

πi = 1, it is enough to show that
k∑
i=1

k∑
j=1

pij(πi + πj)/2 is

equal to
k∑
i=1

π2
i .

First we simplify the left side of the equation by using the formula (7) for π and
opening the sums:

k∑
i=1

k∑
j=1

pij
πi + πj

2
=

k∑
i=1

k∑
j=1

pij
pi. + p.i + pj. + p.j

2 · 2
=

1

4

k∑
i=1

k∑
j=1

pij

[
k∑

m=1

pim +
k∑
l=1

pli +
k∑
g=1

pjg +
k∑
s=1

psj

]
=

1

4

[
k∑
i=1

k∑
j=1

k∑
m=1

pijpim +
k∑
i=1

k∑
j=1

k∑
l=1

pijpli +
k∑
i=1

k∑
j=1

k∑
g=1

pijpjg +
k∑
i=1

k∑
j=1

k∑
s=1

pijpsj

]
.
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6.2 Upper bound for V ar(γ)

And then do the same work with the right hand side:

k∑
i=1

π2
i =

k∑
i=1

(
pi. + p.i

2

)2

=
k∑
i=1

[
1

2
(
k∑
j=1

pij +
k∑
l=1

pli)

]2
=

1

4

k∑
i=1

pi

( k∑
j=1

pij

)2

+ 2

(
k∑
j=1

pij

)(
k∑
l=1

pli

)
+

(
k∑
l=1

pli

)2
 =

by using the expression

(
k∑
i=1

ai

)2

=
k∑
i=1

k∑
j=1

aiaj, we can now open the parentheses

=
1

4

[
k∑
i=1

k∑
j=1

k∑
m=1

pijpim + 2
k∑
i=1

k∑
j=1

k∑
l=1

pijpli +
k∑
i=1

k∑
l=1

k∑
s=1

plipsi

]
.

Figure 6: Illustration of value and probability of variables η and ξ for particular case k = 2.

Let us get back to the expression (22). Suppose that all (πi+πj)/2 are all not equal
(for i < j). Let us introduce a random variable ξ

ξ:
Value (πi + πj)/2 for i < j πi for i = 1, . . . , k
Probability pij + pji for i < j pii for i = 1, . . . , k
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6.2 Upper bound for V ar(γ)

We can show that
k∑
i=1

k∑
j=i+1

{pij + pji + pii} = 1. Indeed, since i < j, then pij are the

elements that lie below the diagonal, pji are the elements that lie above the diagonal
and pii are the diagonal elements in the agreement matrix (and the sum of all elements
of an agreement matrix must be equal to 1).

Since V ar(ξ) = Eξ2 − (Eξ)2 and V ar(1 − ξ) = V ar(ξ), Lemma 3 proves that
expression (22) is V ar(ξ) · 1

(k−1)2 .

Suppose that all πi are not equal and let us introduce another discrete random
variable η defined as

η:
Value πi for i = 1, . . . , k
Probability πi

From Lemma 3 it follows that Eξ = Eη.

Lemma 4.
V ar(ξ) ≤ V ar(η)

Proof. ( of Lemma 4)
For an agreement matrix P , the corresponding ξ will take a value πi with probability

equal to the diagonal element pii, and (πi + πj)/2 with probability pij + pji (for i > j).
In the limiting case of the diagonal agreement matrix P, definitions of ξ and η

coincide, therefore V ar(ξ) = V ar(η).
Let us now consider a stepwise process that transforms diagonal agreement matrix

to a general form agreement matrix with the same πi, ∀i = 1, . . . , k. We will show that
on each step variance of corresponding ξ is less or equal to variance of corresponding
η.

The process is such that

• Start from the diagonal form matrix

• On each step insert elements pij and pji so that all other elements in the matrix
except from the diagonal ones pii and pjj remain the same.

• All πl, l = 1, . . . , k remain unchanged.

Let us consider what the conditions of the stepwise process imply. For i < j we
have that

πi = pii +
pij + pji

2
+ other elements,

πj = pjj +
pij + pji

2
+ other elements.

If pij8+pji changes from 0 to δ and πi remains unchanged (as well as other elements),
then pii has to be decreased by δ/2, the same is true for pjj.
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6.2 Upper bound for V ar(γ)

Suppose that µ = Eη. Suppose further that di and dj are distances between µ and
πi (µ and πj) respectively. Than it is possible to show that the distance between µ and
(πi + πj)/2 equals to |dj − di|/2.

For a discrete random variable, the variance is equal the sum of squared deviations
from its expected value weighted by the corresponding probabilities. On each step of
our stepwise process the corresponding items in the sum change from

pii · d2i + pjj · d2j
to

(pii −
δ

2
) · d2i + (pjj −

δ

2
) · d2j + δ((dj − di)/2)2 =

pii · d2i −
δd2i
2

+ pjj · d2j −
δd2j
2

+
δd2j
4
− δdjdi

2
+
δd2i
4

=

pii · d2i + pjj · d2j −
δd2i
4
−
δd2j
4
− δdjdi

2
≤ pii · d2i + pjj · d2j

Thus, V ar(ξ) ≤ V ar(η).

Remark 1

For the ease of proof, we made an assumption that all (πi + πj)/2 are not equal
(for i < j). But it is easy to see that the main result still holds if this requirement is
relaxed.

Indeed, if it happens that
πi1+πj1

2
=

πi2+πj2
2

(where i1 6= i2 and either j1 = j2 or

j1 6= j2), then the impact of adding
πi1+πj1

2
into the set of values for random variable ξ

will be considered twice (and on each step it will not increase the variance).

Remark 2

The assumption that all πi-s are not equal can also be relaxed. Thus, if πi = πj,
the in the definition of η the value πi1 has probability 2πi1 , and it is still true that

Eη =
k∑
i=1

π2
i .

The stepwise process described above is still applicable, and in the case of πi = πj,
the variance of ξ on the corresponding step will not change the variance.

The expectation of variable η will be

E(η) =
k∑
i=1

π2
i ,

and

E(η2) =
k∑
i=1

π2
i πi.
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6.2 Upper bound for V ar(γ)

Thus, we can write down the expression for variance for variable η:

V ar(η) = E(η2)− (E(η))2 =
k∑
i=1

π3
i −

(
k∑
i=1

π2
i

)2

. (23)

Now we want to check how the maximum of expression V ar(η)
(k−1)2 behaves for different

values of k. We run a numerical simulation as follows: we consider all possible combi-
nations of πi such that they take values on a grid from 0 to 1 with a step 0.01 and the
sum is equal to 1. Find the maximum values for k = 2, . . . , 5.

Figure 7: Maximum of V ar(η) 1
(k−1)2 for 2, 3, 4 and 5 categories

k 2 3 4 5

maxV ar(η) 1
(k−1)2 0.062475 0.015619 0.006942 0.003905

We can see that the more categories we have, the less value this maximum takes.

Apparently max(V ar(η)
(k−1)2 ) converges to 0, when the number of categories k grows. It

means that expression (23) takes so small values that we can eventually just neglect it.
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6.2 Upper bound for V ar(γ)

6.2.1 Conservative upper bound

Now we can write down the main formula for upper bound of variance of gamma by
taking into account all simplifications we made above for each term (T2, T2, T3). Also
we have to remember to take the maximum value for chance agreement, pe, which was
found in Lemma 1 (chapter 5.1). Thus,

V ar(γ) <
k2(1− p0)
n(k − 1)2

{
p0
(
1 +

1

k − 1

)
+ (1− p0) · C̃k

}
, (24)

where C̃k takes values:

k 2 3 4 5

C̃k 0.999600 0.176976 0.067925 0.035125

For a larger number of categories, the values for C̃k will be small that we can neglect
it and obtain the following upper bound:

V ar(γ) ≤ k2(1− p0)
n(k − 1)2

{
p0
(
1 +

1

k − 1

)}
. (25)

Generally, for a 2× 2 agreement formula (24) simplifies to

V ar(γ) <
4(1− p0)

n
{2p0 + 0.9996 · (1− p0)} . (26)

Let us compare the main result (24) for upper bound for V ar(γ) with the full
expression (10). We take the same example as we did in chapter 6 with number of
observations equal to 300.
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6.2 Upper bound for V ar(γ)

Figure 8: Upper bound for 95% confidence interval for gamma with n = 300

6.2.2 Improvement of upper bound

We found a formal strict upper bound of variance and considered the three sources of
variation that contribute to its magnitude. Thus, T1 is the part of variation that is due
to p0 only, T3 is the part of variation that is due to the prevalence of categories. As for
T2, it incorporates the percent agreement and prevalences, and there is a dependency
between T2 and T3. In addition, the upper bounds for T2 and T3 are strict, since
they are based on mutually exclusive special cases. This motivates us to search for an
improved upper bound.
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6.2 Upper bound for V ar(γ)

Proposition

For k ≤ 5 the obtained upper bound for T3 can be excluded from the expression of
the conservative upper bound (24).

We show this by numerical simulation. For k = 2, . . . , 5 we generate an agreement
matrix using Uniform(0, 1) distribution and divide each element of matrix by the sum

of all elements, so that
k∑
i=1

pij = 1. This is done 10000 times for each k and T2 + T3 is

compared with the upper bound of T2. The result is that T2 + T3 is always less than
p0(1− p0)/(k − 1). The result is presented graphically in Figure 9.

Figure 9: Numerical simulation: comparison of T2 + T3 with obtained
conservative upper bound of T2
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6.2 Upper bound for V ar(γ)

The improved upper bound is therefore

V ar(γ) ≤ k2(1− p0)
n(k − 1)2

{
p0
(
1 +

1

k − 1

)}
. (27)
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7 Planning experiment

If we have an upper bound of variance of gamma and use asymptotic normality of
gamma, it is possible to select sample size to achieve predefined margin of error of
gamma. Let us demonstrate this in the following example.

Example 1:

The introduction of a new image modality at the mammography center at hospital
X has prompted the question: what is the inter-rater reliability for this new modality?
A study is planned to estimate the inter-rater agreement in radiologists’ evaluation of
images when it comes to the classification of breast tissue as malignant vs. benign.
(In real life the radiologists will be using a richer spectrum of categories, however we
simplify for the purpose of this illustration.) How many patients should be assessed to
estimate the inter-rater agreement within limits of error ±0.05?

Solution:

In this case the number of categories k = 2 and the desired error margin e = 0.05.
Then by using the formula (27), we can find the required sample size for this study.
V ar(γ) can be found from the following equation:

1.96 · SE = 0.05, then V ar(γ) = (SE)2.

Thus, sample size requirements are presented below:

Value of observed Required sample
agreement, p0 size of subjects

0.5 3074

0.6 2951

0.7 2582

0.8 1967

0.9 1107

Table 11: Required sample size of subjects for different values
of observed agreement

Example 2:

The reliability of classification of fractures from x-ray images is important for the
planning of treatment and surgeries at the orthopedic department at hospital Y. A
study is planned to assess the inter-rater agreement in the classification of growth plate
fractures in children. According to the Salter-Harris classification scheme (reference
[19]), these fractures are classified into one of five categories, i.e. types I-V. There
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are vast differences in the expected proportions of the different categories: Type I-V
fractures have reported incidences of 6, 75, 8, 10 and 1%, respectively. How many
patients should be included to estimate the inter-rater agreement in the Salter-Harris
classification within limits of error ±0.05?

Solution

We have k = 5 - number of categories, e = 0.05 - error margin. We use formula (27),
where variance of gamma can be found the same way as in Example 1. The required
sample size for different values of observed agreement is presented in the Table 12.

Value of observed Required sample
agreement, p0 size of subjects

0.5 751

0.6 721

0.7 631

0.8 481

0.9 271

Table 12: Required sample size of subjects for different values
of observed agreement
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8 Conclusion

In this thesis the main goal was to find the requirements of sample size in planning
a clinical study. The decision of how many patients, for example, to include is usually
based on considerations of statistical power or precision. The cases for inter-rater
agreement, where agreement is between two raters on k categories, has been studied.
Usually such models include studies when the researcher needs to compare a new
diagnostic tool with an existing one. Thus, the aim of the thesis was to study about
different types of measures of inter-rater agreement by comparing them to each other.

Four agreement coefficients were presented: Cohen’s kappa, Scott’s Pi, Krippen-
dorff’s alpha and Gwet’s AC1. All of them were analyzed and compared in case of two
raters and two categories. The conclusion that Scott’s Pi and Krippendorff’s alpha
are identically was made. The Cohen’s kappa very similar result to the mentioned be-
fore two coefficients was observed, while only AC1 coefficient gave the highest value of
agreement. That is why the main focus stayed on studying AC1 agreement coefficient
in detail.

Some very useful properties of chance agreement of AC1 were studied, such as
minimum and maximum values. Two important corollaries were found, one of them is
the paradox of AC1, while the author of this coefficient (K.L.Gwet [1]) presented it as
a paradox free coefficient. The formula for variance of AC1 was analyzed, and the goal
was to find a simplification so it can be easier to use it during the clinical studies. This
goal was reached by finding an upper bound of variance of AC1, which was shown in
practice as a very useful one to estimate a sample size in planning experiment.

8.1 Further work

This thesis was mainly focused on studying Gwet’s AC1 agreement coefficient and its
use in finding the sample size requirements. The way the percent chance agreement was
chosen for this coefficient is still unclear. After comparing agreement measurements,
we conclude that AC1 gives the highest level of agreement among the raters, but still
have not been convinced that this measure is good enough to be used in clinical studies.

Among other we have considered raters as a ”fixed effect”, i.e. the inter-rater
agreement is assessed for the two raters that we are interested in. In real-life this is
seldom the case, usually the classifications will be performed by any from a pool of
raters, which may also vary with regard to educational background and training. If
interest lies in the generalized inter-rater agreement between two random raters, the
experiment would also have to plan for an appropriate number of raters.
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A R code

A.1 Comparison of agreement coefficients

#Use package ’rel’ which gives us functions

#gac(), ckap(), spi(), kra().

#These functions estimate the agreement between meauserements.

library(rel)

# transforms agreement table into the input form for gac(), ckap()

#and others which were mentioned above

matrix.function <- function(tt) {

N = sum (tt)

M <- matrix(NA, nrow=N, ncol=2)

if (tt[1,1]>0) M[1:tt[1,1], c(1,2)] <-1

if (tt[2,2]>0) M[(tt[1,1]+1):(tt[1,1]+tt[2,2]), c(1,2)] <- 2

if (tt[1,2]>0) {

M[(tt[1,1]+tt[2,2]+1):(tt[1,1]+tt[2,2]+tt[1,2]), 1] <- 1

M[(tt[1,1]+tt[2,2]+1):(tt[1,1]+tt[2,2]+tt[1,2]), 2] <- 2

}

if (tt[2,1]>0 ) {

M[(tt[1,1]+tt[2,2]+tt[1,2]+1):N, 1] <- 2

M[(tt[1,1]+tt[2,2]+tt[1,2]+1):N, 2] <- 1

}

M

}

# Creates agreement table with specified values of

# Prevalence index, Observed agreement

table.function<- function(Pi = 0.5, Pa = 0.9, Bi = 0.1, N = 100){

a <- round( 0.5*N*(Pa+Pi) )

d <- round( 0.5*N*(Pa-Pi) )

b <- round( 0.5*N*(Bi+1-Pa) )

if ((N - a - b - d)<0) {

c <- 0

i <- which(c(a,b,d)==max(c(a,b,d)))[1]

if (i==1) {

a <- a - 1

} else if (i==2) { b <- b - 1

} else { d <- d - 1

}
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A.1 Comparison of agreement coefficients

} else {

c <- N - a - b - d

}

matrix(c(a,c,b,d), nrow=2)

}

#compare Kappa and AC1

#table.function(Pi = 0.5, Pa = 0.9, Bi = 0.1, N = 100)

G <- K <- Pr <- NULL

for (alpha in seq(-0.9, 0.9, by=0.1)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 100)

# contigency table -> table in required form

M <- matrix.function(tt)

G <- c(G, gac(M)$est)

K <- c(K, ckap(M)$est)

Pr <- c(Pr, alpha)

}

plot(Pr, G, type=’o’, col=("blue"), ylim=c(-1, 1),

xlab="Prevalence Index", ylab="Agreement")

points(Pr, K, type=’o’, col=("red"))

legend("bottom", c("Kappa", "AC(1)"), pch=c(1,1),

lty=c(1,1), col=c("red", "blue"))

###################################################################

###################################################################

#Compare Kappa and Krippendorff’s Alpha

K <- Kripp <- Pr <- NULL

for (alpha in seq(-0.9, 0.9, by=0.1)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 100)

# contigency table -> table in required form

M <- matrix.function(tt)

K <- c(K, ckap(M)$est)

Kripp <- c(Kripp, kra(M)$est)

Pr <- c(Pr, alpha)

}
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plot(Pr, K, type=’o’, ylim=c(-1, 1),

xlab="Prevalence Index", ylab="Agreement")

points(Pr, Kripp, type=’o’, col=2)

legend("bottom", c("Krippendorff’s Alpha", "Kappa"),

pch=c(1,1), lty=c(1,1), col=c(2, 1))

###################################################################

###################################################################

#Compare Krippendorff’s Alpha and AC1

G <- Kripp <- Pr <- NULL

for (alpha in seq(-0.9, 0.9, by=0.1)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 100)

# contigency table -> table in required form

M <- matrix.function(tt)

G <- c(G, gac(M)$est)

Kripp <- c(Kripp, kra(M)$est)

Pr <- c(Pr, alpha)

}

plot(Pr, G, type=’o’, ylim=c(-1, 1),

xlab="Prevalence Index", ylab="Agreement")

points(Pr, Kripp, type=’o’, col=2)

legend("bottom", c("Krippendorff’s Alpha", "AC(1)"),

pch=c(1,1), lty=c(1,1), col=c(2, 1))

###################################################################

###################################################################

#Compare Kappa and Scott’s Pi

Sc <- K <- Pr <- NULL

for (alpha in seq(-0.9, 0.9, by=0.1)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 100)

# contigency table -> table in required form

M <- matrix.function(tt)
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A.1 Comparison of agreement coefficients

Sc <- c(Sc, spi(M)$est)

K <- c(K, ckap(M)$est)

Pr <- c(Pr, alpha)

}

plot(Pr, Sc, type=’o’, ylim=c(-1, 1),

xlab="Prevalence Index", ylab="Agreement")

points(Pr, K, type=’o’, col=2)

legend("bottom", c("Kappa", "Scott’s Pi"),

pch=c(1,1), lty=c(1,1), col=c(2, 1))

###################################################################

###################################################################

#Compare AC1 and Scott’s Pi

G <- Sc <- Pr <- NULL

for (alpha in seq(-0.9, 0.9, by=0.1)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 100)

# contigency table -> table in required form

M <- matrix.function(tt)

G <- c(G, gac(M)$est)

Sc <- c(Sc, spi(M)$est)

Pr <- c(Pr, alpha)

}

plot(Pr, G, type=’o’, ylim=c(-1, 1), xlab="Prevalence Index",

ylab="Agreement")

points(Pr, Sc, type=’o’, col=2)

legend("bottom", c("Scott’s Pi", "AC(1)"), pch=c(1,1), lty=c(1,1),

col=c(2, 1))

###################################################################

###################################################################

#Compare Scott’s Pi and Krippendorff’s Alpha

Sc<- Kripp <- Pr <- NULL
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for (alpha in seq(-0.9, 0.9, by=0.1)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 100)

# contigency table -> table in required form

M <- matrix.function(tt)

Sc <- c(Sc, spi(M)$est)

Kripp <- c(Kripp, kra(M)$est)

Pr <- c(Pr, alpha)

}

plot(Pr, Sc, type=’o’, col=("green"), ylim=c(-1, 1),

xlab="Prevalence Index", ylab="Agreement")

points(Pr, Kripp, type=’o’, col=("black"))

legend("bottom", c("Krippendorff’s Alpha", "Scott’s Pi"),

pch=c(1,1), lty=c(1,1), col=c("black", "green"))

###################################################################

###################################################################

#Compare all agreement coefficients

Kripp <- K <- Pr <- G <- Sc <- NULL

for (alpha in seq(-0.9, 0.9, by=0.1)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 100)

if (min(tt)>=0) {

# contigency table -> table in required form

M <- matrix.function(tt)

Kripp <- c(Kripp, kra(M)$est)

K <- c(K, ckap(M)$est)

G <- c(G, gac(M)$est)

Sc <- c(Sc, spi(M)$est)

Pr <- c(Pr, alpha)

}

}

plot(Pr, Kripp, type=’o’,col=("black"), ylim=c(-1, 1),

xlab="Prevalence Index", ylab="Agreement")

points(Pr, K, type=’o’, col=("red"))

points(Pr, G, type=’o’, col=("blue"))

points(Pr, Sc, type=’o’, col=("green"))
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legend("bottom", c("Kappa", "Krippendorff’s Alpha", "AC(1)", "Scott’s pi"),

pch=c(1,1, 1, 1), lty=c(1,1,1,1),

col=c("red", "black", "blue", "green"))

A.2 Examples of Cohen’s kappa and Gwet’s AC1

#Simulate some examples for Cohen’s kappa and Gwet’s AC1

#We want to see the bahaviour of standard error and

#confidence interval with dependence on prevalence

#index for different sample size

#We use same library and functions (matrix.function and

#table.function) as we did before.

#table.function(Pi = 0.5, Pa = 0.9, Bi = 0.1, N = 40)

#For Kappa with N=40

K <- Pr <- Sd <- NULL

for (alpha in seq(-0.9, 0.9, by=0.02)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 40)

# contigency table -> table in required form

M <- matrix.function(tt)

# agreement table => frequency agreement table

n <- sum(tt)

p <- tt/n

#Parts of formula varince of kappa

A <- sum(diag(p) * (1 - (apply(p, 1, sum) + apply(p, 2, sum))*

(1-ckap(M)$est))^2)

B <- (1-ckap(M)$est)^2 *(p[1,2] *(sum(p[1,]) + sum(p[,2]))^2 +

p[2,1]*(sum(p[2,]) + sum(p[,1]))^2)

pe <- sum(p[1,])*sum(p[,1]) + sum(p[2,])*sum(p[,2])

C <- (ckap(M)$est - pe*(1-ckap(M)$est))^2
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SE <- sqrt(A+B-C)/((1-pe)*sqrt(n))

K <- c(K, ckap(M)$est)

Pr <- c(Pr, alpha)

Sd <- c(Sd, SE)

}

#find the upper and lower bond for 95% CI where quantile=1.96

upK=K+Sd*1.96

lowK=K-Sd*1.96

#plot kappa and its standard error with dependence on PI

par(mfrow=c(1,2))

plot(Pr,Sd,ylim=c(-1,1), xlab="Prevalence Index",

ylab="Kappa/Standard error of kappa", col="red")

lines(Pr,K, type = "l", lwd=3,col="blue")

legend("bottom", c("Kappa", "Standard error"),pch = c("-","o"),

lty=c(1,0) , lwd = c(3,0),col=c("blue","red"))

#plot kappa and its 95% CI

plot(Pr, K,type = "l",lwd=3,ylim=c(0,1), xlab="Prevalence Index",

ylab="Kappa", col="blue")

lines(Pr,upK, col="green")

lines(Pr,lowK, col="green")

legend("bottom", c("Kappa", "Confidence interval"), pch=c("-","-"),

lty=c(1,1), lwd = c(3,0), col=c("blue","green"))

##################################################################

#for Kappa with N=300 we do the same simulations without changes,

#only for bigger N

K <- Pr <- Sd <- NULL

for (alpha in seq(-0.9, 0.9, by=0.02)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 300)

M <- matrix.function(tt)

n <- sum(tt)

p <- tt/n

A <- sum(diag(p) * (1 - (apply(p, 1, sum) + apply(p, 2, sum)) *

(1-ckap(M)$est))^2)

B <- (1-ckap(M)$est)^2 *(p[1,2] *(sum(p[1,]) + sum(p[,2]))^2 +

58



A.2 Examples of Cohen’s kappa and Gwet’s AC1

p[2,1]*(sum(p[2,]) + sum(p[,1]))^2)

pe <- sum(p[1,])*sum(p[,1]) + sum(p[2,])*sum(p[,2])

C <- (ckap(M)$est - pe*(1-ckap(M)$est))^2

SE <- sqrt(A+B-C)/((1-pe)*sqrt(n))

K <- c(K, ckap(M)$est)

Pr <- c(Pr, alpha)

Sd <- c(Sd, SE)

}

upK=K+Sd*1.96

lowK=K-Sd*1.96

par(mfrow=c(1,2))

plot(Pr, Sd,ylim=c(-1,1),xlab="Prevalence Index",

ylab="Kappa/Standard error of kappa", col="red")

lines(Pr, K, type = "l", lwd=3, ylim=c(0,1), col="blue")

legend("bottom", c("Kappa", "Standard error"),pch = c("-","o"),

lwd=c(3,0), lty=c(1,0), col=c("blue","red"))

plot(Pr, K, type = "l", lwd=3, ylim=c(0,1),xlab="Prevalence Index",

ylab="Kappa", col="blue")

lines(Pr,upK, col="green")

lines(Pr,lowK, col="green")

legend("bottom", c("Kappa", "Confidence interval"), pch=c("-","-"),

lwd=c(3,0), lty=c(1,1), col=c("blue","green"))

###################################################################

#Simulations for AC1 where N=40, to compare it to the result

#we got in Kappa

#First we write down all the components of formula for

#variance of AC1

#Pi function

pi = function(i, p) {

(sum(p[i,]) + sum(p[,i]))/2

}

#pe-chance agreement

pe = function(p) {
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S = 0

for (i in 1:nrow(p)) {

pe1=pi(i,p)*(1-pi(i,p))

S = S + pe1

}

k=nrow(p)-1

S = S/k

}

#po-observed agreement

po = function(p) { sum(diag(p))}

#gamma coefficient formula

gamma = function(p) {(po(p) - pe(p))/(1-pe(p))}

#part 1 of formula Var(AC1)

part1=function(p){

po(p)*(1-po(p))

}

#part 2 of formula

part2=function(p){

S=0

for(i in 1:nrow(p)) {

S=S+p[i,i]*(1-pi(i,p))}

4*(1-gamma(p))*((1/(nrow(p)-1))*S-po(p)*pe(p))

}

#part 3 of formula

part3=function(p){

S=0

for (i in 1:nrow(p)){

for (j in 1:nrow(p)){

S=S+p[i,j]*(1-(pi(i,p)+pi(j,p))/2)^2

}

}

4*(1-gamma(p))^2 *((1/(nrow(p)-1)^2)*S - pe(p)^2)

}

###################################################################

#Numerical simulation
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G <- Sd <- Pr<- NULL

for (alpha in seq(-0.9, 0.9, by=0.02)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 40)

M <- matrix.function(tt)

n <- sum(tt)

p <- tt/n

#set all the components into the formula

VarG= (1/(n*(1-pe(p))^2))*(part1(p) - part2(p) + part3(p))

SE <- sqrt(VarG)

G <- c(G, gac(M)$est)

Pr <- c(Pr, alpha)

Sd <- c(Sd, SE)

}

#Upper and lower bound for 95% CI

upG=G+Sd*1.96

lowG=G-Sd*1.96

#AC1 and standard error

par(mfrow=c(1,2))

plot(Pr, Sd,ylim=c(-1,1),xlab="Prevalence Index",

ylab="AC1/Standard error of gamma", col="red")

lines(Pr,G, type = "l", lwd=3, ylim=c(0,1), col="black")

legend("bottom", c("AC1", "Standard error"), pch = c("-","o"),

lty=c(1,0),lwd=c(3,0), col=c("black","red"))

#AC1 and 95% CI

plot(Pr, G, type = "l", lwd=3, ylim=c(0,1),xlab="Prevalence Index",

ylab="AC1", col="black")

lines(Pr,upG, col="green")

lines(Pr,lowG, col="green")

legend("bottom", c("AC1", "Confidence interval"), pch=c("-","-"),

lty=c(1,1), lwd=c(3,0), col=c("black","green"))

###################################################################

#Same simulations for AC1 with N=300

G <- Sd <-Pr<- NULL

for (alpha in seq(-0.9, 0.9, by=0.02)) {
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tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 300)

M <- matrix.function(tt)

n <- sum(tt)

p <- tt/n

VarG= (1/(n*(1-pe(p))^2))*(part1(p) - part2(p) + part3(p))

SE <- sqrt(VarG)

G <- c(G, gac(M)$est)

Pr <- c(Pr, alpha)

Sd <- c(Sd, SE)

}

upG=G+Sd*1.96

lowG=G-Sd*1.96

par(mfrow=c(1,2))

plot(Pr, Sd,ylim=c(-1,1), xlab="Prevalence Index",

ylab="AC1/Standard error of gamma", col="red")

lines(Pr,G, type = "l", lwd=3, ylim=c(0,1), col="black")

legend("bottom", c("AC1", "Standard error"), pch = c("-","o"),

lty=c(1,0),lwd=c(3,0), col=c("black","red"))

plot(Pr, G, type = "l", lwd=3, ylim=c(0,1),xlab="Prevalence Index",

ylab="AC1", col="black")

lines(Pr,upG, col="green")

lines(Pr,lowG, col="green")

legend("bottom", c("AC1", "Confidence interval"), pch=c("-","-"),

lty=c(1,1),lwd=c(3,0), col=c("black","green"))

A.3 Upper bound

Term 2

#To establish for what set of values of expression under the parantheses

#in Term 2 reaches its maximum, we preformed numerical simulations.

#We considered all possible combinations of p and pi taking the

#values from the grid (0 to 1) with a step 0.01 (for k=2) and 0.025

#(for k=3) and such that sum of all p and sum of all pi equals to 1.

#We show the example where k=3

k=3

x <- seq(0, 1, by=0.025)
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D <- matrix(rep(x, k-1), nrow=k-1)

ZZ <- t(expand.grid(data.frame(t(D))))

ZZ <- matrix(ZZ[, apply(ZZ, 2, sum)<=1], nrow=k-1)

CC <- matrix(nrow(ZZ), k)

CC <- rbind(ZZ, 1-apply(ZZ,2,sum))

ZZ <- NULL

res <- rep(NA, 1000000)

#ncol(CC)*ncol(CC) # rep(NA, 1000000) #

pi.max <- NULL

p.max <- NULL

max_ <- -10

i=1

for (j1 in 1:ncol(CC)) {

for (j2 in 1:ncol(CC)) {

if (i %% 1000000) {i=1}

res[i] <- sum((CC[,j2] - CC[,j1])*CC[,j1])

if (res[i] >= max_) {

pi.max <- CC[,j1]

p.max <- CC[,j2]

}

max_ <- max(max_, res[i])

i = i + 1

}

}

pi.max

p.max

Term 3

#We want to check how the maximum of expression

#(1/(k-1)^2)*Var(eta) behaves for different values of k.

#We run a numerical simulation as follows: we consider all

#possible combinations of pi such that their sum is equal to 1.

#On a grid (0 to 1) with a step 0.01, find the maximum
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#values for k=2,...,5.

x <- seq(0, 1, by=0.01)

D <- matrix(rep(x, k-1), nrow=k-1)

ZZ <- t(expand.grid(data.frame(t(D))))

ZZ <- matrix(ZZ[, apply(ZZ, 2, sum)<=1], nrow=k-1)

CC <- matrix(nrow(ZZ), k)

CC <- rbind(ZZ, 1-apply(ZZ,2,sum))

ZZ <- NULL

result <- rep(NA, 1000000)

#ncol(CC)*ncol(CC) # rep(NA, 1000000) #

max.glob <- NULL

result <- rep(NA, ncol(CC))

i=1

for (k in 2:5){

for (j in 1:ncol(CC)) {

result[i]=sum(CC[,j]^3)- sum(CC[,j]^2)^2

i=i+1

}

max.glob <- c(max.glob , max(result)/(k-1)^2)

}

max.glob

plot(x=2:5, y=max.glob, type="o",pch=16, cex=1.5, xlab="k",

ylab=bquote("max Var" ~"("~ eta~ ")" ~frac(1, (k-1)^2)),

xaxt="n", col="red")

axis(1, at=2:10,labels=2:10)

Example of using the upper bound formula

#We run the same example as we did for Gwet’s AC1 with N=300

#to illustrate both confidence interval and new formula

#for upper bound of corresponding variance.

#We use absolutely identical simulation as we did before.

#table.function(Pi = 0.5, Pa = 0.9, Bi = 0.1, N = 300)

G <- Sd <-Pr<-UB <- NULL

64



A.3 Upper bound

for (alpha in seq(-0.9, 0.9, by=0.02)) {

tt <- table.function(Pi=alpha, Pa = 0.9, Bi = 0.1, N = 300)

M <- matrix.function(tt)

n <- sum(tt)

p <- tt/n

VarG= (1/(n*(1-pe(p))^2))*(part1(p) - part2(p) + part3(p))

SE <- sqrt(VarG)

#formula for upper bound for k=2

u <- sqrt((2^2*(1-po(p))/n)*

( po(p)*(1 + 1) + (1-po(p))*0.062475*4*4 ))

G <- c(G, gac(M)$est)

Pr <- c(Pr, alpha)

Sd <- c(Sd, SE)

UB <- c(UB, u)

}

#95% CI

upG=G+Sd*1.96

lowG=G-Sd*1.96

plot(Pr, G, type = "l", lwd=3, ylim=c(0,1),xlab="Prevalence Index",

ylab="AC1", col="black")

lines(Pr,upG, col="green")

lines(Pr, G + 1.96* UB, col="tomato")

lines(Pr, G - 1.96* UB, col="tomato")

lines(Pr,lowG, col="green")

legend("bottom", c("AC1", "Confidence interval", "Upper Bound of CI"),

pch=c("-","-","-"), lty=c(1,1,1),lwd=c(3,0,0),

col=c("black","green","tomato"))

Improving upper bound

par(mfrow=c(2,2))

for (k in 2:5) {

T1=T2=U2=NULL

for (i in 1:10000){

P=matrix(runif(k*k), nrow=k)

P=P/sum(P)

T1=c(T1, -part2(P))
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T2=c(T2, part3(P))

U2=c(U2, po(P)*(1-po(P))*(1/(k-1)))

}

plot(T1+T2, U2, main=paste("k=", k))

abline(0,1,col=5, lwd=5)

}

A.4 Planning experiment

#Example 1

#error +/- 0.025

e=0.05

#Standard error for a normal distributed estimate 1.96*SE=0.025

SE=e/1.96

#Variance gamma

var=SE^2

#two categories

k=2

#observed agreement

p0=0.5

#By using the main result for upper bound we can find samle size

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n

p0=0.6

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n

p0=0.7

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n

p0=0.8

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n

p0=0.9

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)
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n

#################################################################

#Example 2

#error +/- 0.05

e=0.05

#Standard error for a normal distributed estimate 1.96*SE=0.05

SE=e/1.96

#Variance gamma

var=SE^2

#five categories

k=5

#observed agreement

p0=0.5

#Sample size

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n

p0=0.6

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n

p0=0.7

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n

p0=0.8

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n

p0=0.9

n=(k^2*(1-p0)*p0*(1+(1/(k-1))))/((k-1)^2 * var)

n
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