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Abstract 

 

For risk assessment to be a relevant tool in the study of any type of system or activity, it needs to be 

based on a framework that allows for jointly analysing both unique and repetitive events. Separately, 

unique events may be handled by predictive probability assignments on the events, and repetitive 

events with unknown/uncertain frequencies are typically handled by the probability of frequency (or 

Bayesian) approach. Regardless of the nature of the events involved, there may be a problem with 

imprecision in the probability assignments. Several uncertainty representations with the interpretation 

of lower and upper probability have been developed for reflecting such imprecision. In particular, 

several methods exist for jointly propagating precise and imprecise probabilistic input in the 

probability of frequency setting. In the present position paper we outline a framework for the 

combined analysis of unique and repetitive events in quantitative risk assessment using both precise 

and imprecise probability. In particular, we extend an existing method for jointly propagating 

probabilistic and possibilistic input by relaxing the assumption that all events involved have 

frequentist probabilities; instead we assume that frequentist probabilities may be introduced for some 

but not all events involved, i.e. some events are assumed to be unique and require predictive – possibly 

imprecise – probabilistic assignments, i.e. subjective probability assignments on the unique events 

without introducing underlying frequentist probabilities for these. A numerical example related to 

environmental risk assessment of the drilling of an oil well is included to illustrate the application of 

the resulting method. 
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1 Introduction 

 

The Kaplan and Garrick (1981) approach for describing risk has for several decades served as a 

cornerstone to the field of quantitative engineering risk assessment. According to this approach, risk 

is equal to and expressed by the set of triplets consisting of (accident) scenarios, the likelihoods λ of 

these scenarios and their consequences. Three likelihood settings are mentioned by Kaplan (1997): 

repetitive situation with known frequency (λ = f, where f is a frequentist probability), unique situation 

(λ = p, where p is a subjective probability), and repetitive situation with unknown frequency (λ = 

H(f), where H is a subjective probability distribution on the unit interval of frequencies). The last 

mentioned setting is typically dealt with using the so-called probability of frequency approach, 

wherein knowledge about all potentially occurring events involved are assumed to be represented by 

uncertain frequentist probabilities of occurrence, and the epistemic uncertainties about the true values 

of the frequentist probabilities are described using subjective (also referred to as judgmental or 

knowledge-based) probabilities. Of course, the first case above is a special case of the third. 

 

A repetitive event is an event whose occurrence or not can be embedded into a hypothetically infinite 

sequence of similar situations (technically: an exchangeable sequence), whereas a unique event 

cannot because such a sequence cannot reasonably be envisaged. As an example of a repeatable event, 

consider the tossing of a die. We can envisage tossing the die over and over again under similar 

conditions, thus generating a limiting frequency of the event that the die shows ‘1’ (say). On the other 

hand, as an example of a unique event, consider the case of a particular election for choosing the 

president of a country. We cannot reasonably envisage a hypothetically infinite number of repetitions 

of this particular election, because among other issues, candidates are not all the same from one 

election to the other. Hence, we cannot introduce a frequentist probability of some candidate winning, 

but we rather just directly assign a predictive subjective probability of this event.  Determining 

whether to treat an event as repeatable or unique is often a judgement call by the analyst; we refer to 

Section 7 for a discussion of this issue. 

 

As another example, consider an oil and gas company performing an environmental risk assessment 

of the activity drilling a wildcat oil well. If there is oil at the drilling location, some might be inclined 

to argue that a number of factors (such as the physical characteristics of the reservoir, e.g. the reservoir 

pressure at a particular point in space and time; and the performance of technical barrier systems, e.g. 

whether a particular barrier element functions on demand) come into play to generate a frequentist 

probability of an oil spill due to a blowout or well-leak (since the reservoir pressure at a particular 

point in space changes over time, and the barrier element is not perfectly reliable). On the other hand, 
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if there is no oil present in the reservoir, the frequentist probability of a blowout of oil is zero. Oil or 

no oil is a fixed but unknown state of the world – it is not subject to randomness. The situation cannot 

be repeated such that in some cases there is oil in this particular reservoir, while in others there is not. 

 

As another example, to the extent that Probabilistic Risk Assessment (PRA) is suitable for terrorism 

risk, a terrorist attack is also a unique event. It is however not a fixed but as-yet-unrevealed event, 

like presence of oil in the environmental risk assessment example. Yet a relative frequentist 

probability of a terrorist attack cannot be meaningfully defined (Aven & Renn, 2009). 

 

The quantitative risk assessment setting can be formally summarized as follows: We are interested in 

a quantity Z (possibly a vector) and introduce a model g(X) with input quantities X = (X1, X2, …, Xn) 

to predict Z. The quantities Z and X could be the total number and a vector of the number of fatalities 

due to different accident scenarios, respectively. Alternatively, for a particular explosion accident 

scenario, Z and X could be the explosion pressure and a set of factors (quantities) affecting the 

explosion pressure, respectively. Or Z could be an indicator quantity for some overall event of interest, 

e.g. blowout in an offshore QRA setting or meltdown in a nuclear QRA/PRA setting, and X could be 

a set of indicator quantities for events that, through various combinations, could lead to the occurrence 

of the overall event, respectively. 

 

In the present paper we focus on the last setting. Hence, for our purpose Z and X are 0-1-valued 

unknown quantities where Z equals 1 if some high level event A takes place and 0 otherwise, i.e. Z = 

I(A). Corresponding to X = (X1,X2,…,Xn) are the lower level events B = (B1, B2, …, Bn), in the sense 

that Xi = I(Bi), i=1,2,…,n, where I is the indicator function equal to 1 if its argument is true and 0 

otherwise. This is a setting commonly dealt with using basic risk analysis models such as fault trees 

(comprising top events and basic events) and event trees (comprising initiating events, branching 

events and end events). 

 

In the probability of frequency approach one would by default introduce a frequentist probability f of 

the event A, and a set of frequentist probabilities q = (q1,q2,…,qn) of the basic events B according to 

the structure of an event model g. A frequentist probability expresses the fraction of times the event 

of interest occurs when repeating the situation considered over and over again infinitely. The setting 

then yields f = g(q), and by establishing a subjective probability distribution over the vector q and 

propagating it through the model g, a probability distribution of the frequency probability f is 

established. Particular attention might then be put on the expected value of f, which is assumed to be 

also the predictive probability of A, i.e. E[f] = P(A). 
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In the present paper, following Kaplan and Garrick (1981), we relax the assumption that frequentist 

probabilities of occurrence can be defined for all events involved. Instead we consider a setting where 

frequentist probabilities can be defined for some but not all events involved – some events are 

assumed to be unique and their uncertainty can only be assessed using predictive subjective 

probability assignments, or more generally, as will be argued, as imprecise probabilities.  

 

The main contribution of the present paper is the formulation of a set-up for the combined analysis 

of unique and repetitive events in quantitative risk assessment that extends the Kaplan and Garrick 

(1981), methodology to a setting allowing for imprecise probabilities, that either represent epistemic 

uncertainty on frequentist probabilities, or represent expert uncertainty concerning unique events. The 

imprecise probability approach has been argued to be a more faithful representation of partial 

information than unique distributions.  As a particular case, the paper describes the extension, to the 

joint presence of unique and repetitive events, of an existing method for jointly propagating 

probabilistic and possibilistic inputs to be applicable in such a setting. So this paper contributes to a 

better understanding of how to articulate the joint presence of aleatory and epistemic uncertainty in 

risk assessment. 

 
Table 1 Frameworks and methods for the study of different types of events using different types of probability. 

 

Events 

Repeatable Unique 
Repeatable and 

unique 

Subjective 

probabilities 

Precise Bayesian framework 

Imprecise 
Hybrid 

methods 

Interval 

analysis 

Present paper 

method 

 

Table 1 positions the present paper and its suggested methods in relation to existing frameworks and 

methods. The Bayesian framework (e.g. Bernardo & Smith, 1994) with its precise probabilities is 

straightforward to apply to settings involving respectively both repeatable and unique events, as well 

as to their combination. Imprecise probability methods can also handle these settings: Unique event 

probabilities are handled by interval analysis (e.g. Moore, 1966) when (some of) the probabilities are 

imprecise. Efforts have been made to develop hybrid methods for handling repeatable events using 

precise and imprecise probabilities jointly (e.g. Cooper et al., 1996; Guyonnet et al., 2003; Baudrit et 

al. 2006; Montgomery, 2009). The present paper extends these efforts by addressing the setting of 
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both repeatable and unique events. 

 

The remainder of this paper is organized as follows. In Section 2, we introduce and discuss the notion 

of subjective probability. In Section 3, we formalize the set-up for combined analysis of unique and 

repetitive events using the Bayesian framework, and in Section 4, we extend the set-up to the case of 

imprecise probabilities. In Section 5 and Section 6, a hybrid probabilistic and possibilistic method is 

presented and applied, respectively. It can be viewed as a special case of the former. In Section 7, we 

discuss the findings of the paper, and Section 8 gives a summary and some final remarks. 

 

2 Subjective probabilities and the Kaplan-Garrick setting revisited 

 

There exist different interpretations of a subjective probability, see e.g. Aven & Reniers (2013) for a 

recent overview of probability interpretations in a risk and safety setting. Here we consider two 

common interpretations: A subjective probability P(A) interpreted with reference to a standard is the 

number such that the uncertainty about the occurrence of A is considered equivalent with the 

uncertainty about the occurrence of some standard event, e.g. drawing, at random, a red ball from an 

urn that contains P(A) x 100 % red balls (Kaplan and Garrick, 1981; Lindley, 2000; 2006; see also 

Bernardo & Smith, 1994). Alternatively the subjective probability P(A) can be interpreted as the 

amount of money that the assigner would be willing to bet if he/she would receive a single unit of 

payment if the event A were to occur, and nothing otherwise. The agent must also accept the opposite 

bet, exchanging roles between buyer and seller. Hence the probability of an event by this 

interpretation is the (fair) price at which the assigner is neutral between buying and selling a ticket 

that is worth one unit of payment if the event occurs, and worth nothing if not (Singpurwalla 2006). 

This is the view advocated already in the 1930’s by De Finetti (1936).  

 

Which interpretation to use is a debated topic; see Kaplan (1988, 1997), SEP (2011), Aven (2010, 

2013) and Dubois (2010). This discussion is however beyond the scope of the present paper and will 

not be addressed in the following. What is important here is that both the “random drawing from an 

urn” analogy and the betting view force the assigner/analyst to provide unique probabilities for 

describing his/her state of beliefs. Subjective probabilities are based on an axiom assuming that 

precise measurements of uncertainties can be made; see e.g. Bernardo & Smith (1994 p. 31). 

However, many researchers have questioned this assumption of and requirement for precise 

measurements of uncertainties (e.g. Dempster, 1968; Shafer, 1976; Walley, 1991; see also Dubois et 

al. 1996; Dubois and Prade, 2009). In many situations, the basis for assigning the probabilities could 

be weak. A specific number can be assigned, but the rationale for it can be questioned – strong 
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assumptions may be needed to justify a concrete number. The assigned probability is precise, but such 

a precision may be considered rather arbitrary. One may, for example, subjectively assess that two 

different situations have probabilities equal to 0.7 say, but in one case the assignment is supported by 

a substantial amount of relevant data, whereas, in the other, by effectively no data at all. The strength 

of knowledge, the probabilities are based on, is not at all reflected by the assigned number (Aven & 

Zio 2011).   

 

These considerations have led to the use of alternative approaches and methods for representing the 

uncertainties (Dubois and Prade, 2009; Dubois 2010). Here our focus is on interval probabilities or, 

more generally, imprecise probabilities.  Imprecise probability theory generalises probability by using 

an interval [P(A), 𝑃𝑃(𝐴𝐴)] to represent uncertainty about an event A, with lower probability P(A) and 

upper probability 𝑃𝑃(𝐴𝐴) = 1 − P�𝐴𝐴�, where 0 ≤ P(A) ≤ 𝑃𝑃(𝐴𝐴) ≤ 1 and 𝐴𝐴 is the complement of set A.   

 

In line with the uncertainty standard interpretation of a subjective probability (Lindley, 2006) we 

interpret an imprecision interval, say [0.2, 0.5] for the event A, as follows: The analyst states that 

his/her assigned degree of belief is greater than the urn chance of 0.20 (the degree of belief of drawing 

one particular ball out of an urn comprising 5 balls) and less than the urn chance of 0.5. The analyst 

is not willing to make any further judgments. Then the interval [0.2, 0.5] can be considered an 

imprecision interval for the hypothetical urn probability P(A).  In contrast, following Walley’s betting 

interpretation (Walley, 1991), the lower probability is interpreted as the maximum price for which 

one would be willing to buy a bet which pays 1 if A occurs, and 0 if not and the upper probability as 

the minimum price for which one would be willing to sell the same bet. If the upper and lower 

probabilities are equal, we are led to precise probabilities à la De Finetti.  In this case, the lower bound 

0.2 is directly interpreted as the degree of belief in A, the degree of belief of its complement being 

0.5. 

 

The use of imprecision intervals is a debated topic also in the applied probability literature; see for 

example Lindley (2006) and Aven (2011). In their paper, Kaplan and Garrick (1981 p. 18) claim that 

“Statistics, as a subject, is the study of frequency type information. That is, it is the science of handling 

data. On the other hand probability, as a subject, we might say is the science of handling the lack of 

data. […] When one has insufficient data, there is nothing else one can do but use probability.” The 

above discussion emphasizing the emergence of generalisations of subjective probability and the use 

of intervals for describing incomplete information make Kaplan and Garrick’s emphatic statement on 

the exclusive position of probability theory in belief representation indeed debatable. However, we 
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leave this discussion here.   

 

For the purpose of the present work we simply assume that the analysts either accept the precise 

subjective stance (the Bayesian approach), or adopt an approach based on imprecise probabilities.  

The former approach is a special case of the latter, but we choose to treat these approaches separately 

as they are based on different ideas and it is easier to understand the general case by first casting the 

analysis within the simpler Bayesian framework. For an extension of the Kaplan and Garrick risk 

perspective, which allows for alternative ways of representing uncertainties, including imprecise 

probabilities, see Aven (2011). 

 

3 Combined analysis of unique and repetitive events using the Bayesian framework  

 

In this section we present a form of the Kaplan-Garrick set-up for the combined analysis of unique 

and repetitive events according to a Bayesian approach. We do so first for a setting involving two 

events, before introducing the more general setting involving a complex combination of events. The 

set-up is based on precise probabilities in this section. Imprecise probabilities are considered in 

Section 4. 

 

3.1 Two-event case 

 

Let 𝐴𝐴  denote an event whose occurrence depends on the outcome of a unique event 𝑈𝑈  and of a 

repeatable event 𝑅𝑅 in such a way that 𝐴𝐴 occurs if both 𝑈𝑈 and 𝑅𝑅 occur. Furthermore, define 𝑋𝑋 = 𝐼𝐼(𝑈𝑈) 

and 𝑌𝑌 = 𝐼𝐼(𝑅𝑅), where 𝐼𝐼 is the indicator function which equals 1 if its argument is true and 0 otherwise. 

Then we have 

 

𝐼𝐼(𝐴𝐴) = 𝑋𝑋𝑌𝑌. 

 

Suppose that an expert supplies a subjective probability 𝑝𝑝  for 𝑈𝑈 , i.e. 𝑝𝑝 = 𝑃𝑃(𝑈𝑈) = 𝑃𝑃(𝑋𝑋 = 1)  and 

knows the precise frequentist probability 𝑓𝑓 of 𝑅𝑅, i.e. 𝑓𝑓 = 𝐹𝐹(𝑅𝑅) = 𝐹𝐹(𝑌𝑌 = 1); here 𝑃𝑃 is a subjective 

probability measure and 𝐹𝐹 a frequentist one. To proceed we rely on the following two principles: 

 

1. A complex event made up of a logical combination of repeatable and non-repeatable events 

is non-repeatable (as we are interested in the particular occurrence of 𝑅𝑅 taking place along 

with the unique occurrence of 𝑈𝑈). 

2. The subjective probability of the occurrence of a repeatable event should be measured by its 
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real frequency if the latter is known (the Hacking frequency principle (Hacking, 1965)). 

 

Based on the above principles and assuming independence between 𝑈𝑈 and 𝑅𝑅, we can consider 𝑝𝑝𝑓𝑓 as 

the subjective probability of 𝐴𝐴. To see this, note that 

 

𝑃𝑃(𝐴𝐴) = 𝐸𝐸[𝑋𝑋𝑌𝑌] = 𝑃𝑃(𝑋𝑋𝑌𝑌 = 1) = 𝑃𝑃(𝑈𝑈 ∩ 𝑅𝑅) = 𝑃𝑃(𝑈𝑈|𝑅𝑅)𝑃𝑃(𝑅𝑅) = 𝑃𝑃(𝑈𝑈)𝐹𝐹(𝑅𝑅) =  𝑝𝑝𝑓𝑓. 

 

In this calculation, the subjective probability 𝑃𝑃(𝑅𝑅)  is measured by means of the frequency of 

occurrence of 𝑅𝑅, 𝐹𝐹(𝑅𝑅), during the unique experiment where 𝑈𝑈 is observed or not. This interpretation 

is implicit when we compute the product 𝑝𝑝𝑓𝑓. 

 

Actually the probability 𝑃𝑃(𝐴𝐴) should be written 𝑃𝑃(𝐴𝐴|𝑓𝑓) as 𝑓𝑓 is assumed known. If this assumption is 

dropped, we obtain the unconditional probability of the event 𝐴𝐴:  

 

𝑃𝑃(𝐴𝐴) = �𝑃𝑃(𝐴𝐴|𝑓𝑓)𝑑𝑑𝑑𝑑(𝑓𝑓) = �𝑝𝑝𝑓𝑓𝑑𝑑𝑑𝑑(𝑓𝑓) = 𝑝𝑝 · 𝐸𝐸(𝑓𝑓), 

(1) 

where 𝑑𝑑 is a subjective probability distribution of 𝑓𝑓 and 𝐸𝐸(𝑓𝑓) is its mean value.  

 

3.2 Complex combination of events 

 

More generally, let 𝐴𝐴 denote an event whose occurrence depends on the outcome of 𝑛𝑛 unique events 

𝑈𝑈 = (𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑛𝑛)  and 𝑚𝑚  repetitive events 𝑅𝑅 = (𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑚𝑚)  through a function 𝑔𝑔 . For 

example, 𝐴𝐴 could be the top event and (𝑈𝑈,𝑅𝑅) the basic events of a fault tree. Or 𝐴𝐴 could be an end 

event and (𝑈𝑈,𝑅𝑅) the initiating event and barrier failure events of an event tree. Define a vector of 

unknown quantities 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) and a vector of random quantities 𝑌𝑌 = (𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑚𝑚), and 

let 𝑋𝑋𝑖𝑖 = 𝐼𝐼(𝑈𝑈𝑖𝑖), 𝑖𝑖 = 1,2, … , 𝑛𝑛, and 𝑌𝑌𝑖𝑖 = 𝐼𝐼(𝑅𝑅𝑖𝑖), 𝑗𝑗 = 1,2, … ,𝑚𝑚. Then we have 

 

𝐼𝐼(𝐴𝐴) = 𝑔𝑔(𝑋𝑋,𝑌𝑌). 

 

Let 𝑝𝑝 = (𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑛𝑛) be the subjective probabilities of the unique events X, and let 𝑑𝑑(𝑓𝑓) denote 

the subjective probability distribution of 𝑓𝑓, where we now extend the definition of f from now on to 

be a vector 𝑓𝑓 = (𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑚𝑚)  and 𝑓𝑓𝑖𝑖 = 𝐹𝐹(𝑅𝑅𝑖𝑖)  is the frequentist probability of the event 𝑅𝑅𝑖𝑖 . We 

assume that the analysts’ uncertainties about 𝑓𝑓 are not dependent on the outcomes of X.  Denoting by 

Ω = {0, 1}𝑚𝑚  the domain of 𝑓𝑓 , 𝑝𝑝(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥)  and 𝑔𝑔(𝑥𝑥,𝑓𝑓) = 𝑃𝑃(𝐴𝐴|𝑋𝑋 = 𝑥𝑥,𝑓𝑓)  and taking 
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expectations, yields: 

 

𝑃𝑃(𝐴𝐴) = 𝐸𝐸 �𝐸𝐸[𝑔𝑔(𝑋𝑋,𝑌𝑌)|𝑓𝑓]� = � 𝐸𝐸[𝑔𝑔(𝑋𝑋,𝑓𝑓)]𝑑𝑑𝑑𝑑(𝑓𝑓)
Ω

= � �𝑔𝑔(𝑥𝑥,𝑓𝑓)𝑝𝑝(𝑥𝑥)
𝑥𝑥

𝑑𝑑𝑑𝑑(𝑓𝑓)
Ω

= �𝑝𝑝(𝑥𝑥)� 𝑔𝑔(𝑥𝑥,𝑓𝑓)𝑑𝑑𝑑𝑑(𝑓𝑓)
Ω𝑥𝑥

= �𝑝𝑝(𝑥𝑥)𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)]
𝑥𝑥

. 

 

Moreover the subjective probability 𝑝𝑝(𝑥𝑥) is of the form ∏ 𝑝𝑝𝑖𝑖𝑖𝑖: 𝑥𝑥𝑖𝑖=1 ·  ∏ (1 − 𝑝𝑝𝑖𝑖)𝑖𝑖: 𝑥𝑥𝑖𝑖=𝑂𝑂 , which since xi 

is Boolean can be written ∏ �𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖 + (1 − 𝑥𝑥𝑖𝑖)(1 − 𝑝𝑝𝑖𝑖)�𝑖𝑖=1,…,𝑛𝑛 . 

 

4 Combined analysis of unique and repetitive events using imprecise probabilities  

 

We now extend the set-up presented in Section 3 from a precise probability framework to an imprecise 

probability framework. The objective is to establish an interval �𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐴𝐴)�, with 𝑃𝑃(𝐴𝐴) ≤ 𝑃𝑃(𝐴𝐴). 

This interval represents, in the presence of unique events, the degree of belief in A for the expert, and, 

by duality, the degree of belief in its complement �𝐴𝐴�. Total ignorance is obtained if both degrees of 

belief are 0. 

 

4.1 Two-event case 

 

Consider the setting introduced in Section 2.1 involving two events, and first assuming that the precise 

frequentist probability 𝑓𝑓  is known and that 𝑝𝑝 = 𝑃𝑃(𝑈𝑈)  and 𝑝𝑝 = 𝑃𝑃(𝑈𝑈)  are lower and upper 

probabilities of the unique event 𝑈𝑈, respectively. Note that, under Walley’s gamble-based approach, 

the subjective interval [𝑝𝑝 ,𝑝𝑝] represents the analyst’s state of belief about 𝑈𝑈 and does not contain a 

“true subjective probability” that would represent the analyst’s opinion in an accurate way (Walley, 

1991). The same holds for the other interpretation described in Section 2, where the analyst’s 

uncertainty about U is compared to that related to a standard event. 

 

In the simple case of two events, assuming independence, we just have to multiply the subjective 

probability bounds and the frequentist probability to obtain  

 

�𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐴𝐴)� = �𝑝𝑝 ∙ 𝑓𝑓,𝑝𝑝 ∙ 𝑓𝑓�. 
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In the case that the frequentist probability 𝑓𝑓 is ill-known, still assuming independence between 𝑈𝑈 and 

𝑅𝑅 and now also that the probability of 𝑈𝑈 is not affected by knowing or not knowing the value of 𝑓𝑓, 

we obtain 

 

�𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐴𝐴)� = �𝑝𝑝 ∙ 𝑓𝑓,𝑝𝑝 ∙ 𝑓𝑓�. 

 

where 𝑓𝑓 = 𝐸𝐸[𝑓𝑓] and 𝑓𝑓 = 𝐸𝐸[𝑓𝑓], derive from the lower and upper cumulative distribution functions on 

𝑓𝑓, respectively.  

 

4.2 Complex combination of events 

 

Based on an imprecise probability representation of the uncertain individual elements of the vectors 

𝑓𝑓 and 𝑋𝑋 we want to establish bounds on 𝑃𝑃(𝐴𝐴). We assume independence everywhere, i.e. between 

the elements of 𝑋𝑋, between the elements of 𝑌𝑌 and between 𝑋𝑋 and 𝑌𝑌. The subjective probability 𝑝𝑝(𝑥𝑥) 

is then on the format 𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1) 𝑃𝑃(𝑋𝑋2 = 𝑥𝑥2) …𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛), 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑖𝑖 = 1,2, … ,𝑛𝑛, which can be 

evaluated using interval analysis (Moore, 1966). It is assumed that the subjective assessment of 

𝑃𝑃(𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖) is specified by a probability interval [𝑝𝑝𝑖𝑖  𝑝𝑝𝑖𝑖]. 

 

In the most general case, the imprecise knowledge about the frequencies f is represented by a credal 

set, that is, a convex set of probabilities F. For specified values x of 𝑋𝑋  the function 𝑔𝑔(𝑋𝑋,𝑓𝑓)  is a 

product of the individual elements of 𝑓𝑓 and hence straightforward to evaluate. Instead of integrating 

𝑔𝑔(𝑥𝑥,𝑓𝑓)  in terms of 𝑑𝑑(𝑓𝑓)  we may consider directly the integral 𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)]  defined at the end of 

Section 3 (integrated over 𝑓𝑓): By obtaining bounds on 𝑃𝑃(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼) we can use the well-known 

result that for a non-negative unknown quantity W its expected value is given by (e.g. Ross, 1996) 

𝐸𝐸[𝑊𝑊] = �𝑃𝑃(𝑊𝑊 ≥ 𝑤𝑤)𝑑𝑑𝑤𝑤, 

so that letting 

𝑃𝑃(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼) = inf{𝑃𝑃(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼):𝑃𝑃 ∈  𝐅𝐅}, 

 

and 𝑃𝑃(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼)  = sup{𝑃𝑃(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼):𝑃𝑃 ∈  𝐅𝐅} 

we can compute the bounds 

𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)] = ∫ 𝑃𝑃(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼)𝑑𝑑𝛼𝛼1
0 , (2) 

and  
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𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)] = ∫ 𝑃𝑃(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼)𝑑𝑑𝛼𝛼1
0 .  (3) 

In some cases (when the lower probability is 2-monotone, or is a belief function) we have equalities: 

 

𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)] =  inf
P∈F

E(g(f, x));           𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)] = sup
P∈F

 E(g(f, x)) 

 

and these quantities are Choquet integrals.  

 

Next, we can compute upper and lower probabilities using interval optimization techniques (Moore, 

1979; Lodwick et al., 2008): 

𝑃𝑃(𝐴𝐴) = 𝑖𝑖𝑛𝑛𝑓𝑓  {∑ 𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)]∏ �𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖 + (1 − 𝑥𝑥𝑖𝑖)(1 − 𝑝𝑝𝑖𝑖)�𝑖𝑖=1,…,𝑛𝑛𝑥𝑥 : 𝑝𝑝𝑘𝑘 ∈ �𝑝𝑝𝑘𝑘  𝑝𝑝𝑘𝑘� , 𝑘𝑘 = 1, … ,𝑛𝑛} (4) 

and 

𝑃𝑃(𝐴𝐴) = 𝑠𝑠𝑠𝑠𝑝𝑝 {∑ 𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)]∏ �𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖 + (1 − 𝑥𝑥𝑖𝑖)(1− 𝑝𝑝𝑖𝑖)�𝑖𝑖=1,…,𝑛𝑛𝑥𝑥 : 𝑝𝑝𝑘𝑘 ∈ �𝑝𝑝𝑘𝑘  𝑝𝑝𝑘𝑘� , 𝑘𝑘 = 1, … ,𝑛𝑛} (5) 

where the sum is over 𝑥𝑥 such that 𝑔𝑔(𝑥𝑥,𝑓𝑓) > 0. Note that these expressions are generally not easy to 

compute, because their monotonic behaviour in terms of probabilities 𝑝𝑝𝑘𝑘  is not easy to guess. 

Generally, we know that the optimum is attained for one of the bounds of �𝑝𝑝𝑘𝑘  𝑝𝑝𝑘𝑘� but in the worst 

case, we must try all of them, which is of exponential complexity in the number n of non-repeatable 

events. See Jacob et al. (2011) for detailed calculations and an algorithm for the computation of such 

kinds of intervals. Strangely enough, there is almost no older literature on interval calculations with 

imprecise probabilities on Boolean expressions, stemming e.g., from fault trees. 

 

5 Hybrid probabilistic and possibilistic approach 

 

Like imprecise probability theory, possibility theory differs from probability theory (where a single 

probability measure is used) in that it uses a pair of dual set-functions, here called possibility and 

necessity measures, to represent uncertainty. The possibility function 𝜋𝜋 is the basic building block of 

possibility theory and for each 𝑠𝑠 in a set S, 𝜋𝜋(𝑠𝑠) expresses the degree of possibility of 𝑠𝑠 being the true 

value of some ill-known quantity X. When 𝜋𝜋(𝑠𝑠) = 0  for some 𝑠𝑠 , the outcome 𝑠𝑠  is considered 

impossible, whereas when 𝜋𝜋(𝑠𝑠) = 1 for some 𝑠𝑠, the outcome 𝑠𝑠 is possible, i.e. is just unsurprising, 

normal, usual (Dubois, 2006). This is a much weaker statement than a probability equal to 1. As one 

of the elements of S  is the true value, it is assumed that π(s) = 1  for at least one s . Possibility 

distributions on numerical spaces often take the form of fuzzy intervals (Dubois et al. 2000), namely, 

𝜋𝜋 is an upper semi-continuous mapping from the reals to the unit interval such that Vα = {v: π(v) ≥ 
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α} is a closed interval for all 0 < α ≤ 1. Hence, possibility theory is a suitable representation of 

uncertainty in situations where the available information takes the form of nested subsets with various 

confidence levels. Two sets are nested if one of the sets is a subset of the other and, by extension, sets 

in a sequence are nested if each subsequent set is contained in the next. 

 

The possibility function π induces a pair of necessity/possibility measures [Ν,Π], and the possibility 

of an event A, Π(A), is defined by  

 

Π(A) = sup
s∈A

 π(s), (6) 

 

and the associated necessity measure, Ν(A), by  

 

Ν(A) = 1 − Π�A� = inf
s∉A

�1 − π(s)�. (7) 

 

Then each cut Vα of a continuous fuzzy interval π can viewed as an interval containing the quantity 

of interest with confidence level N(Iα) ≥ 1 − α.  

 

Let P(π) be the family of probability measures 𝑃𝑃 ∈ P(𝜋𝜋) such that for all events A, Ν(A) ≤ P(A) ≤

Π(A). It is known that (Dubois et al. 2004) that P(π) = {P: P(Iα) ≥ 1 − α, 0 < α ≤ 1}. Then it can be 

proved that set functions N and Π are coherent lower and upper previsions in the sense of Walley 

(1991), namely (De Cooman and Ayels, 1999): 

 

N(A) = inf
P∈P(π)

P(A)       and      Π(A) = sup
P∈P(π)

P(A). 

 

The possibility and necessity measures of an event can hence be interpreted as upper and lower limits, 

respectively, for the probability of an event, i.e. they are special cases of upper and lower probabilities. 

Under the subjectivist view, they model the cautious expert that sells Boolean gambles less than 1$ 

only if (s)he can get them for free. 

 

When uncertainty about 𝑓𝑓 is described using possibility theory, the extension principle (e.g. Zadeh, 

1975) can be used to generate a possibility distribution π𝑔𝑔 for 𝑔𝑔(𝑥𝑥,𝑓𝑓) for specified values of 𝑥𝑥.  It 

takes the following form (Dubois et al. 2000):  
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π𝑔𝑔(𝑧𝑧) =  Π({𝑓𝑓: 𝑔𝑔(𝑥𝑥, 𝑓𝑓) = 𝑧𝑧}) =  sup
𝑓𝑓: 𝑔𝑔(𝑥𝑥,𝑓𝑓)=𝑧𝑧

 min (π1(𝑓𝑓1),···,π𝑚𝑚(𝑓𝑓𝑚𝑚)) 

 

This computation comes down to performing interval computations on α−cuts Viα of possibility 

distributions π𝑖𝑖 , which yield the α−cuts of π𝑔𝑔. From a probabilistic point of view, the choice of a 

single threshold α for all distributions π𝑖𝑖 presuppose complete dependency between the possibility 

distributions, which corresponds to the same level of confidence for all inputs, used by a single expert. 

Alternatively, one may choose various thresholds for cutting the π𝑖𝑖, and combine interval analysis 

with Monte-Carlo methods, thus obtaining a random set for 𝑔𝑔(𝑥𝑥,𝑓𝑓). This makes sense if the π𝑖𝑖’s 

come from independent sources. The result of applying the extension principles are not directly 

comparable with the results of treating the π𝑖𝑖’s as independent random sets. See Dubois and Prade 

(1991) for the relation between fuzzy and random set arithmetics, and Baudrit et al. (2006, 2007) for 

the theoretical foundations and implementation of a hybrid possibilistic-probabilistic propagation 

method using interval analysis and Monte-Carlo methods. 

 

Then bounds of the form Ν(𝑔𝑔(𝑥𝑥, 𝑓𝑓) ≥ 𝛼𝛼) ≤ 𝑃𝑃(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼) ≤ Π(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼)  can be generated, 

from which bounds on the integral 𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)] can be obtained using (2) and (3) as (Baudrit et al. 

2007): 

 

𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)] = ∫ Π(𝑔𝑔(𝑥𝑥,𝑓𝑓) ≥ 𝛼𝛼)𝑑𝑑𝛼𝛼1
0 =  inf

P∈P�π𝑔𝑔�
E(g(f, x)) , (8) 

and 

𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)] = ∫ N(𝑔𝑔(𝑥𝑥, 𝑓𝑓) ≥ 𝛼𝛼)𝑑𝑑𝛼𝛼 =  sup
P∈P�π𝑔𝑔�

E(g(f, x))1
0 . (9) 

 

In the next section we provide a numerical example of the procedure described above. 

 

6 Numerical example 

 

We now return to the oil-drilling example introduced in Section 1, and define the following events: 

 

𝐴𝐴 = Blowout 

𝑈𝑈1 = Oil at drilling location 

𝑈𝑈2 = Well kick barrier failure type I 
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𝑅𝑅1 = Well kick 

𝑅𝑅2 = Well kick barrier failure type II 

 

We assume that a blowout will occur under the combined circumstances that there is oil at the drilling 

location, a well kick occurs during the drilling, and either one or both of the barriers in place to avoid 

that a well kick develops into a blowout fails, i.e., 𝐴𝐴 =  𝑈𝑈1 ∩ 𝑅𝑅1 ∩ (𝑈𝑈2 ∪ 𝑅𝑅2). According to principle 

(1) described in Section 3.1, the event A is a unique event (being made up of a logical combination 

of repeatable and non-repeatable events). Then we have 

 

𝐼𝐼(𝐴𝐴) = 𝑔𝑔(𝑋𝑋,𝑌𝑌) = 𝑋𝑋1𝑌𝑌1�1− (1 − 𝑋𝑋2)(1− 𝑌𝑌2)� =  𝑋𝑋1(1 − 𝑋𝑋2)𝑌𝑌1𝑌𝑌2 +  𝑋𝑋1𝑋𝑋2𝑌𝑌1 

 

(decomposing into disjoint events) and consequently 

 

𝑔𝑔(𝑥𝑥,𝑓𝑓) = 𝑥𝑥1𝑓𝑓1�1 − (1 − 𝑥𝑥2)(1− 𝑓𝑓2)� =  𝑥𝑥1(1 − 𝑥𝑥2)𝑓𝑓1𝑓𝑓2 + 𝑥𝑥1𝑥𝑥2𝑓𝑓1 , 

 

so that 

𝑔𝑔�(1,1),𝑓𝑓� = 𝑓𝑓1, 

𝑔𝑔�(0,1),𝑓𝑓� = 0, 

𝑔𝑔�(1,0),𝑓𝑓� = 𝑓𝑓1𝑓𝑓2, 

𝑔𝑔�(0,0),𝑓𝑓� = 0 

 

Regarding dependence between the set of events (U1,U2,R1,R2), clearly P(U1|U2,R1,R2) = P(U1) and 

P(R1|R2,U2) = P(R1), since U1 and R1 occur before the conditional events in these probabilities. Also, 

clearly P(U2|U1,R1,R2) = P(U2|R1,R2) and P(R2|U1,U2,R1) = P(R2|U2,R1), since the occurrence of R1 

makes U1 superfluous. However, we may not always have P(U2|R1,R2) = P(U2) and P(R2|R1,U2) = 

P(R2), since the probability of a barrier failure may differ during testing and during real demand, and 

since knowing that one barrier has failed could induce some belief in a common cause failure having 

occurred. Nevertheless, we assume independence here as a simplification judged as reasonable. 

Finally, we have P(R1) = P(R1|U1) P(U1) + P(R1|not U1) P(not U1) = f1 p1 + 0 (1 – p1) = f1 p1. Using 

precise probabilities we obtain 

 

𝑃𝑃(𝐴𝐴) = �𝑝𝑝(𝑥𝑥)𝐸𝐸[𝑔𝑔(𝑥𝑥,𝑓𝑓)]
𝑥𝑥

= 𝑝𝑝1𝑝𝑝2𝐸𝐸[𝑓𝑓1] + 𝑝𝑝1(1− 𝑝𝑝2)𝐸𝐸[𝑓𝑓1𝑓𝑓2], 
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Note that the system g is a monotone system with respect to its arguments, but the parameters (p1, 

p2,E[f1],E[f1f2]) that we obtain through the analysis are not directly those of elementary events, 

namely (p1,p2, 𝐸𝐸[𝑓𝑓1], 𝐸𝐸[𝑓𝑓2]). It is, however, easy to check that in this particular case P(A) is increasing 

with 𝐸𝐸[𝑓𝑓1] and 𝐸𝐸[𝑓𝑓1𝑓𝑓2] (as patent in the expression above) as well as with  𝑝𝑝1 and 𝑝𝑝2. Indeed, 𝑃𝑃(𝐴𝐴) 

also reads 𝑝𝑝1(𝑝𝑝2(𝐸𝐸[𝑓𝑓1] −  𝐸𝐸[𝑓𝑓1𝑓𝑓2]) + 𝐸𝐸[𝑓𝑓1𝑓𝑓2]),  and 𝐸𝐸[𝑓𝑓1] ≥  𝐸𝐸[𝑓𝑓1𝑓𝑓2] . So the upper and lower 

probabilities of A are obtained as 

 

𝑃𝑃(𝐴𝐴) = 𝑝𝑝1𝑝𝑝2𝐸𝐸[𝑓𝑓1] + 𝑝𝑝1 �1 − 𝑝𝑝2�𝐸𝐸[𝑓𝑓1𝑓𝑓2], 

 

𝑃𝑃(𝐴𝐴) = 𝑝𝑝1𝑝𝑝2𝐸𝐸[𝑓𝑓1] + 𝑝𝑝1�1 − 𝑝𝑝2�𝐸𝐸[𝑓𝑓1𝑓𝑓2]. 

 

Note that the monotonicity of the function g is not always guaranteed. It would not hold if the Boolean 

expression of A contains an elementary event and its negation (for example an exclusive OR). In that 

case the computation of the upper and lower probabilities can be tricky (it may become exponential 

in complexity with the number of variables, see (Jacob et al. 2011).  This phenomenon usually  does 

not appear in fault-trees  where the top event is just a disjunction of conjunctions and the interval 

analysis is straightforward. 

We now assume that the lower and upper values of 𝑝𝑝1 and 𝑝𝑝2 are �𝑝𝑝1,𝑝𝑝1� = [0.4,0.6] and �𝑝𝑝2,𝑝𝑝2� =

[0.01,0.2], respectively. Furthermore, we assume that the range and core values of the possibility 

distributions 𝜋𝜋(𝑓𝑓1) and 𝜋𝜋(𝑓𝑓2) are given by the triplets (0.1,0.2,0.3) and (0.2,0.5,0.7), respectively. 

These possibility distributions are shown in Figure 1, together with the possibility distribution 

𝜋𝜋(𝑓𝑓1𝑓𝑓2) resulting from the combination of 𝜋𝜋(𝑓𝑓1) and 𝜋𝜋(𝑓𝑓2). The distribution 𝜋𝜋(𝑓𝑓1𝑓𝑓2) was calculated 

by application of the extension principle, which is equivalent to performing interval analysis on the 

α-cuts 𝑉𝑉𝛼𝛼 = �𝑣𝑣𝛼𝛼, 𝑣𝑣𝛼𝛼� = {𝑣𝑣:𝜋𝜋(𝑣𝑣) ≥ 𝛼𝛼} , as already explained. The interpretation of the possibility 

distributions in Figure 1 is as follows: The probability that the quantity in question, say f1, belongs to 

Vα is 𝑃𝑃(𝑓𝑓1 ∈ 𝑉𝑉𝛼𝛼) ≥ 1 − 𝛼𝛼. For example, looking at the top distribution of Figure 1, we see that there 

is a 50 % or greater probability that f1 belongs to the interval [0.15,0.25]. 
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Figure 1 Possibility distributions of f1(top), f2 (middle) and f1f2 (bottom). 

The cumulative and complementary cumulative Possibility and Necessity distributions of 𝑓𝑓1𝑓𝑓2 

induced by 𝜋𝜋(𝑓𝑓1𝑓𝑓2) are shown in Figure 2, determined using Equations (6) and (7), respectively. The 

interpretation of these distributions is, for example, that considering the top set of distributions, the 

probability P(f1f2 ≤ 0.05) is seen to be greater than 0 and less than approximately 0.6 (cf. the left/green 

cumulative possibility distribution); and the probability P(f1f2 ≤ 0.15) is seen to be less than 1 and 

greater than approximately 0.5 (cf. the right/red cumulative necessity distribution). 

 
Figure 2 Cumulative (top) and complementary cumulative (bottom) Necessity and Possibility distributions of f1f2. 

Use of Equations (8) and (9) yield �𝐸𝐸[𝑓𝑓1],𝐸𝐸[𝑓𝑓1]� = [0.15,0.25]  and �𝐸𝐸[𝑓𝑓1𝑓𝑓2],𝐸𝐸[𝑓𝑓1𝑓𝑓2]� =

[0.055,0.15], and so finally by means of Equations (4) and (5) we obtain  

 

�𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐴𝐴)� = [0.02038, 0.102]. 

 

Hence, the imprecise subjective probability of a blow-out is approximately [0.02, 0.1], which, under 

the uncertainty standard interpretation, can be interpreted to mean that the degree of belief in a 

blowout is greater than that of drawing one particular ball out of an urn containing 50 balls, and less 

than that of drawing one particular ball from an urn containing 5 balls; cf. Section 2. Alternatively, in 
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the Walley spirit, the degree of belief in a blow-out is very small (0.02) and the degree of belief in the 

absence of blow-out is very large (.9). 

 

7 Discussion 

 

The framework described in the present paper is based on a distinction between unique and repetitive 

events, i.e. events are assumed to be of one kind or the other. Deciding when the situation is repetitive, 

respectively unique – or rather deciding which events to model as repetitive and which ones to treat 

as unique – is however not necessarily straightforward. The question of when to introduce probability 

models and frequentist probabilities (chances) instead of using predictive probability assignments is 

addressed by Aven (2012a) (see also Aven (2012b)), who argues that introducing frequentist 

probabilities (chances) should only be done when the quantities of interest are frequentist probabilities 

and/or when systematic information updating is important to meet the aim of the analysis.  

 

When to use precise and imprecise probability is also not necessarily obvious. As discussed by Flage 

(2010) (see also Aven et al. (2014)), a recurring argument appears to be that probability is an 

appropriate representation of uncertainty only if a large enough amount of data is available to base it 

on. However, it is not obvious how to make such a prescription operational (Flage, 2010 p. 33): ‘Consider 

the representation of uncertainty about the parameter(s) of a probability model. If a large enough 

amount of data exists, there would be no uncertainty about the parameter(s) and hence no need for a 

representation of such uncertainty. When is there enough data to justify probability, but not enough 

to accurately specify the true value of the parameter in question and, thus, make probability, as an 

epistemic concept, superfluous? […] Also, depending on the relevance of the available observations, 

different [amounts of data] could be judged as sufficient in different situations.’  

 

The latter point was also made by one of the reviewers of the present paper. He stated that reducing 

the issue to a question of sample size misses much of the discussion on this topic, and points out that 

(we allow ourselves to cite the referee comments) ‘In fact, the nature of the data is also quite 

important. For instance, imprecise methods are particularly useful when the plus-or-minus ranges 

for data values are non-negligible, when there is statistical censoring or missing data, or when there 

is structural uncertainty about shapes of distributions, their dependencies, or the correct form of the 

expression or model being evaluated.’ Nevertheless, under some assumption such as unimodal 

distributions, it is possible to derive a possibility distribution from a single observation (assuming the 

latter is the mode), using a probabilistic inequality (Mauris, 2008). 
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As stated in Section 3, we rely on two principles related to the events and probabilities involved, that 

lead us to consider non-repeatable any complex events involving at least a non-repeatable one, and 

to admit that the frequency of a repeatable event is used as the subjective probability of any of its 

occurrence. 

 

The first principle is self-evident, since the complex event occurs if and only if the non-repeatable 

events occur. The second principle is well-known in Bayesian statistics, where the probability of an 

event in an exchangeable sequence of random quantities is taken as equal to the limiting frequency 

(sometimes referred to as a chance (e.g. Singpurwalla & Wilson, 2009) or propensity (e.g. Lindley & 

Phillips, 1976) of that event in the same sequence, i.e. P(A|p) = p, where p is the chance of A.  

 

Returning to the formal setting introduced in Section 1, with the model g(X) used to predict a quantity 

of interest Z, the methods in the present paper only consider parameter uncertainty, i.e. uncertainty 

about X, and neglects model (output) uncertainty, i.e. uncertainty about the difference g(X)−Z. In this 

vein, we may consider the use of set-valued models in order to cope with lack of knowledge about 

function g.  

 

8 Summary and final remarks 

 

This paper develops a framework for combined analysis of unique and repetitive events in 

quantitative risk assessment using both precise and imprecise probability. We start from a subjective 

probability (Bayesian) setting involving one event of each type, and then generalise to a setting 

involving a complex combination of the two types of events with their associated uncertainty 

represented by a combination of subjective probability and imprecise probability. One way of 

representing imprecise probability is through possibility theory, and we extend an existing method 

for jointly propagating probabilistic and possibilistic input to fit the developed framework. Finally, a 

numerical example related to environmental risk assessment of the drilling of an oil well is included 

to illustrate the application of the proposed method. 

 

Allowing for different types of events and different types of uncertainty representations enlarges our 

modelling capacities. Computationally, the described methods can be handled by a combination of 

interval analysis and reliance on the fact that the defined complex function of unique and repetitive 

events is an uncertain quantity on the unit interval, i.e. a non-negative uncertain quantity, which means 

that we can rely on the well-known result that the expectation of a non-negative uncertain quantity is 

the integral over its complementary cumulative distribution function. 
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The described framework can be extended and applied in various ways. In the present paper we have 

considered the case of possibility theory as representation of uncertainty in terms of lower and upper 

probability. Other representations also exist for this purpose, for example the theory of belief 

functions (also known as evidence theory or Dempster-Shafer theory (Shafer, 1976)) as an alternative 

to theories of imprecise or interval probability (Walley, 1991; Weichselberger, 2000). An example 

where incomplete knowledge of frequencies is modeled by belief functions on the frequency range 

[0, 1] instead of possibility distributions is in (Limbourg, et al., 2007). While belief functions are just 

special cases of lower probabilities corresponding to random sets, it turns out that on Boolean frames 

like {0, 1}, they are mathematically equivalent. So it is tempting to represent a plain probability 

interval for a Boolean variable by a random set on {0, 1}. On this basis, imprecise probabilities of 

final events of an event tree can be efficiently obtained, and more general reliability analysis methods 

can be devised (Aguirre et al. 2014). The obtained results differ from those of interval analysis 

because the underlying independence analysis are not the same.  The comparison of the two 

approaches is worth studying further. 

 

Furthermore, it is conceivable to extend the framework to include finite populations, i.e. the setting 

between unique and repetitive events. 
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